xref: /linux/drivers/gpu/drm/i915/display/intel_dpio_phy.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 /*
2  * Copyright © 2014-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "bxt_dpio_phy_regs.h"
25 #include "i915_reg.h"
26 #include "intel_ddi.h"
27 #include "intel_ddi_buf_trans.h"
28 #include "intel_de.h"
29 #include "intel_display_power_well.h"
30 #include "intel_display_types.h"
31 #include "intel_dp.h"
32 #include "intel_dpio_phy.h"
33 #include "vlv_dpio_phy_regs.h"
34 #include "vlv_sideband.h"
35 
36 /**
37  * DOC: DPIO
38  *
39  * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
40  * ports. DPIO is the name given to such a display PHY. These PHYs
41  * don't follow the standard programming model using direct MMIO
42  * registers, and instead their registers must be accessed trough IOSF
43  * sideband. VLV has one such PHY for driving ports B and C, and CHV
44  * adds another PHY for driving port D. Each PHY responds to specific
45  * IOSF-SB port.
46  *
47  * Each display PHY is made up of one or two channels. Each channel
48  * houses a common lane part which contains the PLL and other common
49  * logic. CH0 common lane also contains the IOSF-SB logic for the
50  * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
51  * must be running when any DPIO registers are accessed.
52  *
53  * In addition to having their own registers, the PHYs are also
54  * controlled through some dedicated signals from the display
55  * controller. These include PLL reference clock enable, PLL enable,
56  * and CRI clock selection, for example.
57  *
58  * Eeach channel also has two splines (also called data lanes), and
59  * each spline is made up of one Physical Access Coding Sub-Layer
60  * (PCS) block and two TX lanes. So each channel has two PCS blocks
61  * and four TX lanes. The TX lanes are used as DP lanes or TMDS
62  * data/clock pairs depending on the output type.
63  *
64  * Additionally the PHY also contains an AUX lane with AUX blocks
65  * for each channel. This is used for DP AUX communication, but
66  * this fact isn't really relevant for the driver since AUX is
67  * controlled from the display controller side. No DPIO registers
68  * need to be accessed during AUX communication,
69  *
70  * Generally on VLV/CHV the common lane corresponds to the pipe and
71  * the spline (PCS/TX) corresponds to the port.
72  *
73  * For dual channel PHY (VLV/CHV):
74  *
75  *  pipe A == CMN/PLL/REF CH0
76  *
77  *  pipe B == CMN/PLL/REF CH1
78  *
79  *  port B == PCS/TX CH0
80  *
81  *  port C == PCS/TX CH1
82  *
83  * This is especially important when we cross the streams
84  * ie. drive port B with pipe B, or port C with pipe A.
85  *
86  * For single channel PHY (CHV):
87  *
88  *  pipe C == CMN/PLL/REF CH0
89  *
90  *  port D == PCS/TX CH0
91  *
92  * On BXT the entire PHY channel corresponds to the port. That means
93  * the PLL is also now associated with the port rather than the pipe,
94  * and so the clock needs to be routed to the appropriate transcoder.
95  * Port A PLL is directly connected to transcoder EDP and port B/C
96  * PLLs can be routed to any transcoder A/B/C.
97  *
98  * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
99  * digital port D (CHV) or port A (BXT). ::
100  *
101  *
102  *     Dual channel PHY (VLV/CHV/BXT)
103  *     ---------------------------------
104  *     |      CH0      |      CH1      |
105  *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
106  *     |---------------|---------------| Display PHY
107  *     | PCS01 | PCS23 | PCS01 | PCS23 |
108  *     |-------|-------|-------|-------|
109  *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
110  *     ---------------------------------
111  *     |     DDI0      |     DDI1      | DP/HDMI ports
112  *     ---------------------------------
113  *
114  *     Single channel PHY (CHV/BXT)
115  *     -----------------
116  *     |      CH0      |
117  *     |  CMN/PLL/REF  |
118  *     |---------------| Display PHY
119  *     | PCS01 | PCS23 |
120  *     |-------|-------|
121  *     |TX0|TX1|TX2|TX3|
122  *     -----------------
123  *     |     DDI2      | DP/HDMI port
124  *     -----------------
125  */
126 
127 /**
128  * struct bxt_dpio_phy_info - Hold info for a broxton DDI phy
129  */
130 struct bxt_dpio_phy_info {
131 	/**
132 	 * @dual_channel: true if this phy has a second channel.
133 	 */
134 	bool dual_channel;
135 
136 	/**
137 	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
138 	 * Otherwise the GRC value will be copied from the phy indicated by
139 	 * this field.
