1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/notifier.h> 31 #include <linux/reboot.h> 32 #include <linux/slab.h> 33 #include <linux/types.h> 34 35 #include <asm/byteorder.h> 36 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_crtc.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_hdcp.h> 42 #include <drm/drm_probe_helper.h> 43 44 #include "i915_debugfs.h" 45 #include "i915_drv.h" 46 #include "i915_trace.h" 47 #include "intel_atomic.h" 48 #include "intel_audio.h" 49 #include "intel_connector.h" 50 #include "intel_ddi.h" 51 #include "intel_display_types.h" 52 #include "intel_dp.h" 53 #include "intel_dp_link_training.h" 54 #include "intel_dp_mst.h" 55 #include "intel_dpio_phy.h" 56 #include "intel_fifo_underrun.h" 57 #include "intel_hdcp.h" 58 #include "intel_hdmi.h" 59 #include "intel_hotplug.h" 60 #include "intel_lspcon.h" 61 #include "intel_lvds.h" 62 #include "intel_panel.h" 63 #include "intel_psr.h" 64 #include "intel_sideband.h" 65 #include "intel_tc.h" 66 #include "intel_vdsc.h" 67 68 #define DP_DPRX_ESI_LEN 14 69 70 /* DP DSC throughput values used for slice count calculations KPixels/s */ 71 #define DP_DSC_PEAK_PIXEL_RATE 2720000 72 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 73 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 74 75 /* DP DSC FEC Overhead factor = 1/(0.972261) */ 76 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261 77 78 /* Compliance test status bits */ 79 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 80 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) 81 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) 82 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) 83 84 struct dp_link_dpll { 85 int clock; 86 struct dpll dpll; 87 }; 88 89 static const struct dp_link_dpll g4x_dpll[] = { 90 { 162000, 91 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, 92 { 270000, 93 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } 94 }; 95 96 static const struct dp_link_dpll pch_dpll[] = { 97 { 162000, 98 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, 99 { 270000, 100 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } 101 }; 102 103 static const struct dp_link_dpll vlv_dpll[] = { 104 { 162000, 105 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, 106 { 270000, 107 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } 108 }; 109 110 /* 111 * CHV supports eDP 1.4 that have more link rates. 112 * Below only provides the fixed rate but exclude variable rate. 113 */ 114 static const struct dp_link_dpll chv_dpll[] = { 115 /* 116 * CHV requires to program fractional division for m2. 117 * m2 is stored in fixed point format using formula below 118 * (m2_int << 22) | m2_fraction 119 */ 120 { 162000, /* m2_int = 32, m2_fraction = 1677722 */ 121 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, 122 { 270000, /* m2_int = 27, m2_fraction = 0 */ 123 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, 124 }; 125 126 /* Constants for DP DSC configurations */ 127 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 128 129 /* With Single pipe configuration, HW is capable of supporting maximum 130 * of 4 slices per line. 131 */ 132 static const u8 valid_dsc_slicecount[] = {1, 2, 4}; 133 134 /** 135 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 136 * @intel_dp: DP struct 137 * 138 * If a CPU or PCH DP output is attached to an eDP panel, this function 139 * will return true, and false otherwise. 140 * 141 * This function is not safe to use prior to encoder type being set. 142 */ 143 bool intel_dp_is_edp(struct intel_dp *intel_dp) 144 { 145 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 146 147 return intel_dig_port->base.type == INTEL_OUTPUT_EDP; 148 } 149 150 static void intel_dp_link_down(struct intel_encoder *encoder, 151 const struct intel_crtc_state *old_crtc_state); 152 static bool edp_panel_vdd_on(struct intel_dp *intel_dp); 153 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); 154 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 155 const struct intel_crtc_state *crtc_state); 156 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 157 enum pipe pipe); 158 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 159 160 /* update sink rates from dpcd */ 161 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 162 { 163 static const int dp_rates[] = { 164 162000, 270000, 540000, 810000 165 }; 166 int i, max_rate; 167 168 if (drm_dp_has_quirk(&intel_dp->desc, 0, 169 DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) { 170 /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */ 171 static const int quirk_rates[] = { 162000, 270000, 324000 }; 172 173 memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates)); 174 intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates); 175 176 return; 177 } 178 179 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 180 181 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 182 if (dp_rates[i] > max_rate) 183 break; 184 intel_dp->sink_rates[i] = dp_rates[i]; 185 } 186 187 intel_dp->num_sink_rates = i; 188 } 189 190 /* Get length of rates array potentially limited by max_rate. */ 191 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 192 { 193 int i; 194 195 /* Limit results by potentially reduced max rate */ 196 for (i = 0; i < len; i++) { 197 if (rates[len - i - 1] <= max_rate) 198 return len - i; 199 } 200 201 return 0; 202 } 203 204 /* Get length of common rates array potentially limited by max_rate. */ 205 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 206 int max_rate) 207 { 208 return intel_dp_rate_limit_len(intel_dp->common_rates, 209 intel_dp->num_common_rates, max_rate); 210 } 211 212 /* Theoretical max between source and sink */ 213 static int intel_dp_max_common_rate(struct intel_dp *intel_dp) 214 { 215 return intel_dp->common_rates[intel_dp->num_common_rates - 1]; 216 } 217 218 /* Theoretical max between source and sink */ 219 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 220 { 221 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 222 int source_max = intel_dig_port->max_lanes; 223 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); 224 int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port); 225 226 return min3(source_max, sink_max, fia_max); 227 } 228 229 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 230 { 231 return intel_dp->max_link_lane_count; 232 } 233 234 int 235 intel_dp_link_required(int pixel_clock, int bpp) 236 { 237 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 238 return DIV_ROUND_UP(pixel_clock * bpp, 8); 239 } 240 241 int 242 intel_dp_max_data_rate(int max_link_clock, int max_lanes) 243 { 244 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the 245 * link rate that is generally expressed in Gbps. Since, 8 bits of data 246 * is transmitted every LS_Clk per lane, there is no need to account for 247 * the channel encoding that is done in the PHY layer here. 248 */ 249 250 return max_link_clock * max_lanes; 251 } 252 253 static int 254 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp) 255 { 256 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 257 struct intel_encoder *encoder = &intel_dig_port->base; 258 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 259 int max_dotclk = dev_priv->max_dotclk_freq; 260 int ds_max_dotclk; 261 262 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 263 264 if (type != DP_DS_PORT_TYPE_VGA) 265 return max_dotclk; 266 267 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd, 268 intel_dp->downstream_ports); 269 270 if (ds_max_dotclk != 0) 271 max_dotclk = min(max_dotclk, ds_max_dotclk); 272 273 return max_dotclk; 274 } 275 276 static int cnl_max_source_rate(struct intel_dp *intel_dp) 277 { 278 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 279 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 280 enum port port = dig_port->base.port; 281 282 u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; 283 284 /* Low voltage SKUs are limited to max of 5.4G */ 285 if (voltage == VOLTAGE_INFO_0_85V) 286 return 540000; 287 288 /* For this SKU 8.1G is supported in all ports */ 289 if (IS_CNL_WITH_PORT_F(dev_priv)) 290 return 810000; 291 292 /* For other SKUs, max rate on ports A and D is 5.4G */ 293 if (port == PORT_A || port == PORT_D) 294 return 540000; 295 296 return 810000; 297 } 298 299 static int icl_max_source_rate(struct intel_dp *intel_dp) 300 { 301 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 302 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 303 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 304 305 if (intel_phy_is_combo(dev_priv, phy) && 306 !IS_ELKHARTLAKE(dev_priv) && 307 !intel_dp_is_edp(intel_dp)) 308 return 540000; 309 310 return 810000; 311 } 312 313 static void 314 intel_dp_set_source_rates(struct intel_dp *intel_dp) 315 { 316 /* The values must be in increasing order */ 317 static const int cnl_rates[] = { 318 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 319 }; 320 static const int bxt_rates[] = { 321 162000, 216000, 243000, 270000, 324000, 432000, 540000 322 }; 323 static const int skl_rates[] = { 324 162000, 216000, 270000, 324000, 432000, 540000 325 }; 326 static const int hsw_rates[] = { 327 162000, 270000, 540000 328 }; 329 static const int g4x_rates[] = { 330 162000, 270000 331 }; 332 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 333 struct intel_encoder *encoder = &dig_port->base; 334 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 335 const int *source_rates; 336 int size, max_rate = 0, vbt_max_rate; 337 338 /* This should only be done once */ 339 drm_WARN_ON(&dev_priv->drm, 340 intel_dp->source_rates || intel_dp->num_source_rates); 341 342 if (INTEL_GEN(dev_priv) >= 10) { 343 source_rates = cnl_rates; 344 size = ARRAY_SIZE(cnl_rates); 345 if (IS_GEN(dev_priv, 10)) 346 max_rate = cnl_max_source_rate(intel_dp); 347 else 348 max_rate = icl_max_source_rate(intel_dp); 349 } else if (IS_GEN9_LP(dev_priv)) { 350 source_rates = bxt_rates; 351 size = ARRAY_SIZE(bxt_rates); 352 } else if (IS_GEN9_BC(dev_priv)) { 353 source_rates = skl_rates; 354 size = ARRAY_SIZE(skl_rates); 355 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || 356 IS_BROADWELL(dev_priv)) { 357 source_rates = hsw_rates; 358 size = ARRAY_SIZE(hsw_rates); 359 } else { 360 source_rates = g4x_rates; 361 size = ARRAY_SIZE(g4x_rates); 362 } 363 364 vbt_max_rate = intel_bios_dp_max_link_rate(encoder); 365 if (max_rate && vbt_max_rate) 366 max_rate = min(max_rate, vbt_max_rate); 367 else if (vbt_max_rate) 368 max_rate = vbt_max_rate; 369 370 if (max_rate) 371 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 372 373 intel_dp->source_rates = source_rates; 374 intel_dp->num_source_rates = size; 375 } 376 377 static int intersect_rates(const int *source_rates, int source_len, 378 const int *sink_rates, int sink_len, 379 int *common_rates) 380 { 381 int i = 0, j = 0, k = 0; 382 383 while (i < source_len && j < sink_len) { 384 if (source_rates[i] == sink_rates[j]) { 385 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 386 return k; 387 common_rates[k] = source_rates[i]; 388 ++k; 389 ++i; 390 ++j; 391 } else if (source_rates[i] < sink_rates[j]) { 392 ++i; 393 } else { 394 ++j; 395 } 396 } 397 return k; 398 } 399 400 /* return index of rate in rates array, or -1 if not found */ 401 static int intel_dp_rate_index(const int *rates, int len, int rate) 402 { 403 int i; 404 405 for (i = 0; i < len; i++) 406 if (rate == rates[i]) 407 return i; 408 409 return -1; 410 } 411 412 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 413 { 414 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 415 416 drm_WARN_ON(&i915->drm, 417 !intel_dp->num_source_rates || !intel_dp->num_sink_rates); 418 419 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 420 intel_dp->num_source_rates, 421 intel_dp->sink_rates, 422 intel_dp->num_sink_rates, 423 intel_dp->common_rates); 424 425 /* Paranoia, there should always be something in common. */ 426 if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) { 427 intel_dp->common_rates[0] = 162000; 428 intel_dp->num_common_rates = 1; 429 } 430 } 431 432 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 433 u8 lane_count) 434 { 435 /* 436 * FIXME: we need to synchronize the current link parameters with 437 * hardware readout. Currently fast link training doesn't work on 438 * boot-up. 439 */ 440 if (link_rate == 0 || 441 link_rate > intel_dp->max_link_rate) 442 return false; 443 444 if (lane_count == 0 || 445 lane_count > intel_dp_max_lane_count(intel_dp)) 446 return false; 447 448 return true; 449 } 450 451 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, 452 int link_rate, 453 u8 lane_count) 454 { 455 const struct drm_display_mode *fixed_mode = 456 intel_dp->attached_connector->panel.fixed_mode; 457 int mode_rate, max_rate; 458 459 mode_rate = intel_dp_link_required(fixed_mode->clock, 18); 460 max_rate = intel_dp_max_data_rate(link_rate, lane_count); 461 if (mode_rate > max_rate) 462 return false; 463 464 return true; 465 } 466 467 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, 468 int link_rate, u8 lane_count) 469 { 470 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 471 int index; 472 473 /* 474 * TODO: Enable fallback on MST links once MST link compute can handle 475 * the fallback params. 476 */ 477 if (intel_dp->is_mst) { 478 drm_err(&i915->drm, "Link Training Unsuccessful\n"); 479 return -1; 480 } 481 482 index = intel_dp_rate_index(intel_dp->common_rates, 483 intel_dp->num_common_rates, 484 link_rate); 485 if (index > 0) { 486 if (intel_dp_is_edp(intel_dp) && 487 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 488 intel_dp->common_rates[index - 1], 489 lane_count)) { 490 drm_dbg_kms(&i915->drm, 491 "Retrying Link training for eDP with same parameters\n"); 492 return 0; 493 } 494 intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; 495 intel_dp->max_link_lane_count = lane_count; 496 } else if (lane_count > 1) { 497 if (intel_dp_is_edp(intel_dp) && 498 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 499 intel_dp_max_common_rate(intel_dp), 500 lane_count >> 1)) { 501 drm_dbg_kms(&i915->drm, 502 "Retrying Link training for eDP with same parameters\n"); 503 return 0; 504 } 505 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 506 intel_dp->max_link_lane_count = lane_count >> 1; 507 } else { 508 drm_err(&i915->drm, "Link Training Unsuccessful\n"); 509 return -1; 510 } 511 512 return 0; 513 } 514 515 u32 intel_dp_mode_to_fec_clock(u32 mode_clock) 516 { 517 return div_u64(mul_u32_u32(mode_clock, 1000000U), 518 DP_DSC_FEC_OVERHEAD_FACTOR); 519 } 520 521 static int 522 small_joiner_ram_size_bits(struct drm_i915_private *i915) 523 { 524 if (INTEL_GEN(i915) >= 11) 525 return 7680 * 8; 526 else 527 return 6144 * 8; 528 } 529 530 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915, 531 u32 link_clock, u32 lane_count, 532 u32 mode_clock, u32 mode_hdisplay) 533 { 534 u32 bits_per_pixel, max_bpp_small_joiner_ram; 535 int i; 536 537 /* 538 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 539 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP) 540 * for SST -> TimeSlotsPerMTP is 1, 541 * for MST -> TimeSlotsPerMTP has to be calculated 542 */ 543 bits_per_pixel = (link_clock * lane_count * 8) / 544 intel_dp_mode_to_fec_clock(mode_clock); 545 drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel); 546 547 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 548 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / 549 mode_hdisplay; 550 drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n", 551 max_bpp_small_joiner_ram); 552 553 /* 554 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW 555 * check, output bpp from small joiner RAM check) 556 */ 557 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); 558 559 /* Error out if the max bpp is less than smallest allowed valid bpp */ 560 if (bits_per_pixel < valid_dsc_bpp[0]) { 561 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n", 562 bits_per_pixel, valid_dsc_bpp[0]); 563 return 0; 564 } 565 566 /* Find the nearest match in the array of known BPPs from VESA */ 567 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 568 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 569 break; 570 } 571 bits_per_pixel = valid_dsc_bpp[i]; 572 573 /* 574 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, 575 * fractional part is 0 576 */ 577 return bits_per_pixel << 4; 578 } 579 580 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, 581 int mode_clock, int mode_hdisplay) 582 { 583 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 584 u8 min_slice_count, i; 585 int max_slice_width; 586 587 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 588 min_slice_count = DIV_ROUND_UP(mode_clock, 589 DP_DSC_MAX_ENC_THROUGHPUT_0); 590 else 591 min_slice_count = DIV_ROUND_UP(mode_clock, 592 DP_DSC_MAX_ENC_THROUGHPUT_1); 593 594 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); 595 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 596 drm_dbg_kms(&i915->drm, 597 "Unsupported slice width %d by DP DSC Sink device\n", 598 max_slice_width); 599 return 0; 600 } 601 /* Also take into account max slice width */ 602 min_slice_count = min_t(u8, min_slice_count, 603 DIV_ROUND_UP(mode_hdisplay, 604 max_slice_width)); 605 606 /* Find the closest match to the valid slice count values */ 607 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 608 if (valid_dsc_slicecount[i] > 609 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 610 false)) 611 break; 612 if (min_slice_count <= valid_dsc_slicecount[i]) 613 return valid_dsc_slicecount[i]; 614 } 615 616 drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n", 617 min_slice_count); 618 return 0; 619 } 620 621 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv, 622 int hdisplay) 623 { 624 /* 625 * Older platforms don't like hdisplay==4096 with DP. 626 * 627 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline 628 * and frame counter increment), but we don't get vblank interrupts, 629 * and the pipe underruns immediately. The link also doesn't seem 630 * to get trained properly. 631 * 632 * On CHV the vblank interrupts don't seem to disappear but 633 * otherwise the symptoms are similar. 634 * 635 * TODO: confirm the behaviour on HSW+ 636 */ 637 return hdisplay == 4096 && !HAS_DDI(dev_priv); 638 } 639 640 static enum drm_mode_status 641 intel_dp_mode_valid(struct drm_connector *connector, 642 struct drm_display_mode *mode) 643 { 644 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 645 struct intel_connector *intel_connector = to_intel_connector(connector); 646 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; 647 struct drm_i915_private *dev_priv = to_i915(connector->dev); 648 int target_clock = mode->clock; 649 int max_rate, mode_rate, max_lanes, max_link_clock; 650 int max_dotclk; 651 u16 dsc_max_output_bpp = 0; 652 u8 dsc_slice_count = 0; 653 654 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 655 return MODE_NO_DBLESCAN; 656 657 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp); 658 659 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 660 if (mode->hdisplay > fixed_mode->hdisplay) 661 return MODE_PANEL; 662 663 if (mode->vdisplay > fixed_mode->vdisplay) 664 return MODE_PANEL; 665 666 target_clock = fixed_mode->clock; 667 } 668 669 max_link_clock = intel_dp_max_link_rate(intel_dp); 670 max_lanes = intel_dp_max_lane_count(intel_dp); 671 672 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); 673 mode_rate = intel_dp_link_required(target_clock, 18); 674 675 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay)) 676 return MODE_H_ILLEGAL; 677 678 /* 679 * Output bpp is stored in 6.4 format so right shift by 4 to get the 680 * integer value since we support only integer values of bpp. 681 */ 682 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && 683 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { 684 if (intel_dp_is_edp(intel_dp)) { 685 dsc_max_output_bpp = 686 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; 687 dsc_slice_count = 688 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 689 true); 690 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { 691 dsc_max_output_bpp = 692 intel_dp_dsc_get_output_bpp(dev_priv, 693 max_link_clock, 694 max_lanes, 695 target_clock, 696 mode->hdisplay) >> 4; 697 dsc_slice_count = 698 intel_dp_dsc_get_slice_count(intel_dp, 699 target_clock, 700 mode->hdisplay); 701 } 702 } 703 704 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) || 705 target_clock > max_dotclk) 706 return MODE_CLOCK_HIGH; 707 708 if (mode->clock < 10000) 709 return MODE_CLOCK_LOW; 710 711 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 712 return MODE_H_ILLEGAL; 713 714 return intel_mode_valid_max_plane_size(dev_priv, mode); 715 } 716 717 u32 intel_dp_pack_aux(const u8 *src, int src_bytes) 718 { 719 int i; 720 u32 v = 0; 721 722 if (src_bytes > 4) 723 src_bytes = 4; 724 for (i = 0; i < src_bytes; i++) 725 v |= ((u32)src[i]) << ((3 - i) * 8); 726 return v; 727 } 728 729 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) 730 { 731 int i; 732 if (dst_bytes > 4) 733 dst_bytes = 4; 734 for (i = 0; i < dst_bytes; i++) 735 dst[i] = src >> ((3-i) * 8); 736 } 737 738 static void 739 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); 740 static void 741 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 742 bool force_disable_vdd); 743 static void 744 intel_dp_pps_init(struct intel_dp *intel_dp); 745 746 static intel_wakeref_t 747 pps_lock(struct intel_dp *intel_dp) 748 { 749 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 750 intel_wakeref_t wakeref; 751 752 /* 753 * See intel_power_sequencer_reset() why we need 754 * a power domain reference here. 755 */ 756 wakeref = intel_display_power_get(dev_priv, 757 intel_aux_power_domain(dp_to_dig_port(intel_dp))); 758 759 mutex_lock(&dev_priv->pps_mutex); 760 761 return wakeref; 762 } 763 764 static intel_wakeref_t 765 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) 766 { 767 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 768 769 mutex_unlock(&dev_priv->pps_mutex); 770 intel_display_power_put(dev_priv, 771 intel_aux_power_domain(dp_to_dig_port(intel_dp)), 772 wakeref); 773 return 0; 774 } 775 776 #define with_pps_lock(dp, wf) \ 777 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) 778 779 static void 780 vlv_power_sequencer_kick(struct intel_dp *intel_dp) 781 { 782 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 783 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 784 enum pipe pipe = intel_dp->pps_pipe; 785 bool pll_enabled, release_cl_override = false; 786 enum dpio_phy phy = DPIO_PHY(pipe); 787 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 788 u32 DP; 789 790 if (drm_WARN(&dev_priv->drm, 791 intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN, 792 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n", 793 pipe_name(pipe), intel_dig_port->base.base.base.id, 794 intel_dig_port->base.base.name)) 795 return; 796 797 drm_dbg_kms(&dev_priv->drm, 798 "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n", 799 pipe_name(pipe), intel_dig_port->base.base.base.id, 800 intel_dig_port->base.base.name); 801 802 /* Preserve the BIOS-computed detected bit. This is 803 * supposed to be read-only. 804 */ 805 DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED; 806 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 807 DP |= DP_PORT_WIDTH(1); 808 DP |= DP_LINK_TRAIN_PAT_1; 809 810 if (IS_CHERRYVIEW(dev_priv)) 811 DP |= DP_PIPE_SEL_CHV(pipe); 812 else 813 DP |= DP_PIPE_SEL(pipe); 814 815 pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE; 816 817 /* 818 * The DPLL for the pipe must be enabled for this to work. 819 * So enable temporarily it if it's not already enabled. 820 */ 821 if (!pll_enabled) { 822 release_cl_override = IS_CHERRYVIEW(dev_priv) && 823 !chv_phy_powergate_ch(dev_priv, phy, ch, true); 824 825 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? 826 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { 827 drm_err(&dev_priv->drm, 828 "Failed to force on pll for pipe %c!\n", 829 pipe_name(pipe)); 830 return; 831 } 832 } 833 834 /* 835 * Similar magic as in intel_dp_enable_port(). 836 * We _must_ do this port enable + disable trick 837 * to make this power sequencer lock onto the port. 838 * Otherwise even VDD force bit won't work. 839 */ 840 intel_de_write(dev_priv, intel_dp->output_reg, DP); 841 intel_de_posting_read(dev_priv, intel_dp->output_reg); 842 843 intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN); 844 intel_de_posting_read(dev_priv, intel_dp->output_reg); 845 846 intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN); 847 intel_de_posting_read(dev_priv, intel_dp->output_reg); 848 849 if (!pll_enabled) { 850 vlv_force_pll_off(dev_priv, pipe); 851 852 if (release_cl_override) 853 chv_phy_powergate_ch(dev_priv, phy, ch, false); 854 } 855 } 856 857 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) 858 { 859 struct intel_encoder *encoder; 860 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); 861 862 /* 863 * We don't have power sequencer currently. 