1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/string_helpers.h> 8 9 #include <drm/drm_print.h> 10 11 #include "intel_atomic.h" 12 #include "intel_crtc.h" 13 #include "intel_cx0_phy.h" 14 #include "intel_de.h" 15 #include "intel_display.h" 16 #include "intel_display_regs.h" 17 #include "intel_display_types.h" 18 #include "intel_dpio_phy.h" 19 #include "intel_dpll.h" 20 #include "intel_lvds.h" 21 #include "intel_lvds_regs.h" 22 #include "intel_panel.h" 23 #include "intel_pps.h" 24 #include "intel_snps_phy.h" 25 #include "vlv_dpio_phy_regs.h" 26 #include "vlv_sideband.h" 27 28 struct intel_dpll_global_funcs { 29 int (*crtc_compute_clock)(struct intel_atomic_state *state, 30 struct intel_crtc *crtc); 31 int (*crtc_get_dpll)(struct intel_atomic_state *state, 32 struct intel_crtc *crtc); 33 }; 34 35 struct intel_limit { 36 struct { 37 int min, max; 38 } dot, vco, n, m, m1, m2, p, p1; 39 40 struct { 41 int dot_limit; 42 int p2_slow, p2_fast; 43 } p2; 44 }; 45 static const struct intel_limit intel_limits_i8xx_dac = { 46 .dot = { .min = 25000, .max = 350000 }, 47 .vco = { .min = 908000, .max = 1512000 }, 48 .n = { .min = 2, .max = 16 }, 49 .m = { .min = 96, .max = 140 }, 50 .m1 = { .min = 18, .max = 26 }, 51 .m2 = { .min = 6, .max = 16 }, 52 .p = { .min = 4, .max = 128 }, 53 .p1 = { .min = 2, .max = 33 }, 54 .p2 = { .dot_limit = 165000, 55 .p2_slow = 4, .p2_fast = 2 }, 56 }; 57 58 static const struct intel_limit intel_limits_i8xx_dvo = { 59 .dot = { .min = 25000, .max = 350000 }, 60 .vco = { .min = 908000, .max = 1512000 }, 61 .n = { .min = 2, .max = 16 }, 62 .m = { .min = 96, .max = 140 }, 63 .m1 = { .min = 18, .max = 26 }, 64 .m2 = { .min = 6, .max = 16 }, 65 .p = { .min = 4, .max = 128 }, 66 .p1 = { .min = 2, .max = 33 }, 67 .p2 = { .dot_limit = 165000, 68 .p2_slow = 4, .p2_fast = 4 }, 69 }; 70 71 static const struct intel_limit intel_limits_i8xx_lvds = { 72 .dot = { .min = 25000, .max = 350000 }, 73 .vco = { .min = 908000, .max = 1512000 }, 74 .n = { .min = 2, .max = 16 }, 75 .m = { .min = 96, .max = 140 }, 76 .m1 = { .min = 18, .max = 26 }, 77 .m2 = { .min = 6, .max = 16 }, 78 .p = { .min = 4, .max = 128 }, 79 .p1 = { .min = 1, .max = 6 }, 80 .p2 = { .dot_limit = 165000, 81 .p2_slow = 14, .p2_fast = 7 }, 82 }; 83 84 static const struct intel_limit intel_limits_i9xx_sdvo = { 85 .dot = { .min = 20000, .max = 400000 }, 86 .vco = { .min = 1400000, .max = 2800000 }, 87 .n = { .min = 1, .max = 6 }, 88 .m = { .min = 70, .max = 120 }, 89 .m1 = { .min = 8, .max = 18 }, 90 .m2 = { .min = 3, .max = 7 }, 91 .p = { .min = 5, .max = 80 }, 92 .p1 = { .min = 1, .max = 8 }, 93 .p2 = { .dot_limit = 200000, 94 .p2_slow = 10, .p2_fast = 5 }, 95 }; 96 97 static const struct intel_limit intel_limits_i9xx_lvds = { 98 .dot = { .min = 20000, .max = 400000 }, 99 .vco = { .min = 1400000, .max = 2800000 }, 100 .n = { .min = 1, .max = 6 }, 101 .m = { .min = 70, .max = 120 }, 102 .m1 = { .min = 8, .max = 18 }, 103 .m2 = { .min = 3, .max = 7 }, 104 .p = { .min = 7, .max = 98 }, 105 .p1 = { .min = 1, .max = 8 }, 106 .p2 = { .dot_limit = 112000, 107 .p2_slow = 14, .p2_fast = 7 }, 108 }; 109 110 111 static const struct intel_limit intel_limits_g4x_sdvo = { 112 .dot = { .min = 25000, .max = 270000 }, 113 .vco = { .min = 1750000, .max = 3500000}, 114 .n = { .min = 1, .max = 4 }, 115 .m = { .min = 104, .max = 138 }, 116 .m1 = { .min = 17, .max = 23 }, 117 .m2 = { .min = 5, .max = 11 }, 118 .p = { .min = 10, .max = 30 }, 119 .p1 = { .min = 1, .max = 3}, 120 .p2 = { .dot_limit = 270000, 121 .p2_slow = 10, 122 .p2_fast = 10 123 }, 124 }; 125 126 static const struct intel_limit intel_limits_g4x_hdmi = { 127 .dot = { .min = 22000, .max = 400000 }, 128 .vco = { .min = 1750000, .max = 3500000}, 129 .n = { .min = 1, .max = 4 }, 130 .m = { .min = 104, .max = 138 }, 131 .m1 = { .min = 16, .max = 23 }, 132 .m2 = { .min = 5, .max = 11 }, 133 .p = { .min = 5, .max = 80 }, 134 .p1 = { .min = 1, .max = 8}, 135 .p2 = { .dot_limit = 165000, 136 .p2_slow = 10, .p2_fast = 5 }, 137 }; 138 139 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 140 .dot = { .min = 20000, .max = 115000 }, 141 .vco = { .min = 1750000, .max = 3500000 }, 142 .n = { .min = 1, .max = 3 }, 143 .m = { .min = 104, .max = 138 }, 144 .m1 = { .min = 17, .max = 23 }, 145 .m2 = { .min = 5, .max = 11 }, 146 .p = { .min = 28, .max = 112 }, 147 .p1 = { .min = 2, .max = 8 }, 148 .p2 = { .dot_limit = 0, 149 .p2_slow = 14, .p2_fast = 14 150 }, 151 }; 152 153 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 154 .dot = { .min = 80000, .max = 224000 }, 155 .vco = { .min = 1750000, .max = 3500000 }, 156 .n = { .min = 1, .max = 3 }, 157 .m = { .min = 104, .max = 138 }, 158 .m1 = { .min = 17, .max = 23 }, 159 .m2 = { .min = 5, .max = 11 }, 160 .p = { .min = 14, .max = 42 }, 161 .p1 = { .min = 2, .max = 6 }, 162 .p2 = { .dot_limit = 0, 163 .p2_slow = 7, .p2_fast = 7 164 }, 165 }; 166 167 static const struct intel_limit pnv_limits_sdvo = { 168 .dot = { .min = 20000, .max = 400000}, 169 .vco = { .min = 1700000, .max = 3500000 }, 170 /* Pineview's Ncounter is a ring counter */ 171 .n = { .min = 3, .max = 6 }, 172 .m = { .min = 2, .max = 256 }, 173 /* Pineview only has one combined m divider, which we treat as m2. */ 174 .m1 = { .min = 0, .max = 0 }, 175 .m2 = { .min = 0, .max = 254 }, 176 .p = { .min = 5, .max = 80 }, 177 .p1 = { .min = 1, .max = 8 }, 178 .p2 = { .dot_limit = 200000, 179 .p2_slow = 10, .p2_fast = 5 }, 180 }; 181 182 static const struct intel_limit pnv_limits_lvds = { 183 .dot = { .min = 20000, .max = 400000 }, 184 .vco = { .min = 1700000, .max = 3500000 }, 185 .n = { .min = 3, .max = 6 }, 186 .m = { .min = 2, .max = 256 }, 187 .m1 = { .min = 0, .max = 0 }, 188 .m2 = { .min = 0, .max = 254 }, 189 .p = { .min = 7, .max = 112 }, 190 .p1 = { .min = 1, .max = 8 }, 191 .p2 = { .dot_limit = 112000, 192 .p2_slow = 14, .p2_fast = 14 }, 193 }; 194 195 /* Ironlake / Sandybridge 196 * 197 * We calculate clock using (register_value + 2) for N/M1/M2, so here 198 * the range value for them is (actual_value - 2). 199 */ 200 static const struct intel_limit ilk_limits_dac = { 201 .dot = { .min = 25000, .max = 350000 }, 202 .vco = { .min = 1760000, .max = 3510000 }, 203 .n = { .min = 1, .max = 5 }, 204 .m = { .min = 79, .max = 127 }, 205 .m1 = { .min = 12, .max = 22 }, 206 .m2 = { .min = 5, .max = 9 }, 207 .p = { .min = 5, .max = 80 }, 208 .p1 = { .min = 1, .max = 8 }, 209 .p2 = { .dot_limit = 225000, 210 .p2_slow = 10, .p2_fast = 5 }, 211 }; 212 213 static const struct intel_limit ilk_limits_single_lvds = { 214 .dot = { .min = 25000, .max = 350000 }, 215 .vco = { .min = 1760000, .max = 3510000 }, 216 .n = { .min = 1, .max = 3 }, 217 .m = { .min = 79, .max = 118 }, 218 .m1 = { .min = 12, .max = 22 }, 219 .m2 = { .min = 5, .max = 9 }, 220 .p = { .min = 28, .max = 112 }, 221 .p1 = { .min = 2, .max = 8 }, 222 .p2 = { .dot_limit = 225000, 223 .p2_slow = 14, .p2_fast = 14 }, 224 }; 225 226 static const struct intel_limit ilk_limits_dual_lvds = { 227 .dot = { .min = 25000, .max = 350000 }, 228 .vco = { .min = 1760000, .max = 3510000 }, 229 .n = { .min = 1, .max = 3 }, 230 .m = { .min = 79, .max = 127 }, 231 .m1 = { .min = 12, .max = 22 }, 232 .m2 = { .min = 5, .max = 9 }, 233 .p = { .min = 14, .max = 56 }, 234 .p1 = { .min = 2, .max = 8 }, 235 .p2 = { .dot_limit = 225000, 236 .p2_slow = 7, .p2_fast = 7 }, 237 }; 238 239 /* LVDS 100mhz refclk limits. */ 240 static const struct intel_limit ilk_limits_single_lvds_100m = { 241 .dot = { .min = 25000, .max = 350000 }, 242 .vco = { .min = 1760000, .max = 3510000 }, 243 .n = { .min = 1, .max = 2 }, 244 .m = { .min = 79, .max = 126 }, 245 .m1 = { .min = 12, .max = 22 }, 246 .m2 = { .min = 5, .max = 9 }, 247 .p = { .min = 28, .max = 112 }, 248 .p1 = { .min = 2, .max = 8 }, 249 .p2 = { .dot_limit = 225000, 250 .p2_slow = 14, .p2_fast = 14 }, 251 }; 252 253 static const struct intel_limit ilk_limits_dual_lvds_100m = { 254 .dot = { .min = 25000, .max = 350000 }, 255 .vco = { .min = 1760000, .max = 3510000 }, 256 .n = { .min = 1, .max = 3 }, 257 .m = { .min = 79, .max = 126 }, 258 .m1 = { .min = 12, .max = 22 }, 259 .m2 = { .min = 5, .max = 9 }, 260 .p = { .min = 14, .max = 42 }, 261 .p1 = { .min = 2, .max = 6 }, 262 .p2 = { .dot_limit = 225000, 263 .p2_slow = 7, .p2_fast = 7 }, 264 }; 265 266 static const struct intel_limit intel_limits_vlv = { 267 /* 268 * These are based on the data rate limits (measured in fast clocks) 269 * since those are the strictest limits we have. The fast 270 * clock and actual rate limits are more relaxed, so checking 271 * them would make no difference. 272 */ 273 .dot = { .min = 25000, .max = 270000 }, 274 .vco = { .min = 4000000, .max = 6000000 }, 275 .n = { .min = 1, .max = 7 }, 276 .m1 = { .min = 2, .max = 3 }, 277 .m2 = { .min = 11, .max = 156 }, 278 .p1 = { .min = 2, .max = 3 }, 279 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 280 }; 281 282 static const struct intel_limit intel_limits_chv = { 283 /* 284 * These are based on the data rate limits (measured in fast clocks) 285 * since those are the strictest limits we have. The fast 286 * clock and actual rate limits are more relaxed, so checking 287 * them would make no difference. 