xref: /linux/drivers/gpu/drm/i915/display/intel_dpio_phy.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 /*
2  * Copyright © 2014-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "bxt_dpio_phy_regs.h"
25 #include "i915_reg.h"
26 #include "intel_ddi.h"
27 #include "intel_ddi_buf_trans.h"
28 #include "intel_de.h"
29 #include "intel_display_power_well.h"
30 #include "intel_display_types.h"
31 #include "intel_dp.h"
32 #include "intel_dpio_phy.h"
33 #include "vlv_dpio_phy_regs.h"
34 #include "vlv_sideband.h"
35 
36 /**
37  * DOC: DPIO
38  *
39  * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
40  * ports. DPIO is the name given to such a display PHY. These PHYs
41  * don't follow the standard programming model using direct MMIO
42  * registers, and instead their registers must be accessed trough IOSF
43  * sideband. VLV has one such PHY for driving ports B and C, and CHV
44  * adds another PHY for driving port D. Each PHY responds to specific
45  * IOSF-SB port.
46  *
47  * Each display PHY is made up of one or two channels. Each channel
48  * houses a common lane part which contains the PLL and other common
49  * logic. CH0 common lane also contains the IOSF-SB logic for the
50  * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
51  * must be running when any DPIO registers are accessed.
52  *
53  * In addition to having their own registers, the PHYs are also
54  * controlled through some dedicated signals from the display
55  * controller. These include PLL reference clock enable, PLL enable,
56  * and CRI clock selection, for example.
57  *
58  * Eeach channel also has two splines (also called data lanes), and
59  * each spline is made up of one Physical Access Coding Sub-Layer
60  * (PCS) block and two TX lanes. So each channel has two PCS blocks
61  * and four TX lanes. The TX lanes are used as DP lanes or TMDS
62  * data/clock pairs depending on the output type.
63  *
64  * Additionally the PHY also contains an AUX lane with AUX blocks
65  * for each channel. This is used for DP AUX communication, but
66  * this fact isn't really relevant for the driver since AUX is
67  * controlled from the display controller side. No DPIO registers
68  * need to be accessed during AUX communication,
69  *
70  * Generally on VLV/CHV the common lane corresponds to the pipe and
71  * the spline (PCS/TX) corresponds to the port.
72  *
73  * For dual channel PHY (VLV/CHV):
74  *
75  *  pipe A == CMN/PLL/REF CH0
76  *
77  *  pipe B == CMN/PLL/REF CH1
78  *
79  *  port B == PCS/TX CH0
80  *
81  *  port C == PCS/TX CH1
82  *
83  * This is especially important when we cross the streams
84  * ie. drive port B with pipe B, or port C with pipe A.
85  *
86  * For single channel PHY (CHV):
87  *
88  *  pipe C == CMN/PLL/REF CH0
89  *
90  *  port D == PCS/TX CH0
91  *
92  * On BXT the entire PHY channel corresponds to the port. That means
93  * the PLL is also now associated with the port rather than the pipe,
94  * and so the clock needs to be routed to the appropriate transcoder.
95  * Port A PLL is directly connected to transcoder EDP and port B/C
96  * PLLs can be routed to any transcoder A/B/C.
97  *
98  * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
99  * digital port D (CHV) or port A (BXT). ::
100  *
101  *
102  *     Dual channel PHY (VLV/CHV/BXT)
103  *     ---------------------------------
104  *     |      CH0      |      CH1      |
105  *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
106  *     |---------------|---------------| Display PHY
107  *     | PCS01 | PCS23 | PCS01 | PCS23 |
108  *     |-------|-------|-------|-------|
109  *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
110  *     ---------------------------------
111  *     |     DDI0      |     DDI1      | DP/HDMI ports
112  *     ---------------------------------
113  *
114  *     Single channel PHY (CHV/BXT)
115  *     -----------------
116  *     |      CH0      |
117  *     |  CMN/PLL/REF  |
118  *     |---------------| Display PHY
119  *     | PCS01 | PCS23 |
120  *     |-------|-------|
121  *     |TX0|TX1|TX2|TX3|
122  *     -----------------
123  *     |     DDI2      | DP/HDMI port
124  *     -----------------
125  */
126 
127 /**
128  * struct bxt_dpio_phy_info - Hold info for a broxton DDI phy
129  */
130 struct bxt_dpio_phy_info {
131 	/**
132 	 * @dual_channel: true if this phy has a second channel.
133 	 */
134 	bool dual_channel;
135 
136 	/**
137 	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
138 	 * Otherwise the GRC value will be copied from the phy indicated by
139 	 * this field.
140 	 */
141 	enum dpio_phy rcomp_phy;
142 
143 	/**
144 	 * @reset_delay: delay in us to wait before setting the common reset
145 	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
146 	 */
147 	int reset_delay;
148 
149 	/**
150 	 * @pwron_mask: Mask with the appropriate bit set that would cause the
151 	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
152 	 */
153 	u32 pwron_mask;
154 
155 	/**
156 	 * @channel: struct containing per channel information.