864 * Pick one that's not used by other ports. 865 */ 866 for_each_intel_dp(&dev_priv->drm, encoder) { 867 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 868 869 if (encoder->type == INTEL_OUTPUT_EDP) { 870 drm_WARN_ON(&dev_priv->drm, 871 intel_dp->active_pipe != INVALID_PIPE && 872 intel_dp->active_pipe != 873 intel_dp->pps_pipe); 874 875 if (intel_dp->pps_pipe != INVALID_PIPE) 876 pipes &= ~(1 << intel_dp->pps_pipe); 877 } else { 878 drm_WARN_ON(&dev_priv->drm, 879 intel_dp->pps_pipe != INVALID_PIPE); 880 881 if (intel_dp->active_pipe != INVALID_PIPE) 882 pipes &= ~(1 << intel_dp->active_pipe); 883 } 884 } 885 886 if (pipes == 0) 887 return INVALID_PIPE; 888 889 return ffs(pipes) - 1; 890 } 891 892 static enum pipe 893 vlv_power_sequencer_pipe(struct intel_dp *intel_dp) 894 { 895 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 896 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 897 enum pipe pipe; 898 899 lockdep_assert_held(&dev_priv->pps_mutex); 900 901 /* We should never land here with regular DP ports */ 902 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp)); 903 904 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE && 905 intel_dp->active_pipe != intel_dp->pps_pipe); 906 907 if (intel_dp->pps_pipe != INVALID_PIPE) 908 return intel_dp->pps_pipe; 909 910 pipe = vlv_find_free_pps(dev_priv); 911 912 /* 913 * Didn't find one. This should not happen since there 914 * are two power sequencers and up to two eDP ports. 915 */ 916 if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE)) 917 pipe = PIPE_A; 918 919 vlv_steal_power_sequencer(dev_priv, pipe); 920 intel_dp->pps_pipe = pipe; 921 922 drm_dbg_kms(&dev_priv->drm, 923 "picked pipe %c power sequencer for [ENCODER:%d:%s]\n", 924 pipe_name(intel_dp->pps_pipe), 925 intel_dig_port->base.base.base.id, 926 intel_dig_port->base.base.name); 927 928 /* init power sequencer on this pipe and port */ 929 intel_dp_init_panel_power_sequencer(intel_dp); 930 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 931 932 /* 933 * Even vdd force doesn't work until we've made 934 * the power sequencer lock in on the port. 935 */ 936 vlv_power_sequencer_kick(intel_dp); 937 938 return intel_dp->pps_pipe; 939 } 940 941 static int 942 bxt_power_sequencer_idx(struct intel_dp *intel_dp) 943 { 944 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 945 int backlight_controller = dev_priv->vbt.backlight.controller; 946 947 lockdep_assert_held(&dev_priv->pps_mutex); 948 949 /* We should never land here with regular DP ports */ 950 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp)); 951 952 if (!intel_dp->pps_reset) 953 return backlight_controller; 954 955 intel_dp->pps_reset = false; 956 957 /* 958 * Only the HW needs to be reprogrammed, the SW state is fixed and 959 * has been setup during connector init. 960 */ 961 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 962 963 return backlight_controller; 964 } 965 966 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, 967 enum pipe pipe); 968 969 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, 970 enum pipe pipe) 971 { 972 return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON; 973 } 974 975 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, 976 enum pipe pipe) 977 { 978 return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD; 979 } 980 981 static bool vlv_pipe_any(struct drm_i915_private *dev_priv, 982 enum pipe pipe) 983 { 984 return true; 985 } 986 987 static enum pipe 988 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, 989 enum port port, 990 vlv_pipe_check pipe_check) 991 { 992 enum pipe pipe; 993 994 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { 995 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) & 996 PANEL_PORT_SELECT_MASK; 997 998 if (port_sel != PANEL_PORT_SELECT_VLV(port)) 999 continue; 1000 1001 if (!pipe_check(dev_priv, pipe)) 1002 continue; 1003 1004 return pipe; 1005 } 1006 1007 return INVALID_PIPE; 1008 } 1009 1010 static void 1011 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) 1012 { 1013 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1014 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1015 enum port port = intel_dig_port->base.port; 1016 1017 lockdep_assert_held(&dev_priv->pps_mutex); 1018 1019 /* try to find a pipe with this port selected */ 1020 /* first pick one where the panel is on */ 1021 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 1022 vlv_pipe_has_pp_on); 1023 /* didn't find one? pick one where vdd is on */ 1024 if (intel_dp->pps_pipe == INVALID_PIPE) 1025 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 1026 vlv_pipe_has_vdd_on); 1027 /* didn't find one? pick one with just the correct port */ 1028 if (intel_dp->pps_pipe == INVALID_PIPE) 1029 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 1030 vlv_pipe_any); 1031 1032 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ 1033 if (intel_dp->pps_pipe == INVALID_PIPE) { 1034 drm_dbg_kms(&dev_priv->drm, 1035 "no initial power sequencer for [ENCODER:%d:%s]\n", 1036 intel_dig_port->base.base.base.id, 1037 intel_dig_port->base.base.name); 1038 return; 1039 } 1040 1041 drm_dbg_kms(&dev_priv->drm, 1042 "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n", 1043 intel_dig_port->base.base.base.id, 1044 intel_dig_port->base.base.name, 1045 pipe_name(intel_dp->pps_pipe)); 1046 1047 intel_dp_init_panel_power_sequencer(intel_dp); 1048 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 1049 } 1050 1051 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) 1052 { 1053 struct intel_encoder *encoder; 1054 1055 if (drm_WARN_ON(&dev_priv->drm, 1056 !(IS_VALLEYVIEW(dev_priv) || 1057 IS_CHERRYVIEW(dev_priv) || 1058 IS_GEN9_LP(dev_priv)))) 1059 return; 1060 1061 /* 1062 * We can't grab pps_mutex here due to deadlock with power_domain 1063 * mutex when power_domain functions are called while holding pps_mutex. 1064 * That also means that in order to use pps_pipe the code needs to 1065 * hold both a power domain reference and pps_mutex, and the power domain 1066 * reference get/put must be done while _not_ holding pps_mutex. 1067 * pps_{lock,unlock}() do these steps in the correct order, so one 1068 * should use them always. 1069 */ 1070 1071 for_each_intel_dp(&dev_priv->drm, encoder) { 1072 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1073 1074 drm_WARN_ON(&dev_priv->drm, 1075 intel_dp->active_pipe != INVALID_PIPE); 1076 1077 if (encoder->type != INTEL_OUTPUT_EDP) 1078 continue; 1079 1080 if (IS_GEN9_LP(dev_priv)) 1081 intel_dp->pps_reset = true; 1082 else 1083 intel_dp->pps_pipe = INVALID_PIPE; 1084 } 1085 } 1086 1087 struct pps_registers { 1088 i915_reg_t pp_ctrl; 1089 i915_reg_t pp_stat; 1090 i915_reg_t pp_on; 1091 i915_reg_t pp_off; 1092 i915_reg_t pp_div; 1093 }; 1094 1095 static void intel_pps_get_registers(struct intel_dp *intel_dp, 1096 struct pps_registers *regs) 1097 { 1098 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1099 int pps_idx = 0; 1100 1101 memset(regs, 0, sizeof(*regs)); 1102 1103 if (IS_GEN9_LP(dev_priv)) 1104 pps_idx = bxt_power_sequencer_idx(intel_dp); 1105 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1106 pps_idx = vlv_power_sequencer_pipe(intel_dp); 1107 1108 regs->pp_ctrl = PP_CONTROL(pps_idx); 1109 regs->pp_stat = PP_STATUS(pps_idx); 1110 regs->pp_on = PP_ON_DELAYS(pps_idx); 1111 regs->pp_off = PP_OFF_DELAYS(pps_idx); 1112 1113 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ 1114 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 1115 regs->pp_div = INVALID_MMIO_REG; 1116 else 1117 regs->pp_div = PP_DIVISOR(pps_idx); 1118 } 1119 1120 static i915_reg_t 1121 _pp_ctrl_reg(struct intel_dp *intel_dp) 1122 { 1123 struct pps_registers regs; 1124 1125 intel_pps_get_registers(intel_dp, ®s); 1126 1127 return regs.pp_ctrl; 1128 } 1129 1130 static i915_reg_t 1131 _pp_stat_reg(struct intel_dp *intel_dp) 1132 { 1133 struct pps_registers regs; 1134 1135 intel_pps_get_registers(intel_dp, ®s); 1136 1137 return regs.pp_stat; 1138 } 1139 1140 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing 1141 This function only applicable when panel PM state is not to be tracked */ 1142 static int edp_notify_handler(struct notifier_block *this, unsigned long code, 1143 void *unused) 1144 { 1145 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), 1146 edp_notifier); 1147 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1148 intel_wakeref_t wakeref; 1149 1150 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) 1151 return 0; 1152 1153 with_pps_lock(intel_dp, wakeref) { 1154 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1155 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); 1156 i915_reg_t pp_ctrl_reg, pp_div_reg; 1157 u32 pp_div; 1158 1159 pp_ctrl_reg = PP_CONTROL(pipe); 1160 pp_div_reg = PP_DIVISOR(pipe); 1161 pp_div = intel_de_read(dev_priv, pp_div_reg); 1162 pp_div &= PP_REFERENCE_DIVIDER_MASK; 1163 1164 /* 0x1F write to PP_DIV_REG sets max cycle delay */ 1165 intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F); 1166 intel_de_write(dev_priv, pp_ctrl_reg, 1167 PANEL_UNLOCK_REGS); 1168 msleep(intel_dp->panel_power_cycle_delay); 1169 } 1170 } 1171 1172 return 0; 1173 } 1174 1175 static bool edp_have_panel_power(struct intel_dp *intel_dp) 1176 { 1177 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1178 1179 lockdep_assert_held(&dev_priv->pps_mutex); 1180 1181 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1182 intel_dp->pps_pipe == INVALID_PIPE) 1183 return false; 1184 1185 return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0; 1186 } 1187 1188 static bool edp_have_panel_vdd(struct intel_dp *intel_dp) 1189 { 1190 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1191 1192 lockdep_assert_held(&dev_priv->pps_mutex); 1193 1194 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1195 intel_dp->pps_pipe == INVALID_PIPE) 1196 return false; 1197 1198 return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; 1199 } 1200 1201 static void 1202 intel_dp_check_edp(struct intel_dp *intel_dp) 1203 { 1204 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1205 1206 if (!intel_dp_is_edp(intel_dp)) 1207 return; 1208 1209 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { 1210 drm_WARN(&dev_priv->drm, 1, 1211 "eDP powered off while attempting aux channel communication.\n"); 1212 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n", 1213 intel_de_read(dev_priv, _pp_stat_reg(intel_dp)), 1214 intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp))); 1215 } 1216 } 1217 1218 static u32 1219 intel_dp_aux_wait_done(struct intel_dp *intel_dp) 1220 { 1221 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1222 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1223 const unsigned int timeout_ms = 10; 1224 u32 status; 1225 bool done; 1226 1227 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1228 done = wait_event_timeout(i915->gmbus_wait_queue, C, 1229 msecs_to_jiffies_timeout(timeout_ms)); 1230 1231 /* just trace the final value */ 1232 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1233 1234 if (!done) 1235 drm_err(&i915->drm, 1236 "%s: did not complete or timeout within %ums (status 0x%08x)\n", 1237 intel_dp->aux.name, timeout_ms, status); 1238 #undef C 1239 1240 return status; 1241 } 1242 1243 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1244 { 1245 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1246 1247 if (index) 1248 return 0; 1249 1250 /* 1251 * The clock divider is based off the hrawclk, and would like to run at 1252 * 2MHz. So, take the hrawclk value and divide by 2000 and use that 1253 */ 1254 return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000); 1255 } 1256 1257 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1258 { 1259 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1260 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1261 u32 freq; 1262 1263 if (index) 1264 return 0; 1265 1266 /* 1267 * The clock divider is based off the cdclk or PCH rawclk, and would 1268 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and 1269 * divide by 2000 and use that 1270 */ 1271 if (dig_port->aux_ch == AUX_CH_A) 1272 freq = dev_priv->cdclk.hw.cdclk; 1273 else 1274 freq = RUNTIME_INFO(dev_priv)->rawclk_freq; 1275 return DIV_ROUND_CLOSEST(freq, 2000); 1276 } 1277 1278 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1279 { 1280 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1281 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1282 1283 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { 1284 /* Workaround for non-ULT HSW */ 1285 switch (index) { 1286 case 0: return 63; 1287 case 1: return 72; 1288 default: return 0; 1289 } 1290 } 1291 1292 return ilk_get_aux_clock_divider(intel_dp, index); 1293 } 1294 1295 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1296 { 1297 /* 1298 * SKL doesn't need us to program the AUX clock divider (Hardware will 1299 * derive the clock from CDCLK automatically). We still implement the 1300 * get_aux_clock_divider vfunc to plug-in into the existing code. 1301 */ 1302 return index ? 0 : 1; 1303 } 1304 1305 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, 1306 int send_bytes, 1307 u32 aux_clock_divider) 1308 { 1309 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1310 struct drm_i915_private *dev_priv = 1311 to_i915(intel_dig_port->base.base.dev); 1312 u32 precharge, timeout; 1313 1314 if (IS_GEN(dev_priv, 6)) 1315 precharge = 3; 1316 else 1317 precharge = 5; 1318 1319 if (IS_BROADWELL(dev_priv)) 1320 timeout = DP_AUX_CH_CTL_TIME_OUT_600us; 1321 else 1322 timeout = DP_AUX_CH_CTL_TIME_OUT_400us; 1323 1324 return DP_AUX_CH_CTL_SEND_BUSY | 1325 DP_AUX_CH_CTL_DONE | 1326 DP_AUX_CH_CTL_INTERRUPT | 1327 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1328 timeout | 1329 DP_AUX_CH_CTL_RECEIVE_ERROR | 1330 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1331 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 1332 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); 1333 } 1334 1335 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, 1336 int send_bytes, 1337 u32 unused) 1338 { 1339 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1340 struct drm_i915_private *i915 = 1341 to_i915(intel_dig_port->base.base.dev); 1342 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1343 u32 ret; 1344 1345 ret = DP_AUX_CH_CTL_SEND_BUSY | 1346 DP_AUX_CH_CTL_DONE | 1347 DP_AUX_CH_CTL_INTERRUPT | 1348 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1349 DP_AUX_CH_CTL_TIME_OUT_MAX | 1350 DP_AUX_CH_CTL_RECEIVE_ERROR | 1351 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1352 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | 1353 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); 1354 1355 if (intel_phy_is_tc(i915, phy) && 1356 intel_dig_port->tc_mode == TC_PORT_TBT_ALT) 1357 ret |= DP_AUX_CH_CTL_TBT_IO; 1358 1359 return ret; 1360 } 1361 1362 static int 1363 intel_dp_aux_xfer(struct intel_dp *intel_dp, 1364 const u8 *send, int send_bytes, 1365 u8 *recv, int recv_size, 1366 u32 aux_send_ctl_flags) 1367 { 1368 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1369 struct drm_i915_private *i915 = 1370 to_i915(intel_dig_port->base.base.dev); 1371 struct intel_uncore *uncore = &i915->uncore; 1372 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1373 bool is_tc_port = intel_phy_is_tc(i915, phy); 1374 i915_reg_t ch_ctl, ch_data[5]; 1375 u32 aux_clock_divider; 1376 enum intel_display_power_domain aux_domain; 1377 intel_wakeref_t aux_wakeref; 1378 intel_wakeref_t pps_wakeref; 1379 int i, ret, recv_bytes; 1380 int try, clock = 0; 1381 u32 status; 1382 bool vdd; 1383 1384 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1385 for (i = 0; i < ARRAY_SIZE(ch_data); i++) 1386 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); 1387 1388 if (is_tc_port) 1389 intel_tc_port_lock(intel_dig_port); 1390 1391 aux_domain = intel_aux_power_domain(intel_dig_port); 1392 1393 aux_wakeref = intel_display_power_get(i915, aux_domain); 1394 pps_wakeref = pps_lock(intel_dp); 1395 1396 /* 1397 * We will be called with VDD already enabled for dpcd/edid/oui reads. 1398 * In such cases we want to leave VDD enabled and it's up to upper layers 1399 * to turn it off. But for eg. i2c-dev access we need to turn it on/off 1400 * ourselves. 1401 */ 1402 vdd = edp_panel_vdd_on(intel_dp); 1403 1404 /* dp aux is extremely sensitive to irq latency, hence request the 1405 * lowest possible wakeup latency and so prevent the cpu from going into 1406 * deep sleep states. 1407 */ 1408 cpu_latency_qos_update_request(&i915->pm_qos, 0); 1409 1410 intel_dp_check_edp(intel_dp); 1411 1412 /* Try to wait for any previous AUX channel activity */ 1413 for (try = 0; try < 3; try++) { 1414 status = intel_uncore_read_notrace(uncore, ch_ctl); 1415 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1416 break; 1417 msleep(1); 1418 } 1419 /* just trace the final value */ 1420 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1421 1422 if (try == 3) { 1423 const u32 status = intel_uncore_read(uncore, ch_ctl); 1424 1425 if (status != intel_dp->aux_busy_last_status) { 1426 drm_WARN(&i915->drm, 1, 1427 "%s: not started (status 0x%08x)\n", 1428 intel_dp->aux.name, status); 1429 intel_dp->aux_busy_last_status = status; 1430 } 1431 1432 ret = -EBUSY; 1433 goto out; 1434 } 1435 1436 /* Only 5 data registers! */ 1437 if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) { 1438 ret = -E2BIG; 1439 goto out; 1440 } 1441 1442 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { 1443 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, 1444 send_bytes, 1445 aux_clock_divider); 1446 1447 send_ctl |= aux_send_ctl_flags; 1448 1449 /* Must try at least 3 times according to DP spec */ 1450 for (try = 0; try < 5; try++) { 1451 /* Load the send data into the aux channel data registers */ 1452 for (i = 0; i < send_bytes; i += 4) 1453 intel_uncore_write(uncore, 1454 ch_data[i >> 2], 1455 intel_dp_pack_aux(send + i, 1456 send_bytes - i)); 1457 1458 /* Send the command and wait for it to complete */ 1459 intel_uncore_write(uncore, ch_ctl, send_ctl); 1460 1461 status = intel_dp_aux_wait_done(intel_dp); 1462 1463 /* Clear done status and any errors */ 1464 intel_uncore_write(uncore, 1465 ch_ctl, 1466 status | 1467 DP_AUX_CH_CTL_DONE | 1468 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1469 DP_AUX_CH_CTL_RECEIVE_ERROR); 1470 1471 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 1472 * 400us delay required for errors and timeouts 1473 * Timeout errors from the HW already meet this 1474 * requirement so skip to next iteration 1475 */ 1476 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) 1477 continue; 1478 1479 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1480 usleep_range(400, 500); 1481 continue; 1482 } 1483 if (status & DP_AUX_CH_CTL_DONE) 1484 goto done; 1485 } 1486 } 1487 1488 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 1489 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n", 1490 intel_dp->aux.name, status); 1491 ret = -EBUSY; 1492 goto out; 1493 } 1494 1495 done: 1496 /* Check for timeout or receive error. 1497 * Timeouts occur when the sink is not connected 1498 */ 1499 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1500 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n", 1501 intel_dp->aux.name, status); 1502 ret = -EIO; 1503 goto out; 1504 } 1505 1506 /* Timeouts occur when the device isn't connected, so they're 1507 * "normal" -- don't fill the kernel log with these */ 1508 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 1509 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n", 1510 intel_dp->aux.name, status); 1511 ret = -ETIMEDOUT; 1512 goto out; 1513 } 1514 1515 /* Unload any bytes sent back from the other side */ 1516 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 1517 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 1518 1519 /* 1520 * By BSpec: "Message sizes of 0 or >20 are not allowed." 1521 * We have no idea of what happened so we return -EBUSY so 1522 * drm layer takes care for the necessary retries. 1523 */ 1524 if (recv_bytes == 0 || recv_bytes > 20) { 1525 drm_dbg_kms(&i915->drm, 1526 "%s: Forbidden recv_bytes = %d on aux transaction\n", 1527 intel_dp->aux.name, recv_bytes); 1528 ret = -EBUSY; 1529 goto out; 1530 } 1531 1532 if (recv_bytes > recv_size) 1533 recv_bytes = recv_size; 1534 1535 for (i = 0; i < recv_bytes; i += 4) 1536 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), 1537 recv + i, recv_bytes - i); 1538 1539 ret = recv_bytes; 1540 out: 1541 cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE); 1542 1543 if (vdd) 1544 edp_panel_vdd_off(intel_dp, false); 1545 1546 pps_unlock(intel_dp, pps_wakeref); 1547 intel_display_power_put_async(i915, aux_domain, aux_wakeref); 1548 1549 if (is_tc_port) 1550 intel_tc_port_unlock(intel_dig_port); 1551 1552 return ret; 1553 } 1554 1555 #define BARE_ADDRESS_SIZE 3 1556 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) 1557 1558 static void 1559 intel_dp_aux_header(u8 txbuf[HEADER_SIZE], 1560 const struct drm_dp_aux_msg *msg) 1561 { 1562 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); 1563 txbuf[1] = (msg->address >> 8) & 0xff; 1564 txbuf[2] = msg->address & 0xff; 1565 txbuf[3] = msg->size - 1; 1566 } 1567 1568 static ssize_t 1569 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1570 { 1571 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); 1572 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1573 u8 txbuf[20], rxbuf[20]; 1574 size_t txsize, rxsize; 1575 int ret; 1576 1577 intel_dp_aux_header(txbuf, msg); 1578 1579 switch (msg->request & ~DP_AUX_I2C_MOT) { 1580 case DP_AUX_NATIVE_WRITE: 1581 case DP_AUX_I2C_WRITE: 1582 case DP_AUX_I2C_WRITE_STATUS_UPDATE: 1583 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; 1584 rxsize = 2; /* 0 or 1 data bytes */ 1585 1586 if (drm_WARN_ON(&i915->drm, txsize > 20)) 1587 return -E2BIG; 1588 1589 drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size); 1590 1591 if (msg->buffer) 1592 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); 1593 1594 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1595 rxbuf, rxsize, 0); 1596 if (ret > 0) { 1597 msg->reply = rxbuf[0] >> 4; 1598 1599 if (ret > 1) { 1600 /* Number of bytes written in a short write. */ 1601 ret = clamp_t(int, rxbuf[1], 0, msg->size); 1602 } else { 1603 /* Return payload size. */ 1604 ret = msg->size; 1605 } 1606 } 1607 break; 1608 1609 case DP_AUX_NATIVE_READ: 1610 case DP_AUX_I2C_READ: 1611 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; 1612 rxsize = msg->size + 1; 1613 1614 if (drm_WARN_ON(&i915->drm, rxsize > 20)) 1615 return -E2BIG; 1616 1617 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1618 rxbuf, rxsize, 0); 1619 if (ret > 0) { 1620 msg->reply = rxbuf[0] >> 4; 1621 /* 1622 * Assume happy day, and copy the data. The caller is 1623 * expected to check msg->reply before touching it. 1624 * 1625 * Return payload size. 1626 */ 1627 ret--; 1628 memcpy(msg->buffer, rxbuf + 1, ret); 1629 } 1630 break; 1631 1632 default: 1633 ret = -EINVAL; 1634 break; 1635 } 1636 1637 return ret; 1638 } 1639 1640 1641 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) 1642 { 1643 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1644 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1645 enum aux_ch aux_ch = dig_port->aux_ch; 1646 1647 switch (aux_ch) { 1648 case AUX_CH_B: 1649 case AUX_CH_C: 1650 case AUX_CH_D: 1651 return DP_AUX_CH_CTL(aux_ch); 1652 default: 1653 MISSING_CASE(aux_ch); 1654 return DP_AUX_CH_CTL(AUX_CH_B); 1655 } 1656 } 1657 1658 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) 1659 { 1660 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1661 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1662 enum aux_ch aux_ch = dig_port->aux_ch; 1663 1664 switch (aux_ch) { 1665 case AUX_CH_B: 1666 case AUX_CH_C: 1667 case AUX_CH_D: 1668 return DP_AUX_CH_DATA(aux_ch, index); 1669 default: 1670 MISSING_CASE(aux_ch); 1671 return DP_AUX_CH_DATA(AUX_CH_B, index); 1672 } 1673 } 1674 1675 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) 1676 { 1677 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1678 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1679 enum aux_ch aux_ch = dig_port->aux_ch; 1680 1681 switch (aux_ch) { 1682 case AUX_CH_A: 1683 return DP_AUX_CH_CTL(aux_ch); 1684 case AUX_CH_B: 1685 case AUX_CH_C: 1686 case AUX_CH_D: 1687 return PCH_DP_AUX_CH_CTL(aux_ch); 1688 default: 1689 MISSING_CASE(aux_ch); 1690 return DP_AUX_CH_CTL(AUX_CH_A); 1691 } 1692 } 1693 1694 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) 1695 { 1696 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1697 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1698 enum aux_ch aux_ch = dig_port->aux_ch; 1699 1700 switch (aux_ch) { 1701 case AUX_CH_A: 1702 return DP_AUX_CH_DATA(aux_ch, index); 1703 case AUX_CH_B: 