1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/string_helpers.h> 8 9 #include "i915_reg.h" 10 #include "intel_atomic.h" 11 #include "intel_crtc.h" 12 #include "intel_cx0_phy.h" 13 #include "intel_de.h" 14 #include "intel_display.h" 15 #include "intel_display_types.h" 16 #include "intel_dpio_phy.h" 17 #include "intel_dpll.h" 18 #include "intel_lvds.h" 19 #include "intel_lvds_regs.h" 20 #include "intel_panel.h" 21 #include "intel_pps.h" 22 #include "intel_snps_phy.h" 23 #include "vlv_dpio_phy_regs.h" 24 #include "vlv_sideband.h" 25 26 struct intel_dpll_funcs { 27 int (*crtc_compute_clock)(struct intel_atomic_state *state, 28 struct intel_crtc *crtc); 29 int (*crtc_get_shared_dpll)(struct intel_atomic_state *state, 30 struct intel_crtc *crtc); 31 }; 32 33 struct intel_limit { 34 struct { 35 int min, max; 36 } dot, vco, n, m, m1, m2, p, p1; 37 38 struct { 39 int dot_limit; 40 int p2_slow, p2_fast; 41 } p2; 42 }; 43 static const struct intel_limit intel_limits_i8xx_dac = { 44 .dot = { .min = 25000, .max = 350000 }, 45 .vco = { .min = 908000, .max = 1512000 }, 46 .n = { .min = 2, .max = 16 }, 47 .m = { .min = 96, .max = 140 }, 48 .m1 = { .min = 18, .max = 26 }, 49 .m2 = { .min = 6, .max = 16 }, 50 .p = { .min = 4, .max = 128 }, 51 .p1 = { .min = 2, .max = 33 }, 52 .p2 = { .dot_limit = 165000, 53 .p2_slow = 4, .p2_fast = 2 }, 54 }; 55 56 static const struct intel_limit intel_limits_i8xx_dvo = { 57 .dot = { .min = 25000, .max = 350000 }, 58 .vco = { .min = 908000, .max = 1512000 }, 59 .n = { .min = 2, .max = 16 }, 60 .m = { .min = 96, .max = 140 }, 61 .m1 = { .min = 18, .max = 26 }, 62 .m2 = { .min = 6, .max = 16 }, 63 .p = { .min = 4, .max = 128 }, 64 .p1 = { .min = 2, .max = 33 }, 65 .p2 = { .dot_limit = 165000, 66 .p2_slow = 4, .p2_fast = 4 }, 67 }; 68 69 static const struct intel_limit intel_limits_i8xx_lvds = { 70 .dot = { .min = 25000, .max = 350000 }, 71 .vco = { .min = 908000, .max = 1512000 }, 72 .n = { .min = 2, .max = 16 }, 73 .m = { .min = 96, .max = 140 }, 74 .m1 = { .min = 18, .max = 26 }, 75 .m2 = { .min = 6, .max = 16 }, 76 .p = { .min = 4, .max = 128 }, 77 .p1 = { .min = 1, .max = 6 }, 78 .p2 = { .dot_limit = 165000, 79 .p2_slow = 14, .p2_fast = 7 }, 80 }; 81 82 static const struct intel_limit intel_limits_i9xx_sdvo = { 83 .dot = { .min = 20000, .max = 400000 }, 84 .vco = { .min = 1400000, .max = 2800000 }, 85 .n = { .min = 1, .max = 6 }, 86 .m = { .min = 70, .max = 120 }, 87 .m1 = { .min = 8, .max = 18 }, 88 .m2 = { .min = 3, .max = 7 }, 89 .p = { .min = 5, .max = 80 }, 90 .p1 = { .min = 1, .max = 8 }, 91 .p2 = { .dot_limit = 200000, 92 .p2_slow = 10, .p2_fast = 5 }, 93 }; 94 95 static const struct intel_limit intel_limits_i9xx_lvds = { 96 .dot = { .min = 20000, .max = 400000 }, 97 .vco = { .min = 1400000, .max = 2800000 }, 98 .n = { .min = 1, .max = 6 }, 99 .m = { .min = 70, .max = 120 }, 100 .m1 = { .min = 8, .max = 18 }, 101 .m2 = { .min = 3, .max = 7 }, 102 .p = { .min = 7, .max = 98 }, 103 .p1 = { .min = 1, .max = 8 }, 104 .p2 = { .dot_limit = 112000, 105 .p2_slow = 14, .p2_fast = 7 }, 106 }; 107 108 109 static const struct intel_limit intel_limits_g4x_sdvo = { 110 .dot = { .min = 25000, .max = 270000 }, 111 .vco = { .min = 1750000, .max = 3500000}, 112 .n = { .min = 1, .max = 4 }, 113 .m = { .min = 104, .max = 138 }, 114 .m1 = { .min = 17, .max = 23 }, 115 .m2 = { .min = 5, .max = 11 }, 116 .p = { .min = 10, .max = 30 }, 117 .p1 = { .min = 1, .max = 3}, 118 .p2 = { .dot_limit = 270000, 119 .p2_slow = 10, 120 .p2_fast = 10 121 }, 122 }; 123 124 static const struct intel_limit intel_limits_g4x_hdmi = { 125 .dot = { .min = 22000, .max = 400000 }, 126 .vco = { .min = 1750000, .max = 3500000}, 127 .n = { .min = 1, .max = 4 }, 128 .m = { .min = 104, .max = 138 }, 129 .m1 = { .min = 16, .max = 23 }, 130 .m2 = { .min = 5, .max = 11 }, 131 .p = { .min = 5, .max = 80 }, 132 .p1 = { .min = 1, .max = 8}, 133 .p2 = { .dot_limit = 165000, 134 .p2_slow = 10, .p2_fast = 5 }, 135 }; 136 137 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 138 .dot = { .min = 20000, .max = 115000 }, 139 .vco = { .min = 1750000, .max = 3500000 }, 140 .n = { .min = 1, .max = 3 }, 141 .m = { .min = 104, .max = 138 }, 142 .m1 = { .min = 17, .max = 23 }, 143 .m2 = { .min = 5, .max = 11 }, 144 .p = { .min = 28, .max = 112 }, 145 .p1 = { .min = 2, .max = 8 }, 146 .p2 = { .dot_limit = 0, 147 .p2_slow = 14, .p2_fast = 14 148 }, 149 }; 150 151 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 152 .dot = { .min = 80000, .max = 224000 }, 153 .vco = { .min = 1750000, .max = 3500000 }, 154 .n = { .min = 1, .max = 3 }, 155 .m = { .min = 104, .max = 138 }, 156 .m1 = { .min = 17, .max = 23 }, 157 .m2 = { .min = 5, .max = 11 }, 158 .p = { .min = 14, .max = 42 }, 159 .p1 = { .min = 2, .max = 6 }, 160 .p2 = { .dot_limit = 0, 161 .p2_slow = 7, .p2_fast = 7 162 }, 163 }; 164 165 static const struct intel_limit pnv_limits_sdvo = { 166 .dot = { .min = 20000, .max = 400000}, 167 .vco = { .min = 1700000, .max = 3500000 }, 168 /* Pineview's Ncounter is a ring counter */ 169 .n = { .min = 3, .max = 6 }, 170 .m = { .min = 2, .max = 256 }, 171 /* Pineview only has one combined m divider, which we treat as m2. */ 172 .m1 = { .min = 0, .max = 0 }, 173 .m2 = { .min = 0, .max = 254 }, 174 .p = { .min = 5, .max = 80 }, 175 .p1 = { .min = 1, .max = 8 }, 176 .p2 = { .dot_limit = 200000, 177 .p2_slow = 10, .p2_fast = 5 }, 178 }; 179 180 static const struct intel_limit pnv_limits_lvds = { 181 .dot = { .min = 20000, .max = 400000 }, 182 .vco = { .min = 1700000, .max = 3500000 }, 183 .n = { .min = 3, .max = 6 }, 184 .m = { .min = 2, .max = 256 }, 185 .m1 = { .min = 0, .max = 0 }, 186 .m2 = { .min = 0, .max = 254 }, 187 .p = { .min = 7, .max = 112 }, 188 .p1 = { .min = 1, .max = 8 }, 189 .p2 = { .dot_limit = 112000, 190 .p2_slow = 14, .p2_fast = 14 }, 191 }; 192 193 /* Ironlake / Sandybridge 194 * 195 * We calculate clock using (register_value + 2) for N/M1/M2, so here 196 * the range value for them is (actual_value - 2). 197 */ 198 static const struct intel_limit ilk_limits_dac = { 199 .dot = { .min = 25000, .max = 350000 }, 200 .vco = { .min = 1760000, .max = 3510000 }, 201 .n = { .min = 1, .max = 5 }, 202 .m = { .min = 79, .max = 127 }, 203 .m1 = { .min = 12, .max = 22 }, 204 .m2 = { .min = 5, .max = 9 }, 205 .p = { .min = 5, .max = 80 }, 206 .p1 = { .min = 1, .max = 8 }, 207 .p2 = { .dot_limit = 225000, 208 .p2_slow = 10, .p2_fast = 5 }, 209 }; 210 211 static const struct intel_limit ilk_limits_single_lvds = { 212 .dot = { .min = 25000, .max = 350000 }, 213 .vco = { .min = 1760000, .max = 3510000 }, 214 .n = { .min = 1, .max = 3 }, 215 .m = { .min = 79, .max = 118 }, 216 .m1 = { .min = 12, .max = 22 }, 217 .m2 = { .min = 5, .max = 9 }, 218 .p = { .min = 28, .max = 112 }, 219 .p1 = { .min = 2, .max = 8 }, 220 .p2 = { .dot_limit = 225000, 221 .p2_slow = 14, .p2_fast = 14 }, 222 }; 223 224 static const struct intel_limit ilk_limits_dual_lvds = { 225 .dot = { .min = 25000, .max = 350000 }, 226 .vco = { .min = 1760000, .max = 3510000 }, 227 .n = { .min = 1, .max = 3 }, 228 .m = { .min = 79, .max = 127 }, 229 .m1 = { .min = 12, .max = 22 }, 230 .m2 = { .min = 5, .max = 9 }, 231 .p = { .min = 14, .max = 56 }, 232 .p1 = { .min = 2, .max = 8 }, 233 .p2 = { .dot_limit = 225000, 234 .p2_slow = 7, .p2_fast = 7 }, 235 }; 236 237 /* LVDS 100mhz refclk limits. */ 238 static const struct intel_limit ilk_limits_single_lvds_100m = { 239 .dot = { .min = 25000, .max = 350000 }, 240 .vco = { .min = 1760000, .max = 3510000 }, 241 .n = { .min = 1, .max = 2 }, 242 .m = { .min = 79, .max = 126 }, 243 .m1 = { .min = 12, .max = 22 }, 244 .m2 = { .min = 5, .max = 9 }, 245 .p = { .min = 28, .max = 112 }, 246 .p1 = { .min = 2, .max = 8 }, 247 .p2 = { .dot_limit = 225000, 248 .p2_slow = 14, .p2_fast = 14 }, 249 }; 250 251 static const struct intel_limit ilk_limits_dual_lvds_100m = { 252 .dot = { .min = 25000, .max = 350000 }, 253 .vco = { .min = 1760000, .max = 3510000 }, 254 .n = { .min = 1, .max = 3 }, 255 .m = { .min = 79, .max = 126 }, 256 .m1 = { .min = 12, .max = 22 }, 257 .m2 = { .min = 5, .max = 9 }, 258 .p = { .min = 14, .max = 42 }, 259 .p1 = { .min = 2, .max = 6 }, 260 .p2 = { .dot_limit = 225000, 261 .p2_slow = 7, .p2_fast = 7 }, 262 }; 263 264 static const struct intel_limit intel_limits_vlv = { 265 /* 266 * These are based on the data rate limits (measured in fast clocks) 267 * since those are the strictest limits we have. The fast 268 * clock and actual rate limits are more relaxed, so checking 269 * them would make no difference. 270 */ 271 .dot = { .min = 25000, .max = 270000 }, 272 .vco = { .min = 4000000, .max = 6000000 }, 273 .n = { .min = 1, .max = 7 }, 274 .m1 = { .min = 2, .max = 3 }, 275 .m2 = { .min = 11, .max = 156 }, 276 .p1 = { .min = 2, .max = 3 }, 277 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 278 }; 279 280 static const struct intel_limit intel_limits_chv = { 281 /* 282 * These are based on the data rate limits (measured in fast clocks) 283 * since those are the strictest limits we have. The fast 284 * clock and actual rate limits are more relaxed, so checking 285 * them would make no difference. 