1 /* 2 * Copyright © 2014-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include "bxt_dpio_phy_regs.h" 25 #include "i915_reg.h" 26 #include "intel_ddi.h" 27 #include "intel_ddi_buf_trans.h" 28 #include "intel_de.h" 29 #include "intel_display_power_well.h" 30 #include "intel_display_types.h" 31 #include "intel_dp.h" 32 #include "intel_dpio_phy.h" 33 #include "vlv_dpio_phy_regs.h" 34 #include "vlv_sideband.h" 35 36 /** 37 * DOC: DPIO 38 * 39 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI 40 * ports. DPIO is the name given to such a display PHY. These PHYs 41 * don't follow the standard programming model using direct MMIO 42 * registers, and instead their registers must be accessed trough IOSF 43 * sideband. VLV has one such PHY for driving ports B and C, and CHV 44 * adds another PHY for driving port D. Each PHY responds to specific 45 * IOSF-SB port. 46 * 47 * Each display PHY is made up of one or two channels. Each channel 48 * houses a common lane part which contains the PLL and other common 49 * logic. CH0 common lane also contains the IOSF-SB logic for the 50 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock 51 * must be running when any DPIO registers are accessed. 52 * 53 * In addition to having their own registers, the PHYs are also 54 * controlled through some dedicated signals from the display 55 * controller. These include PLL reference clock enable, PLL enable, 56 * and CRI clock selection, for example. 57 * 58 * Eeach channel also has two splines (also called data lanes), and 59 * each spline is made up of one Physical Access Coding Sub-Layer 60 * (PCS) block and two TX lanes. So each channel has two PCS blocks 61 * and four TX lanes. The TX lanes are used as DP lanes or TMDS 62 * data/clock pairs depending on the output type. 63 * 64 * Additionally the PHY also contains an AUX lane with AUX blocks 65 * for each channel. This is used for DP AUX communication, but 66 * this fact isn't really relevant for the driver since AUX is 67 * controlled from the display controller side. No DPIO registers 68 * need to be accessed during AUX communication, 69 * 70 * Generally on VLV/CHV the common lane corresponds to the pipe and 71 * the spline (PCS/TX) corresponds to the port. 72 * 73 * For dual channel PHY (VLV/CHV): 74 * 75 * pipe A == CMN/PLL/REF CH0 76 * 77 * pipe B == CMN/PLL/REF CH1 78 * 79 * port B == PCS/TX CH0 80 * 81 * port C == PCS/TX CH1 82 * 83 * This is especially important when we cross the streams 84 * ie. drive port B with pipe B, or port C with pipe A. 85 * 86 * For single channel PHY (CHV): 87 * 88 * pipe C == CMN/PLL/REF CH0 89 * 90 * port D == PCS/TX CH0 91 * 92 * On BXT the entire PHY channel corresponds to the port. That means 93 * the PLL is also now associated with the port rather than the pipe, 94 * and so the clock needs to be routed to the appropriate transcoder. 95 * Port A PLL is directly connected to transcoder EDP and port B/C 96 * PLLs can be routed to any transcoder A/B/C. 97 * 98 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is 99 * digital port D (CHV) or port A (BXT). :: 100 * 101 * 102 * Dual channel PHY (VLV/CHV/BXT) 103 * --------------------------------- 104 * | CH0 | CH1 | 105 * | CMN/PLL/REF | CMN/PLL/REF | 106 * |---------------|---------------| Display PHY 107 * | PCS01 | PCS23 | PCS01 | PCS23 | 108 * |-------|-------|-------|-------| 109 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3| 110 * --------------------------------- 111 * | DDI0 | DDI1 | DP/HDMI ports 112 * --------------------------------- 113 * 114 * Single channel PHY (CHV/BXT) 115 * ----------------- 116 * | CH0 | 117 * | CMN/PLL/REF | 118 * |---------------| Display PHY 119 * | PCS01 | PCS23 | 120 * |-------|-------| 121 * |TX0|TX1|TX2|TX3| 122 * ----------------- 123 * | DDI2 | DP/HDMI port 124 * ----------------- 125 */ 126 127 /** 128 * struct bxt_dpio_phy_info - Hold info for a broxton DDI phy 129 */ 130 struct bxt_dpio_phy_info { 131 /** 132 * @dual_channel: true if this phy has a second channel. 133 */ 134 bool dual_channel; 135 136 /** 137 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor. 138 * Otherwise the GRC value will be copied from the phy indicated by 139 * this field. 140 */ 141 enum dpio_phy rcomp_phy; 142 143 /** 144 * @reset_delay: delay in us to wait before setting the common reset 145 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy. 146 */ 147 int reset_delay; 148 149 /** 150 * @pwron_mask: Mask with the appropriate bit set that would cause the 151 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON. 152 */ 153 u32 pwron_mask; 154 155 /** 156 * @channel: struct containing per channel information. 