157 	 */
158 	struct {
159 		/**
160 		 * @channel.port: which port maps to this channel.
161 		 */
162 		enum port port;
163 	} channel[2];
164 };
165 
166 static const struct bxt_dpio_phy_info bxt_dpio_phy_info[] = {
167 	[DPIO_PHY0] = {
168 		.dual_channel = true,
169 		.rcomp_phy = DPIO_PHY1,
170 		.pwron_mask = BIT(0),
171 
172 		.channel = {
173 			[DPIO_CH0] = { .port = PORT_B },
174 			[DPIO_CH1] = { .port = PORT_C },
175 		}
176 	},
177 	[DPIO_PHY1] = {
178 		.dual_channel = false,
179 		.rcomp_phy = -1,
180 		.pwron_mask = BIT(1),
181 
182 		.channel = {
183 			[DPIO_CH0] = { .port = PORT_A },
184 		}
185 	},
186 };
187 
188 static const struct bxt_dpio_phy_info glk_dpio_phy_info[] = {
189 	[DPIO_PHY0] = {
190 		.dual_channel = false,
191 		.rcomp_phy = DPIO_PHY1,
192 		.pwron_mask = BIT(0),
193 		.reset_delay = 20,
194 
195 		.channel = {
196 			[DPIO_CH0] = { .port = PORT_B },
197 		}
198 	},
199 	[DPIO_PHY1] = {
200 		.dual_channel = false,
201 		.rcomp_phy = -1,
202 		.pwron_mask = BIT(3),
203 		.reset_delay = 20,
204 
205 		.channel = {
206 			[DPIO_CH0] = { .port = PORT_A },
207 		}
208 	},
209 	[DPIO_PHY2] = {
210 		.dual_channel = false,
211 		.rcomp_phy = DPIO_PHY1,
212 		.pwron_mask = BIT(1),
213 		.reset_delay = 20,
214 
215 		.channel = {
216 			[DPIO_CH0] = { .port = PORT_C },
217 		}
218 	},
219 };
220 
221 static const struct bxt_dpio_phy_info *
222 bxt_get_phy_list(struct intel_display *display, int *count)
223 {
224 	struct drm_i915_private *dev_priv = to_i915(display->drm);
225 
226 	if (IS_GEMINILAKE(dev_priv)) {
227 		*count =  ARRAY_SIZE(glk_dpio_phy_info);
228 		return glk_dpio_phy_info;
229 	} else {
230 		*count =  ARRAY_SIZE(bxt_dpio_phy_info);
231 		return bxt_dpio_phy_info;
232 	}
233 }
234 
235 static const struct bxt_dpio_phy_info *
236 bxt_get_phy_info(struct intel_display *display, enum dpio_phy phy)
237 {
238 	int count;
239 	const struct bxt_dpio_phy_info *phy_list =
240 		bxt_get_phy_list(display, &count);
241 
242 	return &phy_list[phy];
243 }
244 
245 void bxt_port_to_phy_channel(struct intel_display *display, enum port port,
246 			     enum dpio_phy *phy, enum dpio_channel *ch)
247 {
248 	const struct bxt_dpio_phy_info *phy_info, *phys;
249 	int i, count;
250 
251 	phys = bxt_get_phy_list(display, &count);
252 
253 	for (i = 0; i < count; i++) {
254 		phy_info = &phys[i];
255 
256 		if (port == phy_info->channel[DPIO_CH0].port) {
257 			*phy = i;
258 			*ch = DPIO_CH0;
259 			return;
260 		}
261 
262 		if (phy_info->dual_channel &&
263 		    port == phy_info->channel[DPIO_CH1].port) {
264 			*phy = i;
265 			*ch = DPIO_CH1;
266 			return;
267 		}
268 	}
269 
270 	drm_WARN(display->drm, 1, "PHY not found for PORT %c",
271 		 port_name(port));
272 	*phy = DPIO_PHY0;
273 	*ch = DPIO_CH0;
274 }
275 
276 /*
277  * Like intel_de_rmw() but reads from a single per-lane register and
278  * writes to the group register to write the same value to all the lanes.
