xref: /linux/drivers/gpu/drm/i915/display/intel_dp.c (revision 94cad89ae4505672ae65457d12f77c44ca87655b)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34 
35 #include <asm/byteorder.h>
36 
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 
44 #include "i915_debugfs.h"
45 #include "i915_drv.h"
46 #include "i915_trace.h"
47 #include "intel_atomic.h"
48 #include "intel_audio.h"
49 #include "intel_connector.h"
50 #include "intel_ddi.h"
51 #include "intel_display_types.h"
52 #include "intel_dp.h"
53 #include "intel_dp_link_training.h"
54 #include "intel_dp_mst.h"
55 #include "intel_dpio_phy.h"
56 #include "intel_fifo_underrun.h"
57 #include "intel_hdcp.h"
58 #include "intel_hdmi.h"
59 #include "intel_hotplug.h"
60 #include "intel_lspcon.h"
61 #include "intel_lvds.h"
62 #include "intel_panel.h"
63 #include "intel_psr.h"
64 #include "intel_sideband.h"
65 #include "intel_tc.h"
66 #include "intel_vdsc.h"
67 
68 #define DP_DPRX_ESI_LEN 14
69 
70 /* DP DSC throughput values used for slice count calculations KPixels/s */
71 #define DP_DSC_PEAK_PIXEL_RATE			2720000
72 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
74 
75 /* DP DSC FEC Overhead factor = 1/(0.972261) */
76 #define DP_DSC_FEC_OVERHEAD_FACTOR		972261
77 
78 /* Compliance test status bits  */
79 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
80 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
81 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 
84 struct dp_link_dpll {
85 	int clock;
86 	struct dpll dpll;
87 };
88 
89 static const struct dp_link_dpll g4x_dpll[] = {
90 	{ 162000,
91 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
92 	{ 270000,
93 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
94 };
95 
96 static const struct dp_link_dpll pch_dpll[] = {
97 	{ 162000,
98 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
99 	{ 270000,
100 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
101 };
102 
103 static const struct dp_link_dpll vlv_dpll[] = {
104 	{ 162000,
105 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
106 	{ 270000,
107 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
108 };
109 
110 /*
111  * CHV supports eDP 1.4 that have  more link rates.
112  * Below only provides the fixed rate but exclude variable rate.
113  */
114 static const struct dp_link_dpll chv_dpll[] = {
115 	/*
116 	 * CHV requires to program fractional division for m2.
117 	 * m2 is stored in fixed point format using formula below
118 	 * (m2_int << 22) | m2_fraction
119 	 */
120 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
121 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
122 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
123 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
124 };
125 
126 /* Constants for DP DSC configurations */
127 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
128 
129 /* With Single pipe configuration, HW is capable of supporting maximum
130  * of 4 slices per line.
131  */
132 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
133 
134 /**
135  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
136  * @intel_dp: DP struct
137  *
138  * If a CPU or PCH DP output is attached to an eDP panel, this function
139  * will return true, and false otherwise.
140  *
141  * This function is not safe to use prior to encoder type being set.
142  */
143 bool intel_dp_is_edp(struct intel_dp *intel_dp)
144 {
145 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
146 
147 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
148 }
149 
150 static void intel_dp_link_down(struct intel_encoder *encoder,
151 			       const struct intel_crtc_state *old_crtc_state);
152 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
153 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
154 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
155 					   const struct intel_crtc_state *crtc_state);
156 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
157 				      enum pipe pipe);
158 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
159 
160 /* update sink rates from dpcd */
161 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
162 {
163 	static const int dp_rates[] = {
164 		162000, 270000, 540000, 810000
165 	};
166 	int i, max_rate;
167 
168 	if (drm_dp_has_quirk(&intel_dp->desc, 0,
169 			     DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
170 		/* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
171 		static const int quirk_rates[] = { 162000, 270000, 324000 };
172 
173 		memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
174 		intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
175 
176 		return;
177 	}
178 
179 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
180 
181 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
182 		if (dp_rates[i] > max_rate)
183 			break;
184 		intel_dp->sink_rates[i] = dp_rates[i];
185 	}
186 
187 	intel_dp->num_sink_rates = i;
188 }
189 
190 /* Get length of rates array potentially limited by max_rate. */
191 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
192 {
193 	int i;
194 
195 	/* Limit results by potentially reduced max rate */
196 	for (i = 0; i < len; i++) {
197 		if (rates[len - i - 1] <= max_rate)
198 			return len - i;
199 	}
200 
201 	return 0;
202 }
203 
204 /* Get length of common rates array potentially limited by max_rate. */
205 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
206 					  int max_rate)
207 {
208 	return intel_dp_rate_limit_len(intel_dp->common_rates,
209 				       intel_dp->num_common_rates, max_rate);
210 }
211 
212 /* Theoretical max between source and sink */
213 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
214 {
215 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
216 }
217 
218 /* Theoretical max between source and sink */
219 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
220 {
221 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
222 	int source_max = intel_dig_port->max_lanes;
223 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
224 	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
225 
226 	return min3(source_max, sink_max, fia_max);
227 }
228 
229 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
230 {
231 	return intel_dp->max_link_lane_count;
232 }
233 
234 int
235 intel_dp_link_required(int pixel_clock, int bpp)
236 {
237 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
238 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
239 }
240 
241 int
242 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
243 {
244 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
245 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
246 	 * is transmitted every LS_Clk per lane, there is no need to account for
247 	 * the channel encoding that is done in the PHY layer here.
248 	 */
249 
250 	return max_link_clock * max_lanes;
251 }
252 
253 static int
254 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
255 {
256 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
257 	struct intel_encoder *encoder = &intel_dig_port->base;
258 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
259 	int max_dotclk = dev_priv->max_dotclk_freq;
260 	int ds_max_dotclk;
261 
262 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
263 
264 	if (type != DP_DS_PORT_TYPE_VGA)
265 		return max_dotclk;
266 
267 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
268 						    intel_dp->downstream_ports);
269 
270 	if (ds_max_dotclk != 0)
271 		max_dotclk = min(max_dotclk, ds_max_dotclk);
272 
273 	return max_dotclk;
274 }
275 
276 static int cnl_max_source_rate(struct intel_dp *intel_dp)
277 {
278 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
279 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
280 	enum port port = dig_port->base.port;
281 
282 	u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
283 
284 	/* Low voltage SKUs are limited to max of 5.4G */
285 	if (voltage == VOLTAGE_INFO_0_85V)
286 		return 540000;
287 
288 	/* For this SKU 8.1G is supported in all ports */
289 	if (IS_CNL_WITH_PORT_F(dev_priv))
290 		return 810000;
291 
292 	/* For other SKUs, max rate on ports A and D is 5.4G */
293 	if (port == PORT_A || port == PORT_D)
294 		return 540000;
295 
296 	return 810000;
297 }
298 
299 static int icl_max_source_rate(struct intel_dp *intel_dp)
300 {
301 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
302 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
303 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
304 
305 	if (intel_phy_is_combo(dev_priv, phy) &&
306 	    !IS_ELKHARTLAKE(dev_priv) &&
307 	    !intel_dp_is_edp(intel_dp))
308 		return 540000;
309 
310 	return 810000;
311 }
312 
313 static void
314 intel_dp_set_source_rates(struct intel_dp *intel_dp)
315 {
316 	/* The values must be in increasing order */
317 	static const int cnl_rates[] = {
318 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
319 	};
320 	static const int bxt_rates[] = {
321 		162000, 216000, 243000, 270000, 324000, 432000, 540000
322 	};
323 	static const int skl_rates[] = {
324 		162000, 216000, 270000, 324000, 432000, 540000
325 	};
326 	static const int hsw_rates[] = {
327 		162000, 270000, 540000
328 	};
329 	static const int g4x_rates[] = {
330 		162000, 270000
331 	};
332 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
333 	struct intel_encoder *encoder = &dig_port->base;
334 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
335 	const int *source_rates;
336 	int size, max_rate = 0, vbt_max_rate;
337 
338 	/* This should only be done once */
339 	drm_WARN_ON(&dev_priv->drm,
340 		    intel_dp->source_rates || intel_dp->num_source_rates);
341 
342 	if (INTEL_GEN(dev_priv) >= 10) {
343 		source_rates = cnl_rates;
344 		size = ARRAY_SIZE(cnl_rates);
345 		if (IS_GEN(dev_priv, 10))
346 			max_rate = cnl_max_source_rate(intel_dp);
347 		else
348 			max_rate = icl_max_source_rate(intel_dp);
349 	} else if (IS_GEN9_LP(dev_priv)) {
350 		source_rates = bxt_rates;
351 		size = ARRAY_SIZE(bxt_rates);
352 	} else if (IS_GEN9_BC(dev_priv)) {
353 		source_rates = skl_rates;
354 		size = ARRAY_SIZE(skl_rates);
355 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
356 		   IS_BROADWELL(dev_priv)) {
357 		source_rates = hsw_rates;
358 		size = ARRAY_SIZE(hsw_rates);
359 	} else {
360 		source_rates = g4x_rates;
361 		size = ARRAY_SIZE(g4x_rates);
362 	}
363 
364 	vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
365 	if (max_rate && vbt_max_rate)
366 		max_rate = min(max_rate, vbt_max_rate);
367 	else if (vbt_max_rate)
368 		max_rate = vbt_max_rate;
369 
370 	if (max_rate)
371 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
372 
373 	intel_dp->source_rates = source_rates;
374 	intel_dp->num_source_rates = size;
375 }
376 
377 static int intersect_rates(const int *source_rates, int source_len,
378 			   const int *sink_rates, int sink_len,
379 			   int *common_rates)
380 {
381 	int i = 0, j = 0, k = 0;
382 
383 	while (i < source_len && j < sink_len) {
384 		if (source_rates[i] == sink_rates[j]) {
385 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
386 				return k;
387 			common_rates[k] = source_rates[i];
388 			++k;
389 			++i;
390 			++j;
391 		} else if (source_rates[i] < sink_rates[j]) {
392 			++i;
393 		} else {
394 			++j;
395 		}
396 	}
397 	return k;
398 }
399 
400 /* return index of rate in rates array, or -1 if not found */
401 static int intel_dp_rate_index(const int *rates, int len, int rate)
402 {
403 	int i;
404 
405 	for (i = 0; i < len; i++)
406 		if (rate == rates[i])
407 			return i;
408 
409 	return -1;
410 }
411 
412 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
413 {
414 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
415 
416 	drm_WARN_ON(&i915->drm,
417 		    !intel_dp->num_source_rates || !intel_dp->num_sink_rates);
418 
419 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
420 						     intel_dp->num_source_rates,
421 						     intel_dp->sink_rates,
422 						     intel_dp->num_sink_rates,
423 						     intel_dp->common_rates);
424 
425 	/* Paranoia, there should always be something in common. */
426 	if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) {
427 		intel_dp->common_rates[0] = 162000;
428 		intel_dp->num_common_rates = 1;
429 	}
430 }
431 
432 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
433 				       u8 lane_count)
434 {
435 	/*
436 	 * FIXME: we need to synchronize the current link parameters with
437 	 * hardware readout. Currently fast link training doesn't work on
438 	 * boot-up.
439 	 */
440 	if (link_rate == 0 ||
441 	    link_rate > intel_dp->max_link_rate)
442 		return false;
443 
444 	if (lane_count == 0 ||
445 	    lane_count > intel_dp_max_lane_count(intel_dp))
446 		return false;
447 
448 	return true;
449 }
450 
451 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
452 						     int link_rate,
453 						     u8 lane_count)
454 {
455 	const struct drm_display_mode *fixed_mode =
456 		intel_dp->attached_connector->panel.fixed_mode;
457 	int mode_rate, max_rate;
458 
459 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
460 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
461 	if (mode_rate > max_rate)
462 		return false;
463 
464 	return true;
465 }
466 
467 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
468 					    int link_rate, u8 lane_count)
469 {
470 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
471 	int index;
472 
473 	/*
474 	 * TODO: Enable fallback on MST links once MST link compute can handle
475 	 * the fallback params.
476 	 */
477 	if (intel_dp->is_mst) {
478 		drm_err(&i915->drm, "Link Training Unsuccessful\n");
479 		return -1;
480 	}
481 
482 	index = intel_dp_rate_index(intel_dp->common_rates,
483 				    intel_dp->num_common_rates,
484 				    link_rate);
485 	if (index > 0) {
486 		if (intel_dp_is_edp(intel_dp) &&
487 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
488 							      intel_dp->common_rates[index - 1],
489 							      lane_count)) {
490 			drm_dbg_kms(&i915->drm,
491 				    "Retrying Link training for eDP with same parameters\n");
492 			return 0;
493 		}
494 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
495 		intel_dp->max_link_lane_count = lane_count;
496 	} else if (lane_count > 1) {
497 		if (intel_dp_is_edp(intel_dp) &&
498 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
499 							      intel_dp_max_common_rate(intel_dp),
500 							      lane_count >> 1)) {
501 			drm_dbg_kms(&i915->drm,
502 				    "Retrying Link training for eDP with same parameters\n");
503 			return 0;
504 		}
505 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
506 		intel_dp->max_link_lane_count = lane_count >> 1;
507 	} else {
508 		drm_err(&i915->drm, "Link Training Unsuccessful\n");
509 		return -1;
510 	}
511 
512 	return 0;
513 }
514 
515 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
516 {
517 	return div_u64(mul_u32_u32(mode_clock, 1000000U),
518 		       DP_DSC_FEC_OVERHEAD_FACTOR);
519 }
520 
521 static int
522 small_joiner_ram_size_bits(struct drm_i915_private *i915)
523 {
524 	if (INTEL_GEN(i915) >= 11)
525 		return 7680 * 8;
526 	else
527 		return 6144 * 8;
528 }
529 
530 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
531 				       u32 link_clock, u32 lane_count,
532 				       u32 mode_clock, u32 mode_hdisplay)
533 {
534 	u32 bits_per_pixel, max_bpp_small_joiner_ram;
535 	int i;
536 
537 	/*
538 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
539 	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
540 	 * for SST -> TimeSlotsPerMTP is 1,
541 	 * for MST -> TimeSlotsPerMTP has to be calculated
542 	 */
543 	bits_per_pixel = (link_clock * lane_count * 8) /
544 			 intel_dp_mode_to_fec_clock(mode_clock);
545 	drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
546 
547 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
548 	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
549 		mode_hdisplay;
550 	drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
551 		    max_bpp_small_joiner_ram);
552 
553 	/*
554 	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
555 	 * check, output bpp from small joiner RAM check)
556 	 */
557 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
558 
559 	/* Error out if the max bpp is less than smallest allowed valid bpp */
560 	if (bits_per_pixel < valid_dsc_bpp[0]) {
561 		drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
562 			    bits_per_pixel, valid_dsc_bpp[0]);
563 		return 0;
564 	}
565 
566 	/* Find the nearest match in the array of known BPPs from VESA */
567 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
568 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
569 			break;
570 	}
571 	bits_per_pixel = valid_dsc_bpp[i];
572 
573 	/*
574 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
575 	 * fractional part is 0
576 	 */
577 	return bits_per_pixel << 4;
578 }
579 
580 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
581 				       int mode_clock, int mode_hdisplay)
582 {
583 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
584 	u8 min_slice_count, i;
585 	int max_slice_width;
586 
587 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
588 		min_slice_count = DIV_ROUND_UP(mode_clock,
589 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
590 	else
591 		min_slice_count = DIV_ROUND_UP(mode_clock,
592 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
593 
594 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
595 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
596 		drm_dbg_kms(&i915->drm,
597 			    "Unsupported slice width %d by DP DSC Sink device\n",
598 			    max_slice_width);
599 		return 0;
600 	}
601 	/* Also take into account max slice width */
602 	min_slice_count = min_t(u8, min_slice_count,
603 				DIV_ROUND_UP(mode_hdisplay,
604 					     max_slice_width));
605 
606 	/* Find the closest match to the valid slice count values */
607 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
608 		if (valid_dsc_slicecount[i] >
609 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
610 						    false))
611 			break;
612 		if (min_slice_count  <= valid_dsc_slicecount[i])
613 			return valid_dsc_slicecount[i];
614 	}
615 
616 	drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
617 		    min_slice_count);
618 	return 0;
619 }
620 
621 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
622 				  int hdisplay)
623 {
624 	/*
625 	 * Older platforms don't like hdisplay==4096 with DP.
626 	 *
627 	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
628 	 * and frame counter increment), but we don't get vblank interrupts,
629 	 * and the pipe underruns immediately. The link also doesn't seem
630 	 * to get trained properly.
631 	 *
632 	 * On CHV the vblank interrupts don't seem to disappear but
633 	 * otherwise the symptoms are similar.
634 	 *
635 	 * TODO: confirm the behaviour on HSW+
636 	 */
637 	return hdisplay == 4096 && !HAS_DDI(dev_priv);
638 }
639 
640 static enum drm_mode_status
641 intel_dp_mode_valid(struct drm_connector *connector,
642 		    struct drm_display_mode *mode)
643 {
644 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
645 	struct intel_connector *intel_connector = to_intel_connector(connector);
646 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
647 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
648 	int target_clock = mode->clock;
649 	int max_rate, mode_rate, max_lanes, max_link_clock;
650 	int max_dotclk;
651 	u16 dsc_max_output_bpp = 0;
652 	u8 dsc_slice_count = 0;
653 
654 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
655 		return MODE_NO_DBLESCAN;
656 
657 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
658 
659 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
660 		if (mode->hdisplay > fixed_mode->hdisplay)
661 			return MODE_PANEL;
662 
663 		if (mode->vdisplay > fixed_mode->vdisplay)
664 			return MODE_PANEL;
665 
666 		target_clock = fixed_mode->clock;
667 	}
668 
669 	max_link_clock = intel_dp_max_link_rate(intel_dp);
670 	max_lanes = intel_dp_max_lane_count(intel_dp);
671 
672 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
673 	mode_rate = intel_dp_link_required(target_clock, 18);
674 
675 	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
676 		return MODE_H_ILLEGAL;
677 
678 	/*
679 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
680 	 * integer value since we support only integer values of bpp.
681 	 */
682 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
683 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
684 		if (intel_dp_is_edp(intel_dp)) {
685 			dsc_max_output_bpp =
686 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
687 			dsc_slice_count =
688 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
689 								true);
690 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
691 			dsc_max_output_bpp =
692 				intel_dp_dsc_get_output_bpp(dev_priv,
693 							    max_link_clock,
694 							    max_lanes,
695 							    target_clock,
696 							    mode->hdisplay) >> 4;
697 			dsc_slice_count =
698 				intel_dp_dsc_get_slice_count(intel_dp,
699 							     target_clock,
700 							     mode->hdisplay);
701 		}
702 	}
703 
704 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
705 	    target_clock > max_dotclk)
706 		return MODE_CLOCK_HIGH;
707 
708 	if (mode->clock < 10000)
709 		return MODE_CLOCK_LOW;
710 
711 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
712 		return MODE_H_ILLEGAL;
713 
714 	return intel_mode_valid_max_plane_size(dev_priv, mode);
715 }
716 
717 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
718 {
719 	int i;
720 	u32 v = 0;
721 
722 	if (src_bytes > 4)
723 		src_bytes = 4;
724 	for (i = 0; i < src_bytes; i++)
725 		v |= ((u32)src[i]) << ((3 - i) * 8);
726 	return v;
727 }
728 
729 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
730 {
731 	int i;
732 	if (dst_bytes > 4)
733 		dst_bytes = 4;
734 	for (i = 0; i < dst_bytes; i++)
735 		dst[i] = src >> ((3-i) * 8);
736 }
737 
738 static void
739 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
740 static void
741 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
742 					      bool force_disable_vdd);
743 static void
744 intel_dp_pps_init(struct intel_dp *intel_dp);
745 
746 static intel_wakeref_t
747 pps_lock(struct intel_dp *intel_dp)
748 {
749 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
750 	intel_wakeref_t wakeref;
751 
752 	/*
753 	 * See intel_power_sequencer_reset() why we need
754 	 * a power domain reference here.
755 	 */
756 	wakeref = intel_display_power_get(dev_priv,
757 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
758 
759 	mutex_lock(&dev_priv->pps_mutex);
760 
761 	return wakeref;
762 }
763 
764 static intel_wakeref_t
765 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
766 {
767 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
768 
769 	mutex_unlock(&dev_priv->pps_mutex);
770 	intel_display_power_put(dev_priv,
771 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
772 				wakeref);
773 	return 0;
774 }
775 
776 #define with_pps_lock(dp, wf) \
777 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
778 
779 static void
780 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
781 {
782 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
783 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
784 	enum pipe pipe = intel_dp->pps_pipe;
785 	bool pll_enabled, release_cl_override = false;
786 	enum dpio_phy phy = DPIO_PHY(pipe);
787 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
788 	u32 DP;
789 
790 	if (drm_WARN(&dev_priv->drm,
791 		     intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
792 		     "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
793 		     pipe_name(pipe), intel_dig_port->base.base.base.id,
794 		     intel_dig_port->base.base.name))
795 		return;
796 
797 	drm_dbg_kms(&dev_priv->drm,
798 		    "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
799 		    pipe_name(pipe), intel_dig_port->base.base.base.id,
800 		    intel_dig_port->base.base.name);
801 
802 	/* Preserve the BIOS-computed detected bit. This is
803 	 * supposed to be read-only.
804 	 */
805 	DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
806 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
807 	DP |= DP_PORT_WIDTH(1);
808 	DP |= DP_LINK_TRAIN_PAT_1;
809 
810 	if (IS_CHERRYVIEW(dev_priv))
811 		DP |= DP_PIPE_SEL_CHV(pipe);
812 	else
813 		DP |= DP_PIPE_SEL(pipe);
814 
815 	pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
816 
817 	/*
818 	 * The DPLL for the pipe must be enabled for this to work.
819 	 * So enable temporarily it if it's not already enabled.
820 	 */
821 	if (!pll_enabled) {
822 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
823 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
824 
825 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
826 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
827 			drm_err(&dev_priv->drm,
828 				"Failed to force on pll for pipe %c!\n",
829 				pipe_name(pipe));
830 			return;
831 		}
832 	}
833 
834 	/*
835 	 * Similar magic as in intel_dp_enable_port().
836 	 * We _must_ do this port enable + disable trick
837 	 * to make this power sequencer lock onto the port.
838 	 * Otherwise even VDD force bit won't work.
839 	 */
840 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
841 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
842 
843 	intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
844 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
845 
846 	intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
847 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
848 
849 	if (!pll_enabled) {
850 		vlv_force_pll_off(dev_priv, pipe);
851 
852 		if (release_cl_override)
853 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
854 	}
855 }
856 
857 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
858 {
859 	struct intel_encoder *encoder;
860 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
861 
862 	/*
863 	 * We don't have power sequencer currently.
864 	 * Pick one that's not used by other ports.
865 	 */
866 	for_each_intel_dp(&dev_priv->drm, encoder) {
867 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
868 
869 		if (encoder->type == INTEL_OUTPUT_EDP) {
870 			drm_WARN_ON(&dev_priv->drm,
871 				    intel_dp->active_pipe != INVALID_PIPE &&
872 				    intel_dp->active_pipe !=
873 				    intel_dp->pps_pipe);
874 
875 			if (intel_dp->pps_pipe != INVALID_PIPE)
876 				pipes &= ~(1 << intel_dp->pps_pipe);
877 		} else {
878 			drm_WARN_ON(&dev_priv->drm,
879 				    intel_dp->pps_pipe != INVALID_PIPE);
880 
881 			if (intel_dp->active_pipe != INVALID_PIPE)
882 				pipes &= ~(1 << intel_dp->active_pipe);
883 		}
884 	}
885 
886 	if (pipes == 0)
887 		return INVALID_PIPE;
888 
889 	return ffs(pipes) - 1;
890 }
891 
892 static enum pipe
893 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
894 {
895 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
896 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
897 	enum pipe pipe;
898 
899 	lockdep_assert_held(&dev_priv->pps_mutex);
900 
901 	/* We should never land here with regular DP ports */
902 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
903 
904 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
905 		    intel_dp->active_pipe != intel_dp->pps_pipe);
906 
907 	if (intel_dp->pps_pipe != INVALID_PIPE)
908 		return intel_dp->pps_pipe;
909 
910 	pipe = vlv_find_free_pps(dev_priv);
911 
912 	/*
913 	 * Didn't find one. This should not happen since there
914 	 * are two power sequencers and up to two eDP ports.
915 	 */
916 	if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
917 		pipe = PIPE_A;
918 
919 	vlv_steal_power_sequencer(dev_priv, pipe);
920 	intel_dp->pps_pipe = pipe;
921 
922 	drm_dbg_kms(&dev_priv->drm,
923 		    "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
924 		    pipe_name(intel_dp->pps_pipe),
925 		    intel_dig_port->base.base.base.id,
926 		    intel_dig_port->base.base.name);
927 
928 	/* init power sequencer on this pipe and port */
929 	intel_dp_init_panel_power_sequencer(intel_dp);
930 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
931 
932 	/*
933 	 * Even vdd force doesn't work until we've made
934 	 * the power sequencer lock in on the port.
935 	 */
936 	vlv_power_sequencer_kick(intel_dp);
937 
938 	return intel_dp->pps_pipe;
939 }
940 
941 static int
942 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
943 {
944 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
945 	int backlight_controller = dev_priv->vbt.backlight.controller;
946 
947 	lockdep_assert_held(&dev_priv->pps_mutex);
948 
949 	/* We should never land here with regular DP ports */
950 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
951 
952 	if (!intel_dp->pps_reset)
953 		return backlight_controller;
954 
955 	intel_dp->pps_reset = false;
956 
957 	/*
958 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
959 	 * has been setup during connector init.
960 	 */
961 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
962 
963 	return backlight_controller;
964 }
965 
966 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
967 			       enum pipe pipe);
968 
969 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
970 			       enum pipe pipe)
971 {
972 	return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
973 }
974 
975 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
976 				enum pipe pipe)
977 {
978 	return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
979 }
980 
981 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
982 			 enum pipe pipe)
983 {
984 	return true;
985 }
986 
987 static enum pipe
988 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
989 		     enum port port,
990 		     vlv_pipe_check pipe_check)
991 {
992 	enum pipe pipe;
993 
994 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
995 		u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
996 			PANEL_PORT_SELECT_MASK;
997 
998 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
999 			continue;
1000 
1001 		if (!pipe_check(dev_priv, pipe))
1002 			continue;
1003 
1004 		return pipe;
1005 	}
1006 
1007 	return INVALID_PIPE;
1008 }
1009 
1010 static void
1011 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
1012 {
1013 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1014 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1015 	enum port port = intel_dig_port->base.port;
1016 
1017 	lockdep_assert_held(&dev_priv->pps_mutex);
1018 
1019 	/* try to find a pipe with this port selected */
1020 	/* first pick one where the panel is on */
1021 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1022 						  vlv_pipe_has_pp_on);
1023 	/* didn't find one? pick one where vdd is on */
1024 	if (intel_dp->pps_pipe == INVALID_PIPE)
1025 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1026 							  vlv_pipe_has_vdd_on);
1027 	/* didn't find one? pick one with just the correct port */
1028 	if (intel_dp->pps_pipe == INVALID_PIPE)
1029 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1030 							  vlv_pipe_any);
1031 
1032 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1033 	if (intel_dp->pps_pipe == INVALID_PIPE) {
1034 		drm_dbg_kms(&dev_priv->drm,
1035 			    "no initial power sequencer for [ENCODER:%d:%s]\n",
1036 			    intel_dig_port->base.base.base.id,
1037 			    intel_dig_port->base.base.name);
1038 		return;
1039 	}
1040 
1041 	drm_dbg_kms(&dev_priv->drm,
1042 		    "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1043 		    intel_dig_port->base.base.base.id,
1044 		    intel_dig_port->base.base.name,
1045 		    pipe_name(intel_dp->pps_pipe));
1046 
1047 	intel_dp_init_panel_power_sequencer(intel_dp);
1048 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1049 }
1050 
1051 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1052 {
1053 	struct intel_encoder *encoder;
1054 
1055 	if (drm_WARN_ON(&dev_priv->drm,
1056 			!(IS_VALLEYVIEW(dev_priv) ||
1057 			  IS_CHERRYVIEW(dev_priv) ||
1058 			  IS_GEN9_LP(dev_priv))))
1059 		return;
1060 
1061 	/*
1062 	 * We can't grab pps_mutex here due to deadlock with power_domain
1063 	 * mutex when power_domain functions are called while holding pps_mutex.
1064 	 * That also means that in order to use pps_pipe the code needs to
1065 	 * hold both a power domain reference and pps_mutex, and the power domain
1066 	 * reference get/put must be done while _not_ holding pps_mutex.
1067 	 * pps_{lock,unlock}() do these steps in the correct order, so one
1068 	 * should use them always.