1704 case AUX_CH_C: 1705 case AUX_CH_D: 1706 return PCH_DP_AUX_CH_DATA(aux_ch, index); 1707 default: 1708 MISSING_CASE(aux_ch); 1709 return DP_AUX_CH_DATA(AUX_CH_A, index); 1710 } 1711 } 1712 1713 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) 1714 { 1715 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1716 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1717 enum aux_ch aux_ch = dig_port->aux_ch; 1718 1719 switch (aux_ch) { 1720 case AUX_CH_A: 1721 case AUX_CH_B: 1722 case AUX_CH_C: 1723 case AUX_CH_D: 1724 case AUX_CH_E: 1725 case AUX_CH_F: 1726 case AUX_CH_G: 1727 return DP_AUX_CH_CTL(aux_ch); 1728 default: 1729 MISSING_CASE(aux_ch); 1730 return DP_AUX_CH_CTL(AUX_CH_A); 1731 } 1732 } 1733 1734 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) 1735 { 1736 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1737 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1738 enum aux_ch aux_ch = dig_port->aux_ch; 1739 1740 switch (aux_ch) { 1741 case AUX_CH_A: 1742 case AUX_CH_B: 1743 case AUX_CH_C: 1744 case AUX_CH_D: 1745 case AUX_CH_E: 1746 case AUX_CH_F: 1747 case AUX_CH_G: 1748 return DP_AUX_CH_DATA(aux_ch, index); 1749 default: 1750 MISSING_CASE(aux_ch); 1751 return DP_AUX_CH_DATA(AUX_CH_A, index); 1752 } 1753 } 1754 1755 static void 1756 intel_dp_aux_fini(struct intel_dp *intel_dp) 1757 { 1758 kfree(intel_dp->aux.name); 1759 } 1760 1761 static void 1762 intel_dp_aux_init(struct intel_dp *intel_dp) 1763 { 1764 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1765 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1766 struct intel_encoder *encoder = &dig_port->base; 1767 1768 if (INTEL_GEN(dev_priv) >= 9) { 1769 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; 1770 intel_dp->aux_ch_data_reg = skl_aux_data_reg; 1771 } else if (HAS_PCH_SPLIT(dev_priv)) { 1772 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; 1773 intel_dp->aux_ch_data_reg = ilk_aux_data_reg; 1774 } else { 1775 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; 1776 intel_dp->aux_ch_data_reg = g4x_aux_data_reg; 1777 } 1778 1779 if (INTEL_GEN(dev_priv) >= 9) 1780 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; 1781 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1782 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; 1783 else if (HAS_PCH_SPLIT(dev_priv)) 1784 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; 1785 else 1786 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; 1787 1788 if (INTEL_GEN(dev_priv) >= 9) 1789 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; 1790 else 1791 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; 1792 1793 drm_dp_aux_init(&intel_dp->aux); 1794 1795 /* Failure to allocate our preferred name is not critical */ 1796 intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c", 1797 aux_ch_name(dig_port->aux_ch), 1798 port_name(encoder->port)); 1799 intel_dp->aux.transfer = intel_dp_aux_transfer; 1800 } 1801 1802 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) 1803 { 1804 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1805 1806 return max_rate >= 540000; 1807 } 1808 1809 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) 1810 { 1811 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1812 1813 return max_rate >= 810000; 1814 } 1815 1816 static void 1817 intel_dp_set_clock(struct intel_encoder *encoder, 1818 struct intel_crtc_state *pipe_config) 1819 { 1820 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1821 const struct dp_link_dpll *divisor = NULL; 1822 int i, count = 0; 1823 1824 if (IS_G4X(dev_priv)) { 1825 divisor = g4x_dpll; 1826 count = ARRAY_SIZE(g4x_dpll); 1827 } else if (HAS_PCH_SPLIT(dev_priv)) { 1828 divisor = pch_dpll; 1829 count = ARRAY_SIZE(pch_dpll); 1830 } else if (IS_CHERRYVIEW(dev_priv)) { 1831 divisor = chv_dpll; 1832 count = ARRAY_SIZE(chv_dpll); 1833 } else if (IS_VALLEYVIEW(dev_priv)) { 1834 divisor = vlv_dpll; 1835 count = ARRAY_SIZE(vlv_dpll); 1836 } 1837 1838 if (divisor && count) { 1839 for (i = 0; i < count; i++) { 1840 if (pipe_config->port_clock == divisor[i].clock) { 1841 pipe_config->dpll = divisor[i].dpll; 1842 pipe_config->clock_set = true; 1843 break; 1844 } 1845 } 1846 } 1847 } 1848 1849 static void snprintf_int_array(char *str, size_t len, 1850 const int *array, int nelem) 1851 { 1852 int i; 1853 1854 str[0] = '\0'; 1855 1856 for (i = 0; i < nelem; i++) { 1857 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); 1858 if (r >= len) 1859 return; 1860 str += r; 1861 len -= r; 1862 } 1863 } 1864 1865 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1866 { 1867 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1868 char str[128]; /* FIXME: too big for stack? */ 1869 1870 if (!drm_debug_enabled(DRM_UT_KMS)) 1871 return; 1872 1873 snprintf_int_array(str, sizeof(str), 1874 intel_dp->source_rates, intel_dp->num_source_rates); 1875 drm_dbg_kms(&i915->drm, "source rates: %s\n", str); 1876 1877 snprintf_int_array(str, sizeof(str), 1878 intel_dp->sink_rates, intel_dp->num_sink_rates); 1879 drm_dbg_kms(&i915->drm, "sink rates: %s\n", str); 1880 1881 snprintf_int_array(str, sizeof(str), 1882 intel_dp->common_rates, intel_dp->num_common_rates); 1883 drm_dbg_kms(&i915->drm, "common rates: %s\n", str); 1884 } 1885 1886 int 1887 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1888 { 1889 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1890 int len; 1891 1892 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); 1893 if (drm_WARN_ON(&i915->drm, len <= 0)) 1894 return 162000; 1895 1896 return intel_dp->common_rates[len - 1]; 1897 } 1898 1899 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1900 { 1901 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1902 int i = intel_dp_rate_index(intel_dp->sink_rates, 1903 intel_dp->num_sink_rates, rate); 1904 1905 if (drm_WARN_ON(&i915->drm, i < 0)) 1906 i = 0; 1907 1908 return i; 1909 } 1910 1911 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1912 u8 *link_bw, u8 *rate_select) 1913 { 1914 /* eDP 1.4 rate select method. */ 1915 if (intel_dp->use_rate_select) { 1916 *link_bw = 0; 1917 *rate_select = 1918 intel_dp_rate_select(intel_dp, port_clock); 1919 } else { 1920 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1921 *rate_select = 0; 1922 } 1923 } 1924 1925 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1926 const struct intel_crtc_state *pipe_config) 1927 { 1928 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1929 1930 /* On TGL, FEC is supported on all Pipes */ 1931 if (INTEL_GEN(dev_priv) >= 12) 1932 return true; 1933 1934 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A) 1935 return true; 1936 1937 return false; 1938 } 1939 1940 static bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1941 const struct intel_crtc_state *pipe_config) 1942 { 1943 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1944 drm_dp_sink_supports_fec(intel_dp->fec_capable); 1945 } 1946 1947 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1948 const struct intel_crtc_state *crtc_state) 1949 { 1950 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 1951 1952 if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable) 1953 return false; 1954 1955 return intel_dsc_source_support(encoder, crtc_state) && 1956 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); 1957 } 1958 1959 static int intel_dp_compute_bpp(struct intel_dp *intel_dp, 1960 struct intel_crtc_state *pipe_config) 1961 { 1962 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1963 struct intel_connector *intel_connector = intel_dp->attached_connector; 1964 int bpp, bpc; 1965 1966 bpp = pipe_config->pipe_bpp; 1967 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports); 1968 1969 if (bpc > 0) 1970 bpp = min(bpp, 3*bpc); 1971 1972 if (intel_dp_is_edp(intel_dp)) { 1973 /* Get bpp from vbt only for panels that dont have bpp in edid */ 1974 if (intel_connector->base.display_info.bpc == 0 && 1975 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { 1976 drm_dbg_kms(&dev_priv->drm, 1977 "clamping bpp for eDP panel to BIOS-provided %i\n", 1978 dev_priv->vbt.edp.bpp); 1979 bpp = dev_priv->vbt.edp.bpp; 1980 } 1981 } 1982 1983 return bpp; 1984 } 1985 1986 /* Adjust link config limits based on compliance test requests. */ 1987 void 1988 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, 1989 struct intel_crtc_state *pipe_config, 1990 struct link_config_limits *limits) 1991 { 1992 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1993 1994 /* For DP Compliance we override the computed bpp for the pipe */ 1995 if (intel_dp->compliance.test_data.bpc != 0) { 1996 int bpp = 3 * intel_dp->compliance.test_data.bpc; 1997 1998 limits->min_bpp = limits->max_bpp = bpp; 1999 pipe_config->dither_force_disable = bpp == 6 * 3; 2000 2001 drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp); 2002 } 2003 2004 /* Use values requested by Compliance Test Request */ 2005 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 2006 int index; 2007 2008 /* Validate the compliance test data since max values 2009 * might have changed due to link train fallback. 2010 */ 2011 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, 2012 intel_dp->compliance.test_lane_count)) { 2013 index = intel_dp_rate_index(intel_dp->common_rates, 2014 intel_dp->num_common_rates, 2015 intel_dp->compliance.test_link_rate); 2016 if (index >= 0) 2017 limits->min_clock = limits->max_clock = index; 2018 limits->min_lane_count = limits->max_lane_count = 2019 intel_dp->compliance.test_lane_count; 2020 } 2021 } 2022 } 2023 2024 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp) 2025 { 2026 /* 2027 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 2028 * format of the number of bytes per pixel will be half the number 2029 * of bytes of RGB pixel. 2030 */ 2031 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 2032 bpp /= 2; 2033 2034 return bpp; 2035 } 2036 2037 /* Optimize link config in order: max bpp, min clock, min lanes */ 2038 static int 2039 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 2040 struct intel_crtc_state *pipe_config, 2041 const struct link_config_limits *limits) 2042 { 2043 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2044 int bpp, clock, lane_count; 2045 int mode_rate, link_clock, link_avail; 2046 2047 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { 2048 int output_bpp = intel_dp_output_bpp(pipe_config, bpp); 2049 2050 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, 2051 output_bpp); 2052 2053 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { 2054 for (lane_count = limits->min_lane_count; 2055 lane_count <= limits->max_lane_count; 2056 lane_count <<= 1) { 2057 link_clock = intel_dp->common_rates[clock]; 2058 link_avail = intel_dp_max_data_rate(link_clock, 2059 lane_count); 2060 2061 if (mode_rate <= link_avail) { 2062 pipe_config->lane_count = lane_count; 2063 pipe_config->pipe_bpp = bpp; 2064 pipe_config->port_clock = link_clock; 2065 2066 return 0; 2067 } 2068 } 2069 } 2070 } 2071 2072 return -EINVAL; 2073 } 2074 2075 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) 2076 { 2077 int i, num_bpc; 2078 u8 dsc_bpc[3] = {0}; 2079 2080 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, 2081 dsc_bpc); 2082 for (i = 0; i < num_bpc; i++) { 2083 if (dsc_max_bpc >= dsc_bpc[i]) 2084 return dsc_bpc[i] * 3; 2085 } 2086 2087 return 0; 2088 } 2089 2090 #define DSC_SUPPORTED_VERSION_MIN 1 2091 2092 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder, 2093 struct intel_crtc_state *crtc_state) 2094 { 2095 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2096 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2097 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 2098 u8 line_buf_depth; 2099 int ret; 2100 2101 ret = intel_dsc_compute_params(encoder, crtc_state); 2102 if (ret) 2103 return ret; 2104 2105 /* 2106 * Slice Height of 8 works for all currently available panels. So start 2107 * with that if pic_height is an integral multiple of 8. Eventually add 2108 * logic to try multiple slice heights. 2109 */ 2110 if (vdsc_cfg->pic_height % 8 == 0) 2111 vdsc_cfg->slice_height = 8; 2112 else if (vdsc_cfg->pic_height % 4 == 0) 2113 vdsc_cfg->slice_height = 4; 2114 else 2115 vdsc_cfg->slice_height = 2; 2116 2117 vdsc_cfg->dsc_version_major = 2118 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 2119 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT; 2120 vdsc_cfg->dsc_version_minor = 2121 min(DSC_SUPPORTED_VERSION_MIN, 2122 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 2123 DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT); 2124 2125 vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] & 2126 DP_DSC_RGB; 2127 2128 line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd); 2129 if (!line_buf_depth) { 2130 drm_dbg_kms(&i915->drm, 2131 "DSC Sink Line Buffer Depth invalid\n"); 2132 return -EINVAL; 2133 } 2134 2135 if (vdsc_cfg->dsc_version_minor == 2) 2136 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ? 2137 DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth; 2138 else 2139 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ? 2140 DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth; 2141 2142 vdsc_cfg->block_pred_enable = 2143 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] & 2144 DP_DSC_BLK_PREDICTION_IS_SUPPORTED; 2145 2146 return drm_dsc_compute_rc_parameters(vdsc_cfg); 2147 } 2148 2149 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 2150 struct intel_crtc_state *pipe_config, 2151 struct drm_connector_state *conn_state, 2152 struct link_config_limits *limits) 2153 { 2154 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2155 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2156 const struct drm_display_mode *adjusted_mode = 2157 &pipe_config->hw.adjusted_mode; 2158 u8 dsc_max_bpc; 2159 int pipe_bpp; 2160 int ret; 2161 2162 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && 2163 intel_dp_supports_fec(intel_dp, pipe_config); 2164 2165 if (!intel_dp_supports_dsc(intel_dp, pipe_config)) 2166 return -EINVAL; 2167 2168 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ 2169 if (INTEL_GEN(dev_priv) >= 12) 2170 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc); 2171 else 2172 dsc_max_bpc = min_t(u8, 10, 2173 conn_state->max_requested_bpc); 2174 2175 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); 2176 2177 /* Min Input BPC for ICL+ is 8 */ 2178 if (pipe_bpp < 8 * 3) { 2179 drm_dbg_kms(&dev_priv->drm, 2180 "No DSC support for less than 8bpc\n"); 2181 return -EINVAL; 2182 } 2183 2184 /* 2185 * For now enable DSC for max bpp, max link rate, max lane count. 2186 * Optimize this later for the minimum possible link rate/lane count 2187 * with DSC enabled for the requested mode. 2188 */ 2189 pipe_config->pipe_bpp = pipe_bpp; 2190 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; 2191 pipe_config->lane_count = limits->max_lane_count; 2192 2193 if (intel_dp_is_edp(intel_dp)) { 2194 pipe_config->dsc.compressed_bpp = 2195 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, 2196 pipe_config->pipe_bpp); 2197 pipe_config->dsc.slice_count = 2198 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 2199 true); 2200 } else { 2201 u16 dsc_max_output_bpp; 2202 u8 dsc_dp_slice_count; 2203 2204 dsc_max_output_bpp = 2205 intel_dp_dsc_get_output_bpp(dev_priv, 2206 pipe_config->port_clock, 2207 pipe_config->lane_count, 2208 adjusted_mode->crtc_clock, 2209 adjusted_mode->crtc_hdisplay); 2210 dsc_dp_slice_count = 2211 intel_dp_dsc_get_slice_count(intel_dp, 2212 adjusted_mode->crtc_clock, 2213 adjusted_mode->crtc_hdisplay); 2214 if (!dsc_max_output_bpp || !dsc_dp_slice_count) { 2215 drm_dbg_kms(&dev_priv->drm, 2216 "Compressed BPP/Slice Count not supported\n"); 2217 return -EINVAL; 2218 } 2219 pipe_config->dsc.compressed_bpp = min_t(u16, 2220 dsc_max_output_bpp >> 4, 2221 pipe_config->pipe_bpp); 2222 pipe_config->dsc.slice_count = dsc_dp_slice_count; 2223 } 2224 /* 2225 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 2226 * is greater than the maximum Cdclock and if slice count is even 2227 * then we need to use 2 VDSC instances. 2228 */ 2229 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) { 2230 if (pipe_config->dsc.slice_count > 1) { 2231 pipe_config->dsc.dsc_split = true; 2232 } else { 2233 drm_dbg_kms(&dev_priv->drm, 2234 "Cannot split stream to use 2 VDSC instances\n"); 2235 return -EINVAL; 2236 } 2237 } 2238 2239 ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config); 2240 if (ret < 0) { 2241 drm_dbg_kms(&dev_priv->drm, 2242 "Cannot compute valid DSC parameters for Input Bpp = %d " 2243 "Compressed BPP = %d\n", 2244 pipe_config->pipe_bpp, 2245 pipe_config->dsc.compressed_bpp); 2246 return ret; 2247 } 2248 2249 pipe_config->dsc.compression_enable = true; 2250 drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d " 2251 "Compressed Bpp = %d Slice Count = %d\n", 2252 pipe_config->pipe_bpp, 2253 pipe_config->dsc.compressed_bpp, 2254 pipe_config->dsc.slice_count); 2255 2256 return 0; 2257 } 2258 2259 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state) 2260 { 2261 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 2262 return 6 * 3; 2263 else 2264 return 8 * 3; 2265 } 2266 2267 static int 2268 intel_dp_compute_link_config(struct intel_encoder *encoder, 2269 struct intel_crtc_state *pipe_config, 2270 struct drm_connector_state *conn_state) 2271 { 2272 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2273 const struct drm_display_mode *adjusted_mode = 2274 &pipe_config->hw.adjusted_mode; 2275 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2276 struct link_config_limits limits; 2277 int common_len; 2278 int ret; 2279 2280 common_len = intel_dp_common_len_rate_limit(intel_dp, 2281 intel_dp->max_link_rate); 2282 2283 /* No common link rates between source and sink */ 2284 drm_WARN_ON(encoder->base.dev, common_len <= 0); 2285 2286 limits.min_clock = 0; 2287 limits.max_clock = common_len - 1; 2288 2289 limits.min_lane_count = 1; 2290 limits.max_lane_count = intel_dp_max_lane_count(intel_dp); 2291 2292 limits.min_bpp = intel_dp_min_bpp(pipe_config); 2293 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config); 2294 2295 if (intel_dp_is_edp(intel_dp)) { 2296 /* 2297 * Use the maximum clock and number of lanes the eDP panel 2298 * advertizes being capable of. The panels are generally 2299 * designed to support only a single clock and lane 2300 * configuration, and typically these values correspond to the 2301 * native resolution of the panel. 2302 */ 2303 limits.min_lane_count = limits.max_lane_count; 2304 limits.min_clock = limits.max_clock; 2305 } 2306 2307 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); 2308 2309 drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i " 2310 "max rate %d max bpp %d pixel clock %iKHz\n", 2311 limits.max_lane_count, 2312 intel_dp->common_rates[limits.max_clock], 2313 limits.max_bpp, adjusted_mode->crtc_clock); 2314 2315 /* 2316 * Optimize for slow and wide. This is the place to add alternative 2317 * optimization policy. 2318 */ 2319 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); 2320 2321 /* enable compression if the mode doesn't fit available BW */ 2322 drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en); 2323 if (ret || intel_dp->force_dsc_en) { 2324 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2325 conn_state, &limits); 2326 if (ret < 0) 2327 return ret; 2328 } 2329 2330 if (pipe_config->dsc.compression_enable) { 2331 drm_dbg_kms(&i915->drm, 2332 "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", 2333 pipe_config->lane_count, pipe_config->port_clock, 2334 pipe_config->pipe_bpp, 2335 pipe_config->dsc.compressed_bpp); 2336 2337 drm_dbg_kms(&i915->drm, 2338 "DP link rate required %i available %i\n", 2339 intel_dp_link_required(adjusted_mode->crtc_clock, 2340 pipe_config->dsc.compressed_bpp), 2341 intel_dp_max_data_rate(pipe_config->port_clock, 2342 pipe_config->lane_count)); 2343 } else { 2344 drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n", 2345 pipe_config->lane_count, pipe_config->port_clock, 2346 pipe_config->pipe_bpp); 2347 2348 drm_dbg_kms(&i915->drm, 2349 "DP link rate required %i available %i\n", 2350 intel_dp_link_required(adjusted_mode->crtc_clock, 2351 pipe_config->pipe_bpp), 2352 intel_dp_max_data_rate(pipe_config->port_clock, 2353 pipe_config->lane_count)); 2354 } 2355 return 0; 2356 } 2357 2358 static int 2359 intel_dp_ycbcr420_config(struct intel_dp *intel_dp, 2360 struct intel_crtc_state *crtc_state, 2361 const struct drm_connector_state *conn_state) 2362 { 2363 struct drm_connector *connector = conn_state->connector; 2364 const struct drm_display_info *info = &connector->display_info; 2365 const struct drm_display_mode *adjusted_mode = 2366 &crtc_state->hw.adjusted_mode; 2367 2368 if (!drm_mode_is_420_only(info, adjusted_mode) || 2369 !intel_dp_get_colorimetry_status(intel_dp) || 2370 !connector->ycbcr_420_allowed) 2371 return 0; 2372 2373 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2374 2375 return intel_pch_panel_fitting(crtc_state, conn_state); 2376 } 2377 2378 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2379 const struct drm_connector_state *conn_state) 2380 { 2381 const struct intel_digital_connector_state *intel_conn_state = 2382 to_intel_digital_connector_state(conn_state); 2383 const struct drm_display_mode *adjusted_mode = 2384 &crtc_state->hw.adjusted_mode; 2385 2386 /* 2387 * Our YCbCr output is always limited range. 2388 * crtc_state->limited_color_range only applies to RGB, 2389 * and it must never be set for YCbCr or we risk setting 2390 * some conflicting bits in PIPECONF which will mess up 2391 * the colors on the monitor. 2392 */ 2393 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2394 return false; 2395 2396 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2397 /* 2398 * See: 2399 * CEA-861-E - 5.1 Default Encoding Parameters 2400 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2401 */ 2402 return crtc_state->pipe_bpp != 18 && 2403 drm_default_rgb_quant_range(adjusted_mode) == 2404 HDMI_QUANTIZATION_RANGE_LIMITED; 2405 } else { 2406 return intel_conn_state->broadcast_rgb == 2407 INTEL_BROADCAST_RGB_LIMITED; 2408 } 2409 } 2410 2411 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv, 2412 enum port port) 2413 { 2414 if (IS_G4X(dev_priv)) 2415 return false; 2416 if (INTEL_GEN(dev_priv) < 12 && port == PORT_A) 2417 return false; 2418 2419 return true; 2420 } 2421 2422 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state, 2423 const struct drm_connector_state *conn_state, 2424 struct drm_dp_vsc_sdp *vsc) 2425 { 2426 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2427 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2428 2429 /* 2430 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 2431 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 2432 * Colorimetry Format indication. 2433 */ 2434 vsc->revision = 0x5; 2435 vsc->length = 0x13; 2436 2437 /* DP 1.4a spec, Table 2-120 */ 2438 switch (crtc_state->output_format) { 2439 case INTEL_OUTPUT_FORMAT_YCBCR444: 2440 vsc->pixelformat = DP_PIXELFORMAT_YUV444; 2441 break; 2442 case INTEL_OUTPUT_FORMAT_YCBCR420: 2443 vsc->pixelformat = DP_PIXELFORMAT_YUV420; 2444 break; 2445 case INTEL_OUTPUT_FORMAT_RGB: 2446 default: 2447 vsc->pixelformat = DP_PIXELFORMAT_RGB; 2448 } 2449 2450 switch (conn_state->colorspace) { 2451 case DRM_MODE_COLORIMETRY_BT709_YCC: 2452 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; 2453 break; 2454 case DRM_MODE_COLORIMETRY_XVYCC_601: 2455 vsc->colorimetry = DP_COLORIMETRY_XVYCC_601; 2456 break; 2457 case DRM_MODE_COLORIMETRY_XVYCC_709: 2458 vsc->colorimetry = DP_COLORIMETRY_XVYCC_709; 2459 break; 2460 case DRM_MODE_COLORIMETRY_SYCC_601: 2461 vsc->colorimetry = DP_COLORIMETRY_SYCC_601; 2462 break; 2463 case DRM_MODE_COLORIMETRY_OPYCC_601: 2464 vsc->colorimetry = DP_COLORIMETRY_OPYCC_601; 2465 break; 2466 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 2467 vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC; 2468 break; 2469 case DRM_MODE_COLORIMETRY_BT2020_RGB: 2470 vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB; 2471 break; 2472 case DRM_MODE_COLORIMETRY_BT2020_YCC: 2473 vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC; 2474 break; 2475 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: 2476 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: 2477 vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB; 2478 break; 2479 default: 2480 /* 2481 * RGB->YCBCR color conversion uses the BT.709 2482 * color space. 