1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/string_helpers.h> 8 9 #include "i915_reg.h" 10 #include "intel_atomic.h" 11 #include "intel_crtc.h" 12 #include "intel_cx0_phy.h" 13 #include "intel_de.h" 14 #include "intel_display.h" 15 #include "intel_display_types.h" 16 #include "intel_dpio_phy.h" 17 #include "intel_dpll.h" 18 #include "intel_lvds.h" 19 #include "intel_lvds_regs.h" 20 #include "intel_panel.h" 21 #include "intel_pps.h" 22 #include "intel_snps_phy.h" 23 #include "vlv_dpio_phy_regs.h" 24 #include "vlv_sideband.h" 25 26 struct intel_dpll_funcs { 27 int (*crtc_compute_clock)(struct intel_atomic_state *state, 28 struct intel_crtc *crtc); 29 int (*crtc_get_shared_dpll)(struct intel_atomic_state *state, 30 struct intel_crtc *crtc); 31 }; 32 33 struct intel_limit { 34 struct { 35 int min, max; 36 } dot, vco, n, m, m1, m2, p, p1; 37 38 struct { 39 int dot_limit; 40 int p2_slow, p2_fast; 41 } p2; 42 }; 43 static const struct intel_limit intel_limits_i8xx_dac = { 44 .dot = { .min = 25000, .max = 350000 }, 45 .vco = { .min = 908000, .max = 1512000 }, 46 .n = { .min = 2, .max = 16 }, 47 .m = { .min = 96, .max = 140 }, 48 .m1 = { .min = 18, .max = 26 }, 49 .m2 = { .min = 6, .max = 16 }, 50 .p = { .min = 4, .max = 128 }, 51 .p1 = { .min = 2, .max = 33 }, 52 .p2 = { .dot_limit = 165000, 53 .p2_slow = 4, .p2_fast = 2 }, 54 }; 55 56 static const struct intel_limit intel_limits_i8xx_dvo = { 57 .dot = { .min = 25000, .max = 350000 }, 58 .vco = { .min = 908000, .max = 1512000 }, 59 .n = { .min = 2, .max = 16 }, 60 .m = { .min = 96, .max = 140 }, 61 .m1 = { .min = 18, .max = 26 }, 62 .m2 = { .min = 6, .max = 16 }, 63 .p = { .min = 4, .max = 128 }, 64 .p1 = { .min = 2, .max = 33 }, 65 .p2 = { .dot_limit = 165000, 66 .p2_slow = 4, .p2_fast = 4 }, 67 }; 68 69 static const struct intel_limit intel_limits_i8xx_lvds = { 70 .dot = { .min = 25000, .max = 350000 }, 71 .vco = { .min = 908000, .max = 1512000 }, 72 .n = { .min = 2, .max = 16 }, 73 .m = { .min = 96, .max = 140 }, 74 .m1 = { .min = 18, .max = 26 }, 75 .m2 = { .min = 6, .max = 16 }, 76 .p = { .min = 4, .max = 128 }, 77 .p1 = { .min = 1, .max = 6 }, 78 .p2 = { .dot_limit = 165000, 79 .p2_slow = 14, .p2_fast = 7 }, 80 }; 81 82 static const struct intel_limit intel_limits_i9xx_sdvo = { 83 .dot = { .min = 20000, .max = 400000 }, 84 .vco = { .min = 1400000, .max = 2800000 }, 85 .n = { .min = 1, .max = 6 }, 86 .m = { .min = 70, .max = 120 }, 87 .m1 = { .min = 8, .max = 18 }, 88 .m2 = { .min = 3, .max = 7 }, 89 .p = { .min = 5, .max = 80 }, 90 .p1 = { .min = 1, .max = 8 }, 91 .p2 = { .dot_limit = 200000, 92 .p2_slow = 10, .p2_fast = 5 }, 93 }; 94 95 static const struct intel_limit intel_limits_i9xx_lvds = { 96 .dot = { .min = 20000, .max = 400000 }, 97 .vco = { .min = 1400000, .max = 2800000 }, 98 .n = { .min = 1, .max = 6 }, 99 .m = { .min = 70, .max = 120 }, 100 .m1 = { .min = 8, .max = 18 }, 101 .m2 = { .min = 3, .max = 7 }, 102 .p = { .min = 7, .max = 98 }, 103 .p1 = { .min = 1, .max = 8 }, 104 .p2 = { .dot_limit = 112000, 105 .p2_slow = 14, .p2_fast = 7 }, 106 }; 107 108 109 static const struct intel_limit intel_limits_g4x_sdvo = { 110 .dot = { .min = 25000, .max = 270000 }, 111 .vco = { .min = 1750000, .max = 3500000}, 112 .n = { .min = 1, .max = 4 }, 113 .m = { .min = 104, .max = 138 }, 114 .m1 = { .min = 17, .max = 23 }, 115 .m2 = { .min = 5, .max = 11 }, 116 .p = { .min = 10, .max = 30 }, 117 .p1 = { .min = 1, .max = 3}, 118 .p2 = { .dot_limit = 270000, 119 .p2_slow = 10, 120 .p2_fast = 10 121 }, 122 }; 123 124 static const struct intel_limit intel_limits_g4x_hdmi = { 125 .dot = { .min = 22000, .max = 400000 }, 126 .vco = { .min = 1750000, .max = 3500000}, 127 .n = { .min = 1, .max = 4 }, 128 .m = { .min = 104, .max = 138 }, 129 .m1 = { .min = 16, .max = 23 }, 130 .m2 = { .min = 5, .max = 11 }, 131 .p = { .min = 5, .max = 80 }, 132 .p1 = { .min = 1, .max = 8}, 133 .p2 = { .dot_limit = 165000, 134 .p2_slow = 10, .p2_fast = 5 }, 135 }; 136 137 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 138 .dot = { .min = 20000, .max = 115000 }, 139 .vco = { .min = 1750000, .max = 3500000 }, 140 .n = { .min = 1, .max = 3 }, 141 .m = { .min = 104, .max = 138 }, 142 .m1 = { .min = 17, .max = 23 }, 143 .m2 = { .min = 5, .max = 11 }, 144 .p = { .min = 28, .max = 112 }, 145 .p1 = { .min = 2, .max = 8 }, 146 .p2 = { .dot_limit = 0, 147 .p2_slow = 14, .p2_fast = 14 148 }, 149 }; 150 151 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 152 .dot = { .min = 80000, .max = 224000 }, 153 .vco = { .min = 1750000, .max = 3500000 }, 154 .n = { .min = 1, .max = 3 }, 155 .m = { .min = 104, .max = 138 }, 156 .m1 = { .min = 17, .max = 23 }, 157 .m2 = { .min = 5, .max = 11 }, 158 .p = { .min = 14, .max = 42 }, 159 .p1 = { .min = 2, .max = 6 }, 160 .p2 = { .dot_limit = 0, 161 .p2_slow = 7, .p2_fast = 7 162 }, 163 }; 164 165 static const struct intel_limit pnv_limits_sdvo = { 166 .dot = { .min = 20000, .max = 400000}, 167 .vco = { .min = 1700000, .max = 3500000 }, 168 /* Pineview's Ncounter is a ring counter */ 169 .n = { .min = 3, .max = 6 }, 170 .m = { .min = 2, .max = 256 }, 171 /* Pineview only has one combined m divider, which we treat as m2. */ 172 .m1 = { .min = 0, .max = 0 }, 173 .m2 = { .min = 0, .max = 254 }, 174 .p = { .min = 5, .max = 80 }, 175 .p1 = { .min = 1, .max = 8 }, 176 .p2 = { .dot_limit = 200000, 177 .p2_slow = 10, .p2_fast = 5 }, 178 }; 179 180 static const struct intel_limit pnv_limits_lvds = { 181 .dot = { .min = 20000, .max = 400000 }, 182 .vco = { .min = 1700000, .max = 3500000 }, 183 .n = { .min = 3, .max = 6 }, 184 .m = { .min = 2, .max = 256 }, 185 .m1 = { .min = 0, .max = 0 }, 186 .m2 = { .min = 0, .max = 254 }, 187 .p = { .min = 7, .max = 112 }, 188 .p1 = { .min = 1, .max = 8 }, 189 .p2 = { .dot_limit = 112000, 190 .p2_slow = 14, .p2_fast = 14 }, 191 }; 192 193 /* Ironlake / Sandybridge 194 * 195 * We calculate clock using (register_value + 2) for N/M1/M2, so here 196 * the range value for them is (actual_value - 2). 197 */ 198 static const struct intel_limit ilk_limits_dac = { 199 .dot = { .min = 25000, .max = 350000 }, 200 .vco = { .min = 1760000, .max = 3510000 }, 201 .n = { .min = 1, .max = 5 }, 202 .m = { .min = 79, .max = 127 }, 203 .m1 = { .min = 12, .max = 22 }, 204 .m2 = { .min = 5, .max = 9 }, 205 .p = { .min = 5, .max = 80 }, 206 .p1 = { .min = 1, .max = 8 }, 207 .p2 = { .dot_limit = 225000, 208 .p2_slow = 10, .p2_fast = 5 }, 209 }; 210 211 static const struct intel_limit ilk_limits_single_lvds = { 212 .dot = { .min = 25000, .max = 350000 }, 213 .vco = { .min = 1760000, .max = 3510000 }, 214 .n = { .min = 1, .max = 3 }, 215 .m = { .min = 79, .max = 118 }, 216 .m1 = { .min = 12, .max = 22 }, 217 .m2 = { .min = 5, .max = 9 }, 218 .p = { .min = 28, .max = 112 }, 219 .p1 = { .min = 2, .max = 8 }, 220 .p2 = { .dot_limit = 225000, 221 .p2_slow = 14, .p2_fast = 14 }, 222 }; 223 224 static const struct intel_limit ilk_limits_dual_lvds = { 225 .dot = { .min = 25000, .max = 350000 }, 226 .vco = { .min = 1760000, .max = 3510000 }, 227 .n = { .min = 1, .max = 3 }, 228 .m = { .min = 79, .max = 127 }, 229 .m1 = { .min = 12, .max = 22 }, 230 .m2 = { .min = 5, .max = 9 }, 231 .p = { .min = 14, .max = 56 }, 232 .p1 = { .min = 2, .max = 8 }, 233 .p2 = { .dot_limit = 225000, 234 .p2_slow = 7, .p2_fast = 7 }, 235 }; 236 237 /* LVDS 100mhz refclk limits. */ 238 static const struct intel_limit ilk_limits_single_lvds_100m = { 239 .dot = { .min = 25000, .max = 350000 }, 240 .vco = { .min = 1760000, .max = 3510000 }, 241 .n = { .min = 1, .max = 2 }, 242 .m = { .min = 79, .max = 126 }, 243 .m1 = { .min = 12, .max = 22 }, 244 .m2 = { .min = 5, .max = 9 }, 245 .p = { .min = 28, .max = 112 }, 246 .p1 = { .min = 2, .max = 8 }, 247 .p2 = { .dot_limit = 225000, 248 .p2_slow = 14, .p2_fast = 14 }, 249 }; 250 251 static const struct intel_limit ilk_limits_dual_lvds_100m = { 252 .dot = { .min = 25000, .max = 350000 }, 253 .vco = { .min = 1760000, .max = 3510000 }, 254 .n = { .min = 1, .max = 3 }, 255 .m = { .min = 79, .max = 126 }, 256 .m1 = { .min = 12, .max = 22 }, 257 .m2 = { .min = 5, .max = 9 }, 258 .p = { .min = 14, .max = 42 }, 259 .p1 = { .min = 2, .max = 6 }, 260 .p2 = { .dot_limit = 225000, 261 .p2_slow = 7, .p2_fast = 7 }, 262 }; 263 264 static const struct intel_limit intel_limits_vlv = { 265 /* 266 * These are based on the data rate limits (measured in fast clocks) 267 * since those are the strictest limits we have. The fast 268 * clock and actual rate limits are more relaxed, so checking 269 * them would make no difference. 270 */ 271 .dot = { .min = 25000, .max = 270000 }, 272 .vco = { .min = 4000000, .max = 6000000 }, 273 .n = { .min = 1, .max = 7 }, 274 .m1 = { .min = 2, .max = 3 }, 275 .m2 = { .min = 11, .max = 156 }, 276 .p1 = { .min = 2, .max = 3 }, 277 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 278 }; 279 280 static const struct intel_limit intel_limits_chv = { 281 /* 282 * These are based on the data rate limits (measured in fast clocks) 283 * since those are the strictest limits we have. The fast 284 * clock and actual rate limits are more relaxed, so checking 285 * them would make no difference. 