xref: /linux/drivers/gpu/drm/i915/display/intel_dpio_phy.c (revision ab6a0edb7ded060e84dc1a24e3936c86c3d048b9)
1 /*
2  * Copyright © 2014-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "i915_reg.h"
25 #include "intel_ddi.h"
26 #include "intel_ddi_buf_trans.h"
27 #include "intel_de.h"
28 #include "intel_display_power_well.h"
29 #include "intel_display_types.h"
30 #include "intel_dp.h"
31 #include "intel_dpio_phy.h"
32 #include "vlv_sideband.h"
33 
34 /**
35  * DOC: DPIO
36  *
37  * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
38  * ports. DPIO is the name given to such a display PHY. These PHYs
39  * don't follow the standard programming model using direct MMIO
40  * registers, and instead their registers must be accessed trough IOSF
41  * sideband. VLV has one such PHY for driving ports B and C, and CHV
42  * adds another PHY for driving port D. Each PHY responds to specific
43  * IOSF-SB port.
44  *
45  * Each display PHY is made up of one or two channels. Each channel
46  * houses a common lane part which contains the PLL and other common
47  * logic. CH0 common lane also contains the IOSF-SB logic for the
48  * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
49  * must be running when any DPIO registers are accessed.
50  *
51  * In addition to having their own registers, the PHYs are also
52  * controlled through some dedicated signals from the display
53  * controller. These include PLL reference clock enable, PLL enable,
54  * and CRI clock selection, for example.
55  *
56  * Eeach channel also has two splines (also called data lanes), and
57  * each spline is made up of one Physical Access Coding Sub-Layer
58  * (PCS) block and two TX lanes. So each channel has two PCS blocks
59  * and four TX lanes. The TX lanes are used as DP lanes or TMDS
60  * data/clock pairs depending on the output type.
61  *
62  * Additionally the PHY also contains an AUX lane with AUX blocks
63  * for each channel. This is used for DP AUX communication, but
64  * this fact isn't really relevant for the driver since AUX is
65  * controlled from the display controller side. No DPIO registers
66  * need to be accessed during AUX communication,
67  *
68  * Generally on VLV/CHV the common lane corresponds to the pipe and
69  * the spline (PCS/TX) corresponds to the port.
70  *
71  * For dual channel PHY (VLV/CHV):
72  *
73  *  pipe A == CMN/PLL/REF CH0
74  *
75  *  pipe B == CMN/PLL/REF CH1
76  *
77  *  port B == PCS/TX CH0
78  *
79  *  port C == PCS/TX CH1
80  *
81  * This is especially important when we cross the streams
82  * ie. drive port B with pipe B, or port C with pipe A.
83  *
84  * For single channel PHY (CHV):
85  *
86  *  pipe C == CMN/PLL/REF CH0
87  *
88  *  port D == PCS/TX CH0
89  *
90  * On BXT the entire PHY channel corresponds to the port. That means
91  * the PLL is also now associated with the port rather than the pipe,
92  * and so the clock needs to be routed to the appropriate transcoder.
93  * Port A PLL is directly connected to transcoder EDP and port B/C
94  * PLLs can be routed to any transcoder A/B/C.
95  *
96  * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
97  * digital port D (CHV) or port A (BXT). ::
98  *
99  *
100  *     Dual channel PHY (VLV/CHV/BXT)
101  *     ---------------------------------
102  *     |      CH0      |      CH1      |
103  *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
104  *     |---------------|---------------| Display PHY
105  *     | PCS01 | PCS23 | PCS01 | PCS23 |
106  *     |-------|-------|-------|-------|
107  *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
108  *     ---------------------------------
109  *     |     DDI0      |     DDI1      | DP/HDMI ports
110  *     ---------------------------------
111  *
112  *     Single channel PHY (CHV/BXT)
113  *     -----------------
114  *     |      CH0      |
115  *     |  CMN/PLL/REF  |
116  *     |---------------| Display PHY
117  *     | PCS01 | PCS23 |
118  *     |-------|-------|
119  *     |TX0|TX1|TX2|TX3|
120  *     -----------------
121  *     |     DDI2      | DP/HDMI port
122  *     -----------------
123  */
124 
125 /**
126  * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
127  */
128 struct bxt_ddi_phy_info {
129 	/**
130 	 * @dual_channel: true if this phy has a second channel.
131 	 */
132 	bool dual_channel;
133 
134 	/**
135 	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
136 	 * Otherwise the GRC value will be copied from the phy indicated by
137 	 * this field.