286 */ 287 .dot = { .min = 25000, .max = 540000 }, 288 .vco = { .min = 4800000, .max = 6480000 }, 289 .n = { .min = 1, .max = 1 }, 290 .m1 = { .min = 2, .max = 2 }, 291 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 292 .p1 = { .min = 2, .max = 4 }, 293 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 294 }; 295 296 static const struct intel_limit intel_limits_bxt = { 297 .dot = { .min = 25000, .max = 594000 }, 298 .vco = { .min = 4800000, .max = 6700000 }, 299 .n = { .min = 1, .max = 1 }, 300 .m1 = { .min = 2, .max = 2 }, 301 /* FIXME: find real m2 limits */ 302 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 303 .p1 = { .min = 2, .max = 4 }, 304 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 305 }; 306 307 /* 308 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 309 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 310 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 311 * The helpers' return value is the rate of the clock that is fed to the 312 * display engine's pipe which can be the above fast dot clock rate or a 313 * divided-down version of it. 314 */ 315 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 316 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 317 { 318 clock->m = clock->m2 + 2; 319 clock->p = clock->p1 * clock->p2; 320 321 clock->vco = clock->n == 0 ? 0 : 322 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 323 clock->dot = clock->p == 0 ? 0 : 324 DIV_ROUND_CLOSEST(clock->vco, clock->p); 325 326 return clock->dot; 327 } 328 329 static u32 i9xx_dpll_compute_m(const struct dpll *dpll) 330 { 331 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 332 } 333 334 int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 335 { 336 clock->m = i9xx_dpll_compute_m(clock); 337 clock->p = clock->p1 * clock->p2; 338 339 clock->vco = clock->n + 2 == 0 ? 0 : 340 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 341 clock->dot = clock->p == 0 ? 0 : 342 DIV_ROUND_CLOSEST(clock->vco, clock->p); 343 344 return clock->dot; 345 } 346 347 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 348 { 349 clock->m = clock->m1 * clock->m2; 350 clock->p = clock->p1 * clock->p2 * 5; 351 352 clock->vco = clock->n == 0 ? 0 : 353 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 354 clock->dot = clock->p == 0 ? 0 : 355 DIV_ROUND_CLOSEST(clock->vco, clock->p); 356 357 return clock->dot; 358 } 359 360 int chv_calc_dpll_params(int refclk, struct dpll *clock) 361 { 362 clock->m = clock->m1 * clock->m2; 363 clock->p = clock->p1 * clock->p2 * 5; 364 365 clock->vco = clock->n == 0 ? 0 : 366 DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22); 367 clock->dot = clock->p == 0 ? 0 : 368 DIV_ROUND_CLOSEST(clock->vco, clock->p); 369 370 return clock->dot; 371 } 372 373 static int i9xx_pll_refclk(const struct intel_crtc_state *crtc_state) 374 { 375 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 376 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 377 378 if ((hw_state->dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 379 return i915->display.vbt.lvds_ssc_freq; 380 else if (HAS_PCH_SPLIT(i915)) 381 return 120000; 382 else if (DISPLAY_VER(i915) != 2) 383 return 96000; 384 else 385 return 48000; 386 } 387 388 void i9xx_dpll_get_hw_state(struct intel_crtc *crtc, 389 struct intel_dpll_hw_state *dpll_hw_state) 390 { 391 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 392 struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx; 393 394 if (DISPLAY_VER(dev_priv) >= 4) { 395 u32 tmp; 396 397 /* No way to read it out on pipes B and C */ 398 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 399 tmp = dev_priv->display.state.chv_dpll_md[crtc->pipe]; 400 else 401 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 402 403 hw_state->dpll_md = tmp; 404 } 405 406 hw_state->dpll = intel_de_read(dev_priv, DPLL(crtc->pipe)); 407 408 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 409 hw_state->fp0 = intel_de_read(dev_priv, FP0(crtc->pipe)); 410 hw_state->fp1 = intel_de_read(dev_priv, FP1(crtc->pipe)); 411 } else { 412 /* Mask out read-only status bits. */ 413 hw_state->dpll &= ~(DPLL_LOCK_VLV | 414 DPLL_PORTC_READY_MASK | 415 DPLL_PORTB_READY_MASK); 416 } 417 } 418 419 /* Returns the clock of the currently programmed mode of the given pipe. */ 420 void i9xx_crtc_clock_get(struct intel_crtc_state *crtc_state) 421 { 422 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 423 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 424 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 425 u32 dpll = hw_state->dpll; 426 u32 fp; 427 struct dpll clock; 428 int port_clock; 429 int refclk = i9xx_pll_refclk(crtc_state); 430 431 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 432 fp = hw_state->fp0; 433 else 434 fp = hw_state->fp1; 435 436 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 437 if (IS_PINEVIEW(dev_priv)) { 438 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 439 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 440 } else { 441 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 442 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 443 } 444 445 if (DISPLAY_VER(dev_priv) != 2) { 446 if (IS_PINEVIEW(dev_priv)) 447 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 448 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 449 else 450 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 451 DPLL_FPA01_P1_POST_DIV_SHIFT); 452 453 switch (dpll & DPLL_MODE_MASK) { 454 case DPLLB_MODE_DAC_SERIAL: 455 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 456 5 : 10; 457 break; 458 case DPLLB_MODE_LVDS: 459 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 460 7 : 14; 461 break; 462 default: 463 drm_dbg_kms(&dev_priv->drm, 464 "Unknown DPLL mode %08x in programmed " 465 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 466 return; 467 } 468 469 if (IS_PINEVIEW(dev_priv)) 470 port_clock = pnv_calc_dpll_params(refclk, &clock); 471 else 472 port_clock = i9xx_calc_dpll_params(refclk, &clock); 473 } else { 474 enum pipe lvds_pipe; 475 476 if (IS_I85X(dev_priv) && 477 intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) && 478 lvds_pipe == crtc->pipe) { 479 u32 lvds = intel_de_read(dev_priv, LVDS); 480 481 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 482 DPLL_FPA01_P1_POST_DIV_SHIFT); 483 484 if (lvds & LVDS_CLKB_POWER_UP) 485 clock.p2 = 7; 486 else 487 clock.p2 = 14; 488 } else { 489 if (dpll & PLL_P1_DIVIDE_BY_TWO) 490 clock.p1 = 2; 491 else { 492 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 493 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 494 } 495 if (dpll & PLL_P2_DIVIDE_BY_4) 496 clock.p2 = 4; 497 else 498 clock.p2 = 2; 499 } 500 501 port_clock = i9xx_calc_dpll_params(refclk, &clock); 502 } 503 504 /* 505 * This value includes pixel_multiplier. We will use 506 * port_clock to compute adjusted_mode.crtc_clock in the 507 * encoder's get_config() function. 508 */ 509 crtc_state->port_clock = port_clock; 510 } 511 512 void vlv_crtc_clock_get(struct intel_crtc_state *crtc_state) 513 { 514 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 515 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 516 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 517 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 518 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 519 int refclk = 100000; 520 struct dpll clock; 521 u32 tmp; 522 523 /* In case of DSI, DPLL will not be used */ 524 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0) 525 return; 526 527 vlv_dpio_get(dev_priv); 528 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(ch)); 529 vlv_dpio_put(dev_priv); 530 531 clock.m1 = REG_FIELD_GET(DPIO_M1_DIV_MASK, tmp); 532 clock.m2 = REG_FIELD_GET(DPIO_M2_DIV_MASK, tmp); 533 clock.n = REG_FIELD_GET(DPIO_N_DIV_MASK, tmp); 534 clock.p1 = REG_FIELD_GET(DPIO_P1_DIV_MASK, tmp); 535 clock.p2 = REG_FIELD_GET(DPIO_P2_DIV_MASK, tmp); 536 537 crtc_state->port_clock = vlv_calc_dpll_params(refclk, &clock); 538 } 539 540 void chv_crtc_clock_get(struct intel_crtc_state *crtc_state) 541 { 542 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 543 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 544 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 545 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 546 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 547 struct dpll clock; 548 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 549 int refclk = 100000; 550 551 /* In case of DSI, DPLL will not be used */ 552 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0) 553 return; 554 555 vlv_dpio_get(dev_priv); 556 cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(ch)); 557 pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(ch)); 558 pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(ch)); 559 pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(ch)); 560 pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch)); 561 vlv_dpio_put(dev_priv); 562 563 clock.m1 = REG_FIELD_GET(DPIO_CHV_M1_DIV_MASK, pll_dw1) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 564 clock.m2 = REG_FIELD_GET(DPIO_CHV_M2_DIV_MASK, pll_dw0) << 22; 565 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 566 clock.m2 |= REG_FIELD_GET(DPIO_CHV_M2_FRAC_DIV_MASK, pll_dw2); 567 clock.n = REG_FIELD_GET(DPIO_CHV_N_DIV_MASK, pll_dw1); 568 clock.p1 = REG_FIELD_GET(DPIO_CHV_P1_DIV_MASK, cmn_dw13); 569 clock.p2 = REG_FIELD_GET(DPIO_CHV_P2_DIV_MASK, cmn_dw13); 570 571 crtc_state->port_clock = chv_calc_dpll_params(refclk, &clock); 572 } 573 574 /* 575 * Returns whether the given set of divisors are valid for a given refclk with 576 * the given connectors. 