279  */
280 static u32 bxt_dpio_phy_rmw_grp(struct intel_display *display,
281 				i915_reg_t reg_single,
282 				i915_reg_t reg_group,
283 				u32 clear, u32 set)
284 {
285 	u32 old, val;
286 
287 	old = intel_de_read(display, reg_single);
288 	val = (old & ~clear) | set;
289 	intel_de_write(display, reg_group, val);
290 
291 	return old;
292 }
293 
294 void bxt_dpio_phy_set_signal_levels(struct intel_encoder *encoder,
295 				    const struct intel_crtc_state *crtc_state)
296 {
297 	struct intel_display *display = to_intel_display(encoder);
298 	const struct intel_ddi_buf_trans *trans;
299 	enum dpio_channel ch;
300 	enum dpio_phy phy;
301 	int lane, n_entries;
302 
303 	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
304 	if (drm_WARN_ON_ONCE(display->drm, !trans))
305 		return;
306 
307 	bxt_port_to_phy_channel(display, encoder->port, &phy, &ch);
308 
309 	/*
310 	 * While we write to the group register to program all lanes at once we
311 	 * can read only lane registers and we pick lanes 0/1 for that.
312 	 */
313 	bxt_dpio_phy_rmw_grp(display, BXT_PORT_PCS_DW10_LN01(phy, ch),
314 			     BXT_PORT_PCS_DW10_GRP(phy, ch),
315 			     TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT, 0);
316 
317 	for (lane = 0; lane < crtc_state->lane_count; lane++) {
318 		int level = intel_ddi_level(encoder, crtc_state, lane);
319 
320 		intel_de_rmw(display, BXT_PORT_TX_DW2_LN(phy, ch, lane),
321 			     MARGIN_000_MASK | UNIQ_TRANS_SCALE_MASK,
322 			     MARGIN_000(trans->entries[level].bxt.margin) |
323 			     UNIQ_TRANS_SCALE(trans->entries[level].bxt.scale));
324 	}
325 
326 	for (lane = 0; lane < crtc_state->lane_count; lane++) {
327 		int level = intel_ddi_level(encoder, crtc_state, lane);
328 		u32 val;
329 
330 		intel_de_rmw(display, BXT_PORT_TX_DW3_LN(phy, ch, lane),
331 			     SCALE_DCOMP_METHOD,
332 			     trans->entries[level].bxt.enable ?
333 			     SCALE_DCOMP_METHOD : 0);
334 
335 		val = intel_de_read(display, BXT_PORT_TX_DW3_LN(phy, ch, lane));
336 		if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
337 			drm_err(display->drm,
338 				"Disabled scaling while ouniqetrangenmethod was set");
339 	}
340 
341 	for (lane = 0; lane < crtc_state->lane_count; lane++) {
342 		int level = intel_ddi_level(encoder, crtc_state, lane);
343 
344 		intel_de_rmw(display, BXT_PORT_TX_DW4_LN(phy, ch, lane),
345 			     DE_EMPHASIS_MASK,
346 			     DE_EMPHASIS(trans->entries[level].bxt.deemphasis));
347 	}
348 
349 	bxt_dpio_phy_rmw_grp(display, BXT_PORT_PCS_DW10_LN01(phy, ch),
350 			     BXT_PORT_PCS_DW10_GRP(phy, ch),
351 			     0, TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
352 }
353 
354 bool bxt_dpio_phy_is_enabled(struct intel_display *display,
355 			     enum dpio_phy phy)
356 {
357 	const struct bxt_dpio_phy_info *phy_info;
358 
359 	phy_info = bxt_get_phy_info(display, phy);
360 
361 	if (!(intel_de_read(display, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
362 		return false;
363 
364 	if ((intel_de_read(display, BXT_PORT_CL1CM_DW0(phy)) &
365 	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
366 		drm_dbg(display->drm,
367 			"DDI PHY %d powered, but power hasn't settled\n", phy);
368 
369 		return false;
370 	}
371 
372 	if (!(intel_de_read(display, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
373 		drm_dbg(display->drm,
374 			"DDI PHY %d powered, but still in reset\n", phy);
375 
376 		return false;
377 	}
378 
379 	return true;
380 }
381 
382 static u32 bxt_get_grc(struct intel_display *display, enum dpio_phy phy)
383 {
384 	u32 val = intel_de_read(display, BXT_PORT_REF_DW6(phy));
385 
386 	return REG_FIELD_GET(GRC_CODE_MASK, val);
387 }
388 
389 static void bxt_phy_wait_grc_done(struct intel_display *display,
390 				  enum dpio_phy phy)
391 {
392 	if (intel_de_wait_for_set(display, BXT_PORT_REF_DW3(phy), GRC_DONE, 10))
393 		drm_err(display->drm, "timeout waiting for PHY%d GRC\n", phy);
394 }
395 
396 static void _bxt_dpio_phy_init(struct intel_display *display, enum dpio_phy phy)
397 {
398 	const struct bxt_dpio_phy_info *phy_info;
399 	u32 val;
400 
401 	phy_info = bxt_get_phy_info(display, phy);
402 
403 	if (bxt_dpio_phy_is_enabled(display, phy)) {
404 		/* Still read out the GRC value for state verification */
405 		if (phy_info->rcomp_phy != -1)
406 			display->state.bxt_phy_grc = bxt_get_grc(display, phy);
407 
408 		if (bxt_dpio_phy_verify_state(display, phy)) {
409 			drm_dbg(display->drm, "DDI PHY %d already enabled, "
410 				"won't reprogram it\n", phy);
411 			return;
412 		}
413 
414 		drm_dbg(display->drm,
415 			"DDI PHY %d enabled with invalid state, "
416 			"force reprogramming it\n", phy);
417 	}
418 
419 	intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, 0, phy_info->pwron_mask);
420 
421 	/*
422 	 * The PHY registers start out inaccessible and respond to reads with
423 	 * all 1s.  Eventually they become accessible as they power up, then
424 	 * the reserved bit will give the default 0.  Poll on the reserved bit
425 	 * becoming 0 to find when the PHY is accessible.