157 */ 158 struct { 159 /** 160 * @channel.port: which port maps to this channel. 161 */ 162 enum port port; 163 } channel[2]; 164 }; 165 166 static const struct bxt_dpio_phy_info bxt_dpio_phy_info[] = { 167 [DPIO_PHY0] = { 168 .dual_channel = true, 169 .rcomp_phy = DPIO_PHY1, 170 .pwron_mask = BIT(0), 171 172 .channel = { 173 [DPIO_CH0] = { .port = PORT_B }, 174 [DPIO_CH1] = { .port = PORT_C }, 175 } 176 }, 177 [DPIO_PHY1] = { 178 .dual_channel = false, 179 .rcomp_phy = -1, 180 .pwron_mask = BIT(1), 181 182 .channel = { 183 [DPIO_CH0] = { .port = PORT_A }, 184 } 185 }, 186 }; 187 188 static const struct bxt_dpio_phy_info glk_dpio_phy_info[] = { 189 [DPIO_PHY0] = { 190 .dual_channel = false, 191 .rcomp_phy = DPIO_PHY1, 192 .pwron_mask = BIT(0), 193 .reset_delay = 20, 194 195 .channel = { 196 [DPIO_CH0] = { .port = PORT_B }, 197 } 198 }, 199 [DPIO_PHY1] = { 200 .dual_channel = false, 201 .rcomp_phy = -1, 202 .pwron_mask = BIT(3), 203 .reset_delay = 20, 204 205 .channel = { 206 [DPIO_CH0] = { .port = PORT_A }, 207 } 208 }, 209 [DPIO_PHY2] = { 210 .dual_channel = false, 211 .rcomp_phy = DPIO_PHY1, 212 .pwron_mask = BIT(1), 213 .reset_delay = 20, 214 215 .channel = { 216 [DPIO_CH0] = { .port = PORT_C }, 217 } 218 }, 219 }; 220 221 static const struct bxt_dpio_phy_info * 222 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count) 223 { 224 if (IS_GEMINILAKE(dev_priv)) { 225 *count = ARRAY_SIZE(glk_dpio_phy_info); 226 return glk_dpio_phy_info; 227 } else { 228 *count = ARRAY_SIZE(bxt_dpio_phy_info); 229 return bxt_dpio_phy_info; 230 } 231 } 232 233 static const struct bxt_dpio_phy_info * 234 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy) 235 { 236 int count; 237 const struct bxt_dpio_phy_info *phy_list = 238 bxt_get_phy_list(dev_priv, &count); 239 240 return &phy_list[phy]; 241 } 242 243 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 244 enum dpio_phy *phy, enum dpio_channel *ch) 245 { 246 const struct bxt_dpio_phy_info *phy_info, *phys; 247 int i, count; 248 249 phys = bxt_get_phy_list(dev_priv, &count); 250 251 for (i = 0; i < count; i++) { 252 phy_info = &phys[i]; 253 254 if (port == phy_info->channel[DPIO_CH0].port) { 255 *phy = i; 256 *ch = DPIO_CH0; 257 return; 258 } 259 260 if (phy_info->dual_channel && 261 port == phy_info->channel[DPIO_CH1].port) { 262 *phy = i; 263 *ch = DPIO_CH1; 264 return; 265 } 266 } 267 268 drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c", 269 port_name(port)); 270 *phy = DPIO_PHY0; 271 *ch = DPIO_CH0; 272 } 273 274 /* 275 * Like intel_de_rmw() but reads from a single per-lane register and 276 * writes to the group register to write the same value to all the lanes. 277 */ 278 static u32 bxt_dpio_phy_rmw_grp(struct drm_i915_private *i915, 279 i915_reg_t reg_single, 280 i915_reg_t reg_group, 281 u32 clear, u32 set) 282 { 283 u32 old, val; 284 285 old = intel_de_read(i915, reg_single); 286 val = (old & ~clear) | set; 287 intel_de_write(i915, reg_group, val); 288 289 return old; 290 } 291 292 void bxt_dpio_phy_set_signal_levels(struct intel_encoder *encoder, 293 const struct intel_crtc_state *crtc_state) 294 { 295 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 296 const struct intel_ddi_buf_trans *trans; 297 enum dpio_channel ch; 298 enum dpio_phy phy; 299 int lane, n_entries; 300 301 trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries); 302 if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans)) 303 return; 304 305 bxt_port_to_phy_channel(dev_priv, encoder->port, &phy, &ch); 306 307 /* 308 * While we write to the group register to program all lanes at once we 309 * can read only lane registers and we pick lanes 0/1 for that. 310 */ 311 bxt_dpio_phy_rmw_grp(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch), 312 BXT_PORT_PCS_DW10_GRP(phy, ch), 313 TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT, 0); 314 315 for (lane = 0; lane < crtc_state->lane_count; lane++) { 316 int level = intel_ddi_level(encoder, crtc_state, lane); 317 318 intel_de_rmw(dev_priv, BXT_PORT_TX_DW2_LN(phy, ch, lane), 319 MARGIN_000_MASK | UNIQ_TRANS_SCALE_MASK, 320 MARGIN_000(trans->entries[level].bxt.margin) | 321 UNIQ_TRANS_SCALE(trans->entries[level].bxt.scale)); 322 } 323 324 for (lane = 0; lane < crtc_state->lane_count; lane++) { 325 int level = intel_ddi_level(encoder, crtc_state, lane); 326 u32 val; 327 328 intel_de_rmw(dev_priv, BXT_PORT_TX_DW3_LN(phy, ch, lane), 329 SCALE_DCOMP_METHOD, 330 trans->entries[level].bxt.enable ? 