577 */ 578 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv, 579 const struct intel_limit *limit, 580 const struct dpll *clock) 581 { 582 if (clock->n < limit->n.min || limit->n.max < clock->n) 583 return false; 584 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 585 return false; 586 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 587 return false; 588 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 589 return false; 590 591 if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv)) 592 if (clock->m1 <= clock->m2) 593 return false; 594 595 if (!IS_LP(dev_priv)) { 596 if (clock->p < limit->p.min || limit->p.max < clock->p) 597 return false; 598 if (clock->m < limit->m.min || limit->m.max < clock->m) 599 return false; 600 } 601 602 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 603 return false; 604 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 605 * connector, etc., rather than just a single range. 606 */ 607 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 608 return false; 609 610 return true; 611 } 612 613 static int 614 i9xx_select_p2_div(const struct intel_limit *limit, 615 const struct intel_crtc_state *crtc_state, 616 int target) 617 { 618 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 619 620 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 621 /* 622 * For LVDS just rely on its current settings for dual-channel. 623 * We haven't figured out how to reliably set up different 624 * single/dual channel state, if we even can. 625 */ 626 if (intel_is_dual_link_lvds(dev_priv)) 627 return limit->p2.p2_fast; 628 else 629 return limit->p2.p2_slow; 630 } else { 631 if (target < limit->p2.dot_limit) 632 return limit->p2.p2_slow; 633 else 634 return limit->p2.p2_fast; 635 } 636 } 637 638 /* 639 * Returns a set of divisors for the desired target clock with the given 640 * refclk, or FALSE. 641 * 642 * Target and reference clocks are specified in kHz. 643 * 644 * If match_clock is provided, then best_clock P divider must match the P 645 * divider from @match_clock used for LVDS downclocking. 646 */ 647 static bool 648 i9xx_find_best_dpll(const struct intel_limit *limit, 649 struct intel_crtc_state *crtc_state, 650 int target, int refclk, 651 const struct dpll *match_clock, 652 struct dpll *best_clock) 653 { 654 struct drm_device *dev = crtc_state->uapi.crtc->dev; 655 struct dpll clock; 656 int err = target; 657 658 memset(best_clock, 0, sizeof(*best_clock)); 659 660 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 661 662 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 663 clock.m1++) { 664 for (clock.m2 = limit->m2.min; 665 clock.m2 <= limit->m2.max; clock.m2++) { 666 if (clock.m2 >= clock.m1) 667 break; 668 for (clock.n = limit->n.min; 669 clock.n <= limit->n.max; clock.n++) { 670 for (clock.p1 = limit->p1.min; 671 clock.p1 <= limit->p1.max; clock.p1++) { 672 int this_err; 673 674 i9xx_calc_dpll_params(refclk, &clock); 675 if (!intel_pll_is_valid(to_i915(dev), 676 limit, 677 &clock)) 678 continue; 679 if (match_clock && 680 clock.p != match_clock->p) 681 continue; 682 683 this_err = abs(clock.dot - target); 684 if (this_err < err) { 685 *best_clock = clock; 686 err = this_err; 687 } 688 } 689 } 690 } 691 } 692 693 return (err != target); 694 } 695 696 /* 697 * Returns a set of divisors for the desired target clock with the given 698 * refclk, or FALSE. 699 * 700 * Target and reference clocks are specified in kHz. 701 * 702 * If match_clock is provided, then best_clock P divider must match the P 703 * divider from @match_clock used for LVDS downclocking. 704 */ 705 static bool 706 pnv_find_best_dpll(const struct intel_limit *limit, 707 struct intel_crtc_state *crtc_state, 708 int target, int refclk, 709 const struct dpll *match_clock, 710 struct dpll *best_clock) 711 { 712 struct drm_device *dev = crtc_state->uapi.crtc->dev; 713 struct dpll clock; 714 int err = target; 715 716 memset(best_clock, 0, sizeof(*best_clock)); 717 718 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 719 720 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 721 clock.m1++) { 722 for (clock.m2 = limit->m2.min; 723 clock.m2 <= limit->m2.max; clock.m2++) { 724 for (clock.n = limit->n.min; 725 clock.n <= limit->n.max; clock.n++) { 726 for (clock.p1 = limit->p1.min; 727 clock.p1 <= limit->p1.max; clock.p1++) { 728 int this_err; 729 730 pnv_calc_dpll_params(refclk, &clock); 731 if (!intel_pll_is_valid(to_i915(dev), 732 limit, 733 &clock)) 734 continue; 735 if (match_clock && 736 clock.p != match_clock->p) 737 continue; 738 739 this_err = abs(clock.dot - target); 740 if (this_err < err) { 741 *best_clock = clock; 742 err = this_err; 743 } 744 } 745 } 746 } 747 } 748 749 return (err != target); 750 } 751 752 /* 753 * Returns a set of divisors for the desired target clock with the given 754 * refclk, or FALSE. 755 * 756 * Target and reference clocks are specified in kHz. 757 * 758 * If match_clock is provided, then best_clock P divider must match the P 759 * divider from @match_clock used for LVDS downclocking. 760 */ 761 static bool 762 g4x_find_best_dpll(const struct intel_limit *limit, 763 struct intel_crtc_state *crtc_state, 764 int target, int refclk, 765 const struct dpll *match_clock, 766 struct dpll *best_clock) 767 { 768 struct drm_device *dev = crtc_state->uapi.crtc->dev; 769 struct dpll clock; 770 int max_n; 771 bool found = false; 772 /* approximately equals target * 0.00585 */ 773 int err_most = (target >> 8) + (target >> 9); 774 775 memset(best_clock, 0, sizeof(*best_clock)); 776 777 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 778 779 max_n = limit->n.max; 780 /* based on hardware requirement, prefer smaller n to precision */ 781 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 782 /* based on hardware requirement, prefere larger m1,m2 */ 783 for (clock.m1 = limit->m1.max; 784 clock.m1 >= limit->m1.min; clock.m1--) { 785 for (clock.m2 = limit->m2.max; 786 clock.m2 >= limit->m2.min; clock.m2--) { 787 for (clock.p1 = limit->p1.max; 788 clock.p1 >= limit->p1.min; clock.p1--) { 789 int this_err; 790 791 i9xx_calc_dpll_params(refclk, &clock); 792 if (!intel_pll_is_valid(to_i915(dev), 793 limit, 794 &clock)) 795 continue; 796 797 this_err = abs(clock.dot - target); 798 if (this_err < err_most) { 799 *best_clock = clock; 800 err_most = this_err; 801 max_n = clock.n; 802 found = true; 803 } 804 } 805 } 806 } 807 } 808 return found; 809 } 810 811 /* 812 * Check if the calculated PLL configuration is more optimal compared to the 813 * best configuration and error found so far. Return the calculated error. 814 */ 815 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, 816 const struct dpll *calculated_clock, 817 const struct dpll *best_clock, 818 unsigned int best_error_ppm, 819 unsigned int *error_ppm) 820 { 821 /* 822 * For CHV ignore the error and consider only the P value. 823 * Prefer a bigger P value based on HW requirements. 824 */ 825 if (IS_CHERRYVIEW(to_i915(dev))) { 826 *error_ppm = 0; 827 828 return calculated_clock->p > best_clock->p; 829 } 830 831 if (drm_WARN_ON_ONCE(dev, !target_freq)) 832 return false; 833 834 *error_ppm = div_u64(1000000ULL * 835 abs(target_freq - calculated_clock->dot), 836 target_freq); 837 /* 838 * Prefer a better P value over a better (smaller) error if the error 839 * is small. Ensure this preference for future configurations too by 840 * setting the error to 0. 841 */ 842 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 843 *error_ppm = 0; 844 845 return true; 846 } 847 848 return *error_ppm + 10 < best_error_ppm; 849 } 850 851 /* 852 * Returns a set of divisors for the desired target clock with the given 853 * refclk, or FALSE. 854 */ 855 static bool 856 vlv_find_best_dpll(const struct intel_limit *limit, 857 struct intel_crtc_state *crtc_state, 858 int target, int refclk, 859 const struct dpll *match_clock, 860 struct dpll *best_clock) 861 { 862 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 863 struct drm_device *dev = crtc->base.dev; 864 struct dpll clock; 865 unsigned int bestppm = 1000000; 866 /* min update 19.2 MHz */ 867 int max_n = min(limit->n.max, refclk / 19200); 868 bool found = false; 869 870 memset(best_clock, 0, sizeof(*best_clock)); 871 872 /* based on hardware requirement, prefer smaller n to precision */ 873 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 874 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 875 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 876 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 877 clock.p = clock.p1 * clock.p2 * 5; 878 /* based on hardware requirement, prefer bigger m1,m2 values */ 879 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 880 unsigned int ppm; 881 882 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 883 refclk * clock.m1); 884 885 vlv_calc_dpll_params(refclk, &clock); 886 887 if (!intel_pll_is_valid(to_i915(dev), 888 limit, 889 &clock)) 890 continue; 891 892 if (!vlv_PLL_is_optimal(dev, target, 893 &clock, 894 best_clock, 895 bestppm, &ppm)) 896 continue; 897 898 *best_clock = clock; 899 bestppm = ppm; 900 found = true; 901 } 902 } 903 } 904 } 905 906 return found; 907 } 908 909 /* 910 * Returns a set of divisors for the desired target clock with the given 911 * refclk, or FALSE. 