426 	 * The flag should get set in 100us according to the HW team, but
427 	 * use 1ms due to occasional timeouts observed with that.
428 	 */
429 	if (intel_de_wait_fw(display, BXT_PORT_CL1CM_DW0(phy),
430 			     PHY_RESERVED | PHY_POWER_GOOD, PHY_POWER_GOOD, 1))
431 		drm_err(display->drm, "timeout during PHY%d power on\n",
432 			phy);
433 
434 	/* Program PLL Rcomp code offset */
435 	intel_de_rmw(display, BXT_PORT_CL1CM_DW9(phy),
436 		     IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xE4));
437 
438 	intel_de_rmw(display, BXT_PORT_CL1CM_DW10(phy),
439 		     IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xE4));
440 
441 	/* Program power gating */
442 	intel_de_rmw(display, BXT_PORT_CL1CM_DW28(phy), 0,
443 		     OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG);
444 
445 	if (phy_info->dual_channel)
446 		intel_de_rmw(display, BXT_PORT_CL2CM_DW6(phy), 0,
447 			     DW6_OLDO_DYN_PWR_DOWN_EN);
448 
449 	if (phy_info->rcomp_phy != -1) {
450 		u32 grc_code;
451 
452 		bxt_phy_wait_grc_done(display, phy_info->rcomp_phy);
453 
454 		/*
455 		 * PHY0 isn't connected to an RCOMP resistor so copy over
456 		 * the corresponding calibrated value from PHY1, and disable
457 		 * the automatic calibration on PHY0.
458 		 */
459 		val = bxt_get_grc(display, phy_info->rcomp_phy);
460 		display->state.bxt_phy_grc = val;
461 
462 		grc_code = GRC_CODE_FAST(val) |
463 			GRC_CODE_SLOW(val) |
464 			GRC_CODE_NOM(val);
465 		intel_de_write(display, BXT_PORT_REF_DW6(phy), grc_code);
466 		intel_de_rmw(display, BXT_PORT_REF_DW8(phy),
467 			     0, GRC_DIS | GRC_RDY_OVRD);
468 	}
469 
470 	if (phy_info->reset_delay)
471 		udelay(phy_info->reset_delay);
472 
473 	intel_de_rmw(display, BXT_PHY_CTL_FAMILY(phy), 0, COMMON_RESET_DIS);
474 }
475 
476 void bxt_dpio_phy_uninit(struct intel_display *display, enum dpio_phy phy)
477 {
478 	const struct bxt_dpio_phy_info *phy_info;
479 
480 	phy_info = bxt_get_phy_info(display, phy);
481 
482 	intel_de_rmw(display, BXT_PHY_CTL_FAMILY(phy), COMMON_RESET_DIS, 0);
483 
484 	intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, phy_info->pwron_mask, 0);
485 }
486 
487 void bxt_dpio_phy_init(struct intel_display *display, enum dpio_phy phy)
488 {
489 	const struct bxt_dpio_phy_info *phy_info = bxt_get_phy_info(display, phy);
490 	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
491 	bool was_enabled;
492 
493 	lockdep_assert_held(&display->power.domains.lock);
494 
495 	was_enabled = true;
496 	if (rcomp_phy != -1)
497 		was_enabled = bxt_dpio_phy_is_enabled(display, rcomp_phy);
498 
499 	/*
500 	 * We need to copy the GRC calibration value from rcomp_phy,
501 	 * so make sure it's powered up.
502 	 */
503 	if (!was_enabled)
504 		_bxt_dpio_phy_init(display, rcomp_phy);
505 
506 	_bxt_dpio_phy_init(display, phy);
507 
508 	if (!was_enabled)
509 		bxt_dpio_phy_uninit(display, rcomp_phy);
510 }
511 
512 static bool __printf(6, 7)
513 __phy_reg_verify_state(struct intel_display *display, enum dpio_phy phy,
514 		       i915_reg_t reg, u32 mask, u32 expected,
515 		       const char *reg_fmt, ...)