1069 	 */
1070 
1071 	for_each_intel_dp(&dev_priv->drm, encoder) {
1072 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1073 
1074 		drm_WARN_ON(&dev_priv->drm,
1075 			    intel_dp->active_pipe != INVALID_PIPE);
1076 
1077 		if (encoder->type != INTEL_OUTPUT_EDP)
1078 			continue;
1079 
1080 		if (IS_GEN9_LP(dev_priv))
1081 			intel_dp->pps_reset = true;
1082 		else
1083 			intel_dp->pps_pipe = INVALID_PIPE;
1084 	}
1085 }
1086 
1087 struct pps_registers {
1088 	i915_reg_t pp_ctrl;
1089 	i915_reg_t pp_stat;
1090 	i915_reg_t pp_on;
1091 	i915_reg_t pp_off;
1092 	i915_reg_t pp_div;
1093 };
1094 
1095 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1096 				    struct pps_registers *regs)
1097 {
1098 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1099 	int pps_idx = 0;
1100 
1101 	memset(regs, 0, sizeof(*regs));
1102 
1103 	if (IS_GEN9_LP(dev_priv))
1104 		pps_idx = bxt_power_sequencer_idx(intel_dp);
1105 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1106 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1107 
1108 	regs->pp_ctrl = PP_CONTROL(pps_idx);
1109 	regs->pp_stat = PP_STATUS(pps_idx);
1110 	regs->pp_on = PP_ON_DELAYS(pps_idx);
1111 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1112 
1113 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1114 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1115 		regs->pp_div = INVALID_MMIO_REG;
1116 	else
1117 		regs->pp_div = PP_DIVISOR(pps_idx);
1118 }
1119 
1120 static i915_reg_t
1121 _pp_ctrl_reg(struct intel_dp *intel_dp)
1122 {
1123 	struct pps_registers regs;
1124 
1125 	intel_pps_get_registers(intel_dp, &regs);
1126 
1127 	return regs.pp_ctrl;
1128 }
1129 
1130 static i915_reg_t
1131 _pp_stat_reg(struct intel_dp *intel_dp)
1132 {
1133 	struct pps_registers regs;
1134 
1135 	intel_pps_get_registers(intel_dp, &regs);
1136 
1137 	return regs.pp_stat;
1138 }
1139 
1140 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1141    This function only applicable when panel PM state is not to be tracked */
1142 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1143 			      void *unused)
1144 {
1145 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1146 						 edp_notifier);
1147 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1148 	intel_wakeref_t wakeref;
1149 
1150 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1151 		return 0;
1152 
1153 	with_pps_lock(intel_dp, wakeref) {
1154 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1155 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1156 			i915_reg_t pp_ctrl_reg, pp_div_reg;
1157 			u32 pp_div;
1158 
1159 			pp_ctrl_reg = PP_CONTROL(pipe);
1160 			pp_div_reg  = PP_DIVISOR(pipe);
1161 			pp_div = intel_de_read(dev_priv, pp_div_reg);
1162 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
1163 
1164 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1165 			intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1166 			intel_de_write(dev_priv, pp_ctrl_reg,
1167 				       PANEL_UNLOCK_REGS);
1168 			msleep(intel_dp->panel_power_cycle_delay);
1169 		}
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1176 {
1177 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1178 
1179 	lockdep_assert_held(&dev_priv->pps_mutex);
1180 
1181 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1182 	    intel_dp->pps_pipe == INVALID_PIPE)
1183 		return false;
1184 
1185 	return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1186 }
1187 
1188 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1189 {
1190 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1191 
1192 	lockdep_assert_held(&dev_priv->pps_mutex);
1193 
1194 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1195 	    intel_dp->pps_pipe == INVALID_PIPE)
1196 		return false;
1197 
1198 	return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1199 }
1200 
1201 static void
1202 intel_dp_check_edp(struct intel_dp *intel_dp)
1203 {
1204 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1205 
1206 	if (!intel_dp_is_edp(intel_dp))
1207 		return;
1208 
1209 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1210 		drm_WARN(&dev_priv->drm, 1,
1211 			 "eDP powered off while attempting aux channel communication.\n");
1212 		drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1213 			    intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1214 			    intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1215 	}
1216 }
1217 
1218 static u32
1219 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1220 {
1221 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1222 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1223 	const unsigned int timeout_ms = 10;
1224 	u32 status;
1225 	bool done;
1226 
1227 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1228 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1229 				  msecs_to_jiffies_timeout(timeout_ms));
1230 
1231 	/* just trace the final value */
1232 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1233 
1234 	if (!done)
1235 		drm_err(&i915->drm,
1236 			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
1237 			intel_dp->aux.name, timeout_ms, status);
1238 #undef C
1239 
1240 	return status;
1241 }
1242 
1243 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1244 {
1245 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1246 
1247 	if (index)
1248 		return 0;
1249 
1250 	/*
1251 	 * The clock divider is based off the hrawclk, and would like to run at
1252 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1253 	 */
1254 	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1255 }
1256 
1257 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1258 {
1259 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1260 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1261 	u32 freq;
1262 
1263 	if (index)
1264 		return 0;
1265 
1266 	/*
1267 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1268 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1269 	 * divide by 2000 and use that
1270 	 */
1271 	if (dig_port->aux_ch == AUX_CH_A)
1272 		freq = dev_priv->cdclk.hw.cdclk;
1273 	else
1274 		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1275 	return DIV_ROUND_CLOSEST(freq, 2000);
1276 }
1277 
1278 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1279 {
1280 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1281 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1282 
1283 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1284 		/* Workaround for non-ULT HSW */
1285 		switch (index) {
1286 		case 0: return 63;
1287 		case 1: return 72;
1288 		default: return 0;
1289 		}
1290 	}
1291 
1292 	return ilk_get_aux_clock_divider(intel_dp, index);
1293 }
1294 
1295 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1296 {
1297 	/*
1298 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1299 	 * derive the clock from CDCLK automatically). We still implement the
1300 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1301 	 */
1302 	return index ? 0 : 1;
1303 }
1304 
1305 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1306 				int send_bytes,
1307 				u32 aux_clock_divider)
1308 {
1309 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1310 	struct drm_i915_private *dev_priv =
1311 			to_i915(intel_dig_port->base.base.dev);
1312 	u32 precharge, timeout;
1313 
1314 	if (IS_GEN(dev_priv, 6))
1315 		precharge = 3;
1316 	else
1317 		precharge = 5;
1318 
1319 	if (IS_BROADWELL(dev_priv))
1320 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1321 	else
1322 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1323 
1324 	return DP_AUX_CH_CTL_SEND_BUSY |
1325 	       DP_AUX_CH_CTL_DONE |
1326 	       DP_AUX_CH_CTL_INTERRUPT |
1327 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1328 	       timeout |
1329 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1330 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1331 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1332 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1333 }
1334 
1335 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1336 				int send_bytes,
1337 				u32 unused)
1338 {
1339 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1340 	struct drm_i915_private *i915 =
1341 			to_i915(intel_dig_port->base.base.dev);
1342 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1343 	u32 ret;
1344 
1345 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1346 	      DP_AUX_CH_CTL_DONE |
1347 	      DP_AUX_CH_CTL_INTERRUPT |
1348 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1349 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1350 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1351 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1352 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1353 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1354 
1355 	if (intel_phy_is_tc(i915, phy) &&
1356 	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1357 		ret |= DP_AUX_CH_CTL_TBT_IO;
1358 
1359 	return ret;
1360 }
1361 
1362 static int
1363 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1364 		  const u8 *send, int send_bytes,
1365 		  u8 *recv, int recv_size,
1366 		  u32 aux_send_ctl_flags)
1367 {
1368 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1369 	struct drm_i915_private *i915 =
1370 			to_i915(intel_dig_port->base.base.dev);
1371 	struct intel_uncore *uncore = &i915->uncore;
1372 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1373 	bool is_tc_port = intel_phy_is_tc(i915, phy);
1374 	i915_reg_t ch_ctl, ch_data[5];
1375 	u32 aux_clock_divider;
1376 	enum intel_display_power_domain aux_domain;
1377 	intel_wakeref_t aux_wakeref;
1378 	intel_wakeref_t pps_wakeref;
1379 	int i, ret, recv_bytes;
1380 	int try, clock = 0;
1381 	u32 status;
1382 	bool vdd;
1383 
1384 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1385 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1386 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1387 
1388 	if (is_tc_port)
1389 		intel_tc_port_lock(intel_dig_port);
1390 
1391 	aux_domain = intel_aux_power_domain(intel_dig_port);
1392 
1393 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1394 	pps_wakeref = pps_lock(intel_dp);
1395 
1396 	/*
1397 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1398 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1399 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1400 	 * ourselves.
1401 	 */
1402 	vdd = edp_panel_vdd_on(intel_dp);
1403 
1404 	/* dp aux is extremely sensitive to irq latency, hence request the
1405 	 * lowest possible wakeup latency and so prevent the cpu from going into
1406 	 * deep sleep states.
1407 	 */
1408 	cpu_latency_qos_update_request(&i915->pm_qos, 0);
1409 
1410 	intel_dp_check_edp(intel_dp);
1411 
1412 	/* Try to wait for any previous AUX channel activity */
1413 	for (try = 0; try < 3; try++) {
1414 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1415 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1416 			break;
1417 		msleep(1);
1418 	}
1419 	/* just trace the final value */
1420 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1421 
1422 	if (try == 3) {
1423 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1424 
1425 		if (status != intel_dp->aux_busy_last_status) {
1426 			drm_WARN(&i915->drm, 1,
1427 				 "%s: not started (status 0x%08x)\n",
1428 				 intel_dp->aux.name, status);
1429 			intel_dp->aux_busy_last_status = status;
1430 		}
1431 
1432 		ret = -EBUSY;
1433 		goto out;
1434 	}
1435 
1436 	/* Only 5 data registers! */
1437 	if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1438 		ret = -E2BIG;
1439 		goto out;
1440 	}
1441 
1442 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1443 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1444 							  send_bytes,
1445 							  aux_clock_divider);
1446 
1447 		send_ctl |= aux_send_ctl_flags;
1448 
1449 		/* Must try at least 3 times according to DP spec */
1450 		for (try = 0; try < 5; try++) {
1451 			/* Load the send data into the aux channel data registers */
1452 			for (i = 0; i < send_bytes; i += 4)
1453 				intel_uncore_write(uncore,
1454 						   ch_data[i >> 2],
1455 						   intel_dp_pack_aux(send + i,
1456 								     send_bytes - i));
1457 
1458 			/* Send the command and wait for it to complete */
1459 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1460 
1461 			status = intel_dp_aux_wait_done(intel_dp);
1462 
1463 			/* Clear done status and any errors */
1464 			intel_uncore_write(uncore,
1465 					   ch_ctl,
1466 					   status |
1467 					   DP_AUX_CH_CTL_DONE |
1468 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1469 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1470 
1471 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1472 			 *   400us delay required for errors and timeouts
1473 			 *   Timeout errors from the HW already meet this
1474 			 *   requirement so skip to next iteration
1475 			 */
1476 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1477 				continue;
1478 
1479 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1480 				usleep_range(400, 500);
1481 				continue;
1482 			}
1483 			if (status & DP_AUX_CH_CTL_DONE)
1484 				goto done;
1485 		}
1486 	}
1487 
1488 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1489 		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1490 			intel_dp->aux.name, status);
1491 		ret = -EBUSY;
1492 		goto out;
1493 	}
1494 
1495 done:
1496 	/* Check for timeout or receive error.
1497 	 * Timeouts occur when the sink is not connected
1498 	 */
1499 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1500 		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1501 			intel_dp->aux.name, status);
1502 		ret = -EIO;
1503 		goto out;
1504 	}
1505 
1506 	/* Timeouts occur when the device isn't connected, so they're
1507 	 * "normal" -- don't fill the kernel log with these */
1508 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1509 		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1510 			    intel_dp->aux.name, status);
1511 		ret = -ETIMEDOUT;
1512 		goto out;
1513 	}
1514 
1515 	/* Unload any bytes sent back from the other side */
1516 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1517 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1518 
1519 	/*
1520 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1521 	 * We have no idea of what happened so we return -EBUSY so
1522 	 * drm layer takes care for the necessary retries.
1523 	 */
1524 	if (recv_bytes == 0 || recv_bytes > 20) {
1525 		drm_dbg_kms(&i915->drm,
1526 			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
1527 			    intel_dp->aux.name, recv_bytes);
1528 		ret = -EBUSY;
1529 		goto out;
1530 	}
1531 
1532 	if (recv_bytes > recv_size)
1533 		recv_bytes = recv_size;
1534 
1535 	for (i = 0; i < recv_bytes; i += 4)
1536 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1537 				    recv + i, recv_bytes - i);
1538 
1539 	ret = recv_bytes;
1540 out:
1541 	cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1542 
1543 	if (vdd)
1544 		edp_panel_vdd_off(intel_dp, false);
1545 
1546 	pps_unlock(intel_dp, pps_wakeref);
1547 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1548 
1549 	if (is_tc_port)
1550 		intel_tc_port_unlock(intel_dig_port);
1551 
1552 	return ret;
1553 }
1554 
1555 #define BARE_ADDRESS_SIZE	3
1556 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1557 
1558 static void
1559 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1560 		    const struct drm_dp_aux_msg *msg)
1561 {
1562 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1563 	txbuf[1] = (msg->address >> 8) & 0xff;
1564 	txbuf[2] = msg->address & 0xff;
1565 	txbuf[3] = msg->size - 1;
1566 }
1567 
1568 static ssize_t
1569 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1570 {
1571 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1572 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1573 	u8 txbuf[20], rxbuf[20];
1574 	size_t txsize, rxsize;
1575 	int ret;
1576 
1577 	intel_dp_aux_header(txbuf, msg);
1578 
1579 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1580 	case DP_AUX_NATIVE_WRITE:
1581 	case DP_AUX_I2C_WRITE:
1582 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1583 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1584 		rxsize = 2; /* 0 or 1 data bytes */
1585 
1586 		if (drm_WARN_ON(&i915->drm, txsize > 20))
1587 			return -E2BIG;
1588 
1589 		drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size);
1590 
1591 		if (msg->buffer)
1592 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1593 
1594 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1595 					rxbuf, rxsize, 0);
1596 		if (ret > 0) {
1597 			msg->reply = rxbuf[0] >> 4;
1598 
1599 			if (ret > 1) {
1600 				/* Number of bytes written in a short write. */
1601 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1602 			} else {
1603 				/* Return payload size. */
1604 				ret = msg->size;
1605 			}
1606 		}
1607 		break;
1608 
1609 	case DP_AUX_NATIVE_READ:
1610 	case DP_AUX_I2C_READ:
1611 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1612 		rxsize = msg->size + 1;
1613 
1614 		if (drm_WARN_ON(&i915->drm, rxsize > 20))
1615 			return -E2BIG;
1616 
1617 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1618 					rxbuf, rxsize, 0);
1619 		if (ret > 0) {
1620 			msg->reply = rxbuf[0] >> 4;
1621 			/*
1622 			 * Assume happy day, and copy the data. The caller is
1623 			 * expected to check msg->reply before touching it.
1624 			 *
1625 			 * Return payload size.
1626 			 */
1627 			ret--;
1628 			memcpy(msg->buffer, rxbuf + 1, ret);
1629 		}
1630 		break;
1631 
1632 	default:
1633 		ret = -EINVAL;
1634 		break;
1635 	}
1636 
1637 	return ret;
1638 }
1639 
1640 
1641 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1642 {
1643 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1644 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1645 	enum aux_ch aux_ch = dig_port->aux_ch;
1646 
1647 	switch (aux_ch) {
1648 	case AUX_CH_B:
1649 	case AUX_CH_C:
1650 	case AUX_CH_D:
1651 		return DP_AUX_CH_CTL(aux_ch);
1652 	default:
1653 		MISSING_CASE(aux_ch);
1654 		return DP_AUX_CH_CTL(AUX_CH_B);
1655 	}
1656 }
1657 
1658 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1659 {
1660 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1661 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1662 	enum aux_ch aux_ch = dig_port->aux_ch;
1663 
1664 	switch (aux_ch) {
1665 	case AUX_CH_B:
1666 	case AUX_CH_C:
1667 	case AUX_CH_D:
1668 		return DP_AUX_CH_DATA(aux_ch, index);
1669 	default:
1670 		MISSING_CASE(aux_ch);
1671 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1672 	}
1673 }
1674 
1675 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1676 {
1677 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1678 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1679 	enum aux_ch aux_ch = dig_port->aux_ch;
1680 
1681 	switch (aux_ch) {
1682 	case AUX_CH_A:
1683 		return DP_AUX_CH_CTL(aux_ch);
1684 	case AUX_CH_B:
1685 	case AUX_CH_C:
1686 	case AUX_CH_D:
1687 		return PCH_DP_AUX_CH_CTL(aux_ch);
1688 	default:
1689 		MISSING_CASE(aux_ch);
1690 		return DP_AUX_CH_CTL(AUX_CH_A);
1691 	}
1692 }
1693 
1694 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1695 {
1696 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1697 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1698 	enum aux_ch aux_ch = dig_port->aux_ch;
1699 
1700 	switch (aux_ch) {
1701 	case AUX_CH_A:
1702 		return DP_AUX_CH_DATA(aux_ch, index);
1703 	case AUX_CH_B:
1704 	case AUX_CH_C:
1705 	case AUX_CH_D:
1706 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1707 	default:
1708 		MISSING_CASE(aux_ch);
1709 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1710 	}
1711 }
1712 
1713 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1714 {
1715 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1716 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1717 	enum aux_ch aux_ch = dig_port->aux_ch;
1718 
1719 	switch (aux_ch) {
1720 	case AUX_CH_A:
1721 	case AUX_CH_B:
1722 	case AUX_CH_C:
1723 	case AUX_CH_D:
1724 	case AUX_CH_E:
1725 	case AUX_CH_F:
1726 	case AUX_CH_G:
1727 		return DP_AUX_CH_CTL(aux_ch);
1728 	default:
1729 		MISSING_CASE(aux_ch);
1730 		return DP_AUX_CH_CTL(AUX_CH_A);
1731 	}
1732 }
1733 
1734 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1735 {
1736 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1737 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1738 	enum aux_ch aux_ch = dig_port->aux_ch;
1739 
1740 	switch (aux_ch) {
1741 	case AUX_CH_A:
1742 	case AUX_CH_B:
1743 	case AUX_CH_C:
1744 	case AUX_CH_D:
1745 	case AUX_CH_E:
1746 	case AUX_CH_F:
1747 	case AUX_CH_G:
1748 		return DP_AUX_CH_DATA(aux_ch, index);
1749 	default:
1750 		MISSING_CASE(aux_ch);
1751 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1752 	}
1753 }
1754 
1755 static void
1756 intel_dp_aux_fini(struct intel_dp *intel_dp)
1757 {
1758 	kfree(intel_dp->aux.name);
1759 }
1760 
1761 static void
1762 intel_dp_aux_init(struct intel_dp *intel_dp)
1763 {
1764 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1765 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1766 	struct intel_encoder *encoder = &dig_port->base;
1767 
1768 	if (INTEL_GEN(dev_priv) >= 9) {
1769 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1770 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1771 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1772 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1773 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1774 	} else {
1775 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1776 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1777 	}
1778 
1779 	if (INTEL_GEN(dev_priv) >= 9)
1780 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1781 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1782 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1783 	else if (HAS_PCH_SPLIT(dev_priv))
1784 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1785 	else
1786 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1787 
1788 	if (INTEL_GEN(dev_priv) >= 9)
1789 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1790 	else
1791 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1792 
1793 	drm_dp_aux_init(&intel_dp->aux);
1794 
1795 	/* Failure to allocate our preferred name is not critical */
1796 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1797 				       aux_ch_name(dig_port->aux_ch),
1798 				       port_name(encoder->port));
1799 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1800 }
1801 
1802 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1803 {
1804 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1805 
1806 	return max_rate >= 540000;
1807 }
1808 
1809 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1810 {
1811 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1812 
1813 	return max_rate >= 810000;
1814 }
1815 
1816 static void
1817 intel_dp_set_clock(struct intel_encoder *encoder,
1818 		   struct intel_crtc_state *pipe_config)
1819 {
1820 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1821 	const struct dp_link_dpll *divisor = NULL;
1822 	int i, count = 0;
1823 
1824 	if (IS_G4X(dev_priv)) {
1825 		divisor = g4x_dpll;
1826 		count = ARRAY_SIZE(g4x_dpll);
1827 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1828 		divisor = pch_dpll;
1829 		count = ARRAY_SIZE(pch_dpll);
1830 	} else if (IS_CHERRYVIEW(dev_priv)) {
1831 		divisor = chv_dpll;
1832 		count = ARRAY_SIZE(chv_dpll);
1833 	} else if (IS_VALLEYVIEW(dev_priv)) {
1834 		divisor = vlv_dpll;
1835 		count = ARRAY_SIZE(vlv_dpll);
1836 	}
1837 
1838 	if (divisor && count) {
1839 		for (i = 0; i < count; i++) {
1840 			if (pipe_config->port_clock == divisor[i].clock) {
1841 				pipe_config->dpll = divisor[i].dpll;
1842 				pipe_config->clock_set = true;
1843 				break;
1844 			}
1845 		}
1846 	}
1847 }
1848 
1849 static void snprintf_int_array(char *str, size_t len,
1850 			       const int *array, int nelem)
1851 {
1852 	int i;
1853 
1854 	str[0] = '\0';
1855 
1856 	for (i = 0; i < nelem; i++) {
1857 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1858 		if (r >= len)
1859 			return;
1860 		str += r;
1861 		len -= r;
1862 	}
1863 }
1864 
1865 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1866 {
1867 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1868 	char str[128]; /* FIXME: too big for stack? */
1869 
1870 	if (!drm_debug_enabled(DRM_UT_KMS))
1871 		return;
1872 
1873 	snprintf_int_array(str, sizeof(str),
1874 			   intel_dp->source_rates, intel_dp->num_source_rates);
1875 	drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1876 
1877 	snprintf_int_array(str, sizeof(str),
1878 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1879 	drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1880 
1881 	snprintf_int_array(str, sizeof(str),
1882 			   intel_dp->common_rates, intel_dp->num_common_rates);
1883 	drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1884 }
1885 
1886 int
1887 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1888 {
1889 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1890 	int len;
1891 
1892 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1893 	if (drm_WARN_ON(&i915->drm, len <= 0))
1894 		return 162000;
1895 
1896 	return intel_dp->common_rates[len - 1];
1897 }
1898 
1899 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1900 {
1901 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1902 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1903 				    intel_dp->num_sink_rates, rate);
1904 
1905 	if (drm_WARN_ON(&i915->drm, i < 0))
1906 		i = 0;
1907 
1908 	return i;
1909 }
1910 
1911 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1912 			   u8 *link_bw, u8 *rate_select)
1913 {
1914 	/* eDP 1.4 rate select method. */
1915 	if (intel_dp->use_rate_select) {
1916 		*link_bw = 0;
1917 		*rate_select =
1918 			intel_dp_rate_select(intel_dp, port_clock);
1919 	} else {
1920 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1921 		*rate_select = 0;
1922 	}
1923 }
1924 
1925 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1926 					 const struct intel_crtc_state *pipe_config)
1927 {
1928 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1929 
1930 	/* On TGL, FEC is supported on all Pipes */
1931 	if (INTEL_GEN(dev_priv) >= 12)
1932 		return true;
1933 
1934 	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1935 		return true;
1936 
1937 	return false;
1938 }
1939 
1940 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1941 				  const struct intel_crtc_state *pipe_config)
1942 {
1943 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1944 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
1945 }
1946 
1947 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1948 				  const struct intel_crtc_state *crtc_state)
1949 {
1950 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1951 
1952 	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1953 		return false;
1954 
1955 	return intel_dsc_source_support(encoder, crtc_state) &&
1956 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1957 }
1958 
1959 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1960 				struct intel_crtc_state *pipe_config)
1961 {
1962 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1963 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1964 	int bpp, bpc;
1965 
1966 	bpp = pipe_config->pipe_bpp;
1967 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1968 
1969 	if (bpc > 0)
1970 		bpp = min(bpp, 3*bpc);
1971 
1972 	if (intel_dp_is_edp(intel_dp)) {
1973 		/* Get bpp from vbt only for panels that dont have bpp in edid */
1974 		if (intel_connector->base.display_info.bpc == 0 &&
1975 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1976 			drm_dbg_kms(&dev_priv->drm,
1977 				    "clamping bpp for eDP panel to BIOS-provided %i\n",
1978 				    dev_priv->vbt.edp.bpp);
1979 			bpp = dev_priv->vbt.edp.bpp;
1980 		}
1981 	}
1982 
1983 	return bpp;
1984 }
1985 
1986 /* Adjust link config limits based on compliance test requests. */
1987 void
1988 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1989 				  struct intel_crtc_state *pipe_config,
1990 				  struct link_config_limits *limits)
1991 {
1992 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1993 
1994 	/* For DP Compliance we override the computed bpp for the pipe */
1995 	if (intel_dp->compliance.test_data.bpc != 0) {
1996 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
1997 
1998 		limits->min_bpp = limits->max_bpp = bpp;
1999 		pipe_config->dither_force_disable = bpp == 6 * 3;
2000 
2001 		drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
2002 	}
2003 
2004 	/* Use values requested by Compliance Test Request */
2005 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
2006 		int index;
2007 
2008 		/* Validate the compliance test data since max values
2009 		 * might have changed due to link train fallback.
2010 		 */
2011 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
2012 					       intel_dp->compliance.test_lane_count)) {
2013 			index = intel_dp_rate_index(intel_dp->common_rates,
2014 						    intel_dp->num_common_rates,
2015 						    intel_dp->compliance.test_link_rate);
2016 			if (index >= 0)
2017 				limits->min_clock = limits->max_clock = index;
2018 			limits->min_lane_count = limits->max_lane_count =
2019 				intel_dp->compliance.test_lane_count;
2020 		}
2021 	}
2022 }
2023 
2024 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
2025 {
2026 	/*
2027 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
2028 	 * format of the number of bytes per pixel will be half the number
2029 	 * of bytes of RGB pixel.
2030 	 */
2031 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2032 		bpp /= 2;
2033 
2034 	return bpp;
2035 }
2036 
2037 /* Optimize link config in order: max bpp, min clock, min lanes */
2038 static int
2039 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2040 				  struct intel_crtc_state *pipe_config,
2041 				  const struct link_config_limits *limits)
2042 {
2043 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2044 	int bpp, clock, lane_count;
2045 	int mode_rate, link_clock, link_avail;
2046 
2047 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2048 		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2049 
2050 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2051 						   output_bpp);
2052 
2053 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2054 			for (lane_count = limits->min_lane_count;
2055 			     lane_count <= limits->max_lane_count;
2056 			     lane_count <<= 1) {
2057 				link_clock = intel_dp->common_rates[clock];
2058 				link_avail = intel_dp_max_data_rate(link_clock,
2059 								    lane_count);
2060 
2061 				if (mode_rate <= link_avail) {
2062 					pipe_config->lane_count = lane_count;
2063 					pipe_config->pipe_bpp = bpp;
2064 					pipe_config->port_clock = link_clock;
2065 
2066 					return 0;
2067 				}
2068 			}
2069 		}
2070 	}
2071 
2072 	return -EINVAL;
2073 }
2074 
2075 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2076 {
2077 	int i, num_bpc;
2078 	u8 dsc_bpc[3] = {0};
2079 
2080 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2081 						       dsc_bpc);
2082 	for (i = 0; i < num_bpc; i++) {
2083 		if (dsc_max_bpc >= dsc_bpc[i])
2084 			return dsc_bpc[i] * 3;
2085 	}
2086 
2087 	return 0;
2088 }
2089 
2090 #define DSC_SUPPORTED_VERSION_MIN		1
2091 
2092 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2093 				       struct intel_crtc_state *crtc_state)
2094 {
2095 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2096 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2097 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2098 	u8 line_buf_depth;
2099 	int ret;
2100 
2101 	ret = intel_dsc_compute_params(encoder, crtc_state);
2102 	if (ret)
2103 		return ret;
2104 
2105 	/*
2106 	 * Slice Height of 8 works for all currently available panels. So start
2107 	 * with that if pic_height is an integral multiple of 8. Eventually add
2108 	 * logic to try multiple slice heights.
2109 	 */
2110 	if (vdsc_cfg->pic_height % 8 == 0)
2111 		vdsc_cfg->slice_height = 8;
2112 	else if (vdsc_cfg->pic_height % 4 == 0)
2113 		vdsc_cfg->slice_height = 4;
2114 	else
2115 		vdsc_cfg->slice_height = 2;
2116 
2117 	vdsc_cfg->dsc_version_major =
2118 		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2119 		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2120 	vdsc_cfg->dsc_version_minor =
2121 		min(DSC_SUPPORTED_VERSION_MIN,
2122 		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2123 		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2124 
2125 	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2126 		DP_DSC_RGB;
2127 
2128 	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2129 	if (!line_buf_depth) {
2130 		drm_dbg_kms(&i915->drm,
2131 			    "DSC Sink Line Buffer Depth invalid\n");
2132 		return -EINVAL;
2133 	}
2134 
2135 	if (vdsc_cfg->dsc_version_minor == 2)
2136 		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2137 			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2138 	else
2139 		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2140 			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2141 
2142 	vdsc_cfg->block_pred_enable =
2143 		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2144 		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2145 
2146 	return drm_dsc_compute_rc_parameters(vdsc_cfg);
2147 }
2148 
2149 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2150 				       struct intel_crtc_state *pipe_config,
2151 				       struct drm_connector_state *conn_state,
2152 				       struct link_config_limits *limits)
2153 {
2154 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2155 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2156 	const struct drm_display_mode *adjusted_mode =
2157 		&pipe_config->hw.adjusted_mode;
2158 	u8 dsc_max_bpc;
2159 	int pipe_bpp;
2160 	int ret;
2161 
2162 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2163 		intel_dp_supports_fec(intel_dp, pipe_config);
2164 
2165 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2166 		return -EINVAL;
2167 
2168 	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2169 	if (INTEL_GEN(dev_priv) >= 12)
2170 		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2171 	else
2172 		dsc_max_bpc = min_t(u8, 10,
2173 				    conn_state->max_requested_bpc);
2174 
2175 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2176 
2177 	/* Min Input BPC for ICL+ is 8 */
2178 	if (pipe_bpp < 8 * 3) {
2179 		drm_dbg_kms(&dev_priv->drm,
2180 			    "No DSC support for less than 8bpc\n");
2181 		return -EINVAL;
2182 	}
2183 
2184 	/*
2185 	 * For now enable DSC for max bpp, max link rate, max lane count.
2186 	 * Optimize this later for the minimum possible link rate/lane count
2187 	 * with DSC enabled for the requested mode.
2188 	 */
2189 	pipe_config->pipe_bpp = pipe_bpp;
2190 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2191 	pipe_config->lane_count = limits->max_lane_count;
2192 
2193 	if (intel_dp_is_edp(intel_dp)) {
2194 		pipe_config->dsc.compressed_bpp =
2195 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2196 			      pipe_config->pipe_bpp);
2197 		pipe_config->dsc.slice_count =
2198 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2199 							true);
2200 	} else {
2201 		u16 dsc_max_output_bpp;
2202 		u8 dsc_dp_slice_count;
2203 
2204 		dsc_max_output_bpp =
2205 			intel_dp_dsc_get_output_bpp(dev_priv,
2206 						    pipe_config->port_clock,
2207 						    pipe_config->lane_count,
2208 						    adjusted_mode->crtc_clock,
2209 						    adjusted_mode->crtc_hdisplay);
2210 		dsc_dp_slice_count =
2211 			intel_dp_dsc_get_slice_count(intel_dp,
2212 						     adjusted_mode->crtc_clock,
2213 						     adjusted_mode->crtc_hdisplay);
2214 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2215 			drm_dbg_kms(&dev_priv->drm,
2216 				    "Compressed BPP/Slice Count not supported\n");
2217 			return -EINVAL;
2218 		}
2219 		pipe_config->dsc.compressed_bpp = min_t(u16,
2220 							       dsc_max_output_bpp >> 4,
2221 							       pipe_config->pipe_bpp);
2222 		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2223 	}
2224 	/*
2225 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2226 	 * is greater than the maximum Cdclock and if slice count is even
2227 	 * then we need to use 2 VDSC instances.