288 */ 289 .dot = { .min = 25000, .max = 540000 }, 290 .vco = { .min = 4800000, .max = 6480000 }, 291 .n = { .min = 1, .max = 1 }, 292 .m1 = { .min = 2, .max = 2 }, 293 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 294 .p1 = { .min = 2, .max = 4 }, 295 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 296 }; 297 298 static const struct intel_limit intel_limits_bxt = { 299 .dot = { .min = 25000, .max = 594000 }, 300 .vco = { .min = 4800000, .max = 6700000 }, 301 .n = { .min = 1, .max = 1 }, 302 .m1 = { .min = 2, .max = 2 }, 303 /* FIXME: find real m2 limits */ 304 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 305 .p1 = { .min = 2, .max = 4 }, 306 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 307 }; 308 309 /* 310 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 311 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 312 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 313 * The helpers' return value is the rate of the clock that is fed to the 314 * display engine's pipe which can be the above fast dot clock rate or a 315 * divided-down version of it. 316 */ 317 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 318 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 319 { 320 clock->m = clock->m2 + 2; 321 clock->p = clock->p1 * clock->p2; 322 323 clock->vco = clock->n == 0 ? 0 : 324 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 325 clock->dot = clock->p == 0 ? 0 : 326 DIV_ROUND_CLOSEST(clock->vco, clock->p); 327 328 return clock->dot; 329 } 330 331 static u32 i9xx_dpll_compute_m(const struct dpll *dpll) 332 { 333 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 334 } 335 336 int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 337 { 338 clock->m = i9xx_dpll_compute_m(clock); 339 clock->p = clock->p1 * clock->p2; 340 341 clock->vco = clock->n + 2 == 0 ? 0 : 342 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 343 clock->dot = clock->p == 0 ? 0 : 344 DIV_ROUND_CLOSEST(clock->vco, clock->p); 345 346 return clock->dot; 347 } 348 349 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 350 { 351 clock->m = clock->m1 * clock->m2; 352 clock->p = clock->p1 * clock->p2 * 5; 353 354 clock->vco = clock->n == 0 ? 0 : 355 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 356 clock->dot = clock->p == 0 ? 0 : 357 DIV_ROUND_CLOSEST(clock->vco, clock->p); 358 359 return clock->dot; 360 } 361 362 int chv_calc_dpll_params(int refclk, struct dpll *clock) 363 { 364 clock->m = clock->m1 * clock->m2; 365 clock->p = clock->p1 * clock->p2 * 5; 366 367 clock->vco = clock->n == 0 ? 0 : 368 DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22); 369 clock->dot = clock->p == 0 ? 0 : 370 DIV_ROUND_CLOSEST(clock->vco, clock->p); 371 372 return clock->dot; 373 } 374 375 static int i9xx_pll_refclk(const struct intel_crtc_state *crtc_state) 376 { 377 struct intel_display *display = to_intel_display(crtc_state); 378 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 379 380 if ((hw_state->dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 381 return display->vbt.lvds_ssc_freq; 382 else if (HAS_PCH_SPLIT(display)) 383 return 120000; 384 else if (DISPLAY_VER(display) != 2) 385 return 96000; 386 else 387 return 48000; 388 } 389 390 void i9xx_dpll_get_hw_state(struct intel_crtc *crtc, 391 struct intel_dpll_hw_state *dpll_hw_state) 392 { 393 struct intel_display *display = to_intel_display(crtc); 394 struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx; 395 396 if (DISPLAY_VER(display) >= 4) { 397 u32 tmp; 398 399 /* No way to read it out on pipes B and C */ 400 if (display->platform.cherryview && crtc->pipe != PIPE_A) 401 tmp = display->state.chv_dpll_md[crtc->pipe]; 402 else 403 tmp = intel_de_read(display, 404 DPLL_MD(display, crtc->pipe)); 405 406 hw_state->dpll_md = tmp; 407 } 408 409 hw_state->dpll = intel_de_read(display, DPLL(display, crtc->pipe)); 410 411 if (!display->platform.valleyview && !display->platform.cherryview) { 412 hw_state->fp0 = intel_de_read(display, FP0(crtc->pipe)); 413 hw_state->fp1 = intel_de_read(display, FP1(crtc->pipe)); 414 } else { 415 /* Mask out read-only status bits. */ 416 hw_state->dpll &= ~(DPLL_LOCK_VLV | 417 DPLL_PORTC_READY_MASK | 418 DPLL_PORTB_READY_MASK); 419 } 420 } 421 422 /* Returns the clock of the currently programmed mode of the given pipe. */ 423 void i9xx_crtc_clock_get(struct intel_crtc_state *crtc_state) 424 { 425 struct intel_display *display = to_intel_display(crtc_state); 426 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 427 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 428 u32 dpll = hw_state->dpll; 429 u32 fp; 430 struct dpll clock; 431 int port_clock; 432 int refclk = i9xx_pll_refclk(crtc_state); 433 434 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 435 fp = hw_state->fp0; 436 else 437 fp = hw_state->fp1; 438 439 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 440 if (display->platform.pineview) { 441 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 442 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 443 } else { 444 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 445 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 446 } 447 448 if (DISPLAY_VER(display) != 2) { 449 if (display->platform.pineview) 450 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 451 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 452 else 453 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 454 DPLL_FPA01_P1_POST_DIV_SHIFT); 455 456 switch (dpll & DPLL_MODE_MASK) { 457 case DPLLB_MODE_DAC_SERIAL: 458 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 459 5 : 10; 460 break; 461 case DPLLB_MODE_LVDS: 462 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 463 7 : 14; 464 break; 465 default: 466 drm_dbg_kms(display->drm, 467 "Unknown DPLL mode %08x in programmed " 468 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 469 return; 470 } 471 472 if (display->platform.pineview) 473 port_clock = pnv_calc_dpll_params(refclk, &clock); 474 else 475 port_clock = i9xx_calc_dpll_params(refclk, &clock); 476 } else { 477 enum pipe lvds_pipe; 478 479 if (display->platform.i85x && 480 intel_lvds_port_enabled(display, LVDS, &lvds_pipe) && 481 lvds_pipe == crtc->pipe) { 482 u32 lvds = intel_de_read(display, LVDS); 483 484 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 485 DPLL_FPA01_P1_POST_DIV_SHIFT); 486 487 if (lvds & LVDS_CLKB_POWER_UP) 488 clock.p2 = 7; 489 else 490 clock.p2 = 14; 491 } else { 492 if (dpll & PLL_P1_DIVIDE_BY_TWO) 493 clock.p1 = 2; 494 else { 495 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 496 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 497 } 498 if (dpll & PLL_P2_DIVIDE_BY_4) 499 clock.p2 = 4; 500 else 501 clock.p2 = 2; 502 } 503 504 port_clock = i9xx_calc_dpll_params(refclk, &clock); 505 } 506 507 /* 508 * This value includes pixel_multiplier. We will use 509 * port_clock to compute adjusted_mode.crtc_clock in the 510 * encoder's get_config() function. 511 */ 512 crtc_state->port_clock = port_clock; 513 } 514 515 void vlv_crtc_clock_get(struct intel_crtc_state *crtc_state) 516 { 517 struct intel_display *display = to_intel_display(crtc_state); 518 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 519 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 520 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 521 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 522 int refclk = 100000; 523 struct dpll clock; 524 u32 tmp; 525 526 /* In case of DSI, DPLL will not be used */ 527 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0) 528 return; 529 530 vlv_dpio_get(display->drm); 531 tmp = vlv_dpio_read(display->drm, phy, VLV_PLL_DW3(ch)); 532 vlv_dpio_put(display->drm); 533 534 clock.m1 = REG_FIELD_GET(DPIO_M1_DIV_MASK, tmp); 535 clock.m2 = REG_FIELD_GET(DPIO_M2_DIV_MASK, tmp); 536 clock.n = REG_FIELD_GET(DPIO_N_DIV_MASK, tmp); 537 clock.p1 = REG_FIELD_GET(DPIO_P1_DIV_MASK, tmp); 538 clock.p2 = REG_FIELD_GET(DPIO_P2_DIV_MASK, tmp); 539 540 crtc_state->port_clock = vlv_calc_dpll_params(refclk, &clock); 541 } 542 543 void chv_crtc_clock_get(struct intel_crtc_state *crtc_state) 544 { 545 struct intel_display *display = to_intel_display(crtc_state); 546 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 547 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 548 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 549 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 550 struct dpll clock; 551 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 552 int refclk = 100000; 553 554 /* In case of DSI, DPLL will not be used */ 555 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0) 556 return; 557 558 vlv_dpio_get(display->drm); 559 cmn_dw13 = vlv_dpio_read(display->drm, phy, CHV_CMN_DW13(ch)); 560 pll_dw0 = vlv_dpio_read(display->drm, phy, CHV_PLL_DW0(ch)); 561 pll_dw1 = vlv_dpio_read(display->drm, phy, CHV_PLL_DW1(ch)); 562 pll_dw2 = vlv_dpio_read(display->drm, phy, CHV_PLL_DW2(ch)); 563 pll_dw3 = vlv_dpio_read(display->drm, phy, CHV_PLL_DW3(ch)); 564 vlv_dpio_put(display->drm); 565 566 clock.m1 = REG_FIELD_GET(DPIO_CHV_M1_DIV_MASK, pll_dw1) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 567 clock.m2 = REG_FIELD_GET(DPIO_CHV_M2_DIV_MASK, pll_dw0) << 22; 568 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 569 clock.m2 |= REG_FIELD_GET(DPIO_CHV_M2_FRAC_DIV_MASK, pll_dw2); 570 clock.n = REG_FIELD_GET(DPIO_CHV_N_DIV_MASK, pll_dw1); 571 clock.p1 = REG_FIELD_GET(DPIO_CHV_P1_DIV_MASK, cmn_dw13); 572 clock.p2 = REG_FIELD_GET(DPIO_CHV_P2_DIV_MASK, cmn_dw13); 573 574 crtc_state->port_clock = chv_calc_dpll_params(refclk, &clock); 575 } 576 577 /* 578 * Returns whether the given set of divisors are valid for a given refclk with 579 * the given connectors. 