331 SCALE_DCOMP_METHOD : 0); 332 333 val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN(phy, ch, lane)); 334 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD)) 335 drm_err(&dev_priv->drm, 336 "Disabled scaling while ouniqetrangenmethod was set"); 337 } 338 339 for (lane = 0; lane < crtc_state->lane_count; lane++) { 340 int level = intel_ddi_level(encoder, crtc_state, lane); 341 342 intel_de_rmw(dev_priv, BXT_PORT_TX_DW4_LN(phy, ch, lane), 343 DE_EMPHASIS_MASK, 344 DE_EMPHASIS(trans->entries[level].bxt.deemphasis)); 345 } 346 347 bxt_dpio_phy_rmw_grp(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch), 348 BXT_PORT_PCS_DW10_GRP(phy, ch), 349 0, TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT); 350 } 351 352 bool bxt_dpio_phy_is_enabled(struct drm_i915_private *dev_priv, 353 enum dpio_phy phy) 354 { 355 const struct bxt_dpio_phy_info *phy_info; 356 357 phy_info = bxt_get_phy_info(dev_priv, phy); 358 359 if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask)) 360 return false; 361 362 if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) & 363 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) { 364 drm_dbg(&dev_priv->drm, 365 "DDI PHY %d powered, but power hasn't settled\n", phy); 366 367 return false; 368 } 369 370 if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) { 371 drm_dbg(&dev_priv->drm, 372 "DDI PHY %d powered, but still in reset\n", phy); 373 374 return false; 375 } 376 377 return true; 378 } 379 380 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy) 381 { 382 u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy)); 383 384 return REG_FIELD_GET(GRC_CODE_MASK, val); 385 } 386 387 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv, 388 enum dpio_phy phy) 389 { 390 if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy), 391 GRC_DONE, 10)) 392 drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n", 393 phy); 394 } 395 396 static void _bxt_dpio_phy_init(struct drm_i915_private *dev_priv, 397 enum dpio_phy phy) 398 { 399 const struct bxt_dpio_phy_info *phy_info; 400 u32 val; 401 402 phy_info = bxt_get_phy_info(dev_priv, phy); 403 404 if (bxt_dpio_phy_is_enabled(dev_priv, phy)) { 405 /* Still read out the GRC value for state verification */ 406 if (phy_info->rcomp_phy != -1) 407 dev_priv->display.state.bxt_phy_grc = bxt_get_grc(dev_priv, phy); 408 409 if (bxt_dpio_phy_verify_state(dev_priv, phy)) { 410 drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, " 411 "won't reprogram it\n", phy); 412 return; 413 } 414 415 drm_dbg(&dev_priv->drm, 416 "DDI PHY %d enabled with invalid state, " 417 "force reprogramming it\n", phy); 418 } 419 420 intel_de_rmw(dev_priv, BXT_P_CR_GT_DISP_PWRON, 0, phy_info->pwron_mask); 421 422 /* 423 * The PHY registers start out inaccessible and respond to reads with 424 * all 1s. Eventually they become accessible as they power up, then 425 * the reserved bit will give the default 0. Poll on the reserved bit 426 * becoming 0 to find when the PHY is accessible. 427 * The flag should get set in 100us according to the HW team, but 428 * use 1ms due to occasional timeouts observed with that. 429 */ 430 if (intel_de_wait_fw(dev_priv, BXT_PORT_CL1CM_DW0(phy), 431 PHY_RESERVED | PHY_POWER_GOOD, PHY_POWER_GOOD, 1)) 432 drm_err(&dev_priv->drm, "timeout during PHY%d power on\n", 433 phy); 434 435 /* Program PLL Rcomp code offset */ 436 intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW9(phy), 437 IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xE4)); 438 439 intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW10(phy), 440 IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xE4)); 441 442 /* Program power gating */ 443 intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW28(phy), 0, 444 OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG); 445 446 if (phy_info->dual_channel) 447 intel_de_rmw(dev_priv, BXT_PORT_CL2CM_DW6(phy), 0, 448 DW6_OLDO_DYN_PWR_DOWN_EN); 449 450 if (phy_info->rcomp_phy != -1) { 451 u32 grc_code; 452 453 bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy); 454 455 /* 456 * PHY0 isn't connected to an RCOMP resistor so copy over 457 * the corresponding calibrated value from PHY1, and disable 458 * the automatic calibration on PHY0. 