140 	 */
141 	enum dpio_phy rcomp_phy;
142 
143 	/**
144 	 * @reset_delay: delay in us to wait before setting the common reset
145 	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
146 	 */
147 	int reset_delay;
148 
149 	/**
150 	 * @pwron_mask: Mask with the appropriate bit set that would cause the
151 	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
152 	 */
153 	u32 pwron_mask;
154 
155 	/**
156 	 * @channel: struct containing per channel information.
157 	 */
158 	struct {
159 		/**
160 		 * @channel.port: which port maps to this channel.
161 		 */
162 		enum port port;
163 	} channel[2];
164 };
165 
166 static const struct bxt_dpio_phy_info bxt_dpio_phy_info[] = {
167 	[DPIO_PHY0] = {
168 		.dual_channel = true,
169 		.rcomp_phy = DPIO_PHY1,
170 		.pwron_mask = BIT(0),
171 
172 		.channel = {
173 			[DPIO_CH0] = { .port = PORT_B },
174 			[DPIO_CH1] = { .port = PORT_C },
175 		}
176 	},
177 	[DPIO_PHY1] = {
178 		.dual_channel = false,
179 		.rcomp_phy = -1,
180 		.pwron_mask = BIT(1),
181 
182 		.channel = {
183 			[DPIO_CH0] = { .port = PORT_A },
184 		}
185 	},
186 };
187 
188 static const struct bxt_dpio_phy_info glk_dpio_phy_info[] = {
189 	[DPIO_PHY0] = {
190 		.dual_channel = false,
191 		.rcomp_phy = DPIO_PHY1,
192 		.pwron_mask = BIT(0),
193 		.reset_delay = 20,
194 
195 		.channel = {
196 			[DPIO_CH0] = { .port = PORT_B },
197 		}
198 	},
199 	[DPIO_PHY1] = {
200 		.dual_channel = false,
201 		.rcomp_phy = -1,
202 		.pwron_mask = BIT(3),
203 		.reset_delay = 20,
204 
205 		.channel = {
206 			[DPIO_CH0] = { .port = PORT_A },
207 		}
208 	},
209 	[DPIO_PHY2] = {
210 		.dual_channel = false,
211 		.rcomp_phy = DPIO_PHY1,
212 		.pwron_mask = BIT(1),
213 		.reset_delay = 20,
214 
215 		.channel = {
216 			[DPIO_CH0] = { .port = PORT_C },
217 		}
218 	},
219 };
220 
221 static const struct bxt_dpio_phy_info *
222 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
223 {
224 	if (IS_GEMINILAKE(dev_priv)) {
225 		*count =  ARRAY_SIZE(glk_dpio_phy_info);
226 		return glk_dpio_phy_info;
227 	} else {
228 		*count =  ARRAY_SIZE(bxt_dpio_phy_info);
229 		return bxt_dpio_phy_info;
230 	}
231 }
232 
233 static const struct bxt_dpio_phy_info *
234 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
235 {
236 	int count;
237 	const struct bxt_dpio_phy_info *phy_list =
238 		bxt_get_phy_list(dev_priv, &count);
239 
240 	return &phy_list[phy];
241 }
242 
243 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
244 			     enum dpio_phy *phy, enum dpio_channel *ch)
245 {
246 	const struct bxt_dpio_phy_info *phy_info, *phys;
247 	int i, count;
248 
249 	phys = bxt_get_phy_list(dev_priv, &count);
250 
251 	for (i = 0; i < count; i++) {
252 		phy_info = &phys[i];
253 
254 		if (port == phy_info->channel[DPIO_CH0].port) {
255 			*phy = i;
256 			*ch = DPIO_CH0;
257 			return;
258 		}
259 
260 		if (phy_info->dual_channel &&
261 		    port == phy_info->channel[DPIO_CH1].port) {
262 			*phy = i;
263 			*ch = DPIO_CH1;
264 			return;
265 		}
266 	}
267 
268 	drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c",
269 		 port_name(port));
270 	*phy = DPIO_PHY0;
271 	*ch = DPIO_CH0;
272 }
273 
274 /*
275  * Like intel_de_rmw() but reads from a single per-lane register and
276  * writes to the group register to write the same value to all the lanes.
277  */
278 static u32 bxt_dpio_phy_rmw_grp(struct drm_i915_private *i915,
279 				i915_reg_t reg_single,
280 				i915_reg_t reg_group,
281 				u32 clear, u32 set)
282 {
283 	u32 old, val;
284 
285 	old = intel_de_read(i915, reg_single);
286 	val = (old & ~clear) | set;
287 	intel_de_write(i915, reg_group, val);
288 
289 	return old;
290 }
291 
292 void bxt_dpio_phy_set_signal_levels(struct intel_encoder *encoder,
293 				    const struct intel_crtc_state *crtc_state)
294 {
295 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
296 	const struct intel_ddi_buf_trans *trans;
297 	enum dpio_channel ch;
298 	enum dpio_phy phy;
299 	int lane, n_entries;
300 
301 	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
302 	if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans))
303 		return;
304 
305 	bxt_port_to_phy_channel(dev_priv, encoder->port, &phy, &ch);
306 
307 	/*
308 	 * While we write to the group register to program all lanes at once we
309 	 * can read only lane registers and we pick lanes 0/1 for that.