286 */ 287 .dot = { .min = 25000, .max = 540000 }, 288 .vco = { .min = 4800000, .max = 6480000 }, 289 .n = { .min = 1, .max = 1 }, 290 .m1 = { .min = 2, .max = 2 }, 291 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 292 .p1 = { .min = 2, .max = 4 }, 293 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 294 }; 295 296 static const struct intel_limit intel_limits_bxt = { 297 .dot = { .min = 25000, .max = 594000 }, 298 .vco = { .min = 4800000, .max = 6700000 }, 299 .n = { .min = 1, .max = 1 }, 300 .m1 = { .min = 2, .max = 2 }, 301 /* FIXME: find real m2 limits */ 302 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 303 .p1 = { .min = 2, .max = 4 }, 304 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 305 }; 306 307 /* 308 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 309 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 310 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 311 * The helpers' return value is the rate of the clock that is fed to the 312 * display engine's pipe which can be the above fast dot clock rate or a 313 * divided-down version of it. 314 */ 315 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 316 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 317 { 318 clock->m = clock->m2 + 2; 319 clock->p = clock->p1 * clock->p2; 320 321 clock->vco = clock->n == 0 ? 0 : 322 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 323 clock->dot = clock->p == 0 ? 0 : 324 DIV_ROUND_CLOSEST(clock->vco, clock->p); 325 326 return clock->dot; 327 } 328 329 static u32 i9xx_dpll_compute_m(const struct dpll *dpll) 330 { 331 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 332 } 333 334 int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 335 { 336 clock->m = i9xx_dpll_compute_m(clock); 337 clock->p = clock->p1 * clock->p2; 338 339 clock->vco = clock->n + 2 == 0 ? 0 : 340 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 341 clock->dot = clock->p == 0 ? 0 : 342 DIV_ROUND_CLOSEST(clock->vco, clock->p); 343 344 return clock->dot; 345 } 346 347 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 348 { 349 clock->m = clock->m1 * clock->m2; 350 clock->p = clock->p1 * clock->p2 * 5; 351 352 clock->vco = clock->n == 0 ? 0 : 353 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 354 clock->dot = clock->p == 0 ? 0 : 355 DIV_ROUND_CLOSEST(clock->vco, clock->p); 356 357 return clock->dot; 358 } 359 360 int chv_calc_dpll_params(int refclk, struct dpll *clock) 361 { 362 clock->m = clock->m1 * clock->m2; 363 clock->p = clock->p1 * clock->p2 * 5; 364 365 clock->vco = clock->n == 0 ? 0 : 366 DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22); 367 clock->dot = clock->p == 0 ? 0 : 368 DIV_ROUND_CLOSEST(clock->vco, clock->p); 369 370 return clock->dot; 371 } 372 373 static int i9xx_pll_refclk(const struct intel_crtc_state *crtc_state) 374 { 375 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 376 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 377 378 if ((hw_state->dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 379 return i915->display.vbt.lvds_ssc_freq; 380 else if (HAS_PCH_SPLIT(i915)) 381 return 120000; 382 else if (DISPLAY_VER(i915) != 2) 383 return 96000; 384 else 385 return 48000; 386 } 387 388 void i9xx_dpll_get_hw_state(struct intel_crtc *crtc, 389 struct intel_dpll_hw_state *dpll_hw_state) 390 { 391 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 392 struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx; 393 394 if (DISPLAY_VER(dev_priv) >= 4) { 395 u32 tmp; 396 397 /* No way to read it out on pipes B and C */ 398 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 399 tmp = dev_priv->display.state.chv_dpll_md[crtc->pipe]; 400 else 401 tmp = intel_de_read(dev_priv, 402 DPLL_MD(dev_priv, crtc->pipe)); 403 404 hw_state->dpll_md = tmp; 405 } 406 407 hw_state->dpll = intel_de_read(dev_priv, DPLL(dev_priv, crtc->pipe)); 408 409 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 410 hw_state->fp0 = intel_de_read(dev_priv, FP0(crtc->pipe)); 411 hw_state->fp1 = intel_de_read(dev_priv, FP1(crtc->pipe)); 412 } else { 413 /* Mask out read-only status bits. */ 414 hw_state->dpll &= ~(DPLL_LOCK_VLV | 415 DPLL_PORTC_READY_MASK | 416 DPLL_PORTB_READY_MASK); 417 } 418 } 419 420 /* Returns the clock of the currently programmed mode of the given pipe. */ 421 void i9xx_crtc_clock_get(struct intel_crtc_state *crtc_state) 422 { 423 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 424 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 425 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 426 u32 dpll = hw_state->dpll; 427 u32 fp; 428 struct dpll clock; 429 int port_clock; 430 int refclk = i9xx_pll_refclk(crtc_state); 431 432 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 433 fp = hw_state->fp0; 434 else 435 fp = hw_state->fp1; 436 437 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 438 if (IS_PINEVIEW(dev_priv)) { 439 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 440 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 441 } else { 442 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 443 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 444 } 445 446 if (DISPLAY_VER(dev_priv) != 2) { 447 if (IS_PINEVIEW(dev_priv)) 448 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 449 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 450 else 451 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 452 DPLL_FPA01_P1_POST_DIV_SHIFT); 453 454 switch (dpll & DPLL_MODE_MASK) { 455 case DPLLB_MODE_DAC_SERIAL: 456 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 457 5 : 10; 458 break; 459 case DPLLB_MODE_LVDS: 460 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 461 7 : 14; 462 break; 463 default: 464 drm_dbg_kms(&dev_priv->drm, 465 "Unknown DPLL mode %08x in programmed " 466 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 467 return; 468 } 469 470 if (IS_PINEVIEW(dev_priv)) 471 port_clock = pnv_calc_dpll_params(refclk, &clock); 472 else 473 port_clock = i9xx_calc_dpll_params(refclk, &clock); 474 } else { 475 enum pipe lvds_pipe; 476 477 if (IS_I85X(dev_priv) && 478 intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) && 479 lvds_pipe == crtc->pipe) { 480 u32 lvds = intel_de_read(dev_priv, LVDS); 481 482 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 483 DPLL_FPA01_P1_POST_DIV_SHIFT); 484 485 if (lvds & LVDS_CLKB_POWER_UP) 486 clock.p2 = 7; 487 else 488 clock.p2 = 14; 489 } else { 490 if (dpll & PLL_P1_DIVIDE_BY_TWO) 491 clock.p1 = 2; 492 else { 493 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 494 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 495 } 496 if (dpll & PLL_P2_DIVIDE_BY_4) 497 clock.p2 = 4; 498 else 499 clock.p2 = 2; 500 } 501 502 port_clock = i9xx_calc_dpll_params(refclk, &clock); 503 } 504 505 /* 506 * This value includes pixel_multiplier. We will use 507 * port_clock to compute adjusted_mode.crtc_clock in the 508 * encoder's get_config() function. 509 */ 510 crtc_state->port_clock = port_clock; 511 } 512 513 void vlv_crtc_clock_get(struct intel_crtc_state *crtc_state) 514 { 515 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 516 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 517 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 518 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 519 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 520 int refclk = 100000; 521 struct dpll clock; 522 u32 tmp; 523 524 /* In case of DSI, DPLL will not be used */ 525 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0) 526 return; 527 528 vlv_dpio_get(dev_priv); 529 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(ch)); 530 vlv_dpio_put(dev_priv); 531 532 clock.m1 = REG_FIELD_GET(DPIO_M1_DIV_MASK, tmp); 533 clock.m2 = REG_FIELD_GET(DPIO_M2_DIV_MASK, tmp); 534 clock.n = REG_FIELD_GET(DPIO_N_DIV_MASK, tmp); 535 clock.p1 = REG_FIELD_GET(DPIO_P1_DIV_MASK, tmp); 536 clock.p2 = REG_FIELD_GET(DPIO_P2_DIV_MASK, tmp); 537 538 crtc_state->port_clock = vlv_calc_dpll_params(refclk, &clock); 539 } 540 541 void chv_crtc_clock_get(struct intel_crtc_state *crtc_state) 542 { 543 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 544 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 545 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 546 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 547 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 548 struct dpll clock; 549 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 550 int refclk = 100000; 551 552 /* In case of DSI, DPLL will not be used */ 553 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0) 554 return; 555 556 vlv_dpio_get(dev_priv); 557 cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(ch)); 558 pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(ch)); 559 pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(ch)); 560 pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(ch)); 561 pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch)); 562 vlv_dpio_put(dev_priv); 563 564 clock.m1 = REG_FIELD_GET(DPIO_CHV_M1_DIV_MASK, pll_dw1) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 565 clock.m2 = REG_FIELD_GET(DPIO_CHV_M2_DIV_MASK, pll_dw0) << 22; 566 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 567 clock.m2 |= REG_FIELD_GET(DPIO_CHV_M2_FRAC_DIV_MASK, pll_dw2); 568 clock.n = REG_FIELD_GET(DPIO_CHV_N_DIV_MASK, pll_dw1); 569 clock.p1 = REG_FIELD_GET(DPIO_CHV_P1_DIV_MASK, cmn_dw13); 570 clock.p2 = REG_FIELD_GET(DPIO_CHV_P2_DIV_MASK, cmn_dw13); 571 572 crtc_state->port_clock = chv_calc_dpll_params(refclk, &clock); 573 } 574 575 /* 576 * Returns whether the given set of divisors are valid for a given refclk with 577 * the given connectors. 