2228 	 */
2229 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2230 		if (pipe_config->dsc.slice_count > 1) {
2231 			pipe_config->dsc.dsc_split = true;
2232 		} else {
2233 			drm_dbg_kms(&dev_priv->drm,
2234 				    "Cannot split stream to use 2 VDSC instances\n");
2235 			return -EINVAL;
2236 		}
2237 	}
2238 
2239 	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2240 	if (ret < 0) {
2241 		drm_dbg_kms(&dev_priv->drm,
2242 			    "Cannot compute valid DSC parameters for Input Bpp = %d "
2243 			    "Compressed BPP = %d\n",
2244 			    pipe_config->pipe_bpp,
2245 			    pipe_config->dsc.compressed_bpp);
2246 		return ret;
2247 	}
2248 
2249 	pipe_config->dsc.compression_enable = true;
2250 	drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2251 		    "Compressed Bpp = %d Slice Count = %d\n",
2252 		    pipe_config->pipe_bpp,
2253 		    pipe_config->dsc.compressed_bpp,
2254 		    pipe_config->dsc.slice_count);
2255 
2256 	return 0;
2257 }
2258 
2259 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2260 {
2261 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2262 		return 6 * 3;
2263 	else
2264 		return 8 * 3;
2265 }
2266 
2267 static int
2268 intel_dp_compute_link_config(struct intel_encoder *encoder,
2269 			     struct intel_crtc_state *pipe_config,
2270 			     struct drm_connector_state *conn_state)
2271 {
2272 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2273 	const struct drm_display_mode *adjusted_mode =
2274 		&pipe_config->hw.adjusted_mode;
2275 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2276 	struct link_config_limits limits;
2277 	int common_len;
2278 	int ret;
2279 
2280 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2281 						    intel_dp->max_link_rate);
2282 
2283 	/* No common link rates between source and sink */
2284 	drm_WARN_ON(encoder->base.dev, common_len <= 0);
2285 
2286 	limits.min_clock = 0;
2287 	limits.max_clock = common_len - 1;
2288 
2289 	limits.min_lane_count = 1;
2290 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2291 
2292 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2293 	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2294 
2295 	if (intel_dp_is_edp(intel_dp)) {
2296 		/*
2297 		 * Use the maximum clock and number of lanes the eDP panel
2298 		 * advertizes being capable of. The panels are generally
2299 		 * designed to support only a single clock and lane
2300 		 * configuration, and typically these values correspond to the
2301 		 * native resolution of the panel.
2302 		 */
2303 		limits.min_lane_count = limits.max_lane_count;
2304 		limits.min_clock = limits.max_clock;
2305 	}
2306 
2307 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2308 
2309 	drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2310 		    "max rate %d max bpp %d pixel clock %iKHz\n",
2311 		    limits.max_lane_count,
2312 		    intel_dp->common_rates[limits.max_clock],
2313 		    limits.max_bpp, adjusted_mode->crtc_clock);
2314 
2315 	/*
2316 	 * Optimize for slow and wide. This is the place to add alternative
2317 	 * optimization policy.
2318 	 */
2319 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2320 
2321 	/* enable compression if the mode doesn't fit available BW */
2322 	drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2323 	if (ret || intel_dp->force_dsc_en) {
2324 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2325 						  conn_state, &limits);
2326 		if (ret < 0)
2327 			return ret;
2328 	}
2329 
2330 	if (pipe_config->dsc.compression_enable) {
2331 		drm_dbg_kms(&i915->drm,
2332 			    "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2333 			    pipe_config->lane_count, pipe_config->port_clock,
2334 			    pipe_config->pipe_bpp,
2335 			    pipe_config->dsc.compressed_bpp);
2336 
2337 		drm_dbg_kms(&i915->drm,
2338 			    "DP link rate required %i available %i\n",
2339 			    intel_dp_link_required(adjusted_mode->crtc_clock,
2340 						   pipe_config->dsc.compressed_bpp),
2341 			    intel_dp_max_data_rate(pipe_config->port_clock,
2342 						   pipe_config->lane_count));
2343 	} else {
2344 		drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2345 			    pipe_config->lane_count, pipe_config->port_clock,
2346 			    pipe_config->pipe_bpp);
2347 
2348 		drm_dbg_kms(&i915->drm,
2349 			    "DP link rate required %i available %i\n",
2350 			    intel_dp_link_required(adjusted_mode->crtc_clock,
2351 						   pipe_config->pipe_bpp),
2352 			    intel_dp_max_data_rate(pipe_config->port_clock,
2353 						   pipe_config->lane_count));
2354 	}
2355 	return 0;
2356 }
2357 
2358 static int
2359 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2360 			 struct intel_crtc_state *crtc_state,
2361 			 const struct drm_connector_state *conn_state)
2362 {
2363 	struct drm_connector *connector = conn_state->connector;
2364 	const struct drm_display_info *info = &connector->display_info;
2365 	const struct drm_display_mode *adjusted_mode =
2366 		&crtc_state->hw.adjusted_mode;
2367 
2368 	if (!drm_mode_is_420_only(info, adjusted_mode) ||
2369 	    !intel_dp_get_colorimetry_status(intel_dp) ||
2370 	    !connector->ycbcr_420_allowed)
2371 		return 0;
2372 
2373 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2374 
2375 	return intel_pch_panel_fitting(crtc_state, conn_state);
2376 }
2377 
2378 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2379 				  const struct drm_connector_state *conn_state)
2380 {
2381 	const struct intel_digital_connector_state *intel_conn_state =
2382 		to_intel_digital_connector_state(conn_state);
2383 	const struct drm_display_mode *adjusted_mode =
2384 		&crtc_state->hw.adjusted_mode;
2385 
2386 	/*
2387 	 * Our YCbCr output is always limited range.
2388 	 * crtc_state->limited_color_range only applies to RGB,
2389 	 * and it must never be set for YCbCr or we risk setting
2390 	 * some conflicting bits in PIPECONF which will mess up
2391 	 * the colors on the monitor.
2392 	 */
2393 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2394 		return false;
2395 
2396 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2397 		/*
2398 		 * See:
2399 		 * CEA-861-E - 5.1 Default Encoding Parameters
2400 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2401 		 */
2402 		return crtc_state->pipe_bpp != 18 &&
2403 			drm_default_rgb_quant_range(adjusted_mode) ==
2404 			HDMI_QUANTIZATION_RANGE_LIMITED;
2405 	} else {
2406 		return intel_conn_state->broadcast_rgb ==
2407 			INTEL_BROADCAST_RGB_LIMITED;
2408 	}
2409 }
2410 
2411 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2412 				    enum port port)
2413 {
2414 	if (IS_G4X(dev_priv))
2415 		return false;
2416 	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2417 		return false;
2418 
2419 	return true;
2420 }
2421 
2422 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2423 					     const struct drm_connector_state *conn_state,
2424 					     struct drm_dp_vsc_sdp *vsc)
2425 {
2426 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2427 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2428 
2429 	/*
2430 	 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2431 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2432 	 * Colorimetry Format indication.
2433 	 */
2434 	vsc->revision = 0x5;
2435 	vsc->length = 0x13;
2436 
2437 	/* DP 1.4a spec, Table 2-120 */
2438 	switch (crtc_state->output_format) {
2439 	case INTEL_OUTPUT_FORMAT_YCBCR444:
2440 		vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2441 		break;
2442 	case INTEL_OUTPUT_FORMAT_YCBCR420:
2443 		vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2444 		break;
2445 	case INTEL_OUTPUT_FORMAT_RGB:
2446 	default:
2447 		vsc->pixelformat = DP_PIXELFORMAT_RGB;
2448 	}
2449 
2450 	switch (conn_state->colorspace) {
2451 	case DRM_MODE_COLORIMETRY_BT709_YCC:
2452 		vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2453 		break;
2454 	case DRM_MODE_COLORIMETRY_XVYCC_601:
2455 		vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2456 		break;
2457 	case DRM_MODE_COLORIMETRY_XVYCC_709:
2458 		vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2459 		break;
2460 	case DRM_MODE_COLORIMETRY_SYCC_601:
2461 		vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2462 		break;
2463 	case DRM_MODE_COLORIMETRY_OPYCC_601:
2464 		vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2465 		break;
2466 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2467 		vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2468 		break;
2469 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
2470 		vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2471 		break;
2472 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
2473 		vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2474 		break;
2475 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2476 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2477 		vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2478 		break;
2479 	default:
2480 		/*
2481 		 * RGB->YCBCR color conversion uses the BT.709
2482 		 * color space.
2483 		 */
2484 		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2485 			vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2486 		else
2487 			vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2488 		break;
2489 	}
2490 
2491 	vsc->bpc = crtc_state->pipe_bpp / 3;
2492 
2493 	/* only RGB pixelformat supports 6 bpc */
2494 	drm_WARN_ON(&dev_priv->drm,
2495 		    vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2496 
2497 	/* all YCbCr are always limited range */
2498 	vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2499 	vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2500 }
2501 
2502 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2503 				     struct intel_crtc_state *crtc_state,
2504 				     const struct drm_connector_state *conn_state)
2505 {
2506 	struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2507 
2508 	/* When a crtc state has PSR, VSC SDP will be handled by PSR routine */
2509 	if (crtc_state->has_psr)
2510 		return;
2511 
2512 	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2513 		return;
2514 
2515 	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2516 	vsc->sdp_type = DP_SDP_VSC;
2517 	intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2518 					 &crtc_state->infoframes.vsc);
2519 }
2520 
2521 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp,
2522 				  const struct intel_crtc_state *crtc_state,
2523 				  const struct drm_connector_state *conn_state,
2524 				  struct drm_dp_vsc_sdp *vsc)
2525 {
2526 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2527 
2528 	vsc->sdp_type = DP_SDP_VSC;
2529 
2530 	if (dev_priv->psr.psr2_enabled) {
2531 		if (dev_priv->psr.colorimetry_support &&
2532 		    intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
2533 			/* [PSR2, +Colorimetry] */
2534 			intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2535 							 vsc);
2536 		} else {
2537 			/*
2538 			 * [PSR2, -Colorimetry]
2539 			 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
2540 			 * 3D stereo + PSR/PSR2 + Y-coordinate.
2541 			 */
2542 			vsc->revision = 0x4;
2543 			vsc->length = 0xe;
2544 		}
2545 	} else {
2546 		/*
2547 		 * [PSR1]
2548 		 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2549 		 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
2550 		 * higher).
2551 		 */
2552 		vsc->revision = 0x2;
2553 		vsc->length = 0x8;
2554 	}
2555 }
2556 
2557 static void
2558 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2559 					    struct intel_crtc_state *crtc_state,
2560 					    const struct drm_connector_state *conn_state)
2561 {
2562 	int ret;
2563 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2564 	struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2565 
2566 	if (!conn_state->hdr_output_metadata)
2567 		return;
2568 
2569 	ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2570 
2571 	if (ret) {
2572 		drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2573 		return;
2574 	}
2575 
2576 	crtc_state->infoframes.enable |=
2577 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2578 }
2579 
2580 int
2581 intel_dp_compute_config(struct intel_encoder *encoder,
2582 			struct intel_crtc_state *pipe_config,
2583 			struct drm_connector_state *conn_state)
2584 {
2585 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2586 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2587 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2588 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2589 	enum port port = encoder->port;
2590 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2591 	struct intel_digital_connector_state *intel_conn_state =
2592 		to_intel_digital_connector_state(conn_state);
2593 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2594 					   DP_DPCD_QUIRK_CONSTANT_N);
2595 	int ret = 0, output_bpp;
2596 
2597 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2598 		pipe_config->has_pch_encoder = true;
2599 
2600 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2601 
2602 	if (lspcon->active)
2603 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2604 	else
2605 		ret = intel_dp_ycbcr420_config(intel_dp, pipe_config,
2606 					       conn_state);
2607 	if (ret)
2608 		return ret;
2609 
2610 	pipe_config->has_drrs = false;
2611 	if (!intel_dp_port_has_audio(dev_priv, port))
2612 		pipe_config->has_audio = false;
2613 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2614 		pipe_config->has_audio = intel_dp->has_audio;
2615 	else
2616 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2617 
2618 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2619 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2620 				       adjusted_mode);
2621 
2622 		if (HAS_GMCH(dev_priv))
2623 			ret = intel_gmch_panel_fitting(pipe_config, conn_state);
2624 		else
2625 			ret = intel_pch_panel_fitting(pipe_config, conn_state);
2626 		if (ret)
2627 			return ret;
2628 	}
2629 
2630 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2631 		return -EINVAL;
2632 
2633 	if (HAS_GMCH(dev_priv) &&
2634 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2635 		return -EINVAL;
2636 
2637 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2638 		return -EINVAL;
2639 
2640 	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2641 		return -EINVAL;
2642 
2643 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2644 	if (ret < 0)
2645 		return ret;
2646 
2647 	pipe_config->limited_color_range =
2648 		intel_dp_limited_color_range(pipe_config, conn_state);
2649 
2650 	if (pipe_config->dsc.compression_enable)
2651 		output_bpp = pipe_config->dsc.compressed_bpp;
2652 	else
2653 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2654 
2655 	intel_link_compute_m_n(output_bpp,
2656 			       pipe_config->lane_count,
2657 			       adjusted_mode->crtc_clock,
2658 			       pipe_config->port_clock,
2659 			       &pipe_config->dp_m_n,
2660 			       constant_n, pipe_config->fec_enable);
2661 
2662 	if (intel_connector->panel.downclock_mode != NULL &&
2663 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2664 			pipe_config->has_drrs = true;
2665 			intel_link_compute_m_n(output_bpp,
2666 					       pipe_config->lane_count,
2667 					       intel_connector->panel.downclock_mode->clock,
2668 					       pipe_config->port_clock,
2669 					       &pipe_config->dp_m2_n2,
2670 					       constant_n, pipe_config->fec_enable);
2671 	}
2672 
2673 	if (!HAS_DDI(dev_priv))
2674 		intel_dp_set_clock(encoder, pipe_config);
2675 
2676 	intel_psr_compute_config(intel_dp, pipe_config);
2677 	intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2678 	intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2679 
2680 	return 0;
2681 }
2682 
2683 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2684 			      int link_rate, u8 lane_count,
2685 			      bool link_mst)
2686 {
2687 	intel_dp->link_trained = false;
2688 	intel_dp->link_rate = link_rate;
2689 	intel_dp->lane_count = lane_count;
2690 	intel_dp->link_mst = link_mst;
2691 }
2692 
2693 static void intel_dp_prepare(struct intel_encoder *encoder,
2694 			     const struct intel_crtc_state *pipe_config)
2695 {
2696 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2697 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2698 	enum port port = encoder->port;
2699 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2700 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2701 
2702 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2703 				 pipe_config->lane_count,
2704 				 intel_crtc_has_type(pipe_config,
2705 						     INTEL_OUTPUT_DP_MST));
2706 
2707 	/*
2708 	 * There are four kinds of DP registers:
2709 	 *
2710 	 * 	IBX PCH
2711 	 * 	SNB CPU
2712 	 *	IVB CPU
2713 	 * 	CPT PCH
2714 	 *
2715 	 * IBX PCH and CPU are the same for almost everything,
2716 	 * except that the CPU DP PLL is configured in this
2717 	 * register
2718 	 *
2719 	 * CPT PCH is quite different, having many bits moved
2720 	 * to the TRANS_DP_CTL register instead. That
2721 	 * configuration happens (oddly) in ilk_pch_enable
2722 	 */
2723 
2724 	/* Preserve the BIOS-computed detected bit. This is
2725 	 * supposed to be read-only.
2726 	 */
2727 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2728 
2729 	/* Handle DP bits in common between all three register formats */
2730 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2731 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2732 
2733 	/* Split out the IBX/CPU vs CPT settings */
2734 
2735 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2736 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2737 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2738 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2739 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2740 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2741 
2742 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2743 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2744 
2745 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2746 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2747 		u32 trans_dp;
2748 
2749 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2750 
2751 		trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2752 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2753 			trans_dp |= TRANS_DP_ENH_FRAMING;
2754 		else
2755 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2756 		intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2757 	} else {
2758 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2759 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2760 
2761 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2762 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2763 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2764 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2765 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2766 
2767 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2768 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2769 
2770 		if (IS_CHERRYVIEW(dev_priv))
2771 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2772 		else
2773 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2774 	}
2775 }
2776 
2777 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2778 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2779 
2780 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2781 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2782 
2783 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2784 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2785 
2786 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2787 
2788 static void wait_panel_status(struct intel_dp *intel_dp,
2789 				       u32 mask,
2790 				       u32 value)
2791 {
2792 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2793 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2794 
2795 	lockdep_assert_held(&dev_priv->pps_mutex);
2796 
2797 	intel_pps_verify_state(intel_dp);
2798 
2799 	pp_stat_reg = _pp_stat_reg(intel_dp);
2800 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2801 
2802 	drm_dbg_kms(&dev_priv->drm,
2803 		    "mask %08x value %08x status %08x control %08x\n",
2804 		    mask, value,
2805 		    intel_de_read(dev_priv, pp_stat_reg),
2806 		    intel_de_read(dev_priv, pp_ctrl_reg));
2807 
2808 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2809 				       mask, value, 5000))
2810 		drm_err(&dev_priv->drm,
2811 			"Panel status timeout: status %08x control %08x\n",
2812 			intel_de_read(dev_priv, pp_stat_reg),
2813 			intel_de_read(dev_priv, pp_ctrl_reg));
2814 
2815 	drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2816 }
2817 
2818 static void wait_panel_on(struct intel_dp *intel_dp)
2819 {
2820 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2821 
2822 	drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2823 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2824 }
2825 
2826 static void wait_panel_off(struct intel_dp *intel_dp)
2827 {
2828 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2829 
2830 	drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2831 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2832 }
2833 
2834 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2835 {
2836 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2837 	ktime_t panel_power_on_time;
2838 	s64 panel_power_off_duration;
2839 
2840 	drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2841 
2842 	/* take the difference of currrent time and panel power off time
2843 	 * and then make panel wait for t11_t12 if needed. */
2844 	panel_power_on_time = ktime_get_boottime();
2845 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2846 
2847 	/* When we disable the VDD override bit last we have to do the manual
2848 	 * wait. */
2849 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2850 		wait_remaining_ms_from_jiffies(jiffies,
2851 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2852 
2853 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2854 }
2855 
2856 static void wait_backlight_on(struct intel_dp *intel_dp)
2857 {
2858 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2859 				       intel_dp->backlight_on_delay);
2860 }
2861 
2862 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2863 {
2864 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2865 				       intel_dp->backlight_off_delay);
2866 }
2867 
2868 /* Read the current pp_control value, unlocking the register if it
2869  * is locked
2870  */
2871 
2872 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2873 {
2874 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2875 	u32 control;
2876 
2877 	lockdep_assert_held(&dev_priv->pps_mutex);
2878 
2879 	control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2880 	if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2881 			(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2882 		control &= ~PANEL_UNLOCK_MASK;
2883 		control |= PANEL_UNLOCK_REGS;
2884 	}
2885 	return control;
2886 }
2887 
2888 /*
2889  * Must be paired with edp_panel_vdd_off().
2890  * Must hold pps_mutex around the whole on/off sequence.
2891  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2892  */
2893 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2894 {
2895 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2896 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2897 	u32 pp;
2898 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2899 	bool need_to_disable = !intel_dp->want_panel_vdd;
2900 
2901 	lockdep_assert_held(&dev_priv->pps_mutex);
2902 
2903 	if (!intel_dp_is_edp(intel_dp))
2904 		return false;
2905 
2906 	cancel_delayed_work(&intel_dp->panel_vdd_work);
2907 	intel_dp->want_panel_vdd = true;
2908 
2909 	if (edp_have_panel_vdd(intel_dp))
2910 		return need_to_disable;
2911 
2912 	intel_display_power_get(dev_priv,
2913 				intel_aux_power_domain(intel_dig_port));
2914 
2915 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
2916 		    intel_dig_port->base.base.base.id,
2917 		    intel_dig_port->base.base.name);
2918 
2919 	if (!edp_have_panel_power(intel_dp))
2920 		wait_panel_power_cycle(intel_dp);
2921 
2922 	pp = ilk_get_pp_control(intel_dp);
2923 	pp |= EDP_FORCE_VDD;
2924 
2925 	pp_stat_reg = _pp_stat_reg(intel_dp);
2926 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2927 
2928 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2929 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2930 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2931 		    intel_de_read(dev_priv, pp_stat_reg),
2932 		    intel_de_read(dev_priv, pp_ctrl_reg));
2933 	/*
2934 	 * If the panel wasn't on, delay before accessing aux channel
2935 	 */
2936 	if (!edp_have_panel_power(intel_dp)) {
2937 		drm_dbg_kms(&dev_priv->drm,
2938 			    "[ENCODER:%d:%s] panel power wasn't enabled\n",
2939 			    intel_dig_port->base.base.base.id,
2940 			    intel_dig_port->base.base.name);
2941 		msleep(intel_dp->panel_power_up_delay);
2942 	}
2943 
2944 	return need_to_disable;
2945 }
2946 
2947 /*
2948  * Must be paired with intel_edp_panel_vdd_off() or
2949  * intel_edp_panel_off().
2950  * Nested calls to these functions are not allowed since
2951  * we drop the lock. Caller must use some higher level
2952  * locking to prevent nested calls from other threads.
2953  */
2954 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2955 {
2956 	intel_wakeref_t wakeref;
2957 	bool vdd;
2958 
2959 	if (!intel_dp_is_edp(intel_dp))
2960 		return;
2961 
2962 	vdd = false;
2963 	with_pps_lock(intel_dp, wakeref)
2964 		vdd = edp_panel_vdd_on(intel_dp);
2965 	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2966 			dp_to_dig_port(intel_dp)->base.base.base.id,
2967 			dp_to_dig_port(intel_dp)->base.base.name);
2968 }
2969 
2970 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2971 {
2972 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2973 	struct intel_digital_port *intel_dig_port =
2974 		dp_to_dig_port(intel_dp);
2975 	u32 pp;
2976 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2977 
2978 	lockdep_assert_held(&dev_priv->pps_mutex);
2979 
2980 	drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2981 
2982 	if (!edp_have_panel_vdd(intel_dp))
2983 		return;
2984 
2985 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
2986 		    intel_dig_port->base.base.base.id,
2987 		    intel_dig_port->base.base.name);
2988 
2989 	pp = ilk_get_pp_control(intel_dp);
2990 	pp &= ~EDP_FORCE_VDD;
2991 
2992 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2993 	pp_stat_reg = _pp_stat_reg(intel_dp);
2994 
2995 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2996 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2997 
2998 	/* Make sure sequencer is idle before allowing subsequent activity */
2999 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
3000 		    intel_de_read(dev_priv, pp_stat_reg),
3001 		    intel_de_read(dev_priv, pp_ctrl_reg));
3002 
3003 	if ((pp & PANEL_POWER_ON) == 0)
3004 		intel_dp->panel_power_off_time = ktime_get_boottime();
3005 
3006 	intel_display_power_put_unchecked(dev_priv,
3007 					  intel_aux_power_domain(intel_dig_port));
3008 }
3009 
3010 static void edp_panel_vdd_work(struct work_struct *__work)
3011 {
3012 	struct intel_dp *intel_dp =
3013 		container_of(to_delayed_work(__work),
3014 			     struct intel_dp, panel_vdd_work);
3015 	intel_wakeref_t wakeref;
3016 
3017 	with_pps_lock(intel_dp, wakeref) {
3018 		if (!intel_dp->want_panel_vdd)
3019 			edp_panel_vdd_off_sync(intel_dp);
3020 	}
3021 }
3022 
3023 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
3024 {
3025 	unsigned long delay;
3026 
3027 	/*
3028 	 * Queue the timer to fire a long time from now (relative to the power
3029 	 * down delay) to keep the panel power up across a sequence of
3030 	 * operations.
3031 	 */
3032 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
3033 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
3034 }
3035 
3036 /*
3037  * Must be paired with edp_panel_vdd_on().
3038  * Must hold pps_mutex around the whole on/off sequence.
3039  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3040  */
3041 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
3042 {
3043 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3044 
3045 	lockdep_assert_held(&dev_priv->pps_mutex);
3046 
3047 	if (!intel_dp_is_edp(intel_dp))
3048 		return;
3049 
3050 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
3051 			dp_to_dig_port(intel_dp)->base.base.base.id,
3052 			dp_to_dig_port(intel_dp)->base.base.name);
3053 
3054 	intel_dp->want_panel_vdd = false;
3055 
3056 	if (sync)
3057 		edp_panel_vdd_off_sync(intel_dp);
3058 	else
3059 		edp_panel_vdd_schedule_off(intel_dp);
3060 }
3061 
3062 static void edp_panel_on(struct intel_dp *intel_dp)
3063 {
3064 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3065 	u32 pp;
3066 	i915_reg_t pp_ctrl_reg;
3067 
3068 	lockdep_assert_held(&dev_priv->pps_mutex);
3069 
3070 	if (!intel_dp_is_edp(intel_dp))
3071 		return;
3072 
3073 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3074 		    dp_to_dig_port(intel_dp)->base.base.base.id,
3075 		    dp_to_dig_port(intel_dp)->base.base.name);
3076 
3077 	if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3078 		     "[ENCODER:%d:%s] panel power already on\n",
3079 		     dp_to_dig_port(intel_dp)->base.base.base.id,
3080 		     dp_to_dig_port(intel_dp)->base.base.name))
3081 		return;
3082 
3083 	wait_panel_power_cycle(intel_dp);
3084 
3085 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3086 	pp = ilk_get_pp_control(intel_dp);
3087 	if (IS_GEN(dev_priv, 5)) {
3088 		/* ILK workaround: disable reset around power sequence */
3089 		pp &= ~PANEL_POWER_RESET;
3090 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3091 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3092 	}
3093 
3094 	pp |= PANEL_POWER_ON;
3095 	if (!IS_GEN(dev_priv, 5))
3096 		pp |= PANEL_POWER_RESET;
3097 
3098 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3099 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3100 
3101 	wait_panel_on(intel_dp);
3102 	intel_dp->last_power_on = jiffies;
3103 
3104 	if (IS_GEN(dev_priv, 5)) {
3105 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3106 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3107 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3108 	}
3109 }
3110 
3111 void intel_edp_panel_on(struct intel_dp *intel_dp)
3112 {
3113 	intel_wakeref_t wakeref;
3114 
3115 	if (!intel_dp_is_edp(intel_dp))
3116 		return;
3117 
3118 	with_pps_lock(intel_dp, wakeref)
3119 		edp_panel_on(intel_dp);
3120 }
3121 
3122 
3123 static void edp_panel_off(struct intel_dp *intel_dp)
3124 {
3125 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3126 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3127 	u32 pp;
3128 	i915_reg_t pp_ctrl_reg;
3129 
3130 	lockdep_assert_held(&dev_priv->pps_mutex);
3131 
3132 	if (!intel_dp_is_edp(intel_dp))
3133 		return;
3134 
3135 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3136 		    dig_port->base.base.base.id, dig_port->base.base.name);
3137 
3138 	drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3139 		 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3140 		 dig_port->base.base.base.id, dig_port->base.base.name);
3141 
3142 	pp = ilk_get_pp_control(intel_dp);
3143 	/* We need to switch off panel power _and_ force vdd, for otherwise some
3144 	 * panels get very unhappy and cease to work. */
3145 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3146 		EDP_BLC_ENABLE);
3147 
3148 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3149 
3150 	intel_dp->want_panel_vdd = false;
3151 
3152 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3153 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3154 
3155 	wait_panel_off(intel_dp);
3156 	intel_dp->panel_power_off_time = ktime_get_boottime();
3157 
3158 	/* We got a reference when we enabled the VDD. */
3159 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3160 }
3161 
3162 void intel_edp_panel_off(struct intel_dp *intel_dp)
3163 {
3164 	intel_wakeref_t wakeref;
3165 
3166 	if (!intel_dp_is_edp(intel_dp))
3167 		return;
3168 
3169 	with_pps_lock(intel_dp, wakeref)
3170 		edp_panel_off(intel_dp);
3171 }
3172 
3173 /* Enable backlight in the panel power control. */
3174 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3175 {
3176 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3177 	intel_wakeref_t wakeref;
3178 
3179 	/*
3180 	 * If we enable the backlight right away following a panel power
3181 	 * on, we may see slight flicker as the panel syncs with the eDP
3182 	 * link.  So delay a bit to make sure the image is solid before
3183 	 * allowing it to appear.
3184 	 */
3185 	wait_backlight_on(intel_dp);
3186 
3187 	with_pps_lock(intel_dp, wakeref) {
3188 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3189 		u32 pp;
3190 
3191 		pp = ilk_get_pp_control(intel_dp);
3192 		pp |= EDP_BLC_ENABLE;
3193 
3194 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3195 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3196 	}
3197 }
3198 
3199 /* Enable backlight PWM and backlight PP control. */
3200 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3201 			    const struct drm_connector_state *conn_state)
3202 {
3203 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3204 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3205 
3206 	if (!intel_dp_is_edp(intel_dp))
3207 		return;
3208 
3209 	drm_dbg_kms(&i915->drm, "\n");
3210 
3211 	intel_panel_enable_backlight(crtc_state, conn_state);
3212 	_intel_edp_backlight_on(intel_dp);
3213 }
3214 
3215 /* Disable backlight in the panel power control. */
3216 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3217 {
3218 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3219 	intel_wakeref_t wakeref;
3220 
3221 	if (!intel_dp_is_edp(intel_dp))
3222 		return;
3223 
3224 	with_pps_lock(intel_dp, wakeref) {
3225 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3226 		u32 pp;
3227 
3228 		pp = ilk_get_pp_control(intel_dp);
3229 		pp &= ~EDP_BLC_ENABLE;
3230 
3231 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3232 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3233 	}
3234 
3235 	intel_dp->last_backlight_off = jiffies;
3236 	edp_wait_backlight_off(intel_dp);
3237 }
3238 
3239 /* Disable backlight PP control and backlight PWM. */
3240 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3241 {
3242 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3243 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3244 
3245 	if (!intel_dp_is_edp(intel_dp))
3246 		return;
3247 
3248 	drm_dbg_kms(&i915->drm, "\n");
3249 
3250 	_intel_edp_backlight_off(intel_dp);
3251 	intel_panel_disable_backlight(old_conn_state);
3252 }
3253 
3254 /*
3255  * Hook for controlling the panel power control backlight through the bl_power
3256  * sysfs attribute. Take care to handle multiple calls.