310 	 */
311 	bxt_dpio_phy_rmw_grp(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch),
312 			     BXT_PORT_PCS_DW10_GRP(phy, ch),
313 			     TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT, 0);
314 
315 	for (lane = 0; lane < crtc_state->lane_count; lane++) {
316 		int level = intel_ddi_level(encoder, crtc_state, lane);
317 
318 		intel_de_rmw(dev_priv, BXT_PORT_TX_DW2_LN(phy, ch, lane),
319 			     MARGIN_000_MASK | UNIQ_TRANS_SCALE_MASK,
320 			     MARGIN_000(trans->entries[level].bxt.margin) |
321 			     UNIQ_TRANS_SCALE(trans->entries[level].bxt.scale));
322 	}
323 
324 	for (lane = 0; lane < crtc_state->lane_count; lane++) {
325 		int level = intel_ddi_level(encoder, crtc_state, lane);
326 		u32 val;
327 
328 		intel_de_rmw(dev_priv, BXT_PORT_TX_DW3_LN(phy, ch, lane),
329 			     SCALE_DCOMP_METHOD,
330 			     trans->entries[level].bxt.enable ?
331 			     SCALE_DCOMP_METHOD : 0);
332 
333 		val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN(phy, ch, lane));
334 		if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
335 			drm_err(&dev_priv->drm,
336 				"Disabled scaling while ouniqetrangenmethod was set");
337 	}
338 
339 	for (lane = 0; lane < crtc_state->lane_count; lane++) {
340 		int level = intel_ddi_level(encoder, crtc_state, lane);
341 
342 		intel_de_rmw(dev_priv, BXT_PORT_TX_DW4_LN(phy, ch, lane),
343 			     DE_EMPHASIS_MASK,
344 			     DE_EMPHASIS(trans->entries[level].bxt.deemphasis));
345 	}
346 
347 	bxt_dpio_phy_rmw_grp(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch),
348 			     BXT_PORT_PCS_DW10_GRP(phy, ch),
349 			     0, TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
350 }
351 
352 bool bxt_dpio_phy_is_enabled(struct drm_i915_private *dev_priv,
353 			     enum dpio_phy phy)
354 {
355 	const struct bxt_dpio_phy_info *phy_info;
356 
357 	phy_info = bxt_get_phy_info(dev_priv, phy);
358 
359 	if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
360 		return false;
361 
362 	if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) &
363 	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
364 		drm_dbg(&dev_priv->drm,
365 			"DDI PHY %d powered, but power hasn't settled\n", phy);
366 
367 		return false;
368 	}
369 
370 	if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
371 		drm_dbg(&dev_priv->drm,
372 			"DDI PHY %d powered, but still in reset\n", phy);
373 
374 		return false;
375 	}
376 
377 	return true;
378 }
379 
380 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
381 {
382 	u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy));
383 
384 	return REG_FIELD_GET(GRC_CODE_MASK, val);
385 }
386 
387 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
388 				  enum dpio_phy phy)
389 {
390 	if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
391 				  GRC_DONE, 10))
392 		drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n",
393 			phy);
394 }
395 
396 static void _bxt_dpio_phy_init(struct drm_i915_private *dev_priv,
397 			       enum dpio_phy phy)
398 {
399 	const struct bxt_dpio_phy_info *phy_info;
400 	u32 val;
401 
402 	phy_info = bxt_get_phy_info(dev_priv, phy);
403 
404 	if (bxt_dpio_phy_is_enabled(dev_priv, phy)) {
405 		/* Still read out the GRC value for state verification */
406 		if (phy_info->rcomp_phy != -1)
407 			dev_priv->display.state.bxt_phy_grc = bxt_get_grc(dev_priv, phy);
408 
409 		if (bxt_dpio_phy_verify_state(dev_priv, phy)) {
410 			drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, "
411 				"won't reprogram it\n", phy);
412 			return;
413 		}
414 
415 		drm_dbg(&dev_priv->drm,
416 			"DDI PHY %d enabled with invalid state, "
417 			"force reprogramming it\n", phy);
418 	}
419 
420 	intel_de_rmw(dev_priv, BXT_P_CR_GT_DISP_PWRON, 0, phy_info->pwron_mask);
421 
422 	/*
423 	 * The PHY registers start out inaccessible and respond to reads with
424 	 * all 1s.  Eventually they become accessible as they power up, then
425 	 * the reserved bit will give the default 0.  Poll on the reserved bit
426 	 * becoming 0 to find when the PHY is accessible.