2483 */ 2484 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 2485 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; 2486 else 2487 vsc->colorimetry = DP_COLORIMETRY_DEFAULT; 2488 break; 2489 } 2490 2491 vsc->bpc = crtc_state->pipe_bpp / 3; 2492 2493 /* only RGB pixelformat supports 6 bpc */ 2494 drm_WARN_ON(&dev_priv->drm, 2495 vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB); 2496 2497 /* all YCbCr are always limited range */ 2498 vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA; 2499 vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED; 2500 } 2501 2502 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp, 2503 struct intel_crtc_state *crtc_state, 2504 const struct drm_connector_state *conn_state) 2505 { 2506 struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc; 2507 2508 /* When a crtc state has PSR, VSC SDP will be handled by PSR routine */ 2509 if (crtc_state->has_psr) 2510 return; 2511 2512 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state)) 2513 return; 2514 2515 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); 2516 vsc->sdp_type = DP_SDP_VSC; 2517 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state, 2518 &crtc_state->infoframes.vsc); 2519 } 2520 2521 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp, 2522 const struct intel_crtc_state *crtc_state, 2523 const struct drm_connector_state *conn_state, 2524 struct drm_dp_vsc_sdp *vsc) 2525 { 2526 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2527 2528 vsc->sdp_type = DP_SDP_VSC; 2529 2530 if (dev_priv->psr.psr2_enabled) { 2531 if (dev_priv->psr.colorimetry_support && 2532 intel_dp_needs_vsc_sdp(crtc_state, conn_state)) { 2533 /* [PSR2, +Colorimetry] */ 2534 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state, 2535 vsc); 2536 } else { 2537 /* 2538 * [PSR2, -Colorimetry] 2539 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11 2540 * 3D stereo + PSR/PSR2 + Y-coordinate. 2541 */ 2542 vsc->revision = 0x4; 2543 vsc->length = 0xe; 2544 } 2545 } else { 2546 /* 2547 * [PSR1] 2548 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 2549 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or 2550 * higher). 2551 */ 2552 vsc->revision = 0x2; 2553 vsc->length = 0x8; 2554 } 2555 } 2556 2557 static void 2558 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp, 2559 struct intel_crtc_state *crtc_state, 2560 const struct drm_connector_state *conn_state) 2561 { 2562 int ret; 2563 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2564 struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm; 2565 2566 if (!conn_state->hdr_output_metadata) 2567 return; 2568 2569 ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state); 2570 2571 if (ret) { 2572 drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n"); 2573 return; 2574 } 2575 2576 crtc_state->infoframes.enable |= 2577 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA); 2578 } 2579 2580 int 2581 intel_dp_compute_config(struct intel_encoder *encoder, 2582 struct intel_crtc_state *pipe_config, 2583 struct drm_connector_state *conn_state) 2584 { 2585 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2586 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2587 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2588 struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder); 2589 enum port port = encoder->port; 2590 struct intel_connector *intel_connector = intel_dp->attached_connector; 2591 struct intel_digital_connector_state *intel_conn_state = 2592 to_intel_digital_connector_state(conn_state); 2593 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0, 2594 DP_DPCD_QUIRK_CONSTANT_N); 2595 int ret = 0, output_bpp; 2596 2597 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) 2598 pipe_config->has_pch_encoder = true; 2599 2600 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2601 2602 if (lspcon->active) 2603 lspcon_ycbcr420_config(&intel_connector->base, pipe_config); 2604 else 2605 ret = intel_dp_ycbcr420_config(intel_dp, pipe_config, 2606 conn_state); 2607 if (ret) 2608 return ret; 2609 2610 pipe_config->has_drrs = false; 2611 if (!intel_dp_port_has_audio(dev_priv, port)) 2612 pipe_config->has_audio = false; 2613 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2614 pipe_config->has_audio = intel_dp->has_audio; 2615 else 2616 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; 2617 2618 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { 2619 intel_fixed_panel_mode(intel_connector->panel.fixed_mode, 2620 adjusted_mode); 2621 2622 if (HAS_GMCH(dev_priv)) 2623 ret = intel_gmch_panel_fitting(pipe_config, conn_state); 2624 else 2625 ret = intel_pch_panel_fitting(pipe_config, conn_state); 2626 if (ret) 2627 return ret; 2628 } 2629 2630 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2631 return -EINVAL; 2632 2633 if (HAS_GMCH(dev_priv) && 2634 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2635 return -EINVAL; 2636 2637 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2638 return -EINVAL; 2639 2640 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay)) 2641 return -EINVAL; 2642 2643 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); 2644 if (ret < 0) 2645 return ret; 2646 2647 pipe_config->limited_color_range = 2648 intel_dp_limited_color_range(pipe_config, conn_state); 2649 2650 if (pipe_config->dsc.compression_enable) 2651 output_bpp = pipe_config->dsc.compressed_bpp; 2652 else 2653 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp); 2654 2655 intel_link_compute_m_n(output_bpp, 2656 pipe_config->lane_count, 2657 adjusted_mode->crtc_clock, 2658 pipe_config->port_clock, 2659 &pipe_config->dp_m_n, 2660 constant_n, pipe_config->fec_enable); 2661 2662 if (intel_connector->panel.downclock_mode != NULL && 2663 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { 2664 pipe_config->has_drrs = true; 2665 intel_link_compute_m_n(output_bpp, 2666 pipe_config->lane_count, 2667 intel_connector->panel.downclock_mode->clock, 2668 pipe_config->port_clock, 2669 &pipe_config->dp_m2_n2, 2670 constant_n, pipe_config->fec_enable); 2671 } 2672 2673 if (!HAS_DDI(dev_priv)) 2674 intel_dp_set_clock(encoder, pipe_config); 2675 2676 intel_psr_compute_config(intel_dp, pipe_config); 2677 intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state); 2678 intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state); 2679 2680 return 0; 2681 } 2682 2683 void intel_dp_set_link_params(struct intel_dp *intel_dp, 2684 int link_rate, u8 lane_count, 2685 bool link_mst) 2686 { 2687 intel_dp->link_trained = false; 2688 intel_dp->link_rate = link_rate; 2689 intel_dp->lane_count = lane_count; 2690 intel_dp->link_mst = link_mst; 2691 } 2692 2693 static void intel_dp_prepare(struct intel_encoder *encoder, 2694 const struct intel_crtc_state *pipe_config) 2695 { 2696 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2697 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2698 enum port port = encoder->port; 2699 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 2700 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2701 2702 intel_dp_set_link_params(intel_dp, pipe_config->port_clock, 2703 pipe_config->lane_count, 2704 intel_crtc_has_type(pipe_config, 2705 INTEL_OUTPUT_DP_MST)); 2706 2707 /* 2708 * There are four kinds of DP registers: 2709 * 2710 * IBX PCH 2711 * SNB CPU 2712 * IVB CPU 2713 * CPT PCH 2714 * 2715 * IBX PCH and CPU are the same for almost everything, 2716 * except that the CPU DP PLL is configured in this 2717 * register 2718 * 2719 * CPT PCH is quite different, having many bits moved 2720 * to the TRANS_DP_CTL register instead. That 2721 * configuration happens (oddly) in ilk_pch_enable 2722 */ 2723 2724 /* Preserve the BIOS-computed detected bit. This is 2725 * supposed to be read-only. 2726 */ 2727 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED; 2728 2729 /* Handle DP bits in common between all three register formats */ 2730 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 2731 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); 2732 2733 /* Split out the IBX/CPU vs CPT settings */ 2734 2735 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 2736 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2737 intel_dp->DP |= DP_SYNC_HS_HIGH; 2738 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2739 intel_dp->DP |= DP_SYNC_VS_HIGH; 2740 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2741 2742 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2743 intel_dp->DP |= DP_ENHANCED_FRAMING; 2744 2745 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); 2746 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 2747 u32 trans_dp; 2748 2749 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2750 2751 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe)); 2752 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2753 trans_dp |= TRANS_DP_ENH_FRAMING; 2754 else 2755 trans_dp &= ~TRANS_DP_ENH_FRAMING; 2756 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp); 2757 } else { 2758 if (IS_G4X(dev_priv) && pipe_config->limited_color_range) 2759 intel_dp->DP |= DP_COLOR_RANGE_16_235; 2760 2761 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2762 intel_dp->DP |= DP_SYNC_HS_HIGH; 2763 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2764 intel_dp->DP |= DP_SYNC_VS_HIGH; 2765 intel_dp->DP |= DP_LINK_TRAIN_OFF; 2766 2767 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2768 intel_dp->DP |= DP_ENHANCED_FRAMING; 2769 2770 if (IS_CHERRYVIEW(dev_priv)) 2771 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); 2772 else 2773 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); 2774 } 2775 } 2776 2777 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) 2778 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) 2779 2780 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) 2781 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) 2782 2783 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) 2784 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) 2785 2786 static void intel_pps_verify_state(struct intel_dp *intel_dp); 2787 2788 static void wait_panel_status(struct intel_dp *intel_dp, 2789 u32 mask, 2790 u32 value) 2791 { 2792 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2793 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2794 2795 lockdep_assert_held(&dev_priv->pps_mutex); 2796 2797 intel_pps_verify_state(intel_dp); 2798 2799 pp_stat_reg = _pp_stat_reg(intel_dp); 2800 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2801 2802 drm_dbg_kms(&dev_priv->drm, 2803 "mask %08x value %08x status %08x control %08x\n", 2804 mask, value, 2805 intel_de_read(dev_priv, pp_stat_reg), 2806 intel_de_read(dev_priv, pp_ctrl_reg)); 2807 2808 if (intel_de_wait_for_register(dev_priv, pp_stat_reg, 2809 mask, value, 5000)) 2810 drm_err(&dev_priv->drm, 2811 "Panel status timeout: status %08x control %08x\n", 2812 intel_de_read(dev_priv, pp_stat_reg), 2813 intel_de_read(dev_priv, pp_ctrl_reg)); 2814 2815 drm_dbg_kms(&dev_priv->drm, "Wait complete\n"); 2816 } 2817 2818 static void wait_panel_on(struct intel_dp *intel_dp) 2819 { 2820 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 2821 2822 drm_dbg_kms(&i915->drm, "Wait for panel power on\n"); 2823 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); 2824 } 2825 2826 static void wait_panel_off(struct intel_dp *intel_dp) 2827 { 2828 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 2829 2830 drm_dbg_kms(&i915->drm, "Wait for panel power off time\n"); 2831 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); 2832 } 2833 2834 static void wait_panel_power_cycle(struct intel_dp *intel_dp) 2835 { 2836 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 2837 ktime_t panel_power_on_time; 2838 s64 panel_power_off_duration; 2839 2840 drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n"); 2841 2842 /* take the difference of currrent time and panel power off time 2843 * and then make panel wait for t11_t12 if needed. */ 2844 panel_power_on_time = ktime_get_boottime(); 2845 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); 2846 2847 /* When we disable the VDD override bit last we have to do the manual 2848 * wait. */ 2849 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) 2850 wait_remaining_ms_from_jiffies(jiffies, 2851 intel_dp->panel_power_cycle_delay - panel_power_off_duration); 2852 2853 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); 2854 } 2855 2856 static void wait_backlight_on(struct intel_dp *intel_dp) 2857 { 2858 wait_remaining_ms_from_jiffies(intel_dp->last_power_on, 2859 intel_dp->backlight_on_delay); 2860 } 2861 2862 static void edp_wait_backlight_off(struct intel_dp *intel_dp) 2863 { 2864 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, 2865 intel_dp->backlight_off_delay); 2866 } 2867 2868 /* Read the current pp_control value, unlocking the register if it 2869 * is locked 2870 */ 2871 2872 static u32 ilk_get_pp_control(struct intel_dp *intel_dp) 2873 { 2874 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2875 u32 control; 2876 2877 lockdep_assert_held(&dev_priv->pps_mutex); 2878 2879 control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)); 2880 if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) && 2881 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { 2882 control &= ~PANEL_UNLOCK_MASK; 2883 control |= PANEL_UNLOCK_REGS; 2884 } 2885 return control; 2886 } 2887 2888 /* 2889 * Must be paired with edp_panel_vdd_off(). 2890 * Must hold pps_mutex around the whole on/off sequence. 2891 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2892 */ 2893 static bool edp_panel_vdd_on(struct intel_dp *intel_dp) 2894 { 2895 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2896 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 2897 u32 pp; 2898 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2899 bool need_to_disable = !intel_dp->want_panel_vdd; 2900 2901 lockdep_assert_held(&dev_priv->pps_mutex); 2902 2903 if (!intel_dp_is_edp(intel_dp)) 2904 return false; 2905 2906 cancel_delayed_work(&intel_dp->panel_vdd_work); 2907 intel_dp->want_panel_vdd = true; 2908 2909 if (edp_have_panel_vdd(intel_dp)) 2910 return need_to_disable; 2911 2912 intel_display_power_get(dev_priv, 2913 intel_aux_power_domain(intel_dig_port)); 2914 2915 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n", 2916 intel_dig_port->base.base.base.id, 2917 intel_dig_port->base.base.name); 2918 2919 if (!edp_have_panel_power(intel_dp)) 2920 wait_panel_power_cycle(intel_dp); 2921 2922 pp = ilk_get_pp_control(intel_dp); 2923 pp |= EDP_FORCE_VDD; 2924 2925 pp_stat_reg = _pp_stat_reg(intel_dp); 2926 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2927 2928 intel_de_write(dev_priv, pp_ctrl_reg, pp); 2929 intel_de_posting_read(dev_priv, pp_ctrl_reg); 2930 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2931 intel_de_read(dev_priv, pp_stat_reg), 2932 intel_de_read(dev_priv, pp_ctrl_reg)); 2933 /* 2934 * If the panel wasn't on, delay before accessing aux channel 2935 */ 2936 if (!edp_have_panel_power(intel_dp)) { 2937 drm_dbg_kms(&dev_priv->drm, 2938 "[ENCODER:%d:%s] panel power wasn't enabled\n", 2939 intel_dig_port->base.base.base.id, 2940 intel_dig_port->base.base.name); 2941 msleep(intel_dp->panel_power_up_delay); 2942 } 2943 2944 return need_to_disable; 2945 } 2946 2947 /* 2948 * Must be paired with intel_edp_panel_vdd_off() or 2949 * intel_edp_panel_off(). 2950 * Nested calls to these functions are not allowed since 2951 * we drop the lock. Caller must use some higher level 2952 * locking to prevent nested calls from other threads. 2953 */ 2954 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) 2955 { 2956 intel_wakeref_t wakeref; 2957 bool vdd; 2958 2959 if (!intel_dp_is_edp(intel_dp)) 2960 return; 2961 2962 vdd = false; 2963 with_pps_lock(intel_dp, wakeref) 2964 vdd = edp_panel_vdd_on(intel_dp); 2965 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n", 2966 dp_to_dig_port(intel_dp)->base.base.base.id, 2967 dp_to_dig_port(intel_dp)->base.base.name); 2968 } 2969 2970 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) 2971 { 2972 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2973 struct intel_digital_port *intel_dig_port = 2974 dp_to_dig_port(intel_dp); 2975 u32 pp; 2976 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2977 2978 lockdep_assert_held(&dev_priv->pps_mutex); 2979 2980 drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd); 2981 2982 if (!edp_have_panel_vdd(intel_dp)) 2983 return; 2984 2985 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n", 2986 intel_dig_port->base.base.base.id, 2987 intel_dig_port->base.base.name); 2988 2989 pp = ilk_get_pp_control(intel_dp); 2990 pp &= ~EDP_FORCE_VDD; 2991 2992 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2993 pp_stat_reg = _pp_stat_reg(intel_dp); 2994 2995 intel_de_write(dev_priv, pp_ctrl_reg, pp); 2996 intel_de_posting_read(dev_priv, pp_ctrl_reg); 2997 2998 /* Make sure sequencer is idle before allowing subsequent activity */ 2999 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 3000 intel_de_read(dev_priv, pp_stat_reg), 3001 intel_de_read(dev_priv, pp_ctrl_reg)); 3002 3003 if ((pp & PANEL_POWER_ON) == 0) 3004 intel_dp->panel_power_off_time = ktime_get_boottime(); 3005 3006 intel_display_power_put_unchecked(dev_priv, 3007 intel_aux_power_domain(intel_dig_port)); 3008 } 3009 3010 static void edp_panel_vdd_work(struct work_struct *__work) 3011 { 3012 struct intel_dp *intel_dp = 3013 container_of(to_delayed_work(__work), 3014 struct intel_dp, panel_vdd_work); 3015 intel_wakeref_t wakeref; 3016 3017 with_pps_lock(intel_dp, wakeref) { 3018 if (!intel_dp->want_panel_vdd) 3019 edp_panel_vdd_off_sync(intel_dp); 3020 } 3021 } 3022 3023 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) 3024 { 3025 unsigned long delay; 3026 3027 /* 3028 * Queue the timer to fire a long time from now (relative to the power 3029 * down delay) to keep the panel power up across a sequence of 3030 * operations. 3031 */ 3032 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); 3033 schedule_delayed_work(&intel_dp->panel_vdd_work, delay); 3034 } 3035 3036 /* 3037 * Must be paired with edp_panel_vdd_on(). 3038 * Must hold pps_mutex around the whole on/off sequence. 3039 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 3040 */ 3041 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) 3042 { 3043 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3044 3045 lockdep_assert_held(&dev_priv->pps_mutex); 3046 3047 if (!intel_dp_is_edp(intel_dp)) 3048 return; 3049 3050 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on", 3051 dp_to_dig_port(intel_dp)->base.base.base.id, 3052 dp_to_dig_port(intel_dp)->base.base.name); 3053 3054 intel_dp->want_panel_vdd = false; 3055 3056 if (sync) 3057 edp_panel_vdd_off_sync(intel_dp); 3058 else 3059 edp_panel_vdd_schedule_off(intel_dp); 3060 } 3061 3062 static void edp_panel_on(struct intel_dp *intel_dp) 3063 { 3064 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3065 u32 pp; 3066 i915_reg_t pp_ctrl_reg; 3067 3068 lockdep_assert_held(&dev_priv->pps_mutex); 3069 3070 if (!intel_dp_is_edp(intel_dp)) 3071 return; 3072 3073 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n", 3074 dp_to_dig_port(intel_dp)->base.base.base.id, 3075 dp_to_dig_port(intel_dp)->base.base.name); 3076 3077 if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp), 3078 "[ENCODER:%d:%s] panel power already on\n", 3079 dp_to_dig_port(intel_dp)->base.base.base.id, 3080 dp_to_dig_port(intel_dp)->base.base.name)) 3081 return; 3082 3083 wait_panel_power_cycle(intel_dp); 3084 3085 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3086 pp = ilk_get_pp_control(intel_dp); 3087 if (IS_GEN(dev_priv, 5)) { 3088 /* ILK workaround: disable reset around power sequence */ 3089 pp &= ~PANEL_POWER_RESET; 3090 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3091 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3092 } 3093 3094 pp |= PANEL_POWER_ON; 3095 if (!IS_GEN(dev_priv, 5)) 3096 pp |= PANEL_POWER_RESET; 3097 3098 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3099 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3100 3101 wait_panel_on(intel_dp); 3102 intel_dp->last_power_on = jiffies; 3103 3104 if (IS_GEN(dev_priv, 5)) { 3105 pp |= PANEL_POWER_RESET; /* restore panel reset bit */ 3106 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3107 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3108 } 3109 } 3110 3111 void intel_edp_panel_on(struct intel_dp *intel_dp) 3112 { 3113 intel_wakeref_t wakeref; 3114 3115 if (!intel_dp_is_edp(intel_dp)) 3116 return; 3117 3118 with_pps_lock(intel_dp, wakeref) 3119 edp_panel_on(intel_dp); 3120 } 3121 3122 3123 static void edp_panel_off(struct intel_dp *intel_dp) 3124 { 3125 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3126 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3127 u32 pp; 3128 i915_reg_t pp_ctrl_reg; 3129 3130 lockdep_assert_held(&dev_priv->pps_mutex); 3131 3132 if (!intel_dp_is_edp(intel_dp)) 3133 return; 3134 3135 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n", 3136 dig_port->base.base.base.id, dig_port->base.base.name); 3137 3138 drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd, 3139 "Need [ENCODER:%d:%s] VDD to turn off panel\n", 3140 dig_port->base.base.base.id, dig_port->base.base.name); 3141 3142 pp = ilk_get_pp_control(intel_dp); 3143 /* We need to switch off panel power _and_ force vdd, for otherwise some 3144 * panels get very unhappy and cease to work. */ 3145 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | 3146 EDP_BLC_ENABLE); 3147 3148 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3149 3150 intel_dp->want_panel_vdd = false; 3151 3152 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3153 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3154 3155 wait_panel_off(intel_dp); 3156 intel_dp->panel_power_off_time = ktime_get_boottime(); 3157 3158 /* We got a reference when we enabled the VDD. */ 3159 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); 3160 } 3161 3162 void intel_edp_panel_off(struct intel_dp *intel_dp) 3163 { 3164 intel_wakeref_t wakeref; 3165 3166 if (!intel_dp_is_edp(intel_dp)) 3167 return; 3168 3169 with_pps_lock(intel_dp, wakeref) 3170 edp_panel_off(intel_dp); 3171 } 3172 3173 /* Enable backlight in the panel power control. */ 3174 static void _intel_edp_backlight_on(struct intel_dp *intel_dp) 3175 { 3176 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3177 intel_wakeref_t wakeref; 3178 3179 /* 3180 * If we enable the backlight right away following a panel power 3181 * on, we may see slight flicker as the panel syncs with the eDP 3182 * link. So delay a bit to make sure the image is solid before 3183 * allowing it to appear. 3184 */ 3185 wait_backlight_on(intel_dp); 3186 3187 with_pps_lock(intel_dp, wakeref) { 3188 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3189 u32 pp; 3190 3191 pp = ilk_get_pp_control(intel_dp); 3192 pp |= EDP_BLC_ENABLE; 3193 3194 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3195 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3196 } 3197 } 3198 3199 /* Enable backlight PWM and backlight PP control. */ 3200 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 3201 const struct drm_connector_state *conn_state) 3202 { 3203 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder)); 3204 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 3205 3206 if (!intel_dp_is_edp(intel_dp)) 3207 return; 3208 3209 drm_dbg_kms(&i915->drm, "\n"); 3210 3211 intel_panel_enable_backlight(crtc_state, conn_state); 3212 _intel_edp_backlight_on(intel_dp); 3213 } 3214 3215 /* Disable backlight in the panel power control. */ 3216 static void _intel_edp_backlight_off(struct intel_dp *intel_dp) 3217 { 3218 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3219 intel_wakeref_t wakeref; 3220 3221 if (!intel_dp_is_edp(intel_dp)) 3222 return; 3223 3224 with_pps_lock(intel_dp, wakeref) { 3225 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3226 u32 pp; 3227 3228 pp = ilk_get_pp_control(intel_dp); 3229 pp &= ~EDP_BLC_ENABLE; 3230 3231 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3232 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3233 } 3234 3235 intel_dp->last_backlight_off = jiffies; 3236 edp_wait_backlight_off(intel_dp); 3237 } 3238 3239 /* Disable backlight PP control and backlight PWM. */ 3240 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 3241 { 3242 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder)); 3243 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 3244 3245 if (!intel_dp_is_edp(intel_dp)) 3246 return; 3247 3248 drm_dbg_kms(&i915->drm, "\n"); 3249 3250 _intel_edp_backlight_off(intel_dp); 3251 intel_panel_disable_backlight(old_conn_state); 3252 } 3253 3254 /* 3255 * Hook for controlling the panel power control backlight through the bl_power 3256 * sysfs attribute. Take care to handle multiple calls. 