578 */ 579 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv, 580 const struct intel_limit *limit, 581 const struct dpll *clock) 582 { 583 if (clock->n < limit->n.min || limit->n.max < clock->n) 584 return false; 585 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 586 return false; 587 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 588 return false; 589 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 590 return false; 591 592 if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv)) 593 if (clock->m1 <= clock->m2) 594 return false; 595 596 if (!IS_LP(dev_priv)) { 597 if (clock->p < limit->p.min || limit->p.max < clock->p) 598 return false; 599 if (clock->m < limit->m.min || limit->m.max < clock->m) 600 return false; 601 } 602 603 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 604 return false; 605 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 606 * connector, etc., rather than just a single range. 607 */ 608 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 609 return false; 610 611 return true; 612 } 613 614 static int 615 i9xx_select_p2_div(const struct intel_limit *limit, 616 const struct intel_crtc_state *crtc_state, 617 int target) 618 { 619 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 620 621 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 622 /* 623 * For LVDS just rely on its current settings for dual-channel. 624 * We haven't figured out how to reliably set up different 625 * single/dual channel state, if we even can. 626 */ 627 if (intel_is_dual_link_lvds(dev_priv)) 628 return limit->p2.p2_fast; 629 else 630 return limit->p2.p2_slow; 631 } else { 632 if (target < limit->p2.dot_limit) 633 return limit->p2.p2_slow; 634 else 635 return limit->p2.p2_fast; 636 } 637 } 638 639 /* 640 * Returns a set of divisors for the desired target clock with the given 641 * refclk, or FALSE. 642 * 643 * Target and reference clocks are specified in kHz. 644 * 645 * If match_clock is provided, then best_clock P divider must match the P 646 * divider from @match_clock used for LVDS downclocking. 647 */ 648 static bool 649 i9xx_find_best_dpll(const struct intel_limit *limit, 650 struct intel_crtc_state *crtc_state, 651 int target, int refclk, 652 const struct dpll *match_clock, 653 struct dpll *best_clock) 654 { 655 struct drm_device *dev = crtc_state->uapi.crtc->dev; 656 struct dpll clock; 657 int err = target; 658 659 memset(best_clock, 0, sizeof(*best_clock)); 660 661 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 662 663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 664 clock.m1++) { 665 for (clock.m2 = limit->m2.min; 666 clock.m2 <= limit->m2.max; clock.m2++) { 667 if (clock.m2 >= clock.m1) 668 break; 669 for (clock.n = limit->n.min; 670 clock.n <= limit->n.max; clock.n++) { 671 for (clock.p1 = limit->p1.min; 672 clock.p1 <= limit->p1.max; clock.p1++) { 673 int this_err; 674 675 i9xx_calc_dpll_params(refclk, &clock); 676 if (!intel_pll_is_valid(to_i915(dev), 677 limit, 678 &clock)) 679 continue; 680 if (match_clock && 681 clock.p != match_clock->p) 682 continue; 683 684 this_err = abs(clock.dot - target); 685 if (this_err < err) { 686 *best_clock = clock; 687 err = this_err; 688 } 689 } 690 } 691 } 692 } 693 694 return (err != target); 695 } 696 697 /* 698 * Returns a set of divisors for the desired target clock with the given 699 * refclk, or FALSE. 700 * 701 * Target and reference clocks are specified in kHz. 702 * 703 * If match_clock is provided, then best_clock P divider must match the P 704 * divider from @match_clock used for LVDS downclocking. 705 */ 706 static bool 707 pnv_find_best_dpll(const struct intel_limit *limit, 708 struct intel_crtc_state *crtc_state, 709 int target, int refclk, 710 const struct dpll *match_clock, 711 struct dpll *best_clock) 712 { 713 struct drm_device *dev = crtc_state->uapi.crtc->dev; 714 struct dpll clock; 715 int err = target; 716 717 memset(best_clock, 0, sizeof(*best_clock)); 718 719 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 720 721 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 722 clock.m1++) { 723 for (clock.m2 = limit->m2.min; 724 clock.m2 <= limit->m2.max; clock.m2++) { 725 for (clock.n = limit->n.min; 726 clock.n <= limit->n.max; clock.n++) { 727 for (clock.p1 = limit->p1.min; 728 clock.p1 <= limit->p1.max; clock.p1++) { 729 int this_err; 730 731 pnv_calc_dpll_params(refclk, &clock); 732 if (!intel_pll_is_valid(to_i915(dev), 733 limit, 734 &clock)) 735 continue; 736 if (match_clock && 737 clock.p != match_clock->p) 738 continue; 739 740 this_err = abs(clock.dot - target); 741 if (this_err < err) { 742 *best_clock = clock; 743 err = this_err; 744 } 745 } 746 } 747 } 748 } 749 750 return (err != target); 751 } 752 753 /* 754 * Returns a set of divisors for the desired target clock with the given 755 * refclk, or FALSE. 756 * 757 * Target and reference clocks are specified in kHz. 758 * 759 * If match_clock is provided, then best_clock P divider must match the P 760 * divider from @match_clock used for LVDS downclocking. 761 */ 762 static bool 763 g4x_find_best_dpll(const struct intel_limit *limit, 764 struct intel_crtc_state *crtc_state, 765 int target, int refclk, 766 const struct dpll *match_clock, 767 struct dpll *best_clock) 768 { 769 struct drm_device *dev = crtc_state->uapi.crtc->dev; 770 struct dpll clock; 771 int max_n; 772 bool found = false; 773 /* approximately equals target * 0.00585 */ 774 int err_most = (target >> 8) + (target >> 9); 775 776 memset(best_clock, 0, sizeof(*best_clock)); 777 778 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 779 780 max_n = limit->n.max; 781 /* based on hardware requirement, prefer smaller n to precision */ 782 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 783 /* based on hardware requirement, prefere larger m1,m2 */ 784 for (clock.m1 = limit->m1.max; 785 clock.m1 >= limit->m1.min; clock.m1--) { 786 for (clock.m2 = limit->m2.max; 787 clock.m2 >= limit->m2.min; clock.m2--) { 788 for (clock.p1 = limit->p1.max; 789 clock.p1 >= limit->p1.min; clock.p1--) { 790 int this_err; 791 792 i9xx_calc_dpll_params(refclk, &clock); 793 if (!intel_pll_is_valid(to_i915(dev), 794 limit, 795 &clock)) 796 continue; 797 798 this_err = abs(clock.dot - target); 799 if (this_err < err_most) { 800 *best_clock = clock; 801 err_most = this_err; 802 max_n = clock.n; 803 found = true; 804 } 805 } 806 } 807 } 808 } 809 return found; 810 } 811 812 /* 813 * Check if the calculated PLL configuration is more optimal compared to the 814 * best configuration and error found so far. Return the calculated error. 815 */ 816 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, 817 const struct dpll *calculated_clock, 818 const struct dpll *best_clock, 819 unsigned int best_error_ppm, 820 unsigned int *error_ppm) 821 { 822 /* 823 * For CHV ignore the error and consider only the P value. 824 * Prefer a bigger P value based on HW requirements. 825 */ 826 if (IS_CHERRYVIEW(to_i915(dev))) { 827 *error_ppm = 0; 828 829 return calculated_clock->p > best_clock->p; 830 } 831 832 if (drm_WARN_ON_ONCE(dev, !target_freq)) 833 return false; 834 835 *error_ppm = div_u64(1000000ULL * 836 abs(target_freq - calculated_clock->dot), 837 target_freq); 838 /* 839 * Prefer a better P value over a better (smaller) error if the error 840 * is small. Ensure this preference for future configurations too by 841 * setting the error to 0. 842 */ 843 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 844 *error_ppm = 0; 845 846 return true; 847 } 848 849 return *error_ppm + 10 < best_error_ppm; 850 } 851 852 /* 853 * Returns a set of divisors for the desired target clock with the given 854 * refclk, or FALSE. 855 */ 856 static bool 857 vlv_find_best_dpll(const struct intel_limit *limit, 858 struct intel_crtc_state *crtc_state, 859 int target, int refclk, 860 const struct dpll *match_clock, 861 struct dpll *best_clock) 862 { 863 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 864 struct drm_device *dev = crtc->base.dev; 865 struct dpll clock; 866 unsigned int bestppm = 1000000; 867 /* min update 19.2 MHz */ 868 int max_n = min(limit->n.max, refclk / 19200); 869 bool found = false; 870 871 memset(best_clock, 0, sizeof(*best_clock)); 872 873 /* based on hardware requirement, prefer smaller n to precision */ 874 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 875 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 876 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 877 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 878 clock.p = clock.p1 * clock.p2 * 5; 879 /* based on hardware requirement, prefer bigger m1,m2 values */ 880 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 881 unsigned int ppm; 882 883 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 884 refclk * clock.m1); 885 886 vlv_calc_dpll_params(refclk, &clock); 887 888 if (!intel_pll_is_valid(to_i915(dev), 889 limit, 890 &clock)) 891 continue; 892 893 if (!vlv_PLL_is_optimal(dev, target, 894 &clock, 895 best_clock, 896 bestppm, &ppm)) 897 continue; 898 899 *best_clock = clock; 900 bestppm = ppm; 901 found = true; 902 } 903 } 904 } 905 } 906 907 return found; 908 } 909 910 /* 911 * Returns a set of divisors for the desired target clock with the given 912 * refclk, or FALSE. 