459 */ 460 val = bxt_get_grc(dev_priv, phy_info->rcomp_phy); 461 dev_priv->display.state.bxt_phy_grc = val; 462 463 grc_code = GRC_CODE_FAST(val) | 464 GRC_CODE_SLOW(val) | 465 GRC_CODE_NOM(val); 466 intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code); 467 intel_de_rmw(dev_priv, BXT_PORT_REF_DW8(phy), 468 0, GRC_DIS | GRC_RDY_OVRD); 469 } 470 471 if (phy_info->reset_delay) 472 udelay(phy_info->reset_delay); 473 474 intel_de_rmw(dev_priv, BXT_PHY_CTL_FAMILY(phy), 0, COMMON_RESET_DIS); 475 } 476 477 void bxt_dpio_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy) 478 { 479 const struct bxt_dpio_phy_info *phy_info; 480 481 phy_info = bxt_get_phy_info(dev_priv, phy); 482 483 intel_de_rmw(dev_priv, BXT_PHY_CTL_FAMILY(phy), COMMON_RESET_DIS, 0); 484 485 intel_de_rmw(dev_priv, BXT_P_CR_GT_DISP_PWRON, phy_info->pwron_mask, 0); 486 } 487 488 void bxt_dpio_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy) 489 { 490 const struct bxt_dpio_phy_info *phy_info = 491 bxt_get_phy_info(dev_priv, phy); 492 enum dpio_phy rcomp_phy = phy_info->rcomp_phy; 493 bool was_enabled; 494 495 lockdep_assert_held(&dev_priv->display.power.domains.lock); 496 497 was_enabled = true; 498 if (rcomp_phy != -1) 499 was_enabled = bxt_dpio_phy_is_enabled(dev_priv, rcomp_phy); 500 501 /* 502 * We need to copy the GRC calibration value from rcomp_phy, 503 * so make sure it's powered up. 504 */ 505 if (!was_enabled) 506 _bxt_dpio_phy_init(dev_priv, rcomp_phy); 507 508 _bxt_dpio_phy_init(dev_priv, phy); 509 510 if (!was_enabled) 511 bxt_dpio_phy_uninit(dev_priv, rcomp_phy); 512 } 513 514 static bool __printf(6, 7) 515 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy, 516 i915_reg_t reg, u32 mask, u32 expected, 517 const char *reg_fmt, ...) 518 { 519 struct va_format vaf; 520 va_list args; 521 u32 val; 522 523 val = intel_de_read(dev_priv, reg); 524 if ((val & mask) == expected) 525 return true; 526 527 va_start(args, reg_fmt); 528 vaf.fmt = reg_fmt; 529 vaf.va = &args; 530 531 drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: " 532 "current %08x, expected %08x (mask %08x)\n", 533 phy, &vaf, reg.reg, val, (val & ~mask) | expected, 534 mask); 535 536 va_end(args); 537 538 return false; 539 } 540 541 bool bxt_dpio_phy_verify_state(struct drm_i915_private *dev_priv, 542 enum dpio_phy phy) 543 { 544 const struct bxt_dpio_phy_info *phy_info; 545 u32 mask; 546 bool ok; 547 548 phy_info = bxt_get_phy_info(dev_priv, phy); 549 550 #define _CHK(reg, mask, exp, fmt, ...) \ 551 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \ 552 ## __VA_ARGS__) 553 554 if (!bxt_dpio_phy_is_enabled(dev_priv, phy)) 555 return false; 556 557 ok = true; 558 559 /* PLL Rcomp code offset */ 560 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy), 561 IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xe4), 562 "BXT_PORT_CL1CM_DW9(%d)", phy); 563 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy), 564 IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xe4), 565 "BXT_PORT_CL1CM_DW10(%d)", phy); 566 567 /* Power gating */ 568 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG; 569 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask, 570 "BXT_PORT_CL1CM_DW28(%d)", phy); 571 572 if (phy_info->dual_channel) 573 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy), 574 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN, 575 "BXT_PORT_CL2CM_DW6(%d)", phy); 576 577 if (phy_info->rcomp_phy != -1) { 578 u32 grc_code = dev_priv->display.state.bxt_phy_grc; 579 580 grc_code = GRC_CODE_FAST(grc_code) | 581 GRC_CODE_SLOW(grc_code) | 582 GRC_CODE_NOM(grc_code); 583 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK | 584 GRC_CODE_NOM_MASK; 585 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code, 586 "BXT_PORT_REF_DW6(%d)", phy); 587 588 mask = GRC_DIS | GRC_RDY_OVRD; 589 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask, 590 "BXT_PORT_REF_DW8(%d)", phy); 591 } 592 593 return ok; 594 #undef _CHK 595 } 596 597 u8 598 bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count) 599 { 600 switch (lane_count) { 601 case 1: 602 return 0; 603 case 2: 604 return BIT(2) | BIT(0); 605 case 4: 606 return BIT(3) | BIT(2) | BIT(0); 607 default: 608 MISSING_CASE(lane_count); 609 610 return 0; 611 } 612 } 613 614 void bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder *encoder, 615 u8 lane_lat_optim_mask) 616 { 617 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 618 enum port port = encoder->port; 619 enum dpio_phy phy; 620 enum dpio_channel ch; 621 int lane; 622 623 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); 624 625 for (lane = 0; lane < 4; lane++) { 626 /* 627 * Note that on CHV this flag is called UPAR, but has 628 * the same function. 