138 	 */
139 	enum dpio_phy rcomp_phy;
140 
141 	/**
142 	 * @reset_delay: delay in us to wait before setting the common reset
143 	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
144 	 */
145 	int reset_delay;
146 
147 	/**
148 	 * @pwron_mask: Mask with the appropriate bit set that would cause the
149 	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
150 	 */
151 	u32 pwron_mask;
152 
153 	/**
154 	 * @channel: struct containing per channel information.
155 	 */
156 	struct {
157 		/**
158 		 * @channel.port: which port maps to this channel.
159 		 */
160 		enum port port;
161 	} channel[2];
162 };
163 
164 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
165 	[DPIO_PHY0] = {
166 		.dual_channel = true,
167 		.rcomp_phy = DPIO_PHY1,
168 		.pwron_mask = BIT(0),
169 
170 		.channel = {
171 			[DPIO_CH0] = { .port = PORT_B },
172 			[DPIO_CH1] = { .port = PORT_C },
173 		}
174 	},
175 	[DPIO_PHY1] = {
176 		.dual_channel = false,
177 		.rcomp_phy = -1,
178 		.pwron_mask = BIT(1),
179 
180 		.channel = {
181 			[DPIO_CH0] = { .port = PORT_A },
182 		}
183 	},
184 };
185 
186 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
187 	[DPIO_PHY0] = {
188 		.dual_channel = false,
189 		.rcomp_phy = DPIO_PHY1,
190 		.pwron_mask = BIT(0),
191 		.reset_delay = 20,
192 
193 		.channel = {
194 			[DPIO_CH0] = { .port = PORT_B },
195 		}
196 	},
197 	[DPIO_PHY1] = {
198 		.dual_channel = false,
199 		.rcomp_phy = -1,
200 		.pwron_mask = BIT(3),
201 		.reset_delay = 20,
202 
203 		.channel = {
204 			[DPIO_CH0] = { .port = PORT_A },
205 		}
206 	},
207 	[DPIO_PHY2] = {
208 		.dual_channel = false,
209 		.rcomp_phy = DPIO_PHY1,
210 		.pwron_mask = BIT(1),
211 		.reset_delay = 20,
212 
213 		.channel = {
214 			[DPIO_CH0] = { .port = PORT_C },
215 		}
216 	},
217 };
218 
219 static const struct bxt_ddi_phy_info *
220 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
221 {
222 	if (IS_GEMINILAKE(dev_priv)) {
223 		*count =  ARRAY_SIZE(glk_ddi_phy_info);
224 		return glk_ddi_phy_info;
225 	} else {
226 		*count =  ARRAY_SIZE(bxt_ddi_phy_info);
227 		return bxt_ddi_phy_info;
228 	}
229 }
230 
231 static const struct bxt_ddi_phy_info *
232 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
233 {
234 	int count;
235 	const struct bxt_ddi_phy_info *phy_list =
236 		bxt_get_phy_list(dev_priv, &count);
237 
238 	return &phy_list[phy];
239 }
240 
241 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
242 			     enum dpio_phy *phy, enum dpio_channel *ch)
243 {
244 	const struct bxt_ddi_phy_info *phy_info, *phys;
245 	int i, count;
246 
247 	phys = bxt_get_phy_list(dev_priv, &count);
248 
249 	for (i = 0; i < count; i++) {
250 		phy_info = &phys[i];
251 
252 		if (port == phy_info->channel[DPIO_CH0].port) {
253 			*phy = i;
254 			*ch = DPIO_CH0;
255 			return;
256 		}
257 
258 		if (phy_info->dual_channel &&
259 		    port == phy_info->channel[DPIO_CH1].port) {
260 			*phy = i;
261 			*ch = DPIO_CH1;
262 			return;
263 		}
264 	}
265 
266 	drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c",
267 		 port_name(port));
268 	*phy = DPIO_PHY0;
269 	*ch = DPIO_CH0;
270 }
271 
272 void bxt_ddi_phy_set_signal_levels(struct intel_encoder *encoder,
273 				   const struct intel_crtc_state *crtc_state)
274 {
275 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
276 	int level = intel_ddi_level(encoder, crtc_state, 0);
277 	const struct intel_ddi_buf_trans *trans;
278 	enum dpio_channel ch;
279 	enum dpio_phy phy;
280 	int n_entries;
281 	u32 val;
282 
283 	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
284 	if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans))
285 		return;
286 
287 	bxt_port_to_phy_channel(dev_priv, encoder->port, &phy, &ch);
288 
289 	/*
290 	 * While we write to the group register to program all lanes at once we
291 	 * can read only lane registers and we pick lanes 0/1 for that.