580 */ 581 static bool intel_pll_is_valid(struct intel_display *display, 582 const struct intel_limit *limit, 583 const struct dpll *clock) 584 { 585 if (clock->n < limit->n.min || limit->n.max < clock->n) 586 return false; 587 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 588 return false; 589 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 590 return false; 591 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 592 return false; 593 594 if (!display->platform.pineview && 595 !display->platform.valleyview && !display->platform.cherryview && 596 !display->platform.broxton && !display->platform.geminilake) 597 if (clock->m1 <= clock->m2) 598 return false; 599 600 if (!display->platform.valleyview && !display->platform.cherryview && 601 !display->platform.broxton && !display->platform.geminilake) { 602 if (clock->p < limit->p.min || limit->p.max < clock->p) 603 return false; 604 if (clock->m < limit->m.min || limit->m.max < clock->m) 605 return false; 606 } 607 608 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 609 return false; 610 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 611 * connector, etc., rather than just a single range. 612 */ 613 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 614 return false; 615 616 return true; 617 } 618 619 static int 620 i9xx_select_p2_div(const struct intel_limit *limit, 621 const struct intel_crtc_state *crtc_state, 622 int target) 623 { 624 struct intel_display *display = to_intel_display(crtc_state); 625 626 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 627 /* 628 * For LVDS just rely on its current settings for dual-channel. 629 * We haven't figured out how to reliably set up different 630 * single/dual channel state, if we even can. 631 */ 632 if (intel_is_dual_link_lvds(display)) 633 return limit->p2.p2_fast; 634 else 635 return limit->p2.p2_slow; 636 } else { 637 if (target < limit->p2.dot_limit) 638 return limit->p2.p2_slow; 639 else 640 return limit->p2.p2_fast; 641 } 642 } 643 644 /* 645 * Returns a set of divisors for the desired target clock with the given 646 * refclk, or FALSE. 647 * 648 * Target and reference clocks are specified in kHz. 649 * 650 * If match_clock is provided, then best_clock P divider must match the P 651 * divider from @match_clock used for LVDS downclocking. 652 */ 653 static bool 654 i9xx_find_best_dpll(const struct intel_limit *limit, 655 struct intel_crtc_state *crtc_state, 656 int target, int refclk, 657 const struct dpll *match_clock, 658 struct dpll *best_clock) 659 { 660 struct intel_display *display = to_intel_display(crtc_state); 661 struct dpll clock; 662 int err = target; 663 664 memset(best_clock, 0, sizeof(*best_clock)); 665 666 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 667 668 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 669 clock.m1++) { 670 for (clock.m2 = limit->m2.min; 671 clock.m2 <= limit->m2.max; clock.m2++) { 672 if (clock.m2 >= clock.m1) 673 break; 674 for (clock.n = limit->n.min; 675 clock.n <= limit->n.max; clock.n++) { 676 for (clock.p1 = limit->p1.min; 677 clock.p1 <= limit->p1.max; clock.p1++) { 678 int this_err; 679 680 i9xx_calc_dpll_params(refclk, &clock); 681 if (!intel_pll_is_valid(display, 682 limit, 683 &clock)) 684 continue; 685 if (match_clock && 686 clock.p != match_clock->p) 687 continue; 688 689 this_err = abs(clock.dot - target); 690 if (this_err < err) { 691 *best_clock = clock; 692 err = this_err; 693 } 694 } 695 } 696 } 697 } 698 699 return (err != target); 700 } 701 702 /* 703 * Returns a set of divisors for the desired target clock with the given 704 * refclk, or FALSE. 705 * 706 * Target and reference clocks are specified in kHz. 707 * 708 * If match_clock is provided, then best_clock P divider must match the P 709 * divider from @match_clock used for LVDS downclocking. 710 */ 711 static bool 712 pnv_find_best_dpll(const struct intel_limit *limit, 713 struct intel_crtc_state *crtc_state, 714 int target, int refclk, 715 const struct dpll *match_clock, 716 struct dpll *best_clock) 717 { 718 struct intel_display *display = to_intel_display(crtc_state); 719 struct dpll clock; 720 int err = target; 721 722 memset(best_clock, 0, sizeof(*best_clock)); 723 724 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 725 726 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 727 clock.m1++) { 728 for (clock.m2 = limit->m2.min; 729 clock.m2 <= limit->m2.max; clock.m2++) { 730 for (clock.n = limit->n.min; 731 clock.n <= limit->n.max; clock.n++) { 732 for (clock.p1 = limit->p1.min; 733 clock.p1 <= limit->p1.max; clock.p1++) { 734 int this_err; 735 736 pnv_calc_dpll_params(refclk, &clock); 737 if (!intel_pll_is_valid(display, 738 limit, 739 &clock)) 740 continue; 741 if (match_clock && 742 clock.p != match_clock->p) 743 continue; 744 745 this_err = abs(clock.dot - target); 746 if (this_err < err) { 747 *best_clock = clock; 748 err = this_err; 749 } 750 } 751 } 752 } 753 } 754 755 return (err != target); 756 } 757 758 /* 759 * Returns a set of divisors for the desired target clock with the given 760 * refclk, or FALSE. 761 * 762 * Target and reference clocks are specified in kHz. 763 * 764 * If match_clock is provided, then best_clock P divider must match the P 765 * divider from @match_clock used for LVDS downclocking. 766 */ 767 static bool 768 g4x_find_best_dpll(const struct intel_limit *limit, 769 struct intel_crtc_state *crtc_state, 770 int target, int refclk, 771 const struct dpll *match_clock, 772 struct dpll *best_clock) 773 { 774 struct intel_display *display = to_intel_display(crtc_state); 775 struct dpll clock; 776 int max_n; 777 bool found = false; 778 /* approximately equals target * 0.00585 */ 779 int err_most = (target >> 8) + (target >> 9); 780 781 memset(best_clock, 0, sizeof(*best_clock)); 782 783 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 784 785 max_n = limit->n.max; 786 /* based on hardware requirement, prefer smaller n to precision */ 787 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 788 /* based on hardware requirement, prefer larger m1,m2 */ 789 for (clock.m1 = limit->m1.max; 790 clock.m1 >= limit->m1.min; clock.m1--) { 791 for (clock.m2 = limit->m2.max; 792 clock.m2 >= limit->m2.min; clock.m2--) { 793 for (clock.p1 = limit->p1.max; 794 clock.p1 >= limit->p1.min; clock.p1--) { 795 int this_err; 796 797 i9xx_calc_dpll_params(refclk, &clock); 798 if (!intel_pll_is_valid(display, 799 limit, 800 &clock)) 801 continue; 802 803 this_err = abs(clock.dot - target); 804 if (this_err < err_most) { 805 *best_clock = clock; 806 err_most = this_err; 807 max_n = clock.n; 808 found = true; 809 } 810 } 811 } 812 } 813 } 814 return found; 815 } 816 817 /* 818 * Check if the calculated PLL configuration is more optimal compared to the 819 * best configuration and error found so far. Return the calculated error. 820 */ 821 static bool vlv_PLL_is_optimal(struct intel_display *display, int target_freq, 822 const struct dpll *calculated_clock, 823 const struct dpll *best_clock, 824 unsigned int best_error_ppm, 825 unsigned int *error_ppm) 826 { 827 /* 828 * For CHV ignore the error and consider only the P value. 829 * Prefer a bigger P value based on HW requirements. 830 */ 831 if (display->platform.cherryview) { 832 *error_ppm = 0; 833 834 return calculated_clock->p > best_clock->p; 835 } 836 837 if (drm_WARN_ON_ONCE(display->drm, !target_freq)) 838 return false; 839 840 *error_ppm = div_u64(1000000ULL * 841 abs(target_freq - calculated_clock->dot), 842 target_freq); 843 /* 844 * Prefer a better P value over a better (smaller) error if the error 845 * is small. Ensure this preference for future configurations too by 846 * setting the error to 0. 847 */ 848 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 849 *error_ppm = 0; 850 851 return true; 852 } 853 854 return *error_ppm + 10 < best_error_ppm; 855 } 856 857 /* 858 * Returns a set of divisors for the desired target clock with the given 859 * refclk, or FALSE. 860 */ 861 static bool 862 vlv_find_best_dpll(const struct intel_limit *limit, 863 struct intel_crtc_state *crtc_state, 864 int target, int refclk, 865 const struct dpll *match_clock, 866 struct dpll *best_clock) 867 { 868 struct intel_display *display = to_intel_display(crtc_state); 869 struct dpll clock; 870 unsigned int bestppm = 1000000; 871 /* min update 19.2 MHz */ 872 int max_n = min(limit->n.max, refclk / 19200); 873 bool found = false; 874 875 memset(best_clock, 0, sizeof(*best_clock)); 876 877 /* based on hardware requirement, prefer smaller n to precision */ 878 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 879 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 880 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 881 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 882 clock.p = clock.p1 * clock.p2 * 5; 883 /* based on hardware requirement, prefer bigger m1,m2 values */ 884 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 885 unsigned int ppm; 886 887 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 888 refclk * clock.m1); 889 890 vlv_calc_dpll_params(refclk, &clock); 891 892 if (!intel_pll_is_valid(display, 893 limit, 894 &clock)) 895 continue; 896 897 if (!vlv_PLL_is_optimal(display, target, 898 &clock, 899 best_clock, 900 bestppm, &ppm)) 901 continue; 902 903 *best_clock = clock; 904 bestppm = ppm; 905 found = true; 906 } 907 } 908 } 909 } 910 911 return found; 912 } 913 914 /* 915 * Returns a set of divisors for the desired target clock with the given 916 * refclk, or FALSE. 