912 */ 913 static bool 914 chv_find_best_dpll(const struct intel_limit *limit, 915 struct intel_crtc_state *crtc_state, 916 int target, int refclk, 917 const struct dpll *match_clock, 918 struct dpll *best_clock) 919 { 920 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 921 struct drm_device *dev = crtc->base.dev; 922 unsigned int best_error_ppm; 923 struct dpll clock; 924 u64 m2; 925 int found = false; 926 927 memset(best_clock, 0, sizeof(*best_clock)); 928 best_error_ppm = 1000000; 929 930 /* 931 * Based on hardware doc, the n always set to 1, and m1 always 932 * set to 2. If requires to support 200Mhz refclk, we need to 933 * revisit this because n may not 1 anymore. 934 */ 935 clock.n = 1; 936 clock.m1 = 2; 937 938 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 939 for (clock.p2 = limit->p2.p2_fast; 940 clock.p2 >= limit->p2.p2_slow; 941 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 942 unsigned int error_ppm; 943 944 clock.p = clock.p1 * clock.p2 * 5; 945 946 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 947 refclk * clock.m1); 948 949 if (m2 > INT_MAX/clock.m1) 950 continue; 951 952 clock.m2 = m2; 953 954 chv_calc_dpll_params(refclk, &clock); 955 956 if (!intel_pll_is_valid(to_i915(dev), limit, &clock)) 957 continue; 958 959 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, 960 best_error_ppm, &error_ppm)) 961 continue; 962 963 *best_clock = clock; 964 best_error_ppm = error_ppm; 965 found = true; 966 } 967 } 968 969 return found; 970 } 971 972 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 973 struct dpll *best_clock) 974 { 975 const struct intel_limit *limit = &intel_limits_bxt; 976 int refclk = 100000; 977 978 return chv_find_best_dpll(limit, crtc_state, 979 crtc_state->port_clock, refclk, 980 NULL, best_clock); 981 } 982 983 u32 i9xx_dpll_compute_fp(const struct dpll *dpll) 984 { 985 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 986 } 987 988 static u32 pnv_dpll_compute_fp(const struct dpll *dpll) 989 { 990 return (1 << dpll->n) << 16 | dpll->m2; 991 } 992 993 static u32 i965_dpll_md(const struct intel_crtc_state *crtc_state) 994 { 995 return (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 996 } 997 998 static u32 i9xx_dpll(const struct intel_crtc_state *crtc_state, 999 const struct dpll *clock, 1000 const struct dpll *reduced_clock) 1001 { 1002 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1003 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1004 u32 dpll; 1005 1006 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS; 1007 1008 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 1009 dpll |= DPLLB_MODE_LVDS; 1010 else 1011 dpll |= DPLLB_MODE_DAC_SERIAL; 1012 1013 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 1014 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 1015 dpll |= (crtc_state->pixel_multiplier - 1) 1016 << SDVO_MULTIPLIER_SHIFT_HIRES; 1017 } 1018 1019 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 1020 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1021 dpll |= DPLL_SDVO_HIGH_SPEED; 1022 1023 if (intel_crtc_has_dp_encoder(crtc_state)) 1024 dpll |= DPLL_SDVO_HIGH_SPEED; 1025 1026 /* compute bitmask from p1 value */ 1027 if (IS_G4X(dev_priv)) { 1028 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1029 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 1030 } else if (IS_PINEVIEW(dev_priv)) { 1031 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 1032 WARN_ON(reduced_clock->p1 != clock->p1); 1033 } else { 1034 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1035 WARN_ON(reduced_clock->p1 != clock->p1); 1036 } 1037 1038 switch (clock->p2) { 1039 case 5: 1040 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 1041 break; 1042 case 7: 1043 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 1044 break; 1045 case 10: 1046 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 1047 break; 1048 case 14: 1049 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 1050 break; 1051 } 1052 WARN_ON(reduced_clock->p2 != clock->p2); 1053 1054 if (DISPLAY_VER(dev_priv) >= 4) 1055 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 1056 1057 if (crtc_state->sdvo_tv_clock) 1058 dpll |= PLL_REF_INPUT_TVCLKINBC; 1059 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1060 intel_panel_use_ssc(dev_priv)) 1061 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1062 else 1063 dpll |= PLL_REF_INPUT_DREFCLK; 1064 1065 return dpll; 1066 } 1067 1068 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state, 1069 const struct dpll *clock, 1070 const struct dpll *reduced_clock) 1071 { 1072 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1073 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1074 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1075 1076 if (IS_PINEVIEW(dev_priv)) { 1077 hw_state->fp0 = pnv_dpll_compute_fp(clock); 1078 hw_state->fp1 = pnv_dpll_compute_fp(reduced_clock); 1079 } else { 1080 hw_state->fp0 = i9xx_dpll_compute_fp(clock); 1081 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock); 1082 } 1083 1084 hw_state->dpll = i9xx_dpll(crtc_state, clock, reduced_clock); 1085 1086 if (DISPLAY_VER(dev_priv) >= 4) 1087 hw_state->dpll_md = i965_dpll_md(crtc_state); 1088 } 1089 1090 static u32 i8xx_dpll(const struct intel_crtc_state *crtc_state, 1091 const struct dpll *clock, 1092 const struct dpll *reduced_clock) 1093 { 1094 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1095 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1096 u32 dpll; 1097 1098 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS; 1099 1100 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1101 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1102 } else { 1103 if (clock->p1 == 2) 1104 dpll |= PLL_P1_DIVIDE_BY_TWO; 1105 else 1106 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1107 if (clock->p2 == 4) 1108 dpll |= PLL_P2_DIVIDE_BY_4; 1109 } 1110 WARN_ON(reduced_clock->p1 != clock->p1); 1111 WARN_ON(reduced_clock->p2 != clock->p2); 1112 1113 /* 1114 * Bspec: 1115 * "[Almador Errata}: For the correct operation of the muxed DVO pins 1116 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 1117 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 1118 * Enable) must be set to “1” in both the DPLL A Control Register 1119 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 1120 * 1121 * For simplicity We simply keep both bits always enabled in 1122 * both DPLLS. The spec says we should disable the DVO 2X clock 1123 * when not needed, but this seems to work fine in practice. 1124 */ 1125 if (IS_I830(dev_priv) || 1126 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 1127 dpll |= DPLL_DVO_2X_MODE; 1128 1129 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1130 intel_panel_use_ssc(dev_priv)) 1131 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1132 else 1133 dpll |= PLL_REF_INPUT_DREFCLK; 1134 1135 return dpll; 1136 } 1137 1138 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state, 1139 const struct dpll *clock, 1140 const struct dpll *reduced_clock) 1141 { 1142 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1143 1144 hw_state->fp0 = i9xx_dpll_compute_fp(clock); 1145 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock); 1146 1147 hw_state->dpll = i8xx_dpll(crtc_state, clock, reduced_clock); 1148 } 1149 1150 static int hsw_crtc_compute_clock(struct intel_atomic_state *state, 1151 struct intel_crtc *crtc) 1152 { 1153 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1154 struct intel_crtc_state *crtc_state = 1155 intel_atomic_get_new_crtc_state(state, crtc); 1156 struct intel_encoder *encoder = 1157 intel_get_crtc_new_encoder(state, crtc_state); 1158 int ret; 1159 1160 if (DISPLAY_VER(dev_priv) < 11 && 1161 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1162 return 0; 1163 1164 ret = intel_compute_shared_dplls(state, crtc, encoder); 1165 if (ret) 1166 return ret; 1167 1168 /* FIXME this is a mess */ 1169 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1170 return 0; 1171 1172 /* CRT dotclock is determined via other means */ 1173 if (!crtc_state->has_pch_encoder) 1174 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1175 1176 return 0; 1177 } 1178 1179 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state, 1180 struct intel_crtc *crtc) 1181 { 1182 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1183 struct intel_crtc_state *crtc_state = 1184 intel_atomic_get_new_crtc_state(state, crtc); 1185 struct intel_encoder *encoder = 1186 intel_get_crtc_new_encoder(state, crtc_state); 1187 1188 if (DISPLAY_VER(dev_priv) < 11 && 1189 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1190 return 0; 1191 1192 return intel_reserve_shared_dplls(state, crtc, encoder); 1193 } 