427 	 * The flag should get set in 100us according to the HW team, but
428 	 * use 1ms due to occasional timeouts observed with that.
429 	 */
430 	if (intel_de_wait_fw(dev_priv, BXT_PORT_CL1CM_DW0(phy),
431 			     PHY_RESERVED | PHY_POWER_GOOD, PHY_POWER_GOOD, 1))
432 		drm_err(&dev_priv->drm, "timeout during PHY%d power on\n",
433 			phy);
434 
435 	/* Program PLL Rcomp code offset */
436 	intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW9(phy),
437 		     IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xE4));
438 
439 	intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW10(phy),
440 		     IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xE4));
441 
442 	/* Program power gating */
443 	intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW28(phy), 0,
444 		     OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG);
445 
446 	if (phy_info->dual_channel)
447 		intel_de_rmw(dev_priv, BXT_PORT_CL2CM_DW6(phy), 0,
448 			     DW6_OLDO_DYN_PWR_DOWN_EN);
449 
450 	if (phy_info->rcomp_phy != -1) {
451 		u32 grc_code;
452 
453 		bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
454 
455 		/*
456 		 * PHY0 isn't connected to an RCOMP resistor so copy over
457 		 * the corresponding calibrated value from PHY1, and disable
458 		 * the automatic calibration on PHY0.
459 		 */
460 		val = bxt_get_grc(dev_priv, phy_info->rcomp_phy);
461 		dev_priv->display.state.bxt_phy_grc = val;
462 
463 		grc_code = GRC_CODE_FAST(val) |
464 			GRC_CODE_SLOW(val) |
465 			GRC_CODE_NOM(val);
466 		intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code);
467 		intel_de_rmw(dev_priv, BXT_PORT_REF_DW8(phy),
468 			     0, GRC_DIS | GRC_RDY_OVRD);
469 	}
470 
471 	if (phy_info->reset_delay)
472 		udelay(phy_info->reset_delay);
473 
474 	intel_de_rmw(dev_priv, BXT_PHY_CTL_FAMILY(phy), 0, COMMON_RESET_DIS);
475 }
476 
477 void bxt_dpio_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
478 {
479 	const struct bxt_dpio_phy_info *phy_info;
480 
481 	phy_info = bxt_get_phy_info(dev_priv, phy);
482 
483 	intel_de_rmw(dev_priv, BXT_PHY_CTL_FAMILY(phy), COMMON_RESET_DIS, 0);
484 
485 	intel_de_rmw(dev_priv, BXT_P_CR_GT_DISP_PWRON, phy_info->pwron_mask, 0);
486 }
487 
488 void bxt_dpio_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
489 {
490 	const struct bxt_dpio_phy_info *phy_info =
491 		bxt_get_phy_info(dev_priv, phy);
492 	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
493 	bool was_enabled;
494 
495 	lockdep_assert_held(&dev_priv->display.power.domains.lock);
496 
497 	was_enabled = true;
498 	if (rcomp_phy != -1)
499 		was_enabled = bxt_dpio_phy_is_enabled(dev_priv, rcomp_phy);
500 
501 	/*
502 	 * We need to copy the GRC calibration value from rcomp_phy,
503 	 * so make sure it's powered up.
504 	 */
505 	if (!was_enabled)
506 		_bxt_dpio_phy_init(dev_priv, rcomp_phy);
507 
508 	_bxt_dpio_phy_init(dev_priv, phy);
509 
510 	if (!was_enabled)
511 		bxt_dpio_phy_uninit(dev_priv, rcomp_phy);
512 }
513 
514 static bool __printf(6, 7)
515 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
516 		       i915_reg_t reg, u32 mask, u32 expected,
517 		       const char *reg_fmt, ...)