3257  */
3258 static void intel_edp_backlight_power(struct intel_connector *connector,
3259 				      bool enable)
3260 {
3261 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
3262 	struct intel_dp *intel_dp = intel_attached_dp(connector);
3263 	intel_wakeref_t wakeref;
3264 	bool is_enabled;
3265 
3266 	is_enabled = false;
3267 	with_pps_lock(intel_dp, wakeref)
3268 		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3269 	if (is_enabled == enable)
3270 		return;
3271 
3272 	drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3273 		    enable ? "enable" : "disable");
3274 
3275 	if (enable)
3276 		_intel_edp_backlight_on(intel_dp);
3277 	else
3278 		_intel_edp_backlight_off(intel_dp);
3279 }
3280 
3281 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3282 {
3283 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3284 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3285 	bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3286 
3287 	I915_STATE_WARN(cur_state != state,
3288 			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3289 			dig_port->base.base.base.id, dig_port->base.base.name,
3290 			onoff(state), onoff(cur_state));
3291 }
3292 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3293 
3294 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3295 {
3296 	bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3297 
3298 	I915_STATE_WARN(cur_state != state,
3299 			"eDP PLL state assertion failure (expected %s, current %s)\n",
3300 			onoff(state), onoff(cur_state));
3301 }
3302 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3303 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3304 
3305 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3306 			   const struct intel_crtc_state *pipe_config)
3307 {
3308 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3309 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3310 
3311 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3312 	assert_dp_port_disabled(intel_dp);
3313 	assert_edp_pll_disabled(dev_priv);
3314 
3315 	drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3316 		    pipe_config->port_clock);
3317 
3318 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3319 
3320 	if (pipe_config->port_clock == 162000)
3321 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3322 	else
3323 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3324 
3325 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3326 	intel_de_posting_read(dev_priv, DP_A);
3327 	udelay(500);
3328 
3329 	/*
3330 	 * [DevILK] Work around required when enabling DP PLL
3331 	 * while a pipe is enabled going to FDI:
3332 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3333 	 * 2. Program DP PLL enable
3334 	 */
3335 	if (IS_GEN(dev_priv, 5))
3336 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3337 
3338 	intel_dp->DP |= DP_PLL_ENABLE;
3339 
3340 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3341 	intel_de_posting_read(dev_priv, DP_A);
3342 	udelay(200);
3343 }
3344 
3345 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3346 			    const struct intel_crtc_state *old_crtc_state)
3347 {
3348 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3349 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3350 
3351 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3352 	assert_dp_port_disabled(intel_dp);
3353 	assert_edp_pll_enabled(dev_priv);
3354 
3355 	drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3356 
3357 	intel_dp->DP &= ~DP_PLL_ENABLE;
3358 
3359 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3360 	intel_de_posting_read(dev_priv, DP_A);
3361 	udelay(200);
3362 }
3363 
3364 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3365 {
3366 	/*
3367 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3368 	 * be capable of signalling downstream hpd with a long pulse.
3369 	 * Whether or not that means D3 is safe to use is not clear,
3370 	 * but let's assume so until proven otherwise.
3371 	 *
3372 	 * FIXME should really check all downstream ports...
3373 	 */
3374 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3375 		drm_dp_is_branch(intel_dp->dpcd) &&
3376 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3377 }
3378 
3379 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3380 					   const struct intel_crtc_state *crtc_state,
3381 					   bool enable)
3382 {
3383 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3384 	int ret;
3385 
3386 	if (!crtc_state->dsc.compression_enable)
3387 		return;
3388 
3389 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3390 				 enable ? DP_DECOMPRESSION_EN : 0);
3391 	if (ret < 0)
3392 		drm_dbg_kms(&i915->drm,
3393 			    "Failed to %s sink decompression state\n",
3394 			    enable ? "enable" : "disable");
3395 }
3396 
3397 /* If the sink supports it, try to set the power state appropriately */
3398 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3399 {
3400 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3401 	int ret, i;
3402 
3403 	/* Should have a valid DPCD by this point */
3404 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3405 		return;
3406 
3407 	if (mode != DRM_MODE_DPMS_ON) {
3408 		if (downstream_hpd_needs_d0(intel_dp))
3409 			return;
3410 
3411 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3412 					 DP_SET_POWER_D3);
3413 	} else {
3414 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3415 
3416 		/*
3417 		 * When turning on, we need to retry for 1ms to give the sink
3418 		 * time to wake up.
3419 		 */
3420 		for (i = 0; i < 3; i++) {
3421 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3422 						 DP_SET_POWER_D0);
3423 			if (ret == 1)
3424 				break;
3425 			msleep(1);
3426 		}
3427 
3428 		if (ret == 1 && lspcon->active)
3429 			lspcon_wait_pcon_mode(lspcon);
3430 	}
3431 
3432 	if (ret != 1)
3433 		drm_dbg_kms(&i915->drm, "failed to %s sink power state\n",
3434 			    mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3435 }
3436 
3437 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3438 				 enum port port, enum pipe *pipe)
3439 {
3440 	enum pipe p;
3441 
3442 	for_each_pipe(dev_priv, p) {
3443 		u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3444 
3445 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3446 			*pipe = p;
3447 			return true;
3448 		}
3449 	}
3450 
3451 	drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3452 		    port_name(port));
3453 
3454 	/* must initialize pipe to something for the asserts */
3455 	*pipe = PIPE_A;
3456 
3457 	return false;
3458 }
3459 
3460 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3461 			   i915_reg_t dp_reg, enum port port,
3462 			   enum pipe *pipe)
3463 {
3464 	bool ret;
3465 	u32 val;
3466 
3467 	val = intel_de_read(dev_priv, dp_reg);
3468 
3469 	ret = val & DP_PORT_EN;
3470 
3471 	/* asserts want to know the pipe even if the port is disabled */
3472 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3473 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3474 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3475 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3476 	else if (IS_CHERRYVIEW(dev_priv))
3477 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3478 	else
3479 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3480 
3481 	return ret;
3482 }
3483 
3484 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3485 				  enum pipe *pipe)
3486 {
3487 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3488 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3489 	intel_wakeref_t wakeref;
3490 	bool ret;
3491 
3492 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3493 						     encoder->power_domain);
3494 	if (!wakeref)
3495 		return false;
3496 
3497 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3498 				    encoder->port, pipe);
3499 
3500 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3501 
3502 	return ret;
3503 }
3504 
3505 static void intel_dp_get_config(struct intel_encoder *encoder,
3506 				struct intel_crtc_state *pipe_config)
3507 {
3508 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3509 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3510 	u32 tmp, flags = 0;
3511 	enum port port = encoder->port;
3512 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3513 
3514 	if (encoder->type == INTEL_OUTPUT_EDP)
3515 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3516 	else
3517 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3518 
3519 	tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3520 
3521 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3522 
3523 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3524 		u32 trans_dp = intel_de_read(dev_priv,
3525 					     TRANS_DP_CTL(crtc->pipe));
3526 
3527 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3528 			flags |= DRM_MODE_FLAG_PHSYNC;
3529 		else
3530 			flags |= DRM_MODE_FLAG_NHSYNC;
3531 
3532 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3533 			flags |= DRM_MODE_FLAG_PVSYNC;
3534 		else
3535 			flags |= DRM_MODE_FLAG_NVSYNC;
3536 	} else {
3537 		if (tmp & DP_SYNC_HS_HIGH)
3538 			flags |= DRM_MODE_FLAG_PHSYNC;
3539 		else
3540 			flags |= DRM_MODE_FLAG_NHSYNC;
3541 
3542 		if (tmp & DP_SYNC_VS_HIGH)
3543 			flags |= DRM_MODE_FLAG_PVSYNC;
3544 		else
3545 			flags |= DRM_MODE_FLAG_NVSYNC;
3546 	}
3547 
3548 	pipe_config->hw.adjusted_mode.flags |= flags;
3549 
3550 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3551 		pipe_config->limited_color_range = true;
3552 
3553 	pipe_config->lane_count =
3554 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3555 
3556 	intel_dp_get_m_n(crtc, pipe_config);
3557 
3558 	if (port == PORT_A) {
3559 		if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3560 			pipe_config->port_clock = 162000;
3561 		else
3562 			pipe_config->port_clock = 270000;
3563 	}
3564 
3565 	pipe_config->hw.adjusted_mode.crtc_clock =
3566 		intel_dotclock_calculate(pipe_config->port_clock,
3567 					 &pipe_config->dp_m_n);
3568 
3569 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3570 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3571 		/*
3572 		 * This is a big fat ugly hack.
3573 		 *
3574 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3575 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3576 		 * unknown we fail to light up. Yet the same BIOS boots up with
3577 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3578 		 * max, not what it tells us to use.
3579 		 *
3580 		 * Note: This will still be broken if the eDP panel is not lit
3581 		 * up by the BIOS, and thus we can't get the mode at module
3582 		 * load.
3583 		 */
3584 		drm_dbg_kms(&dev_priv->drm,
3585 			    "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3586 			    pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3587 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3588 	}
3589 }
3590 
3591 static void intel_disable_dp(struct intel_atomic_state *state,
3592 			     struct intel_encoder *encoder,
3593 			     const struct intel_crtc_state *old_crtc_state,
3594 			     const struct drm_connector_state *old_conn_state)
3595 {
3596 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3597 
3598 	intel_dp->link_trained = false;
3599 
3600 	if (old_crtc_state->has_audio)
3601 		intel_audio_codec_disable(encoder,
3602 					  old_crtc_state, old_conn_state);
3603 
3604 	/* Make sure the panel is off before trying to change the mode. But also
3605 	 * ensure that we have vdd while we switch off the panel. */
3606 	intel_edp_panel_vdd_on(intel_dp);
3607 	intel_edp_backlight_off(old_conn_state);
3608 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3609 	intel_edp_panel_off(intel_dp);
3610 }
3611 
3612 static void g4x_disable_dp(struct intel_atomic_state *state,
3613 			   struct intel_encoder *encoder,
3614 			   const struct intel_crtc_state *old_crtc_state,
3615 			   const struct drm_connector_state *old_conn_state)
3616 {
3617 	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3618 }
3619 
3620 static void vlv_disable_dp(struct intel_atomic_state *state,
3621 			   struct intel_encoder *encoder,
3622 			   const struct intel_crtc_state *old_crtc_state,
3623 			   const struct drm_connector_state *old_conn_state)
3624 {
3625 	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3626 }
3627 
3628 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3629 				struct intel_encoder *encoder,
3630 				const struct intel_crtc_state *old_crtc_state,
3631 				const struct drm_connector_state *old_conn_state)
3632 {
3633 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3634 	enum port port = encoder->port;
3635 
3636 	/*
3637 	 * Bspec does not list a specific disable sequence for g4x DP.
3638 	 * Follow the ilk+ sequence (disable pipe before the port) for
3639 	 * g4x DP as it does not suffer from underruns like the normal
3640 	 * g4x modeset sequence (disable pipe after the port).
3641 	 */
3642 	intel_dp_link_down(encoder, old_crtc_state);
3643 
3644 	/* Only ilk+ has port A */
3645 	if (port == PORT_A)
3646 		ilk_edp_pll_off(intel_dp, old_crtc_state);
3647 }
3648 
3649 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3650 				struct intel_encoder *encoder,
3651 				const struct intel_crtc_state *old_crtc_state,
3652 				const struct drm_connector_state *old_conn_state)
3653 {
3654 	intel_dp_link_down(encoder, old_crtc_state);
3655 }
3656 
3657 static void chv_post_disable_dp(struct intel_atomic_state *state,
3658 				struct intel_encoder *encoder,
3659 				const struct intel_crtc_state *old_crtc_state,
3660 				const struct drm_connector_state *old_conn_state)
3661 {
3662 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3663 
3664 	intel_dp_link_down(encoder, old_crtc_state);
3665 
3666 	vlv_dpio_get(dev_priv);
3667 
3668 	/* Assert data lane reset */
3669 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3670 
3671 	vlv_dpio_put(dev_priv);
3672 }
3673 
3674 static void
3675 cpt_set_link_train(struct intel_dp *intel_dp,
3676 		   u8 dp_train_pat)
3677 {
3678 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3679 	u32 *DP = &intel_dp->DP;
3680 
3681 	*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3682 
3683 	switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3684 	case DP_TRAINING_PATTERN_DISABLE:
3685 		*DP |= DP_LINK_TRAIN_OFF_CPT;
3686 		break;
3687 	case DP_TRAINING_PATTERN_1:
3688 		*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3689 		break;
3690 	case DP_TRAINING_PATTERN_2:
3691 		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3692 		break;
3693 	case DP_TRAINING_PATTERN_3:
3694 		drm_dbg_kms(&dev_priv->drm,
3695 			    "TPS3 not supported, using TPS2 instead\n");
3696 		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3697 		break;
3698 	}
3699 
3700 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3701 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3702 }
3703 
3704 static void
3705 g4x_set_link_train(struct intel_dp *intel_dp,
3706 		   u8 dp_train_pat)
3707 {
3708 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3709 	u32 *DP = &intel_dp->DP;
3710 
3711 	*DP &= ~DP_LINK_TRAIN_MASK;
3712 
3713 	switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3714 	case DP_TRAINING_PATTERN_DISABLE:
3715 		*DP |= DP_LINK_TRAIN_OFF;
3716 		break;
3717 	case DP_TRAINING_PATTERN_1:
3718 		*DP |= DP_LINK_TRAIN_PAT_1;
3719 		break;
3720 	case DP_TRAINING_PATTERN_2:
3721 		*DP |= DP_LINK_TRAIN_PAT_2;
3722 		break;
3723 	case DP_TRAINING_PATTERN_3:
3724 		drm_dbg_kms(&dev_priv->drm,
3725 			    "TPS3 not supported, using TPS2 instead\n");
3726 		*DP |= DP_LINK_TRAIN_PAT_2;
3727 		break;
3728 	}
3729 
3730 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3731 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3732 }
3733 
3734 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3735 				 const struct intel_crtc_state *old_crtc_state)
3736 {
3737 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3738 
3739 	/* enable with pattern 1 (as per spec) */
3740 
3741 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3742 
3743 	/*
3744 	 * Magic for VLV/CHV. We _must_ first set up the register
3745 	 * without actually enabling the port, and then do another
3746 	 * write to enable the port. Otherwise link training will
3747 	 * fail when the power sequencer is freshly used for this port.
3748 	 */
3749 	intel_dp->DP |= DP_PORT_EN;
3750 	if (old_crtc_state->has_audio)
3751 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3752 
3753 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3754 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3755 }
3756 
3757 static void intel_enable_dp(struct intel_atomic_state *state,
3758 			    struct intel_encoder *encoder,
3759 			    const struct intel_crtc_state *pipe_config,
3760 			    const struct drm_connector_state *conn_state)
3761 {
3762 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3763 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3764 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3765 	u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3766 	enum pipe pipe = crtc->pipe;
3767 	intel_wakeref_t wakeref;
3768 
3769 	if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3770 		return;
3771 
3772 	with_pps_lock(intel_dp, wakeref) {
3773 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3774 			vlv_init_panel_power_sequencer(encoder, pipe_config);
3775 
3776 		intel_dp_enable_port(intel_dp, pipe_config);
3777 
3778 		edp_panel_vdd_on(intel_dp);
3779 		edp_panel_on(intel_dp);
3780 		edp_panel_vdd_off(intel_dp, true);
3781 	}
3782 
3783 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3784 		unsigned int lane_mask = 0x0;
3785 
3786 		if (IS_CHERRYVIEW(dev_priv))
3787 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3788 
3789 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3790 				    lane_mask);
3791 	}
3792 
3793 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3794 	intel_dp_start_link_train(intel_dp);
3795 	intel_dp_stop_link_train(intel_dp);
3796 
3797 	if (pipe_config->has_audio) {
3798 		drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3799 			pipe_name(pipe));
3800 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3801 	}
3802 }
3803 
3804 static void g4x_enable_dp(struct intel_atomic_state *state,
3805 			  struct intel_encoder *encoder,
3806 			  const struct intel_crtc_state *pipe_config,
3807 			  const struct drm_connector_state *conn_state)
3808 {
3809 	intel_enable_dp(state, encoder, pipe_config, conn_state);
3810 	intel_edp_backlight_on(pipe_config, conn_state);
3811 }
3812 
3813 static void vlv_enable_dp(struct intel_atomic_state *state,
3814 			  struct intel_encoder *encoder,
3815 			  const struct intel_crtc_state *pipe_config,
3816 			  const struct drm_connector_state *conn_state)
3817 {
3818 	intel_edp_backlight_on(pipe_config, conn_state);
3819 }
3820 
3821 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
3822 			      struct intel_encoder *encoder,
3823 			      const struct intel_crtc_state *pipe_config,
3824 			      const struct drm_connector_state *conn_state)
3825 {
3826 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3827 	enum port port = encoder->port;
3828 
3829 	intel_dp_prepare(encoder, pipe_config);
3830 
3831 	/* Only ilk+ has port A */
3832 	if (port == PORT_A)
3833 		ilk_edp_pll_on(intel_dp, pipe_config);
3834 }
3835 
3836 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3837 {
3838 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3839 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3840 	enum pipe pipe = intel_dp->pps_pipe;
3841 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3842 
3843 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3844 
3845 	if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3846 		return;
3847 
3848 	edp_panel_vdd_off_sync(intel_dp);
3849 
3850 	/*
3851 	 * VLV seems to get confused when multiple power sequencers
3852 	 * have the same port selected (even if only one has power/vdd
3853 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
3854 	 * CHV on the other hand doesn't seem to mind having the same port
3855 	 * selected in multiple power sequencers, but let's clear the
3856 	 * port select always when logically disconnecting a power sequencer
3857 	 * from a port.
3858 	 */
3859 	drm_dbg_kms(&dev_priv->drm,
3860 		    "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3861 		    pipe_name(pipe), intel_dig_port->base.base.base.id,
3862 		    intel_dig_port->base.base.name);
3863 	intel_de_write(dev_priv, pp_on_reg, 0);
3864 	intel_de_posting_read(dev_priv, pp_on_reg);
3865 
3866 	intel_dp->pps_pipe = INVALID_PIPE;
3867 }
3868 
3869 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3870 				      enum pipe pipe)
3871 {
3872 	struct intel_encoder *encoder;
3873 
3874 	lockdep_assert_held(&dev_priv->pps_mutex);
3875 
3876 	for_each_intel_dp(&dev_priv->drm, encoder) {
3877 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3878 
3879 		drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
3880 			 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3881 			 pipe_name(pipe), encoder->base.base.id,
3882 			 encoder->base.name);
3883 
3884 		if (intel_dp->pps_pipe != pipe)
3885 			continue;
3886 
3887 		drm_dbg_kms(&dev_priv->drm,
3888 			    "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3889 			    pipe_name(pipe), encoder->base.base.id,
3890 			    encoder->base.name);
3891 
3892 		/* make sure vdd is off before we steal it */
3893 		vlv_detach_power_sequencer(intel_dp);
3894 	}
3895 }
3896 
3897 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3898 					   const struct intel_crtc_state *crtc_state)
3899 {
3900 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3901 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3902 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3903 
3904 	lockdep_assert_held(&dev_priv->pps_mutex);
3905 
3906 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3907 
3908 	if (intel_dp->pps_pipe != INVALID_PIPE &&
3909 	    intel_dp->pps_pipe != crtc->pipe) {
3910 		/*
3911 		 * If another power sequencer was being used on this
3912 		 * port previously make sure to turn off vdd there while
3913 		 * we still have control of it.
3914 		 */
3915 		vlv_detach_power_sequencer(intel_dp);
3916 	}
3917 
3918 	/*
3919 	 * We may be stealing the power
3920 	 * sequencer from another port.
3921 	 */
3922 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3923 
3924 	intel_dp->active_pipe = crtc->pipe;
3925 
3926 	if (!intel_dp_is_edp(intel_dp))
3927 		return;
3928 
3929 	/* now it's all ours */
3930 	intel_dp->pps_pipe = crtc->pipe;
3931 
3932 	drm_dbg_kms(&dev_priv->drm,
3933 		    "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3934 		    pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3935 		    encoder->base.name);
3936 
3937 	/* init power sequencer on this pipe and port */
3938 	intel_dp_init_panel_power_sequencer(intel_dp);
3939 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3940 }
3941 
3942 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
3943 			      struct intel_encoder *encoder,
3944 			      const struct intel_crtc_state *pipe_config,
3945 			      const struct drm_connector_state *conn_state)
3946 {
3947 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3948 
3949 	intel_enable_dp(state, encoder, pipe_config, conn_state);
3950 }
3951 
3952 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
3953 				  struct intel_encoder *encoder,
3954 				  const struct intel_crtc_state *pipe_config,
3955 				  const struct drm_connector_state *conn_state)
3956 {
3957 	intel_dp_prepare(encoder, pipe_config);
3958 
3959 	vlv_phy_pre_pll_enable(encoder, pipe_config);
3960 }
3961 
3962 static void chv_pre_enable_dp(struct intel_atomic_state *state,
3963 			      struct intel_encoder *encoder,
3964 			      const struct intel_crtc_state *pipe_config,
3965 			      const struct drm_connector_state *conn_state)
3966 {
3967 	chv_phy_pre_encoder_enable(encoder, pipe_config);
3968 
3969 	intel_enable_dp(state, encoder, pipe_config, conn_state);
3970 
3971 	/* Second common lane will stay alive on its own now */
3972 	chv_phy_release_cl2_override(encoder);
3973 }
3974 
3975 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
3976 				  struct intel_encoder *encoder,
3977 				  const struct intel_crtc_state *pipe_config,
3978 				  const struct drm_connector_state *conn_state)
3979 {
3980 	intel_dp_prepare(encoder, pipe_config);
3981 
3982 	chv_phy_pre_pll_enable(encoder, pipe_config);
3983 }
3984 
3985 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
3986 				    struct intel_encoder *encoder,
3987 				    const struct intel_crtc_state *old_crtc_state,
3988 				    const struct drm_connector_state *old_conn_state)
3989 {
3990 	chv_phy_post_pll_disable(encoder, old_crtc_state);
3991 }
3992 
3993 /*
3994  * Fetch AUX CH registers 0x202 - 0x207 which contain
3995  * link status information
3996  */
3997 bool
3998 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3999 {
4000 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
4001 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
4002 }
4003 
4004 static u8 intel_dp_voltage_max_2(struct intel_dp *intel_dp)
4005 {
4006 	return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4007 }
4008 
4009 static u8 intel_dp_voltage_max_3(struct intel_dp *intel_dp)
4010 {
4011 	return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
4012 }
4013 
4014 static u8 intel_dp_pre_empemph_max_2(struct intel_dp *intel_dp)
4015 {
4016 	return DP_TRAIN_PRE_EMPH_LEVEL_2;
4017 }
4018 
4019 static u8 intel_dp_pre_empemph_max_3(struct intel_dp *intel_dp)
4020 {
4021 	return DP_TRAIN_PRE_EMPH_LEVEL_3;
4022 }
4023 
4024 static void vlv_set_signal_levels(struct intel_dp *intel_dp)
4025 {
4026 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4027 	unsigned long demph_reg_value, preemph_reg_value,
4028 		uniqtranscale_reg_value;
4029 	u8 train_set = intel_dp->train_set[0];
4030 
4031 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4032 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4033 		preemph_reg_value = 0x0004000;
4034 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4035 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4036 			demph_reg_value = 0x2B405555;
4037 			uniqtranscale_reg_value = 0x552AB83A;
4038 			break;
4039 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4040 			demph_reg_value = 0x2B404040;
4041 			uniqtranscale_reg_value = 0x5548B83A;
4042 			break;
4043 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4044 			demph_reg_value = 0x2B245555;
4045 			uniqtranscale_reg_value = 0x5560B83A;
4046 			break;
4047 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4048 			demph_reg_value = 0x2B405555;
4049 			uniqtranscale_reg_value = 0x5598DA3A;
4050 			break;
4051 		default:
4052 			return;
4053 		}
4054 		break;
4055 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4056 		preemph_reg_value = 0x0002000;
4057 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4058 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4059 			demph_reg_value = 0x2B404040;
4060 			uniqtranscale_reg_value = 0x5552B83A;
4061 			break;
4062 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4063 			demph_reg_value = 0x2B404848;
4064 			uniqtranscale_reg_value = 0x5580B83A;
4065 			break;
4066 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4067 			demph_reg_value = 0x2B404040;
4068 			uniqtranscale_reg_value = 0x55ADDA3A;
4069 			break;
4070 		default:
4071 			return;
4072 		}
4073 		break;
4074 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4075 		preemph_reg_value = 0x0000000;
4076 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4077 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4078 			demph_reg_value = 0x2B305555;
4079 			uniqtranscale_reg_value = 0x5570B83A;
4080 			break;
4081 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4082 			demph_reg_value = 0x2B2B4040;
4083 			uniqtranscale_reg_value = 0x55ADDA3A;
4084 			break;
4085 		default:
4086 			return;
4087 		}
4088 		break;
4089 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4090 		preemph_reg_value = 0x0006000;
4091 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4092 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4093 			demph_reg_value = 0x1B405555;
4094 			uniqtranscale_reg_value = 0x55ADDA3A;
4095 			break;
4096 		default:
4097 			return;
4098 		}
4099 		break;
4100 	default:
4101 		return;
4102 	}
4103 
4104 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
4105 				 uniqtranscale_reg_value, 0);
4106 }
4107 
4108 static void chv_set_signal_levels(struct intel_dp *intel_dp)
4109 {
4110 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4111 	u32 deemph_reg_value, margin_reg_value;
4112 	bool uniq_trans_scale = false;
4113 	u8 train_set = intel_dp->train_set[0];
4114 
4115 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4116 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4117 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4118 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4119 			deemph_reg_value = 128;
4120 			margin_reg_value = 52;
4121 			break;
4122 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4123 			deemph_reg_value = 128;
4124 			margin_reg_value = 77;
4125 			break;
4126 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4127 			deemph_reg_value = 128;
4128 			margin_reg_value = 102;
4129 			break;
4130 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4131 			deemph_reg_value = 128;
4132 			margin_reg_value = 154;
4133 			uniq_trans_scale = true;
4134 			break;
4135 		default:
4136 			return;
4137 		}
4138 		break;
4139 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4140 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4141 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4142 			deemph_reg_value = 85;
4143 			margin_reg_value = 78;
4144 			break;
4145 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4146 			deemph_reg_value = 85;
4147 			margin_reg_value = 116;
4148 			break;
4149 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4150 			deemph_reg_value = 85;
4151 			margin_reg_value = 154;
4152 			break;
4153 		default:
4154 			return;
4155 		}
4156 		break;
4157 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4158 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4159 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4160 			deemph_reg_value = 64;
4161 			margin_reg_value = 104;
4162 			break;
4163 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4164 			deemph_reg_value = 64;
4165 			margin_reg_value = 154;
4166 			break;
4167 		default:
4168 			return;
4169 		}
4170 		break;
4171 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4172 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4173 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4174 			deemph_reg_value = 43;
4175 			margin_reg_value = 154;
4176 			break;
4177 		default:
4178 			return;
4179 		}
4180 		break;
4181 	default:
4182 		return;
4183 	}
4184 
4185 	chv_set_phy_signal_level(encoder, deemph_reg_value,
4186 				 margin_reg_value, uniq_trans_scale);
4187 }
4188 
4189 static u32 g4x_signal_levels(u8 train_set)
4190 {
4191 	u32 signal_levels = 0;
4192 
4193 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4194 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4195 	default:
4196 		signal_levels |= DP_VOLTAGE_0_4;
4197 		break;
4198 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4199 		signal_levels |= DP_VOLTAGE_0_6;
4200 		break;
4201 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4202 		signal_levels |= DP_VOLTAGE_0_8;
4203 		break;
4204 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4205 		signal_levels |= DP_VOLTAGE_1_2;
4206 		break;
4207 	}
4208 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4209 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4210 	default:
4211 		signal_levels |= DP_PRE_EMPHASIS_0;
4212 		break;
4213 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4214 		signal_levels |= DP_PRE_EMPHASIS_3_5;
4215 		break;
4216 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4217 		signal_levels |= DP_PRE_EMPHASIS_6;
4218 		break;
4219 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4220 		signal_levels |= DP_PRE_EMPHASIS_9_5;
4221 		break;
4222 	}
4223 	return signal_levels;
4224 }
4225 
4226 static void
4227 g4x_set_signal_levels(struct intel_dp *intel_dp)
4228 {
4229 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4230 	u8 train_set = intel_dp->train_set[0];
4231 	u32 signal_levels;
4232 
4233 	signal_levels = g4x_signal_levels(train_set);
4234 
4235 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4236 		    signal_levels);
4237 
4238 	intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
4239 	intel_dp->DP |= signal_levels;
4240 
4241 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4242 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4243 }
4244 
4245 /* SNB CPU eDP voltage swing and pre-emphasis control */
4246 static u32 snb_cpu_edp_signal_levels(u8 train_set)
4247 {
4248 	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4249 					DP_TRAIN_PRE_EMPHASIS_MASK);
4250 
4251 	switch (signal_levels) {
4252 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4253 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4254 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4255 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4256 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4257 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4258 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4259 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4260 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4261 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4262 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4263 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4264 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4265 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4266 	default:
4267 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4268 			      "0x%x\n", signal_levels);
4269 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4270 	}
4271 }
4272 
4273 static void
4274 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4275 {
4276 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4277 	u8 train_set = intel_dp->train_set[0];
4278 	u32 signal_levels;
4279 
4280 	signal_levels = snb_cpu_edp_signal_levels(train_set);
4281 
4282 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4283 		    signal_levels);
4284 
4285 	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4286 	intel_dp->DP |= signal_levels;
4287 
4288 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4289 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4290 }
4291 
4292 /* IVB CPU eDP voltage swing and pre-emphasis control */
4293 static u32 ivb_cpu_edp_signal_levels(u8 train_set)
4294 {
4295 	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4296 					DP_TRAIN_PRE_EMPHASIS_MASK);
4297 
4298 	switch (signal_levels) {
4299 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4300 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4301 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4302 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4303 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4304 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4305 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
4306 
4307 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4308 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4309 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4310 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4311 
4312 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4313 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4314 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4315 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4316 
4317 	default:
4318 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4319 			      "0x%x\n", signal_levels);
4320 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
4321 	}
4322 }
4323 
4324 static void
4325 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4326 {
4327 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4328 	u8 train_set = intel_dp->train_set[0];
4329 	u32 signal_levels;
4330 
4331 	signal_levels = ivb_cpu_edp_signal_levels(train_set);
4332 
4333 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4334 		    signal_levels);
4335 
4336 	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4337 	intel_dp->DP |= signal_levels;
4338 
4339 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4340 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4341 }
4342 
4343 void intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4344 {
4345 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4346 	u8 train_set = intel_dp->train_set[0];
4347 
4348 	drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4349 		    train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4350 		    train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4351 	drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4352 		    (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4353 		    DP_TRAIN_PRE_EMPHASIS_SHIFT,
4354 		    train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4355 		    " (max)" : "");
4356 
4357 	intel_dp->set_signal_levels(intel_dp);
4358 }
4359 
4360 void
4361 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4362 				       u8 dp_train_pat)
4363 {
4364 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4365 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
4366 
4367 	if (dp_train_pat & train_pat_mask)
4368 		drm_dbg_kms(&dev_priv->drm,
4369 			    "Using DP training pattern TPS%d\n",
4370 			    dp_train_pat & train_pat_mask);
4371 
4372 	intel_dp->set_link_train(intel_dp, dp_train_pat);
4373 }
4374 
4375 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4376 {
4377 	if (intel_dp->set_idle_link_train)
4378 		intel_dp->set_idle_link_train(intel_dp);
4379 }
4380 
4381 static void
4382 intel_dp_link_down(struct intel_encoder *encoder,
4383 		   const struct intel_crtc_state *old_crtc_state)
4384 {
4385 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4386 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4387 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4388 	enum port port = encoder->port;
4389 	u32 DP = intel_dp->DP;
4390 
4391 	if (drm_WARN_ON(&dev_priv->drm,
4392 			(intel_de_read(dev_priv, intel_dp->output_reg) &
4393 			 DP_PORT_EN) == 0))
4394 		return;
4395 
4396 	drm_dbg_kms(&dev_priv->drm, "\n");
4397 
4398 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4399 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4400 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4401 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4402 	} else {
4403 		DP &= ~DP_LINK_TRAIN_MASK;
4404 		DP |= DP_LINK_TRAIN_PAT_IDLE;
4405 	}
4406 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4407 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4408 
4409 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4410 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4411 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4412 
4413 	/*
4414 	 * HW workaround for IBX, we need to move the port
4415 	 * to transcoder A after disabling it to allow the
4416 	 * matching HDMI port to be enabled on transcoder A.