913 */ 914 static bool 915 chv_find_best_dpll(const struct intel_limit *limit, 916 struct intel_crtc_state *crtc_state, 917 int target, int refclk, 918 const struct dpll *match_clock, 919 struct dpll *best_clock) 920 { 921 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 922 struct drm_device *dev = crtc->base.dev; 923 unsigned int best_error_ppm; 924 struct dpll clock; 925 u64 m2; 926 int found = false; 927 928 memset(best_clock, 0, sizeof(*best_clock)); 929 best_error_ppm = 1000000; 930 931 /* 932 * Based on hardware doc, the n always set to 1, and m1 always 933 * set to 2. If requires to support 200Mhz refclk, we need to 934 * revisit this because n may not 1 anymore. 935 */ 936 clock.n = 1; 937 clock.m1 = 2; 938 939 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 940 for (clock.p2 = limit->p2.p2_fast; 941 clock.p2 >= limit->p2.p2_slow; 942 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 943 unsigned int error_ppm; 944 945 clock.p = clock.p1 * clock.p2 * 5; 946 947 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 948 refclk * clock.m1); 949 950 if (m2 > INT_MAX/clock.m1) 951 continue; 952 953 clock.m2 = m2; 954 955 chv_calc_dpll_params(refclk, &clock); 956 957 if (!intel_pll_is_valid(to_i915(dev), limit, &clock)) 958 continue; 959 960 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, 961 best_error_ppm, &error_ppm)) 962 continue; 963 964 *best_clock = clock; 965 best_error_ppm = error_ppm; 966 found = true; 967 } 968 } 969 970 return found; 971 } 972 973 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 974 struct dpll *best_clock) 975 { 976 const struct intel_limit *limit = &intel_limits_bxt; 977 int refclk = 100000; 978 979 return chv_find_best_dpll(limit, crtc_state, 980 crtc_state->port_clock, refclk, 981 NULL, best_clock); 982 } 983 984 u32 i9xx_dpll_compute_fp(const struct dpll *dpll) 985 { 986 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 987 } 988 989 static u32 pnv_dpll_compute_fp(const struct dpll *dpll) 990 { 991 return (1 << dpll->n) << 16 | dpll->m2; 992 } 993 994 static u32 i965_dpll_md(const struct intel_crtc_state *crtc_state) 995 { 996 return (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 997 } 998 999 static u32 i9xx_dpll(const struct intel_crtc_state *crtc_state, 1000 const struct dpll *clock, 1001 const struct dpll *reduced_clock) 1002 { 1003 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1004 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1005 u32 dpll; 1006 1007 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS; 1008 1009 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 1010 dpll |= DPLLB_MODE_LVDS; 1011 else 1012 dpll |= DPLLB_MODE_DAC_SERIAL; 1013 1014 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 1015 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 1016 dpll |= (crtc_state->pixel_multiplier - 1) 1017 << SDVO_MULTIPLIER_SHIFT_HIRES; 1018 } 1019 1020 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 1021 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1022 dpll |= DPLL_SDVO_HIGH_SPEED; 1023 1024 if (intel_crtc_has_dp_encoder(crtc_state)) 1025 dpll |= DPLL_SDVO_HIGH_SPEED; 1026 1027 /* compute bitmask from p1 value */ 1028 if (IS_G4X(dev_priv)) { 1029 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1030 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 1031 } else if (IS_PINEVIEW(dev_priv)) { 1032 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 1033 WARN_ON(reduced_clock->p1 != clock->p1); 1034 } else { 1035 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1036 WARN_ON(reduced_clock->p1 != clock->p1); 1037 } 1038 1039 switch (clock->p2) { 1040 case 5: 1041 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 1042 break; 1043 case 7: 1044 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 1045 break; 1046 case 10: 1047 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 1048 break; 1049 case 14: 1050 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 1051 break; 1052 } 1053 WARN_ON(reduced_clock->p2 != clock->p2); 1054 1055 if (DISPLAY_VER(dev_priv) >= 4) 1056 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 1057 1058 if (crtc_state->sdvo_tv_clock) 1059 dpll |= PLL_REF_INPUT_TVCLKINBC; 1060 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1061 intel_panel_use_ssc(dev_priv)) 1062 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1063 else 1064 dpll |= PLL_REF_INPUT_DREFCLK; 1065 1066 return dpll; 1067 } 1068 1069 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state, 1070 const struct dpll *clock, 1071 const struct dpll *reduced_clock) 1072 { 1073 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1074 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1075 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1076 1077 if (IS_PINEVIEW(dev_priv)) { 1078 hw_state->fp0 = pnv_dpll_compute_fp(clock); 1079 hw_state->fp1 = pnv_dpll_compute_fp(reduced_clock); 1080 } else { 1081 hw_state->fp0 = i9xx_dpll_compute_fp(clock); 1082 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock); 1083 } 1084 1085 hw_state->dpll = i9xx_dpll(crtc_state, clock, reduced_clock); 1086 1087 if (DISPLAY_VER(dev_priv) >= 4) 1088 hw_state->dpll_md = i965_dpll_md(crtc_state); 1089 } 1090 1091 static u32 i8xx_dpll(const struct intel_crtc_state *crtc_state, 1092 const struct dpll *clock, 1093 const struct dpll *reduced_clock) 1094 { 1095 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1096 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1097 u32 dpll; 1098 1099 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS; 1100 1101 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1102 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1103 } else { 1104 if (clock->p1 == 2) 1105 dpll |= PLL_P1_DIVIDE_BY_TWO; 1106 else 1107 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1108 if (clock->p2 == 4) 1109 dpll |= PLL_P2_DIVIDE_BY_4; 1110 } 1111 WARN_ON(reduced_clock->p1 != clock->p1); 1112 WARN_ON(reduced_clock->p2 != clock->p2); 1113 1114 /* 1115 * Bspec: 1116 * "[Almador Errata}: For the correct operation of the muxed DVO pins 1117 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 1118 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 1119 * Enable) must be set to “1” in both the DPLL A Control Register 1120 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 1121 * 1122 * For simplicity We simply keep both bits always enabled in 1123 * both DPLLS. The spec says we should disable the DVO 2X clock 1124 * when not needed, but this seems to work fine in practice. 1125 */ 1126 if (IS_I830(dev_priv) || 1127 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 1128 dpll |= DPLL_DVO_2X_MODE; 1129 1130 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1131 intel_panel_use_ssc(dev_priv)) 1132 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1133 else 1134 dpll |= PLL_REF_INPUT_DREFCLK; 1135 1136 return dpll; 1137 } 1138 1139 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state, 1140 const struct dpll *clock, 1141 const struct dpll *reduced_clock) 1142 { 1143 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1144 1145 hw_state->fp0 = i9xx_dpll_compute_fp(clock); 1146 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock); 1147 1148 hw_state->dpll = i8xx_dpll(crtc_state, clock, reduced_clock); 1149 } 1150 1151 static int hsw_crtc_compute_clock(struct intel_atomic_state *state, 1152 struct intel_crtc *crtc) 1153 { 1154 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1155 struct intel_crtc_state *crtc_state = 1156 intel_atomic_get_new_crtc_state(state, crtc); 1157 struct intel_encoder *encoder = 1158 intel_get_crtc_new_encoder(state, crtc_state); 1159 int ret; 1160 1161 if (DISPLAY_VER(dev_priv) < 11 && 1162 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1163 return 0; 1164 1165 ret = intel_compute_shared_dplls(state, crtc, encoder); 1166 if (ret) 1167 return ret; 1168 1169 /* FIXME this is a mess */ 1170 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1171 return 0; 1172 1173 /* CRT dotclock is determined via other means */ 1174 if (!crtc_state->has_pch_encoder) 1175 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1176 1177 return 0; 1178 } 1179 1180 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state, 1181 struct intel_crtc *crtc) 1182 { 1183 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1184 struct intel_crtc_state *crtc_state = 1185 intel_atomic_get_new_crtc_state(state, crtc); 1186 struct intel_encoder *encoder = 1187 intel_get_crtc_new_encoder(state, crtc_state); 1188 1189 if (DISPLAY_VER(dev_priv) < 11 && 1190 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1191 return 0; 1192 1193 return intel_reserve_shared_dplls(state, crtc, encoder); 1194 } 1195 1196 static int dg2_crtc_compute_clock(struct intel_atomic_state *state, 1197 struct intel_crtc *crtc) 1198 { 1199 struct intel_crtc_state *crtc_state = 1200 intel_atomic_get_new_crtc_state(state, crtc); 1201 struct intel_encoder *encoder = 1202 intel_get_crtc_new_encoder(state, crtc_state); 1203 int ret; 1204 1205 ret = intel_mpllb_calc_state(crtc_state, encoder); 1206 if (ret) 1207 return ret; 1208 1209 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1210 1211 return 0; 1212 } 1213 1214 static int mtl_crtc_compute_clock(struct intel_atomic_state *state, 1215 struct intel_crtc *crtc) 1216 { 1217 struct intel_crtc_state *crtc_state = 1218 intel_atomic_get_new_crtc_state(state, crtc); 1219 struct intel_encoder *encoder = 1220 intel_get_crtc_new_encoder(state, crtc_state); 1221 int ret; 1222 1223 ret = intel_cx0pll_calc_state(crtc_state, encoder); 1224 if (ret) 1225 return ret; 1226 1227 /* TODO: Do the readback via intel_compute_shared_dplls() */ 1228 crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->dpll_hw_state.cx0pll); 1229 1230 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1231 1232 return 0; 1233 } 1234 1235 static int ilk_fb_cb_factor(const struct intel_crtc_state *crtc_state) 1236 { 1237 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1238 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 1239 1240 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1241 ((intel_panel_use_ssc(i915) && i915->display.vbt.lvds_ssc_freq == 100000) || 1242 (HAS_PCH_IBX(i915) && intel_is_dual_link_lvds(i915)))) 1243 return 25; 1244 1245 if (crtc_state->sdvo_tv_clock) 1246 return 20; 1247 1248 return 21; 1249 } 1250 1251 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor) 1252 { 1253 return dpll->m < factor * dpll->n; 1254 } 1255 1256 static u32 ilk_dpll_compute_fp(const struct dpll *clock, int factor) 1257 { 1258 u32 fp; 1259 1260 fp = i9xx_dpll_compute_fp(clock); 1261 if (ilk_needs_fb_cb_tune(clock, factor)) 1262 fp |= FP_CB_TUNE; 1263 1264 return fp; 1265 } 1266 1267 static u32 ilk_dpll(const struct intel_crtc_state *crtc_state, 1268 const struct dpll *clock, 1269 const struct dpll *reduced_clock) 1270 { 1271 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1272 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1273 u32 dpll; 1274 1275 dpll = DPLL_VCO_ENABLE; 1276 1277 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 1278 dpll |= DPLLB_MODE_LVDS; 1279 else 1280 dpll |= DPLLB_MODE_DAC_SERIAL; 1281 1282 dpll |= (crtc_state->pixel_multiplier - 1) 1283 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 1284 1285 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 1286 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1287 dpll |= DPLL_SDVO_HIGH_SPEED; 1288 1289 if (intel_crtc_has_dp_encoder(crtc_state)) 1290 dpll |= DPLL_SDVO_HIGH_SPEED; 1291 1292 /* 1293 * The high speed IO clock is only really required for 1294 * SDVO/HDMI/DP, but we also enable it for CRT to make it 1295 * possible to share the DPLL between CRT and HDMI. Enabling 1296 * the clock needlessly does no real harm, except use up a 1297 * bit of power potentially. 1298 * 1299 * We'll limit this to IVB with 3 pipes, since it has only two 1300 * DPLLs and so DPLL sharing is the only way to get three pipes 1301 * driving PCH ports at the same time. On SNB we could do this, 1302 * and potentially avoid enabling the second DPLL, but it's not 1303 * clear if it''s a win or loss power wise. No point in doing 1304 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 1305 */ 1306 if (INTEL_NUM_PIPES(dev_priv) == 3 && 1307 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 1308 dpll |= DPLL_SDVO_HIGH_SPEED; 1309 1310 /* compute bitmask from p1 value */ 1311 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1312 /* also FPA1 */ 1313 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 1314 1315 switch (clock->p2) { 1316 case 5: 1317 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 1318 break; 1319 case 7: 1320 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 1321 break; 1322 case 10: 1323 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 1324 break; 1325 case 14: 1326 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 1327 break; 1328 } 1329 WARN_ON(reduced_clock->p2 != clock->p2); 1330 1331 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1332 intel_panel_use_ssc(dev_priv)) 1333 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1334 else 1335 dpll |= PLL_REF_INPUT_DREFCLK; 1336 1337 return dpll; 1338 } 1339 1340 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state, 1341 const struct dpll *clock, 1342 const struct dpll *reduced_clock) 1343 { 1344 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1345 int factor = ilk_fb_cb_factor(crtc_state); 1346 1347 hw_state->fp0 = ilk_dpll_compute_fp(clock, factor); 1348 hw_state->fp1 = ilk_dpll_compute_fp(reduced_clock, factor); 1349 1350 hw_state->dpll = ilk_dpll(crtc_state, clock, reduced_clock); 1351 } 1352 1353 static int ilk_crtc_compute_clock(struct intel_atomic_state *state, 1354 struct intel_crtc *crtc) 1355 { 1356 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1357 struct intel_crtc_state *crtc_state = 1358 intel_atomic_get_new_crtc_state(state, crtc); 1359 const struct intel_limit *limit; 1360 int refclk = 120000; 1361 int ret; 1362 1363 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 1364 if (!crtc_state->has_pch_encoder) 1365 return 0; 1366 1367 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1368 if (intel_panel_use_ssc(dev_priv)) { 1369 drm_dbg_kms(&dev_priv->drm, 1370 "using SSC reference clock of %d kHz\n", 1371 dev_priv->display.vbt.lvds_ssc_freq); 1372 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1373 } 1374 1375 if (intel_is_dual_link_lvds(dev_priv)) { 1376 if (refclk == 100000) 1377 limit = &ilk_limits_dual_lvds_100m; 1378 else 1379 limit = &ilk_limits_dual_lvds; 1380 } else { 1381 if (refclk == 100000) 1382 limit = &ilk_limits_single_lvds_100m; 1383 else 1384 limit = &ilk_limits_single_lvds; 1385 } 1386 } else { 1387 limit = &ilk_limits_dac; 1388 } 1389 1390 if (!crtc_state->clock_set && 1391 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1392 refclk, NULL, &crtc_state->dpll)) 1393 return -EINVAL; 1394 1395 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1396 1397 ilk_compute_dpll(crtc_state, &crtc_state->dpll, 1398 &crtc_state->dpll); 1399 1400 ret = intel_compute_shared_dplls(state, crtc, NULL); 1401 if (ret) 1402 return ret; 1403 1404 crtc_state->port_clock = crtc_state->dpll.dot; 1405 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1406 1407 return ret; 1408 } 1409 1410 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state, 1411 struct intel_crtc *crtc) 1412 { 1413 struct intel_crtc_state *crtc_state = 1414 intel_atomic_get_new_crtc_state(state, crtc); 1415 1416 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 1417 if (!crtc_state->has_pch_encoder) 1418 return 0; 1419 1420 return intel_reserve_shared_dplls(state, crtc, NULL); 1421 } 1422 1423 static u32 vlv_dpll(const struct intel_crtc_state *crtc_state) 1424 { 1425 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1426 u32 dpll; 1427 1428 dpll = DPLL_INTEGRATED_REF_CLK_VLV | 1429 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1430 1431 if (crtc->pipe != PIPE_A) 1432 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 1433 1434 /* DPLL not used with DSI, but still need the rest set up */ 1435 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1436 dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV; 1437 1438 return dpll; 1439 } 1440 1441 void vlv_compute_dpll(struct intel_crtc_state *crtc_state) 1442 { 1443 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1444 1445 hw_state->dpll = vlv_dpll(crtc_state); 1446 hw_state->dpll_md = i965_dpll_md(crtc_state); 1447 } 1448 1449 static u32 chv_dpll(const struct intel_crtc_state *crtc_state) 1450 { 1451 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1452 u32 dpll; 1453 1454 dpll = DPLL_SSC_REF_CLK_CHV | 1455 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1456 1457 if (crtc->pipe != PIPE_A) 1458 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 1459 1460 /* DPLL not used with DSI, but still need the rest set up */ 1461 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1462 dpll |= DPLL_VCO_ENABLE; 1463 1464 return dpll; 1465 } 1466 1467 void chv_compute_dpll(struct intel_crtc_state *crtc_state) 1468 { 1469 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1470 1471 hw_state->dpll = chv_dpll(crtc_state); 1472 hw_state->dpll_md = i965_dpll_md(crtc_state); 1473 } 1474 1475 static int chv_crtc_compute_clock(struct intel_atomic_state *state, 1476 struct intel_crtc *crtc) 1477 { 1478 struct intel_crtc_state *crtc_state = 1479 intel_atomic_get_new_crtc_state(state, crtc); 1480 const struct intel_limit *limit = &intel_limits_chv; 1481 int refclk = 100000; 1482 1483 if (!crtc_state->clock_set && 1484 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1485 refclk, NULL, &crtc_state->dpll)) 1486 return -EINVAL; 1487 1488 chv_calc_dpll_params(refclk, &crtc_state->dpll); 1489 1490 chv_compute_dpll(crtc_state); 1491 1492 /* FIXME this is a mess */ 1493 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1494 return 0; 1495 1496 crtc_state->port_clock = crtc_state->dpll.dot; 1497 