3257 */ 3258 static void intel_edp_backlight_power(struct intel_connector *connector, 3259 bool enable) 3260 { 3261 struct drm_i915_private *i915 = to_i915(connector->base.dev); 3262 struct intel_dp *intel_dp = intel_attached_dp(connector); 3263 intel_wakeref_t wakeref; 3264 bool is_enabled; 3265 3266 is_enabled = false; 3267 with_pps_lock(intel_dp, wakeref) 3268 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE; 3269 if (is_enabled == enable) 3270 return; 3271 3272 drm_dbg_kms(&i915->drm, "panel power control backlight %s\n", 3273 enable ? "enable" : "disable"); 3274 3275 if (enable) 3276 _intel_edp_backlight_on(intel_dp); 3277 else 3278 _intel_edp_backlight_off(intel_dp); 3279 } 3280 3281 static void assert_dp_port(struct intel_dp *intel_dp, bool state) 3282 { 3283 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3284 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3285 bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN; 3286 3287 I915_STATE_WARN(cur_state != state, 3288 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n", 3289 dig_port->base.base.base.id, dig_port->base.base.name, 3290 onoff(state), onoff(cur_state)); 3291 } 3292 #define assert_dp_port_disabled(d) assert_dp_port((d), false) 3293 3294 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) 3295 { 3296 bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE; 3297 3298 I915_STATE_WARN(cur_state != state, 3299 "eDP PLL state assertion failure (expected %s, current %s)\n", 3300 onoff(state), onoff(cur_state)); 3301 } 3302 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) 3303 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) 3304 3305 static void ilk_edp_pll_on(struct intel_dp *intel_dp, 3306 const struct intel_crtc_state *pipe_config) 3307 { 3308 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3309 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3310 3311 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 3312 assert_dp_port_disabled(intel_dp); 3313 assert_edp_pll_disabled(dev_priv); 3314 3315 drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n", 3316 pipe_config->port_clock); 3317 3318 intel_dp->DP &= ~DP_PLL_FREQ_MASK; 3319 3320 if (pipe_config->port_clock == 162000) 3321 intel_dp->DP |= DP_PLL_FREQ_162MHZ; 3322 else 3323 intel_dp->DP |= DP_PLL_FREQ_270MHZ; 3324 3325 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3326 intel_de_posting_read(dev_priv, DP_A); 3327 udelay(500); 3328 3329 /* 3330 * [DevILK] Work around required when enabling DP PLL 3331 * while a pipe is enabled going to FDI: 3332 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI 3333 * 2. Program DP PLL enable 3334 */ 3335 if (IS_GEN(dev_priv, 5)) 3336 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); 3337 3338 intel_dp->DP |= DP_PLL_ENABLE; 3339 3340 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3341 intel_de_posting_read(dev_priv, DP_A); 3342 udelay(200); 3343 } 3344 3345 static void ilk_edp_pll_off(struct intel_dp *intel_dp, 3346 const struct intel_crtc_state *old_crtc_state) 3347 { 3348 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3349 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3350 3351 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 3352 assert_dp_port_disabled(intel_dp); 3353 assert_edp_pll_enabled(dev_priv); 3354 3355 drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n"); 3356 3357 intel_dp->DP &= ~DP_PLL_ENABLE; 3358 3359 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3360 intel_de_posting_read(dev_priv, DP_A); 3361 udelay(200); 3362 } 3363 3364 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 3365 { 3366 /* 3367 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 3368 * be capable of signalling downstream hpd with a long pulse. 3369 * Whether or not that means D3 is safe to use is not clear, 3370 * but let's assume so until proven otherwise. 3371 * 3372 * FIXME should really check all downstream ports... 3373 */ 3374 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 3375 drm_dp_is_branch(intel_dp->dpcd) && 3376 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 3377 } 3378 3379 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, 3380 const struct intel_crtc_state *crtc_state, 3381 bool enable) 3382 { 3383 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 3384 int ret; 3385 3386 if (!crtc_state->dsc.compression_enable) 3387 return; 3388 3389 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, 3390 enable ? DP_DECOMPRESSION_EN : 0); 3391 if (ret < 0) 3392 drm_dbg_kms(&i915->drm, 3393 "Failed to %s sink decompression state\n", 3394 enable ? "enable" : "disable"); 3395 } 3396 3397 /* If the sink supports it, try to set the power state appropriately */ 3398 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) 3399 { 3400 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 3401 int ret, i; 3402 3403 /* Should have a valid DPCD by this point */ 3404 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 3405 return; 3406 3407 if (mode != DRM_MODE_DPMS_ON) { 3408 if (downstream_hpd_needs_d0(intel_dp)) 3409 return; 3410 3411 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3412 DP_SET_POWER_D3); 3413 } else { 3414 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 3415 3416 /* 3417 * When turning on, we need to retry for 1ms to give the sink 3418 * time to wake up. 3419 */ 3420 for (i = 0; i < 3; i++) { 3421 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3422 DP_SET_POWER_D0); 3423 if (ret == 1) 3424 break; 3425 msleep(1); 3426 } 3427 3428 if (ret == 1 && lspcon->active) 3429 lspcon_wait_pcon_mode(lspcon); 3430 } 3431 3432 if (ret != 1) 3433 drm_dbg_kms(&i915->drm, "failed to %s sink power state\n", 3434 mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); 3435 } 3436 3437 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, 3438 enum port port, enum pipe *pipe) 3439 { 3440 enum pipe p; 3441 3442 for_each_pipe(dev_priv, p) { 3443 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p)); 3444 3445 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { 3446 *pipe = p; 3447 return true; 3448 } 3449 } 3450 3451 drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n", 3452 port_name(port)); 3453 3454 /* must initialize pipe to something for the asserts */ 3455 *pipe = PIPE_A; 3456 3457 return false; 3458 } 3459 3460 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, 3461 i915_reg_t dp_reg, enum port port, 3462 enum pipe *pipe) 3463 { 3464 bool ret; 3465 u32 val; 3466 3467 val = intel_de_read(dev_priv, dp_reg); 3468 3469 ret = val & DP_PORT_EN; 3470 3471 /* asserts want to know the pipe even if the port is disabled */ 3472 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3473 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; 3474 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3475 ret &= cpt_dp_port_selected(dev_priv, port, pipe); 3476 else if (IS_CHERRYVIEW(dev_priv)) 3477 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; 3478 else 3479 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; 3480 3481 return ret; 3482 } 3483 3484 static bool intel_dp_get_hw_state(struct intel_encoder *encoder, 3485 enum pipe *pipe) 3486 { 3487 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3488 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3489 intel_wakeref_t wakeref; 3490 bool ret; 3491 3492 wakeref = intel_display_power_get_if_enabled(dev_priv, 3493 encoder->power_domain); 3494 if (!wakeref) 3495 return false; 3496 3497 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 3498 encoder->port, pipe); 3499 3500 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 3501 3502 return ret; 3503 } 3504 3505 static void intel_dp_get_config(struct intel_encoder *encoder, 3506 struct intel_crtc_state *pipe_config) 3507 { 3508 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3509 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3510 u32 tmp, flags = 0; 3511 enum port port = encoder->port; 3512 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3513 3514 if (encoder->type == INTEL_OUTPUT_EDP) 3515 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); 3516 else 3517 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); 3518 3519 tmp = intel_de_read(dev_priv, intel_dp->output_reg); 3520 3521 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; 3522 3523 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 3524 u32 trans_dp = intel_de_read(dev_priv, 3525 TRANS_DP_CTL(crtc->pipe)); 3526 3527 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) 3528 flags |= DRM_MODE_FLAG_PHSYNC; 3529 else 3530 flags |= DRM_MODE_FLAG_NHSYNC; 3531 3532 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) 3533 flags |= DRM_MODE_FLAG_PVSYNC; 3534 else 3535 flags |= DRM_MODE_FLAG_NVSYNC; 3536 } else { 3537 if (tmp & DP_SYNC_HS_HIGH) 3538 flags |= DRM_MODE_FLAG_PHSYNC; 3539 else 3540 flags |= DRM_MODE_FLAG_NHSYNC; 3541 3542 if (tmp & DP_SYNC_VS_HIGH) 3543 flags |= DRM_MODE_FLAG_PVSYNC; 3544 else 3545 flags |= DRM_MODE_FLAG_NVSYNC; 3546 } 3547 3548 pipe_config->hw.adjusted_mode.flags |= flags; 3549 3550 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) 3551 pipe_config->limited_color_range = true; 3552 3553 pipe_config->lane_count = 3554 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; 3555 3556 intel_dp_get_m_n(crtc, pipe_config); 3557 3558 if (port == PORT_A) { 3559 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) 3560 pipe_config->port_clock = 162000; 3561 else 3562 pipe_config->port_clock = 270000; 3563 } 3564 3565 pipe_config->hw.adjusted_mode.crtc_clock = 3566 intel_dotclock_calculate(pipe_config->port_clock, 3567 &pipe_config->dp_m_n); 3568 3569 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && 3570 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { 3571 /* 3572 * This is a big fat ugly hack. 3573 * 3574 * Some machines in UEFI boot mode provide us a VBT that has 18 3575 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 3576 * unknown we fail to light up. Yet the same BIOS boots up with 3577 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 3578 * max, not what it tells us to use. 3579 * 3580 * Note: This will still be broken if the eDP panel is not lit 3581 * up by the BIOS, and thus we can't get the mode at module 3582 * load. 3583 */ 3584 drm_dbg_kms(&dev_priv->drm, 3585 "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 3586 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); 3587 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; 3588 } 3589 } 3590 3591 static void intel_disable_dp(struct intel_atomic_state *state, 3592 struct intel_encoder *encoder, 3593 const struct intel_crtc_state *old_crtc_state, 3594 const struct drm_connector_state *old_conn_state) 3595 { 3596 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3597 3598 intel_dp->link_trained = false; 3599 3600 if (old_crtc_state->has_audio) 3601 intel_audio_codec_disable(encoder, 3602 old_crtc_state, old_conn_state); 3603 3604 /* Make sure the panel is off before trying to change the mode. But also 3605 * ensure that we have vdd while we switch off the panel. */ 3606 intel_edp_panel_vdd_on(intel_dp); 3607 intel_edp_backlight_off(old_conn_state); 3608 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); 3609 intel_edp_panel_off(intel_dp); 3610 } 3611 3612 static void g4x_disable_dp(struct intel_atomic_state *state, 3613 struct intel_encoder *encoder, 3614 const struct intel_crtc_state *old_crtc_state, 3615 const struct drm_connector_state *old_conn_state) 3616 { 3617 intel_disable_dp(state, encoder, old_crtc_state, old_conn_state); 3618 } 3619 3620 static void vlv_disable_dp(struct intel_atomic_state *state, 3621 struct intel_encoder *encoder, 3622 const struct intel_crtc_state *old_crtc_state, 3623 const struct drm_connector_state *old_conn_state) 3624 { 3625 intel_disable_dp(state, encoder, old_crtc_state, old_conn_state); 3626 } 3627 3628 static void g4x_post_disable_dp(struct intel_atomic_state *state, 3629 struct intel_encoder *encoder, 3630 const struct intel_crtc_state *old_crtc_state, 3631 const struct drm_connector_state *old_conn_state) 3632 { 3633 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3634 enum port port = encoder->port; 3635 3636 /* 3637 * Bspec does not list a specific disable sequence for g4x DP. 3638 * Follow the ilk+ sequence (disable pipe before the port) for 3639 * g4x DP as it does not suffer from underruns like the normal 3640 * g4x modeset sequence (disable pipe after the port). 3641 */ 3642 intel_dp_link_down(encoder, old_crtc_state); 3643 3644 /* Only ilk+ has port A */ 3645 if (port == PORT_A) 3646 ilk_edp_pll_off(intel_dp, old_crtc_state); 3647 } 3648 3649 static void vlv_post_disable_dp(struct intel_atomic_state *state, 3650 struct intel_encoder *encoder, 3651 const struct intel_crtc_state *old_crtc_state, 3652 const struct drm_connector_state *old_conn_state) 3653 { 3654 intel_dp_link_down(encoder, old_crtc_state); 3655 } 3656 3657 static void chv_post_disable_dp(struct intel_atomic_state *state, 3658 struct intel_encoder *encoder, 3659 const struct intel_crtc_state *old_crtc_state, 3660 const struct drm_connector_state *old_conn_state) 3661 { 3662 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3663 3664 intel_dp_link_down(encoder, old_crtc_state); 3665 3666 vlv_dpio_get(dev_priv); 3667 3668 /* Assert data lane reset */ 3669 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 3670 3671 vlv_dpio_put(dev_priv); 3672 } 3673 3674 static void 3675 cpt_set_link_train(struct intel_dp *intel_dp, 3676 u8 dp_train_pat) 3677 { 3678 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3679 u32 *DP = &intel_dp->DP; 3680 3681 *DP &= ~DP_LINK_TRAIN_MASK_CPT; 3682 3683 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3684 case DP_TRAINING_PATTERN_DISABLE: 3685 *DP |= DP_LINK_TRAIN_OFF_CPT; 3686 break; 3687 case DP_TRAINING_PATTERN_1: 3688 *DP |= DP_LINK_TRAIN_PAT_1_CPT; 3689 break; 3690 case DP_TRAINING_PATTERN_2: 3691 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3692 break; 3693 case DP_TRAINING_PATTERN_3: 3694 drm_dbg_kms(&dev_priv->drm, 3695 "TPS3 not supported, using TPS2 instead\n"); 3696 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3697 break; 3698 } 3699 3700 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 3701 intel_de_posting_read(dev_priv, intel_dp->output_reg); 3702 } 3703 3704 static void 3705 g4x_set_link_train(struct intel_dp *intel_dp, 3706 u8 dp_train_pat) 3707 { 3708 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3709 u32 *DP = &intel_dp->DP; 3710 3711 *DP &= ~DP_LINK_TRAIN_MASK; 3712 3713 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3714 case DP_TRAINING_PATTERN_DISABLE: 3715 *DP |= DP_LINK_TRAIN_OFF; 3716 break; 3717 case DP_TRAINING_PATTERN_1: 3718 *DP |= DP_LINK_TRAIN_PAT_1; 3719 break; 3720 case DP_TRAINING_PATTERN_2: 3721 *DP |= DP_LINK_TRAIN_PAT_2; 3722 break; 3723 case DP_TRAINING_PATTERN_3: 3724 drm_dbg_kms(&dev_priv->drm, 3725 "TPS3 not supported, using TPS2 instead\n"); 3726 *DP |= DP_LINK_TRAIN_PAT_2; 3727 break; 3728 } 3729 3730 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 3731 intel_de_posting_read(dev_priv, intel_dp->output_reg); 3732 } 3733 3734 static void intel_dp_enable_port(struct intel_dp *intel_dp, 3735 const struct intel_crtc_state *old_crtc_state) 3736 { 3737 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3738 3739 /* enable with pattern 1 (as per spec) */ 3740 3741 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); 3742 3743 /* 3744 * Magic for VLV/CHV. We _must_ first set up the register 3745 * without actually enabling the port, and then do another 3746 * write to enable the port. Otherwise link training will 3747 * fail when the power sequencer is freshly used for this port. 3748 */ 3749 intel_dp->DP |= DP_PORT_EN; 3750 if (old_crtc_state->has_audio) 3751 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 3752 3753 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 3754 intel_de_posting_read(dev_priv, intel_dp->output_reg); 3755 } 3756 3757 static void intel_enable_dp(struct intel_atomic_state *state, 3758 struct intel_encoder *encoder, 3759 const struct intel_crtc_state *pipe_config, 3760 const struct drm_connector_state *conn_state) 3761 { 3762 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3763 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3764 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3765 u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg); 3766 enum pipe pipe = crtc->pipe; 3767 intel_wakeref_t wakeref; 3768 3769 if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN)) 3770 return; 3771 3772 with_pps_lock(intel_dp, wakeref) { 3773 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3774 vlv_init_panel_power_sequencer(encoder, pipe_config); 3775 3776 intel_dp_enable_port(intel_dp, pipe_config); 3777 3778 edp_panel_vdd_on(intel_dp); 3779 edp_panel_on(intel_dp); 3780 edp_panel_vdd_off(intel_dp, true); 3781 } 3782 3783 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3784 unsigned int lane_mask = 0x0; 3785 3786 if (IS_CHERRYVIEW(dev_priv)) 3787 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); 3788 3789 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), 3790 lane_mask); 3791 } 3792 3793 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); 3794 intel_dp_start_link_train(intel_dp); 3795 intel_dp_stop_link_train(intel_dp); 3796 3797 if (pipe_config->has_audio) { 3798 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n", 3799 pipe_name(pipe)); 3800 intel_audio_codec_enable(encoder, pipe_config, conn_state); 3801 } 3802 } 3803 3804 static void g4x_enable_dp(struct intel_atomic_state *state, 3805 struct intel_encoder *encoder, 3806 const struct intel_crtc_state *pipe_config, 3807 const struct drm_connector_state *conn_state) 3808 { 3809 intel_enable_dp(state, encoder, pipe_config, conn_state); 3810 intel_edp_backlight_on(pipe_config, conn_state); 3811 } 3812 3813 static void vlv_enable_dp(struct intel_atomic_state *state, 3814 struct intel_encoder *encoder, 3815 const struct intel_crtc_state *pipe_config, 3816 const struct drm_connector_state *conn_state) 3817 { 3818 intel_edp_backlight_on(pipe_config, conn_state); 3819 } 3820 3821 static void g4x_pre_enable_dp(struct intel_atomic_state *state, 3822 struct intel_encoder *encoder, 3823 const struct intel_crtc_state *pipe_config, 3824 const struct drm_connector_state *conn_state) 3825 { 3826 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3827 enum port port = encoder->port; 3828 3829 intel_dp_prepare(encoder, pipe_config); 3830 3831 /* Only ilk+ has port A */ 3832 if (port == PORT_A) 3833 ilk_edp_pll_on(intel_dp, pipe_config); 3834 } 3835 3836 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) 3837 { 3838 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3839 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); 3840 enum pipe pipe = intel_dp->pps_pipe; 3841 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); 3842 3843 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE); 3844 3845 if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B)) 3846 return; 3847 3848 edp_panel_vdd_off_sync(intel_dp); 3849 3850 /* 3851 * VLV seems to get confused when multiple power sequencers 3852 * have the same port selected (even if only one has power/vdd 3853 * enabled). The failure manifests as vlv_wait_port_ready() failing 3854 * CHV on the other hand doesn't seem to mind having the same port 3855 * selected in multiple power sequencers, but let's clear the 3856 * port select always when logically disconnecting a power sequencer 3857 * from a port. 3858 */ 3859 drm_dbg_kms(&dev_priv->drm, 3860 "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n", 3861 pipe_name(pipe), intel_dig_port->base.base.base.id, 3862 intel_dig_port->base.base.name); 3863 intel_de_write(dev_priv, pp_on_reg, 0); 3864 intel_de_posting_read(dev_priv, pp_on_reg); 3865 3866 intel_dp->pps_pipe = INVALID_PIPE; 3867 } 3868 3869 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 3870 enum pipe pipe) 3871 { 3872 struct intel_encoder *encoder; 3873 3874 lockdep_assert_held(&dev_priv->pps_mutex); 3875 3876 for_each_intel_dp(&dev_priv->drm, encoder) { 3877 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3878 3879 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe, 3880 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n", 3881 pipe_name(pipe), encoder->base.base.id, 3882 encoder->base.name); 3883 3884 if (intel_dp->pps_pipe != pipe) 3885 continue; 3886 3887 drm_dbg_kms(&dev_priv->drm, 3888 "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n", 3889 pipe_name(pipe), encoder->base.base.id, 3890 encoder->base.name); 3891 3892 /* make sure vdd is off before we steal it */ 3893 vlv_detach_power_sequencer(intel_dp); 3894 } 3895 } 3896 3897 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 3898 const struct intel_crtc_state *crtc_state) 3899 { 3900 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3901 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3902 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3903 3904 lockdep_assert_held(&dev_priv->pps_mutex); 3905 3906 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE); 3907 3908 if (intel_dp->pps_pipe != INVALID_PIPE && 3909 intel_dp->pps_pipe != crtc->pipe) { 3910 /* 3911 * If another power sequencer was being used on this 3912 * port previously make sure to turn off vdd there while 3913 * we still have control of it. 3914 */ 3915 vlv_detach_power_sequencer(intel_dp); 3916 } 3917 3918 /* 3919 * We may be stealing the power 3920 * sequencer from another port. 3921 */ 3922 vlv_steal_power_sequencer(dev_priv, crtc->pipe); 3923 3924 intel_dp->active_pipe = crtc->pipe; 3925 3926 if (!intel_dp_is_edp(intel_dp)) 3927 return; 3928 3929 /* now it's all ours */ 3930 intel_dp->pps_pipe = crtc->pipe; 3931 3932 drm_dbg_kms(&dev_priv->drm, 3933 "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n", 3934 pipe_name(intel_dp->pps_pipe), encoder->base.base.id, 3935 encoder->base.name); 3936 3937 /* init power sequencer on this pipe and port */ 3938 intel_dp_init_panel_power_sequencer(intel_dp); 3939 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 3940 } 3941 3942 static void vlv_pre_enable_dp(struct intel_atomic_state *state, 3943 struct intel_encoder *encoder, 3944 const struct intel_crtc_state *pipe_config, 3945 const struct drm_connector_state *conn_state) 3946 { 3947 vlv_phy_pre_encoder_enable(encoder, pipe_config); 3948 3949 intel_enable_dp(state, encoder, pipe_config, conn_state); 3950 } 3951 3952 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state, 3953 struct intel_encoder *encoder, 3954 const struct intel_crtc_state *pipe_config, 3955 const struct drm_connector_state *conn_state) 3956 { 3957 intel_dp_prepare(encoder, pipe_config); 3958 3959 vlv_phy_pre_pll_enable(encoder, pipe_config); 3960 } 3961 3962 static void chv_pre_enable_dp(struct intel_atomic_state *state, 3963 struct intel_encoder *encoder, 3964 const struct intel_crtc_state *pipe_config, 3965 const struct drm_connector_state *conn_state) 3966 { 3967 chv_phy_pre_encoder_enable(encoder, pipe_config); 3968 3969 intel_enable_dp(state, encoder, pipe_config, conn_state); 3970 3971 /* Second common lane will stay alive on its own now */ 3972 chv_phy_release_cl2_override(encoder); 3973 } 3974 3975 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state, 3976 struct intel_encoder *encoder, 3977 const struct intel_crtc_state *pipe_config, 3978 const struct drm_connector_state *conn_state) 3979 { 3980 intel_dp_prepare(encoder, pipe_config); 3981 3982 chv_phy_pre_pll_enable(encoder, pipe_config); 3983 } 3984 3985 static void chv_dp_post_pll_disable(struct intel_atomic_state *state, 3986 struct intel_encoder *encoder, 3987 const struct intel_crtc_state *old_crtc_state, 3988 const struct drm_connector_state *old_conn_state) 3989 { 3990 chv_phy_post_pll_disable(encoder, old_crtc_state); 3991 } 3992 3993 /* 3994 * Fetch AUX CH registers 0x202 - 0x207 which contain 3995 * link status information 3996 */ 3997 bool 3998 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) 3999 { 4000 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, 4001 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; 4002 } 4003 4004 static u8 intel_dp_voltage_max_2(struct intel_dp *intel_dp) 4005 { 4006 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 4007 } 4008 4009 static u8 intel_dp_voltage_max_3(struct intel_dp *intel_dp) 4010 { 4011 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 4012 } 4013 4014 static u8 intel_dp_pre_empemph_max_2(struct intel_dp *intel_dp) 4015 { 4016 return DP_TRAIN_PRE_EMPH_LEVEL_2; 4017 } 4018 4019 static u8 intel_dp_pre_empemph_max_3(struct intel_dp *intel_dp) 4020 { 4021 return DP_TRAIN_PRE_EMPH_LEVEL_3; 4022 } 4023 4024 static void vlv_set_signal_levels(struct intel_dp *intel_dp) 4025 { 4026 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 4027 unsigned long demph_reg_value, preemph_reg_value, 4028 uniqtranscale_reg_value; 4029 u8 train_set = intel_dp->train_set[0]; 4030 4031 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 4032 case DP_TRAIN_PRE_EMPH_LEVEL_0: 4033 preemph_reg_value = 0x0004000; 4034 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4035 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4036 demph_reg_value = 0x2B405555; 4037 uniqtranscale_reg_value = 0x552AB83A; 4038 break; 4039 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4040 demph_reg_value = 0x2B404040; 4041 uniqtranscale_reg_value = 0x5548B83A; 4042 break; 4043 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4044 demph_reg_value = 