4417 	 */
4418 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4419 		/*
4420 		 * We get CPU/PCH FIFO underruns on the other pipe when
4421 		 * doing the workaround. Sweep them under the rug.
4422 		 */
4423 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4424 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4425 
4426 		/* always enable with pattern 1 (as per spec) */
4427 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4428 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4429 			DP_LINK_TRAIN_PAT_1;
4430 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4431 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4432 
4433 		DP &= ~DP_PORT_EN;
4434 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4435 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4436 
4437 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4438 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4439 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4440 	}
4441 
4442 	msleep(intel_dp->panel_power_down_delay);
4443 
4444 	intel_dp->DP = DP;
4445 
4446 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4447 		intel_wakeref_t wakeref;
4448 
4449 		with_pps_lock(intel_dp, wakeref)
4450 			intel_dp->active_pipe = INVALID_PIPE;
4451 	}
4452 }
4453 
4454 static void
4455 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4456 {
4457 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4458 	u8 dpcd_ext[6];
4459 
4460 	/*
4461 	 * Prior to DP1.3 the bit represented by
4462 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4463 	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4464 	 * the true capability of the panel. The only way to check is to
4465 	 * then compare 0000h and 2200h.
4466 	 */
4467 	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4468 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4469 		return;
4470 
4471 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4472 			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4473 		drm_err(&i915->drm,
4474 			"DPCD failed read at extended capabilities\n");
4475 		return;
4476 	}
4477 
4478 	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4479 		drm_dbg_kms(&i915->drm,
4480 			    "DPCD extended DPCD rev less than base DPCD rev\n");
4481 		return;
4482 	}
4483 
4484 	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4485 		return;
4486 
4487 	drm_dbg_kms(&i915->drm, "Base DPCD: %*ph\n",
4488 		    (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4489 
4490 	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4491 }
4492 
4493 bool
4494 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4495 {
4496 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4497 
4498 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4499 			     sizeof(intel_dp->dpcd)) < 0)
4500 		return false; /* aux transfer failed */
4501 
4502 	intel_dp_extended_receiver_capabilities(intel_dp);
4503 
4504 	drm_dbg_kms(&i915->drm, "DPCD: %*ph\n", (int)sizeof(intel_dp->dpcd),
4505 		    intel_dp->dpcd);
4506 
4507 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
4508 }
4509 
4510 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4511 {
4512 	u8 dprx = 0;
4513 
4514 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4515 			      &dprx) != 1)
4516 		return false;
4517 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4518 }
4519 
4520 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4521 {
4522 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4523 
4524 	/*
4525 	 * Clear the cached register set to avoid using stale values
4526 	 * for the sinks that do not support DSC.
4527 	 */
4528 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4529 
4530 	/* Clear fec_capable to avoid using stale values */
4531 	intel_dp->fec_capable = 0;
4532 
4533 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4534 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4535 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4536 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4537 				     intel_dp->dsc_dpcd,
4538 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4539 			drm_err(&i915->drm,
4540 				"Failed to read DPCD register 0x%x\n",
4541 				DP_DSC_SUPPORT);
4542 
4543 		drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4544 			    (int)sizeof(intel_dp->dsc_dpcd),
4545 			    intel_dp->dsc_dpcd);
4546 
4547 		/* FEC is supported only on DP 1.4 */
4548 		if (!intel_dp_is_edp(intel_dp) &&
4549 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4550 				      &intel_dp->fec_capable) < 0)
4551 			drm_err(&i915->drm,
4552 				"Failed to read FEC DPCD register\n");
4553 
4554 		drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4555 			    intel_dp->fec_capable);
4556 	}
4557 }
4558 
4559 static bool
4560 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4561 {
4562 	struct drm_i915_private *dev_priv =
4563 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4564 
4565 	/* this function is meant to be called only once */
4566 	drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4567 
4568 	if (!intel_dp_read_dpcd(intel_dp))
4569 		return false;
4570 
4571 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4572 			 drm_dp_is_branch(intel_dp->dpcd));
4573 
4574 	/*
4575 	 * Read the eDP display control registers.
4576 	 *
4577 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4578 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4579 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4580 	 * method). The display control registers should read zero if they're
4581 	 * not supported anyway.
4582 	 */
4583 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4584 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4585 			     sizeof(intel_dp->edp_dpcd))
4586 		drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4587 			    (int)sizeof(intel_dp->edp_dpcd),
4588 			    intel_dp->edp_dpcd);
4589 
4590 	/*
4591 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4592 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4593 	 */
4594 	intel_psr_init_dpcd(intel_dp);
4595 
4596 	/* Read the eDP 1.4+ supported link rates. */
4597 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4598 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4599 		int i;
4600 
4601 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4602 				sink_rates, sizeof(sink_rates));
4603 
4604 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4605 			int val = le16_to_cpu(sink_rates[i]);
4606 
4607 			if (val == 0)
4608 				break;
4609 
4610 			/* Value read multiplied by 200kHz gives the per-lane
4611 			 * link rate in kHz. The source rates are, however,
4612 			 * stored in terms of LS_Clk kHz. The full conversion
4613 			 * back to symbols is
4614 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4615 			 */
4616 			intel_dp->sink_rates[i] = (val * 200) / 10;
4617 		}
4618 		intel_dp->num_sink_rates = i;
4619 	}
4620 
4621 	/*
4622 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4623 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4624 	 */
4625 	if (intel_dp->num_sink_rates)
4626 		intel_dp->use_rate_select = true;
4627 	else
4628 		intel_dp_set_sink_rates(intel_dp);
4629 
4630 	intel_dp_set_common_rates(intel_dp);
4631 
4632 	/* Read the eDP DSC DPCD registers */
4633 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4634 		intel_dp_get_dsc_sink_cap(intel_dp);
4635 
4636 	return true;
4637 }
4638 
4639 
4640 static bool
4641 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4642 {
4643 	if (!intel_dp_read_dpcd(intel_dp))
4644 		return false;
4645 
4646 	/*
4647 	 * Don't clobber cached eDP rates. Also skip re-reading
4648 	 * the OUI/ID since we know it won't change.
4649 	 */
4650 	if (!intel_dp_is_edp(intel_dp)) {
4651 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4652 				 drm_dp_is_branch(intel_dp->dpcd));
4653 
4654 		intel_dp_set_sink_rates(intel_dp);
4655 		intel_dp_set_common_rates(intel_dp);
4656 	}
4657 
4658 	/*
4659 	 * Some eDP panels do not set a valid value for sink count, that is why
4660 	 * it don't care about read it here and in intel_edp_init_dpcd().
4661 	 */
4662 	if (!intel_dp_is_edp(intel_dp) &&
4663 	    !drm_dp_has_quirk(&intel_dp->desc, 0,
4664 			      DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4665 		u8 count;
4666 		ssize_t r;
4667 
4668 		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4669 		if (r < 1)
4670 			return false;
4671 
4672 		/*
4673 		 * Sink count can change between short pulse hpd hence
4674 		 * a member variable in intel_dp will track any changes
4675 		 * between short pulse interrupts.
4676 		 */
4677 		intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4678 
4679 		/*
4680 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4681 		 * a dongle is present but no display. Unless we require to know
4682 		 * if a dongle is present or not, we don't need to update
4683 		 * downstream port information. So, an early return here saves
4684 		 * time from performing other operations which are not required.
4685 		 */
4686 		if (!intel_dp->sink_count)
4687 			return false;
4688 	}
4689 
4690 	if (!drm_dp_is_branch(intel_dp->dpcd))
4691 		return true; /* native DP sink */
4692 
4693 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4694 		return true; /* no per-port downstream info */
4695 
4696 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4697 			     intel_dp->downstream_ports,
4698 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4699 		return false; /* downstream port status fetch failed */
4700 
4701 	return true;
4702 }
4703 
4704 static bool
4705 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4706 {
4707 	u8 mstm_cap;
4708 
4709 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4710 		return false;
4711 
4712 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4713 		return false;
4714 
4715 	return mstm_cap & DP_MST_CAP;
4716 }
4717 
4718 static bool
4719 intel_dp_can_mst(struct intel_dp *intel_dp)
4720 {
4721 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4722 
4723 	return i915->params.enable_dp_mst &&
4724 		intel_dp->can_mst &&
4725 		intel_dp_sink_can_mst(intel_dp);
4726 }
4727 
4728 static void
4729 intel_dp_configure_mst(struct intel_dp *intel_dp)
4730 {
4731 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4732 	struct intel_encoder *encoder =
4733 		&dp_to_dig_port(intel_dp)->base;
4734 	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4735 
4736 	drm_dbg_kms(&i915->drm,
4737 		    "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4738 		    encoder->base.base.id, encoder->base.name,
4739 		    yesno(intel_dp->can_mst), yesno(sink_can_mst),
4740 		    yesno(i915->params.enable_dp_mst));
4741 
4742 	if (!intel_dp->can_mst)
4743 		return;
4744 
4745 	intel_dp->is_mst = sink_can_mst &&
4746 		i915->params.enable_dp_mst;
4747 
4748 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4749 					intel_dp->is_mst);
4750 }
4751 
4752 static bool
4753 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4754 {
4755 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4756 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4757 		DP_DPRX_ESI_LEN;
4758 }
4759 
4760 bool
4761 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4762 		       const struct drm_connector_state *conn_state)
4763 {
4764 	/*
4765 	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4766 	 * of Color Encoding Format and Content Color Gamut], in order to
4767 	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4768 	 */
4769 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4770 		return true;
4771 
4772 	switch (conn_state->colorspace) {
4773 	case DRM_MODE_COLORIMETRY_SYCC_601:
4774 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4775 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4776 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4777 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4778 		return true;
4779 	default:
4780 		break;
4781 	}
4782 
4783 	return false;
4784 }
4785 
4786 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
4787 				     struct dp_sdp *sdp, size_t size)
4788 {
4789 	size_t length = sizeof(struct dp_sdp);
4790 
4791 	if (size < length)
4792 		return -ENOSPC;
4793 
4794 	memset(sdp, 0, size);
4795 
4796 	/*
4797 	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
4798 	 * VSC SDP Header Bytes
4799 	 */
4800 	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
4801 	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
4802 	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
4803 	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
4804 
4805 	/*
4806 	 * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as
4807 	 * per DP 1.4a spec.
4808 	 */
4809 	if (vsc->revision != 0x5)
4810 		goto out;
4811 
4812 	/* VSC SDP Payload for DB16 through DB18 */
4813 	/* Pixel Encoding and Colorimetry Formats  */
4814 	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
4815 	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
4816 
4817 	switch (vsc->bpc) {
4818 	case 6:
4819 		/* 6bpc: 0x0 */
4820 		break;
4821 	case 8:
4822 		sdp->db[17] = 0x1; /* DB17[3:0] */
4823 		break;
4824 	case 10:
4825 		sdp->db[17] = 0x2;
4826 		break;
4827 	case 12:
4828 		sdp->db[17] = 0x3;
4829 		break;
4830 	case 16:
4831 		sdp->db[17] = 0x4;
4832 		break;
4833 	default:
4834 		MISSING_CASE(vsc->bpc);
4835 		break;
4836 	}
4837 	/* Dynamic Range and Component Bit Depth */
4838 	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
4839 		sdp->db[17] |= 0x80;  /* DB17[7] */
4840 
4841 	/* Content Type */
4842 	sdp->db[18] = vsc->content_type & 0x7;
4843 
4844 out:
4845 	return length;
4846 }
4847 
4848 static ssize_t
4849 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
4850 					 struct dp_sdp *sdp,
4851 					 size_t size)
4852 {
4853 	size_t length = sizeof(struct dp_sdp);
4854 	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4855 	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4856 	ssize_t len;
4857 
4858 	if (size < length)
4859 		return -ENOSPC;
4860 
4861 	memset(sdp, 0, size);
4862 
4863 	len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
4864 	if (len < 0) {
4865 		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4866 		return -ENOSPC;
4867 	}
4868 
4869 	if (len != infoframe_size) {
4870 		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4871 		return -ENOSPC;
4872 	}
4873 
4874 	/*
4875 	 * Set up the infoframe sdp packet for HDR static metadata.
4876 	 * Prepare VSC Header for SU as per DP 1.4a spec,
4877 	 * Table 2-100 and Table 2-101
4878 	 */
4879 
4880 	/* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
4881 	sdp->sdp_header.HB0 = 0;
4882 	/*
4883 	 * Packet Type 80h + Non-audio INFOFRAME Type value
4884 	 * HDMI_INFOFRAME_TYPE_DRM: 0x87
4885 	 * - 80h + Non-audio INFOFRAME Type value
4886 	 * - InfoFrame Type: 0x07
4887 	 *    [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
4888 	 */
4889 	sdp->sdp_header.HB1 = drm_infoframe->type;
4890 	/*
4891 	 * Least Significant Eight Bits of (Data Byte Count – 1)
4892 	 * infoframe_size - 1
4893 	 */
4894 	sdp->sdp_header.HB2 = 0x1D;
4895 	/* INFOFRAME SDP Version Number */
4896 	sdp->sdp_header.HB3 = (0x13 << 2);
4897 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
4898 	sdp->db[0] = drm_infoframe->version;
4899 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4900 	sdp->db[1] = drm_infoframe->length;
4901 	/*
4902 	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4903 	 * HDMI_INFOFRAME_HEADER_SIZE
4904 	 */
4905 	BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4906 	memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4907 	       HDMI_DRM_INFOFRAME_SIZE);
4908 
4909 	/*
4910 	 * Size of DP infoframe sdp packet for HDR static metadata consists of
4911 	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4912 	 * - Two Data Blocks: 2 bytes
4913 	 *    CTA Header Byte2 (INFOFRAME Version Number)
4914 	 *    CTA Header Byte3 (Length of INFOFRAME)
4915 	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4916 	 *
4917 	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4918 	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4919 	 * will pad rest of the size.
4920 	 */
4921 	return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
4922 }
4923 
4924 static void intel_write_dp_sdp(struct intel_encoder *encoder,
4925 			       const struct intel_crtc_state *crtc_state,
4926 			       unsigned int type)
4927 {
4928 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4929 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4930 	struct dp_sdp sdp = {};
4931 	ssize_t len;
4932 
4933 	if ((crtc_state->infoframes.enable &
4934 	     intel_hdmi_infoframe_enable(type)) == 0)
4935 		return;
4936 
4937 	switch (type) {
4938 	case DP_SDP_VSC:
4939 		len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
4940 					    sizeof(sdp));
4941 		break;
4942 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
4943 		len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
4944 							       &sdp, sizeof(sdp));
4945 		break;
4946 	default:
4947 		MISSING_CASE(type);
4948 		return;
4949 	}
4950 
4951 	if (drm_WARN_ON(&dev_priv->drm, len < 0))
4952 		return;
4953 
4954 	intel_dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
4955 }
4956 
4957 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder,
4958 			    const struct intel_crtc_state *crtc_state,
4959 			    struct drm_dp_vsc_sdp *vsc)
4960 {
4961 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4962 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4963 	struct dp_sdp sdp = {};
4964 	ssize_t len;
4965 
4966 	len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp));
4967 
4968 	if (drm_WARN_ON(&dev_priv->drm, len < 0))
4969 		return;
4970 
4971 	intel_dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC,
4972 					&sdp, len);
4973 }
4974 
4975 void intel_dp_set_infoframes(struct intel_encoder *encoder,
4976 			     bool enable,
4977 			     const struct intel_crtc_state *crtc_state,
4978 			     const struct drm_connector_state *conn_state)
4979 {
4980 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4981 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4982 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
4983 	u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
4984 			 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
4985 			 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
4986 	u32 val = intel_de_read(dev_priv, reg);
4987 
4988 	/* TODO: Add DSC case (DIP_ENABLE_PPS) */
4989 	/* When PSR is enabled, this routine doesn't disable VSC DIP */
4990 	if (intel_psr_enabled(intel_dp))
4991 		val &= ~dip_enable;
4992 	else
4993 		val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
4994 
4995 	if (!enable) {
4996 		intel_de_write(dev_priv, reg, val);
4997 		intel_de_posting_read(dev_priv, reg);
4998 		return;
4999 	}
5000 
5001 	intel_de_write(dev_priv, reg, val);
5002 	intel_de_posting_read(dev_priv, reg);
5003 
5004 	/* When PSR is enabled, VSC SDP is handled by PSR routine */
5005 	if (!intel_psr_enabled(intel_dp))
5006 		intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5007 
5008 	intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5009 }
5010 
5011 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc,
5012 				   const void *buffer, size_t size)
5013 {
5014 	const struct dp_sdp *sdp = buffer;
5015 
5016 	if (size < sizeof(struct dp_sdp))
5017 		return -EINVAL;
5018 
5019 	memset(vsc, 0, size);
5020 
5021 	if (sdp->sdp_header.HB0 != 0)
5022 		return -EINVAL;
5023 
5024 	if (sdp->sdp_header.HB1 != DP_SDP_VSC)
5025 		return -EINVAL;
5026 
5027 	vsc->sdp_type = sdp->sdp_header.HB1;
5028 	vsc->revision = sdp->sdp_header.HB2;
5029 	vsc->length = sdp->sdp_header.HB3;
5030 
5031 	if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) ||
5032 	    (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) {
5033 		/*
5034 		 * - HB2 = 0x2, HB3 = 0x8
5035 		 *   VSC SDP supporting 3D stereo + PSR
5036 		 * - HB2 = 0x4, HB3 = 0xe
5037 		 *   VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of
5038 		 *   first scan line of the SU region (applies to eDP v1.4b
5039 		 *   and higher).
5040 		 */
5041 		return 0;
5042 	} else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) {
5043 		/*
5044 		 * - HB2 = 0x5, HB3 = 0x13
5045 		 *   VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry
5046 		 *   Format.
5047 		 */
5048 		vsc->pixelformat = (sdp->db[16] >> 4) & 0xf;
5049 		vsc->colorimetry = sdp->db[16] & 0xf;
5050 		vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1;
5051 
5052 		switch (sdp->db[17] & 0x7) {
5053 		case 0x0:
5054 			vsc->bpc = 6;
5055 			break;
5056 		case 0x1:
5057 			vsc->bpc = 8;
5058 			break;
5059 		case 0x2:
5060 			vsc->bpc = 10;
5061 			break;
5062 		case 0x3:
5063 			vsc->bpc = 12;
5064 			break;
5065 		case 0x4:
5066 			vsc->bpc = 16;
5067 			break;
5068 		default:
5069 			MISSING_CASE(sdp->db[17] & 0x7);
5070 			return -EINVAL;
5071 		}
5072 
5073 		vsc->content_type = sdp->db[18] & 0x7;
5074 	} else {
5075 		return -EINVAL;
5076 	}
5077 
5078 	return 0;
5079 }
5080 
5081 static int
5082 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe,
5083 					   const void *buffer, size_t size)
5084 {
5085 	int ret;
5086 
5087 	const struct dp_sdp *sdp = buffer;
5088 
5089 	if (size < sizeof(struct dp_sdp))
5090 		return -EINVAL;
5091 
5092 	if (sdp->sdp_header.HB0 != 0)
5093 		return -EINVAL;
5094 
5095 	if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM)
5096 		return -EINVAL;
5097 
5098 	/*
5099 	 * Least Significant Eight Bits of (Data Byte Count – 1)
5100 	 * 1Dh (i.e., Data Byte Count = 30 bytes).
5101 	 */
5102 	if (sdp->sdp_header.HB2 != 0x1D)
5103 		return -EINVAL;
5104 
5105 	/* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */
5106 	if ((sdp->sdp_header.HB3 & 0x3) != 0)
5107 		return -EINVAL;
5108 
5109 	/* INFOFRAME SDP Version Number */
5110 	if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13)
5111 		return -EINVAL;
5112 
5113 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
5114 	if (sdp->db[0] != 1)
5115 		return -EINVAL;
5116 
5117 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5118 	if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE)
5119 		return -EINVAL;
5120 
5121 	ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2],
5122 					     HDMI_DRM_INFOFRAME_SIZE);
5123 
5124 	return ret;
5125 }
5126 
5127 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder,
5128 				  struct intel_crtc_state *crtc_state,
5129 				  struct drm_dp_vsc_sdp *vsc)
5130 {
5131 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5132 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5133 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5134 	unsigned int type = DP_SDP_VSC;
5135 	struct dp_sdp sdp = {};
5136 	int ret;
5137 
5138 	/* When PSR is enabled, VSC SDP is handled by PSR routine */
5139 	if (intel_psr_enabled(intel_dp))
5140 		return;
5141 
5142 	if ((crtc_state->infoframes.enable &
5143 	     intel_hdmi_infoframe_enable(type)) == 0)
5144 		return;
5145 
5146 	intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp));
5147 
5148 	ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp));
5149 
5150 	if (ret)
5151 		drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n");
5152 }
5153 
5154 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder,
5155 						     struct intel_crtc_state *crtc_state,
5156 						     struct hdmi_drm_infoframe *drm_infoframe)
5157 {
5158 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5159 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5160 	unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA;
5161 	struct dp_sdp sdp = {};
5162 	int ret;
5163 
5164 	if ((crtc_state->infoframes.enable &
5165 	    intel_hdmi_infoframe_enable(type)) == 0)
5166 		return;
5167 
5168 	intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
5169 				       sizeof(sdp));
5170 
5171 	ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp,
5172 							 sizeof(sdp));
5173 
5174 	if (ret)
5175 		drm_dbg_kms(&dev_priv->drm,
5176 			    "Failed to unpack DP HDR Metadata Infoframe SDP\n");
5177 }
5178 
5179 void intel_read_dp_sdp(struct intel_encoder *encoder,
5180 		       struct intel_crtc_state *crtc_state,
5181 		       unsigned int type)
5182 {
5183 	if (encoder->type != INTEL_OUTPUT_DDI)
5184 		return;
5185 
5186 	switch (type) {
5187 	case DP_SDP_VSC:
5188 		intel_read_dp_vsc_sdp(encoder, crtc_state,
5189 				      &crtc_state->infoframes.vsc);
5190 		break;
5191 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
5192 		intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state,
5193 							 &crtc_state->infoframes.drm.drm);
5194 		break;
5195 	default:
5196 		MISSING_CASE(type);
5197 		break;
5198 	}
5199 }
5200 
5201 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5202 {
5203 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5204 	int status = 0;
5205 	int test_link_rate;
5206 	u8 test_lane_count, test_link_bw;
5207 	/* (DP CTS 1.2)
5208 	 * 4.3.1.11
5209 	 */
5210 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5211 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5212 				   &test_lane_count);
5213 
5214 	if (status <= 0) {
5215 		drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5216 		return DP_TEST_NAK;
5217 	}
5218 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5219 
5220 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5221 				   &test_link_bw);
5222 	if (status <= 0) {
5223 		drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5224 		return DP_TEST_NAK;
5225 	}
5226 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5227 
5228 	/* Validate the requested link rate and lane count */
5229 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5230 					test_lane_count))
5231 		return DP_TEST_NAK;
5232 
5233 	intel_dp->compliance.test_lane_count = test_lane_count;
5234 	intel_dp->compliance.test_link_rate = test_link_rate;
5235 
5236 	return DP_TEST_ACK;
5237 }
5238 
5239 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5240 {
5241 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5242 	u8 test_pattern;
5243 	u8 test_misc;
5244 	__be16 h_width, v_height;
5245 	int status = 0;
5246 
5247 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
5248 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5249 				   &test_pattern);
5250 	if (status <= 0) {
5251 		drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5252 		return DP_TEST_NAK;
5253 	}
5254 	if (test_pattern != DP_COLOR_RAMP)
5255 		return DP_TEST_NAK;
5256 
5257 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5258 				  &h_width, 2);
5259 	if (status <= 0) {
5260 		drm_dbg_kms(&i915->drm, "H Width read failed\n");
5261 		return DP_TEST_NAK;
5262 	}
5263 
5264 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5265 				  &v_height, 2);
5266 	if (status <= 0) {
5267 		drm_dbg_kms(&i915->drm, "V Height read failed\n");
5268 		return DP_TEST_NAK;
5269 	}
5270 
5271 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5272 				   &test_misc);
5273 	if (status <= 0) {
5274 		drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5275 		return DP_TEST_NAK;
5276 	}
5277 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5278 		return DP_TEST_NAK;
5279 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5280 		return DP_TEST_NAK;
5281 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5282 	case DP_TEST_BIT_DEPTH_6:
5283 		intel_dp->compliance.test_data.bpc = 6;
5284 		break;
5285 	case DP_TEST_BIT_DEPTH_8:
5286 		intel_dp->compliance.test_data.bpc = 8;
5287 		break;
5288 	default:
5289 		return DP_TEST_NAK;
5290 	}
5291 
5292 	intel_dp->compliance.test_data.video_pattern = test_pattern;
5293 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5294 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5295 	/* Set test active flag here so userspace doesn't interrupt things */
5296 	intel_dp->compliance.test_active = true;
5297 
5298 	return DP_TEST_ACK;
5299 }
5300 
5301 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5302 {
5303 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5304 	u8 test_result = DP_TEST_ACK;
5305 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5306 	struct drm_connector *connector = &intel_connector->base;
5307 
5308 	if (intel_connector->detect_edid == NULL ||
5309 	    connector->edid_corrupt ||
5310 	    intel_dp->aux.i2c_defer_count > 6) {
5311 		/* Check EDID read for NACKs, DEFERs and corruption
5312 		 * (DP CTS 1.2 Core r1.1)
5313 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
5314 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
5315 		 *    4.2.2.6 : EDID corruption detected
5316 		 * Use failsafe mode for all cases
5317 		 */
5318 		if (intel_dp->aux.i2c_nack_count > 0 ||
5319 			intel_dp->aux.i2c_defer_count > 0)
5320 			drm_dbg_kms(&i915->drm,
5321 				    "EDID read had %d NACKs, %d DEFERs\n",
5322 				    intel_dp->aux.i2c_nack_count,
5323 				    intel_dp->aux.i2c_defer_count);
5324 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5325 	} else {
5326 		struct edid *block = intel_connector->detect_edid;
5327 
5328 		/* We have to write the checksum
5329 		 * of the last block read
5330 		 */
5331 		block += intel_connector->detect_edid->extensions;
5332 
5333 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5334 				       block->checksum) <= 0)
5335 			drm_dbg_kms(&i915->drm,
5336 				    "Failed to write EDID checksum\n");
5337 
5338 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5339 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5340 	}
5341 
5342 	/* Set test active flag here so userspace doesn't interrupt things */
5343 	intel_dp->compliance.test_active = true;
5344 
5345 	return test_result;
5346 }
5347 
5348 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
5349 {
5350 	struct drm_dp_phy_test_params *data =
5351 		&intel_dp->compliance.test_data.phytest;
5352 
5353 	if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
5354 		DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
5355 		return DP_TEST_NAK;
5356 	}
5357 
5358 	/*
5359 	 * link_mst is set to false to avoid executing mst related code
5360 	 * during compliance testing.
5361 	 */
5362 	intel_dp->link_mst = false;
5363 
5364 	return DP_TEST_ACK;
5365 }
5366 
5367 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
5368 {
5369 	struct drm_i915_private *dev_priv =
5370 			to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
5371 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5372 	struct drm_dp_phy_test_params *data =
5373 			&intel_dp->compliance.test_data.phytest;
5374 	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5375 	enum pipe pipe = crtc->pipe;
5376 	u32 pattern_val;
5377 
5378 	switch (data->phy_pattern) {
5379 	case DP_PHY_TEST_PATTERN_NONE:
5380 		DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
5381 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
5382 		break;
5383 	case DP_PHY_TEST_PATTERN_D10_2:
5384 		DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
5385 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5386 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
5387 		break;
5388 	case DP_PHY_TEST_PATTERN_ERROR_COUNT:
5389 		DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
5390 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5391 			       DDI_DP_COMP_CTL_ENABLE |
5392 			       DDI_DP_COMP_CTL_SCRAMBLED_0);
5393 		break;
5394 	case DP_PHY_TEST_PATTERN_PRBS7:
5395 		DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
5396 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5397 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
5398 		break;
5399 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
5400 		/*
5401 		 * FIXME: Ideally pattern should come from DPCD 0x250. As
5402 		 * current firmware of DPR-100 could not set it, so hardcoding
5403 		 * now for complaince test.
5404 		 */
5405 		DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
5406 		pattern_val = 0x3e0f83e0;
5407 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
5408 		pattern_val = 0x0f83e0f8;
5409 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
5410 		pattern_val = 0x0000f83e;
5411 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
5412 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5413 			       DDI_DP_COMP_CTL_ENABLE |
5414 			       DDI_DP_COMP_CTL_CUSTOM80);
5415 		break;
5416 	case DP_PHY_TEST_PATTERN_CP2520:
5417 		/*
5418 		 * FIXME: Ideally pattern should come from DPCD 0x24A. As
5419 		 * current firmware of DPR-100 could not set it, so hardcoding
5420 		 * now for complaince test.