292 	 */
293 	val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
294 	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
295 	intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
296 
297 	val = intel_de_read(dev_priv, BXT_PORT_TX_DW2_LN0(phy, ch));
298 	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
299 	val |= trans->entries[level].bxt.margin << MARGIN_000_SHIFT |
300 		trans->entries[level].bxt.scale << UNIQ_TRANS_SCALE_SHIFT;
301 	intel_de_write(dev_priv, BXT_PORT_TX_DW2_GRP(phy, ch), val);
302 
303 	val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN0(phy, ch));
304 	val &= ~SCALE_DCOMP_METHOD;
305 	if (trans->entries[level].bxt.enable)
306 		val |= SCALE_DCOMP_METHOD;
307 
308 	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
309 		drm_err(&dev_priv->drm,
310 			"Disabled scaling while ouniqetrangenmethod was set");
311 
312 	intel_de_write(dev_priv, BXT_PORT_TX_DW3_GRP(phy, ch), val);
313 
314 	val = intel_de_read(dev_priv, BXT_PORT_TX_DW4_LN0(phy, ch));
315 	val &= ~DE_EMPHASIS;
316 	val |= trans->entries[level].bxt.deemphasis << DEEMPH_SHIFT;
317 	intel_de_write(dev_priv, BXT_PORT_TX_DW4_GRP(phy, ch), val);
318 
319 	val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
320 	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
321 	intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
322 }
323 
324 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
325 			    enum dpio_phy phy)
326 {
327 	const struct bxt_ddi_phy_info *phy_info;
328 
329 	phy_info = bxt_get_phy_info(dev_priv, phy);
330 
331 	if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
332 		return false;
333 
334 	if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) &
335 	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
336 		drm_dbg(&dev_priv->drm,
337 			"DDI PHY %d powered, but power hasn't settled\n", phy);
338 
339 		return false;
340 	}
341 
342 	if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
343 		drm_dbg(&dev_priv->drm,
344 			"DDI PHY %d powered, but still in reset\n", phy);
345 
346 		return false;
347 	}
348 
349 	return true;
350 }
351 
352 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
353 {
354 	u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy));
355 
356 	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
357 }
358 
359 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
360 				  enum dpio_phy phy)
361 {
362 	if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
363 				  GRC_DONE, 10))
364 		drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n",
365 			phy);
366 }
367 
368 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
369 			      enum dpio_phy phy)
370 {
371 	const struct bxt_ddi_phy_info *phy_info;
372 	u32 val;
373 
374 	phy_info = bxt_get_phy_info(dev_priv, phy);
375 
376 	if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
377 		/* Still read out the GRC value for state verification */
378 		if (phy_info->rcomp_phy != -1)
379 			dev_priv->display.state.bxt_phy_grc = bxt_get_grc(dev_priv, phy);
380 
381 		if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
382 			drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, "
383 				"won't reprogram it\n", phy);
384 			return;
385 		}
386 
387 		drm_dbg(&dev_priv->drm,
388 			"DDI PHY %d enabled with invalid state, "
389 			"force reprogramming it\n", phy);
390 	}
391 
392 	intel_de_rmw(dev_priv, BXT_P_CR_GT_DISP_PWRON, 0, phy_info->pwron_mask);
393 
394 	/*
395 	 * The PHY registers start out inaccessible and respond to reads with
396 	 * all 1s.  Eventually they become accessible as they power up, then
397 	 * the reserved bit will give the default 0.  Poll on the reserved bit
398 	 * becoming 0 to find when the PHY is accessible.
399 	 * The flag should get set in 100us according to the HW team, but
400 	 * use 1ms due to occasional timeouts observed with that.