629 */ 630 intel_de_rmw(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane), 631 LATENCY_OPTIM, 632 lane_lat_optim_mask & BIT(lane) ? LATENCY_OPTIM : 0); 633 } 634 } 635 636 u8 637 bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder) 638 { 639 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 640 enum port port = encoder->port; 641 enum dpio_phy phy; 642 enum dpio_channel ch; 643 int lane; 644 u8 mask; 645 646 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); 647 648 mask = 0; 649 for (lane = 0; lane < 4; lane++) { 650 u32 val = intel_de_read(dev_priv, 651 BXT_PORT_TX_DW14_LN(phy, ch, lane)); 652 653 if (val & LATENCY_OPTIM) 654 mask |= BIT(lane); 655 } 656 657 return mask; 658 } 659 660 enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port) 661 { 662 switch (dig_port->base.port) { 663 default: 664 MISSING_CASE(dig_port->base.port); 665 fallthrough; 666 case PORT_B: 667 case PORT_D: 668 return DPIO_CH0; 669 case PORT_C: 670 return DPIO_CH1; 671 } 672 } 673 674 enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port) 675 { 676 switch (dig_port->base.port) { 677 default: 678 MISSING_CASE(dig_port->base.port); 679 fallthrough; 680 case PORT_B: 681 case PORT_C: 682 return DPIO_PHY0; 683 case PORT_D: 684 return DPIO_PHY1; 685 } 686 } 687 688 enum dpio_phy vlv_pipe_to_phy(enum pipe pipe) 689 { 690 switch (pipe) { 691 default: 692 MISSING_CASE(pipe); 693 fallthrough; 694 case PIPE_A: 695 case PIPE_B: 696 return DPIO_PHY0; 697 case PIPE_C: 698 return DPIO_PHY1; 699 } 700 } 701 702 enum dpio_channel vlv_pipe_to_channel(enum pipe pipe) 703 { 704 switch (pipe) { 705 default: 706 MISSING_CASE(pipe); 707 fallthrough; 708 case PIPE_A: 709 case PIPE_C: 710 return DPIO_CH0; 711 case PIPE_B: 712 return DPIO_CH1; 713 } 714 } 715 716 void chv_set_phy_signal_level(struct intel_encoder *encoder, 717 const struct intel_crtc_state *crtc_state, 718 u32 deemph_reg_value, u32 margin_reg_value, 719 bool uniq_trans_scale) 720 { 721 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 722 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 723 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 724 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); 725 u32 val; 726 int i; 727 728 vlv_dpio_get(dev_priv); 729 730 /* Clear calc init */ 731 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch)); 732 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); 733 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); 734 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; 735 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val); 736 737 if (crtc_state->lane_count > 2) { 738 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch)); 739 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); 740 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); 741 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; 742 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val); 743 } 744 745 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW9(ch)); 746 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); 747 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; 748 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW9(ch), val); 749 750 if (crtc_state->lane_count > 2) { 751 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW9(ch)); 752 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); 753 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; 754 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW9(ch), val); 755 } 756 757 /* Program swing deemph */ 758 for (i = 0; i < crtc_state->lane_count; i++) { 759 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW4(ch, i)); 760 val &= ~DPIO_SWING_DEEMPH9P5_MASK; 761 val |= DPIO_SWING_DEEMPH9P5(deemph_reg_value); 762 vlv_dpio_write(dev_priv, phy, CHV_TX_DW4(ch, i), val); 763 } 764 765 /* Program swing margin */ 766 for (i = 0; i < crtc_state->lane_count; i++) { 767 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW2(ch, i)); 768 769 val &= ~DPIO_SWING_MARGIN000_MASK; 770 val |= DPIO_SWING_MARGIN000(margin_reg_value); 771 772 /* 773 * Supposedly this value shouldn't matter when unique transition 774 * scale is disabled, but in fact it does matter. Let's just 775 * always program the same value and hope it's OK. 776 */ 777 val &= ~DPIO_UNIQ_TRANS_SCALE_MASK; 778 val |= DPIO_UNIQ_TRANS_SCALE(0x9a); 779 780 vlv_dpio_write(dev_priv, phy, CHV_TX_DW2(ch, i), val); 781 } 782 783 /* 784 * The document said it needs to set bit 27 for ch0 and bit 26 785 * for ch1. Might be a typo in the doc. 786 * For now, for this unique transition scale selection, set bit 787 * 27 for ch0 and ch1. 