5421 		 */
5422 		DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
5423 		pattern_val = 0xFB;
5424 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5425 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
5426 			       pattern_val);
5427 		break;
5428 	default:
5429 		WARN(1, "Invalid Phy Test Pattern\n");
5430 	}
5431 }
5432 
5433 static void
5434 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
5435 {
5436 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5437 	struct drm_device *dev = intel_dig_port->base.base.dev;
5438 	struct drm_i915_private *dev_priv = to_i915(dev);
5439 	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5440 	enum pipe pipe = crtc->pipe;
5441 	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5442 
5443 	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5444 						 TRANS_DDI_FUNC_CTL(pipe));
5445 	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5446 	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5447 
5448 	trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
5449 				      TGL_TRANS_DDI_PORT_MASK);
5450 	trans_conf_value &= ~PIPECONF_ENABLE;
5451 	dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;
5452 
5453 	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5454 	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5455 		       trans_ddi_func_ctl_value);
5456 	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5457 }
5458 
5459 static void
5460 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
5461 {
5462 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5463 	struct drm_device *dev = intel_dig_port->base.base.dev;
5464 	struct drm_i915_private *dev_priv = to_i915(dev);
5465 	enum port port = intel_dig_port->base.port;
5466 	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5467 	enum pipe pipe = crtc->pipe;
5468 	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5469 
5470 	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5471 						 TRANS_DDI_FUNC_CTL(pipe));
5472 	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5473 	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5474 
5475 	trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
5476 				    TGL_TRANS_DDI_SELECT_PORT(port);
5477 	trans_conf_value |= PIPECONF_ENABLE;
5478 	dp_tp_ctl_value |= DP_TP_CTL_ENABLE;
5479 
5480 	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5481 	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5482 	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5483 		       trans_ddi_func_ctl_value);
5484 }
5485 
5486 void intel_dp_process_phy_request(struct intel_dp *intel_dp)
5487 {
5488 	struct drm_dp_phy_test_params *data =
5489 		&intel_dp->compliance.test_data.phytest;
5490 	u8 link_status[DP_LINK_STATUS_SIZE];
5491 
5492 	if (!intel_dp_get_link_status(intel_dp, link_status)) {
5493 		DRM_DEBUG_KMS("failed to get link status\n");
5494 		return;
5495 	}
5496 
5497 	/* retrieve vswing & pre-emphasis setting */
5498 	intel_dp_get_adjust_train(intel_dp, link_status);
5499 
5500 	intel_dp_autotest_phy_ddi_disable(intel_dp);
5501 
5502 	intel_dp_set_signal_levels(intel_dp);
5503 
5504 	intel_dp_phy_pattern_update(intel_dp);
5505 
5506 	intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);
5507 
5508 	drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
5509 				    link_status[DP_DPCD_REV]);
5510 }
5511 
5512 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5513 {
5514 	u8 test_result;
5515 
5516 	test_result = intel_dp_prepare_phytest(intel_dp);
5517 	if (test_result != DP_TEST_ACK)
5518 		DRM_ERROR("Phy test preparation failed\n");
5519 
5520 	intel_dp_process_phy_request(intel_dp);
5521 
5522 	return test_result;
5523 }
5524 
5525 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5526 {
5527 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5528 	u8 response = DP_TEST_NAK;
5529 	u8 request = 0;
5530 	int status;
5531 
5532 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5533 	if (status <= 0) {
5534 		drm_dbg_kms(&i915->drm,
5535 			    "Could not read test request from sink\n");
5536 		goto update_status;
5537 	}
5538 
5539 	switch (request) {
5540 	case DP_TEST_LINK_TRAINING:
5541 		drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5542 		response = intel_dp_autotest_link_training(intel_dp);
5543 		break;
5544 	case DP_TEST_LINK_VIDEO_PATTERN:
5545 		drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5546 		response = intel_dp_autotest_video_pattern(intel_dp);
5547 		break;
5548 	case DP_TEST_LINK_EDID_READ:
5549 		drm_dbg_kms(&i915->drm, "EDID test requested\n");
5550 		response = intel_dp_autotest_edid(intel_dp);
5551 		break;
5552 	case DP_TEST_LINK_PHY_TEST_PATTERN:
5553 		drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5554 		response = intel_dp_autotest_phy_pattern(intel_dp);
5555 		break;
5556 	default:
5557 		drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5558 			    request);
5559 		break;
5560 	}
5561 
5562 	if (response & DP_TEST_ACK)
5563 		intel_dp->compliance.test_type = request;
5564 
5565 update_status:
5566 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5567 	if (status <= 0)
5568 		drm_dbg_kms(&i915->drm,
5569 			    "Could not write test response to sink\n");
5570 }
5571 
5572 /**
5573  * intel_dp_check_mst_status - service any pending MST interrupts, check link status
5574  * @intel_dp: Intel DP struct
5575  *
5576  * Read any pending MST interrupts, call MST core to handle these and ack the
5577  * interrupts. Check if the main and AUX link state is ok.
5578  *
5579  * Returns:
5580  * - %true if pending interrupts were serviced (or no interrupts were
5581  *   pending) w/o detecting an error condition.
5582  * - %false if an error condition - like AUX failure or a loss of link - is
5583  *   detected, which needs servicing from the hotplug work.
5584  */
5585 static bool
5586 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5587 {
5588 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5589 	bool link_ok = true;
5590 
5591 	drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0);
5592 
5593 	for (;;) {
5594 		u8 esi[DP_DPRX_ESI_LEN] = {};
5595 		bool handled;
5596 		int retry;
5597 
5598 		if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) {
5599 			drm_dbg_kms(&i915->drm,
5600 				    "failed to get ESI - device may have failed\n");
5601 			link_ok = false;
5602 
5603 			break;
5604 		}
5605 
5606 		/* check link status - esi[10] = 0x200c */
5607 		if (intel_dp->active_mst_links > 0 && link_ok &&
5608 		    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5609 			drm_dbg_kms(&i915->drm,
5610 				    "channel EQ not ok, retraining\n");
5611 			link_ok = false;
5612 		}
5613 
5614 		drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5615 
5616 		drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5617 		if (!handled)
5618 			break;
5619 
5620 		for (retry = 0; retry < 3; retry++) {
5621 			int wret;
5622 
5623 			wret = drm_dp_dpcd_write(&intel_dp->aux,
5624 						 DP_SINK_COUNT_ESI+1,
5625 						 &esi[1], 3);
5626 			if (wret == 3)
5627 				break;
5628 		}
5629 	}
5630 
5631 	return link_ok;
5632 }
5633 
5634 static bool
5635 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5636 {
5637 	u8 link_status[DP_LINK_STATUS_SIZE];
5638 
5639 	if (!intel_dp->link_trained)
5640 		return false;
5641 
5642 	/*
5643 	 * While PSR source HW is enabled, it will control main-link sending
5644 	 * frames, enabling and disabling it so trying to do a retrain will fail
5645 	 * as the link would or not be on or it could mix training patterns
5646 	 * and frame data at the same time causing retrain to fail.
5647 	 * Also when exiting PSR, HW will retrain the link anyways fixing
5648 	 * any link status error.
5649 	 */
5650 	if (intel_psr_enabled(intel_dp))
5651 		return false;
5652 
5653 	if (!intel_dp_get_link_status(intel_dp, link_status))
5654 		return false;
5655 
5656 	/*
5657 	 * Validate the cached values of intel_dp->link_rate and
5658 	 * intel_dp->lane_count before attempting to retrain.
5659 	 */
5660 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5661 					intel_dp->lane_count))
5662 		return false;
5663 
5664 	/* Retrain if Channel EQ or CR not ok */
5665 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5666 }
5667 
5668 static bool intel_dp_has_connector(struct intel_dp *intel_dp,
5669 				   const struct drm_connector_state *conn_state)
5670 {
5671 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5672 	struct intel_encoder *encoder;
5673 	enum pipe pipe;
5674 
5675 	if (!conn_state->best_encoder)
5676 		return false;
5677 
5678 	/* SST */
5679 	encoder = &dp_to_dig_port(intel_dp)->base;
5680 	if (conn_state->best_encoder == &encoder->base)
5681 		return true;
5682 
5683 	/* MST */
5684 	for_each_pipe(i915, pipe) {
5685 		encoder = &intel_dp->mst_encoders[pipe]->base;
5686 		if (conn_state->best_encoder == &encoder->base)
5687 			return true;
5688 	}
5689 
5690 	return false;
5691 }
5692 
5693 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
5694 				      struct drm_modeset_acquire_ctx *ctx,
5695 				      u32 *crtc_mask)
5696 {
5697 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5698 	struct drm_connector_list_iter conn_iter;
5699 	struct intel_connector *connector;
5700 	int ret = 0;
5701 
5702 	*crtc_mask = 0;
5703 
5704 	if (!intel_dp_needs_link_retrain(intel_dp))
5705 		return 0;
5706 
5707 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
5708 	for_each_intel_connector_iter(connector, &conn_iter) {
5709 		struct drm_connector_state *conn_state =
5710 			connector->base.state;
5711 		struct intel_crtc_state *crtc_state;
5712 		struct intel_crtc *crtc;
5713 
5714 		if (!intel_dp_has_connector(intel_dp, conn_state))
5715 			continue;
5716 
5717 		crtc = to_intel_crtc(conn_state->crtc);
5718 		if (!crtc)
5719 			continue;
5720 
5721 		ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5722 		if (ret)
5723 			break;
5724 
5725 		crtc_state = to_intel_crtc_state(crtc->base.state);
5726 
5727 		drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
5728 
5729 		if (!crtc_state->hw.active)
5730 			continue;
5731 
5732 		if (conn_state->commit &&
5733 		    !try_wait_for_completion(&conn_state->commit->hw_done))
5734 			continue;
5735 
5736 		*crtc_mask |= drm_crtc_mask(&crtc->base);
5737 	}
5738 	drm_connector_list_iter_end(&conn_iter);
5739 
5740 	if (!intel_dp_needs_link_retrain(intel_dp))
5741 		*crtc_mask = 0;
5742 
5743 	return ret;
5744 }
5745 
5746 static bool intel_dp_is_connected(struct intel_dp *intel_dp)
5747 {
5748 	struct intel_connector *connector = intel_dp->attached_connector;
5749 
5750 	return connector->base.status == connector_status_connected ||
5751 		intel_dp->is_mst;
5752 }
5753 
5754 int intel_dp_retrain_link(struct intel_encoder *encoder,
5755 			  struct drm_modeset_acquire_ctx *ctx)
5756 {
5757 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5758 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5759 	struct intel_crtc *crtc;
5760 	u32 crtc_mask;
5761 	int ret;
5762 
5763 	if (!intel_dp_is_connected(intel_dp))
5764 		return 0;
5765 
5766 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5767 			       ctx);
5768 	if (ret)
5769 		return ret;
5770 
5771 	ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5772 	if (ret)
5773 		return ret;
5774 
5775 	if (crtc_mask == 0)
5776 		return 0;
5777 
5778 	drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
5779 		    encoder->base.base.id, encoder->base.name);
5780 
5781 	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5782 		const struct intel_crtc_state *crtc_state =
5783 			to_intel_crtc_state(crtc->base.state);
5784 
5785 		/* Suppress underruns caused by re-training */
5786 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5787 		if (crtc_state->has_pch_encoder)
5788 			intel_set_pch_fifo_underrun_reporting(dev_priv,
5789 							      intel_crtc_pch_transcoder(crtc), false);
5790 	}
5791 
5792 	intel_dp_start_link_train(intel_dp);
5793 	intel_dp_stop_link_train(intel_dp);
5794 
5795 	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5796 		const struct intel_crtc_state *crtc_state =
5797 			to_intel_crtc_state(crtc->base.state);
5798 
5799 		/* Keep underrun reporting disabled until things are stable */
5800 		intel_wait_for_vblank(dev_priv, crtc->pipe);
5801 
5802 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5803 		if (crtc_state->has_pch_encoder)
5804 			intel_set_pch_fifo_underrun_reporting(dev_priv,
5805 							      intel_crtc_pch_transcoder(crtc), true);
5806 	}
5807 
5808 	return 0;
5809 }
5810 
5811 /*
5812  * If display is now connected check links status,
5813  * there has been known issues of link loss triggering
5814  * long pulse.
5815  *
5816  * Some sinks (eg. ASUS PB287Q) seem to perform some
5817  * weird HPD ping pong during modesets. So we can apparently
5818  * end up with HPD going low during a modeset, and then
5819  * going back up soon after. And once that happens we must
5820  * retrain the link to get a picture. That's in case no
5821  * userspace component reacted to intermittent HPD dip.
5822  */
5823 static enum intel_hotplug_state
5824 intel_dp_hotplug(struct intel_encoder *encoder,
5825 		 struct intel_connector *connector)
5826 {
5827 	struct drm_modeset_acquire_ctx ctx;
5828 	enum intel_hotplug_state state;
5829 	int ret;
5830 
5831 	state = intel_encoder_hotplug(encoder, connector);
5832 
5833 	drm_modeset_acquire_init(&ctx, 0);
5834 
5835 	for (;;) {
5836 		ret = intel_dp_retrain_link(encoder, &ctx);
5837 
5838 		if (ret == -EDEADLK) {
5839 			drm_modeset_backoff(&ctx);
5840 			continue;
5841 		}
5842 
5843 		break;
5844 	}
5845 
5846 	drm_modeset_drop_locks(&ctx);
5847 	drm_modeset_acquire_fini(&ctx);
5848 	drm_WARN(encoder->base.dev, ret,
5849 		 "Acquiring modeset locks failed with %i\n", ret);
5850 
5851 	/*
5852 	 * Keeping it consistent with intel_ddi_hotplug() and
5853 	 * intel_hdmi_hotplug().
5854 	 */
5855 	if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5856 		state = INTEL_HOTPLUG_RETRY;
5857 
5858 	return state;
5859 }
5860 
5861 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5862 {
5863 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5864 	u8 val;
5865 
5866 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5867 		return;
5868 
5869 	if (drm_dp_dpcd_readb(&intel_dp->aux,
5870 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5871 		return;
5872 
5873 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5874 
5875 	if (val & DP_AUTOMATED_TEST_REQUEST)
5876 		intel_dp_handle_test_request(intel_dp);
5877 
5878 	if (val & DP_CP_IRQ)
5879 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5880 
5881 	if (val & DP_SINK_SPECIFIC_IRQ)
5882 		drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5883 }
5884 
5885 /*
5886  * According to DP spec
5887  * 5.1.2:
5888  *  1. Read DPCD
5889  *  2. Configure link according to Receiver Capabilities
5890  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5891  *  4. Check link status on receipt of hot-plug interrupt
5892  *
5893  * intel_dp_short_pulse -  handles short pulse interrupts
5894  * when full detection is not required.
5895  * Returns %true if short pulse is handled and full detection
5896  * is NOT required and %false otherwise.
5897  */
5898 static bool
5899 intel_dp_short_pulse(struct intel_dp *intel_dp)
5900 {
5901 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5902 	u8 old_sink_count = intel_dp->sink_count;
5903 	bool ret;
5904 
5905 	/*
5906 	 * Clearing compliance test variables to allow capturing
5907 	 * of values for next automated test request.
5908 	 */
5909 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5910 
5911 	/*
5912 	 * Now read the DPCD to see if it's actually running
5913 	 * If the current value of sink count doesn't match with
5914 	 * the value that was stored earlier or dpcd read failed
5915 	 * we need to do full detection
5916 	 */
5917 	ret = intel_dp_get_dpcd(intel_dp);
5918 
5919 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
5920 		/* No need to proceed if we are going to do full detect */
5921 		return false;
5922 	}
5923 
5924 	intel_dp_check_service_irq(intel_dp);
5925 
5926 	/* Handle CEC interrupts, if any */
5927 	drm_dp_cec_irq(&intel_dp->aux);
5928 
5929 	/* defer to the hotplug work for link retraining if needed */
5930 	if (intel_dp_needs_link_retrain(intel_dp))
5931 		return false;
5932 
5933 	intel_psr_short_pulse(intel_dp);
5934 
5935 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5936 		drm_dbg_kms(&dev_priv->drm,
5937 			    "Link Training Compliance Test requested\n");
5938 		/* Send a Hotplug Uevent to userspace to start modeset */
5939 		drm_kms_helper_hotplug_event(&dev_priv->drm);
5940 	}
5941 
5942 	return true;
5943 }
5944 
5945 /* XXX this is probably wrong for multiple downstream ports */
5946 static enum drm_connector_status
5947 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5948 {
5949 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5950 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5951 	u8 *dpcd = intel_dp->dpcd;
5952 	u8 type;
5953 
5954 	if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp)))
5955 		return connector_status_connected;
5956 
5957 	if (lspcon->active)
5958 		lspcon_resume(lspcon);
5959 
5960 	if (!intel_dp_get_dpcd(intel_dp))
5961 		return connector_status_disconnected;
5962 
5963 	/* if there's no downstream port, we're done */
5964 	if (!drm_dp_is_branch(dpcd))
5965 		return connector_status_connected;
5966 
5967 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5968 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5969 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5970 
5971 		return intel_dp->sink_count ?
5972 		connector_status_connected : connector_status_disconnected;
5973 	}
5974 
5975 	if (intel_dp_can_mst(intel_dp))
5976 		return connector_status_connected;
5977 
5978 	/* If no HPD, poke DDC gently */
5979 	if (drm_probe_ddc(&intel_dp->aux.ddc))
5980 		return connector_status_connected;
5981 
5982 	/* Well we tried, say unknown for unreliable port types */
5983 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5984 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5985 		if (type == DP_DS_PORT_TYPE_VGA ||
5986 		    type == DP_DS_PORT_TYPE_NON_EDID)
5987 			return connector_status_unknown;
5988 	} else {
5989 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5990 			DP_DWN_STRM_PORT_TYPE_MASK;
5991 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5992 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
5993 			return connector_status_unknown;
5994 	}
5995 
5996 	/* Anything else is out of spec, warn and ignore */
5997 	drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
5998 	return connector_status_disconnected;
5999 }
6000 
6001 static enum drm_connector_status
6002 edp_detect(struct intel_dp *intel_dp)
6003 {
6004 	return connector_status_connected;
6005 }
6006 
6007 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
6008 {
6009 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6010 	u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
6011 
6012 	return intel_de_read(dev_priv, SDEISR) & bit;
6013 }
6014 
6015 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6016 {
6017 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6018 	u32 bit;
6019 
6020 	switch (encoder->hpd_pin) {
6021 	case HPD_PORT_B:
6022 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
6023 		break;
6024 	case HPD_PORT_C:
6025 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
6026 		break;
6027 	case HPD_PORT_D:
6028 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
6029 		break;
6030 	default:
6031 		MISSING_CASE(encoder->hpd_pin);
6032 		return false;
6033 	}
6034 
6035 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6036 }
6037 
6038 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6039 {
6040 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6041 	u32 bit;
6042 
6043 	switch (encoder->hpd_pin) {
6044 	case HPD_PORT_B:
6045 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6046 		break;
6047 	case HPD_PORT_C:
6048 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6049 		break;
6050 	case HPD_PORT_D:
6051 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6052 		break;
6053 	default:
6054 		MISSING_CASE(encoder->hpd_pin);
6055 		return false;
6056 	}
6057 
6058 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6059 }
6060 
6061 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6062 {
6063 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6064 	u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
6065 
6066 	return intel_de_read(dev_priv, DEISR) & bit;
6067 }
6068 
6069 /*
6070  * intel_digital_port_connected - is the specified port connected?
6071  * @encoder: intel_encoder
6072  *
6073  * In cases where there's a connector physically connected but it can't be used
6074  * by our hardware we also return false, since the rest of the driver should
6075  * pretty much treat the port as disconnected. This is relevant for type-C
6076  * (starting on ICL) where there's ownership involved.
6077  *
6078  * Return %true if port is connected, %false otherwise.
6079  */
6080 bool intel_digital_port_connected(struct intel_encoder *encoder)
6081 {
6082 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6083 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6084 	bool is_connected = false;
6085 	intel_wakeref_t wakeref;
6086 
6087 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6088 		is_connected = dig_port->connected(encoder);
6089 
6090 	return is_connected;
6091 }
6092 
6093 static struct edid *
6094 intel_dp_get_edid(struct intel_dp *intel_dp)
6095 {
6096 	struct intel_connector *intel_connector = intel_dp->attached_connector;
6097 
6098 	/* use cached edid if we have one */
6099 	if (intel_connector->edid) {
6100 		/* invalid edid */
6101 		if (IS_ERR(intel_connector->edid))
6102 			return NULL;
6103 
6104 		return drm_edid_duplicate(intel_connector->edid);
6105 	} else
6106 		return drm_get_edid(&intel_connector->base,
6107 				    &intel_dp->aux.ddc);
6108 }
6109 
6110 static void
6111 intel_dp_set_edid(struct intel_dp *intel_dp)
6112 {
6113 	struct intel_connector *intel_connector = intel_dp->attached_connector;
6114 	struct edid *edid;
6115 
6116 	intel_dp_unset_edid(intel_dp);
6117 	edid = intel_dp_get_edid(intel_dp);
6118 	intel_connector->detect_edid = edid;
6119 
6120 	intel_dp->has_audio = drm_detect_monitor_audio(edid);
6121 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
6122 	intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6123 }
6124 
6125 static void
6126 intel_dp_unset_edid(struct intel_dp *intel_dp)
6127 {
6128 	struct intel_connector *intel_connector = intel_dp->attached_connector;
6129 
6130 	drm_dp_cec_unset_edid(&intel_dp->aux);
6131 	kfree(intel_connector->detect_edid);
6132 	intel_connector->detect_edid = NULL;
6133 
6134 	intel_dp->has_audio = false;
6135 	intel_dp->edid_quirks = 0;
6136 }
6137 
6138 static int
6139 intel_dp_detect(struct drm_connector *connector,
6140 		struct drm_modeset_acquire_ctx *ctx,
6141 		bool force)
6142 {
6143 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6144 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6145 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6146 	struct intel_encoder *encoder = &dig_port->base;
6147 	enum drm_connector_status status;
6148 
6149 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6150 		    connector->base.id, connector->name);
6151 	drm_WARN_ON(&dev_priv->drm,
6152 		    !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6153 
6154 	/* Can't disconnect eDP */
6155 	if (intel_dp_is_edp(intel_dp))
6156 		status = edp_detect(intel_dp);
6157 	else if (intel_digital_port_connected(encoder))
6158 		status = intel_dp_detect_dpcd(intel_dp);
6159 	else
6160 		status = connector_status_disconnected;
6161 
6162 	if (status == connector_status_disconnected) {
6163 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6164 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6165 
6166 		if (intel_dp->is_mst) {
6167 			drm_dbg_kms(&dev_priv->drm,
6168 				    "MST device may have disappeared %d vs %d\n",
6169 				    intel_dp->is_mst,
6170 				    intel_dp->mst_mgr.mst_state);
6171 			intel_dp->is_mst = false;
6172 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6173 							intel_dp->is_mst);
6174 		}
6175 
6176 		goto out;
6177 	}
6178 
6179 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6180 	if (INTEL_GEN(dev_priv) >= 11)
6181 		intel_dp_get_dsc_sink_cap(intel_dp);
6182 
6183 	intel_dp_configure_mst(intel_dp);
6184 
6185 	/*
6186 	 * TODO: Reset link params when switching to MST mode, until MST
6187 	 * supports link training fallback params.
6188 	 */
6189 	if (intel_dp->reset_link_params || intel_dp->is_mst) {
6190 		/* Initial max link lane count */
6191 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6192 
6193 		/* Initial max link rate */
6194 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6195 
6196 		intel_dp->reset_link_params = false;
6197 	}
6198 
6199 	intel_dp_print_rates(intel_dp);
6200 
6201 	if (intel_dp->is_mst) {
6202 		/*
6203 		 * If we are in MST mode then this connector
6204 		 * won't appear connected or have anything
6205 		 * with EDID on it
6206 		 */
6207 		status = connector_status_disconnected;
6208 		goto out;
6209 	}
6210 
6211 	/*
6212 	 * Some external monitors do not signal loss of link synchronization
6213 	 * with an IRQ_HPD, so force a link status check.
6214 	 */
6215 	if (!intel_dp_is_edp(intel_dp)) {
6216 		int ret;
6217 
6218 		ret = intel_dp_retrain_link(encoder, ctx);
6219 		if (ret)
6220 			return ret;
6221 	}
6222 
6223 	/*
6224 	 * Clearing NACK and defer counts to get their exact values
6225 	 * while reading EDID which are required by Compliance tests
6226 	 * 4.2.2.4 and 4.2.2.5
6227 	 */
6228 	intel_dp->aux.i2c_nack_count = 0;
6229 	intel_dp->aux.i2c_defer_count = 0;
6230 
6231 	intel_dp_set_edid(intel_dp);
6232 	if (intel_dp_is_edp(intel_dp) ||
6233 	    to_intel_connector(connector)->detect_edid)
6234 		status = connector_status_connected;
6235 
6236 	intel_dp_check_service_irq(intel_dp);
6237 
6238 out:
6239 	if (status != connector_status_connected && !intel_dp->is_mst)
6240 		intel_dp_unset_edid(intel_dp);
6241 
6242 	/*
6243 	 * Make sure the refs for power wells enabled during detect are
6244 	 * dropped to avoid a new detect cycle triggered by HPD polling.
6245 	 */
6246 	intel_display_power_flush_work(dev_priv);
6247 
6248 	return status;
6249 }
6250 
6251 static void
6252 intel_dp_force(struct drm_connector *connector)
6253 {
6254 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6255 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6256 	struct intel_encoder *intel_encoder = &dig_port->base;
6257 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6258 	enum intel_display_power_domain aux_domain =
6259 		intel_aux_power_domain(dig_port);
6260 	intel_wakeref_t wakeref;
6261 
6262 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6263 		    connector->base.id, connector->name);
6264 	intel_dp_unset_edid(intel_dp);
6265 
6266 	if (connector->status != connector_status_connected)
6267 		return;
6268 
6269 	wakeref = intel_display_power_get(dev_priv, aux_domain);
6270 
6271 	intel_dp_set_edid(intel_dp);
6272 
6273 	intel_display_power_put(dev_priv, aux_domain, wakeref);
6274 }
6275 
6276 static int intel_dp_get_modes(struct drm_connector *connector)
6277 {
6278 	struct intel_connector *intel_connector = to_intel_connector(connector);
6279 	struct edid *edid;
6280 
6281 	edid = intel_connector->detect_edid;
6282 	if (edid) {
6283 		int ret = intel_connector_update_modes(connector, edid);
6284 		if (ret)
6285 			return ret;
6286 	}
6287 
6288 	/* if eDP has no EDID, fall back to fixed mode */
6289 	if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
6290 	    intel_connector->panel.fixed_mode) {
6291 		struct drm_display_mode *mode;
6292 
6293 		mode = drm_mode_duplicate(connector->dev,
6294 					  intel_connector->panel.fixed_mode);
6295 		if (mode) {
6296 			drm_mode_probed_add(connector, mode);
6297 			return 1;
6298 		}
6299 	}
6300 
6301 	return 0;
6302 }
6303 
6304 static int
6305 intel_dp_connector_register(struct drm_connector *connector)
6306 {
6307 	struct drm_i915_private *i915 = to_i915(connector->dev);
6308 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6309 	int ret;
6310 
6311 	ret = intel_connector_register(connector);
6312 	if (ret)
6313 		return ret;
6314 
6315 	drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6316 		    intel_dp->aux.name, connector->kdev->kobj.name);
6317 
6318 	intel_dp->aux.dev = connector->kdev;
6319 	ret = drm_dp_aux_register(&intel_dp->aux);
6320 	if (!ret)
6321 		drm_dp_cec_register_connector(&intel_dp->aux, connector);
6322 	return ret;
6323 }
6324 
6325 static void
6326 intel_dp_connector_unregister(struct drm_connector *connector)
6327 {
6328 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6329 
6330 	drm_dp_cec_unregister_connector(&intel_dp->aux);
6331 	drm_dp_aux_unregister(&intel_dp->aux);
6332 	intel_connector_unregister(connector);
6333 }
6334 
6335 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6336 {
6337 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6338 	struct intel_dp *intel_dp = &intel_dig_port->dp;
6339 
6340 	intel_dp_mst_encoder_cleanup(intel_dig_port);
6341 	if (intel_dp_is_edp(intel_dp)) {
6342 		intel_wakeref_t wakeref;
6343 
6344 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6345 		/*
6346 		 * vdd might still be enabled do to the delayed vdd off.
6347 		 * Make sure vdd is actually turned off here.
6348 		 */
6349 		with_pps_lock(intel_dp, wakeref)
6350 			edp_panel_vdd_off_sync(intel_dp);
6351 
6352 		if (intel_dp->edp_notifier.notifier_call) {
6353 			unregister_reboot_notifier(&intel_dp->edp_notifier);
6354 			intel_dp->edp_notifier.notifier_call = NULL;
6355 		}
6356 	}
6357 
6358 	intel_dp_aux_fini(intel_dp);
6359 }
6360 
6361 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6362 {
6363 	intel_dp_encoder_flush_work(encoder);
6364 
6365 	drm_encoder_cleanup(encoder);
6366 	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6367 }
6368 
6369 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6370 {
6371 	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6372 	intel_wakeref_t wakeref;
6373 
6374 	if (!intel_dp_is_edp(intel_dp))
6375 		return;
6376 
6377 	/*
6378 	 * vdd might still be enabled do to the delayed vdd off.
6379 	 * Make sure vdd is actually turned off here.
6380 	 */
6381 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6382 	with_pps_lock(intel_dp, wakeref)
6383 		edp_panel_vdd_off_sync(intel_dp);
6384 }
6385 
6386 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
6387 {
6388 	long ret;
6389 
6390 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
6391 	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
6392 					       msecs_to_jiffies(timeout));
6393 
6394 	if (!ret)
6395 		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
6396 }
6397 
6398 static
6399 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
6400 				u8 *an)
6401 {
6402 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6403 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
6404 	static const struct drm_dp_aux_msg msg = {
6405 		.request = DP_AUX_NATIVE_WRITE,
6406 		.address = DP_AUX_HDCP_AKSV,
6407 		.size = DRM_HDCP_KSV_LEN,
6408 	};
6409 	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
6410 	ssize_t dpcd_ret;
6411 	int ret;
6412 
6413 	/* Output An first, that's easy */
6414 	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
6415 				     an, DRM_HDCP_AN_LEN);
6416 	if (dpcd_ret != DRM_HDCP_AN_LEN) {
6417 		drm_dbg_kms(&i915->drm,
6418 			    "Failed to write An over DP/AUX (%zd)\n",
6419 			    dpcd_ret);
6420 		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
6421 	}
6422 
6423 	/*
6424 	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
6425 	 * order to get it on the wire, we need to create the AUX header as if
6426 	 * we were writing the data, and then tickle the hardware to output the
6427 	 * data once the header is sent out.