0x2B245555; 4045 uniqtranscale_reg_value = 0x5560B83A; 4046 break; 4047 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 4048 demph_reg_value = 0x2B405555; 4049 uniqtranscale_reg_value = 0x5598DA3A; 4050 break; 4051 default: 4052 return; 4053 } 4054 break; 4055 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4056 preemph_reg_value = 0x0002000; 4057 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4058 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4059 demph_reg_value = 0x2B404040; 4060 uniqtranscale_reg_value = 0x5552B83A; 4061 break; 4062 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4063 demph_reg_value = 0x2B404848; 4064 uniqtranscale_reg_value = 0x5580B83A; 4065 break; 4066 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4067 demph_reg_value = 0x2B404040; 4068 uniqtranscale_reg_value = 0x55ADDA3A; 4069 break; 4070 default: 4071 return; 4072 } 4073 break; 4074 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4075 preemph_reg_value = 0x0000000; 4076 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4077 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4078 demph_reg_value = 0x2B305555; 4079 uniqtranscale_reg_value = 0x5570B83A; 4080 break; 4081 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4082 demph_reg_value = 0x2B2B4040; 4083 uniqtranscale_reg_value = 0x55ADDA3A; 4084 break; 4085 default: 4086 return; 4087 } 4088 break; 4089 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4090 preemph_reg_value = 0x0006000; 4091 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4092 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4093 demph_reg_value = 0x1B405555; 4094 uniqtranscale_reg_value = 0x55ADDA3A; 4095 break; 4096 default: 4097 return; 4098 } 4099 break; 4100 default: 4101 return; 4102 } 4103 4104 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, 4105 uniqtranscale_reg_value, 0); 4106 } 4107 4108 static void chv_set_signal_levels(struct intel_dp *intel_dp) 4109 { 4110 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 4111 u32 deemph_reg_value, margin_reg_value; 4112 bool uniq_trans_scale = false; 4113 u8 train_set = intel_dp->train_set[0]; 4114 4115 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 4116 case DP_TRAIN_PRE_EMPH_LEVEL_0: 4117 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4118 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4119 deemph_reg_value = 128; 4120 margin_reg_value = 52; 4121 break; 4122 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4123 deemph_reg_value = 128; 4124 margin_reg_value = 77; 4125 break; 4126 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4127 deemph_reg_value = 128; 4128 margin_reg_value = 102; 4129 break; 4130 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 4131 deemph_reg_value = 128; 4132 margin_reg_value = 154; 4133 uniq_trans_scale = true; 4134 break; 4135 default: 4136 return; 4137 } 4138 break; 4139 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4140 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4141 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4142 deemph_reg_value = 85; 4143 margin_reg_value = 78; 4144 break; 4145 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4146 deemph_reg_value = 85; 4147 margin_reg_value = 116; 4148 break; 4149 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4150 deemph_reg_value = 85; 4151 margin_reg_value = 154; 4152 break; 4153 default: 4154 return; 4155 } 4156 break; 4157 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4158 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4159 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4160 deemph_reg_value = 64; 4161 margin_reg_value = 104; 4162 break; 4163 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4164 deemph_reg_value = 64; 4165 margin_reg_value = 154; 4166 break; 4167 default: 4168 return; 4169 } 4170 break; 4171 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4172 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4173 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4174 deemph_reg_value = 43; 4175 margin_reg_value = 154; 4176 break; 4177 default: 4178 return; 4179 } 4180 break; 4181 default: 4182 return; 4183 } 4184 4185 chv_set_phy_signal_level(encoder, deemph_reg_value, 4186 margin_reg_value, uniq_trans_scale); 4187 } 4188 4189 static u32 g4x_signal_levels(u8 train_set) 4190 { 4191 u32 signal_levels = 0; 4192 4193 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4194 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4195 default: 4196 signal_levels |= DP_VOLTAGE_0_4; 4197 break; 4198 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4199 signal_levels |= DP_VOLTAGE_0_6; 4200 break; 4201 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4202 signal_levels |= DP_VOLTAGE_0_8; 4203 break; 4204 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 4205 signal_levels |= DP_VOLTAGE_1_2; 4206 break; 4207 } 4208 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 4209 case DP_TRAIN_PRE_EMPH_LEVEL_0: 4210 default: 4211 signal_levels |= DP_PRE_EMPHASIS_0; 4212 break; 4213 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4214 signal_levels |= DP_PRE_EMPHASIS_3_5; 4215 break; 4216 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4217 signal_levels |= DP_PRE_EMPHASIS_6; 4218 break; 4219 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4220 signal_levels |= DP_PRE_EMPHASIS_9_5; 4221 break; 4222 } 4223 return signal_levels; 4224 } 4225 4226 static void 4227 g4x_set_signal_levels(struct intel_dp *intel_dp) 4228 { 4229 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4230 u8 train_set = intel_dp->train_set[0]; 4231 u32 signal_levels; 4232 4233 signal_levels = g4x_signal_levels(train_set); 4234 4235 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", 4236 signal_levels); 4237 4238 intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK); 4239 intel_dp->DP |= signal_levels; 4240 4241 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 4242 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4243 } 4244 4245 /* SNB CPU eDP voltage swing and pre-emphasis control */ 4246 static u32 snb_cpu_edp_signal_levels(u8 train_set) 4247 { 4248 u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4249 DP_TRAIN_PRE_EMPHASIS_MASK); 4250 4251 switch (signal_levels) { 4252 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4253 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4254 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4255 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4256 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; 4257 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4258 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4259 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; 4260 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4261 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4262 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; 4263 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4264 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4265 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; 4266 default: 4267 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4268 "0x%x\n", signal_levels); 4269 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4270 } 4271 } 4272 4273 static void 4274 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp) 4275 { 4276 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4277 u8 train_set = intel_dp->train_set[0]; 4278 u32 signal_levels; 4279 4280 signal_levels = snb_cpu_edp_signal_levels(train_set); 4281 4282 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", 4283 signal_levels); 4284 4285 intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; 4286 intel_dp->DP |= signal_levels; 4287 4288 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 4289 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4290 } 4291 4292 /* IVB CPU eDP voltage swing and pre-emphasis control */ 4293 static u32 ivb_cpu_edp_signal_levels(u8 train_set) 4294 { 4295 u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4296 DP_TRAIN_PRE_EMPHASIS_MASK); 4297 4298 switch (signal_levels) { 4299 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4300 return EDP_LINK_TRAIN_400MV_0DB_IVB; 4301 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4302 return EDP_LINK_TRAIN_400MV_3_5DB_IVB; 4303 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4304 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4305 return EDP_LINK_TRAIN_400MV_6DB_IVB; 4306 4307 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4308 return EDP_LINK_TRAIN_600MV_0DB_IVB; 4309 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4310 return EDP_LINK_TRAIN_600MV_3_5DB_IVB; 4311 4312 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4313 return EDP_LINK_TRAIN_800MV_0DB_IVB; 4314 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4315 return EDP_LINK_TRAIN_800MV_3_5DB_IVB; 4316 4317 default: 4318 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4319 "0x%x\n", signal_levels); 4320 return EDP_LINK_TRAIN_500MV_0DB_IVB; 4321 } 4322 } 4323 4324 static void 4325 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp) 4326 { 4327 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4328 u8 train_set = intel_dp->train_set[0]; 4329 u32 signal_levels; 4330 4331 signal_levels = ivb_cpu_edp_signal_levels(train_set); 4332 4333 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", 4334 signal_levels); 4335 4336 intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; 4337 intel_dp->DP |= signal_levels; 4338 4339 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 4340 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4341 } 4342 4343 void intel_dp_set_signal_levels(struct intel_dp *intel_dp) 4344 { 4345 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4346 u8 train_set = intel_dp->train_set[0]; 4347 4348 drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n", 4349 train_set & DP_TRAIN_VOLTAGE_SWING_MASK, 4350 train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : ""); 4351 drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n", 4352 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> 4353 DP_TRAIN_PRE_EMPHASIS_SHIFT, 4354 train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ? 4355 " (max)" : ""); 4356 4357 intel_dp->set_signal_levels(intel_dp); 4358 } 4359 4360 void 4361 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, 4362 u8 dp_train_pat) 4363 { 4364 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4365 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); 4366 4367 if (dp_train_pat & train_pat_mask) 4368 drm_dbg_kms(&dev_priv->drm, 4369 "Using DP training pattern TPS%d\n", 4370 dp_train_pat & train_pat_mask); 4371 4372 intel_dp->set_link_train(intel_dp, dp_train_pat); 4373 } 4374 4375 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) 4376 { 4377 if (intel_dp->set_idle_link_train) 4378 intel_dp->set_idle_link_train(intel_dp); 4379 } 4380 4381 static void 4382 intel_dp_link_down(struct intel_encoder *encoder, 4383 const struct intel_crtc_state *old_crtc_state) 4384 { 4385 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4386 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4387 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 4388 enum port port = encoder->port; 4389 u32 DP = intel_dp->DP; 4390 4391 if (drm_WARN_ON(&dev_priv->drm, 4392 (intel_de_read(dev_priv, intel_dp->output_reg) & 4393 DP_PORT_EN) == 0)) 4394 return; 4395 4396 drm_dbg_kms(&dev_priv->drm, "\n"); 4397 4398 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 4399 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 4400 DP &= ~DP_LINK_TRAIN_MASK_CPT; 4401 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; 4402 } else { 4403 DP &= ~DP_LINK_TRAIN_MASK; 4404 DP |= DP_LINK_TRAIN_PAT_IDLE; 4405 } 4406 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4407 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4408 4409 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); 4410 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4411 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4412 4413 /* 4414 * HW workaround for IBX, we need to move the port 4415 * to transcoder A after disabling it to allow the 4416 * matching HDMI port to be enabled on transcoder A. 4417 */ 4418 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { 4419 /* 4420 * We get CPU/PCH FIFO underruns on the other pipe when 4421 * doing the workaround. Sweep them under the rug. 4422 */ 4423 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4424 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4425 4426 /* always enable with pattern 1 (as per spec) */ 4427 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); 4428 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | 4429 DP_LINK_TRAIN_PAT_1; 4430 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4431 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4432 4433 DP &= ~DP_PORT_EN; 4434 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4435 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4436 4437 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 4438 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4439 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4440 } 4441 4442 msleep(intel_dp->panel_power_down_delay); 4443 4444 intel_dp->DP = DP; 4445 4446 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4447 intel_wakeref_t wakeref; 4448 4449 with_pps_lock(intel_dp, wakeref) 4450 intel_dp->active_pipe = INVALID_PIPE; 4451 } 4452 } 4453 4454 static void 4455 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp) 4456 { 4457 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 4458 u8 dpcd_ext[6]; 4459 4460 /* 4461 * Prior to DP1.3 the bit represented by 4462 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 4463 * if it is set DP_DPCD_REV at 0000h could be at a value less than 4464 * the true capability of the panel. The only way to check is to 4465 * then compare 0000h and 2200h. 4466 */ 4467 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 4468 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 4469 return; 4470 4471 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV, 4472 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) { 4473 drm_err(&i915->drm, 4474 "DPCD failed read at extended capabilities\n"); 4475 return; 4476 } 4477 4478 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 4479 drm_dbg_kms(&i915->drm, 4480 "DPCD extended DPCD rev less than base DPCD rev\n"); 4481 return; 4482 } 4483 4484 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext))) 4485 return; 4486 4487 drm_dbg_kms(&i915->drm, "Base DPCD: %*ph\n", 4488 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd); 4489 4490 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)); 4491 } 4492 4493 bool 4494 intel_dp_read_dpcd(struct intel_dp *intel_dp) 4495 { 4496 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 4497 4498 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd, 4499 sizeof(intel_dp->dpcd)) < 0) 4500 return false; /* aux transfer failed */ 4501 4502 intel_dp_extended_receiver_capabilities(intel_dp); 4503 4504 drm_dbg_kms(&i915->drm, "DPCD: %*ph\n", (int)sizeof(intel_dp->dpcd), 4505 intel_dp->dpcd); 4506 4507 return intel_dp->dpcd[DP_DPCD_REV] != 0; 4508 } 4509 4510 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4511 { 4512 u8 dprx = 0; 4513 4514 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4515 &dprx) != 1) 4516 return false; 4517 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4518 } 4519 4520 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) 4521 { 4522 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 4523 4524 /* 4525 * Clear the cached register set to avoid using stale values 4526 * for the sinks that do not support DSC. 4527 */ 4528 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 4529 4530 /* Clear fec_capable to avoid using stale values */ 4531 intel_dp->fec_capable = 0; 4532 4533 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ 4534 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || 4535 intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4536 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, 4537 intel_dp->dsc_dpcd, 4538 sizeof(intel_dp->dsc_dpcd)) < 0) 4539 drm_err(&i915->drm, 4540 "Failed to read DPCD register 0x%x\n", 4541 DP_DSC_SUPPORT); 4542 4543 drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n", 4544 (int)sizeof(intel_dp->dsc_dpcd), 4545 intel_dp->dsc_dpcd); 4546 4547 /* FEC is supported only on DP 1.4 */ 4548 if (!intel_dp_is_edp(intel_dp) && 4549 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, 4550 &intel_dp->fec_capable) < 0) 4551 drm_err(&i915->drm, 4552 "Failed to read FEC DPCD register\n"); 4553 4554 drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n", 4555 intel_dp->fec_capable); 4556 } 4557 } 4558 4559 static bool 4560 intel_edp_init_dpcd(struct intel_dp *intel_dp) 4561 { 4562 struct drm_i915_private *dev_priv = 4563 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 4564 4565 /* this function is meant to be called only once */ 4566 drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0); 4567 4568 if (!intel_dp_read_dpcd(intel_dp)) 4569 return false; 4570 4571 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4572 drm_dp_is_branch(intel_dp->dpcd)); 4573 4574 /* 4575 * Read the eDP display control registers. 4576 * 4577 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4578 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4579 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4580 * method). The display control registers should read zero if they're 4581 * not supported anyway. 4582 */ 4583 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4584 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4585 sizeof(intel_dp->edp_dpcd)) 4586 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n", 4587 (int)sizeof(intel_dp->edp_dpcd), 4588 intel_dp->edp_dpcd); 4589 4590 /* 4591 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4592 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4593 */ 4594 intel_psr_init_dpcd(intel_dp); 4595 4596 /* Read the eDP 1.4+ supported link rates. */ 4597 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4598 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4599 int i; 4600 4601 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4602 sink_rates, sizeof(sink_rates)); 4603 4604 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4605 int val = le16_to_cpu(sink_rates[i]); 4606 4607 if (val == 0) 4608 break; 4609 4610 /* Value read multiplied by 200kHz gives the per-lane 4611 * link rate in kHz. The source rates are, however, 4612 * stored in terms of LS_Clk kHz. The full conversion 4613 * back to symbols is 4614 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4615 */ 4616 intel_dp->sink_rates[i] = (val * 200) / 10; 4617 } 4618 intel_dp->num_sink_rates = i; 4619 } 4620 4621 /* 4622 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4623 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4624 */ 4625 if (intel_dp->num_sink_rates) 4626 intel_dp->use_rate_select = true; 4627 else 4628 intel_dp_set_sink_rates(intel_dp); 4629 4630 intel_dp_set_common_rates(intel_dp); 4631 4632 /* Read the eDP DSC DPCD registers */ 4633 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4634 intel_dp_get_dsc_sink_cap(intel_dp); 4635 4636 return true; 4637 } 4638 4639 4640 static bool 4641 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4642 { 4643 if (!intel_dp_read_dpcd(intel_dp)) 4644 return false; 4645 4646 /* 4647 * Don't clobber cached eDP rates. Also skip re-reading 4648 * the OUI/ID since we know it won't change. 4649 */ 4650 if (!intel_dp_is_edp(intel_dp)) { 4651 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4652 drm_dp_is_branch(intel_dp->dpcd)); 4653 4654 intel_dp_set_sink_rates(intel_dp); 4655 intel_dp_set_common_rates(intel_dp); 4656 } 4657 4658 /* 4659 * Some eDP panels do not set a valid value for sink count, that is why 4660 * it don't care about read it here and in intel_edp_init_dpcd(). 4661 */ 4662 if (!intel_dp_is_edp(intel_dp) && 4663 !drm_dp_has_quirk(&intel_dp->desc, 0, 4664 DP_DPCD_QUIRK_NO_SINK_COUNT)) { 4665 u8 count; 4666 ssize_t r; 4667 4668 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count); 4669 if (r < 1) 4670 return false; 4671 4672 /* 4673 * Sink count can change between short pulse hpd hence 4674 * a member variable in intel_dp will track any changes 4675 * between short pulse interrupts. 4676 */ 4677 intel_dp->sink_count = DP_GET_SINK_COUNT(count); 4678 4679 /* 4680 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4681 * a dongle is present but no display. Unless we require to know 4682 * if a dongle is present or not, we don't need to update 4683 * downstream port information. So, an early return here saves 4684 * time from performing other operations which are not required. 4685 */ 4686 if (!intel_dp->sink_count) 4687 return false; 4688 } 4689 4690 if (!drm_dp_is_branch(intel_dp->dpcd)) 4691 return true; /* native DP sink */ 4692 4693 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) 4694 return true; /* no per-port downstream info */ 4695 4696 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, 4697 intel_dp->downstream_ports, 4698 DP_MAX_DOWNSTREAM_PORTS) < 0) 4699 return false; /* downstream port status fetch failed */ 4700 4701 return true; 4702 } 4703 4704 static bool 4705 intel_dp_sink_can_mst(struct intel_dp *intel_dp) 4706 { 4707 u8 mstm_cap; 4708 4709 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) 4710 return false; 4711 4712 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1) 4713 return false; 4714 4715 return mstm_cap & DP_MST_CAP; 4716 } 4717 4718 static bool 4719 intel_dp_can_mst(struct intel_dp *intel_dp) 4720 { 4721 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 4722 4723 return i915->params.enable_dp_mst && 4724 intel_dp->can_mst && 4725 intel_dp_sink_can_mst(intel_dp); 4726 } 4727 4728 static void 4729 intel_dp_configure_mst(struct intel_dp *intel_dp) 4730 { 4731 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 4732 struct intel_encoder *encoder = 4733 &dp_to_dig_port(intel_dp)->base; 4734 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp); 4735 4736 drm_dbg_kms(&i915->drm, 4737 "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n", 4738 encoder->base.base.id, encoder->base.name, 4739 yesno(intel_dp->can_mst), yesno(sink_can_mst), 4740 yesno(i915->params.enable_dp_mst)); 4741 4742 if (!intel_dp->can_mst) 4743 return; 4744 4745 intel_dp->is_mst = sink_can_mst && 4746 i915->params.enable_dp_mst; 4747 4748 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4749 intel_dp->is_mst); 4750 } 4751 4752 static bool 4753 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) 4754 { 4755 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, 4756 sink_irq_vector, DP_DPRX_ESI_LEN) == 4757 DP_DPRX_ESI_LEN; 4758 } 4759 4760 bool 4761 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state, 4762 const struct drm_connector_state *conn_state) 4763 { 4764 /* 4765 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication 4766 * of Color Encoding Format and Content Color Gamut], in order to 4767 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP. 4768 */ 4769 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4770 return true; 4771 4772 switch (conn_state->colorspace) { 4773 case DRM_MODE_COLORIMETRY_SYCC_601: 4774 case DRM_MODE_COLORIMETRY_OPYCC_601: 4775 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4776 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4777 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4778 return true; 4779 default: 4780 break; 4781 } 4782 4783 return false; 4784 } 4785 4786 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc, 4787 struct dp_sdp *sdp, size_t size) 4788 { 4789 size_t length = sizeof(struct dp_sdp); 4790 4791 if (size < length) 4792 return -ENOSPC; 4793 4794 memset(sdp, 0, size); 4795 4796 /* 4797 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 4798 * VSC SDP Header Bytes 4799 */ 4800 sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */ 4801 sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */ 4802 sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */ 4803 sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */ 4804 4805 /* 4806 * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as 4807 * per DP 1.4a spec. 4808 */ 4809 if (vsc->revision != 0x5) 4810 goto out; 4811 4812 /* VSC SDP Payload for DB16 through DB18 */ 4813 /* Pixel Encoding and Colorimetry Formats */ 4814 sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */ 4815 sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */ 4816 4817 switch (vsc->bpc) { 4818 case 6: 4819 /* 6bpc: 0x0 */ 4820 break; 4821 case 8: 4822 sdp->db[17] = 0x1; /* DB17[3:0] */ 4823 break; 4824 case 10: 4825 sdp->db[17] = 0x2; 4826 break; 4827 case 12: 4828 sdp->db[17] = 0x3; 4829 break; 4830 case 16: 4831 sdp->db[17] = 0x4; 4832 break; 4833 default: 4834 MISSING_CASE(vsc->bpc); 4835 break; 4836 } 4837 /* Dynamic Range and Component Bit Depth */ 4838 if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA) 4839 sdp->db[17] |= 0x80; /* DB17[7] */ 4840 4841 /* Content Type */ 4842 sdp->db[18] = vsc->content_type & 0x7; 4843 4844 out: 4845 return length; 4846 } 4847 4848 static ssize_t 4849 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe, 4850 struct dp_sdp *sdp, 4851 size_t size) 4852 { 4853 size_t length = sizeof(struct dp_sdp); 4854 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE; 4855 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE]; 4856 ssize_t len; 4857 4858 if (size < length) 4859 return -ENOSPC; 4860 4861 memset(sdp, 0, size); 4862 4863 len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf)); 4864 if (len < 0) { 4865 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n"); 4866 return -ENOSPC; 4867 } 4868 4869 if (len != infoframe_size) { 4870 DRM_DEBUG_KMS("wrong static hdr metadata size\n"); 4871 return -ENOSPC; 4872 } 4873 4874 /* 4875 * Set up the infoframe sdp packet for HDR static metadata. 