788 */ 789 for (i = 0; i < crtc_state->lane_count; i++) { 790 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW3(ch, i)); 791 if (uniq_trans_scale) 792 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN; 793 else 794 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN; 795 vlv_dpio_write(dev_priv, phy, CHV_TX_DW3(ch, i), val); 796 } 797 798 /* Start swing calculation */ 799 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch)); 800 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; 801 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val); 802 803 if (crtc_state->lane_count > 2) { 804 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch)); 805 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; 806 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val); 807 } 808 809 vlv_dpio_put(dev_priv); 810 } 811 812 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 813 const struct intel_crtc_state *crtc_state, 814 bool reset) 815 { 816 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 817 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 818 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 819 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); 820 u32 val; 821 822 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW0(ch)); 823 if (reset) 824 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); 825 else 826 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET; 827 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW0(ch), val); 828 829 if (crtc_state->lane_count > 2) { 830 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW0(ch)); 831 if (reset) 832 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); 833 else 834 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET; 835 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW0(ch), val); 836 } 837 838 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW1(ch)); 839 val |= CHV_PCS_REQ_SOFTRESET_EN; 840 if (reset) 841 val &= ~DPIO_PCS_CLK_SOFT_RESET; 842 else 843 val |= DPIO_PCS_CLK_SOFT_RESET; 844 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW1(ch), val); 845 846 if (crtc_state->lane_count > 2) { 847 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW1(ch)); 848 val |= CHV_PCS_REQ_SOFTRESET_EN; 849 if (reset) 850 val &= ~DPIO_PCS_CLK_SOFT_RESET; 851 else 852 val |= DPIO_PCS_CLK_SOFT_RESET; 853 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW1(ch), val); 854 } 855 } 856 857 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 858 const struct intel_crtc_state *crtc_state) 859 { 860 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 861 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 862 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 863 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 864 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); 865 enum pipe pipe = crtc->pipe; 866 unsigned int lane_mask = 867 intel_dp_unused_lane_mask(crtc_state->lane_count); 868 u32 val; 869 870 /* 871 * Must trick the second common lane into life. 872 * Otherwise we can't even access the PLL. 873 */ 874 if (ch == DPIO_CH0 && pipe == PIPE_B) 875 dig_port->release_cl2_override = 876 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true); 877 878 chv_phy_powergate_lanes(encoder, true, lane_mask); 879 880 vlv_dpio_get(dev_priv); 881 882 /* Assert data lane reset */ 883 chv_data_lane_soft_reset(encoder, crtc_state, true); 884 885 /* program left/right clock distribution */ 886 if (pipe != PIPE_B) { 887 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0); 888 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); 889 if (ch == DPIO_CH0) 890 val |= CHV_BUFLEFTENA1_FORCE; 891 if (ch == DPIO_CH1) 892 val |= CHV_BUFRIGHTENA1_FORCE; 893 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val); 894 } else { 895 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1); 896 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); 897 if (ch == DPIO_CH0) 898 val |= CHV_BUFLEFTENA2_FORCE; 899 if (ch == DPIO_CH1) 900 val |= CHV_BUFRIGHTENA2_FORCE; 901 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val); 902 } 903 904 /* program clock channel usage */ 905 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(ch)); 906 val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE; 907 if (pipe == PIPE_B) 908 val |= DPIO_PCS_USEDCLKCHANNEL; 909 else 910 val &= ~DPIO_PCS_USEDCLKCHANNEL; 911 