6428 	 */
6429 	intel_dp_aux_header(txbuf, &msg);
6430 
6431 	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
6432 				rxbuf, sizeof(rxbuf),
6433 				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
6434 	if (ret < 0) {
6435 		drm_dbg_kms(&i915->drm,
6436 			    "Write Aksv over DP/AUX failed (%d)\n", ret);
6437 		return ret;
6438 	} else if (ret == 0) {
6439 		drm_dbg_kms(&i915->drm, "Aksv write over DP/AUX was empty\n");
6440 		return -EIO;
6441 	}
6442 
6443 	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6444 	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
6445 		drm_dbg_kms(&i915->drm,
6446 			    "Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
6447 			    reply);
6448 		return -EIO;
6449 	}
6450 	return 0;
6451 }
6452 
6453 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
6454 				   u8 *bksv)
6455 {
6456 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6457 	ssize_t ret;
6458 
6459 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
6460 			       DRM_HDCP_KSV_LEN);
6461 	if (ret != DRM_HDCP_KSV_LEN) {
6462 		drm_dbg_kms(&i915->drm,
6463 			    "Read Bksv from DP/AUX failed (%zd)\n", ret);
6464 		return ret >= 0 ? -EIO : ret;
6465 	}
6466 	return 0;
6467 }
6468 
6469 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
6470 				      u8 *bstatus)
6471 {
6472 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6473 	ssize_t ret;
6474 
6475 	/*
6476 	 * For some reason the HDMI and DP HDCP specs call this register
6477 	 * definition by different names. In the HDMI spec, it's called BSTATUS,
6478 	 * but in DP it's called BINFO.
6479 	 */
6480 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
6481 			       bstatus, DRM_HDCP_BSTATUS_LEN);
6482 	if (ret != DRM_HDCP_BSTATUS_LEN) {
6483 		drm_dbg_kms(&i915->drm,
6484 			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6485 		return ret >= 0 ? -EIO : ret;
6486 	}
6487 	return 0;
6488 }
6489 
6490 static
6491 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
6492 			     u8 *bcaps)
6493 {
6494 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6495 	ssize_t ret;
6496 
6497 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6498 			       bcaps, 1);
6499 	if (ret != 1) {
6500 		drm_dbg_kms(&i915->drm,
6501 			    "Read bcaps from DP/AUX failed (%zd)\n", ret);
6502 		return ret >= 0 ? -EIO : ret;
6503 	}
6504 
6505 	return 0;
6506 }
6507 
6508 static
6509 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6510 				   bool *repeater_present)
6511 {
6512 	ssize_t ret;
6513 	u8 bcaps;
6514 
6515 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6516 	if (ret)
6517 		return ret;
6518 
6519 	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6520 	return 0;
6521 }
6522 
6523 static
6524 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6525 				u8 *ri_prime)
6526 {
6527 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6528 	ssize_t ret;
6529 
6530 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6531 			       ri_prime, DRM_HDCP_RI_LEN);
6532 	if (ret != DRM_HDCP_RI_LEN) {
6533 		drm_dbg_kms(&i915->drm, "Read Ri' from DP/AUX failed (%zd)\n",
6534 			    ret);
6535 		return ret >= 0 ? -EIO : ret;
6536 	}
6537 	return 0;
6538 }
6539 
6540 static
6541 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6542 				 bool *ksv_ready)
6543 {
6544 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6545 	ssize_t ret;
6546 	u8 bstatus;
6547 
6548 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6549 			       &bstatus, 1);
6550 	if (ret != 1) {
6551 		drm_dbg_kms(&i915->drm,
6552 			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6553 		return ret >= 0 ? -EIO : ret;
6554 	}
6555 	*ksv_ready = bstatus & DP_BSTATUS_READY;
6556 	return 0;
6557 }
6558 
6559 static
6560 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6561 				int num_downstream, u8 *ksv_fifo)
6562 {
6563 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6564 	ssize_t ret;
6565 	int i;
6566 
6567 	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6568 	for (i = 0; i < num_downstream; i += 3) {
6569 		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6570 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6571 				       DP_AUX_HDCP_KSV_FIFO,
6572 				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
6573 				       len);
6574 		if (ret != len) {
6575 			drm_dbg_kms(&i915->drm,
6576 				    "Read ksv[%d] from DP/AUX failed (%zd)\n",
6577 				    i, ret);
6578 			return ret >= 0 ? -EIO : ret;
6579 		}
6580 	}
6581 	return 0;
6582 }
6583 
6584 static
6585 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6586 				    int i, u32 *part)
6587 {
6588 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6589 	ssize_t ret;
6590 
6591 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6592 		return -EINVAL;
6593 
6594 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6595 			       DP_AUX_HDCP_V_PRIME(i), part,
6596 			       DRM_HDCP_V_PRIME_PART_LEN);
6597 	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6598 		drm_dbg_kms(&i915->drm,
6599 			    "Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6600 		return ret >= 0 ? -EIO : ret;
6601 	}
6602 	return 0;
6603 }
6604 
6605 static
6606 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6607 				    bool enable)
6608 {
6609 	/* Not used for single stream DisplayPort setups */
6610 	return 0;
6611 }
6612 
6613 static
6614 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6615 {
6616 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6617 	ssize_t ret;
6618 	u8 bstatus;
6619 
6620 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6621 			       &bstatus, 1);
6622 	if (ret != 1) {
6623 		drm_dbg_kms(&i915->drm,
6624 			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6625 		return false;
6626 	}
6627 
6628 	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6629 }
6630 
6631 static
6632 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6633 			  bool *hdcp_capable)
6634 {
6635 	ssize_t ret;
6636 	u8 bcaps;
6637 
6638 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6639 	if (ret)
6640 		return ret;
6641 
6642 	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6643 	return 0;
6644 }
6645 
6646 struct hdcp2_dp_errata_stream_type {
6647 	u8	msg_id;
6648 	u8	stream_type;
6649 } __packed;
6650 
6651 struct hdcp2_dp_msg_data {
6652 	u8 msg_id;
6653 	u32 offset;
6654 	bool msg_detectable;
6655 	u32 timeout;
6656 	u32 timeout2; /* Added for non_paired situation */
6657 };
6658 
6659 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6660 	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6661 	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6662 	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6663 	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6664 	  false, 0, 0 },
6665 	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6666 	  false, 0, 0 },
6667 	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6668 	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6669 	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6670 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
6671 	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6672 	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6673 	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6674 	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6675 	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6676 	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6677 	  0, 0 },
6678 	{ HDCP_2_2_REP_SEND_RECVID_LIST,
6679 	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6680 	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6681 	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6682 	  0, 0 },
6683 	{ HDCP_2_2_REP_STREAM_MANAGE,
6684 	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6685 	  0, 0 },
6686 	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6687 	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6688 /* local define to shovel this through the write_2_2 interface */
6689 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6690 	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6691 	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6692 	  0, 0 },
6693 };
6694 
6695 static int
6696 intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6697 			      u8 *rx_status)
6698 {
6699 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6700 	ssize_t ret;
6701 
6702 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6703 			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6704 			       HDCP_2_2_DP_RXSTATUS_LEN);
6705 	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6706 		drm_dbg_kms(&i915->drm,
6707 			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6708 		return ret >= 0 ? -EIO : ret;
6709 	}
6710 
6711 	return 0;
6712 }
6713 
6714 static
6715 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6716 				  u8 msg_id, bool *msg_ready)
6717 {
6718 	u8 rx_status;
6719 	int ret;
6720 
6721 	*msg_ready = false;
6722 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6723 	if (ret < 0)
6724 		return ret;
6725 
6726 	switch (msg_id) {
6727 	case HDCP_2_2_AKE_SEND_HPRIME:
6728 		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6729 			*msg_ready = true;
6730 		break;
6731 	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6732 		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6733 			*msg_ready = true;
6734 		break;
6735 	case HDCP_2_2_REP_SEND_RECVID_LIST:
6736 		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6737 			*msg_ready = true;
6738 		break;
6739 	default:
6740 		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6741 		return -EINVAL;
6742 	}
6743 
6744 	return 0;
6745 }
6746 
6747 static ssize_t
6748 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6749 			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6750 {
6751 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6752 	struct intel_dp *dp = &intel_dig_port->dp;
6753 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6754 	u8 msg_id = hdcp2_msg_data->msg_id;
6755 	int ret, timeout;
6756 	bool msg_ready = false;
6757 
6758 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6759 		timeout = hdcp2_msg_data->timeout2;
6760 	else
6761 		timeout = hdcp2_msg_data->timeout;
6762 
6763 	/*
6764 	 * There is no way to detect the CERT, LPRIME and STREAM_READY
6765 	 * availability. So Wait for timeout and read the msg.
6766 	 */
6767 	if (!hdcp2_msg_data->msg_detectable) {
6768 		mdelay(timeout);
6769 		ret = 0;
6770 	} else {
6771 		/*
6772 		 * As we want to check the msg availability at timeout, Ignoring
6773 		 * the timeout at wait for CP_IRQ.
6774 		 */
6775 		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6776 		ret = hdcp2_detect_msg_availability(intel_dig_port,
6777 						    msg_id, &msg_ready);
6778 		if (!msg_ready)
6779 			ret = -ETIMEDOUT;
6780 	}
6781 
6782 	if (ret)
6783 		drm_dbg_kms(&i915->drm,
6784 			    "msg_id %d, ret %d, timeout(mSec): %d\n",
6785 			    hdcp2_msg_data->msg_id, ret, timeout);
6786 
6787 	return ret;
6788 }
6789 
6790 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6791 {
6792 	int i;
6793 
6794 	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6795 		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6796 			return &hdcp2_dp_msg_data[i];
6797 
6798 	return NULL;
6799 }
6800 
6801 static
6802 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6803 			     void *buf, size_t size)
6804 {
6805 	struct intel_dp *dp = &intel_dig_port->dp;
6806 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6807 	unsigned int offset;
6808 	u8 *byte = buf;
6809 	ssize_t ret, bytes_to_write, len;
6810 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6811 
6812 	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6813 	if (!hdcp2_msg_data)
6814 		return -EINVAL;
6815 
6816 	offset = hdcp2_msg_data->offset;
6817 
6818 	/* No msg_id in DP HDCP2.2 msgs */
6819 	bytes_to_write = size - 1;
6820 	byte++;
6821 
6822 	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6823 
6824 	while (bytes_to_write) {
6825 		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6826 				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6827 
6828 		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6829 					offset, (void *)byte, len);
6830 		if (ret < 0)
6831 			return ret;
6832 
6833 		bytes_to_write -= ret;
6834 		byte += ret;
6835 		offset += ret;
6836 	}
6837 
6838 	return size;
6839 }
6840 
6841 static
6842 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6843 {
6844 	u8 rx_info[HDCP_2_2_RXINFO_LEN];
6845 	u32 dev_cnt;
6846 	ssize_t ret;
6847 
6848 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6849 			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
6850 			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6851 	if (ret != HDCP_2_2_RXINFO_LEN)
6852 		return ret >= 0 ? -EIO : ret;
6853 
6854 	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6855 		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6856 
6857 	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6858 		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6859 
6860 	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6861 		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6862 		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6863 
6864 	return ret;
6865 }
6866 
6867 static
6868 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6869 			    u8 msg_id, void *buf, size_t size)
6870 {
6871 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6872 	unsigned int offset;
6873 	u8 *byte = buf;
6874 	ssize_t ret, bytes_to_recv, len;
6875 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6876 
6877 	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6878 	if (!hdcp2_msg_data)
6879 		return -EINVAL;
6880 	offset = hdcp2_msg_data->offset;
6881 
6882 	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6883 	if (ret < 0)
6884 		return ret;
6885 
6886 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6887 		ret = get_receiver_id_list_size(intel_dig_port);
6888 		if (ret < 0)
6889 			return ret;
6890 
6891 		size = ret;
6892 	}
6893 	bytes_to_recv = size - 1;
6894 
6895 	/* DP adaptation msgs has no msg_id */
6896 	byte++;
6897 
6898 	while (bytes_to_recv) {
6899 		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6900 		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6901 
6902 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6903 				       (void *)byte, len);
6904 		if (ret < 0) {
6905 			drm_dbg_kms(&i915->drm, "msg_id %d, ret %zd\n",
6906 				    msg_id, ret);
6907 			return ret;
6908 		}
6909 
6910 		bytes_to_recv -= ret;
6911 		byte += ret;
6912 		offset += ret;
6913 	}
6914 	byte = buf;
6915 	*byte = msg_id;
6916 
6917 	return size;
6918 }
6919 
6920 static
6921 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6922 				      bool is_repeater, u8 content_type)
6923 {
6924 	int ret;
6925 	struct hdcp2_dp_errata_stream_type stream_type_msg;
6926 
6927 	if (is_repeater)
6928 		return 0;
6929 
6930 	/*
6931 	 * Errata for DP: As Stream type is used for encryption, Receiver
6932 	 * should be communicated with stream type for the decryption of the
6933 	 * content.
6934 	 * Repeater will be communicated with stream type as a part of it's
6935 	 * auth later in time.
6936 	 */
6937 	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6938 	stream_type_msg.stream_type = content_type;
6939 
6940 	ret =  intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6941 					sizeof(stream_type_msg));
6942 
6943 	return ret < 0 ? ret : 0;
6944 
6945 }
6946 
6947 static
6948 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6949 {
6950 	u8 rx_status;
6951 	int ret;
6952 
6953 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6954 	if (ret)
6955 		return ret;
6956 
6957 	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6958 		ret = HDCP_REAUTH_REQUEST;
6959 	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6960 		ret = HDCP_LINK_INTEGRITY_FAILURE;
6961 	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6962 		ret = HDCP_TOPOLOGY_CHANGE;
6963 
6964 	return ret;
6965 }
6966 
6967 static
6968 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6969 			   bool *capable)
6970 {
6971 	u8 rx_caps[3];
6972 	int ret;
6973 
6974 	*capable = false;
6975 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6976 			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6977 			       rx_caps, HDCP_2_2_RXCAPS_LEN);
6978 	if (ret != HDCP_2_2_RXCAPS_LEN)
6979 		return ret >= 0 ? -EIO : ret;
6980 
6981 	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6982 	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6983 		*capable = true;
6984 
6985 	return 0;
6986 }
6987 
6988 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6989 	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
6990 	.read_bksv = intel_dp_hdcp_read_bksv,
6991 	.read_bstatus = intel_dp_hdcp_read_bstatus,
6992 	.repeater_present = intel_dp_hdcp_repeater_present,
6993 	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
6994 	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6995 	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6996 	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6997 	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
6998 	.check_link = intel_dp_hdcp_check_link,
6999 	.hdcp_capable = intel_dp_hdcp_capable,
7000 	.write_2_2_msg = intel_dp_hdcp2_write_msg,
7001 	.read_2_2_msg = intel_dp_hdcp2_read_msg,
7002 	.config_stream_type = intel_dp_hdcp2_config_stream_type,
7003 	.check_2_2_link = intel_dp_hdcp2_check_link,
7004 	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
7005 	.protocol = HDCP_PROTOCOL_DP,
7006 };
7007 
7008 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
7009 {
7010 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7011 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
7012 
7013 	lockdep_assert_held(&dev_priv->pps_mutex);
7014 
7015 	if (!edp_have_panel_vdd(intel_dp))
7016 		return;
7017 
7018 	/*
7019 	 * The VDD bit needs a power domain reference, so if the bit is
7020 	 * already enabled when we boot or resume, grab this reference and
7021 	 * schedule a vdd off, so we don't hold on to the reference
7022 	 * indefinitely.
7023 	 */
7024 	drm_dbg_kms(&dev_priv->drm,
7025 		    "VDD left on by BIOS, adjusting state tracking\n");
7026 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
7027 
7028 	edp_panel_vdd_schedule_off(intel_dp);
7029 }
7030 
7031 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
7032 {
7033 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7034 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
7035 	enum pipe pipe;
7036 
7037 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
7038 				  encoder->port, &pipe))
7039 		return pipe;
7040 
7041 	return INVALID_PIPE;
7042 }
7043 
7044 void intel_dp_encoder_reset(struct drm_encoder *encoder)
7045 {
7046 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
7047 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
7048 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
7049 	intel_wakeref_t wakeref;
7050 
7051 	if (!HAS_DDI(dev_priv))
7052 		intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7053 
7054 	if (lspcon->active)
7055 		lspcon_resume(lspcon);
7056 
7057 	intel_dp->reset_link_params = true;
7058 
7059 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
7060 	    !intel_dp_is_edp(intel_dp))
7061 		return;
7062 
7063 	with_pps_lock(intel_dp, wakeref) {
7064 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7065 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7066 
7067 		if (intel_dp_is_edp(intel_dp)) {
7068 			/*
7069 			 * Reinit the power sequencer, in case BIOS did
7070 			 * something nasty with it.
7071 			 */
7072 			intel_dp_pps_init(intel_dp);
7073 			intel_edp_panel_vdd_sanitize(intel_dp);
7074 		}
7075 	}
7076 }
7077 
7078 static int intel_modeset_tile_group(struct intel_atomic_state *state,
7079 				    int tile_group_id)
7080 {
7081 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7082 	struct drm_connector_list_iter conn_iter;
7083 	struct drm_connector *connector;
7084 	int ret = 0;
7085 
7086 	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
7087 	drm_for_each_connector_iter(connector, &conn_iter) {
7088 		struct drm_connector_state *conn_state;
7089 		struct intel_crtc_state *crtc_state;
7090 		struct intel_crtc *crtc;
7091 
7092 		if (!connector->has_tile ||
7093 		    connector->tile_group->id != tile_group_id)
7094 			continue;
7095 
7096 		conn_state = drm_atomic_get_connector_state(&state->base,
7097 							    connector);
7098 		if (IS_ERR(conn_state)) {
7099 			ret = PTR_ERR(conn_state);
7100 			break;
7101 		}
7102 
7103 		crtc = to_intel_crtc(conn_state->crtc);
7104 
7105 		if (!crtc)
7106 			continue;
7107 
7108 		crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
7109 		crtc_state->uapi.mode_changed = true;
7110 
7111 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7112 		if (ret)
7113 			break;
7114 	}
7115 	drm_connector_list_iter_end(&conn_iter);
7116 
7117 	return ret;
7118 }
7119 
7120 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
7121 {
7122 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7123 	struct intel_crtc *crtc;
7124 
7125 	if (transcoders == 0)
7126 		return 0;
7127 
7128 	for_each_intel_crtc(&dev_priv->drm, crtc) {
7129 		struct intel_crtc_state *crtc_state;
7130 		int ret;
7131 
7132 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
7133 		if (IS_ERR(crtc_state))
7134 			return PTR_ERR(crtc_state);
7135 
7136 		if (!crtc_state->hw.enable)
7137 			continue;
7138 
7139 		if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
7140 			continue;
7141 
7142 		crtc_state->uapi.mode_changed = true;
7143 
7144 		ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
7145 		if (ret)
7146 			return ret;
7147 
7148 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7149 		if (ret)
7150 			return ret;
7151 
7152 		transcoders &= ~BIT(crtc_state->cpu_transcoder);
7153 	}
7154 
7155 	drm_WARN_ON(&dev_priv->drm, transcoders != 0);
7156 
7157 	return 0;
7158 }
7159 
7160 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
7161 				      struct drm_connector *connector)
7162 {
7163 	const struct drm_connector_state *old_conn_state =
7164 		drm_atomic_get_old_connector_state(&state->base, connector);
7165 	const struct intel_crtc_state *old_crtc_state;
7166 	struct intel_crtc *crtc;
7167 	u8 transcoders;
7168 
7169 	crtc = to_intel_crtc(old_conn_state->crtc);
7170 	if (!crtc)
7171 		return 0;
7172 
7173 	old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
7174 
7175 	if (!old_crtc_state->hw.active)
7176 		return 0;
7177 
7178 	transcoders = old_crtc_state->sync_mode_slaves_mask;
7179 	if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
7180 		transcoders |= BIT(old_crtc_state->master_transcoder);
7181 
7182 	return intel_modeset_affected_transcoders(state,
7183 						  transcoders);
7184 }
7185 
7186 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
7187 					   struct drm_atomic_state *_state)
7188 {
7189 	struct drm_i915_private *dev_priv = to_i915(conn->dev);
7190 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
7191 	int ret;
7192 
7193 	ret = intel_digital_connector_atomic_check(conn, &state->base);
7194 	if (ret)
7195 		return ret;
7196 
7197 	/*
7198 	 * We don't enable port sync on BDW due to missing w/as and
7199 	 * due to not having adjusted the modeset sequence appropriately.
7200 	 */
7201 	if (INTEL_GEN(dev_priv) < 9)
7202 		return 0;
7203 
7204 	if (!intel_connector_needs_modeset(state, conn))
7205 		return 0;
7206 
7207 	if (conn->has_tile) {
7208 		ret = intel_modeset_tile_group(state, conn->tile_group->id);
7209 		if (ret)
7210 			return ret;
7211 	}
7212 
7213 	return intel_modeset_synced_crtcs(state, conn);
7214 }
7215 
7216 static const struct drm_connector_funcs intel_dp_connector_funcs = {
7217 	.force = intel_dp_force,
7218 	.fill_modes = drm_helper_probe_single_connector_modes,
7219 	.atomic_get_property = intel_digital_connector_atomic_get_property,
7220 	.atomic_set_property = intel_digital_connector_atomic_set_property,
7221 	.late_register = intel_dp_connector_register,
7222 	.early_unregister = intel_dp_connector_unregister,
7223 	.destroy = intel_connector_destroy,
7224 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
7225 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
7226 };
7227 
7228 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
7229 	.detect_ctx = intel_dp_detect,
7230 	.get_modes = intel_dp_get_modes,
7231 	.mode_valid = intel_dp_mode_valid,
7232 	.atomic_check = intel_dp_connector_atomic_check,
7233 };
7234 
7235 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
7236 	.reset = intel_dp_encoder_reset,
7237 	.destroy = intel_dp_encoder_destroy,
7238 };
7239 
7240 static bool intel_edp_have_power(struct intel_dp *intel_dp)
7241 {
7242 	intel_wakeref_t wakeref;
7243 	bool have_power = false;
7244 
7245 	with_pps_lock(intel_dp, wakeref) {
7246 		have_power = edp_have_panel_power(intel_dp) &&
7247 						  edp_have_panel_vdd(intel_dp);
7248 	}
7249 
7250 	return have_power;
7251 }
7252 
7253 enum irqreturn
7254 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
7255 {
7256 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
7257 	struct intel_dp *intel_dp = &intel_dig_port->dp;
7258 
7259 	if (intel_dig_port->base.type == INTEL_OUTPUT_EDP &&
7260 	    (long_hpd || !intel_edp_have_power(intel_dp))) {
7261 		/*
7262 		 * vdd off can generate a long/short pulse on eDP which
7263 		 * would require vdd on to handle it, and thus we
7264 		 * would end up in an endless cycle of
7265 		 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
7266 		 */
7267 		drm_dbg_kms(&i915->drm,
7268 			    "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
7269 			    long_hpd ? "long" : "short",
7270 			    intel_dig_port->base.base.base.id,
7271 			    intel_dig_port->base.base.name);
7272 		return IRQ_HANDLED;
7273 	}
7274 
7275 	drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
7276 		    intel_dig_port->base.base.base.id,
7277 		    intel_dig_port->base.base.name,
7278 		    long_hpd ? "long" : "short");
7279 
7280 	if (long_hpd) {
7281 		intel_dp->reset_link_params = true;
7282 		return IRQ_NONE;
7283 	}
7284 
7285 	if (intel_dp->is_mst) {
7286 		if (!intel_dp_check_mst_status(intel_dp))
7287 			return IRQ_NONE;
7288 	} else if (!intel_dp_short_pulse(intel_dp)) {
7289 		return IRQ_NONE;
7290 	}
7291 
7292 	return IRQ_HANDLED;
7293 }
7294 
7295 /* check the VBT to see whether the eDP is on another port */
7296 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
7297 {
7298 	/*
7299 	 * eDP not supported on g4x. so bail out early just
7300 	 * for a bit extra safety in case the VBT is bonkers.
7301 	 */
7302 	if (INTEL_GEN(dev_priv) < 5)
7303 		return false;
7304 
7305 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
7306 		return true;
7307 
7308 	return intel_bios_is_port_edp(dev_priv, port);
7309 }
7310 
7311 static void
7312 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
7313 {
7314 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
7315 	enum port port = dp_to_dig_port(intel_dp)->base.port;
7316 
7317 	if (!IS_G4X(dev_priv) && port != PORT_A)
7318 		intel_attach_force_audio_property(connector);
7319 
7320 	intel_attach_broadcast_rgb_property(connector);
7321 	if (HAS_GMCH(dev_priv))
7322 		drm_connector_attach_max_bpc_property(connector, 6, 10);
7323 	else if (INTEL_GEN(dev_priv) >= 5)
7324 		drm_connector_attach_max_bpc_property(connector, 6, 12);
7325 
7326 	intel_attach_colorspace_property(connector);
7327 
7328 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
7329 		drm_object_attach_property(&connector->base,
7330 					   connector->dev->mode_config.hdr_output_metadata_property,
7331 					   0);
7332 
7333 	if (intel_dp_is_edp(intel_dp)) {
7334 		u32 allowed_scalers;
7335 
7336 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
7337 		if (!HAS_GMCH(dev_priv))
7338 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
7339 
7340 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
7341 
7342 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
7343 
7344 	}
7345 }
7346 
7347 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
7348 {
7349 	intel_dp->panel_power_off_time = ktime_get_boottime();
7350 	intel_dp->last_power_on = jiffies;
7351 	intel_dp->last_backlight_off = jiffies;
7352 }
7353 
7354 static void
7355 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
7356 {
7357 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7358 	u32 pp_on, pp_off, pp_ctl;
7359 	struct pps_registers regs;
7360 
7361 	intel_pps_get_registers(intel_dp, &regs);
7362 
7363 	pp_ctl = ilk_get_pp_control(intel_dp);
7364 
7365 	/* Ensure PPS is unlocked */
7366 	if (!HAS_DDI(dev_priv))
7367 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7368 
7369 	pp_on = intel_de_read(dev_priv, regs.pp_on);
7370 	pp_off = intel_de_read(dev_priv, regs.pp_off);
7371 
7372 	/* Pull timing values out of registers */
7373 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
7374 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
7375 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
7376 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
7377 
7378 	if (i915_mmio_reg_valid(regs.pp_div)) {
7379 		u32 pp_div;
7380 
7381 		pp_div = intel_de_read(dev_priv, regs.pp_div);
7382 
7383 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
7384 	} else {
7385 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
7386 	}
7387 }
7388 
7389 static void
7390 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
7391 {
7392 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
7393 		      state_name,
7394 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
7395 }
7396 
7397 static void
7398 intel_pps_verify_state(struct intel_dp *intel_dp)
7399 {
7400 	struct edp_power_seq hw;
7401 	struct edp_power_seq *sw = &intel_dp->pps_delays;
7402 
7403 	intel_pps_readout_hw_state(intel_dp, &hw);
7404 
7405 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
7406 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
7407 		DRM_ERROR("PPS state mismatch\n");
7408 		intel_pps_dump_state("sw", sw);
7409 		intel_pps_dump_state("hw", &hw);
7410 	}
7411 }
7412 
7413 static void
7414 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7415 {
7416 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7417 	struct edp_power_seq cur, vbt, spec,
7418 		*final = &intel_dp->pps_delays;
7419 
7420 	lockdep_assert_held(&dev_priv->pps_mutex);
7421 
7422 	/* already initialized? */
7423 	if (final->t11_t12 != 0)
7424 		return;
7425 
7426 	intel_pps_readout_hw_state(intel_dp, &cur);
7427 
7428 	intel_pps_dump_state("cur", &cur);
7429 
7430 	vbt = dev_priv->vbt.edp.pps;
7431 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
7432 	 * of 500ms appears to be too short. Ocassionally the panel
7433 	 * just fails to power back on. Increasing the delay to 800ms
7434 	 * seems sufficient to avoid this problem.
7435 	 */
7436 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7437 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7438 		drm_dbg_kms(&dev_priv->drm,
7439 			    "Increasing T12 panel delay as per the quirk to %d\n",
7440 			    vbt.t11_t12);
7441 	}
7442 	/* T11_T12 delay is special and actually in units of 100ms, but zero
7443 	 * based in the hw (so we need to add 100 ms). But the sw vbt
7444 	 * table multiplies it with 1000 to make it in units of 100usec,
7445 	 * too. */
7446 	vbt.t11_t12 += 100 * 10;
7447 
7448 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7449 	 * our hw here, which are all in 100usec. */
7450 	spec.t1_t3 = 210 * 10;
7451 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7452 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7453 	spec.t10 = 500 * 10;
7454 	/* This one is special and actually in units of 100ms, but zero
7455 	 * based in the hw (so we need to add 100 ms). But the sw vbt
7456 	 * table multiplies it with 1000 to make it in units of 100usec,
7457 	 * too. */
7458 	spec.t11_t12 = (510 + 100) * 10;
7459 
7460 	intel_pps_dump_state("vbt", &vbt);
7461 
7462 	/* Use the max of the register settings and vbt. If both are
7463 	 * unset, fall back to the spec limits. */
7464 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
7465 				       spec.field : \
7466 				       max(cur.field, vbt.field))
7467 	assign_final(t1_t3);
7468 	assign_final(t8);
7469 	assign_final(t9);
7470 	assign_final(t10);
7471 	assign_final(t11_t12);
7472 #undef assign_final
7473 
7474 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
7475 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
7476 	intel_dp->backlight_on_delay = get_delay(t8);
7477 	intel_dp->backlight_off_delay = get_delay(t9);
7478 	intel_dp->panel_power_down_delay = get_delay(t10);
7479 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7480 #undef get_delay
7481 
7482 	drm_dbg_kms(&dev_priv->drm,
7483 		    "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7484 		    intel_dp->panel_power_up_delay,
7485 		    intel_dp->panel_power_down_delay,
7486 		    intel_dp->panel_power_cycle_delay);
7487 
7488 	drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7489 		    intel_dp->backlight_on_delay,
7490 		    intel_dp->backlight_off_delay);
7491 
7492 	/*
7493 	 * We override the HW backlight delays to 1 because we do manual waits
7494 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
7495 	 * don't do this, we'll end up waiting for the backlight off delay
7496 	 * twice: once when we do the manual sleep, and once when we disable
7497 	 * the panel and wait for the PP_STATUS bit to become zero.