518 {
519 	struct va_format vaf;
520 	va_list args;
521 	u32 val;
522 
523 	val = intel_de_read(dev_priv, reg);
524 	if ((val & mask) == expected)
525 		return true;
526 
527 	va_start(args, reg_fmt);
528 	vaf.fmt = reg_fmt;
529 	vaf.va = &args;
530 
531 	drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
532 			 "current %08x, expected %08x (mask %08x)\n",
533 			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
534 			 mask);
535 
536 	va_end(args);
537 
538 	return false;
539 }
540 
541 bool bxt_dpio_phy_verify_state(struct drm_i915_private *dev_priv,
542 			       enum dpio_phy phy)
543 {
544 	const struct bxt_dpio_phy_info *phy_info;
545 	u32 mask;
546 	bool ok;
547 
548 	phy_info = bxt_get_phy_info(dev_priv, phy);
549 
550 #define _CHK(reg, mask, exp, fmt, ...)					\
551 	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
552 			       ## __VA_ARGS__)
553 
554 	if (!bxt_dpio_phy_is_enabled(dev_priv, phy))
555 		return false;
556 
557 	ok = true;
558 
559 	/* PLL Rcomp code offset */
560 	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
561 		   IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xe4),
562 		   "BXT_PORT_CL1CM_DW9(%d)", phy);
563 	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
564 		   IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xe4),
565 		   "BXT_PORT_CL1CM_DW10(%d)", phy);
566 
567 	/* Power gating */
568 	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
569 	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
570 		   "BXT_PORT_CL1CM_DW28(%d)", phy);
571 
572 	if (phy_info->dual_channel)
573 		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
574 			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
575 			   "BXT_PORT_CL2CM_DW6(%d)", phy);
576 
577 	if (phy_info->rcomp_phy != -1) {
578 		u32 grc_code = dev_priv->display.state.bxt_phy_grc;
579 
580 		grc_code = GRC_CODE_FAST(grc_code) |
581 			GRC_CODE_SLOW(grc_code) |
582 			GRC_CODE_NOM(grc_code);
583 		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
584 		       GRC_CODE_NOM_MASK;
585 		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
586 			   "BXT_PORT_REF_DW6(%d)", phy);
587 
588 		mask = GRC_DIS | GRC_RDY_OVRD;
589 		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
590 			   "BXT_PORT_REF_DW8(%d)", phy);
591 	}
592 
593 	return ok;
594 #undef _CHK
595 }
596 
597 u8
598 bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count)
599 {
600 	switch (lane_count) {
601 	case 1:
602 		return 0;
603 	case 2:
604 		return BIT(2) | BIT(0);
605 	case 4:
606 		return BIT(3) | BIT(2) | BIT(0);
607 	default:
608 		MISSING_CASE(lane_count);
609 
610 		return 0;
611 	}
612 }
613 
614 void bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder *encoder,
615 				      u8 lane_lat_optim_mask)
616 {
617 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
618 	enum port port = encoder->port;
619 	enum dpio_phy phy;
620 	enum dpio_channel ch;
621 	int lane;
622 
623 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
624 
625 	for (lane = 0; lane < 4; lane++) {
626 		/*
627 		 * Note that on CHV this flag is called UPAR, but has
628 		 * the same function.
629 		 */
630 		intel_de_rmw(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane),
631 			     LATENCY_OPTIM,
632 			     lane_lat_optim_mask & BIT(lane) ? LATENCY_OPTIM : 0);
633 	}
634 }
635 
636 u8
637 bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
638 {
639 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
640 	enum port port = encoder->port;
641 	enum dpio_phy phy;
642 	enum dpio_channel ch;
643 	int lane;
644 	u8 mask;
645 
646 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
647 
648 	mask = 0;
649 	for (lane = 0; lane < 4; lane++) {
650 		u32 val = intel_de_read(dev_priv,
651 					BXT_PORT_TX_DW14_LN(phy, ch, lane));
652 
653 		if (val & LATENCY_OPTIM)
654 			mask |= BIT(lane);
655 	}
656 
657 	return mask;
658 }
659 
660 enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port)
661 {
662 	switch (dig_port->base.port) {
663 	default:
664 		MISSING_CASE(dig_port->base.port);
665 		fallthrough;
666 	case PORT_B:
667 	case PORT_D:
668 		return DPIO_CH0;
669 	case PORT_C:
670 		return DPIO_CH1;
671 	}
672 }
673 
674 enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port)
675 {
676 	switch (dig_port->base.port) {
677 	default:
678 		MISSING_CASE(dig_port->base.port);
679 		fallthrough;
680 	case PORT_B:
681 	case PORT_C:
682 		return DPIO_PHY0;
683 	case PORT_D:
684 		return DPIO_PHY1;
685 	}
686 }
687 
688 enum dpio_phy vlv_pipe_to_phy(enum pipe pipe)
689 {
690 	switch (pipe) {
691 	default:
692 		MISSING_CASE(pipe);
693 		fallthrough;
694 	case PIPE_A:
695 	case PIPE_B:
696 		return DPIO_PHY0;
697 	case PIPE_C:
698 		return DPIO_PHY1;
699 	}
700 }
701 
702 enum dpio_channel vlv_pipe_to_channel(enum pipe pipe)
703 {
704 	switch (pipe) {
705 	default:
706 		MISSING_CASE(pipe);
707 		fallthrough;
708 	case PIPE_A:
709 	case PIPE_C:
710 		return DPIO_CH0;
711 	case PIPE_B:
712 		return DPIO_CH1;
713 	}
714 }
715 
716 void chv_set_phy_signal_level(struct intel_encoder *encoder,
717 			      const struct intel_crtc_state *crtc_state,
718 			      u32 deemph_reg_value, u32 margin_reg_value,
719 			      bool uniq_trans_scale)
720 {
721 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
722 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
723 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
724 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
725 	u32 val;
726 	int i;
727 
728 	vlv_dpio_get(dev_priv);
729 
730 	/* Clear calc init */