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW8(ch), val); 912 913 if (crtc_state->lane_count > 2) { 914 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW8(ch)); 915 val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE; 916 if (pipe == PIPE_B) 917 val |= DPIO_PCS_USEDCLKCHANNEL; 918 else 919 val &= ~DPIO_PCS_USEDCLKCHANNEL; 920 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW8(ch), val); 921 } 922 923 /* 924 * This a a bit weird since generally CL 925 * matches the pipe, but here we need to 926 * pick the CL based on the port. 927 */ 928 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW19(ch)); 929 if (pipe == PIPE_B) 930 val |= CHV_CMN_USEDCLKCHANNEL; 931 else 932 val &= ~CHV_CMN_USEDCLKCHANNEL; 933 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW19(ch), val); 934 935 vlv_dpio_put(dev_priv); 936 } 937 938 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 939 const struct intel_crtc_state *crtc_state) 940 { 941 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 942 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 943 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 944 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 945 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); 946 int data, i, stagger; 947 u32 val; 948 949 vlv_dpio_get(dev_priv); 950 951 /* allow hardware to manage TX FIFO reset source */ 952 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch)); 953 val &= ~DPIO_LANEDESKEW_STRAP_OVRD; 954 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val); 955 956 if (crtc_state->lane_count > 2) { 957 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch)); 958 val &= ~DPIO_LANEDESKEW_STRAP_OVRD; 959 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val); 960 } 961 962 /* Program Tx lane latency optimal setting*/ 963 for (i = 0; i < crtc_state->lane_count; i++) { 964 /* Set the upar bit */ 965 if (crtc_state->lane_count == 1) 966 data = 0; 967 else 968 data = (i == 1) ? 0 : DPIO_UPAR; 969 vlv_dpio_write(dev_priv, phy, CHV_TX_DW14(ch, i), data); 970 } 971 972 /* Data lane stagger programming */ 973 if (crtc_state->port_clock > 270000) 974 stagger = 0x18; 975 else if (crtc_state->port_clock > 135000) 976 stagger = 0xd; 977 else if (crtc_state->port_clock > 67500) 978 stagger = 0x7; 979 else if (crtc_state->port_clock > 33750) 980 stagger = 0x4; 981 else 982 stagger = 0x2; 983 984 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch)); 985 val |= DPIO_TX2_STAGGER_MASK(0x1f); 986 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val); 987 988 if (crtc_state->lane_count > 2) { 989 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch)); 990 val |= DPIO_TX2_STAGGER_MASK(0x1f); 991 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val); 992 } 993 994 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW12(ch), 995 DPIO_LANESTAGGER_STRAP(stagger) | 996 DPIO_LANESTAGGER_STRAP_OVRD | 997 DPIO_TX1_STAGGER_MASK(0x1f) | 998 DPIO_TX1_STAGGER_MULT(6) | 999 DPIO_TX2_STAGGER_MULT(0)); 1000 1001 if (crtc_state->lane_count > 2) { 1002 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW12(ch), 1003 DPIO_LANESTAGGER_STRAP(stagger) | 1004 DPIO_LANESTAGGER_STRAP_OVRD | 1005 DPIO_TX1_STAGGER_MASK(0x1f) | 1006 DPIO_TX1_STAGGER_MULT(7) | 1007 DPIO_TX2_STAGGER_MULT(5)); 1008 } 1009 1010 /* Deassert data lane reset */ 1011 chv_data_lane_soft_reset(encoder, crtc_state, false); 1012 1013 vlv_dpio_put(dev_priv); 1014 } 1015 1016 void chv_phy_release_cl2_override(struct intel_encoder *encoder) 1017 { 1018 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1019 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1020 1021 if (dig_port->release_cl2_override) { 1022 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false); 1023 dig_port->release_cl2_override = false; 1024 } 1025 } 1026 1027 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 1028 const struct intel_crtc_state *old_crtc_state) 1029 { 1030 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1031 enum dpio_phy phy = vlv_dig_port_to_phy(enc_to_dig_port(encoder)); 1032 enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe; 1033 u32 val; 1034 1035 vlv_dpio_get(dev_priv); 1036 1037 /* disable left/right clock distribution */ 1038 if (pipe != PIPE_B) { 1039 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0); 1040 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); 1041 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val); 1042 } else { 1043 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1); 1044 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); 1045 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val); 1046 } 1047 1048 vlv_dpio_put(dev_priv); 1049 1050 /* 1051 * Leave the power down bit cleared for at least one 1052 * lane so that chv_powergate_phy_ch() will power 1053 * on something when the channel is otherwise unused. 