516 {
517 	struct va_format vaf;
518 	va_list args;
519 	u32 val;
520 
521 	val = intel_de_read(display, reg);
522 	if ((val & mask) == expected)
523 		return true;
524 
525 	va_start(args, reg_fmt);
526 	vaf.fmt = reg_fmt;
527 	vaf.va = &args;
528 
529 	drm_dbg(display->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
530 			 "current %08x, expected %08x (mask %08x)\n",
531 			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
532 			 mask);
533 
534 	va_end(args);
535 
536 	return false;
537 }
538 
539 bool bxt_dpio_phy_verify_state(struct intel_display *display,
540 			       enum dpio_phy phy)
541 {
542 	const struct bxt_dpio_phy_info *phy_info;
543 	u32 mask;
544 	bool ok;
545 
546 	phy_info = bxt_get_phy_info(display, phy);
547 
548 #define _CHK(reg, mask, exp, fmt, ...)					\
549 	__phy_reg_verify_state(display, phy, reg, mask, exp, fmt,	\
550 			       ## __VA_ARGS__)
551 
552 	if (!bxt_dpio_phy_is_enabled(display, phy))
553 		return false;
554 
555 	ok = true;
556 
557 	/* PLL Rcomp code offset */
558 	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
559 		   IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xe4),
560 		   "BXT_PORT_CL1CM_DW9(%d)", phy);
561 	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
562 		   IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xe4),
563 		   "BXT_PORT_CL1CM_DW10(%d)", phy);
564 
565 	/* Power gating */
566 	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
567 	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
568 		   "BXT_PORT_CL1CM_DW28(%d)", phy);
569 
570 	if (phy_info->dual_channel)
571 		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
572 			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
573 			   "BXT_PORT_CL2CM_DW6(%d)", phy);
574 
575 	if (phy_info->rcomp_phy != -1) {
576 		u32 grc_code = display->state.bxt_phy_grc;
577 
578 		grc_code = GRC_CODE_FAST(grc_code) |
579 			GRC_CODE_SLOW(grc_code) |
580 			GRC_CODE_NOM(grc_code);
581 		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
582 		       GRC_CODE_NOM_MASK;
583 		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
584 			   "BXT_PORT_REF_DW6(%d)", phy);
585 
586 		mask = GRC_DIS | GRC_RDY_OVRD;
587 		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
588 			   "BXT_PORT_REF_DW8(%d)", phy);
589 	}
590 
591 	return ok;
592 #undef _CHK
593 }
594 
595 u8
596 bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count)
597 {
598 	switch (lane_count) {
599 	case 1:
600 		return 0;
601 	case 2:
602 		return BIT(2) | BIT(0);
603 	case 4:
604 		return BIT(3) | BIT(2) | BIT(0);
605 	default:
606 		MISSING_CASE(lane_count);
607 
608 		return 0;
609 	}
610 }
611 
612 void bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder *encoder,
613 				      u8 lane_lat_optim_mask)
614 {
615 	struct intel_display *display = to_intel_display(encoder);
616 	enum port port = encoder->port;
617 	enum dpio_phy phy;
618 	enum dpio_channel ch;
619 	int lane;
620 
621 	bxt_port_to_phy_channel(display, port, &phy, &ch);
622 
623 	for (lane = 0; lane < 4; lane++) {
624 		/*
625 		 * Note that on CHV this flag is called UPAR, but has
626 		 * the same function.
627 		 */
628 		intel_de_rmw(display, BXT_PORT_TX_DW14_LN(phy, ch, lane),
629 			     LATENCY_OPTIM,
630 			     lane_lat_optim_mask & BIT(lane) ? LATENCY_OPTIM : 0);
631 	}
632 }
633 
634 u8
635 bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
636 {
637 	struct intel_display *display = to_intel_display(encoder);
638 	enum port port = encoder->port;
639 	enum dpio_phy phy;
640 	enum dpio_channel ch;
641 	int lane;
642 	u8 mask;
643 
644 	bxt_port_to_phy_channel(display, port, &phy, &ch);
645 
646 	mask = 0;
647 	for (lane = 0; lane < 4; lane++) {
648 		u32 val = intel_de_read(display,
649 					BXT_PORT_TX_DW14_LN(phy, ch, lane));
650 
651 		if (val & LATENCY_OPTIM)
652 			mask |= BIT(lane);
653 	}
654 
655 	return mask;
656 }
657 
658 enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port)
659 {
660 	switch (dig_port->base.port) {
661 	default:
662 		MISSING_CASE(dig_port->base.port);
663 		fallthrough;
664 	case PORT_B:
665 	case PORT_D:
666 		return DPIO_CH0;
667 	case PORT_C:
668 		return DPIO_CH1;
669 	}
670 }
671 
672 enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port)
673 {
674 	switch (dig_port->base.port) {
675 	default:
676 		MISSING_CASE(dig_port->base.port);
677 		fallthrough;
678 	case PORT_B:
679 	case PORT_C:
680 		return DPIO_PHY0;
681 	case PORT_D:
682 		return DPIO_PHY1;
683 	}
684 }
685 
686 enum dpio_phy vlv_pipe_to_phy(enum pipe pipe)
687 {
688 	switch (pipe) {
689 	default:
690 		MISSING_CASE(pipe);
691 		fallthrough;
692 	case PIPE_A:
693 	case PIPE_B:
694 		return DPIO_PHY0;
695 	case PIPE_C:
696 		return DPIO_PHY1;
697 	}
698 }
699 
700 enum dpio_channel vlv_pipe_to_channel(enum pipe pipe)
701 {
702 	switch (pipe) {
703 	default:
704 		MISSING_CASE(pipe);
705 		fallthrough;
706 	case PIPE_A:
707 	case PIPE_C:
708 		return DPIO_CH0;
709 	case PIPE_B:
710 		return DPIO_CH1;
711 	}
712 }
713 
714 void chv_set_phy_signal_level(struct intel_encoder *encoder,
715 			      const struct intel_crtc_state *crtc_state,
716 			      u32 deemph_reg_value, u32 margin_reg_value,
717 			      bool uniq_trans_scale)
718 {
719 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
720 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
721 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
722 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
723 	u32 val;
724 	int i;
725 
726 	vlv_dpio_get(dev_priv);
727 
728 	/* Clear calc init */