1194 1195 static int dg2_crtc_compute_clock(struct intel_atomic_state *state, 1196 struct intel_crtc *crtc) 1197 { 1198 struct intel_crtc_state *crtc_state = 1199 intel_atomic_get_new_crtc_state(state, crtc); 1200 struct intel_encoder *encoder = 1201 intel_get_crtc_new_encoder(state, crtc_state); 1202 int ret; 1203 1204 ret = intel_mpllb_calc_state(crtc_state, encoder); 1205 if (ret) 1206 return ret; 1207 1208 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1209 1210 return 0; 1211 } 1212 1213 static int mtl_crtc_compute_clock(struct intel_atomic_state *state, 1214 struct intel_crtc *crtc) 1215 { 1216 struct intel_crtc_state *crtc_state = 1217 intel_atomic_get_new_crtc_state(state, crtc); 1218 struct intel_encoder *encoder = 1219 intel_get_crtc_new_encoder(state, crtc_state); 1220 int ret; 1221 1222 ret = intel_cx0pll_calc_state(crtc_state, encoder); 1223 if (ret) 1224 return ret; 1225 1226 /* TODO: Do the readback via intel_compute_shared_dplls() */ 1227 crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->dpll_hw_state.cx0pll); 1228 1229 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1230 1231 return 0; 1232 } 1233 1234 static int ilk_fb_cb_factor(const struct intel_crtc_state *crtc_state) 1235 { 1236 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1237 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 1238 1239 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1240 ((intel_panel_use_ssc(i915) && i915->display.vbt.lvds_ssc_freq == 100000) || 1241 (HAS_PCH_IBX(i915) && intel_is_dual_link_lvds(i915)))) 1242 return 25; 1243 1244 if (crtc_state->sdvo_tv_clock) 1245 return 20; 1246 1247 return 21; 1248 } 1249 1250 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor) 1251 { 1252 return dpll->m < factor * dpll->n; 1253 } 1254 1255 static u32 ilk_dpll_compute_fp(const struct dpll *clock, int factor) 1256 { 1257 u32 fp; 1258 1259 fp = i9xx_dpll_compute_fp(clock); 1260 if (ilk_needs_fb_cb_tune(clock, factor)) 1261 fp |= FP_CB_TUNE; 1262 1263 return fp; 1264 } 1265 1266 static u32 ilk_dpll(const struct intel_crtc_state *crtc_state, 1267 const struct dpll *clock, 1268 const struct dpll *reduced_clock) 1269 { 1270 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1271 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1272 u32 dpll; 1273 1274 dpll = DPLL_VCO_ENABLE; 1275 1276 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 1277 dpll |= DPLLB_MODE_LVDS; 1278 else 1279 dpll |= DPLLB_MODE_DAC_SERIAL; 1280 1281 dpll |= (crtc_state->pixel_multiplier - 1) 1282 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 1283 1284 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 1285 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1286 dpll |= DPLL_SDVO_HIGH_SPEED; 1287 1288 if (intel_crtc_has_dp_encoder(crtc_state)) 1289 dpll |= DPLL_SDVO_HIGH_SPEED; 1290 1291 /* 1292 * The high speed IO clock is only really required for 1293 * SDVO/HDMI/DP, but we also enable it for CRT to make it 1294 * possible to share the DPLL between CRT and HDMI. Enabling 1295 * the clock needlessly does no real harm, except use up a 1296 * bit of power potentially. 1297 * 1298 * We'll limit this to IVB with 3 pipes, since it has only two 1299 * DPLLs and so DPLL sharing is the only way to get three pipes 1300 * driving PCH ports at the same time. On SNB we could do this, 1301 * and potentially avoid enabling the second DPLL, but it's not 1302 * clear if it''s a win or loss power wise. No point in doing 1303 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 1304 */ 1305 if (INTEL_NUM_PIPES(dev_priv) == 3 && 1306 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 1307 dpll |= DPLL_SDVO_HIGH_SPEED; 1308 1309 /* compute bitmask from p1 value */ 1310 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1311 /* also FPA1 */ 1312 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 1313 1314 switch (clock->p2) { 1315 case 5: 1316 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 1317 break; 1318 case 7: 1319 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 1320 break; 1321 case 10: 1322 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 1323 break; 1324 case 14: 1325 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 1326 break; 1327 } 1328 WARN_ON(reduced_clock->p2 != clock->p2); 1329 1330 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1331 intel_panel_use_ssc(dev_priv)) 1332 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1333 else 1334 dpll |= PLL_REF_INPUT_DREFCLK; 1335 1336 return dpll; 1337 } 1338 1339 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state, 1340 const struct dpll *clock, 1341 const struct dpll *reduced_clock) 1342 { 1343 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1344 int factor = ilk_fb_cb_factor(crtc_state); 1345 1346 hw_state->fp0 = ilk_dpll_compute_fp(clock, factor); 1347 hw_state->fp1 = ilk_dpll_compute_fp(reduced_clock, factor); 1348 1349 hw_state->dpll = ilk_dpll(crtc_state, clock, reduced_clock); 1350 } 1351 1352 static int ilk_crtc_compute_clock(struct intel_atomic_state *state, 1353 struct intel_crtc *crtc) 1354 { 1355 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1356 struct intel_crtc_state *crtc_state = 1357 intel_atomic_get_new_crtc_state(state, crtc); 1358 const struct intel_limit *limit; 1359 int refclk = 120000; 1360 int ret; 1361 1362 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 1363 if (!crtc_state->has_pch_encoder) 1364 return 0; 1365 1366 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1367 if (intel_panel_use_ssc(dev_priv)) { 1368 drm_dbg_kms(&dev_priv->drm, 1369 "using SSC reference clock of %d kHz\n", 1370 dev_priv->display.vbt.lvds_ssc_freq); 1371 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1372 } 1373 1374 if (intel_is_dual_link_lvds(dev_priv)) { 1375 if (refclk == 100000) 1376 limit = &ilk_limits_dual_lvds_100m; 1377 else 1378 limit = &ilk_limits_dual_lvds; 1379 } else { 1380 if (refclk == 100000) 1381 limit = &ilk_limits_single_lvds_100m; 1382 else 1383 limit = &ilk_limits_single_lvds; 1384 } 1385 } else { 1386 limit = &ilk_limits_dac; 1387 } 1388 1389 if (!crtc_state->clock_set && 1390 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1391 refclk, NULL, &crtc_state->dpll)) 1392 return -EINVAL; 1393 1394 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1395 1396 ilk_compute_dpll(crtc_state, &crtc_state->dpll, 1397 &crtc_state->dpll); 1398 1399 ret = intel_compute_shared_dplls(state, crtc, NULL); 1400 if (ret) 1401 return ret; 1402 1403 crtc_state->port_clock = crtc_state->dpll.dot; 1404 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1405 1406 return ret; 1407 } 1408 1409 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state, 1410 struct intel_crtc *crtc) 1411 { 1412 struct intel_crtc_state *crtc_state = 1413 intel_atomic_get_new_crtc_state(state, crtc); 1414 1415 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 1416 if (!crtc_state->has_pch_encoder) 1417 return 0; 1418 1419 return intel_reserve_shared_dplls(state, crtc, NULL); 1420 } 1421 1422 static u32 vlv_dpll(const struct intel_crtc_state *crtc_state) 1423 { 1424 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1425 u32 dpll; 1426 1427 dpll = DPLL_INTEGRATED_REF_CLK_VLV | 1428 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1429 1430 if (crtc->pipe != PIPE_A) 1431 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 1432 1433 /* DPLL not used with DSI, but still need the rest set up */ 1434 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1435 dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV; 1436 1437 return dpll; 1438 } 1439 1440 void vlv_compute_dpll(struct intel_crtc_state *crtc_state) 1441 { 1442 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1443 1444 hw_state->dpll = vlv_dpll(crtc_state); 1445 hw_state->dpll_md = i965_dpll_md(crtc_state); 1446 } 1447 1448 static u32 chv_dpll(const struct intel_crtc_state *crtc_state) 1449 { 1450 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1451 u32 dpll; 1452 1453 dpll = DPLL_SSC_REF_CLK_CHV | 1454 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1455 1456 if (crtc->pipe != PIPE_A) 1457 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 1458 1459 /* DPLL not used with DSI, but still need the rest set up */ 1460 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1461 dpll |= DPLL_VCO_ENABLE; 1462 1463 return dpll; 1464 } 1465 1466 void chv_compute_dpll(struct intel_crtc_state *crtc_state) 1467 { 1468 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1469 1470 hw_state->dpll = chv_dpll(crtc_state); 1471 hw_state->dpll_md = i965_dpll_md(crtc_state); 1472 } 1473 1474 static int chv_crtc_compute_clock(struct intel_atomic_state *state, 1475 struct intel_crtc *crtc) 1476 { 1477 struct intel_crtc_state *crtc_state = 1478 intel_atomic_get_new_crtc_state(state, crtc); 1479 const struct intel_limit *limit = &intel_limits_chv; 1480 int refclk = 100000; 1481 1482 if (!crtc_state->clock_set && 1483 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1484 refclk, NULL, &crtc_state->dpll)) 1485 return -EINVAL; 1486 1487 chv_calc_dpll_params(refclk, &crtc_state->dpll); 1488 1489 chv_compute_dpll(crtc_state); 1490 1491 /* FIXME this is a mess */ 1492 