917 */ 918 static bool 919 chv_find_best_dpll(const struct intel_limit *limit, 920 struct intel_crtc_state *crtc_state, 921 int target, int refclk, 922 const struct dpll *match_clock, 923 struct dpll *best_clock) 924 { 925 struct intel_display *display = to_intel_display(crtc_state); 926 unsigned int best_error_ppm; 927 struct dpll clock; 928 u64 m2; 929 int found = false; 930 931 memset(best_clock, 0, sizeof(*best_clock)); 932 best_error_ppm = 1000000; 933 934 /* 935 * Based on hardware doc, the n always set to 1, and m1 always 936 * set to 2. If requires to support 200Mhz refclk, we need to 937 * revisit this because n may not 1 anymore. 938 */ 939 clock.n = 1; 940 clock.m1 = 2; 941 942 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 943 for (clock.p2 = limit->p2.p2_fast; 944 clock.p2 >= limit->p2.p2_slow; 945 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 946 unsigned int error_ppm; 947 948 clock.p = clock.p1 * clock.p2 * 5; 949 950 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 951 refclk * clock.m1); 952 953 if (m2 > INT_MAX/clock.m1) 954 continue; 955 956 clock.m2 = m2; 957 958 chv_calc_dpll_params(refclk, &clock); 959 960 if (!intel_pll_is_valid(display, limit, &clock)) 961 continue; 962 963 if (!vlv_PLL_is_optimal(display, target, &clock, best_clock, 964 best_error_ppm, &error_ppm)) 965 continue; 966 967 *best_clock = clock; 968 best_error_ppm = error_ppm; 969 found = true; 970 } 971 } 972 973 return found; 974 } 975 976 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 977 struct dpll *best_clock) 978 { 979 const struct intel_limit *limit = &intel_limits_bxt; 980 int refclk = 100000; 981 982 return chv_find_best_dpll(limit, crtc_state, 983 crtc_state->port_clock, refclk, 984 NULL, best_clock); 985 } 986 987 u32 i9xx_dpll_compute_fp(const struct dpll *dpll) 988 { 989 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 990 } 991 992 static u32 pnv_dpll_compute_fp(const struct dpll *dpll) 993 { 994 return (1 << dpll->n) << 16 | dpll->m2; 995 } 996 997 static u32 i965_dpll_md(const struct intel_crtc_state *crtc_state) 998 { 999 return (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 1000 } 1001 1002 static u32 i9xx_dpll(const struct intel_crtc_state *crtc_state, 1003 const struct dpll *clock, 1004 const struct dpll *reduced_clock) 1005 { 1006 struct intel_display *display = to_intel_display(crtc_state); 1007 u32 dpll; 1008 1009 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS; 1010 1011 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 1012 dpll |= DPLLB_MODE_LVDS; 1013 else 1014 dpll |= DPLLB_MODE_DAC_SERIAL; 1015 1016 if (display->platform.i945g || display->platform.i945gm || 1017 display->platform.g33 || display->platform.pineview) { 1018 dpll |= (crtc_state->pixel_multiplier - 1) 1019 << SDVO_MULTIPLIER_SHIFT_HIRES; 1020 } 1021 1022 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 1023 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1024 dpll |= DPLL_SDVO_HIGH_SPEED; 1025 1026 if (intel_crtc_has_dp_encoder(crtc_state)) 1027 dpll |= DPLL_SDVO_HIGH_SPEED; 1028 1029 /* compute bitmask from p1 value */ 1030 if (display->platform.g4x) { 1031 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1032 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 1033 } else if (display->platform.pineview) { 1034 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 1035 WARN_ON(reduced_clock->p1 != clock->p1); 1036 } else { 1037 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1038 WARN_ON(reduced_clock->p1 != clock->p1); 1039 } 1040 1041 switch (clock->p2) { 1042 case 5: 1043 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 1044 break; 1045 case 7: 1046 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 1047 break; 1048 case 10: 1049 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 1050 break; 1051 case 14: 1052 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 1053 break; 1054 } 1055 WARN_ON(reduced_clock->p2 != clock->p2); 1056 1057 if (DISPLAY_VER(display) >= 4) 1058 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 1059 1060 if (crtc_state->sdvo_tv_clock) 1061 dpll |= PLL_REF_INPUT_TVCLKINBC; 1062 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1063 intel_panel_use_ssc(display)) 1064 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1065 else 1066 dpll |= PLL_REF_INPUT_DREFCLK; 1067 1068 return dpll; 1069 } 1070 1071 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state, 1072 const struct dpll *clock, 1073 const struct dpll *reduced_clock) 1074 { 1075 struct intel_display *display = to_intel_display(crtc_state); 1076 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1077 1078 if (display->platform.pineview) { 1079 hw_state->fp0 = pnv_dpll_compute_fp(clock); 1080 hw_state->fp1 = pnv_dpll_compute_fp(reduced_clock); 1081 } else { 1082 hw_state->fp0 = i9xx_dpll_compute_fp(clock); 1083 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock); 1084 } 1085 1086 hw_state->dpll = i9xx_dpll(crtc_state, clock, reduced_clock); 1087 1088 if (DISPLAY_VER(display) >= 4) 1089 hw_state->dpll_md = i965_dpll_md(crtc_state); 1090 } 1091 1092 static u32 i8xx_dpll(const struct intel_crtc_state *crtc_state, 1093 const struct dpll *clock, 1094 const struct dpll *reduced_clock) 1095 { 1096 struct intel_display *display = to_intel_display(crtc_state); 1097 u32 dpll; 1098 1099 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS; 1100 1101 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1102 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1103 } else { 1104 if (clock->p1 == 2) 1105 dpll |= PLL_P1_DIVIDE_BY_TWO; 1106 else 1107 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1108 if (clock->p2 == 4) 1109 dpll |= PLL_P2_DIVIDE_BY_4; 1110 } 1111 WARN_ON(reduced_clock->p1 != clock->p1); 1112 WARN_ON(reduced_clock->p2 != clock->p2); 1113 1114 /* 1115 * Bspec: 1116 * "[Almador Errata}: For the correct operation of the muxed DVO pins 1117 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 1118 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 1119 * Enable) must be set to “1” in both the DPLL A Control Register 1120 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 1121 * 1122 * For simplicity We simply keep both bits always enabled in 1123 * both DPLLS. The spec says we should disable the DVO 2X clock 1124 * when not needed, but this seems to work fine in practice. 1125 */ 1126 if (display->platform.i830 || 1127 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 1128 dpll |= DPLL_DVO_2X_MODE; 1129 1130 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1131 intel_panel_use_ssc(display)) 1132 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1133 else 1134 dpll |= PLL_REF_INPUT_DREFCLK; 1135 1136 return dpll; 1137 } 1138 1139 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state, 1140 const struct dpll *clock, 1141 const struct dpll *reduced_clock) 1142 { 1143 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1144 1145 hw_state->fp0 = i9xx_dpll_compute_fp(clock); 1146 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock); 1147 1148 hw_state->dpll = i8xx_dpll(crtc_state, clock, reduced_clock); 1149 } 1150 1151 static int hsw_crtc_compute_clock(struct intel_atomic_state *state, 1152 struct intel_crtc *crtc) 1153 { 1154 struct intel_display *display = to_intel_display(state); 1155 struct intel_crtc_state *crtc_state = 1156 intel_atomic_get_new_crtc_state(state, crtc); 1157 struct intel_encoder *encoder = 1158 intel_get_crtc_new_encoder(state, crtc_state); 1159 int ret; 1160 1161 if (DISPLAY_VER(display) < 11 && 1162 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1163 return 0; 1164 1165 ret = intel_dpll_compute(state, crtc, encoder); 1166 if (ret) 1167 return ret; 1168 1169 /* FIXME this is a mess */ 1170 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1171 return 0; 1172 1173 /* CRT dotclock is determined via other means */ 1174 if (!crtc_state->has_pch_encoder) 1175 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1176 1177 return 0; 1178 } 1179 1180 static int hsw_crtc_get_dpll(struct intel_atomic_state *state, 1181 struct intel_crtc *crtc) 1182 { 1183 struct intel_display *display = to_intel_display(state); 1184 struct intel_crtc_state *crtc_state = 1185 intel_atomic_get_new_crtc_state(state, crtc); 1186 struct intel_encoder *encoder = 1187 intel_get_crtc_new_encoder(state, crtc_state); 1188 1189 if (DISPLAY_VER(display) < 11 && 1190 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1191 return 0; 1192 