401 	 */
402 	if (intel_de_wait_fw(dev_priv, BXT_PORT_CL1CM_DW0(phy),
403 			     PHY_RESERVED | PHY_POWER_GOOD, PHY_POWER_GOOD, 1))
404 		drm_err(&dev_priv->drm, "timeout during PHY%d power on\n",
405 			phy);
406 
407 	/* Program PLL Rcomp code offset */
408 	intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW9(phy), IREF0RC_OFFSET_MASK,
409 		     0xE4 << IREF0RC_OFFSET_SHIFT);
410 
411 	intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW10(phy), IREF1RC_OFFSET_MASK,
412 		     0xE4 << IREF1RC_OFFSET_SHIFT);
413 
414 	/* Program power gating */
415 	intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW28(phy), 0,
416 		     OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG);
417 
418 	if (phy_info->dual_channel)
419 		intel_de_rmw(dev_priv, BXT_PORT_CL2CM_DW6(phy), 0,
420 			     DW6_OLDO_DYN_PWR_DOWN_EN);
421 
422 	if (phy_info->rcomp_phy != -1) {
423 		u32 grc_code;
424 
425 		bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
426 
427 		/*
428 		 * PHY0 isn't connected to an RCOMP resistor so copy over
429 		 * the corresponding calibrated value from PHY1, and disable
430 		 * the automatic calibration on PHY0.
431 		 */
432 		val = bxt_get_grc(dev_priv, phy_info->rcomp_phy);
433 		dev_priv->display.state.bxt_phy_grc = val;
434 
435 		grc_code = val << GRC_CODE_FAST_SHIFT |
436 			   val << GRC_CODE_SLOW_SHIFT |
437 			   val;
438 		intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code);
439 		intel_de_rmw(dev_priv, BXT_PORT_REF_DW8(phy),
440 			     0, GRC_DIS | GRC_RDY_OVRD);
441 	}
442 
443 	if (phy_info->reset_delay)
444 		udelay(phy_info->reset_delay);
445 
446 	intel_de_rmw(dev_priv, BXT_PHY_CTL_FAMILY(phy), 0, COMMON_RESET_DIS);
447 }
448 
449 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
450 {
451 	const struct bxt_ddi_phy_info *phy_info;
452 
453 	phy_info = bxt_get_phy_info(dev_priv, phy);
454 
455 	intel_de_rmw(dev_priv, BXT_PHY_CTL_FAMILY(phy), COMMON_RESET_DIS, 0);
456 
457 	intel_de_rmw(dev_priv, BXT_P_CR_GT_DISP_PWRON, phy_info->pwron_mask, 0);
458 }
459 
460 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
461 {
462 	const struct bxt_ddi_phy_info *phy_info =
463 		bxt_get_phy_info(dev_priv, phy);
464 	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
465 	bool was_enabled;
466 
467 	lockdep_assert_held(&dev_priv->display.power.domains.lock);
468 
469 	was_enabled = true;
470 	if (rcomp_phy != -1)
471 		was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
472 
473 	/*
474 	 * We need to copy the GRC calibration value from rcomp_phy,
475 	 * so make sure it's powered up.
476 	 */
477 	if (!was_enabled)
478 		_bxt_ddi_phy_init(dev_priv, rcomp_phy);
479 
480 	_bxt_ddi_phy_init(dev_priv, phy);
481 
482 	if (!was_enabled)
483 		bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
484 }
485 
486 static bool __printf(6, 7)
487 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
488 		       i915_reg_t reg, u32 mask, u32 expected,
489 		       const char *reg_fmt, ...)
490 {
491 	struct va_format vaf;
492 	va_list args;
493 	u32 val;
494 
495 	val = intel_de_read(dev_priv, reg);
496 	if ((val & mask) == expected)
497 		return true;
498 
499 	va_start(args, reg_fmt);
500 	vaf.fmt = reg_fmt;
501 	vaf.va = &args;
502 
503 	drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
504 			 "current %08x, expected %08x (mask %08x)\n",
505 			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
506 			 mask);
507 
508 	va_end(args);
509 
510 	return false;
511 }
512 
513 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
514 			      enum dpio_phy phy)
515 {
516 	const struct bxt_ddi_phy_info *phy_info;
517 	u32 mask;
518 	bool ok;
519 
520 	phy_info = bxt_get_phy_info(dev_priv, phy);
521 
522 #define _CHK(reg, mask, exp, fmt, ...)					\
523 	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
524 			       ## __VA_ARGS__)
525 
526 	if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
527 		return false;
528 
529 	ok = true;
530 
531 	/* PLL Rcomp code offset */
532 	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
533 		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
534 		    "BXT_PORT_CL1CM_DW9(%d)", phy);
535 	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
536 		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
537 		    "BXT_PORT_CL1CM_DW10(%d)", phy);
538 
539 	/* Power gating */
540 	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
541 	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
542 		    "BXT_PORT_CL1CM_DW28(%d)", phy);
543 
544 	if (phy_info->dual_channel)
545 		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
546 			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
547 			   "BXT_PORT_CL2CM_DW6(%d)", phy);
548 
549 	if (phy_info->rcomp_phy != -1) {
550 		u32 grc_code = dev_priv->display.state.bxt_phy_grc;
551 
552 		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
553 			   grc_code << GRC_CODE_SLOW_SHIFT |
554 			   grc_code;
555 		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
556 		       GRC_CODE_NOM_MASK;
557 		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
558 			   "BXT_PORT_REF_DW6(%d)", phy);
559 
560 		mask = GRC_DIS | GRC_RDY_OVRD;
561 		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
562 			    "BXT_PORT_REF_DW8(%d)", phy);
563 	}
564 
565 	return ok;
566 #undef _CHK
567 }
568 
569 u8
570 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)