731 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
732 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
733 	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
734 	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
735 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
736 
737 	if (crtc_state->lane_count > 2) {
738 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
739 		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
740 		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
741 		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
742 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
743 	}
744 
745 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW9(ch));
746 	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
747 	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
748 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW9(ch), val);
749 
750 	if (crtc_state->lane_count > 2) {
751 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW9(ch));
752 		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
753 		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
754 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW9(ch), val);
755 	}
756 
757 	/* Program swing deemph */
758 	for (i = 0; i < crtc_state->lane_count; i++) {
759 		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW4(ch, i));
760 		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
761 		val |= DPIO_SWING_DEEMPH9P5(deemph_reg_value);
762 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW4(ch, i), val);
763 	}
764 
765 	/* Program swing margin */
766 	for (i = 0; i < crtc_state->lane_count; i++) {
767 		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW2(ch, i));
768 
769 		val &= ~DPIO_SWING_MARGIN000_MASK;
770 		val |= DPIO_SWING_MARGIN000(margin_reg_value);
771 
772 		/*
773 		 * Supposedly this value shouldn't matter when unique transition
774 		 * scale is disabled, but in fact it does matter. Let's just
775 		 * always program the same value and hope it's OK.
776 		 */
777 		val &= ~DPIO_UNIQ_TRANS_SCALE_MASK;
778 		val |= DPIO_UNIQ_TRANS_SCALE(0x9a);
779 
780 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW2(ch, i), val);
781 	}
782 
783 	/*
784 	 * The document said it needs to set bit 27 for ch0 and bit 26
785 	 * for ch1. Might be a typo in the doc.
786 	 * For now, for this unique transition scale selection, set bit
787 	 * 27 for ch0 and ch1.
788 	 */
789 	for (i = 0; i < crtc_state->lane_count; i++) {
790 		val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW3(ch, i));
791 		if (uniq_trans_scale)
792 			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
793 		else
794 			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
795 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW3(ch, i), val);
796 	}
797 
798 	/* Start swing calculation */
799 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
800 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
801 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
802 
803 	if (crtc_state->lane_count > 2) {
804 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
805 		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
806 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
807 	}
808 
809 	vlv_dpio_put(dev_priv);
810 }
811 
812 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
813 			      const struct intel_crtc_state *crtc_state,
814 			      bool reset)
815 {
816 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
817 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
818 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
819 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
820 	u32 val;
821 
822 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW0(ch));
823 	if (reset)
824 		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
825 	else
826 		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
827 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW0(ch), val);
828 
829 	if (crtc_state->lane_count > 2) {
830 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW0(ch));
831 		if (reset)
832 			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
833 		else
834 			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
835 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW0(ch), val);
836 	}
837 
838 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW1(ch));
839 	val |= CHV_PCS_REQ_SOFTRESET_EN;
840 	if (reset)
841 		val &= ~DPIO_PCS_CLK_SOFT_RESET;
842 	else
843 		val |= DPIO_PCS_CLK_SOFT_RESET;
844 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW1(ch), val);
845 
846 	if (crtc_state->lane_count > 2) {
847 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW1(ch));
848 		val |= CHV_PCS_REQ_SOFTRESET_EN;
849 		if (reset)
850 			val &= ~DPIO_PCS_CLK_SOFT_RESET;
851 		else
852 			val |= DPIO_PCS_CLK_SOFT_RESET;
853 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW1(ch), val);
854 	}
855 }
856 
857 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
858 			    const struct intel_crtc_state *crtc_state)
859 {
860 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
861 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
862 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
863 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
864 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
865 	enum pipe pipe = crtc->pipe;
866 	unsigned int lane_mask =
867 		intel_dp_unused_lane_mask(crtc_state->lane_count);
868 	u32 val;
869 
870 	/*
871 	 * Must trick the second common lane into life.
872 	 * Otherwise we can't even access the PLL.