1193 return intel_dpll_reserve(state, crtc, encoder); 1194 } 1195 1196 static int dg2_crtc_compute_clock(struct intel_atomic_state *state, 1197 struct intel_crtc *crtc) 1198 { 1199 struct intel_crtc_state *crtc_state = 1200 intel_atomic_get_new_crtc_state(state, crtc); 1201 struct intel_encoder *encoder = 1202 intel_get_crtc_new_encoder(state, crtc_state); 1203 int ret; 1204 1205 ret = intel_mpllb_calc_state(crtc_state, encoder); 1206 if (ret) 1207 return ret; 1208 1209 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1210 1211 return 0; 1212 } 1213 1214 static int mtl_crtc_compute_clock(struct intel_atomic_state *state, 1215 struct intel_crtc *crtc) 1216 { 1217 struct intel_crtc_state *crtc_state = 1218 intel_atomic_get_new_crtc_state(state, crtc); 1219 struct intel_encoder *encoder = 1220 intel_get_crtc_new_encoder(state, crtc_state); 1221 int ret; 1222 1223 ret = intel_cx0pll_calc_state(crtc_state, encoder); 1224 if (ret) 1225 return ret; 1226 1227 /* TODO: Do the readback via intel_dpll_compute() */ 1228 crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->dpll_hw_state.cx0pll); 1229 1230 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1231 1232 return 0; 1233 } 1234 1235 static int ilk_fb_cb_factor(const struct intel_crtc_state *crtc_state) 1236 { 1237 struct intel_display *display = to_intel_display(crtc_state); 1238 1239 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1240 ((intel_panel_use_ssc(display) && display->vbt.lvds_ssc_freq == 100000) || 1241 (HAS_PCH_IBX(display) && intel_is_dual_link_lvds(display)))) 1242 return 25; 1243 1244 if (crtc_state->sdvo_tv_clock) 1245 return 20; 1246 1247 return 21; 1248 } 1249 1250 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor) 1251 { 1252 return dpll->m < factor * dpll->n; 1253 } 1254 1255 static u32 ilk_dpll_compute_fp(const struct dpll *clock, int factor) 1256 { 1257 u32 fp; 1258 1259 fp = i9xx_dpll_compute_fp(clock); 1260 if (ilk_needs_fb_cb_tune(clock, factor)) 1261 fp |= FP_CB_TUNE; 1262 1263 return fp; 1264 } 1265 1266 static u32 ilk_dpll(const struct intel_crtc_state *crtc_state, 1267 const struct dpll *clock, 1268 const struct dpll *reduced_clock) 1269 { 1270 struct intel_display *display = to_intel_display(crtc_state); 1271 u32 dpll; 1272 1273 dpll = DPLL_VCO_ENABLE; 1274 1275 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 1276 dpll |= DPLLB_MODE_LVDS; 1277 else 1278 dpll |= DPLLB_MODE_DAC_SERIAL; 1279 1280 dpll |= (crtc_state->pixel_multiplier - 1) 1281 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 1282 1283 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 1284 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1285 dpll |= DPLL_SDVO_HIGH_SPEED; 1286 1287 if (intel_crtc_has_dp_encoder(crtc_state)) 1288 dpll |= DPLL_SDVO_HIGH_SPEED; 1289 1290 /* 1291 * The high speed IO clock is only really required for 1292 * SDVO/HDMI/DP, but we also enable it for CRT to make it 1293 * possible to share the DPLL between CRT and HDMI. Enabling 1294 * the clock needlessly does no real harm, except use up a 1295 * bit of power potentially. 1296 * 1297 * We'll limit this to IVB with 3 pipes, since it has only two 1298 * DPLLs and so DPLL sharing is the only way to get three pipes 1299 * driving PCH ports at the same time. On SNB we could do this, 1300 * and potentially avoid enabling the second DPLL, but it's not 1301 * clear if it''s a win or loss power wise. No point in doing 1302 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 1303 */ 1304 if (INTEL_NUM_PIPES(display) == 3 && 1305 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 1306 dpll |= DPLL_SDVO_HIGH_SPEED; 1307 1308 /* compute bitmask from p1 value */ 1309 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1310 /* also FPA1 */ 1311 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 1312 1313 switch (clock->p2) { 1314 case 5: 1315 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 1316 break; 1317 case 7: 1318 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 1319 break; 1320 case 10: 1321 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 1322 break; 1323 case 14: 1324 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 1325 break; 1326 } 1327 WARN_ON(reduced_clock->p2 != clock->p2); 1328 1329 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1330 intel_panel_use_ssc(display)) 1331 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1332 else 1333 dpll |= PLL_REF_INPUT_DREFCLK; 1334 1335 return dpll; 1336 } 1337 1338 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state, 1339 const struct dpll *clock, 1340 const struct dpll *reduced_clock) 1341 { 1342 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1343 int factor = ilk_fb_cb_factor(crtc_state); 1344 1345 hw_state->fp0 = ilk_dpll_compute_fp(clock, factor); 1346 hw_state->fp1 = ilk_dpll_compute_fp(reduced_clock, factor); 1347 1348 hw_state->dpll = ilk_dpll(crtc_state, clock, reduced_clock); 1349 } 1350 1351 static int ilk_crtc_compute_clock(struct intel_atomic_state *state, 1352 struct intel_crtc *crtc) 1353 { 1354 struct intel_display *display = to_intel_display(state); 1355 struct intel_crtc_state *crtc_state = 1356 intel_atomic_get_new_crtc_state(state, crtc); 1357 const struct intel_limit *limit; 1358 int refclk = 120000; 1359 int ret; 1360 1361 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 1362 if (!crtc_state->has_pch_encoder) 1363 return 0; 1364 1365 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1366 if (intel_panel_use_ssc(display)) { 1367 drm_dbg_kms(display->drm, 1368 "using SSC reference clock of %d kHz\n", 1369 display->vbt.lvds_ssc_freq); 1370 refclk = display->vbt.lvds_ssc_freq; 1371 } 1372 1373 if (intel_is_dual_link_lvds(display)) { 1374 if (refclk == 100000) 1375 limit = &ilk_limits_dual_lvds_100m; 1376 else 1377 limit = &ilk_limits_dual_lvds; 1378 } else { 1379 if (refclk == 100000) 1380 limit = &ilk_limits_single_lvds_100m; 1381 else 1382 limit = &ilk_limits_single_lvds; 1383 } 1384 } else { 1385 limit = &ilk_limits_dac; 1386 } 1387 1388 if (!crtc_state->clock_set && 1389 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1390 refclk, NULL, &crtc_state->dpll)) 1391 return -EINVAL; 1392 1393 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1394 1395 ilk_compute_dpll(crtc_state, &crtc_state->dpll, 1396 &crtc_state->dpll); 1397 1398 ret = intel_dpll_compute(state, crtc, NULL); 1399 if (ret) 1400 return ret; 1401 1402 crtc_state->port_clock = crtc_state->dpll.dot; 1403 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1404 1405 return ret; 1406 } 1407 1408 static int ilk_crtc_get_dpll(struct intel_atomic_state *state, 1409 struct intel_crtc *crtc) 1410 { 1411 struct intel_crtc_state *crtc_state = 1412 intel_atomic_get_new_crtc_state(state, crtc); 1413 1414 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 1415 if (!crtc_state->has_pch_encoder) 1416 return 0; 1417 1418 return intel_dpll_reserve(state, crtc, NULL); 1419 } 1420 1421 static u32 vlv_dpll(const struct intel_crtc_state *crtc_state) 1422 { 1423 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1424 u32 dpll; 1425 1426 dpll = DPLL_INTEGRATED_REF_CLK_VLV | 1427 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1428 1429 if (crtc->pipe != PIPE_A) 1430 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 1431 1432 /* DPLL not used with DSI, but still need the rest set up */ 1433 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1434 dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV; 1435 1436 return dpll; 1437 } 1438 1439 void vlv_compute_dpll(struct intel_crtc_state *crtc_state) 1440 { 1441 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1442 1443 hw_state->dpll = vlv_dpll(crtc_state); 1444 hw_state->dpll_md = i965_dpll_md(crtc_state); 1445 } 1446 1447 static u32 chv_dpll(const struct intel_crtc_state *crtc_state) 1448 { 1449 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1450 u32 dpll; 1451 1452 dpll = DPLL_SSC_REF_CLK_CHV | 1453 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1454 1455 if (crtc->pipe != PIPE_A) 1456 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 1457 1458 /* DPLL not used with DSI, but still need the rest set up */ 1459 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1460 dpll |= DPLL_VCO_ENABLE; 1461 1462 return dpll; 1463 } 1464 1465 void chv_compute_dpll(struct intel_crtc_state *crtc_state) 1466 { 1467 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1468 1469 hw_state->dpll = chv_dpll(crtc_state); 1470 hw_state->dpll_md = i965_dpll_md(crtc_state); 1471 } 1472 1473 static int chv_crtc_compute_clock(struct intel_atomic_state *state, 1474 struct intel_crtc *crtc) 1475 { 1476 struct intel_crtc_state *crtc_state = 1477 intel_atomic_get_new_crtc_state(state, crtc); 1478 const struct intel_limit *limit = &intel_limits_chv; 1479 int refclk = 100000; 1480 1481 if (!crtc_state->clock_set && 1482 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1483 refclk, NULL, &crtc_state->dpll)) 1484 return -EINVAL; 1485 1486 chv_calc_dpll_params(refclk, &crtc_state->dpll); 1487 1488 chv_compute_dpll(crtc_state); 1489 1490 /* FIXME this is a mess */ 1491 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1492 return 0; 1493 1494 crtc_state->port_clock = crtc_state->dpll.dot; 