571 {
572 	switch (lane_count) {
573 	case 1:
574 		return 0;
575 	case 2:
576 		return BIT(2) | BIT(0);
577 	case 4:
578 		return BIT(3) | BIT(2) | BIT(0);
579 	default:
580 		MISSING_CASE(lane_count);
581 
582 		return 0;
583 	}
584 }
585 
586 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
587 				     u8 lane_lat_optim_mask)
588 {
589 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
590 	enum port port = encoder->port;
591 	enum dpio_phy phy;
592 	enum dpio_channel ch;
593 	int lane;
594 
595 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
596 
597 	for (lane = 0; lane < 4; lane++) {
598 		u32 val = intel_de_read(dev_priv,
599 					BXT_PORT_TX_DW14_LN(phy, ch, lane));
600 
601 		/*
602 		 * Note that on CHV this flag is called UPAR, but has
603 		 * the same function.
604 		 */
605 		val &= ~LATENCY_OPTIM;
606 		if (lane_lat_optim_mask & BIT(lane))
607 			val |= LATENCY_OPTIM;
608 
609 		intel_de_write(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane),
610 			       val);
611 	}
612 }
613 
614 u8
615 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
616 {
617 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
618 	enum port port = encoder->port;
619 	enum dpio_phy phy;
620 	enum dpio_channel ch;
621 	int lane;
622 	u8 mask;
623 
624 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
625 
626 	mask = 0;
627 	for (lane = 0; lane < 4; lane++) {
628 		u32 val = intel_de_read(dev_priv,
629 					BXT_PORT_TX_DW14_LN(phy, ch, lane));
630 
631 		if (val & LATENCY_OPTIM)
632 			mask |= BIT(lane);
633 	}
634 
635 	return mask;
636 }
637 
638 enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port)
639 {
640 	switch (dig_port->base.port) {
641 	default:
642 		MISSING_CASE(dig_port->base.port);
643 		fallthrough;
644 	case PORT_B:
645 	case PORT_D:
646 		return DPIO_CH0;
647 	case PORT_C:
648 		return DPIO_CH1;
649 	}
650 }
651 
652 enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port)
653 {
654 	switch (dig_port->base.port) {
655 	default:
656 		MISSING_CASE(dig_port->base.port);
657 		fallthrough;
658 	case PORT_B:
659 	case PORT_C:
660 		return DPIO_PHY0;
661 	case PORT_D:
662 		return DPIO_PHY1;
663 	}
664 }
665 
666 enum dpio_phy vlv_pipe_to_phy(enum pipe pipe)
667 {
668 	switch (pipe) {
669 	default:
670 		MISSING_CASE(pipe);
671 		fallthrough;
672 	case PIPE_A:
673 	case PIPE_B:
674 		return DPIO_PHY0;
675 	case PIPE_C:
676 		return DPIO_PHY1;
677 	}
678 }
679 
680 enum dpio_channel vlv_pipe_to_channel(enum pipe pipe)
681 {
682 	switch (pipe) {
683 	default:
684 		MISSING_CASE(pipe);
685 		fallthrough;
686 	case PIPE_A:
687 	case PIPE_C:
688 		return DPIO_CH0;
689 	case PIPE_B:
690 		return DPIO_CH1;
691 	}
692 }
693 
694 void chv_set_phy_signal_level(struct intel_encoder *encoder,
695 			      const struct intel_crtc_state *crtc_state,
696 			      u32 deemph_reg_value, u32 margin_reg_value,
697 			      bool uniq_trans_scale)
698 {
699 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
700 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
701 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
702 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
703 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
704 	u32 val;
705 	int i;
706 
707 	vlv_dpio_get(dev_priv);
708 
709 	/* Clear calc init */
710 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
711 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
712 	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
713 	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
714 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
715 
716 	if (crtc_state->lane_count > 2) {
717 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
718 		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
719 		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
720 		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
721 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
722 	}
723 
724 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW9(ch));
725 	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
726 	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
727 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW9(ch), val);
728 
729 	if (crtc_state->lane_count > 2) {
730 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW9(ch));
731 		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
732 		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
733 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW9(ch), val);
734 	}
735 
736 	/* Program swing deemph */
737 	for (i = 0; i < crtc_state->lane_count; i++) {
738 		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW4(ch, i));
739 		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
740 		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
741 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW4(ch, i), val);
742 	}
743 
744 	/* Program swing margin */
745 	for (i = 0; i < crtc_state->lane_count; i++) {
746 		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW2(ch, i));
747 
748 		val &= ~DPIO_SWING_MARGIN000_MASK;
749 		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
750 
751 		/*
752 		 * Supposedly this value shouldn't matter when unique transition
753 		 * scale is disabled, but in fact it does matter. Let's just
754 		 * always program the same value and hope it's OK.