4876 * Prepare VSC Header for SU as per DP 1.4a spec, 4877 * Table 2-100 and Table 2-101 4878 */ 4879 4880 /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */ 4881 sdp->sdp_header.HB0 = 0; 4882 /* 4883 * Packet Type 80h + Non-audio INFOFRAME Type value 4884 * HDMI_INFOFRAME_TYPE_DRM: 0x87 4885 * - 80h + Non-audio INFOFRAME Type value 4886 * - InfoFrame Type: 0x07 4887 * [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame] 4888 */ 4889 sdp->sdp_header.HB1 = drm_infoframe->type; 4890 /* 4891 * Least Significant Eight Bits of (Data Byte Count – 1) 4892 * infoframe_size - 1 4893 */ 4894 sdp->sdp_header.HB2 = 0x1D; 4895 /* INFOFRAME SDP Version Number */ 4896 sdp->sdp_header.HB3 = (0x13 << 2); 4897 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 4898 sdp->db[0] = drm_infoframe->version; 4899 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 4900 sdp->db[1] = drm_infoframe->length; 4901 /* 4902 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after 4903 * HDMI_INFOFRAME_HEADER_SIZE 4904 */ 4905 BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2); 4906 memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE], 4907 HDMI_DRM_INFOFRAME_SIZE); 4908 4909 /* 4910 * Size of DP infoframe sdp packet for HDR static metadata consists of 4911 * - DP SDP Header(struct dp_sdp_header): 4 bytes 4912 * - Two Data Blocks: 2 bytes 4913 * CTA Header Byte2 (INFOFRAME Version Number) 4914 * CTA Header Byte3 (Length of INFOFRAME) 4915 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes 4916 * 4917 * Prior to GEN11's GMP register size is identical to DP HDR static metadata 4918 * infoframe size. But GEN11+ has larger than that size, write_infoframe 4919 * will pad rest of the size. 4920 */ 4921 return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE; 4922 } 4923 4924 static void intel_write_dp_sdp(struct intel_encoder *encoder, 4925 const struct intel_crtc_state *crtc_state, 4926 unsigned int type) 4927 { 4928 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 4929 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4930 struct dp_sdp sdp = {}; 4931 ssize_t len; 4932 4933 if ((crtc_state->infoframes.enable & 4934 intel_hdmi_infoframe_enable(type)) == 0) 4935 return; 4936 4937 switch (type) { 4938 case DP_SDP_VSC: 4939 len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp, 4940 sizeof(sdp)); 4941 break; 4942 case HDMI_PACKET_TYPE_GAMUT_METADATA: 4943 len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm, 4944 &sdp, sizeof(sdp)); 4945 break; 4946 default: 4947 MISSING_CASE(type); 4948 return; 4949 } 4950 4951 if (drm_WARN_ON(&dev_priv->drm, len < 0)) 4952 return; 4953 4954 intel_dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len); 4955 } 4956 4957 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder, 4958 const struct intel_crtc_state *crtc_state, 4959 struct drm_dp_vsc_sdp *vsc) 4960 { 4961 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 4962 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4963 struct dp_sdp sdp = {}; 4964 ssize_t len; 4965 4966 len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp)); 4967 4968 if (drm_WARN_ON(&dev_priv->drm, len < 0)) 4969 return; 4970 4971 intel_dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC, 4972 &sdp, len); 4973 } 4974 4975 void intel_dp_set_infoframes(struct intel_encoder *encoder, 4976 bool enable, 4977 const struct intel_crtc_state *crtc_state, 4978 const struct drm_connector_state *conn_state) 4979 { 4980 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4981 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4982 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder); 4983 u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW | 4984 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW | 4985 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK; 4986 u32 val = intel_de_read(dev_priv, reg); 4987 4988 /* TODO: Add DSC case (DIP_ENABLE_PPS) */ 4989 /* When PSR is enabled, this routine doesn't disable VSC DIP */ 4990 if (intel_psr_enabled(intel_dp)) 4991 val &= ~dip_enable; 4992 else 4993 val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW); 4994 4995 if (!enable) { 4996 intel_de_write(dev_priv, reg, val); 4997 intel_de_posting_read(dev_priv, reg); 4998 return; 4999 } 5000 5001 intel_de_write(dev_priv, reg, val); 5002 intel_de_posting_read(dev_priv, reg); 5003 5004 /* When PSR is enabled, VSC SDP is handled by PSR routine */ 5005 if (!intel_psr_enabled(intel_dp)) 5006 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC); 5007 5008 intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA); 5009 } 5010 5011 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc, 5012 const void *buffer, size_t size) 5013 { 5014 const struct dp_sdp *sdp = buffer; 5015 5016 if (size < sizeof(struct dp_sdp)) 5017 return -EINVAL; 5018 5019 memset(vsc, 0, size); 5020 5021 if (sdp->sdp_header.HB0 != 0) 5022 return -EINVAL; 5023 5024 if (sdp->sdp_header.HB1 != DP_SDP_VSC) 5025 return -EINVAL; 5026 5027 vsc->sdp_type = sdp->sdp_header.HB1; 5028 vsc->revision = sdp->sdp_header.HB2; 5029 vsc->length = sdp->sdp_header.HB3; 5030 5031 if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) || 5032 (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) { 5033 /* 5034 * - HB2 = 0x2, HB3 = 0x8 5035 * VSC SDP supporting 3D stereo + PSR 5036 * - HB2 = 0x4, HB3 = 0xe 5037 * VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of 5038 * first scan line of the SU region (applies to eDP v1.4b 5039 * and higher). 5040 */ 5041 return 0; 5042 } else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) { 5043 /* 5044 * - HB2 = 0x5, HB3 = 0x13 5045 * VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry 5046 * Format. 5047 */ 5048 vsc->pixelformat = (sdp->db[16] >> 4) & 0xf; 5049 vsc->colorimetry = sdp->db[16] & 0xf; 5050 vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1; 5051 5052 switch (sdp->db[17] & 0x7) { 5053 case 0x0: 5054 vsc->bpc = 6; 5055 break; 5056 case 0x1: 5057 vsc->bpc = 8; 5058 break; 5059 case 0x2: 5060 vsc->bpc = 10; 5061 break; 5062 case 0x3: 5063 vsc->bpc = 12; 5064 break; 5065 case 0x4: 5066 vsc->bpc = 16; 5067 break; 5068 default: 5069 MISSING_CASE(sdp->db[17] & 0x7); 5070 return -EINVAL; 5071 } 5072 5073 vsc->content_type = sdp->db[18] & 0x7; 5074 } else { 5075 return -EINVAL; 5076 } 5077 5078 return 0; 5079 } 5080 5081 static int 5082 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe, 5083 const void *buffer, size_t size) 5084 { 5085 int ret; 5086 5087 const struct dp_sdp *sdp = buffer; 5088 5089 if (size < sizeof(struct dp_sdp)) 5090 return -EINVAL; 5091 5092 if (sdp->sdp_header.HB0 != 0) 5093 return -EINVAL; 5094 5095 if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM) 5096 return -EINVAL; 5097 5098 /* 5099 * Least Significant Eight Bits of (Data Byte Count – 1) 5100 * 1Dh (i.e., Data Byte Count = 30 bytes). 5101 */ 5102 if (sdp->sdp_header.HB2 != 0x1D) 5103 return -EINVAL; 5104 5105 /* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */ 5106 if ((sdp->sdp_header.HB3 & 0x3) != 0) 5107 return -EINVAL; 5108 5109 /* INFOFRAME SDP Version Number */ 5110 if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13) 5111 return -EINVAL; 5112 5113 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 5114 if (sdp->db[0] != 1) 5115 return -EINVAL; 5116 5117 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 5118 if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE) 5119 return -EINVAL; 5120 5121 ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2], 5122 HDMI_DRM_INFOFRAME_SIZE); 5123 5124 return ret; 5125 } 5126 5127 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder, 5128 struct intel_crtc_state *crtc_state, 5129 struct drm_dp_vsc_sdp *vsc) 5130 { 5131 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 5132 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5133 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5134 unsigned int type = DP_SDP_VSC; 5135 struct dp_sdp sdp = {}; 5136 int ret; 5137 5138 /* When PSR is enabled, VSC SDP is handled by PSR routine */ 5139 if (intel_psr_enabled(intel_dp)) 5140 return; 5141 5142 if ((crtc_state->infoframes.enable & 5143 intel_hdmi_infoframe_enable(type)) == 0) 5144 return; 5145 5146 intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp)); 5147 5148 ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp)); 5149 5150 if (ret) 5151 drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n"); 5152 } 5153 5154 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder, 5155 struct intel_crtc_state *crtc_state, 5156 struct hdmi_drm_infoframe *drm_infoframe) 5157 { 5158 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 5159 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5160 unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA; 5161 struct dp_sdp sdp = {}; 5162 int ret; 5163 5164 if ((crtc_state->infoframes.enable & 5165 intel_hdmi_infoframe_enable(type)) == 0) 5166 return; 5167 5168 intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp, 5169 sizeof(sdp)); 5170 5171 ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp, 5172 sizeof(sdp)); 5173 5174 if (ret) 5175 drm_dbg_kms(&dev_priv->drm, 5176 "Failed to unpack DP HDR Metadata Infoframe SDP\n"); 5177 } 5178 5179 void intel_read_dp_sdp(struct intel_encoder *encoder, 5180 struct intel_crtc_state *crtc_state, 5181 unsigned int type) 5182 { 5183 if (encoder->type != INTEL_OUTPUT_DDI) 5184 return; 5185 5186 switch (type) { 5187 case DP_SDP_VSC: 5188 intel_read_dp_vsc_sdp(encoder, crtc_state, 5189 &crtc_state->infoframes.vsc); 5190 break; 5191 case HDMI_PACKET_TYPE_GAMUT_METADATA: 5192 intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state, 5193 &crtc_state->infoframes.drm.drm); 5194 break; 5195 default: 5196 MISSING_CASE(type); 5197 break; 5198 } 5199 } 5200 5201 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) 5202 { 5203 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5204 int status = 0; 5205 int test_link_rate; 5206 u8 test_lane_count, test_link_bw; 5207 /* (DP CTS 1.2) 5208 * 4.3.1.11 5209 */ 5210 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ 5211 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, 5212 &test_lane_count); 5213 5214 if (status <= 0) { 5215 drm_dbg_kms(&i915->drm, "Lane count read failed\n"); 5216 return DP_TEST_NAK; 5217 } 5218 test_lane_count &= DP_MAX_LANE_COUNT_MASK; 5219 5220 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, 5221 &test_link_bw); 5222 if (status <= 0) { 5223 drm_dbg_kms(&i915->drm, "Link Rate read failed\n"); 5224 return DP_TEST_NAK; 5225 } 5226 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); 5227 5228 /* Validate the requested link rate and lane count */ 5229 if (!intel_dp_link_params_valid(intel_dp, test_link_rate, 5230 test_lane_count)) 5231 return DP_TEST_NAK; 5232 5233 intel_dp->compliance.test_lane_count = test_lane_count; 5234 intel_dp->compliance.test_link_rate = test_link_rate; 5235 5236 return DP_TEST_ACK; 5237 } 5238 5239 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) 5240 { 5241 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5242 u8 test_pattern; 5243 u8 test_misc; 5244 __be16 h_width, v_height; 5245 int status = 0; 5246 5247 /* Read the TEST_PATTERN (DP CTS 3.1.5) */ 5248 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, 5249 &test_pattern); 5250 if (status <= 0) { 5251 drm_dbg_kms(&i915->drm, "Test pattern read failed\n"); 5252 return DP_TEST_NAK; 5253 } 5254 if (test_pattern != DP_COLOR_RAMP) 5255 return DP_TEST_NAK; 5256 5257 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, 5258 &h_width, 2); 5259 if (status <= 0) { 5260 drm_dbg_kms(&i915->drm, "H Width read failed\n"); 5261 return DP_TEST_NAK; 5262 } 5263 5264 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, 5265 &v_height, 2); 5266 if (status <= 0) { 5267 drm_dbg_kms(&i915->drm, "V Height read failed\n"); 5268 return DP_TEST_NAK; 5269 } 5270 5271 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, 5272 &test_misc); 5273 if (status <= 0) { 5274 drm_dbg_kms(&i915->drm, "TEST MISC read failed\n"); 5275 return DP_TEST_NAK; 5276 } 5277 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) 5278 return DP_TEST_NAK; 5279 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) 5280 return DP_TEST_NAK; 5281 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { 5282 case DP_TEST_BIT_DEPTH_6: 5283 intel_dp->compliance.test_data.bpc = 6; 5284 break; 5285 case DP_TEST_BIT_DEPTH_8: 5286 intel_dp->compliance.test_data.bpc = 8; 5287 break; 5288 default: 5289 return DP_TEST_NAK; 5290 } 5291 5292 intel_dp->compliance.test_data.video_pattern = test_pattern; 5293 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); 5294 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); 5295 /* Set test active flag here so userspace doesn't interrupt things */ 5296 intel_dp->compliance.test_active = true; 5297 5298 return DP_TEST_ACK; 5299 } 5300 5301 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) 5302 { 5303 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5304 u8 test_result = DP_TEST_ACK; 5305 struct intel_connector *intel_connector = intel_dp->attached_connector; 5306 struct drm_connector *connector = &intel_connector->base; 5307 5308 if (intel_connector->detect_edid == NULL || 5309 connector->edid_corrupt || 5310 intel_dp->aux.i2c_defer_count > 6) { 5311 /* Check EDID read for NACKs, DEFERs and corruption 5312 * (DP CTS 1.2 Core r1.1) 5313 * 4.2.2.4 : Failed EDID read, I2C_NAK 5314 * 4.2.2.5 : Failed EDID read, I2C_DEFER 5315 * 4.2.2.6 : EDID corruption detected 5316 * Use failsafe mode for all cases 5317 */ 5318 if (intel_dp->aux.i2c_nack_count > 0 || 5319 intel_dp->aux.i2c_defer_count > 0) 5320 drm_dbg_kms(&i915->drm, 5321 "EDID read had %d NACKs, %d DEFERs\n", 5322 intel_dp->aux.i2c_nack_count, 5323 intel_dp->aux.i2c_defer_count); 5324 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; 5325 } else { 5326 struct edid *block = intel_connector->detect_edid; 5327 5328 /* We have to write the checksum 5329 * of the last block read 5330 */ 5331 block += intel_connector->detect_edid->extensions; 5332 5333 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, 5334 block->checksum) <= 0) 5335 drm_dbg_kms(&i915->drm, 5336 "Failed to write EDID checksum\n"); 5337 5338 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; 5339 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; 5340 } 5341 5342 /* Set test active flag here so userspace doesn't interrupt things */ 5343 intel_dp->compliance.test_active = true; 5344 5345 return test_result; 5346 } 5347 5348 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp) 5349 { 5350 struct drm_dp_phy_test_params *data = 5351 &intel_dp->compliance.test_data.phytest; 5352 5353 if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) { 5354 DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n"); 5355 return DP_TEST_NAK; 5356 } 5357 5358 /* 5359 * link_mst is set to false to avoid executing mst related code 5360 * during compliance testing. 5361 */ 5362 intel_dp->link_mst = false; 5363 5364 return DP_TEST_ACK; 5365 } 5366 5367 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp) 5368 { 5369 struct drm_i915_private *dev_priv = 5370 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 5371 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 5372 struct drm_dp_phy_test_params *data = 5373 &intel_dp->compliance.test_data.phytest; 5374 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc); 5375 enum pipe pipe = crtc->pipe; 5376 u32 pattern_val; 5377 5378 switch (data->phy_pattern) { 5379 case DP_PHY_TEST_PATTERN_NONE: 5380 DRM_DEBUG_KMS("Disable Phy Test Pattern\n"); 5381 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0); 5382 break; 5383 case DP_PHY_TEST_PATTERN_D10_2: 5384 DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n"); 5385 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5386 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2); 5387 break; 5388 case DP_PHY_TEST_PATTERN_ERROR_COUNT: 5389 DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n"); 5390 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5391 DDI_DP_COMP_CTL_ENABLE | 5392 DDI_DP_COMP_CTL_SCRAMBLED_0); 5393 break; 5394 case DP_PHY_TEST_PATTERN_PRBS7: 5395 DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n"); 5396 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5397 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7); 5398 break; 5399 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM: 5400 /* 5401 * FIXME: Ideally pattern should come from DPCD 0x250. As 5402 * current firmware of DPR-100 could not set it, so hardcoding 5403 * now for complaince test. 5404 */ 5405 DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n"); 5406 pattern_val = 0x3e0f83e0; 5407 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val); 5408 pattern_val = 0x0f83e0f8; 5409 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val); 5410 pattern_val = 0x0000f83e; 5411 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val); 5412 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5413 DDI_DP_COMP_CTL_ENABLE | 5414 DDI_DP_COMP_CTL_CUSTOM80); 5415 break; 5416 case DP_PHY_TEST_PATTERN_CP2520: 5417 /* 5418 * FIXME: Ideally pattern should come from DPCD 0x24A. As 5419 * current firmware of DPR-100 could not set it, so hardcoding 5420 * now for complaince test. 5421 */ 5422 DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n"); 5423 pattern_val = 0xFB; 5424 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5425 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 | 5426 pattern_val); 5427 break; 5428 default: 5429 WARN(1, "Invalid Phy Test Pattern\n"); 5430 } 5431 } 5432 5433 static void 5434 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp) 5435 { 5436 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 5437 struct drm_device *dev = intel_dig_port->base.base.dev; 5438 struct drm_i915_private *dev_priv = to_i915(dev); 5439 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc); 5440 enum pipe pipe = crtc->pipe; 5441 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value; 5442 5443 trans_ddi_func_ctl_value = intel_de_read(dev_priv, 5444 TRANS_DDI_FUNC_CTL(pipe)); 5445 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe)); 5446 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe)); 5447 5448 trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE | 5449 TGL_TRANS_DDI_PORT_MASK); 5450 trans_conf_value &= ~PIPECONF_ENABLE; 5451 dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE; 5452 5453 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value); 5454 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe), 5455 trans_ddi_func_ctl_value); 5456 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value); 5457 } 5458 5459 static void 5460 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt) 5461 { 5462 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 5463 struct drm_device *dev = intel_dig_port->base.base.dev; 5464 struct drm_i915_private *dev_priv = to_i915(dev); 5465 enum port port = intel_dig_port->base.port; 5466 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc); 5467 enum pipe pipe = crtc->pipe; 5468 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value; 5469 5470 trans_ddi_func_ctl_value = intel_de_read(dev_priv, 5471 TRANS_DDI_FUNC_CTL(pipe)); 5472 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe)); 5473 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe)); 5474 5475 trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE | 5476 TGL_TRANS_DDI_SELECT_PORT(port); 5477 trans_conf_value |= PIPECONF_ENABLE; 5478 dp_tp_ctl_value |= DP_TP_CTL_ENABLE; 5479 5480 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value); 5481 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value); 5482 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe), 5483 trans_ddi_func_ctl_value); 5484 } 5485 5486 void intel_dp_process_phy_request(struct intel_dp *intel_dp) 5487 { 5488 struct drm_dp_phy_test_params *data = 5489 &intel_dp->compliance.test_data.phytest; 5490 u8 link_status[DP_LINK_STATUS_SIZE]; 5491 5492 if (!intel_dp_get_link_status(intel_dp, link_status)) { 5493 DRM_DEBUG_KMS("failed to get link status\n"); 5494 return; 5495 } 5496 5497 /* retrieve vswing & pre-emphasis setting */ 5498 intel_dp_get_adjust_train(intel_dp, link_status); 5499 5500 intel_dp_autotest_phy_ddi_disable(intel_dp); 5501 5502 intel_dp_set_signal_levels(intel_dp); 5503 5504 intel_dp_phy_pattern_update(intel_dp); 5505 5506 intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes); 5507 5508 drm_dp_set_phy_test_pattern(&intel_dp->aux, data, 5509 link_status[DP_DPCD_REV]); 5510 } 5511 5512 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) 5513 { 5514 u8 test_result; 5515 5516 test_result = intel_dp_prepare_phytest(intel_dp); 5517 if (test_result != DP_TEST_ACK) 5518 DRM_ERROR("Phy test preparation failed\n"); 5519 5520 intel_dp_process_phy_request(intel_dp); 5521 5522 return test_result; 5523 } 5524 5525 static void intel_dp_handle_test_request(struct intel_dp *intel_dp) 5526 { 5527 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5528 u8 response = DP_TEST_NAK; 5529 u8 request = 0; 5530 int status; 5531 5532 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); 5533 if (status <= 0) { 5534 drm_dbg_kms(&i915->drm, 5535 "Could not read test request from sink\n"); 5536 goto update_status; 5537 } 5538 5539 switch (request) { 5540 case DP_TEST_LINK_TRAINING: 5541 drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n"); 5542 response = intel_dp_autotest_link_training(intel_dp); 5543 break; 5544 case DP_TEST_LINK_VIDEO_PATTERN: 5545 drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n"); 5546 response = intel_dp_autotest_video_pattern(intel_dp); 5547 break; 5548 case DP_TEST_LINK_EDID_READ: 5549 drm_dbg_kms(&i915->drm, "EDID test requested\n"); 5550 response = intel_dp_autotest_edid(intel_dp); 5551 break; 5552 case DP_TEST_LINK_PHY_TEST_PATTERN: 5553 drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n"); 5554 response = intel_dp_autotest_phy_pattern(intel_dp); 5555 break; 5556 default: 5557 drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n", 5558 request); 5559 break; 5560 } 5561 5562 if (response & DP_TEST_ACK) 5563 intel_dp->compliance.test_type = request; 5564 5565 update_status: 5566 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); 5567 if (status <= 0) 5568 drm_dbg_kms(&i915->drm, 5569 "Could not write test response to sink\n"); 5570 } 5571 5572 /** 5573 * intel_dp_check_mst_status - service any pending MST interrupts, check link status 5574 * @intel_dp: Intel DP struct 5575 * 5576 * Read any pending MST interrupts, call MST core to handle these and ack the 5577 * interrupts. Check if the main and AUX link state is ok. 5578 * 5579 * Returns: 5580 * - %true if pending interrupts were serviced (or no interrupts were 5581 * pending) w/o detecting an error condition. 5582 * - %false if an error condition - like AUX failure or a loss of link - is 5583 * detected, which needs servicing from the hotplug work. 5584 */ 5585 static bool 5586 intel_dp_check_mst_status(struct intel_dp *intel_dp) 5587 { 5588 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5589 bool link_ok = true; 5590 5591 drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0); 5592 5593 for (;;) { 5594 u8 esi[DP_DPRX_ESI_LEN] = {}; 5595 bool handled; 5596 int retry; 5597 5598 if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) { 5599 drm_dbg_kms(&i915->drm, 5600 "failed to get ESI - device may have failed\n"); 5601 link_ok = false; 5602 5603 break; 5604 } 5605 5606 /* check link status - esi[10] = 0x200c */ 5607 if (intel_dp->active_mst_links > 0 && link_ok && 5608 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { 5609 drm_dbg_kms(&i915->drm, 5610 "channel EQ not ok, retraining\n"); 5611 link_ok = false; 5612 } 5613 5614 drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi); 5615 5616 drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); 5617 if (!handled) 5618 break; 5619 5620 for (retry = 0; retry < 3; retry++) { 5621 int wret; 5622 5623 wret = drm_dp_dpcd_write(&intel_dp->aux, 5624 DP_SINK_COUNT_ESI+1, 5625 &esi[1], 3); 5626 if (wret == 3) 5627 break; 5628 } 5629 } 5630 5631 return link_ok; 5632 } 5633 5634 static bool 5635 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 5636 { 5637 u8 link_status[DP_LINK_STATUS_SIZE]; 5638 5639 if (!intel_dp->link_trained) 5640 return false; 5641 5642 /* 5643 * While PSR source HW is enabled, it will control main-link sending 5644 * frames, enabling and disabling it so trying to do a retrain will fail 5645 * as the link would or not be on or it could mix training patterns 5646 * and frame data at the same time causing retrain to fail. 5647 * Also when exiting PSR, HW will retrain the link anyways fixing 5648 * any link status error. 