1495 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1496 1497 return 0; 1498 } 1499 1500 static int vlv_crtc_compute_clock(struct intel_atomic_state *state, 1501 struct intel_crtc *crtc) 1502 { 1503 struct intel_crtc_state *crtc_state = 1504 intel_atomic_get_new_crtc_state(state, crtc); 1505 const struct intel_limit *limit = &intel_limits_vlv; 1506 int refclk = 100000; 1507 1508 if (!crtc_state->clock_set && 1509 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1510 refclk, NULL, &crtc_state->dpll)) 1511 return -EINVAL; 1512 1513 vlv_calc_dpll_params(refclk, &crtc_state->dpll); 1514 1515 vlv_compute_dpll(crtc_state); 1516 1517 /* FIXME this is a mess */ 1518 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1519 return 0; 1520 1521 crtc_state->port_clock = crtc_state->dpll.dot; 1522 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1523 1524 return 0; 1525 } 1526 1527 static int g4x_crtc_compute_clock(struct intel_atomic_state *state, 1528 struct intel_crtc *crtc) 1529 { 1530 struct intel_display *display = to_intel_display(state); 1531 struct intel_crtc_state *crtc_state = 1532 intel_atomic_get_new_crtc_state(state, crtc); 1533 const struct intel_limit *limit; 1534 int refclk = 96000; 1535 1536 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1537 if (intel_panel_use_ssc(display)) { 1538 refclk = display->vbt.lvds_ssc_freq; 1539 drm_dbg_kms(display->drm, 1540 "using SSC reference clock of %d kHz\n", 1541 refclk); 1542 } 1543 1544 if (intel_is_dual_link_lvds(display)) 1545 limit = &intel_limits_g4x_dual_channel_lvds; 1546 else 1547 limit = &intel_limits_g4x_single_channel_lvds; 1548 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 1549 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 1550 limit = &intel_limits_g4x_hdmi; 1551 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 1552 limit = &intel_limits_g4x_sdvo; 1553 } else { 1554 /* The option is for other outputs */ 1555 limit = &intel_limits_i9xx_sdvo; 1556 } 1557 1558 if (!crtc_state->clock_set && 1559 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1560 refclk, NULL, &crtc_state->dpll)) 1561 return -EINVAL; 1562 1563 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1564 1565 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1566 &crtc_state->dpll); 1567 1568 crtc_state->port_clock = crtc_state->dpll.dot; 1569 /* FIXME this is a mess */ 1570 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT)) 1571 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1572 1573 return 0; 1574 } 1575 1576 static int pnv_crtc_compute_clock(struct intel_atomic_state *state, 1577 struct intel_crtc *crtc) 1578 { 1579 struct intel_display *display = to_intel_display(state); 1580 struct intel_crtc_state *crtc_state = 1581 intel_atomic_get_new_crtc_state(state, crtc); 1582 const struct intel_limit *limit; 1583 int refclk = 96000; 1584 1585 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1586 if (intel_panel_use_ssc(display)) { 1587 refclk = display->vbt.lvds_ssc_freq; 1588 drm_dbg_kms(display->drm, 1589 "using SSC reference clock of %d kHz\n", 1590 refclk); 1591 } 1592 1593 limit = &pnv_limits_lvds; 1594 } else { 1595 limit = &pnv_limits_sdvo; 1596 } 1597 1598 if (!crtc_state->clock_set && 1599 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1600 refclk, NULL, &crtc_state->dpll)) 1601 return -EINVAL; 1602 1603 pnv_calc_dpll_params(refclk, &crtc_state->dpll); 1604 1605 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1606 &crtc_state->dpll); 1607 1608 crtc_state->port_clock = crtc_state->dpll.dot; 1609 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1610 1611 return 0; 1612 } 1613 1614 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state, 1615 struct intel_crtc *crtc) 1616 { 1617 struct intel_display *display = to_intel_display(state); 1618 struct intel_crtc_state *crtc_state = 1619 intel_atomic_get_new_crtc_state(state, crtc); 1620 const struct intel_limit *limit; 1621 int refclk = 96000; 1622 1623 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1624 if (intel_panel_use_ssc(display)) { 1625 refclk = display->vbt.lvds_ssc_freq; 1626 drm_dbg_kms(display->drm, 1627 "using SSC reference clock of %d kHz\n", 1628 refclk); 1629 } 1630 1631 limit = &intel_limits_i9xx_lvds; 1632 } else { 1633 limit = &intel_limits_i9xx_sdvo; 1634 } 1635 1636 if (!crtc_state->clock_set && 1637 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1638 refclk, NULL, &crtc_state->dpll)) 1639 return -EINVAL; 1640 1641 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1642 1643 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1644 &crtc_state->dpll); 1645 1646 crtc_state->port_clock = crtc_state->dpll.dot; 1647 /* FIXME this is a mess */ 1648 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT)) 1649 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1650 1651 return 0; 1652 } 1653 1654 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state, 1655 struct intel_crtc *crtc) 1656 { 1657 struct intel_display *display = to_intel_display(state); 1658 struct intel_crtc_state *crtc_state = 1659 intel_atomic_get_new_crtc_state(state, crtc); 1660 const struct intel_limit *limit; 1661 int refclk = 48000; 1662 1663 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1664 if (intel_panel_use_ssc(display)) { 1665 refclk = display->vbt.lvds_ssc_freq; 1666 drm_dbg_kms(display->drm, 1667 "using SSC reference clock of %d kHz\n", 1668 refclk); 1669 } 1670 1671 limit = &intel_limits_i8xx_lvds; 1672 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 1673 limit = &intel_limits_i8xx_dvo; 1674 } else { 1675 limit = &intel_limits_i8xx_dac; 1676 } 1677 1678 if (!crtc_state->clock_set && 1679 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1680 refclk, NULL, &crtc_state->dpll)) 1681 return -EINVAL; 1682 1683 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1684 1685 i8xx_compute_dpll(crtc_state, &crtc_state->dpll, 1686 &crtc_state->dpll); 1687 1688 crtc_state->port_clock = crtc_state->dpll.dot; 1689 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1690 1691 return 0; 1692 } 1693 1694 static const struct intel_dpll_global_funcs mtl_dpll_funcs = { 1695 .crtc_compute_clock = mtl_crtc_compute_clock, 1696 }; 1697 1698 static const struct intel_dpll_global_funcs dg2_dpll_funcs = { 1699 .crtc_compute_clock = dg2_crtc_compute_clock, 1700 }; 1701 1702 static const struct intel_dpll_global_funcs hsw_dpll_funcs = { 1703 .crtc_compute_clock = hsw_crtc_compute_clock, 1704 .crtc_get_dpll = hsw_crtc_get_dpll, 1705 }; 1706 1707 static const struct intel_dpll_global_funcs ilk_dpll_funcs = { 1708 .crtc_compute_clock = ilk_crtc_compute_clock, 1709 .crtc_get_dpll = ilk_crtc_get_dpll, 1710 }; 1711 1712 static const struct intel_dpll_global_funcs chv_dpll_funcs = { 1713 .crtc_compute_clock = chv_crtc_compute_clock, 1714 }; 1715 1716 static const struct intel_dpll_global_funcs vlv_dpll_funcs = { 1717 .crtc_compute_clock = vlv_crtc_compute_clock, 1718 }; 1719 1720 static const struct intel_dpll_global_funcs g4x_dpll_funcs = { 1721 .crtc_compute_clock = g4x_crtc_compute_clock, 1722 }; 1723 1724 static const struct intel_dpll_global_funcs pnv_dpll_funcs = { 1725 .crtc_compute_clock = pnv_crtc_compute_clock, 1726 }; 1727 1728 static const struct intel_dpll_global_funcs i9xx_dpll_funcs = { 1729 .crtc_compute_clock = i9xx_crtc_compute_clock, 1730 }; 1731 1732 static const struct intel_dpll_global_funcs i8xx_dpll_funcs = { 1733 .crtc_compute_clock = i8xx_crtc_compute_clock, 1734 }; 1735 1736 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state, 1737 struct intel_crtc *crtc) 1738 { 1739 struct intel_display *display = to_intel_display(state); 1740 struct intel_crtc_state *crtc_state = 1741 intel_atomic_get_new_crtc_state(state, crtc); 1742 int ret; 1743 1744 drm_WARN_ON(display->drm, !intel_crtc_needs_modeset(crtc_state)); 1745 1746 memset(&crtc_state->dpll_hw_state, 0, 1747 sizeof(crtc_state->dpll_hw_state)); 1748 1749 if (!crtc_state->hw.enable) 1750 return 0; 1751 1752 ret = display->funcs.dpll->crtc_compute_clock(state, crtc); 1753 if (ret) { 1754 drm_dbg_kms(display->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n", 1755 crtc->base.base.id, crtc->base.name); 1756 return ret; 1757 } 1758 1759 return 0; 1760 } 1761 1762 int intel_dpll_crtc_get_dpll(struct intel_atomic_state *state, 1763 struct intel_crtc *crtc) 1764 { 1765 struct intel_display *display = to_intel_display(state); 1766 struct intel_crtc_state *crtc_state = 1767 intel_atomic_get_new_crtc_state(state, crtc); 1768 int ret; 1769 1770 drm_WARN_ON(display->drm, !intel_crtc_needs_modeset(crtc_state)); 1771 drm_WARN_ON(display->drm, !crtc_state->hw.enable && crtc_state->intel_dpll); 1772 1773 if (!crtc_state->hw.enable || crtc_state->intel_dpll) 1774 return 0; 1775 1776 if (!display->funcs.dpll->crtc_get_dpll) 1777 return 0; 1778 1779 ret = display->funcs.dpll->crtc_get_dpll(state, crtc); 1780 if (ret) { 1781 drm_dbg_kms(display->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n", 1782 crtc->base.base.id, crtc->base.name); 1783 return ret; 1784 } 1785 1786 return 0; 1787 } 1788 1789 void 1790 intel_dpll_init_clock_hook(struct intel_display *display) 1791 { 1792 if (DISPLAY_VER(display) >= 14) 1793 display->funcs.dpll = &mtl_dpll_funcs; 1794 else if (display->platform.dg2) 1795 display->funcs.dpll = &dg2_dpll_funcs; 1796 else if (DISPLAY_VER(display) >= 9 || HAS_DDI(display)) 1797 display->funcs.dpll = &hsw_dpll_funcs; 1798 else if (HAS_PCH_SPLIT(display)) 1799 display->funcs.dpll = &ilk_dpll_funcs; 1800 else if (display->platform.cherryview) 1801 display->funcs.dpll = &chv_dpll_funcs; 1802 else if (display->platform.valleyview) 1803 display->funcs.dpll = &vlv_dpll_funcs; 1804 else if (display->platform.g4x) 1805 display->funcs.dpll = &g4x_dpll_funcs; 1806 else if (display->platform.pineview) 1807 display->funcs.dpll = &pnv_dpll_funcs; 1808 else if (DISPLAY_VER(display) != 2) 1809 display->funcs.dpll = &i9xx_dpll_funcs; 1810 else 1811 display->funcs.dpll = &i8xx_dpll_funcs; 1812 } 1813 1814 static bool i9xx_has_pps(struct intel_display *display) 1815 { 1816 if (display->platform.i830) 1817 return false; 1818 1819 return display->platform.pineview || display->platform.mobile; 1820 } 1821 1822 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state) 1823 { 1824 struct intel_display *display = to_intel_display(crtc_state); 1825 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1826 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1827 enum pipe pipe = crtc->pipe; 1828 int i; 1829 1830 assert_transcoder_disabled(display, crtc_state->cpu_transcoder); 1831 1832 /* PLL is protected by panel, make sure we can write it */ 1833 if (i9xx_has_pps(display)) 1834 assert_pps_unlocked(display, pipe); 1835 1836 intel_de_write(display, FP0(pipe), hw_state->fp0); 1837 intel_de_write(display, FP1(pipe), hw_state->fp1); 1838 1839 /* 1840 * Apparently we need to have VGA mode enabled prior to changing 1841 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1842 * dividers, even though the register value does change. 1843 */ 1844 intel_de_write(display, DPLL(display, pipe), 1845 hw_state->dpll & ~DPLL_VGA_MODE_DIS); 1846 intel_de_write(display, DPLL(display, pipe), hw_state->dpll); 1847 1848 /* Wait for the clocks to stabilize. */ 1849 intel_de_posting_read(display, DPLL(display, pipe)); 1850 udelay(150); 1851 1852 if (DISPLAY_VER(display) >= 4) { 1853 intel_de_write(display, DPLL_MD(display, pipe), 1854 hw_state->dpll_md); 1855 } else { 1856 /* The pixel multiplier can only be updated once the 1857 * DPLL is enabled and the clocks are stable. 1858 * 1859 * So write it again. 1860 */ 1861 intel_de_write(display, DPLL(display, pipe), hw_state->dpll); 1862 } 1863 1864 /* We do this three times for luck */ 1865 for (i = 0; i < 3; i++) { 1866 intel_de_write(display, DPLL(display, pipe), hw_state->dpll); 1867 intel_de_posting_read(display, DPLL(display, pipe)); 1868 udelay(150); /* wait for warmup */ 1869 } 1870 } 1871 1872 static void vlv_pllb_recal_opamp(struct intel_display *display, 1873 enum dpio_phy phy, enum dpio_channel ch) 1874 { 1875 u32 tmp; 1876 1877 /* 1878 * PLLB opamp always calibrates to max value of 0x3f, force enable it 1879 * and set it to a reasonable value instead. 1880 */ 1881 tmp = vlv_dpio_read(display->drm, phy, VLV_PLL_DW17(ch)); 1882 tmp &= 0xffffff00; 1883 tmp |= 0x00000030; 1884 vlv_dpio_write(display->drm, phy, VLV_PLL_DW17(ch), tmp); 1885 1886 tmp = vlv_dpio_read(display->drm, phy, VLV_REF_DW11); 1887 tmp &= 0x00ffffff; 1888 tmp |= 0x8c000000; 1889 vlv_dpio_write(display->drm, phy, VLV_REF_DW11, tmp); 1890 1891 tmp = vlv_dpio_read(display->drm, phy, VLV_PLL_DW17(ch)); 1892 tmp &= 0xffffff00; 1893 vlv_dpio_write(display->drm, phy, VLV_PLL_DW17(ch), tmp); 1894 1895 tmp = vlv_dpio_read(display->drm, phy, VLV_REF_DW11); 1896 tmp &= 0x00ffffff; 1897 tmp |= 0xb0000000; 1898 vlv_dpio_write(display->drm, phy, VLV_REF_DW11, tmp); 1899 } 1900 1901 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state) 1902 { 1903 struct intel_display *display = to_intel_display(crtc_state); 1904 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1905 const struct dpll *clock = &crtc_state->dpll; 1906 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 1907 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 1908 enum pipe pipe = crtc->pipe; 1909 u32 tmp, coreclk; 1910 1911 vlv_dpio_get(display->drm); 1912 1913 /* See eDP HDMI DPIO driver vbios notes doc */ 1914 1915 /* PLL B needs special handling */ 1916 if (pipe == PIPE_B) 1917 vlv_pllb_recal_opamp(display, phy, ch); 1918 1919 /* Set up Tx target for periodic Rcomp update */ 1920 vlv_dpio_write(display->drm, phy, VLV_PCS_DW17_BCAST, 0x0100000f); 1921 1922 /* Disable target IRef on PLL */ 1923 tmp = vlv_dpio_read(display->drm, phy, VLV_PLL_DW16(ch)); 1924 tmp &= 0x00ffffff; 1925 vlv_dpio_write(display->drm, phy, VLV_PLL_DW16(ch), tmp); 1926 1927 /* Disable fast lock */ 1928 vlv_dpio_write(display->drm, phy, VLV_CMN_DW0, 0x610); 1929 1930 /* Set idtafcrecal before PLL is enabled */ 1931 tmp = DPIO_M1_DIV(clock->m1) | 1932 DPIO_M2_DIV(clock->m2) | 1933 DPIO_P1_DIV(clock->p1) | 1934 DPIO_P2_DIV(clock->p2) | 1935 DPIO_N_DIV(clock->n) | 1936 DPIO_K_DIV(1); 1937 1938 /* 1939 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 1940 * but we don't support that). 1941 * Note: don't use the DAC post divider as it seems unstable. 1942 */ 1943 tmp |= DPIO_S1_DIV(DPIO_S1_DIV_HDMIDP); 1944 vlv_dpio_write(display->drm, phy, VLV_PLL_DW3(ch), tmp); 1945 1946 tmp |= DPIO_ENABLE_CALIBRATION; 1947 vlv_dpio_write(display->drm, phy, VLV_PLL_DW3(ch), tmp); 1948 1949 /* Set HBR and RBR LPF coefficients */ 1950 if (crtc_state->port_clock == 162000 || 1951 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) || 1952 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1953 vlv_dpio_write(display->drm, phy, VLV_PLL_DW18(ch), 0x009f0003); 1954 else 1955 vlv_dpio_write(display->drm, phy, VLV_PLL_DW18(ch), 0x00d0000f); 1956 1957 if (intel_crtc_has_dp_encoder(crtc_state)) { 1958 /* Use SSC source */ 1959 if (pipe == PIPE_A) 1960 vlv_dpio_write(display->drm, phy, VLV_PLL_DW5(ch), 0x0df40000); 1961 else 1962 vlv_dpio_write(display->drm, phy, VLV_PLL_DW5(ch), 0x0df70000); 1963 } else { /* HDMI or VGA */ 1964 /* Use bend source */ 1965 if (pipe == PIPE_A) 1966 vlv_dpio_write(display->drm, phy, VLV_PLL_DW5(ch), 0x0df70000); 1967 else 1968 vlv_dpio_write(display->drm, phy, VLV_PLL_DW5(ch), 0x0df40000); 1969 } 1970 1971 coreclk = vlv_dpio_read(display->drm, phy, VLV_PLL_DW7(ch)); 1972 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 1973 if (intel_crtc_has_dp_encoder(crtc_state)) 1974 coreclk |= 0x01000000; 1975 vlv_dpio_write(display->drm, phy, VLV_PLL_DW7(ch), coreclk); 1976 1977 vlv_dpio_write(display->drm, phy, VLV_PLL_DW19(ch), 0x87871000); 1978 1979 vlv_dpio_put(display->drm); 1980 } 1981 1982 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state) 1983 { 1984 struct intel_display *display = to_intel_display(crtc_state); 1985 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1986 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1987 enum pipe pipe = crtc->pipe; 1988 1989 intel_de_write(display, DPLL(display, pipe), hw_state->dpll); 1990 intel_de_posting_read(display, DPLL(display, pipe)); 1991 udelay(150); 1992 1993 if (intel_de_wait_for_set(display, DPLL(display, pipe), DPLL_LOCK_VLV, 1)) 1994 drm_err(display->drm, "DPLL %d failed to lock\n", pipe); 1995 } 1996 1997 void vlv_enable_pll(const struct intel_crtc_state *crtc_state) 1998 { 1999 struct intel_display *display = to_intel_display(crtc_state); 2000 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2001 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2002 enum pipe pipe = crtc->pipe; 2003 2004 assert_transcoder_disabled(display, crtc_state->cpu_transcoder); 2005 2006 /* PLL is protected by panel, make sure we can write it */ 2007 assert_pps_unlocked(display, pipe); 2008 2009 /* Enable Refclk */ 2010 intel_de_write(display, DPLL(display, pipe), 2011 hw_state->dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 2012 2013 if (hw_state->dpll & DPLL_VCO_ENABLE) { 2014 vlv_prepare_pll(crtc_state); 2015 _vlv_enable_pll(crtc_state); 2016 } 2017 2018 intel_de_write(display, DPLL_MD(display, pipe), hw_state->dpll_md); 2019 intel_de_posting_read(display, DPLL_MD(display, pipe)); 2020 } 2021 2022 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state) 2023 { 2024 struct intel_display *display = to_intel_display(crtc_state); 2025 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2026 const struct dpll *clock = &crtc_state->dpll; 2027 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 2028 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 2029 u32 tmp, loopfilter, tribuf_calcntr; 2030 u32 m2_frac; 2031 2032 m2_frac = clock->m2 & 0x3fffff; 2033 2034 vlv_dpio_get(display->drm); 2035 2036 /* p1 and p2 divider */ 2037 vlv_dpio_write(display->drm, phy, CHV_CMN_DW13(ch), 2038 DPIO_CHV_S1_DIV(5) | 2039 DPIO_CHV_P1_DIV(clock->p1) | 2040 DPIO_CHV_P2_DIV(clock->p2) | 2041 DPIO_CHV_K_DIV(1)); 2042 2043 /* Feedback post-divider - m2 */ 2044 vlv_dpio_write(display->drm, phy, CHV_PLL_DW0(ch), 2045 DPIO_CHV_M2_DIV(clock->m2 >> 22)); 2046 2047 /* Feedback refclk divider - n and m1 */ 2048 vlv_dpio_write(display->drm, phy, CHV_PLL_DW1(ch), 2049 DPIO_CHV_M1_DIV(DPIO_CHV_M1_DIV_BY_2) | 2050 DPIO_CHV_N_DIV(1)); 2051 2052 /* M2 fraction division */ 2053 vlv_dpio_write(display->drm, phy, CHV_PLL_DW2(ch), 