755 		 */
756 		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
757 		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
758 
759 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW2(ch, i), val);
760 	}
761 
762 	/*
763 	 * The document said it needs to set bit 27 for ch0 and bit 26
764 	 * for ch1. Might be a typo in the doc.
765 	 * For now, for this unique transition scale selection, set bit
766 	 * 27 for ch0 and ch1.
767 	 */
768 	for (i = 0; i < crtc_state->lane_count; i++) {
769 		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW3(ch, i));
770 		if (uniq_trans_scale)
771 			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
772 		else
773 			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
774 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW3(ch, i), val);
775 	}
776 
777 	/* Start swing calculation */
778 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
779 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
780 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
781 
782 	if (crtc_state->lane_count > 2) {
783 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
784 		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
785 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
786 	}
787 
788 	vlv_dpio_put(dev_priv);
789 }
790 
791 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
792 			      const struct intel_crtc_state *crtc_state,
793 			      bool reset)
794 {
795 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
796 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
797 	enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder));
798 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
799 	u32 val;
800 
801 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW0(ch));
802 	if (reset)
803 		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
804 	else
805 		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
806 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW0(ch), val);
807 
808 	if (crtc_state->lane_count > 2) {
809 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW0(ch));
810 		if (reset)
811 			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
812 		else
813 			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
814 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW0(ch), val);
815 	}
816 
817 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW1(ch));
818 	val |= CHV_PCS_REQ_SOFTRESET_EN;
819 	if (reset)
820 		val &= ~DPIO_PCS_CLK_SOFT_RESET;
821 	else
822 		val |= DPIO_PCS_CLK_SOFT_RESET;
823 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW1(ch), val);
824 
825 	if (crtc_state->lane_count > 2) {
826 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW1(ch));
827 		val |= CHV_PCS_REQ_SOFTRESET_EN;
828 		if (reset)
829 			val &= ~DPIO_PCS_CLK_SOFT_RESET;
830 		else
831 			val |= DPIO_PCS_CLK_SOFT_RESET;
832 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW1(ch), val);
833 	}
834 }
835 
836 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
837 			    const struct intel_crtc_state *crtc_state)
838 {
839 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
840 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
841 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
842 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
843 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
844 	enum pipe pipe = crtc->pipe;
845 	unsigned int lane_mask =
846 		intel_dp_unused_lane_mask(crtc_state->lane_count);
847 	u32 val;
848 
849 	/*
850 	 * Must trick the second common lane into life.
851 	 * Otherwise we can't even access the PLL.