1054 * When the port is off and the override is removed 1055 * the lanes power down anyway, so otherwise it doesn't 1056 * really matter what the state of power down bits is 1057 * after this. 1058 */ 1059 chv_phy_powergate_lanes(encoder, false, 0x0); 1060 } 1061 1062 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 1063 const struct intel_crtc_state *crtc_state, 1064 u32 demph_reg_value, u32 preemph_reg_value, 1065 u32 uniqtranscale_reg_value, u32 tx3_demph) 1066 { 1067 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1068 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1069 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 1070 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); 1071 1072 vlv_dpio_get(dev_priv); 1073 1074 vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), 0x00000000); 1075 vlv_dpio_write(dev_priv, phy, VLV_TX_DW4_GRP(ch), demph_reg_value); 1076 vlv_dpio_write(dev_priv, phy, VLV_TX_DW2_GRP(ch), 1077 uniqtranscale_reg_value); 1078 vlv_dpio_write(dev_priv, phy, VLV_TX_DW3_GRP(ch), 0x0C782040); 1079 1080 if (tx3_demph) 1081 vlv_dpio_write(dev_priv, phy, VLV_TX_DW4(ch, 3), tx3_demph); 1082 1083 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW11_GRP(ch), 0x00030000); 1084 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW9_GRP(ch), preemph_reg_value); 1085 vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), DPIO_TX_OCALINIT_EN); 1086 1087 vlv_dpio_put(dev_priv); 1088 } 1089 1090 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 1091 const struct intel_crtc_state *crtc_state) 1092 { 1093 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1094 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1095 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 1096 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); 1097 1098 /* Program Tx lane resets to default */ 1099 vlv_dpio_get(dev_priv); 1100 1101 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch), 1102 DPIO_PCS_TX_LANE2_RESET | 1103 DPIO_PCS_TX_LANE1_RESET); 1104 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch), 1105 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | 1106 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | 1107 DPIO_PCS_CLK_DATAWIDTH_8_10 | 1108 DPIO_PCS_CLK_SOFT_RESET); 1109 1110 /* Fix up inter-pair skew failure */ 1111 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW12_GRP(ch), 0x00750f00); 1112 vlv_dpio_write(dev_priv, phy, VLV_TX_DW11_GRP(ch), 0x00001500); 1113 vlv_dpio_write(dev_priv, phy, VLV_TX_DW14_GRP(ch), 0x40400000); 1114 1115 vlv_dpio_put(dev_priv); 1116 } 1117 1118 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 1119 const struct intel_crtc_state *crtc_state) 1120 { 1121 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1122 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1123 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1124 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1125 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 1126 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); 1127 enum pipe pipe = crtc->pipe; 1128 u32 val; 1129 1130 vlv_dpio_get(dev_priv); 1131 1132 /* Enable clock channels for this port */ 1133 val = DPIO_PCS_USEDCLKCHANNEL_OVRRIDE; 1134 if (pipe == PIPE_B) 1135 val |= DPIO_PCS_USEDCLKCHANNEL; 1136 val |= 0xc4; 1137 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW8_GRP(ch), val); 1138 1139 /* Program lane clock */ 1140 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW14_GRP(ch), 0x00760018); 1141 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW23_GRP(ch), 0x00400888); 1142 1143 vlv_dpio_put(dev_priv); 1144 } 1145 1146 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 1147 const struct intel_crtc_state *old_crtc_state) 1148 { 1149 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1150 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1151 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 1152 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); 1153 1154 vlv_dpio_get(dev_priv); 1155 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch), 0x00000000); 1156 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch), 0x00e00060); 1157 vlv_dpio_put(dev_priv); 1158 } 1159