729 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
730 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
731 	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
732 	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
733 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
734 
735 	if (crtc_state->lane_count > 2) {
736 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
737 		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
738 		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
739 		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
740 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
741 	}
742 
743 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW9(ch));
744 	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
745 	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
746 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW9(ch), val);
747 
748 	if (crtc_state->lane_count > 2) {
749 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW9(ch));
750 		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
751 		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
752 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW9(ch), val);
753 	}
754 
755 	/* Program swing deemph */
756 	for (i = 0; i < crtc_state->lane_count; i++) {
757 		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW4(ch, i));
758 		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
759 		val |= DPIO_SWING_DEEMPH9P5(deemph_reg_value);
760 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW4(ch, i), val);
761 	}
762 
763 	/* Program swing margin */
764 	for (i = 0; i < crtc_state->lane_count; i++) {
765 		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW2(ch, i));
766 
767 		val &= ~DPIO_SWING_MARGIN000_MASK;
768 		val |= DPIO_SWING_MARGIN000(margin_reg_value);
769 
770 		/*
771 		 * Supposedly this value shouldn't matter when unique transition
772 		 * scale is disabled, but in fact it does matter. Let's just
773 		 * always program the same value and hope it's OK.
774 		 */
775 		val &= ~DPIO_UNIQ_TRANS_SCALE_MASK;
776 		val |= DPIO_UNIQ_TRANS_SCALE(0x9a);
777 
778 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW2(ch, i), val);
779 	}
780 
781 	/*
782 	 * The document said it needs to set bit 27 for ch0 and bit 26
783 	 * for ch1. Might be a typo in the doc.
784 	 * For now, for this unique transition scale selection, set bit
785 	 * 27 for ch0 and ch1.
786 	 */
787 	for (i = 0; i < crtc_state->lane_count; i++) {
788 		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW3(ch, i));
789 		if (uniq_trans_scale)
790 			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
791 		else
792 			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
793 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW3(ch, i), val);
794 	}
795 
796 	/* Start swing calculation */
797 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
798 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
799 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
800 
801 	if (crtc_state->lane_count > 2) {
802 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
803 		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
804 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
805 	}
806 
807 	vlv_dpio_put(dev_priv);
808 }
809 
810 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
811 			      const struct intel_crtc_state *crtc_state,
812 			      bool reset)
813 {
814 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
815 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
816 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
817 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
818 	u32 val;
819 
820 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW0(ch));
821 	if (reset)
822 		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
823 	else
824 		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
825 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW0(ch), val);
826 
827 	if (crtc_state->lane_count > 2) {
828 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW0(ch));
829 		if (reset)
830 			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
831 		else
832 			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
833 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW0(ch), val);
834 	}
835 
836 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW1(ch));
837 	val |= CHV_PCS_REQ_SOFTRESET_EN;
838 	if (reset)
839 		val &= ~DPIO_PCS_CLK_SOFT_RESET;
840 	else
841 		val |= DPIO_PCS_CLK_SOFT_RESET;
842 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW1(ch), val);
843 
844 	if (crtc_state->lane_count > 2) {
845 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW1(ch));
846 		val |= CHV_PCS_REQ_SOFTRESET_EN;
847 		if (reset)
848 			val &= ~DPIO_PCS_CLK_SOFT_RESET;
849 		else
850 			val |= DPIO_PCS_CLK_SOFT_RESET;
851 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW1(ch), val);
852 	}
853 }
854 
855 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
856 			    const struct intel_crtc_state *crtc_state)
857 {
858 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
859 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
860 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
861 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
862 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
863 	enum pipe pipe = crtc->pipe;
864 	unsigned int lane_mask =
865 		intel_dp_unused_lane_mask(crtc_state->lane_count);
866 	u32 val;
867 
868 	/*
869 	 * Must trick the second common lane into life.