852 	 */
853 	if (ch == DPIO_CH0 && pipe == PIPE_B)
854 		dig_port->release_cl2_override =
855 			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
856 
857 	chv_phy_powergate_lanes(encoder, true, lane_mask);
858 
859 	vlv_dpio_get(dev_priv);
860 
861 	/* Assert data lane reset */
862 	chv_data_lane_soft_reset(encoder, crtc_state, true);
863 
864 	/* program left/right clock distribution */
865 	if (pipe != PIPE_B) {
866 		val = vlv_dpio_read(dev_priv, phy, _CHV_CMN_DW5_CH0);
867 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
868 		if (ch == DPIO_CH0)
869 			val |= CHV_BUFLEFTENA1_FORCE;
870 		if (ch == DPIO_CH1)
871 			val |= CHV_BUFRIGHTENA1_FORCE;
872 		vlv_dpio_write(dev_priv, phy, _CHV_CMN_DW5_CH0, val);
873 	} else {
874 		val = vlv_dpio_read(dev_priv, phy, _CHV_CMN_DW1_CH1);
875 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
876 		if (ch == DPIO_CH0)
877 			val |= CHV_BUFLEFTENA2_FORCE;
878 		if (ch == DPIO_CH1)
879 			val |= CHV_BUFRIGHTENA2_FORCE;
880 		vlv_dpio_write(dev_priv, phy, _CHV_CMN_DW1_CH1, val);
881 	}
882 
883 	/* program clock channel usage */
884 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(ch));
885 	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
886 	if (pipe != PIPE_B)
887 		val &= ~CHV_PCS_USEDCLKCHANNEL;
888 	else
889 		val |= CHV_PCS_USEDCLKCHANNEL;
890 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW8(ch), val);
891 
892 	if (crtc_state->lane_count > 2) {
893 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW8(ch));
894 		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
895 		if (pipe != PIPE_B)
896 			val &= ~CHV_PCS_USEDCLKCHANNEL;
897 		else
898 			val |= CHV_PCS_USEDCLKCHANNEL;
899 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW8(ch), val);
900 	}
901 
902 	/*
903 	 * This a a bit weird since generally CL
904 	 * matches the pipe, but here we need to
905 	 * pick the CL based on the port.
906 	 */
907 	val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW19(ch));
908 	if (pipe != PIPE_B)
909 		val &= ~CHV_CMN_USEDCLKCHANNEL;
910 	else
911 		val |= CHV_CMN_USEDCLKCHANNEL;
912 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW19(ch), val);
913 
914 	vlv_dpio_put(dev_priv);
915 }
916 
917 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
918 				const struct intel_crtc_state *crtc_state)
919 {
920 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
921 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
922 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
923 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
924 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
925 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
926 	int data, i, stagger;
927 	u32 val;
928 
929 	vlv_dpio_get(dev_priv);
930 
931 	/* allow hardware to manage TX FIFO reset source */
932 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
933 	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
934 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
935 
936 	if (crtc_state->lane_count > 2) {
937 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
938 		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
939 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
940 	}
941 
942 	/* Program Tx lane latency optimal setting*/
943 	for (i = 0; i < crtc_state->lane_count; i++) {
944 		/* Set the upar bit */
945 		if (crtc_state->lane_count == 1)
946 			data = 0x0;
947 		else
948 			data = (i == 1) ? 0x0 : 0x1;
949 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW14(ch, i),
950 				data << DPIO_UPAR_SHIFT);
951 	}
952 
953 	/* Data lane stagger programming */
954 	if (crtc_state->port_clock > 270000)
955 		stagger = 0x18;
956 	else if (crtc_state->port_clock > 135000)
957 		stagger = 0xd;
958 	else if (crtc_state->port_clock > 67500)
959 		stagger = 0x7;
960 	else if (crtc_state->port_clock > 33750)
961 		stagger = 0x4;
962 	else
963 		stagger = 0x2;
964 
965 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
966 	val |= DPIO_TX2_STAGGER_MASK(0x1f);
967 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
968 
969 	if (crtc_state->lane_count > 2) {
970 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
971 		val |= DPIO_TX2_STAGGER_MASK(0x1f);
972 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
973 	}
974 
975 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW12(ch),
976 		       DPIO_LANESTAGGER_STRAP(stagger) |
977 		       DPIO_LANESTAGGER_STRAP_OVRD |
978 		       DPIO_TX1_STAGGER_MASK(0x1f) |
979 		       DPIO_TX1_STAGGER_MULT(6) |
980 		       DPIO_TX2_STAGGER_MULT(0));
981 
982 	if (crtc_state->lane_count > 2) {
983 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW12(ch),
984 			       DPIO_LANESTAGGER_STRAP(stagger) |
985 			       DPIO_LANESTAGGER_STRAP_OVRD |
986 			       DPIO_TX1_STAGGER_MASK(0x1f) |
987 			       DPIO_TX1_STAGGER_MULT(7) |
988 			       DPIO_TX2_STAGGER_MULT(5));
989 	}
990 
991 	/* Deassert data lane reset */
992 	chv_data_lane_soft_reset(encoder, crtc_state, false);
993 
994 	vlv_dpio_put(dev_priv);
995 }
996 
997 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
998 {
999 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1000 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1001 
1002 	if (dig_port->release_cl2_override) {
1003 		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
1004 		dig_port->release_cl2_override = false;
1005 	}
1006 }
1007 
1008 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
1009 			      const struct intel_crtc_state *old_crtc_state)
1010 {
1011 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1012 	enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
1013 	enum dpio_phy phy = vlv_pipe_to_phy(pipe);
1014 	u32 val;
1015 
1016 	vlv_dpio_get(dev_priv);
1017 
1018 	/* disable left/right clock distribution */
1019 	if (pipe != PIPE_B) {
1020 		val = vlv_dpio_read(dev_priv, phy, _CHV_CMN_DW5_CH0);
1021 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1022 		vlv_dpio_write(dev_priv, phy, _CHV_CMN_DW5_CH0, val);
1023 	} else {
1024 		val = vlv_dpio_read(dev_priv, phy, _CHV_CMN_DW1_CH1);
1025 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1026 		vlv_dpio_write(dev_priv, phy, _CHV_CMN_DW1_CH1, val);
1027 	}
1028 
1029 	vlv_dpio_put(dev_priv);
1030 
1031 	/*
1032 	 * Leave the power down bit cleared for at least one
1033 	 * lane so that chv_powergate_phy_ch() will power
1034 	 * on something when the channel is otherwise unused.