7498 	 */
7499 	final->t8 = 1;
7500 	final->t9 = 1;
7501 
7502 	/*
7503 	 * HW has only a 100msec granularity for t11_t12 so round it up
7504 	 * accordingly.
7505 	 */
7506 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7507 }
7508 
7509 static void
7510 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7511 					      bool force_disable_vdd)
7512 {
7513 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7514 	u32 pp_on, pp_off, port_sel = 0;
7515 	int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7516 	struct pps_registers regs;
7517 	enum port port = dp_to_dig_port(intel_dp)->base.port;
7518 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
7519 
7520 	lockdep_assert_held(&dev_priv->pps_mutex);
7521 
7522 	intel_pps_get_registers(intel_dp, &regs);
7523 
7524 	/*
7525 	 * On some VLV machines the BIOS can leave the VDD
7526 	 * enabled even on power sequencers which aren't
7527 	 * hooked up to any port. This would mess up the
7528 	 * power domain tracking the first time we pick
7529 	 * one of these power sequencers for use since
7530 	 * edp_panel_vdd_on() would notice that the VDD was
7531 	 * already on and therefore wouldn't grab the power
7532 	 * domain reference. Disable VDD first to avoid this.
7533 	 * This also avoids spuriously turning the VDD on as
7534 	 * soon as the new power sequencer gets initialized.
7535 	 */
7536 	if (force_disable_vdd) {
7537 		u32 pp = ilk_get_pp_control(intel_dp);
7538 
7539 		drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7540 			 "Panel power already on\n");
7541 
7542 		if (pp & EDP_FORCE_VDD)
7543 			drm_dbg_kms(&dev_priv->drm,
7544 				    "VDD already on, disabling first\n");
7545 
7546 		pp &= ~EDP_FORCE_VDD;
7547 
7548 		intel_de_write(dev_priv, regs.pp_ctrl, pp);
7549 	}
7550 
7551 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7552 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7553 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7554 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7555 
7556 	/* Haswell doesn't have any port selection bits for the panel
7557 	 * power sequencer any more. */
7558 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7559 		port_sel = PANEL_PORT_SELECT_VLV(port);
7560 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7561 		switch (port) {
7562 		case PORT_A:
7563 			port_sel = PANEL_PORT_SELECT_DPA;
7564 			break;
7565 		case PORT_C:
7566 			port_sel = PANEL_PORT_SELECT_DPC;
7567 			break;
7568 		case PORT_D:
7569 			port_sel = PANEL_PORT_SELECT_DPD;
7570 			break;
7571 		default:
7572 			MISSING_CASE(port);
7573 			break;
7574 		}
7575 	}
7576 
7577 	pp_on |= port_sel;
7578 
7579 	intel_de_write(dev_priv, regs.pp_on, pp_on);
7580 	intel_de_write(dev_priv, regs.pp_off, pp_off);
7581 
7582 	/*
7583 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
7584 	 */
7585 	if (i915_mmio_reg_valid(regs.pp_div)) {
7586 		intel_de_write(dev_priv, regs.pp_div,
7587 			       REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7588 	} else {
7589 		u32 pp_ctl;
7590 
7591 		pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7592 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7593 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7594 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7595 	}
7596 
7597 	drm_dbg_kms(&dev_priv->drm,
7598 		    "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7599 		    intel_de_read(dev_priv, regs.pp_on),
7600 		    intel_de_read(dev_priv, regs.pp_off),
7601 		    i915_mmio_reg_valid(regs.pp_div) ?
7602 		    intel_de_read(dev_priv, regs.pp_div) :
7603 		    (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7604 }
7605 
7606 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7607 {
7608 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7609 
7610 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7611 		vlv_initial_power_sequencer_setup(intel_dp);
7612 	} else {
7613 		intel_dp_init_panel_power_sequencer(intel_dp);
7614 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7615 	}
7616 }
7617 
7618 /**
7619  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7620  * @dev_priv: i915 device
7621  * @crtc_state: a pointer to the active intel_crtc_state
7622  * @refresh_rate: RR to be programmed
7623  *
7624  * This function gets called when refresh rate (RR) has to be changed from
7625  * one frequency to another. Switches can be between high and low RR
7626  * supported by the panel or to any other RR based on media playback (in
7627  * this case, RR value needs to be passed from user space).
7628  *
7629  * The caller of this function needs to take a lock on dev_priv->drrs.
7630  */
7631 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7632 				    const struct intel_crtc_state *crtc_state,
7633 				    int refresh_rate)
7634 {
7635 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
7636 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7637 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7638 
7639 	if (refresh_rate <= 0) {
7640 		drm_dbg_kms(&dev_priv->drm,
7641 			    "Refresh rate should be positive non-zero.\n");
7642 		return;
7643 	}
7644 
7645 	if (intel_dp == NULL) {
7646 		drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7647 		return;
7648 	}
7649 
7650 	if (!intel_crtc) {
7651 		drm_dbg_kms(&dev_priv->drm,
7652 			    "DRRS: intel_crtc not initialized\n");
7653 		return;
7654 	}
7655 
7656 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7657 		drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7658 		return;
7659 	}
7660 
7661 	if (drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode) ==
7662 			refresh_rate)
7663 		index = DRRS_LOW_RR;
7664 
7665 	if (index == dev_priv->drrs.refresh_rate_type) {
7666 		drm_dbg_kms(&dev_priv->drm,
7667 			    "DRRS requested for previously set RR...ignoring\n");
7668 		return;
7669 	}
7670 
7671 	if (!crtc_state->hw.active) {
7672 		drm_dbg_kms(&dev_priv->drm,
7673 			    "eDP encoder disabled. CRTC not Active\n");
7674 		return;
7675 	}
7676 
7677 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7678 		switch (index) {
7679 		case DRRS_HIGH_RR:
7680 			intel_dp_set_m_n(crtc_state, M1_N1);
7681 			break;
7682 		case DRRS_LOW_RR:
7683 			intel_dp_set_m_n(crtc_state, M2_N2);
7684 			break;
7685 		case DRRS_MAX_RR:
7686 		default:
7687 			drm_err(&dev_priv->drm,
7688 				"Unsupported refreshrate type\n");
7689 		}
7690 	} else if (INTEL_GEN(dev_priv) > 6) {
7691 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7692 		u32 val;
7693 
7694 		val = intel_de_read(dev_priv, reg);
7695 		if (index > DRRS_HIGH_RR) {
7696 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7697 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7698 			else
7699 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7700 		} else {
7701 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7702 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7703 			else
7704 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7705 		}
7706 		intel_de_write(dev_priv, reg, val);
7707 	}
7708 
7709 	dev_priv->drrs.refresh_rate_type = index;
7710 
7711 	drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7712 		    refresh_rate);
7713 }
7714 
7715 /**
7716  * intel_edp_drrs_enable - init drrs struct if supported
7717  * @intel_dp: DP struct
7718  * @crtc_state: A pointer to the active crtc state.
7719  *
7720  * Initializes frontbuffer_bits and drrs.dp
7721  */
7722 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7723 			   const struct intel_crtc_state *crtc_state)
7724 {
7725 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7726 
7727 	if (!crtc_state->has_drrs) {
7728 		drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
7729 		return;
7730 	}
7731 
7732 	if (dev_priv->psr.enabled) {
7733 		drm_dbg_kms(&dev_priv->drm,
7734 			    "PSR enabled. Not enabling DRRS.\n");
7735 		return;
7736 	}
7737 
7738 	mutex_lock(&dev_priv->drrs.mutex);
7739 	if (dev_priv->drrs.dp) {
7740 		drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
7741 		goto unlock;
7742 	}
7743 
7744 	dev_priv->drrs.busy_frontbuffer_bits = 0;
7745 
7746 	dev_priv->drrs.dp = intel_dp;
7747 
7748 unlock:
7749 	mutex_unlock(&dev_priv->drrs.mutex);
7750 }
7751 
7752 /**
7753  * intel_edp_drrs_disable - Disable DRRS
7754  * @intel_dp: DP struct
7755  * @old_crtc_state: Pointer to old crtc_state.
7756  *
7757  */
7758 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7759 			    const struct intel_crtc_state *old_crtc_state)
7760 {
7761 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7762 
7763 	if (!old_crtc_state->has_drrs)
7764 		return;
7765 
7766 	mutex_lock(&dev_priv->drrs.mutex);
7767 	if (!dev_priv->drrs.dp) {
7768 		mutex_unlock(&dev_priv->drrs.mutex);
7769 		return;
7770 	}
7771 
7772 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7773 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7774 			drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7775 
7776 	dev_priv->drrs.dp = NULL;
7777 	mutex_unlock(&dev_priv->drrs.mutex);
7778 
7779 	cancel_delayed_work_sync(&dev_priv->drrs.work);
7780 }
7781 
7782 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7783 {
7784 	struct drm_i915_private *dev_priv =
7785 		container_of(work, typeof(*dev_priv), drrs.work.work);
7786 	struct intel_dp *intel_dp;
7787 
7788 	mutex_lock(&dev_priv->drrs.mutex);
7789 
7790 	intel_dp = dev_priv->drrs.dp;
7791 
7792 	if (!intel_dp)
7793 		goto unlock;
7794 
7795 	/*
7796 	 * The delayed work can race with an invalidate hence we need to
7797 	 * recheck.
7798 	 */
7799 
7800 	if (dev_priv->drrs.busy_frontbuffer_bits)
7801 		goto unlock;
7802 
7803 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7804 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7805 
7806 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7807 			drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode));
7808 	}
7809 
7810 unlock:
7811 	mutex_unlock(&dev_priv->drrs.mutex);
7812 }
7813 
7814 /**
7815  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7816  * @dev_priv: i915 device
7817  * @frontbuffer_bits: frontbuffer plane tracking bits
7818  *
7819  * This function gets called everytime rendering on the given planes start.
7820  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7821  *
7822  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7823  */
7824 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7825 			       unsigned int frontbuffer_bits)
7826 {
7827 	struct intel_dp *intel_dp;
7828 	struct drm_crtc *crtc;
7829 	enum pipe pipe;
7830 
7831 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7832 		return;
7833 
7834 	cancel_delayed_work(&dev_priv->drrs.work);
7835 
7836 	mutex_lock(&dev_priv->drrs.mutex);
7837 
7838 	intel_dp = dev_priv->drrs.dp;
7839 	if (!intel_dp) {
7840 		mutex_unlock(&dev_priv->drrs.mutex);
7841 		return;
7842 	}
7843 
7844 	crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7845 	pipe = to_intel_crtc(crtc)->pipe;
7846 
7847 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7848 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7849 
7850 	/* invalidate means busy screen hence upclock */
7851 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7852 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7853 					drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7854 
7855 	mutex_unlock(&dev_priv->drrs.mutex);
7856 }
7857 
7858 /**
7859  * intel_edp_drrs_flush - Restart Idleness DRRS
7860  * @dev_priv: i915 device
7861  * @frontbuffer_bits: frontbuffer plane tracking bits
7862  *
7863  * This function gets called every time rendering on the given planes has
7864  * completed or flip on a crtc is completed. So DRRS should be upclocked
7865  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7866  * if no other planes are dirty.
7867  *
7868  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7869  */
7870 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7871 			  unsigned int frontbuffer_bits)
7872 {
7873 	struct intel_dp *intel_dp;
7874 	struct drm_crtc *crtc;
7875 	enum pipe pipe;
7876 
7877 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7878 		return;
7879 
7880 	cancel_delayed_work(&dev_priv->drrs.work);
7881 
7882 	mutex_lock(&dev_priv->drrs.mutex);
7883 
7884 	intel_dp = dev_priv->drrs.dp;
7885 	if (!intel_dp) {
7886 		mutex_unlock(&dev_priv->drrs.mutex);
7887 		return;
7888 	}
7889 
7890 	crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7891 	pipe = to_intel_crtc(crtc)->pipe;
7892 
7893 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7894 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7895 
7896 	/* flush means busy screen hence upclock */
7897 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7898 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7899 					drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7900 
7901 	/*
7902 	 * flush also means no more activity hence schedule downclock, if all
7903 	 * other fbs are quiescent too
7904 	 */
7905 	if (!dev_priv->drrs.busy_frontbuffer_bits)
7906 		schedule_delayed_work(&dev_priv->drrs.work,
7907 				msecs_to_jiffies(1000));
7908 	mutex_unlock(&dev_priv->drrs.mutex);
7909 }
7910 
7911 /**
7912  * DOC: Display Refresh Rate Switching (DRRS)
7913  *
7914  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7915  * which enables swtching between low and high refresh rates,
7916  * dynamically, based on the usage scenario. This feature is applicable
7917  * for internal panels.
7918  *
7919  * Indication that the panel supports DRRS is given by the panel EDID, which
7920  * would list multiple refresh rates for one resolution.
7921  *
7922  * DRRS is of 2 types - static and seamless.
7923  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7924  * (may appear as a blink on screen) and is used in dock-undock scenario.
7925  * Seamless DRRS involves changing RR without any visual effect to the user
7926  * and can be used during normal system usage. This is done by programming
7927  * certain registers.
7928  *
7929  * Support for static/seamless DRRS may be indicated in the VBT based on
7930  * inputs from the panel spec.
7931  *
7932  * DRRS saves power by switching to low RR based on usage scenarios.
7933  *
7934  * The implementation is based on frontbuffer tracking implementation.  When
7935  * there is a disturbance on the screen triggered by user activity or a periodic
7936  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7937  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7938  * made.
7939  *
7940  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7941  * and intel_edp_drrs_flush() are called.
7942  *
7943  * DRRS can be further extended to support other internal panels and also
7944  * the scenario of video playback wherein RR is set based on the rate
7945  * requested by userspace.
7946  */
7947 
7948 /**
7949  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7950  * @connector: eDP connector
7951  * @fixed_mode: preferred mode of panel
7952  *
7953  * This function is  called only once at driver load to initialize basic
7954  * DRRS stuff.
7955  *
7956  * Returns:
7957  * Downclock mode if panel supports it, else return NULL.
7958  * DRRS support is determined by the presence of downclock mode (apart
7959  * from VBT setting).
7960  */
7961 static struct drm_display_mode *
7962 intel_dp_drrs_init(struct intel_connector *connector,
7963 		   struct drm_display_mode *fixed_mode)
7964 {
7965 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7966 	struct drm_display_mode *downclock_mode = NULL;
7967 
7968 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7969 	mutex_init(&dev_priv->drrs.mutex);
7970 
7971 	if (INTEL_GEN(dev_priv) <= 6) {
7972 		drm_dbg_kms(&dev_priv->drm,
7973 			    "DRRS supported for Gen7 and above\n");
7974 		return NULL;
7975 	}
7976 
7977 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7978 		drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7979 		return NULL;
7980 	}
7981 
7982 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7983 	if (!downclock_mode) {
7984 		drm_dbg_kms(&dev_priv->drm,
7985 			    "Downclock mode is not found. DRRS not supported\n");
7986 		return NULL;
7987 	}
7988 
7989 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7990 
7991 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7992 	drm_dbg_kms(&dev_priv->drm,
7993 		    "seamless DRRS supported for eDP panel.\n");
7994 	return downclock_mode;
7995 }
7996 
7997 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7998 				     struct intel_connector *intel_connector)
7999 {
8000 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
8001 	struct drm_device *dev = &dev_priv->drm;
8002 	struct drm_connector *connector = &intel_connector->base;
8003 	struct drm_display_mode *fixed_mode = NULL;
8004 	struct drm_display_mode *downclock_mode = NULL;
8005 	bool has_dpcd;
8006 	enum pipe pipe = INVALID_PIPE;
8007 	intel_wakeref_t wakeref;
8008 	struct edid *edid;
8009 
8010 	if (!intel_dp_is_edp(intel_dp))
8011 		return true;
8012 
8013 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
8014 
8015 	/*
8016 	 * On IBX/CPT we may get here with LVDS already registered. Since the
8017 	 * driver uses the only internal power sequencer available for both
8018 	 * eDP and LVDS bail out early in this case to prevent interfering
8019 	 * with an already powered-on LVDS power sequencer.
8020 	 */
8021 	if (intel_get_lvds_encoder(dev_priv)) {
8022 		drm_WARN_ON(dev,
8023 			    !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
8024 		drm_info(&dev_priv->drm,
8025 			 "LVDS was detected, not registering eDP\n");
8026 
8027 		return false;
8028 	}
8029 
8030 	with_pps_lock(intel_dp, wakeref) {
8031 		intel_dp_init_panel_power_timestamps(intel_dp);
8032 		intel_dp_pps_init(intel_dp);
8033 		intel_edp_panel_vdd_sanitize(intel_dp);
8034 	}
8035 
8036 	/* Cache DPCD and EDID for edp. */
8037 	has_dpcd = intel_edp_init_dpcd(intel_dp);
8038 
8039 	if (!has_dpcd) {
8040 		/* if this fails, presume the device is a ghost */
8041 		drm_info(&dev_priv->drm,
8042 			 "failed to retrieve link info, disabling eDP\n");
8043 		goto out_vdd_off;
8044 	}
8045 
8046 	mutex_lock(&dev->mode_config.mutex);
8047 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
8048 	if (edid) {
8049 		if (drm_add_edid_modes(connector, edid)) {
8050 			drm_connector_update_edid_property(connector, edid);
8051 			intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
8052 		} else {
8053 			kfree(edid);
8054 			edid = ERR_PTR(-EINVAL);
8055 		}
8056 	} else {
8057 		edid = ERR_PTR(-ENOENT);
8058 	}
8059 	intel_connector->edid = edid;
8060 
8061 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
8062 	if (fixed_mode)
8063 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
8064 
8065 	/* fallback to VBT if available for eDP */
8066 	if (!fixed_mode)
8067 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
8068 	mutex_unlock(&dev->mode_config.mutex);
8069 
8070 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8071 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
8072 		register_reboot_notifier(&intel_dp->edp_notifier);
8073 
8074 		/*
8075 		 * Figure out the current pipe for the initial backlight setup.
8076 		 * If the current pipe isn't valid, try the PPS pipe, and if that
8077 		 * fails just assume pipe A.
8078 		 */
8079 		pipe = vlv_active_pipe(intel_dp);
8080 
8081 		if (pipe != PIPE_A && pipe != PIPE_B)
8082 			pipe = intel_dp->pps_pipe;
8083 
8084 		if (pipe != PIPE_A && pipe != PIPE_B)
8085 			pipe = PIPE_A;
8086 
8087 		drm_dbg_kms(&dev_priv->drm,
8088 			    "using pipe %c for initial backlight setup\n",
8089 			    pipe_name(pipe));
8090 	}
8091 
8092 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
8093 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
8094 	intel_panel_setup_backlight(connector, pipe);
8095 
8096 	if (fixed_mode) {
8097 		drm_connector_set_panel_orientation_with_quirk(connector,
8098 				dev_priv->vbt.orientation,
8099 				fixed_mode->hdisplay, fixed_mode->vdisplay);
8100 	}
8101 
8102 	return true;
8103 
8104 out_vdd_off:
8105 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
8106 	/*
8107 	 * vdd might still be enabled do to the delayed vdd off.
8108 	 * Make sure vdd is actually turned off here.
8109 	 */
8110 	with_pps_lock(intel_dp, wakeref)
8111 		edp_panel_vdd_off_sync(intel_dp);
8112 
8113 	return false;
8114 }
8115 
8116 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
8117 {
8118 	struct intel_connector *intel_connector;
8119 	struct drm_connector *connector;
8120 
8121 	intel_connector = container_of(work, typeof(*intel_connector),
8122 				       modeset_retry_work);
8123 	connector = &intel_connector->base;
8124 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
8125 		      connector->name);
8126 
8127 	/* Grab the locks before changing connector property*/
8128 	mutex_lock(&connector->dev->mode_config.mutex);
8129 	/* Set connector link status to BAD and send a Uevent to notify
8130 	 * userspace to do a modeset.
8131 	 */
8132 	drm_connector_set_link_status_property(connector,
8133 					       DRM_MODE_LINK_STATUS_BAD);
8134 	mutex_unlock(&connector->dev->mode_config.mutex);
8135 	/* Send Hotplug uevent so userspace can reprobe */
8136 	drm_kms_helper_hotplug_event(connector->dev);
8137 }
8138 
8139 bool
8140 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
8141 			struct intel_connector *intel_connector)
8142 {
8143 	struct drm_connector *connector = &intel_connector->base;
8144 	struct intel_dp *intel_dp = &intel_dig_port->dp;
8145 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
8146 	struct drm_device *dev = intel_encoder->base.dev;
8147 	struct drm_i915_private *dev_priv = to_i915(dev);
8148 	enum port port = intel_encoder->port;
8149 	enum phy phy = intel_port_to_phy(dev_priv, port);
8150 	int type;
8151 
8152 	/* Initialize the work for modeset in case of link train failure */
8153 	INIT_WORK(&intel_connector->modeset_retry_work,
8154 		  intel_dp_modeset_retry_work_fn);
8155 
8156 	if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
8157 		     "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
8158 		     intel_dig_port->max_lanes, intel_encoder->base.base.id,
8159 		     intel_encoder->base.name))
8160 		return false;
8161 
8162 	intel_dp->reset_link_params = true;
8163 	intel_dp->pps_pipe = INVALID_PIPE;
8164 	intel_dp->active_pipe = INVALID_PIPE;
8165 
8166 	/* Preserve the current hw state. */
8167 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
8168 	intel_dp->attached_connector = intel_connector;
8169 
8170 	if (intel_dp_is_port_edp(dev_priv, port)) {
8171 		/*
8172 		 * Currently we don't support eDP on TypeC ports, although in
8173 		 * theory it could work on TypeC legacy ports.
8174 		 */
8175 		drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
8176 		type = DRM_MODE_CONNECTOR_eDP;
8177 		intel_encoder->type = INTEL_OUTPUT_EDP;
8178 
8179 		/* eDP only on port B and/or C on vlv/chv */
8180 		if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
8181 				      IS_CHERRYVIEW(dev_priv)) &&
8182 				port != PORT_B && port != PORT_C))
8183 			return false;
8184 	} else {
8185 		type = DRM_MODE_CONNECTOR_DisplayPort;
8186 	}
8187 
8188 	intel_dp_set_source_rates(intel_dp);
8189 
8190 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
8191 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
8192 
8193 	drm_dbg_kms(&dev_priv->drm,
8194 		    "Adding %s connector on [ENCODER:%d:%s]\n",
8195 		    type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
8196 		    intel_encoder->base.base.id, intel_encoder->base.name);
8197 
8198 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
8199 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
8200 
8201 	if (!HAS_GMCH(dev_priv))
8202 		connector->interlace_allowed = true;
8203 	connector->doublescan_allowed = 0;
8204 
8205 	if (INTEL_GEN(dev_priv) >= 11)
8206 		connector->ycbcr_420_allowed = true;
8207 
8208 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
8209 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
8210 
8211 	intel_dp_aux_init(intel_dp);
8212 
8213 	intel_connector_attach_encoder(intel_connector, intel_encoder);
8214 
8215 	if (HAS_DDI(dev_priv))
8216 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
8217 	else
8218 		intel_connector->get_hw_state = intel_connector_get_hw_state;
8219 
8220 	/* init MST on ports that can support it */
8221 	intel_dp_mst_encoder_init(intel_dig_port,
8222 				  intel_connector->base.base.id);
8223 
8224 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
8225 		intel_dp_aux_fini(intel_dp);
8226 		intel_dp_mst_encoder_cleanup(intel_dig_port);
8227 		goto fail;
8228 	}
8229 
8230 	intel_dp_add_properties(intel_dp, connector);
8231 
8232 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
8233 		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
8234 		if (ret)
8235 			drm_dbg_kms(&dev_priv->drm,
8236 				    "HDCP init failed, skipping.\n");
8237 	}
8238 
8239 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
8240 	 * 0xd.  Failure to do so will result in spurious interrupts being
8241 	 * generated on the port when a cable is not attached.
8242 	 */
8243 	if (IS_G45(dev_priv)) {
8244 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
8245 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
8246 			       (temp & ~0xf) | 0xd);
8247 	}
8248 
8249 	return true;
8250 
8251 fail:
8252 	drm_connector_cleanup(connector);
8253 
8254 	return false;
8255 }
8256 
8257 bool intel_dp_init(struct drm_i915_private *dev_priv,
8258 		   i915_reg_t output_reg,
8259 		   enum port port)
8260 {
8261 	struct intel_digital_port *intel_dig_port;
8262 	struct intel_encoder *intel_encoder;
8263 	struct drm_encoder *encoder;
8264 	struct intel_connector *intel_connector;
8265 
8266 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
8267 	if (!intel_dig_port)
8268 		return false;
8269 
8270 	intel_connector = intel_connector_alloc();
8271 	if (!intel_connector)
8272 		goto err_connector_alloc;
8273 
8274 	intel_encoder = &intel_dig_port->base;
8275 	encoder = &intel_encoder->base;
8276 
8277 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
8278 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
8279 			     "DP %c", port_name(port)))
8280 		goto err_encoder_init;
8281 
8282 	intel_encoder->hotplug = intel_dp_hotplug;
8283 	intel_encoder->compute_config = intel_dp_compute_config;
8284 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
8285 	intel_encoder->get_config = intel_dp_get_config;
8286 	intel_encoder->update_pipe = intel_panel_update_backlight;
8287 	intel_encoder->suspend = intel_dp_encoder_suspend;
8288 	if (IS_CHERRYVIEW(dev_priv)) {
8289 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
8290 		intel_encoder->pre_enable = chv_pre_enable_dp;
8291 		intel_encoder->enable = vlv_enable_dp;
8292 		intel_encoder->disable = vlv_disable_dp;
8293 		intel_encoder->post_disable = chv_post_disable_dp;
8294 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
8295 	} else if (IS_VALLEYVIEW(dev_priv)) {
8296 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
8297 		intel_encoder->pre_enable = vlv_pre_enable_dp;
8298 		intel_encoder->enable = vlv_enable_dp;
8299 		intel_encoder->disable = vlv_disable_dp;
8300 		intel_encoder->post_disable = vlv_post_disable_dp;
8301 	} else {
8302 		intel_encoder->pre_enable = g4x_pre_enable_dp;
8303 		intel_encoder->enable = g4x_enable_dp;
8304 		intel_encoder->disable = g4x_disable_dp;
8305 		intel_encoder->post_disable = g4x_post_disable_dp;
8306 	}
8307 
8308 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
8309 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A))
8310 		intel_dig_port->dp.set_link_train = cpt_set_link_train;
8311 	else
8312 		intel_dig_port->dp.set_link_train = g4x_set_link_train;
8313 
8314 	if (IS_CHERRYVIEW(dev_priv))
8315 		intel_dig_port->dp.set_signal_levels = chv_set_signal_levels;
8316 	else if (IS_VALLEYVIEW(dev_priv))
8317 		intel_dig_port->dp.set_signal_levels = vlv_set_signal_levels;
8318 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
8319 		intel_dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels;
8320 	else if (IS_GEN(dev_priv, 6) && port == PORT_A)
8321 		intel_dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels;
8322 	else
8323 		intel_dig_port->dp.set_signal_levels = g4x_set_signal_levels;
8324 
8325 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) ||
8326 	    (HAS_PCH_SPLIT(dev_priv) && port != PORT_A)) {
8327 		intel_dig_port->dp.preemph_max = intel_dp_pre_empemph_max_3;
8328 		intel_dig_port->dp.voltage_max = intel_dp_voltage_max_3;
8329 	} else {
8330 		intel_dig_port->dp.preemph_max = intel_dp_pre_empemph_max_2;
8331 		intel_dig_port->dp.voltage_max = intel_dp_voltage_max_2;
8332 	}
8333 
8334 	intel_dig_port->dp.output_reg = output_reg;
8335 	intel_dig_port->max_lanes = 4;
8336 	intel_dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
8337 	intel_dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
8338 
8339 	intel_encoder->type = INTEL_OUTPUT_DP;
8340 	intel_encoder->power_domain = intel_port_to_power_domain(port);
8341 	if (IS_CHERRYVIEW(dev_priv)) {
8342 		if (port == PORT_D)
8343 			intel_encoder->pipe_mask = BIT(PIPE_C);
8344 		else
8345 			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
8346 	} else {
8347 		intel_encoder->pipe_mask = ~0;
8348 	}
8349 	intel_encoder->cloneable = 0;
8350 	intel_encoder->port = port;
8351 
8352 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
8353 
8354 	if (HAS_GMCH(dev_priv)) {
8355 		if (IS_GM45(dev_priv))
8356 			intel_dig_port->connected = gm45_digital_port_connected;
8357 		else
8358 			intel_dig_port->connected = g4x_digital_port_connected;
8359 	} else {
8360 		if (port == PORT_A)
8361 			intel_dig_port->connected = ilk_digital_port_connected;
8362 		else
8363 			intel_dig_port->connected = ibx_digital_port_connected;
8364 	}
8365 
8366 	if (port != PORT_A)
8367 		intel_infoframe_init(intel_dig_port);
8368 
8369 	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
8370 	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
8371 		goto err_init_connector;
8372 
8373 	return true;
8374 
8375 err_init_connector:
8376 	drm_encoder_cleanup(encoder);
8377 err_encoder_init:
8378 	kfree(intel_connector);
8379 err_connector_alloc:
8380 	kfree(intel_dig_port);
8381 	return false;
8382 }
8383 
8384 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8385 {
8386 	struct intel_encoder *encoder;
8387 
8388 	for_each_intel_encoder(&dev_priv->drm, encoder) {
8389 		struct intel_dp *intel_dp;
8390 
8391 		if (encoder->type != INTEL_OUTPUT_DDI)
8392 			continue;
8393 
8394 		intel_dp = enc_to_intel_dp(encoder);
8395 
8396 		if (!intel_dp->can_mst)
8397 			continue;
8398 
8399 		if (intel_dp->is_mst)
8400 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8401 	}
8402 }
8403 
8404 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8405 {
8406 	struct intel_encoder *encoder;
8407 
8408 	for_each_intel_encoder(&dev_priv->drm, encoder) {
8409 		struct intel_dp *intel_dp;
8410 		int ret;
8411 
8412 		if (encoder->type != INTEL_OUTPUT_DDI)
8413 			continue;
8414 
8415 		intel_dp = enc_to_intel_dp(encoder);
8416 
8417 		if (!intel_dp->can_mst)
8418 			continue;
8419 
8420 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8421 						     true);
8422 		if (ret) {
8423 			intel_dp->is_mst = false;
8424 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8425 							false);
8426 		}
8427 	}
8428 }
8429