870 	 * Otherwise we can't even access the PLL.
871 	 */
872 	if (ch == DPIO_CH0 && pipe == PIPE_B)
873 		dig_port->release_cl2_override =
874 			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
875 
876 	chv_phy_powergate_lanes(encoder, true, lane_mask);
877 
878 	vlv_dpio_get(dev_priv);
879 
880 	/* Assert data lane reset */
881 	chv_data_lane_soft_reset(encoder, crtc_state, true);
882 
883 	/* program left/right clock distribution */
884 	if (pipe != PIPE_B) {
885 		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0);
886 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
887 		if (ch == DPIO_CH0)
888 			val |= CHV_BUFLEFTENA1_FORCE;
889 		if (ch == DPIO_CH1)
890 			val |= CHV_BUFRIGHTENA1_FORCE;
891 		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val);
892 	} else {
893 		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1);
894 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
895 		if (ch == DPIO_CH0)
896 			val |= CHV_BUFLEFTENA2_FORCE;
897 		if (ch == DPIO_CH1)
898 			val |= CHV_BUFRIGHTENA2_FORCE;
899 		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val);
900 	}
901 
902 	/* program clock channel usage */
903 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(ch));
904 	val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
905 	if (pipe == PIPE_B)
906 		val |= DPIO_PCS_USEDCLKCHANNEL;
907 	else
908 		val &= ~DPIO_PCS_USEDCLKCHANNEL;
909 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW8(ch), val);
910 
911 	if (crtc_state->lane_count > 2) {
912 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW8(ch));
913 		val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
914 		if (pipe == PIPE_B)
915 			val |= DPIO_PCS_USEDCLKCHANNEL;
916 		else
917 			val &= ~DPIO_PCS_USEDCLKCHANNEL;
918 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW8(ch), val);
919 	}
920 
921 	/*
922 	 * This a a bit weird since generally CL
923 	 * matches the pipe, but here we need to
924 	 * pick the CL based on the port.
925 	 */
926 	val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW19(ch));
927 	if (pipe == PIPE_B)
928 		val |= CHV_CMN_USEDCLKCHANNEL;
929 	else
930 		val &= ~CHV_CMN_USEDCLKCHANNEL;
931 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW19(ch), val);
932 
933 	vlv_dpio_put(dev_priv);
934 }
935 
936 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
937 				const struct intel_crtc_state *crtc_state)
938 {
939 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
940 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
941 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
942 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
943 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
944 	int data, i, stagger;
945 	u32 val;
946 
947 	vlv_dpio_get(dev_priv);
948 
949 	/* allow hardware to manage TX FIFO reset source */
950 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
951 	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
952 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
953 
954 	if (crtc_state->lane_count > 2) {
955 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
956 		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
957 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
958 	}
959 
960 	/* Program Tx lane latency optimal setting*/
961 	for (i = 0; i < crtc_state->lane_count; i++) {
962 		/* Set the upar bit */
963 		if (crtc_state->lane_count == 1)
964 			data = 0;
965 		else
966 			data = (i == 1) ? 0 : DPIO_UPAR;
967 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW14(ch, i), data);
968 	}
969 
970 	/* Data lane stagger programming */
971 	if (crtc_state->port_clock > 270000)
972 		stagger = 0x18;
973 	else if (crtc_state->port_clock > 135000)
974 		stagger = 0xd;
975 	else if (crtc_state->port_clock > 67500)
976 		stagger = 0x7;
977 	else if (crtc_state->port_clock > 33750)
978 		stagger = 0x4;
979 	else
980 		stagger = 0x2;
981 
982 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
983 	val |= DPIO_TX2_STAGGER_MASK(0x1f);
984 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
985 
986 	if (crtc_state->lane_count > 2) {
987 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
988 		val |= DPIO_TX2_STAGGER_MASK(0x1f);
989 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
990 	}
991 
992 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW12(ch),
993 		       DPIO_LANESTAGGER_STRAP(stagger) |
994 		       DPIO_LANESTAGGER_STRAP_OVRD |
995 		       DPIO_TX1_STAGGER_MASK(0x1f) |
996 		       DPIO_TX1_STAGGER_MULT(6) |
997 		       DPIO_TX2_STAGGER_MULT(0));
998 
999 	if (crtc_state->lane_count > 2) {
1000 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW12(ch),
1001 			       DPIO_LANESTAGGER_STRAP(stagger) |
1002 			       DPIO_LANESTAGGER_STRAP_OVRD |
1003 			       DPIO_TX1_STAGGER_MASK(0x1f) |
1004 			       DPIO_TX1_STAGGER_MULT(7) |
1005 			       DPIO_TX2_STAGGER_MULT(5));
1006 	}
1007 
1008 	/* Deassert data lane reset */
1009 	chv_data_lane_soft_reset(encoder, crtc_state, false);
1010 
1011 	vlv_dpio_put(dev_priv);
1012 }
1013 
1014 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
1015 {
1016 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1017 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1018 
1019 	if (dig_port->release_cl2_override) {
1020 		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
1021 		dig_port->release_cl2_override = false;
1022 	}
1023 }
1024 
1025 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
1026 			      const struct intel_crtc_state *old_crtc_state)
1027 {
1028 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1029 	enum dpio_phy phy = vlv_dig_port_to_phy(enc_to_dig_port(encoder));
1030 	enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
1031 	u32 val;
1032 
1033 	vlv_dpio_get(dev_priv);
1034 
1035 	/* disable left/right clock distribution */
1036 	if (pipe != PIPE_B) {
1037 		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0);
1038 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1039 		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val);
1040 	} else {
1041 		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1);
1042 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1043 		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val);
1044 	}
1045 
1046 	vlv_dpio_put(dev_priv);
1047 
1048 	/*
1049 	 * Leave the power down bit cleared for at least one
1050 	 * lane so that chv_powergate_phy_ch() will power
1051 	 * on something when the channel is otherwise unused.