1035 	 * When the port is off and the override is removed
1036 	 * the lanes power down anyway, so otherwise it doesn't
1037 	 * really matter what the state of power down bits is
1038 	 * after this.
1039 	 */
1040 	chv_phy_powergate_lanes(encoder, false, 0x0);
1041 }
1042 
1043 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
1044 			      const struct intel_crtc_state *crtc_state,
1045 			      u32 demph_reg_value, u32 preemph_reg_value,
1046 			      u32 uniqtranscale_reg_value, u32 tx3_demph)
1047 {
1048 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1049 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1050 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1051 	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1052 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1053 
1054 	vlv_dpio_get(dev_priv);
1055 
1056 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW5(port), 0x00000000);
1057 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW4(port), demph_reg_value);
1058 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW2(port),
1059 			 uniqtranscale_reg_value);
1060 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW3(port), 0x0C782040);
1061 
1062 	if (tx3_demph)
1063 		vlv_dpio_write(dev_priv, phy, VLV_TX3_DW4(port), tx3_demph);
1064 
1065 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW11(port), 0x00030000);
1066 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW9(port), preemph_reg_value);
1067 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1068 
1069 	vlv_dpio_put(dev_priv);
1070 }
1071 
1072 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1073 			    const struct intel_crtc_state *crtc_state)
1074 {
1075 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1076 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1077 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1078 	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1079 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1080 
1081 	/* Program Tx lane resets to default */
1082 	vlv_dpio_get(dev_priv);
1083 
1084 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0(port),
1085 			 DPIO_PCS_TX_LANE2_RESET |
1086 			 DPIO_PCS_TX_LANE1_RESET);
1087 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1(port),
1088 			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1089 			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1090 			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1091 				 DPIO_PCS_CLK_SOFT_RESET);
1092 
1093 	/* Fix up inter-pair skew failure */
1094 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW12(port), 0x00750f00);
1095 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW11(port), 0x00001500);
1096 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW14(port), 0x40400000);
1097 
1098 	vlv_dpio_put(dev_priv);
1099 }
1100 
1101 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1102 				const struct intel_crtc_state *crtc_state)
1103 {
1104 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1105 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1106 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1107 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1108 	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1109 	enum pipe pipe = crtc->pipe;
1110 	enum dpio_phy phy = vlv_pipe_to_phy(pipe);
1111 	u32 val;
1112 
1113 	vlv_dpio_get(dev_priv);
1114 
1115 	/* Enable clock channels for this port */
1116 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(port));
1117 	val = 0;
1118 	if (pipe)
1119 		val |= (1<<21);
1120 	else
1121 		val &= ~(1<<21);
1122 	val |= 0x001000c4;
1123 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW8(port), val);
1124 
1125 	/* Program lane clock */
1126 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW14(port), 0x00760018);
1127 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW23(port), 0x00400888);
1128 
1129 	vlv_dpio_put(dev_priv);
1130 }
1131 
1132 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1133 			 const struct intel_crtc_state *old_crtc_state)
1134 {
1135 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1136 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1137 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1138 	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1139 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1140 
1141 	vlv_dpio_get(dev_priv);
1142 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0(port), 0x00000000);
1143 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1(port), 0x00e00060);
1144 	vlv_dpio_put(dev_priv);
1145 }
1146