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1493 return 0; 1494 1495 crtc_state->port_clock = crtc_state->dpll.dot; 1496 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1497 1498 return 0; 1499 } 1500 1501 static int vlv_crtc_compute_clock(struct intel_atomic_state *state, 1502 struct intel_crtc *crtc) 1503 { 1504 struct intel_crtc_state *crtc_state = 1505 intel_atomic_get_new_crtc_state(state, crtc); 1506 const struct intel_limit *limit = &intel_limits_vlv; 1507 int refclk = 100000; 1508 1509 if (!crtc_state->clock_set && 1510 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1511 refclk, NULL, &crtc_state->dpll)) 1512 return -EINVAL; 1513 1514 vlv_calc_dpll_params(refclk, &crtc_state->dpll); 1515 1516 vlv_compute_dpll(crtc_state); 1517 1518 /* FIXME this is a mess */ 1519 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1520 return 0; 1521 1522 crtc_state->port_clock = crtc_state->dpll.dot; 1523 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1524 1525 return 0; 1526 } 1527 1528 static int g4x_crtc_compute_clock(struct intel_atomic_state *state, 1529 struct intel_crtc *crtc) 1530 { 1531 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1532 struct intel_crtc_state *crtc_state = 1533 intel_atomic_get_new_crtc_state(state, crtc); 1534 const struct intel_limit *limit; 1535 int refclk = 96000; 1536 1537 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1538 if (intel_panel_use_ssc(dev_priv)) { 1539 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1540 drm_dbg_kms(&dev_priv->drm, 1541 "using SSC reference clock of %d kHz\n", 1542 refclk); 1543 } 1544 1545 if (intel_is_dual_link_lvds(dev_priv)) 1546 limit = &intel_limits_g4x_dual_channel_lvds; 1547 else 1548 limit = &intel_limits_g4x_single_channel_lvds; 1549 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 1550 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 1551 limit = &intel_limits_g4x_hdmi; 1552 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 1553 limit = &intel_limits_g4x_sdvo; 1554 } else { 1555 /* The option is for other outputs */ 1556 limit = &intel_limits_i9xx_sdvo; 1557 } 1558 1559 if (!crtc_state->clock_set && 1560 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1561 refclk, NULL, &crtc_state->dpll)) 1562 return -EINVAL; 1563 1564 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1565 1566 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1567 &crtc_state->dpll); 1568 1569 crtc_state->port_clock = crtc_state->dpll.dot; 1570 /* FIXME this is a mess */ 1571 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT)) 1572 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1573 1574 return 0; 1575 } 1576 1577 static int pnv_crtc_compute_clock(struct intel_atomic_state *state, 1578 struct intel_crtc *crtc) 1579 { 1580 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1581 struct intel_crtc_state *crtc_state = 1582 intel_atomic_get_new_crtc_state(state, crtc); 1583 const struct intel_limit *limit; 1584 int refclk = 96000; 1585 1586 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1587 if (intel_panel_use_ssc(dev_priv)) { 1588 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1589 drm_dbg_kms(&dev_priv->drm, 1590 "using SSC reference clock of %d kHz\n", 1591 refclk); 1592 } 1593 1594 limit = &pnv_limits_lvds; 1595 } else { 1596 limit = &pnv_limits_sdvo; 1597 } 1598 1599 if (!crtc_state->clock_set && 1600 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1601 refclk, NULL, &crtc_state->dpll)) 1602 return -EINVAL; 1603 1604 pnv_calc_dpll_params(refclk, &crtc_state->dpll); 1605 1606 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1607 &crtc_state->dpll); 1608 1609 crtc_state->port_clock = crtc_state->dpll.dot; 1610 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1611 1612 return 0; 1613 } 1614 1615 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state, 1616 struct intel_crtc *crtc) 1617 { 1618 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1619 struct intel_crtc_state *crtc_state = 1620 intel_atomic_get_new_crtc_state(state, crtc); 1621 const struct intel_limit *limit; 1622 int refclk = 96000; 1623 1624 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1625 if (intel_panel_use_ssc(dev_priv)) { 1626 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1627 drm_dbg_kms(&dev_priv->drm, 1628 "using SSC reference clock of %d kHz\n", 1629 refclk); 1630 } 1631 1632 limit = &intel_limits_i9xx_lvds; 1633 } else { 1634 limit = &intel_limits_i9xx_sdvo; 1635 } 1636 1637 if (!crtc_state->clock_set && 1638 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1639 refclk, NULL, &crtc_state->dpll)) 1640 return -EINVAL; 1641 1642 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1643 1644 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1645 &crtc_state->dpll); 1646 1647 crtc_state->port_clock = crtc_state->dpll.dot; 1648 /* FIXME this is a mess */ 1649 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT)) 1650 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1651 1652 return 0; 1653 } 1654 1655 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state, 1656 struct intel_crtc *crtc) 1657 { 1658 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1659 struct intel_crtc_state *crtc_state = 1660 intel_atomic_get_new_crtc_state(state, crtc); 1661 const struct intel_limit *limit; 1662 int refclk = 48000; 1663 1664 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1665 if (intel_panel_use_ssc(dev_priv)) { 1666 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1667 drm_dbg_kms(&dev_priv->drm, 1668 "using SSC reference clock of %d kHz\n", 1669 refclk); 1670 } 1671 1672 limit = &intel_limits_i8xx_lvds; 1673 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 1674 limit = &intel_limits_i8xx_dvo; 1675 } else { 1676 limit = &intel_limits_i8xx_dac; 1677 } 1678 1679 if (!crtc_state->clock_set && 1680 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1681 refclk, NULL, &crtc_state->dpll)) 1682 return -EINVAL; 1683 1684 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1685 1686 i8xx_compute_dpll(crtc_state, &crtc_state->dpll, 1687 &crtc_state->dpll); 1688 1689 crtc_state->port_clock = crtc_state->dpll.dot; 1690 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1691 1692 return 0; 1693 } 1694 1695 static const struct intel_dpll_funcs mtl_dpll_funcs = { 1696 .crtc_compute_clock = mtl_crtc_compute_clock, 1697 }; 1698 1699 static const struct intel_dpll_funcs dg2_dpll_funcs = { 1700 .crtc_compute_clock = dg2_crtc_compute_clock, 1701 }; 1702 1703 static const struct intel_dpll_funcs hsw_dpll_funcs = { 1704 .crtc_compute_clock = hsw_crtc_compute_clock, 1705 .crtc_get_shared_dpll = hsw_crtc_get_shared_dpll, 1706 }; 1707 1708 static const struct intel_dpll_funcs ilk_dpll_funcs = { 1709 .crtc_compute_clock = ilk_crtc_compute_clock, 1710 .crtc_get_shared_dpll = ilk_crtc_get_shared_dpll, 1711 }; 1712 1713 static const struct intel_dpll_funcs chv_dpll_funcs = { 1714 .crtc_compute_clock = chv_crtc_compute_clock, 1715 }; 1716 1717 static const struct intel_dpll_funcs vlv_dpll_funcs = { 1718 .crtc_compute_clock = vlv_crtc_compute_clock, 1719 }; 1720 1721 static const struct intel_dpll_funcs g4x_dpll_funcs = { 1722 .crtc_compute_clock = g4x_crtc_compute_clock, 1723 }; 1724 1725 static const struct intel_dpll_funcs pnv_dpll_funcs = { 1726 .crtc_compute_clock = pnv_crtc_compute_clock, 1727 }; 1728 1729 static const struct intel_dpll_funcs i9xx_dpll_funcs = { 1730 .crtc_compute_clock = i9xx_crtc_compute_clock, 1731 }; 1732 1733 static const struct intel_dpll_funcs i8xx_dpll_funcs = { 1734 .crtc_compute_clock = i8xx_crtc_compute_clock, 1735 }; 1736 1737 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state, 1738 struct intel_crtc *crtc) 1739 { 1740 struct drm_i915_private *i915 = to_i915(state->base.dev); 1741 struct intel_crtc_state *crtc_state = 1742 intel_atomic_get_new_crtc_state(state, crtc); 1743 int ret; 1744 1745 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state)); 1746 1747 memset(&crtc_state->dpll_hw_state, 0, 1748 sizeof(crtc_state->dpll_hw_state)); 1749 1750 if (!crtc_state->hw.enable) 1751 return 0; 1752 1753 ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc); 1754 if (ret) { 1755 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n", 1756 crtc->base.base.id, crtc->base.name); 1757 return ret; 1758 } 1759 1760 return 0; 1761 } 1762 1763 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state, 1764 struct intel_crtc *crtc) 1765 { 1766 struct drm_i915_private *i915 = to_i915(state->base.dev); 1767 struct intel_crtc_state *crtc_state = 1768 intel_atomic_get_new_crtc_state(state, crtc); 1769 int ret; 1770 1771 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state)); 1772 drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll); 1773 1774 if (!crtc_state->hw.enable || crtc_state->shared_dpll) 1775 return 0; 1776 1777 if (!i915->display.funcs.dpll->crtc_get_shared_dpll) 1778 return 0; 1779 1780 ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc); 1781 if (ret) { 1782 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n", 1783 crtc->base.base.id, crtc->base.name); 1784 return ret; 1785 } 1786 1787 return 0; 1788 } 1789 1790 void 1791 