873 	 */
874 	if (ch == DPIO_CH0 && pipe == PIPE_B)
875 		dig_port->release_cl2_override =
876 			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
877 
878 	chv_phy_powergate_lanes(encoder, true, lane_mask);
879 
880 	vlv_dpio_get(dev_priv);
881 
882 	/* Assert data lane reset */
883 	chv_data_lane_soft_reset(encoder, crtc_state, true);
884 
885 	/* program left/right clock distribution */
886 	if (pipe != PIPE_B) {
887 		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0);
888 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
889 		if (ch == DPIO_CH0)
890 			val |= CHV_BUFLEFTENA1_FORCE;
891 		if (ch == DPIO_CH1)
892 			val |= CHV_BUFRIGHTENA1_FORCE;
893 		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val);
894 	} else {
895 		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1);
896 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
897 		if (ch == DPIO_CH0)
898 			val |= CHV_BUFLEFTENA2_FORCE;
899 		if (ch == DPIO_CH1)
900 			val |= CHV_BUFRIGHTENA2_FORCE;
901 		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val);
902 	}
903 
904 	/* program clock channel usage */
905 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(ch));
906 	val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
907 	if (pipe == PIPE_B)
908 		val |= DPIO_PCS_USEDCLKCHANNEL;
909 	else
910 		val &= ~DPIO_PCS_USEDCLKCHANNEL;
911 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW8(ch), val);
912 
913 	if (crtc_state->lane_count > 2) {
914 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW8(ch));
915 		val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
916 		if (pipe == PIPE_B)
917 			val |= DPIO_PCS_USEDCLKCHANNEL;
918 		else
919 			val &= ~DPIO_PCS_USEDCLKCHANNEL;
920 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW8(ch), val);
921 	}
922 
923 	/*
924 	 * This a a bit weird since generally CL
925 	 * matches the pipe, but here we need to
926 	 * pick the CL based on the port.
927 	 */
928 	val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW19(ch));
929 	if (pipe == PIPE_B)
930 		val |= CHV_CMN_USEDCLKCHANNEL;
931 	else
932 		val &= ~CHV_CMN_USEDCLKCHANNEL;
933 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW19(ch), val);
934 
935 	vlv_dpio_put(dev_priv);
936 }
937 
938 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
939 				const struct intel_crtc_state *crtc_state)
940 {
941 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
942 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
943 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
944 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
945 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
946 	int data, i, stagger;
947 	u32 val;
948 
949 	vlv_dpio_get(dev_priv);
950 
951 	/* allow hardware to manage TX FIFO reset source */
952 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
953 	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
954 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
955 
956 	if (crtc_state->lane_count > 2) {
957 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
958 		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
959 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
960 	}
961 
962 	/* Program Tx lane latency optimal setting*/
963 	for (i = 0; i < crtc_state->lane_count; i++) {
964 		/* Set the upar bit */
965 		if (crtc_state->lane_count == 1)
966 			data = 0;
967 		else
968 			data = (i == 1) ? 0 : DPIO_UPAR;
969 		vlv_dpio_write(dev_priv, phy, CHV_TX_DW14(ch, i), data);
970 	}
971 
972 	/* Data lane stagger programming */
973 	if (crtc_state->port_clock > 270000)
974 		stagger = 0x18;
975 	else if (crtc_state->port_clock > 135000)
976 		stagger = 0xd;
977 	else if (crtc_state->port_clock > 67500)
978 		stagger = 0x7;
979 	else if (crtc_state->port_clock > 33750)
980 		stagger = 0x4;
981 	else
982 		stagger = 0x2;
983 
984 	val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
985 	val |= DPIO_TX2_STAGGER_MASK(0x1f);
986 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
987 
988 	if (crtc_state->lane_count > 2) {
989 		val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
990 		val |= DPIO_TX2_STAGGER_MASK(0x1f);
991 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
992 	}
993 
994 	vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW12(ch),
995 		       DPIO_LANESTAGGER_STRAP(stagger) |
996 		       DPIO_LANESTAGGER_STRAP_OVRD |
997 		       DPIO_TX1_STAGGER_MASK(0x1f) |
998 		       DPIO_TX1_STAGGER_MULT(6) |
999 		       DPIO_TX2_STAGGER_MULT(0));
1000 
1001 	if (crtc_state->lane_count > 2) {
1002 		vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW12(ch),
1003 			       DPIO_LANESTAGGER_STRAP(stagger) |
1004 			       DPIO_LANESTAGGER_STRAP_OVRD |
1005 			       DPIO_TX1_STAGGER_MASK(0x1f) |
1006 			       DPIO_TX1_STAGGER_MULT(7) |
1007 			       DPIO_TX2_STAGGER_MULT(5));
1008 	}
1009 
1010 	/* Deassert data lane reset */
1011 	chv_data_lane_soft_reset(encoder, crtc_state, false);
1012 
1013 	vlv_dpio_put(dev_priv);
1014 }
1015 
1016 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
1017 {
1018 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1019 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020 
1021 	if (dig_port->release_cl2_override) {
1022 		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
1023 		dig_port->release_cl2_override = false;
1024 	}
1025 }
1026 
1027 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
1028 			      const struct intel_crtc_state *old_crtc_state)
1029 {
1030 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1031 	enum dpio_phy phy = vlv_dig_port_to_phy(enc_to_dig_port(encoder));
1032 	enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
1033 	u32 val;
1034 
1035 	vlv_dpio_get(dev_priv);
1036 
1037 	/* disable left/right clock distribution */
1038 	if (pipe != PIPE_B) {
1039 		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0);
1040 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1041 		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val);
1042 	} else {
1043 		val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1);
1044 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1045 		vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val);
1046 	}
1047 
1048 	vlv_dpio_put(dev_priv);
1049 
1050 	/*
1051 	 * Leave the power down bit cleared for at least one
1052 	 * lane so that chv_powergate_phy_ch() will power
1053 	 * on something when the channel is otherwise unused.