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1498 1499 return 0; 1500 } 1501 1502 static int vlv_crtc_compute_clock(struct intel_atomic_state *state, 1503 struct intel_crtc *crtc) 1504 { 1505 struct intel_crtc_state *crtc_state = 1506 intel_atomic_get_new_crtc_state(state, crtc); 1507 const struct intel_limit *limit = &intel_limits_vlv; 1508 int refclk = 100000; 1509 1510 if (!crtc_state->clock_set && 1511 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1512 refclk, NULL, &crtc_state->dpll)) 1513 return -EINVAL; 1514 1515 vlv_calc_dpll_params(refclk, &crtc_state->dpll); 1516 1517 vlv_compute_dpll(crtc_state); 1518 1519 /* FIXME this is a mess */ 1520 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1521 return 0; 1522 1523 crtc_state->port_clock = crtc_state->dpll.dot; 1524 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1525 1526 return 0; 1527 } 1528 1529 static int g4x_crtc_compute_clock(struct intel_atomic_state *state, 1530 struct intel_crtc *crtc) 1531 { 1532 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1533 struct intel_crtc_state *crtc_state = 1534 intel_atomic_get_new_crtc_state(state, crtc); 1535 const struct intel_limit *limit; 1536 int refclk = 96000; 1537 1538 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1539 if (intel_panel_use_ssc(dev_priv)) { 1540 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1541 drm_dbg_kms(&dev_priv->drm, 1542 "using SSC reference clock of %d kHz\n", 1543 refclk); 1544 } 1545 1546 if (intel_is_dual_link_lvds(dev_priv)) 1547 limit = &intel_limits_g4x_dual_channel_lvds; 1548 else 1549 limit = &intel_limits_g4x_single_channel_lvds; 1550 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 1551 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 1552 limit = &intel_limits_g4x_hdmi; 1553 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 1554 limit = &intel_limits_g4x_sdvo; 1555 } else { 1556 /* The option is for other outputs */ 1557 limit = &intel_limits_i9xx_sdvo; 1558 } 1559 1560 if (!crtc_state->clock_set && 1561 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1562 refclk, NULL, &crtc_state->dpll)) 1563 return -EINVAL; 1564 1565 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1566 1567 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1568 &crtc_state->dpll); 1569 1570 crtc_state->port_clock = crtc_state->dpll.dot; 1571 /* FIXME this is a mess */ 1572 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT)) 1573 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1574 1575 return 0; 1576 } 1577 1578 static int pnv_crtc_compute_clock(struct intel_atomic_state *state, 1579 struct intel_crtc *crtc) 1580 { 1581 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1582 struct intel_crtc_state *crtc_state = 1583 intel_atomic_get_new_crtc_state(state, crtc); 1584 const struct intel_limit *limit; 1585 int refclk = 96000; 1586 1587 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1588 if (intel_panel_use_ssc(dev_priv)) { 1589 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1590 drm_dbg_kms(&dev_priv->drm, 1591 "using SSC reference clock of %d kHz\n", 1592 refclk); 1593 } 1594 1595 limit = &pnv_limits_lvds; 1596 } else { 1597 limit = &pnv_limits_sdvo; 1598 } 1599 1600 if (!crtc_state->clock_set && 1601 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1602 refclk, NULL, &crtc_state->dpll)) 1603 return -EINVAL; 1604 1605 pnv_calc_dpll_params(refclk, &crtc_state->dpll); 1606 1607 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1608 &crtc_state->dpll); 1609 1610 crtc_state->port_clock = crtc_state->dpll.dot; 1611 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1612 1613 return 0; 1614 } 1615 1616 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state, 1617 struct intel_crtc *crtc) 1618 { 1619 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1620 struct intel_crtc_state *crtc_state = 1621 intel_atomic_get_new_crtc_state(state, crtc); 1622 const struct intel_limit *limit; 1623 int refclk = 96000; 1624 1625 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1626 if (intel_panel_use_ssc(dev_priv)) { 1627 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1628 drm_dbg_kms(&dev_priv->drm, 1629 "using SSC reference clock of %d kHz\n", 1630 refclk); 1631 } 1632 1633 limit = &intel_limits_i9xx_lvds; 1634 } else { 1635 limit = &intel_limits_i9xx_sdvo; 1636 } 1637 1638 if (!crtc_state->clock_set && 1639 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1640 refclk, NULL, &crtc_state->dpll)) 1641 return -EINVAL; 1642 1643 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1644 1645 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1646 &crtc_state->dpll); 1647 1648 crtc_state->port_clock = crtc_state->dpll.dot; 1649 /* FIXME this is a mess */ 1650 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT)) 1651 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1652 1653 return 0; 1654 } 1655 1656 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state, 1657 struct intel_crtc *crtc) 1658 { 1659 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1660 struct intel_crtc_state *crtc_state = 1661 intel_atomic_get_new_crtc_state(state, crtc); 1662 const struct intel_limit *limit; 1663 int refclk = 48000; 1664 1665 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1666 if (intel_panel_use_ssc(dev_priv)) { 1667 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1668 drm_dbg_kms(&dev_priv->drm, 1669 "using SSC reference clock of %d kHz\n", 1670 refclk); 1671 } 1672 1673 limit = &intel_limits_i8xx_lvds; 1674 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 1675 limit = &intel_limits_i8xx_dvo; 1676 } else { 1677 limit = &intel_limits_i8xx_dac; 1678 } 1679 1680 if (!crtc_state->clock_set && 1681 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1682 refclk, NULL, &crtc_state->dpll)) 1683 return -EINVAL; 1684 1685 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1686 1687 i8xx_compute_dpll(crtc_state, &crtc_state->dpll, 1688 &crtc_state->dpll); 1689 1690 crtc_state->port_clock = crtc_state->dpll.dot; 1691 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1692 1693 return 0; 1694 } 1695 1696 static const struct intel_dpll_funcs mtl_dpll_funcs = { 1697 .crtc_compute_clock = mtl_crtc_compute_clock, 1698 }; 1699 1700 static const struct intel_dpll_funcs dg2_dpll_funcs = { 1701 .crtc_compute_clock = dg2_crtc_compute_clock, 1702 }; 1703 1704 static const struct intel_dpll_funcs hsw_dpll_funcs = { 1705 .crtc_compute_clock = hsw_crtc_compute_clock, 1706 .crtc_get_shared_dpll = hsw_crtc_get_shared_dpll, 1707 }; 1708 1709 static const struct intel_dpll_funcs ilk_dpll_funcs = { 1710 .crtc_compute_clock = ilk_crtc_compute_clock, 1711 .crtc_get_shared_dpll = ilk_crtc_get_shared_dpll, 1712 }; 1713 1714 static const struct intel_dpll_funcs chv_dpll_funcs = { 1715 .crtc_compute_clock = chv_crtc_compute_clock, 1716 }; 1717 1718 static const struct intel_dpll_funcs vlv_dpll_funcs = { 1719 .crtc_compute_clock = vlv_crtc_compute_clock, 1720 }; 1721 1722 static const struct intel_dpll_funcs g4x_dpll_funcs = { 1723 .crtc_compute_clock = g4x_crtc_compute_clock, 1724 }; 1725 1726 static const struct intel_dpll_funcs pnv_dpll_funcs = { 1727 .crtc_compute_clock = pnv_crtc_compute_clock, 1728 }; 1729 1730 static const struct intel_dpll_funcs i9xx_dpll_funcs = { 1731 .crtc_compute_clock = i9xx_crtc_compute_clock, 1732 }; 1733 1734 static const struct intel_dpll_funcs i8xx_dpll_funcs = { 1735 .crtc_compute_clock = i8xx_crtc_compute_clock, 1736 }; 1737 1738 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state, 1739 struct intel_crtc *crtc) 1740 { 1741 struct drm_i915_private *i915 = to_i915(state->base.dev); 1742 struct intel_crtc_state *crtc_state = 1743 intel_atomic_get_new_crtc_state(state, crtc); 1744 int ret; 1745 1746 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state)); 1747 1748 memset(&crtc_state->dpll_hw_state, 0, 1749 sizeof(crtc_state->dpll_hw_state)); 1750 1751 if (!crtc_state->hw.enable) 1752 return 0; 1753 1754 ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc); 1755 if (ret) { 1756 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n", 1757 crtc->base.base.id, crtc->base.name); 1758 return ret; 1759 } 1760 1761 return 0; 1762 } 1763 1764 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state, 1765 struct intel_crtc *crtc) 1766 { 1767 struct drm_i915_private *i915 = to_i915(state->base.dev); 1768 struct intel_crtc_state *crtc_state = 1769 intel_atomic_get_new_crtc_state(state, crtc); 1770 int ret; 1771 1772 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state)); 1773 drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll); 1774 1775 if (!crtc_state->hw.enable || crtc_state->shared_dpll) 1776 return 0; 1777 1778 if (!i915->display.funcs.dpll->crtc_get_shared_dpll) 1779 return 0; 1780 1781 ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc); 1782 if (ret) { 1783 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n", 1784 crtc->base.base.id, crtc->base.name); 1785 return ret; 1786 } 1787 1788 return 0; 1789 } 1790 1791 void 1792 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv) 1793 { 1794 if (DISPLAY_VER(dev_priv) >= 14) 1795 dev_priv->display.funcs.dpll = &mtl_dpll_funcs; 1796 else if (IS_DG2(dev_priv)) 1797 dev_priv->display.funcs.dpll = &dg2_dpll_funcs; 1798 else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv)) 1799 dev_priv->display.funcs.dpll = &hsw_dpll_funcs; 1800 else if (HAS_PCH_SPLIT(dev_priv)) 1801 dev_priv->display.funcs.dpll = &ilk_dpll_funcs; 1802 else if (IS_CHERRYVIEW(dev_priv)) 1803 dev_priv->display.funcs.dpll = &chv_dpll_funcs; 1804 else if (IS_VALLEYVIEW(dev_priv)) 1805 dev_priv->display.funcs.dpll = &vlv_dpll_funcs; 1806 else if (IS_G4X(dev_priv)) 1807 dev_priv->display.funcs.dpll = &g4x_dpll_funcs; 1808 else if (IS_PINEVIEW(dev_priv)) 1809 dev_priv->display.funcs.dpll = &pnv_dpll_funcs; 1810 else if (DISPLAY_VER(dev_priv) != 2) 1811 dev_priv->display.funcs.dpll = &i9xx_dpll_funcs; 1812 else 1813 dev_priv->display.funcs.dpll = &i8xx_dpll_funcs; 1814 } 1815 1816 static bool i9xx_has_pps(struct drm_i915_private *dev_priv) 1817 { 1818 if (IS_I830(dev_priv)) 1819 return false; 1820 1821 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 1822 } 1823 1824 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state) 1825 { 1826 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1827 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1828 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1829 enum pipe pipe = crtc->pipe; 1830 int i; 1831 1832 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); 1833 1834 /* PLL is protected by panel, make sure we can write it */ 1835 if (i9xx_has_pps(dev_priv)) 1836 assert_pps_unlocked(dev_priv, pipe); 1837 1838 intel_de_write(dev_priv, FP0(pipe), hw_state->fp0); 1839 intel_de_write(dev_priv, FP1(pipe), hw_state->fp1); 1840 1841 /* 1842 * Apparently we need to have VGA mode enabled prior to changing 1843 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1844 * dividers, even though the register value does change. 1845 */ 1846 intel_de_write(dev_priv, DPLL(dev_priv, pipe), 1847 hw_state->dpll & ~DPLL_VGA_MODE_DIS); 1848 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); 1849 1850 /* Wait for the clocks to stabilize. */ 1851 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); 1852 udelay(150); 1853 1854 if (DISPLAY_VER(dev_priv) >= 4) { 1855 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe), 1856 hw_state->dpll_md); 1857 } else { 1858 /* The pixel multiplier can only be updated once the 1859 * DPLL is enabled and the clocks are stable. 1860 * 1861 * So write it again. 1862 */ 1863 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); 1864 } 1865 1866 /* We do this three times for luck */ 1867 for (i = 0; i < 3; i++) { 1868 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); 1869 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); 1870 udelay(150); /* wait for warmup */ 1871 } 1872 } 1873 1874 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, 1875 enum dpio_phy phy, enum dpio_channel ch) 1876 { 1877 u32 tmp; 1878 1879 /* 1880 * PLLB opamp always calibrates to max value of 0x3f, force enable it 1881 * and set it to a reasonable value instead. 1882 */ 1883 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch)); 1884 tmp &= 0xffffff00; 1885 tmp |= 0x00000030; 1886 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp); 1887 1888 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11); 1889 tmp &= 0x00ffffff; 1890 tmp |= 0x8c000000; 1891 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp); 1892 1893 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch)); 1894 tmp &= 0xffffff00; 1895 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp); 1896 1897 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11); 1898 tmp &= 0x00ffffff; 1899 tmp |= 0xb0000000; 1900 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp); 1901 } 1902 1903 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state) 1904 { 1905 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1906 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1907 const struct dpll *clock = &crtc_state->dpll; 1908 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 1909 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 1910 enum pipe pipe = crtc->pipe; 1911 u32 tmp, coreclk; 1912 1913 vlv_dpio_get(dev_priv); 1914 1915 /* See eDP HDMI DPIO driver vbios notes doc */ 1916 1917 /* PLL B needs special handling */ 1918 if (pipe == PIPE_B) 1919 vlv_pllb_recal_opamp(dev_priv, phy, ch); 1920 1921 /* Set up Tx target for periodic Rcomp update */ 1922 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW17_BCAST, 0x0100000f); 1923 1924 /* Disable target IRef on PLL */ 1925 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW16(ch)); 1926 tmp &= 0x00ffffff; 1927 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW16(ch), tmp); 1928 1929 /* Disable fast lock */ 1930 vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610); 1931 1932 /* Set idtafcrecal before PLL is enabled */ 1933 tmp = DPIO_M1_DIV(clock->m1) | 1934 DPIO_M2_DIV(clock->m2) | 1935 DPIO_P1_DIV(clock->p1) | 1936 DPIO_P2_DIV(clock->p2) | 1937 DPIO_N_DIV(clock->n) | 1938 DPIO_K_DIV(1); 1939 1940 /* 1941 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 1942 * but we don't support that). 1943 * Note: don't use the DAC post divider as it seems unstable. 1944 */ 1945 tmp |= DPIO_S1_DIV(DPIO_S1_DIV_HDMIDP); 1946 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp); 1947 1948 tmp |= DPIO_ENABLE_CALIBRATION; 1949 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp); 1950 1951 /* Set HBR and RBR LPF coefficients */ 1952 if (crtc_state->port_clock == 162000 || 1953 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) || 1954 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1955 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch), 1956 0x009f0003); 1957 else 1958 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch), 1959 0x00d0000f); 1960 1961 if (intel_crtc_has_dp_encoder(crtc_state)) { 1962 /* Use SSC source */ 1963 if (pipe == PIPE_A) 1964 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1965 0x0df40000); 1966 else 1967 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1968 0x0df70000); 1969 } else { /* HDMI or VGA */ 1970 /* Use bend source */ 1971 if (pipe == PIPE_A) 1972 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1973 0x0df70000); 1974 else 1975 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1976 0x0df40000); 1977 } 1978 1979 coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(ch)); 1980 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 1981 if (intel_crtc_has_dp_encoder(crtc_state)) 1982 coreclk |= 0x01000000; 1983 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(ch), coreclk); 1984 1985 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW19(ch), 0x87871000); 1986 1987 vlv_dpio_put(dev_priv); 1988 } 1989 1990 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state) 1991 { 1992 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1993 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1994 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1995 enum pipe pipe = crtc->pipe; 1996 1997 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); 1998 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); 1999 udelay(150); 2000 2001 if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1)) 2002 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe); 2003 } 2004 2005 void vlv_enable_pll(const struct intel_crtc_state *crtc_state) 2006 { 2007 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2008 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2009 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2010 enum pipe pipe = crtc->pipe; 2011 2012 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); 2013 2014 /* PLL is protected by panel, make sure we can write it */ 2015 assert_pps_unlocked(dev_priv, pipe); 2016 2017 /* Enable Refclk */ 2018 intel_de_write(dev_priv, DPLL(dev_priv, pipe), 2019 hw_state->dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 2020 2021 if (hw_state->dpll & DPLL_VCO_ENABLE) { 2022 vlv_prepare_pll(crtc_state); 2023 _vlv_enable_pll(crtc_state); 2024 } 2025 2026 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe), hw_state->dpll_md); 2027 intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe)); 2028 } 2029 2030 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state) 2031 { 2032 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2033 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2034 const struct dpll *clock = &crtc_state->dpll; 2035 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 2036 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 2037 u32 tmp, loopfilter, tribuf_calcntr; 2038 u32 m2_frac; 2039 2040 m2_frac = clock->m2 & 0x3fffff; 2041 2042 vlv_dpio_get(dev_priv); 2043 2044 /* p1 and p2 divider */ 2045 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(ch), 2046 DPIO_CHV_S1_DIV(5) | 2047 DPIO_CHV_P1_DIV(clock->p1) | 2048 DPIO_CHV_P2_DIV(clock->p2) | 2049 DPIO_CHV_K_DIV(1)); 2050 2051 /* Feedback post-divider - m2 */ 2052 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(ch), 2053 DPIO_CHV_M2_DIV(clock->m2 >> 22)); 2054 2055 /* Feedback refclk divider - n and m1 */ 2056 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(ch), 2057 DPIO_CHV_M1_DIV(DPIO_CHV_M1_DIV_BY_2) | 2058 DPIO_CHV_N_DIV(1)); 