1052 	 * When the port is off and the override is removed
1053 	 * the lanes power down anyway, so otherwise it doesn't
1054 	 * really matter what the state of power down bits is
1055 	 * after this.
1056 	 */
1057 	chv_phy_powergate_lanes(encoder, false, 0x0);
1058 }
1059 
1060 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
1061 			      const struct intel_crtc_state *crtc_state,
1062 			      u32 demph_reg_value, u32 preemph_reg_value,
1063 			      u32 uniqtranscale_reg_value, u32 tx3_demph)
1064 {
1065 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1066 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1067 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1068 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1069 
1070 	vlv_dpio_get(dev_priv);
1071 
1072 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), 0x00000000);
1073 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW4_GRP(ch), demph_reg_value);
1074 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW2_GRP(ch),
1075 			 uniqtranscale_reg_value);
1076 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW3_GRP(ch), 0x0C782040);
1077 
1078 	if (tx3_demph)
1079 		vlv_dpio_write(dev_priv, phy, VLV_TX_DW4(ch, 3), tx3_demph);
1080 
1081 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW11_GRP(ch), 0x00030000);
1082 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW9_GRP(ch), preemph_reg_value);
1083 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), DPIO_TX_OCALINIT_EN);
1084 
1085 	vlv_dpio_put(dev_priv);
1086 }
1087 
1088 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1089 			    const struct intel_crtc_state *crtc_state)
1090 {
1091 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1092 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1093 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1094 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1095 
1096 	/* Program Tx lane resets to default */
1097 	vlv_dpio_get(dev_priv);
1098 
1099 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch),
1100 		       DPIO_PCS_TX_LANE2_RESET |
1101 		       DPIO_PCS_TX_LANE1_RESET);
1102 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch),
1103 		       DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1104 		       DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1105 		       DPIO_PCS_CLK_DATAWIDTH_8_10 |
1106 		       DPIO_PCS_CLK_SOFT_RESET);
1107 
1108 	/* Fix up inter-pair skew failure */
1109 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW12_GRP(ch), 0x00750f00);
1110 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW11_GRP(ch), 0x00001500);
1111 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW14_GRP(ch), 0x40400000);
1112 
1113 	vlv_dpio_put(dev_priv);
1114 }
1115 
1116 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1117 				const struct intel_crtc_state *crtc_state)
1118 {
1119 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1120 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1121 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1122 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1123 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1124 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1125 	enum pipe pipe = crtc->pipe;
1126 	u32 val;
1127 
1128 	vlv_dpio_get(dev_priv);
1129 
1130 	/* Enable clock channels for this port */
1131 	val = DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
1132 	if (pipe == PIPE_B)
1133 		val |= DPIO_PCS_USEDCLKCHANNEL;
1134 	val |= 0xc4;
1135 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW8_GRP(ch), val);
1136 
1137 	/* Program lane clock */
1138 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW14_GRP(ch), 0x00760018);
1139 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW23_GRP(ch), 0x00400888);
1140 
1141 	vlv_dpio_put(dev_priv);
1142 }
1143 
1144 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1145 			 const struct intel_crtc_state *old_crtc_state)
1146 {
1147 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1148 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1149 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1150 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1151 
1152 	vlv_dpio_get(dev_priv);
1153 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch), 0x00000000);
1154 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch), 0x00e00060);
1155 	vlv_dpio_put(dev_priv);
1156 }
1157