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv) 1792 { 1793 if (DISPLAY_VER(dev_priv) >= 14) 1794 dev_priv->display.funcs.dpll = &mtl_dpll_funcs; 1795 else if (IS_DG2(dev_priv)) 1796 dev_priv->display.funcs.dpll = &dg2_dpll_funcs; 1797 else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv)) 1798 dev_priv->display.funcs.dpll = &hsw_dpll_funcs; 1799 else if (HAS_PCH_SPLIT(dev_priv)) 1800 dev_priv->display.funcs.dpll = &ilk_dpll_funcs; 1801 else if (IS_CHERRYVIEW(dev_priv)) 1802 dev_priv->display.funcs.dpll = &chv_dpll_funcs; 1803 else if (IS_VALLEYVIEW(dev_priv)) 1804 dev_priv->display.funcs.dpll = &vlv_dpll_funcs; 1805 else if (IS_G4X(dev_priv)) 1806 dev_priv->display.funcs.dpll = &g4x_dpll_funcs; 1807 else if (IS_PINEVIEW(dev_priv)) 1808 dev_priv->display.funcs.dpll = &pnv_dpll_funcs; 1809 else if (DISPLAY_VER(dev_priv) != 2) 1810 dev_priv->display.funcs.dpll = &i9xx_dpll_funcs; 1811 else 1812 dev_priv->display.funcs.dpll = &i8xx_dpll_funcs; 1813 } 1814 1815 static bool i9xx_has_pps(struct drm_i915_private *dev_priv) 1816 { 1817 if (IS_I830(dev_priv)) 1818 return false; 1819 1820 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 1821 } 1822 1823 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state) 1824 { 1825 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1826 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1827 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1828 enum pipe pipe = crtc->pipe; 1829 int i; 1830 1831 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); 1832 1833 /* PLL is protected by panel, make sure we can write it */ 1834 if (i9xx_has_pps(dev_priv)) 1835 assert_pps_unlocked(dev_priv, pipe); 1836 1837 intel_de_write(dev_priv, FP0(pipe), hw_state->fp0); 1838 intel_de_write(dev_priv, FP1(pipe), hw_state->fp1); 1839 1840 /* 1841 * Apparently we need to have VGA mode enabled prior to changing 1842 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1843 * dividers, even though the register value does change. 1844 */ 1845 intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll & ~DPLL_VGA_MODE_DIS); 1846 intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll); 1847 1848 /* Wait for the clocks to stabilize. */ 1849 intel_de_posting_read(dev_priv, DPLL(pipe)); 1850 udelay(150); 1851 1852 if (DISPLAY_VER(dev_priv) >= 4) { 1853 intel_de_write(dev_priv, DPLL_MD(pipe), hw_state->dpll_md); 1854 } else { 1855 /* The pixel multiplier can only be updated once the 1856 * DPLL is enabled and the clocks are stable. 1857 * 1858 * So write it again. 1859 */ 1860 intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll); 1861 } 1862 1863 /* We do this three times for luck */ 1864 for (i = 0; i < 3; i++) { 1865 intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll); 1866 intel_de_posting_read(dev_priv, DPLL(pipe)); 1867 udelay(150); /* wait for warmup */ 1868 } 1869 } 1870 1871 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, 1872 enum dpio_phy phy, enum dpio_channel ch) 1873 { 1874 u32 tmp; 1875 1876 /* 1877 * PLLB opamp always calibrates to max value of 0x3f, force enable it 1878 * and set it to a reasonable value instead. 1879 */ 1880 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch)); 1881 tmp &= 0xffffff00; 1882 tmp |= 0x00000030; 1883 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp); 1884 1885 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11); 1886 tmp &= 0x00ffffff; 1887 tmp |= 0x8c000000; 1888 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp); 1889 1890 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch)); 1891 tmp &= 0xffffff00; 1892 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp); 1893 1894 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11); 1895 tmp &= 0x00ffffff; 1896 tmp |= 0xb0000000; 1897 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp); 1898 } 1899 1900 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state) 1901 { 1902 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1903 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1904 const struct dpll *clock = &crtc_state->dpll; 1905 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 1906 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 1907 enum pipe pipe = crtc->pipe; 1908 u32 tmp, coreclk; 1909 1910 vlv_dpio_get(dev_priv); 1911 1912 /* See eDP HDMI DPIO driver vbios notes doc */ 1913 1914 /* PLL B needs special handling */ 1915 if (pipe == PIPE_B) 1916 vlv_pllb_recal_opamp(dev_priv, phy, ch); 1917 1918 /* Set up Tx target for periodic Rcomp update */ 1919 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW17_BCAST, 0x0100000f); 1920 1921 /* Disable target IRef on PLL */ 1922 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW16(ch)); 1923 tmp &= 0x00ffffff; 1924 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW16(ch), tmp); 1925 1926 /* Disable fast lock */ 1927 vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610); 1928 1929 /* Set idtafcrecal before PLL is enabled */ 1930 tmp = DPIO_M1_DIV(clock->m1) | 1931 DPIO_M2_DIV(clock->m2) | 1932 DPIO_P1_DIV(clock->p1) | 1933 DPIO_P2_DIV(clock->p2) | 1934 DPIO_N_DIV(clock->n) | 1935 DPIO_K_DIV(1); 1936 1937 /* 1938 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 1939 * but we don't support that). 1940 * Note: don't use the DAC post divider as it seems unstable. 1941 */ 1942 tmp |= DPIO_S1_DIV(DPIO_S1_DIV_HDMIDP); 1943 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp); 1944 1945 tmp |= DPIO_ENABLE_CALIBRATION; 1946 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp); 1947 1948 /* Set HBR and RBR LPF coefficients */ 1949 if (crtc_state->port_clock == 162000 || 1950 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) || 1951 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1952 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch), 1953 0x009f0003); 1954 else 1955 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch), 1956 0x00d0000f); 1957 1958 if (intel_crtc_has_dp_encoder(crtc_state)) { 1959 /* Use SSC source */ 1960 if (pipe == PIPE_A) 1961 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1962 0x0df40000); 1963 else 1964 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1965 0x0df70000); 1966 } else { /* HDMI or VGA */ 1967 /* Use bend source */ 1968 if (pipe == PIPE_A) 1969 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1970 0x0df70000); 1971 else 1972 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1973 0x0df40000); 1974 } 1975 1976 coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(ch)); 1977 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 1978 if (intel_crtc_has_dp_encoder(crtc_state)) 1979 coreclk |= 0x01000000; 1980 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(ch), coreclk); 1981 1982 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW19(ch), 0x87871000); 1983 1984 vlv_dpio_put(dev_priv); 1985 } 1986 1987 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state) 1988 { 1989 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1990 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1991 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1992 enum pipe pipe = crtc->pipe; 1993 1994 intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll); 1995 intel_de_posting_read(dev_priv, DPLL(pipe)); 1996 udelay(150); 1997 1998 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1999 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe); 2000 } 2001 2002 void vlv_enable_pll(const struct intel_crtc_state *crtc_state) 2003 { 2004 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2005 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2006 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2007 enum pipe pipe = crtc->pipe; 2008 2009 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); 2010 2011 /* PLL is protected by panel, make sure we can write it */ 2012 assert_pps_unlocked(dev_priv, pipe); 2013 2014 /* Enable Refclk */ 2015 intel_de_write(dev_priv, DPLL(pipe), 2016 hw_state->dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 2017 2018 if (hw_state->dpll & DPLL_VCO_ENABLE) { 2019 vlv_prepare_pll(crtc_state); 2020 _vlv_enable_pll(crtc_state); 2021 } 2022 2023 intel_de_write(dev_priv, DPLL_MD(pipe), hw_state->dpll_md); 2024 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 2025 } 2026 2027 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state) 2028 { 2029 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2030 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2031 const struct dpll *clock = &crtc_state->dpll; 2032 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 2033 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 2034 u32 tmp, loopfilter, tribuf_calcntr; 2035 u32 m2_frac; 2036 2037 m2_frac = clock->m2 & 0x3fffff; 2038 2039 vlv_dpio_get(dev_priv); 2040 2041 /* p1 and p2 divider */ 2042 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(ch), 2043 DPIO_CHV_S1_DIV(5) | 2044 DPIO_CHV_P1_DIV(clock->p1) | 2045 DPIO_CHV_P2_DIV(clock->p2) | 2046 DPIO_CHV_K_DIV(1)); 2047 2048 /* Feedback post-divider - m2 */ 2049 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(ch), 2050 DPIO_CHV_M2_DIV(clock->m2 >> 22)); 2051 2052 /* Feedback refclk divider - n and m1 */ 2053 