2054 DPIO_CHV_M2_FRAC_DIV(m2_frac)); 2055 2056 /* M2 fraction division enable */ 2057 tmp = vlv_dpio_read(display->drm, phy, CHV_PLL_DW3(ch)); 2058 tmp &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 2059 tmp |= DPIO_CHV_FEEDFWD_GAIN(2); 2060 if (m2_frac) 2061 tmp |= DPIO_CHV_FRAC_DIV_EN; 2062 vlv_dpio_write(display->drm, phy, CHV_PLL_DW3(ch), tmp); 2063 2064 /* Program digital lock detect threshold */ 2065 tmp = vlv_dpio_read(display->drm, phy, CHV_PLL_DW9(ch)); 2066 tmp &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 2067 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 2068 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD(0x5); 2069 if (!m2_frac) 2070 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 2071 vlv_dpio_write(display->drm, phy, CHV_PLL_DW9(ch), tmp); 2072 2073 /* Loop filter */ 2074 if (clock->vco == 5400000) { 2075 loopfilter = DPIO_CHV_PROP_COEFF(0x3) | 2076 DPIO_CHV_INT_COEFF(0x8) | 2077 DPIO_CHV_GAIN_CTRL(0x1); 2078 tribuf_calcntr = 0x9; 2079 } else if (clock->vco <= 6200000) { 2080 loopfilter = DPIO_CHV_PROP_COEFF(0x5) | 2081 DPIO_CHV_INT_COEFF(0xB) | 2082 DPIO_CHV_GAIN_CTRL(0x3); 2083 tribuf_calcntr = 0x9; 2084 } else if (clock->vco <= 6480000) { 2085 loopfilter = DPIO_CHV_PROP_COEFF(0x4) | 2086 DPIO_CHV_INT_COEFF(0x9) | 2087 DPIO_CHV_GAIN_CTRL(0x3); 2088 tribuf_calcntr = 0x8; 2089 } else { 2090 /* Not supported. Apply the same limits as in the max case */ 2091 loopfilter = DPIO_CHV_PROP_COEFF(0x4) | 2092 DPIO_CHV_INT_COEFF(0x9) | 2093 DPIO_CHV_GAIN_CTRL(0x3); 2094 tribuf_calcntr = 0; 2095 } 2096 vlv_dpio_write(display->drm, phy, CHV_PLL_DW6(ch), loopfilter); 2097 2098 tmp = vlv_dpio_read(display->drm, phy, CHV_PLL_DW8(ch)); 2099 tmp &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 2100 tmp |= DPIO_CHV_TDC_TARGET_CNT(tribuf_calcntr); 2101 vlv_dpio_write(display->drm, phy, CHV_PLL_DW8(ch), tmp); 2102 2103 /* AFC Recal */ 2104 vlv_dpio_write(display->drm, phy, CHV_CMN_DW14(ch), 2105 vlv_dpio_read(display->drm, phy, CHV_CMN_DW14(ch)) | 2106 DPIO_AFC_RECAL); 2107 2108 vlv_dpio_put(display->drm); 2109 } 2110 2111 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state) 2112 { 2113 struct intel_display *display = to_intel_display(crtc_state); 2114 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2115 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2116 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 2117 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 2118 enum pipe pipe = crtc->pipe; 2119 u32 tmp; 2120 2121 vlv_dpio_get(display->drm); 2122 2123 /* Enable back the 10bit clock to display controller */ 2124 tmp = vlv_dpio_read(display->drm, phy, CHV_CMN_DW14(ch)); 2125 tmp |= DPIO_DCLKP_EN; 2126 vlv_dpio_write(display->drm, phy, CHV_CMN_DW14(ch), tmp); 2127 2128 vlv_dpio_put(display->drm); 2129 2130 /* 2131 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 2132 */ 2133 udelay(1); 2134 2135 /* Enable PLL */ 2136 intel_de_write(display, DPLL(display, pipe), hw_state->dpll); 2137 2138 /* Check PLL is locked */ 2139 if (intel_de_wait_for_set(display, DPLL(display, pipe), DPLL_LOCK_VLV, 1)) 2140 drm_err(display->drm, "PLL %d failed to lock\n", pipe); 2141 } 2142 2143 void chv_enable_pll(const struct intel_crtc_state *crtc_state) 2144 { 2145 struct intel_display *display = to_intel_display(crtc_state); 2146 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2147 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2148 enum pipe pipe = crtc->pipe; 2149 2150 assert_transcoder_disabled(display, crtc_state->cpu_transcoder); 2151 2152 /* PLL is protected by panel, make sure we can write it */ 2153 assert_pps_unlocked(display, pipe); 2154 2155 /* Enable Refclk and SSC */ 2156 intel_de_write(display, DPLL(display, pipe), 2157 hw_state->dpll & ~DPLL_VCO_ENABLE); 2158 2159 if (hw_state->dpll & DPLL_VCO_ENABLE) { 2160 chv_prepare_pll(crtc_state); 2161 _chv_enable_pll(crtc_state); 2162 } 2163 2164 if (pipe != PIPE_A) { 2165 /* 2166 * WaPixelRepeatModeFixForC0:chv 2167 * 2168 * DPLLCMD is AWOL. Use chicken bits to propagate 2169 * the value from DPLLBMD to either pipe B or C. 2170 */ 2171 intel_de_write(display, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 2172 intel_de_write(display, DPLL_MD(display, PIPE_B), 2173 hw_state->dpll_md); 2174 intel_de_write(display, CBR4_VLV, 0); 2175 display->state.chv_dpll_md[pipe] = hw_state->dpll_md; 2176 2177 /* 2178 * DPLLB VGA mode also seems to cause problems. 2179 * We should always have it disabled. 2180 */ 2181 drm_WARN_ON(display->drm, 2182 (intel_de_read(display, DPLL(display, PIPE_B)) & 2183 DPLL_VGA_MODE_DIS) == 0); 2184 } else { 2185 intel_de_write(display, DPLL_MD(display, pipe), 2186 hw_state->dpll_md); 2187 intel_de_posting_read(display, DPLL_MD(display, pipe)); 2188 } 2189 } 2190 2191 /** 2192 * vlv_force_pll_on - forcibly enable just the PLL 2193 * @display: display device 2194 * @pipe: pipe PLL to enable 2195 * @dpll: PLL configuration 2196 * 2197 * Enable the PLL for @pipe using the supplied @dpll config. To be used 2198 * in cases where we need the PLL enabled even when @pipe is not going to 2199 * be enabled. 2200 */ 2201 int vlv_force_pll_on(struct intel_display *display, enum pipe pipe, 2202 const struct dpll *dpll) 2203 { 2204 struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe); 2205 struct intel_crtc_state *crtc_state; 2206 2207 crtc_state = intel_crtc_state_alloc(crtc); 2208 if (!crtc_state) 2209 return -ENOMEM; 2210 2211 crtc_state->cpu_transcoder = (enum transcoder)pipe; 2212 crtc_state->pixel_multiplier = 1; 2213 crtc_state->dpll = *dpll; 2214 crtc_state->output_types = BIT(INTEL_OUTPUT_EDP); 2215 2216 if (display->platform.cherryview) { 2217 chv_compute_dpll(crtc_state); 2218 chv_enable_pll(crtc_state); 2219 } else { 2220 vlv_compute_dpll(crtc_state); 2221 vlv_enable_pll(crtc_state); 2222 } 2223 2224 intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi); 2225 2226 return 0; 2227 } 2228 2229 void vlv_disable_pll(struct intel_display *display, enum pipe pipe) 2230 { 2231 u32 val; 2232 2233 /* Make sure the pipe isn't still relying on us */ 2234 assert_transcoder_disabled(display, (enum transcoder)pipe); 2235 2236 val = DPLL_INTEGRATED_REF_CLK_VLV | 2237 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 2238 if (pipe != PIPE_A) 2239 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 2240 2241 intel_de_write(display, DPLL(display, pipe), val); 2242 intel_de_posting_read(display, DPLL(display, pipe)); 2243 } 2244 2245 void chv_disable_pll(struct intel_display *display, enum pipe pipe) 2246 { 2247 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 2248 enum dpio_phy phy = vlv_pipe_to_phy(pipe); 2249 u32 val; 2250 2251 /* Make sure the pipe isn't still relying on us */ 2252 assert_transcoder_disabled(display, (enum transcoder)pipe); 2253 2254 val = DPLL_SSC_REF_CLK_CHV | 2255 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 2256 if (pipe != PIPE_A) 2257 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 2258 2259 intel_de_write(display, DPLL(display, pipe), val); 2260 intel_de_posting_read(display, DPLL(display, pipe)); 2261 2262 vlv_dpio_get(display->drm); 2263 2264 /* Disable 10bit clock to display controller */ 2265 val = vlv_dpio_read(display->drm, phy, CHV_CMN_DW14(ch)); 2266 val &= ~DPIO_DCLKP_EN; 2267 vlv_dpio_write(display->drm, phy, CHV_CMN_DW14(ch), val); 2268 2269 vlv_dpio_put(display->drm); 2270 } 2271 2272 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 2273 { 2274 struct intel_display *display = to_intel_display(crtc_state); 2275 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2276 enum pipe pipe = crtc->pipe; 2277 2278 /* Don't disable pipe or pipe PLLs if needed */ 2279 if (display->platform.i830) 2280 return; 2281 2282 /* Make sure the pipe isn't still relying on us */ 2283 assert_transcoder_disabled(display, crtc_state->cpu_transcoder); 2284 2285 intel_de_write(display, DPLL(display, pipe), DPLL_VGA_MODE_DIS); 2286 intel_de_posting_read(display, DPLL(display, pipe)); 2287 } 2288 2289 2290 /** 2291 * vlv_force_pll_off - forcibly disable just the PLL 2292 * @display: display device 2293 * @pipe: pipe PLL to disable 2294 * 2295 * Disable the PLL for @pipe. To be used in cases where we need 2296 * the PLL enabled even when @pipe is not going to be enabled. 2297 */ 2298 void vlv_force_pll_off(struct intel_display *display, enum pipe pipe) 2299 { 2300 if (display->platform.cherryview) 2301 chv_disable_pll(display, pipe); 2302 else 2303 vlv_disable_pll(display, pipe); 2304 } 2305 2306 /* Only for pre-ILK configs */ 2307 static void assert_pll(struct intel_display *display, 2308 enum pipe pipe, bool state) 2309 { 2310 bool cur_state; 2311 2312 cur_state = intel_de_read(display, DPLL(display, pipe)) & DPLL_VCO_ENABLE; 2313 INTEL_DISPLAY_STATE_WARN(display, cur_state != state, 2314 "PLL state assertion failure (expected %s, current %s)\n", 2315 str_on_off(state), str_on_off(cur_state)); 2316 } 2317 2318 void assert_pll_enabled(struct intel_display *display, enum pipe pipe) 2319 { 2320 assert_pll(display, pipe, true); 2321 } 2322 2323 void assert_pll_disabled(struct intel_display *display, enum pipe pipe) 2324 { 2325 assert_pll(display, pipe, false); 2326 } 2327