1054 	 * When the port is off and the override is removed
1055 	 * the lanes power down anyway, so otherwise it doesn't
1056 	 * really matter what the state of power down bits is
1057 	 * after this.
1058 	 */
1059 	chv_phy_powergate_lanes(encoder, false, 0x0);
1060 }
1061 
1062 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
1063 			      const struct intel_crtc_state *crtc_state,
1064 			      u32 demph_reg_value, u32 preemph_reg_value,
1065 			      u32 uniqtranscale_reg_value, u32 tx3_demph)
1066 {
1067 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1068 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1069 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1070 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1071 
1072 	vlv_dpio_get(dev_priv);
1073 
1074 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), 0x00000000);
1075 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW4_GRP(ch), demph_reg_value);
1076 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW2_GRP(ch),
1077 			 uniqtranscale_reg_value);
1078 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW3_GRP(ch), 0x0C782040);
1079 
1080 	if (tx3_demph)
1081 		vlv_dpio_write(dev_priv, phy, VLV_TX_DW4(ch, 3), tx3_demph);
1082 
1083 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW11_GRP(ch), 0x00030000);
1084 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW9_GRP(ch), preemph_reg_value);
1085 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), DPIO_TX_OCALINIT_EN);
1086 
1087 	vlv_dpio_put(dev_priv);
1088 }
1089 
1090 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1091 			    const struct intel_crtc_state *crtc_state)
1092 {
1093 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1094 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1095 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1096 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1097 
1098 	/* Program Tx lane resets to default */
1099 	vlv_dpio_get(dev_priv);
1100 
1101 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch),
1102 		       DPIO_PCS_TX_LANE2_RESET |
1103 		       DPIO_PCS_TX_LANE1_RESET);
1104 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch),
1105 		       DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1106 		       DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1107 		       DPIO_PCS_CLK_DATAWIDTH_8_10 |
1108 		       DPIO_PCS_CLK_SOFT_RESET);
1109 
1110 	/* Fix up inter-pair skew failure */
1111 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW12_GRP(ch), 0x00750f00);
1112 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW11_GRP(ch), 0x00001500);
1113 	vlv_dpio_write(dev_priv, phy, VLV_TX_DW14_GRP(ch), 0x40400000);
1114 
1115 	vlv_dpio_put(dev_priv);
1116 }
1117 
1118 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1119 				const struct intel_crtc_state *crtc_state)
1120 {
1121 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1122 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1123 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1124 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1125 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1126 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1127 	enum pipe pipe = crtc->pipe;
1128 	u32 val;
1129 
1130 	vlv_dpio_get(dev_priv);
1131 
1132 	/* Enable clock channels for this port */
1133 	val = DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
1134 	if (pipe == PIPE_B)
1135 		val |= DPIO_PCS_USEDCLKCHANNEL;
1136 	val |= 0xc4;
1137 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW8_GRP(ch), val);
1138 
1139 	/* Program lane clock */
1140 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW14_GRP(ch), 0x00760018);
1141 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW23_GRP(ch), 0x00400888);
1142 
1143 	vlv_dpio_put(dev_priv);
1144 }
1145 
1146 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1147 			 const struct intel_crtc_state *old_crtc_state)
1148 {
1149 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1150 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1152 	enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1153 
1154 	vlv_dpio_get(dev_priv);
1155 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch), 0x00000000);
1156 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch), 0x00e00060);
1157 	vlv_dpio_put(dev_priv);
1158 }
1159