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(ch), 2054 DPIO_CHV_M1_DIV(DPIO_CHV_M1_DIV_BY_2) | 2055 DPIO_CHV_N_DIV(1)); 2056 2057 /* M2 fraction division */ 2058 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(ch), 2059 DPIO_CHV_M2_FRAC_DIV(m2_frac)); 2060 2061 /* M2 fraction division enable */ 2062 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch)); 2063 tmp &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 2064 tmp |= DPIO_CHV_FEEDFWD_GAIN(2); 2065 if (m2_frac) 2066 tmp |= DPIO_CHV_FRAC_DIV_EN; 2067 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(ch), tmp); 2068 2069 /* Program digital lock detect threshold */ 2070 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(ch)); 2071 tmp &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 2072 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 2073 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD(0x5); 2074 if (!m2_frac) 2075 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 2076 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(ch), tmp); 2077 2078 /* Loop filter */ 2079 if (clock->vco == 5400000) { 2080 loopfilter = DPIO_CHV_PROP_COEFF(0x3) | 2081 DPIO_CHV_INT_COEFF(0x8) | 2082 DPIO_CHV_GAIN_CTRL(0x1); 2083 tribuf_calcntr = 0x9; 2084 } else if (clock->vco <= 6200000) { 2085 loopfilter = DPIO_CHV_PROP_COEFF(0x5) | 2086 DPIO_CHV_INT_COEFF(0xB) | 2087 DPIO_CHV_GAIN_CTRL(0x3); 2088 tribuf_calcntr = 0x9; 2089 } else if (clock->vco <= 6480000) { 2090 loopfilter = DPIO_CHV_PROP_COEFF(0x4) | 2091 DPIO_CHV_INT_COEFF(0x9) | 2092 DPIO_CHV_GAIN_CTRL(0x3); 2093 tribuf_calcntr = 0x8; 2094 } else { 2095 /* Not supported. Apply the same limits as in the max case */ 2096 loopfilter = DPIO_CHV_PROP_COEFF(0x4) | 2097 DPIO_CHV_INT_COEFF(0x9) | 2098 DPIO_CHV_GAIN_CTRL(0x3); 2099 tribuf_calcntr = 0; 2100 } 2101 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(ch), loopfilter); 2102 2103 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(ch)); 2104 tmp &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 2105 tmp |= DPIO_CHV_TDC_TARGET_CNT(tribuf_calcntr); 2106 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(ch), tmp); 2107 2108 /* AFC Recal */ 2109 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), 2110 vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)) | 2111 DPIO_AFC_RECAL); 2112 2113 vlv_dpio_put(dev_priv); 2114 } 2115 2116 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state) 2117 { 2118 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2119 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2120 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2121 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 2122 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 2123 enum pipe pipe = crtc->pipe; 2124 u32 tmp; 2125 2126 vlv_dpio_get(dev_priv); 2127 2128 /* Enable back the 10bit clock to display controller */ 2129 tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)); 2130 tmp |= DPIO_DCLKP_EN; 2131 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), tmp); 2132 2133 vlv_dpio_put(dev_priv); 2134 2135 /* 2136 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 2137 */ 2138 udelay(1); 2139 2140 /* Enable PLL */ 2141 intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll); 2142 2143 /* Check PLL is locked */ 2144 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 2145 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe); 2146 } 2147 2148 void chv_enable_pll(const struct intel_crtc_state *crtc_state) 2149 { 2150 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2151 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2152 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2153 enum pipe pipe = crtc->pipe; 2154 2155 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); 2156 2157 /* PLL is protected by panel, make sure we can write it */ 2158 assert_pps_unlocked(dev_priv, pipe); 2159 2160 /* Enable Refclk and SSC */ 2161 intel_de_write(dev_priv, DPLL(pipe), 2162 hw_state->dpll & ~DPLL_VCO_ENABLE); 2163 2164 if (hw_state->dpll & DPLL_VCO_ENABLE) { 2165 chv_prepare_pll(crtc_state); 2166 _chv_enable_pll(crtc_state); 2167 } 2168 2169 if (pipe != PIPE_A) { 2170 /* 2171 * WaPixelRepeatModeFixForC0:chv 2172 * 2173 * DPLLCMD is AWOL. Use chicken bits to propagate 2174 * the value from DPLLBMD to either pipe B or C. 2175 */ 2176 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 2177 intel_de_write(dev_priv, DPLL_MD(PIPE_B), hw_state->dpll_md); 2178 intel_de_write(dev_priv, CBR4_VLV, 0); 2179 dev_priv->display.state.chv_dpll_md[pipe] = hw_state->dpll_md; 2180 2181 /* 2182 * DPLLB VGA mode also seems to cause problems. 2183 * We should always have it disabled. 2184 */ 2185 drm_WARN_ON(&dev_priv->drm, 2186 (intel_de_read(dev_priv, DPLL(PIPE_B)) & 2187 DPLL_VGA_MODE_DIS) == 0); 2188 } else { 2189 intel_de_write(dev_priv, DPLL_MD(pipe), hw_state->dpll_md); 2190 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 2191 } 2192 } 2193 2194 /** 2195 * vlv_force_pll_on - forcibly enable just the PLL 2196 * @dev_priv: i915 private structure 2197 * @pipe: pipe PLL to enable 2198 * @dpll: PLL configuration 2199 * 2200 * Enable the PLL for @pipe using the supplied @dpll config. To be used 2201 * in cases where we need the PLL enabled even when @pipe is not going to 2202 * be enabled. 2203 */ 2204 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, 2205 const struct dpll *dpll) 2206 { 2207 struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe); 2208 struct intel_crtc_state *crtc_state; 2209 2210 crtc_state = intel_crtc_state_alloc(crtc); 2211 if (!crtc_state) 2212 return -ENOMEM; 2213 2214 crtc_state->cpu_transcoder = (enum transcoder)pipe; 2215 crtc_state->pixel_multiplier = 1; 2216 crtc_state->dpll = *dpll; 2217 crtc_state->output_types = BIT(INTEL_OUTPUT_EDP); 2218 2219 if (IS_CHERRYVIEW(dev_priv)) { 2220 chv_compute_dpll(crtc_state); 2221 chv_enable_pll(crtc_state); 2222 } else { 2223 vlv_compute_dpll(crtc_state); 2224 vlv_enable_pll(crtc_state); 2225 } 2226 2227 intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi); 2228 2229 return 0; 2230 } 2231 2232 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 2233 { 2234 u32 val; 2235 2236 /* Make sure the pipe isn't still relying on us */ 2237 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe); 2238 2239 val = DPLL_INTEGRATED_REF_CLK_VLV | 2240 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 2241 if (pipe != PIPE_A) 2242 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 2243 2244 intel_de_write(dev_priv, DPLL(pipe), val); 2245 intel_de_posting_read(dev_priv, DPLL(pipe)); 2246 } 2247 2248 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 2249 { 2250 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 2251 enum dpio_phy phy = vlv_pipe_to_phy(pipe); 2252 u32 val; 2253 2254 /* Make sure the pipe isn't still relying on us */ 2255 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe); 2256 2257 val = DPLL_SSC_REF_CLK_CHV | 2258 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 2259 if (pipe != PIPE_A) 2260 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 2261 2262 intel_de_write(dev_priv, DPLL(pipe), val); 2263 intel_de_posting_read(dev_priv, DPLL(pipe)); 2264 2265 vlv_dpio_get(dev_priv); 2266 2267 /* Disable 10bit clock to display controller */ 2268 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)); 2269 val &= ~DPIO_DCLKP_EN; 2270 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), val); 2271 2272 vlv_dpio_put(dev_priv); 2273 } 2274 2275 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 2276 { 2277 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2278 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2279 enum pipe pipe = crtc->pipe; 2280 2281 /* Don't disable pipe or pipe PLLs if needed */ 2282 if (IS_I830(dev_priv)) 2283 return; 2284 2285 /* Make sure the pipe isn't still relying on us */ 2286 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); 2287 2288 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 2289 intel_de_posting_read(dev_priv, DPLL(pipe)); 2290 } 2291 2292 2293 /** 2294 * vlv_force_pll_off - forcibly disable just the PLL 2295 * @dev_priv: i915 private structure 2296 * @pipe: pipe PLL to disable 2297 * 2298 * Disable the PLL for @pipe. To be used in cases where we need 2299 * the PLL enabled even when @pipe is not going to be enabled. 2300 */ 2301 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) 2302 { 2303 if (IS_CHERRYVIEW(dev_priv)) 2304 chv_disable_pll(dev_priv, pipe); 2305 else 2306 vlv_disable_pll(dev_priv, pipe); 2307 } 2308 2309 /* Only for pre-ILK configs */ 2310 static void assert_pll(struct drm_i915_private *dev_priv, 2311 enum pipe pipe, bool state) 2312 { 2313 bool cur_state; 2314 2315 cur_state = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE; 2316 I915_STATE_WARN(dev_priv, cur_state != state, 2317 "PLL state assertion failure (expected %s, current %s)\n", 2318 str_on_off(state), str_on_off(cur_state)); 2319 } 2320 2321 void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe) 2322 { 2323 assert_pll(i915, pipe, true); 2324 } 2325 2326 void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe) 2327 { 2328 assert_pll(i915, pipe, false); 2329 } 2330