2059 2060 /* M2 fraction division */ 2061 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(ch), 2062 DPIO_CHV_M2_FRAC_DIV(m2_frac)); 2063 2064 /* M2 fraction division enable */ 2065 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch)); 2066 tmp &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 2067 tmp |= DPIO_CHV_FEEDFWD_GAIN(2); 2068 if (m2_frac) 2069 tmp |= DPIO_CHV_FRAC_DIV_EN; 2070 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(ch), tmp); 2071 2072 /* Program digital lock detect threshold */ 2073 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(ch)); 2074 tmp &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 2075 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 2076 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD(0x5); 2077 if (!m2_frac) 2078 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 2079 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(ch), tmp); 2080 2081 /* Loop filter */ 2082 if (clock->vco == 5400000) { 2083 loopfilter = DPIO_CHV_PROP_COEFF(0x3) | 2084 DPIO_CHV_INT_COEFF(0x8) | 2085 DPIO_CHV_GAIN_CTRL(0x1); 2086 tribuf_calcntr = 0x9; 2087 } else if (clock->vco <= 6200000) { 2088 loopfilter = DPIO_CHV_PROP_COEFF(0x5) | 2089 DPIO_CHV_INT_COEFF(0xB) | 2090 DPIO_CHV_GAIN_CTRL(0x3); 2091 tribuf_calcntr = 0x9; 2092 } else if (clock->vco <= 6480000) { 2093 loopfilter = DPIO_CHV_PROP_COEFF(0x4) | 2094 DPIO_CHV_INT_COEFF(0x9) | 2095 DPIO_CHV_GAIN_CTRL(0x3); 2096 tribuf_calcntr = 0x8; 2097 } else { 2098 /* Not supported. Apply the same limits as in the max case */ 2099 loopfilter = DPIO_CHV_PROP_COEFF(0x4) | 2100 DPIO_CHV_INT_COEFF(0x9) | 2101 DPIO_CHV_GAIN_CTRL(0x3); 2102 tribuf_calcntr = 0; 2103 } 2104 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(ch), loopfilter); 2105 2106 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(ch)); 2107 tmp &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 2108 tmp |= DPIO_CHV_TDC_TARGET_CNT(tribuf_calcntr); 2109 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(ch), tmp); 2110 2111 /* AFC Recal */ 2112 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), 2113 vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)) | 2114 DPIO_AFC_RECAL); 2115 2116 vlv_dpio_put(dev_priv); 2117 } 2118 2119 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state) 2120 { 2121 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2122 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2123 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2124 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 2125 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 2126 enum pipe pipe = crtc->pipe; 2127 u32 tmp; 2128 2129 vlv_dpio_get(dev_priv); 2130 2131 /* Enable back the 10bit clock to display controller */ 2132 tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)); 2133 tmp |= DPIO_DCLKP_EN; 2134 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), tmp); 2135 2136 vlv_dpio_put(dev_priv); 2137 2138 /* 2139 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 2140 */ 2141 udelay(1); 2142 2143 /* Enable PLL */ 2144 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); 2145 2146 /* Check PLL is locked */ 2147 if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1)) 2148 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe); 2149 } 2150 2151 void chv_enable_pll(const struct intel_crtc_state *crtc_state) 2152 { 2153 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2154 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2155 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2156 enum pipe pipe = crtc->pipe; 2157 2158 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); 2159 2160 /* PLL is protected by panel, make sure we can write it */ 2161 assert_pps_unlocked(dev_priv, pipe); 2162 2163 /* Enable Refclk and SSC */ 2164 intel_de_write(dev_priv, DPLL(dev_priv, pipe), 2165 hw_state->dpll & ~DPLL_VCO_ENABLE); 2166 2167 if (hw_state->dpll & DPLL_VCO_ENABLE) { 2168 chv_prepare_pll(crtc_state); 2169 _chv_enable_pll(crtc_state); 2170 } 2171 2172 if (pipe != PIPE_A) { 2173 /* 2174 * WaPixelRepeatModeFixForC0:chv 2175 * 2176 * DPLLCMD is AWOL. Use chicken bits to propagate 2177 * the value from DPLLBMD to either pipe B or C. 2178 */ 2179 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 2180 intel_de_write(dev_priv, DPLL_MD(dev_priv, PIPE_B), 2181 hw_state->dpll_md); 2182 intel_de_write(dev_priv, CBR4_VLV, 0); 2183 dev_priv->display.state.chv_dpll_md[pipe] = hw_state->dpll_md; 2184 2185 /* 2186 * DPLLB VGA mode also seems to cause problems. 2187 * We should always have it disabled. 2188 */ 2189 drm_WARN_ON(&dev_priv->drm, 2190 (intel_de_read(dev_priv, DPLL(dev_priv, PIPE_B)) & 2191 DPLL_VGA_MODE_DIS) == 0); 2192 } else { 2193 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe), 2194 hw_state->dpll_md); 2195 intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe)); 2196 } 2197 } 2198 2199 /** 2200 * vlv_force_pll_on - forcibly enable just the PLL 2201 * @dev_priv: i915 private structure 2202 * @pipe: pipe PLL to enable 2203 * @dpll: PLL configuration 2204 * 2205 * Enable the PLL for @pipe using the supplied @dpll config. To be used 2206 * in cases where we need the PLL enabled even when @pipe is not going to 2207 * be enabled. 2208 */ 2209 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, 2210 const struct dpll *dpll) 2211 { 2212 struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe); 2213 struct intel_crtc_state *crtc_state; 2214 2215 crtc_state = intel_crtc_state_alloc(crtc); 2216 if (!crtc_state) 2217 return -ENOMEM; 2218 2219 crtc_state->cpu_transcoder = (enum transcoder)pipe; 2220 crtc_state->pixel_multiplier = 1; 2221 crtc_state->dpll = *dpll; 2222 crtc_state->output_types = BIT(INTEL_OUTPUT_EDP); 2223 2224 if (IS_CHERRYVIEW(dev_priv)) { 2225 chv_compute_dpll(crtc_state); 2226 chv_enable_pll(crtc_state); 2227 } else { 2228 vlv_compute_dpll(crtc_state); 2229 vlv_enable_pll(crtc_state); 2230 } 2231 2232 intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi); 2233 2234 return 0; 2235 } 2236 2237 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 2238 { 2239 u32 val; 2240 2241 /* Make sure the pipe isn't still relying on us */ 2242 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe); 2243 2244 val = DPLL_INTEGRATED_REF_CLK_VLV | 2245 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 2246 if (pipe != PIPE_A) 2247 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 2248 2249 intel_de_write(dev_priv, DPLL(dev_priv, pipe), val); 2250 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); 2251 } 2252 2253 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 2254 { 2255 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 2256 enum dpio_phy phy = vlv_pipe_to_phy(pipe); 2257 u32 val; 2258 2259 /* Make sure the pipe isn't still relying on us */ 2260 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe); 2261 2262 val = DPLL_SSC_REF_CLK_CHV | 2263 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 2264 if (pipe != PIPE_A) 2265 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 2266 2267 intel_de_write(dev_priv, DPLL(dev_priv, pipe), val); 2268 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); 2269 2270 vlv_dpio_get(dev_priv); 2271 2272 /* Disable 10bit clock to display controller */ 2273 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)); 2274 val &= ~DPIO_DCLKP_EN; 2275 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), val); 2276 2277 vlv_dpio_put(dev_priv); 2278 } 2279 2280 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 2281 { 2282 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2283 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2284 enum pipe pipe = crtc->pipe; 2285 2286 /* Don't disable pipe or pipe PLLs if needed */ 2287 if (IS_I830(dev_priv)) 2288 return; 2289 2290 /* Make sure the pipe isn't still relying on us */ 2291 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); 2292 2293 intel_de_write(dev_priv, DPLL(dev_priv, pipe), DPLL_VGA_MODE_DIS); 2294 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); 2295 } 2296 2297 2298 /** 2299 * vlv_force_pll_off - forcibly disable just the PLL 2300 * @dev_priv: i915 private structure 2301 * @pipe: pipe PLL to disable 2302 * 2303 * Disable the PLL for @pipe. To be used in cases where we need 2304 * the PLL enabled even when @pipe is not going to be enabled. 2305 */ 2306 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) 2307 { 2308 if (IS_CHERRYVIEW(dev_priv)) 2309 chv_disable_pll(dev_priv, pipe); 2310 else 2311 vlv_disable_pll(dev_priv, pipe); 2312 } 2313 2314 /* Only for pre-ILK configs */ 2315 static void assert_pll(struct drm_i915_private *dev_priv, 2316 enum pipe pipe, bool state) 2317 { 2318 bool cur_state; 2319 2320 cur_state = intel_de_read(dev_priv, DPLL(dev_priv, pipe)) & DPLL_VCO_ENABLE; 2321 I915_STATE_WARN(dev_priv, cur_state != state, 2322 "PLL state assertion failure (expected %s, current %s)\n", 2323 str_on_off(state), str_on_off(cur_state)); 2324 } 2325 2326 void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe) 2327 { 2328 assert_pll(i915, pipe, true); 2329 } 2330 2331 void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe) 2332 { 2333 assert_pll(i915, pipe, false); 2334 } 2335