5649 */ 5650 if (intel_psr_enabled(intel_dp)) 5651 return false; 5652 5653 if (!intel_dp_get_link_status(intel_dp, link_status)) 5654 return false; 5655 5656 /* 5657 * Validate the cached values of intel_dp->link_rate and 5658 * intel_dp->lane_count before attempting to retrain. 5659 */ 5660 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 5661 intel_dp->lane_count)) 5662 return false; 5663 5664 /* Retrain if Channel EQ or CR not ok */ 5665 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 5666 } 5667 5668 static bool intel_dp_has_connector(struct intel_dp *intel_dp, 5669 const struct drm_connector_state *conn_state) 5670 { 5671 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5672 struct intel_encoder *encoder; 5673 enum pipe pipe; 5674 5675 if (!conn_state->best_encoder) 5676 return false; 5677 5678 /* SST */ 5679 encoder = &dp_to_dig_port(intel_dp)->base; 5680 if (conn_state->best_encoder == &encoder->base) 5681 return true; 5682 5683 /* MST */ 5684 for_each_pipe(i915, pipe) { 5685 encoder = &intel_dp->mst_encoders[pipe]->base; 5686 if (conn_state->best_encoder == &encoder->base) 5687 return true; 5688 } 5689 5690 return false; 5691 } 5692 5693 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp, 5694 struct drm_modeset_acquire_ctx *ctx, 5695 u32 *crtc_mask) 5696 { 5697 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5698 struct drm_connector_list_iter conn_iter; 5699 struct intel_connector *connector; 5700 int ret = 0; 5701 5702 *crtc_mask = 0; 5703 5704 if (!intel_dp_needs_link_retrain(intel_dp)) 5705 return 0; 5706 5707 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 5708 for_each_intel_connector_iter(connector, &conn_iter) { 5709 struct drm_connector_state *conn_state = 5710 connector->base.state; 5711 struct intel_crtc_state *crtc_state; 5712 struct intel_crtc *crtc; 5713 5714 if (!intel_dp_has_connector(intel_dp, conn_state)) 5715 continue; 5716 5717 crtc = to_intel_crtc(conn_state->crtc); 5718 if (!crtc) 5719 continue; 5720 5721 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 5722 if (ret) 5723 break; 5724 5725 crtc_state = to_intel_crtc_state(crtc->base.state); 5726 5727 drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state)); 5728 5729 if (!crtc_state->hw.active) 5730 continue; 5731 5732 if (conn_state->commit && 5733 !try_wait_for_completion(&conn_state->commit->hw_done)) 5734 continue; 5735 5736 *crtc_mask |= drm_crtc_mask(&crtc->base); 5737 } 5738 drm_connector_list_iter_end(&conn_iter); 5739 5740 if (!intel_dp_needs_link_retrain(intel_dp)) 5741 *crtc_mask = 0; 5742 5743 return ret; 5744 } 5745 5746 static bool intel_dp_is_connected(struct intel_dp *intel_dp) 5747 { 5748 struct intel_connector *connector = intel_dp->attached_connector; 5749 5750 return connector->base.status == connector_status_connected || 5751 intel_dp->is_mst; 5752 } 5753 5754 int intel_dp_retrain_link(struct intel_encoder *encoder, 5755 struct drm_modeset_acquire_ctx *ctx) 5756 { 5757 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5758 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5759 struct intel_crtc *crtc; 5760 u32 crtc_mask; 5761 int ret; 5762 5763 if (!intel_dp_is_connected(intel_dp)) 5764 return 0; 5765 5766 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 5767 ctx); 5768 if (ret) 5769 return ret; 5770 5771 ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask); 5772 if (ret) 5773 return ret; 5774 5775 if (crtc_mask == 0) 5776 return 0; 5777 5778 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n", 5779 encoder->base.base.id, encoder->base.name); 5780 5781 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) { 5782 const struct intel_crtc_state *crtc_state = 5783 to_intel_crtc_state(crtc->base.state); 5784 5785 /* Suppress underruns caused by re-training */ 5786 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 5787 if (crtc_state->has_pch_encoder) 5788 intel_set_pch_fifo_underrun_reporting(dev_priv, 5789 intel_crtc_pch_transcoder(crtc), false); 5790 } 5791 5792 intel_dp_start_link_train(intel_dp); 5793 intel_dp_stop_link_train(intel_dp); 5794 5795 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) { 5796 const struct intel_crtc_state *crtc_state = 5797 to_intel_crtc_state(crtc->base.state); 5798 5799 /* Keep underrun reporting disabled until things are stable */ 5800 intel_wait_for_vblank(dev_priv, crtc->pipe); 5801 5802 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 5803 if (crtc_state->has_pch_encoder) 5804 intel_set_pch_fifo_underrun_reporting(dev_priv, 5805 intel_crtc_pch_transcoder(crtc), true); 5806 } 5807 5808 return 0; 5809 } 5810 5811 /* 5812 * If display is now connected check links status, 5813 * there has been known issues of link loss triggering 5814 * long pulse. 5815 * 5816 * Some sinks (eg. ASUS PB287Q) seem to perform some 5817 * weird HPD ping pong during modesets. So we can apparently 5818 * end up with HPD going low during a modeset, and then 5819 * going back up soon after. And once that happens we must 5820 * retrain the link to get a picture. That's in case no 5821 * userspace component reacted to intermittent HPD dip. 5822 */ 5823 static enum intel_hotplug_state 5824 intel_dp_hotplug(struct intel_encoder *encoder, 5825 struct intel_connector *connector) 5826 { 5827 struct drm_modeset_acquire_ctx ctx; 5828 enum intel_hotplug_state state; 5829 int ret; 5830 5831 state = intel_encoder_hotplug(encoder, connector); 5832 5833 drm_modeset_acquire_init(&ctx, 0); 5834 5835 for (;;) { 5836 ret = intel_dp_retrain_link(encoder, &ctx); 5837 5838 if (ret == -EDEADLK) { 5839 drm_modeset_backoff(&ctx); 5840 continue; 5841 } 5842 5843 break; 5844 } 5845 5846 drm_modeset_drop_locks(&ctx); 5847 drm_modeset_acquire_fini(&ctx); 5848 drm_WARN(encoder->base.dev, ret, 5849 "Acquiring modeset locks failed with %i\n", ret); 5850 5851 /* 5852 * Keeping it consistent with intel_ddi_hotplug() and 5853 * intel_hdmi_hotplug(). 5854 */ 5855 if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries) 5856 state = INTEL_HOTPLUG_RETRY; 5857 5858 return state; 5859 } 5860 5861 static void intel_dp_check_service_irq(struct intel_dp *intel_dp) 5862 { 5863 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5864 u8 val; 5865 5866 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 5867 return; 5868 5869 if (drm_dp_dpcd_readb(&intel_dp->aux, 5870 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 5871 return; 5872 5873 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 5874 5875 if (val & DP_AUTOMATED_TEST_REQUEST) 5876 intel_dp_handle_test_request(intel_dp); 5877 5878 if (val & DP_CP_IRQ) 5879 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 5880 5881 if (val & DP_SINK_SPECIFIC_IRQ) 5882 drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n"); 5883 } 5884 5885 /* 5886 * According to DP spec 5887 * 5.1.2: 5888 * 1. Read DPCD 5889 * 2. Configure link according to Receiver Capabilities 5890 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 5891 * 4. Check link status on receipt of hot-plug interrupt 5892 * 5893 * intel_dp_short_pulse - handles short pulse interrupts 5894 * when full detection is not required. 5895 * Returns %true if short pulse is handled and full detection 5896 * is NOT required and %false otherwise. 5897 */ 5898 static bool 5899 intel_dp_short_pulse(struct intel_dp *intel_dp) 5900 { 5901 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 5902 u8 old_sink_count = intel_dp->sink_count; 5903 bool ret; 5904 5905 /* 5906 * Clearing compliance test variables to allow capturing 5907 * of values for next automated test request. 5908 */ 5909 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5910 5911 /* 5912 * Now read the DPCD to see if it's actually running 5913 * If the current value of sink count doesn't match with 5914 * the value that was stored earlier or dpcd read failed 5915 * we need to do full detection 5916 */ 5917 ret = intel_dp_get_dpcd(intel_dp); 5918 5919 if ((old_sink_count != intel_dp->sink_count) || !ret) { 5920 /* No need to proceed if we are going to do full detect */ 5921 return false; 5922 } 5923 5924 intel_dp_check_service_irq(intel_dp); 5925 5926 /* Handle CEC interrupts, if any */ 5927 drm_dp_cec_irq(&intel_dp->aux); 5928 5929 /* defer to the hotplug work for link retraining if needed */ 5930 if (intel_dp_needs_link_retrain(intel_dp)) 5931 return false; 5932 5933 intel_psr_short_pulse(intel_dp); 5934 5935 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 5936 drm_dbg_kms(&dev_priv->drm, 5937 "Link Training Compliance Test requested\n"); 5938 /* Send a Hotplug Uevent to userspace to start modeset */ 5939 drm_kms_helper_hotplug_event(&dev_priv->drm); 5940 } 5941 5942 return true; 5943 } 5944 5945 /* XXX this is probably wrong for multiple downstream ports */ 5946 static enum drm_connector_status 5947 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 5948 { 5949 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5950 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 5951 u8 *dpcd = intel_dp->dpcd; 5952 u8 type; 5953 5954 if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp))) 5955 return connector_status_connected; 5956 5957 if (lspcon->active) 5958 lspcon_resume(lspcon); 5959 5960 if (!intel_dp_get_dpcd(intel_dp)) 5961 return connector_status_disconnected; 5962 5963 /* if there's no downstream port, we're done */ 5964 if (!drm_dp_is_branch(dpcd)) 5965 return connector_status_connected; 5966 5967 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 5968 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && 5969 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 5970 5971 return intel_dp->sink_count ? 5972 connector_status_connected : connector_status_disconnected; 5973 } 5974 5975 if (intel_dp_can_mst(intel_dp)) 5976 return connector_status_connected; 5977 5978 /* If no HPD, poke DDC gently */ 5979 if (drm_probe_ddc(&intel_dp->aux.ddc)) 5980 return connector_status_connected; 5981 5982 /* Well we tried, say unknown for unreliable port types */ 5983 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 5984 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 5985 if (type == DP_DS_PORT_TYPE_VGA || 5986 type == DP_DS_PORT_TYPE_NON_EDID) 5987 return connector_status_unknown; 5988 } else { 5989 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 5990 DP_DWN_STRM_PORT_TYPE_MASK; 5991 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 5992 type == DP_DWN_STRM_PORT_TYPE_OTHER) 5993 return connector_status_unknown; 5994 } 5995 5996 /* Anything else is out of spec, warn and ignore */ 5997 drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n"); 5998 return connector_status_disconnected; 5999 } 6000 6001 static enum drm_connector_status 6002 edp_detect(struct intel_dp *intel_dp) 6003 { 6004 return connector_status_connected; 6005 } 6006 6007 static bool ibx_digital_port_connected(struct intel_encoder *encoder) 6008 { 6009 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6010 u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin]; 6011 6012 return intel_de_read(dev_priv, SDEISR) & bit; 6013 } 6014 6015 static bool g4x_digital_port_connected(struct intel_encoder *encoder) 6016 { 6017 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6018 u32 bit; 6019 6020 switch (encoder->hpd_pin) { 6021 case HPD_PORT_B: 6022 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; 6023 break; 6024 case HPD_PORT_C: 6025 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; 6026 break; 6027 case HPD_PORT_D: 6028 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; 6029 break; 6030 default: 6031 MISSING_CASE(encoder->hpd_pin); 6032 return false; 6033 } 6034 6035 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit; 6036 } 6037 6038 static bool gm45_digital_port_connected(struct intel_encoder *encoder) 6039 { 6040 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6041 u32 bit; 6042 6043 switch (encoder->hpd_pin) { 6044 case HPD_PORT_B: 6045 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; 6046 break; 6047 case HPD_PORT_C: 6048 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; 6049 break; 6050 case HPD_PORT_D: 6051 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; 6052 break; 6053 default: 6054 MISSING_CASE(encoder->hpd_pin); 6055 return false; 6056 } 6057 6058 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit; 6059 } 6060 6061 static bool ilk_digital_port_connected(struct intel_encoder *encoder) 6062 { 6063 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6064 u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin]; 6065 6066 return intel_de_read(dev_priv, DEISR) & bit; 6067 } 6068 6069 /* 6070 * intel_digital_port_connected - is the specified port connected? 6071 * @encoder: intel_encoder 6072 * 6073 * In cases where there's a connector physically connected but it can't be used 6074 * by our hardware we also return false, since the rest of the driver should 6075 * pretty much treat the port as disconnected. This is relevant for type-C 6076 * (starting on ICL) where there's ownership involved. 6077 * 6078 * Return %true if port is connected, %false otherwise. 6079 */ 6080 bool intel_digital_port_connected(struct intel_encoder *encoder) 6081 { 6082 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6083 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 6084 bool is_connected = false; 6085 intel_wakeref_t wakeref; 6086 6087 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 6088 is_connected = dig_port->connected(encoder); 6089 6090 return is_connected; 6091 } 6092 6093 static struct edid * 6094 intel_dp_get_edid(struct intel_dp *intel_dp) 6095 { 6096 struct intel_connector *intel_connector = intel_dp->attached_connector; 6097 6098 /* use cached edid if we have one */ 6099 if (intel_connector->edid) { 6100 /* invalid edid */ 6101 if (IS_ERR(intel_connector->edid)) 6102 return NULL; 6103 6104 return drm_edid_duplicate(intel_connector->edid); 6105 } else 6106 return drm_get_edid(&intel_connector->base, 6107 &intel_dp->aux.ddc); 6108 } 6109 6110 static void 6111 intel_dp_set_edid(struct intel_dp *intel_dp) 6112 { 6113 struct intel_connector *intel_connector = intel_dp->attached_connector; 6114 struct edid *edid; 6115 6116 intel_dp_unset_edid(intel_dp); 6117 edid = intel_dp_get_edid(intel_dp); 6118 intel_connector->detect_edid = edid; 6119 6120 intel_dp->has_audio = drm_detect_monitor_audio(edid); 6121 drm_dp_cec_set_edid(&intel_dp->aux, edid); 6122 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid); 6123 } 6124 6125 static void 6126 intel_dp_unset_edid(struct intel_dp *intel_dp) 6127 { 6128 struct intel_connector *intel_connector = intel_dp->attached_connector; 6129 6130 drm_dp_cec_unset_edid(&intel_dp->aux); 6131 kfree(intel_connector->detect_edid); 6132 intel_connector->detect_edid = NULL; 6133 6134 intel_dp->has_audio = false; 6135 intel_dp->edid_quirks = 0; 6136 } 6137 6138 static int 6139 intel_dp_detect(struct drm_connector *connector, 6140 struct drm_modeset_acquire_ctx *ctx, 6141 bool force) 6142 { 6143 struct drm_i915_private *dev_priv = to_i915(connector->dev); 6144 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 6145 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6146 struct intel_encoder *encoder = &dig_port->base; 6147 enum drm_connector_status status; 6148 6149 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 6150 connector->base.id, connector->name); 6151 drm_WARN_ON(&dev_priv->drm, 6152 !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); 6153 6154 /* Can't disconnect eDP */ 6155 if (intel_dp_is_edp(intel_dp)) 6156 status = edp_detect(intel_dp); 6157 else if (intel_digital_port_connected(encoder)) 6158 status = intel_dp_detect_dpcd(intel_dp); 6159 else 6160 status = connector_status_disconnected; 6161 6162 if (status == connector_status_disconnected) { 6163 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 6164 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 6165 6166 if (intel_dp->is_mst) { 6167 drm_dbg_kms(&dev_priv->drm, 6168 "MST device may have disappeared %d vs %d\n", 6169 intel_dp->is_mst, 6170 intel_dp->mst_mgr.mst_state); 6171 intel_dp->is_mst = false; 6172 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 6173 intel_dp->is_mst); 6174 } 6175 6176 goto out; 6177 } 6178 6179 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 6180 if (INTEL_GEN(dev_priv) >= 11) 6181 intel_dp_get_dsc_sink_cap(intel_dp); 6182 6183 intel_dp_configure_mst(intel_dp); 6184 6185 /* 6186 * TODO: Reset link params when switching to MST mode, until MST 6187 * supports link training fallback params. 6188 */ 6189 if (intel_dp->reset_link_params || intel_dp->is_mst) { 6190 /* Initial max link lane count */ 6191 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 6192 6193 /* Initial max link rate */ 6194 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 6195 6196 intel_dp->reset_link_params = false; 6197 } 6198 6199 intel_dp_print_rates(intel_dp); 6200 6201 if (intel_dp->is_mst) { 6202 /* 6203 * If we are in MST mode then this connector 6204 * won't appear connected or have anything 6205 * with EDID on it 6206 */ 6207 status = connector_status_disconnected; 6208 goto out; 6209 } 6210 6211 /* 6212 * Some external monitors do not signal loss of link synchronization 6213 * with an IRQ_HPD, so force a link status check. 6214 */ 6215 if (!intel_dp_is_edp(intel_dp)) { 6216 int ret; 6217 6218 ret = intel_dp_retrain_link(encoder, ctx); 6219 if (ret) 6220 return ret; 6221 } 6222 6223 /* 6224 * Clearing NACK and defer counts to get their exact values 6225 * while reading EDID which are required by Compliance tests 6226 * 4.2.2.4 and 4.2.2.5 6227 */ 6228 intel_dp->aux.i2c_nack_count = 0; 6229 intel_dp->aux.i2c_defer_count = 0; 6230 6231 intel_dp_set_edid(intel_dp); 6232 if (intel_dp_is_edp(intel_dp) || 6233 to_intel_connector(connector)->detect_edid) 6234 status = connector_status_connected; 6235 6236 intel_dp_check_service_irq(intel_dp); 6237 6238 out: 6239 if (status != connector_status_connected && !intel_dp->is_mst) 6240 intel_dp_unset_edid(intel_dp); 6241 6242 /* 6243 * Make sure the refs for power wells enabled during detect are 6244 * dropped to avoid a new detect cycle triggered by HPD polling. 6245 */ 6246 intel_display_power_flush_work(dev_priv); 6247 6248 return status; 6249 } 6250 6251 static void 6252 intel_dp_force(struct drm_connector *connector) 6253 { 6254 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 6255 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6256 struct intel_encoder *intel_encoder = &dig_port->base; 6257 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); 6258 enum intel_display_power_domain aux_domain = 6259 intel_aux_power_domain(dig_port); 6260 intel_wakeref_t wakeref; 6261 6262 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 6263 connector->base.id, connector->name); 6264 intel_dp_unset_edid(intel_dp); 6265 6266 if (connector->status != connector_status_connected) 6267 return; 6268 6269 wakeref = intel_display_power_get(dev_priv, aux_domain); 6270 6271 intel_dp_set_edid(intel_dp); 6272 6273 intel_display_power_put(dev_priv, aux_domain, wakeref); 6274 } 6275 6276 static int intel_dp_get_modes(struct drm_connector *connector) 6277 { 6278 struct intel_connector *intel_connector = to_intel_connector(connector); 6279 struct edid *edid; 6280 6281 edid = intel_connector->detect_edid; 6282 if (edid) { 6283 int ret = intel_connector_update_modes(connector, edid); 6284 if (ret) 6285 return ret; 6286 } 6287 6288 /* if eDP has no EDID, fall back to fixed mode */ 6289 if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) && 6290 intel_connector->panel.fixed_mode) { 6291 struct drm_display_mode *mode; 6292 6293 mode = drm_mode_duplicate(connector->dev, 6294 intel_connector->panel.fixed_mode); 6295 if (mode) { 6296 drm_mode_probed_add(connector, mode); 6297 return 1; 6298 } 6299 } 6300 6301 return 0; 6302 } 6303 6304 static int 6305 intel_dp_connector_register(struct drm_connector *connector) 6306 { 6307 struct drm_i915_private *i915 = to_i915(connector->dev); 6308 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 6309 int ret; 6310 6311 ret = intel_connector_register(connector); 6312 if (ret) 6313 return ret; 6314 6315 drm_dbg_kms(&i915->drm, "registering %s bus for %s\n", 6316 intel_dp->aux.name, connector->kdev->kobj.name); 6317 6318 intel_dp->aux.dev = connector->kdev; 6319 ret = drm_dp_aux_register(&intel_dp->aux); 6320 if (!ret) 6321 drm_dp_cec_register_connector(&intel_dp->aux, connector); 6322 return ret; 6323 } 6324 6325 static void 6326 intel_dp_connector_unregister(struct drm_connector *connector) 6327 { 6328 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 6329 6330 drm_dp_cec_unregister_connector(&intel_dp->aux); 6331 drm_dp_aux_unregister(&intel_dp->aux); 6332 intel_connector_unregister(connector); 6333 } 6334 6335 void intel_dp_encoder_flush_work(struct drm_encoder *encoder) 6336 { 6337 struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder)); 6338 struct intel_dp *intel_dp = &intel_dig_port->dp; 6339 6340 intel_dp_mst_encoder_cleanup(intel_dig_port); 6341 if (intel_dp_is_edp(intel_dp)) { 6342 intel_wakeref_t wakeref; 6343 6344 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 6345 /* 6346 * vdd might still be enabled do to the delayed vdd off. 6347 * Make sure vdd is actually turned off here. 6348 */ 6349 with_pps_lock(intel_dp, wakeref) 6350 edp_panel_vdd_off_sync(intel_dp); 6351 6352 if (intel_dp->edp_notifier.notifier_call) { 6353 unregister_reboot_notifier(&intel_dp->edp_notifier); 6354 intel_dp->edp_notifier.notifier_call = NULL; 6355 } 6356 } 6357 6358 intel_dp_aux_fini(intel_dp); 6359 } 6360 6361 static void intel_dp_encoder_destroy(struct drm_encoder *encoder) 6362 { 6363 intel_dp_encoder_flush_work(encoder); 6364 6365 drm_encoder_cleanup(encoder); 6366 kfree(enc_to_dig_port(to_intel_encoder(encoder))); 6367 } 6368 6369 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) 6370 { 6371 struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder); 6372 intel_wakeref_t wakeref; 6373 6374 if (!intel_dp_is_edp(intel_dp)) 6375 return; 6376 6377 /* 6378 * vdd might still be enabled do to the delayed vdd off. 6379 * Make sure vdd is actually turned off here. 6380 */ 6381 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 6382 with_pps_lock(intel_dp, wakeref) 6383 edp_panel_vdd_off_sync(intel_dp); 6384 } 6385 6386 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout) 6387 { 6388 long ret; 6389 6390 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count)) 6391 ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C, 6392 msecs_to_jiffies(timeout)); 6393 6394 if (!ret) 6395 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n"); 6396 } 6397 6398 static 6399 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, 6400 u8 *an) 6401 { 6402 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 6403 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base)); 6404 static const struct drm_dp_aux_msg msg = { 6405 .request = DP_AUX_NATIVE_WRITE, 6406 .address = DP_AUX_HDCP_AKSV, 6407 .size = DRM_HDCP_KSV_LEN, 6408 }; 6409 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0; 6410 ssize_t dpcd_ret; 6411 int ret; 6412 6413 /* Output An first, that's easy */ 6414 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN, 6415 an, DRM_HDCP_AN_LEN); 6416 if (dpcd_ret != DRM_HDCP_AN_LEN) { 6417 drm_dbg_kms(&i915->drm, 6418 "Failed to write An over DP/AUX (%zd)\n", 6419 dpcd_ret); 6420 return dpcd_ret >= 0 ? -EIO : dpcd_ret; 6421 } 6422 6423 /* 6424 * Since Aksv is Oh-So-Secret, we can't access it in software. So in 6425 * order to get it on the wire, we need to create the AUX header as if 6426 * we were writing the data, and then tickle the hardware to output the 6427 * data once the header is sent out. 6428 */ 6429 intel_dp_aux_header(txbuf, &msg); 6430 6431 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size, 6432 rxbuf, sizeof(rxbuf), 6433 DP_AUX_CH_CTL_AUX_AKSV_SELECT); 6434 if (ret < 0) { 6435 drm_dbg_kms(&i915->drm, 6436 "Write Aksv over DP/AUX failed (%d)\n", ret); 6437 return ret; 6438 } else if (ret == 0) { 6439 drm_dbg_kms(&i915->drm, "Aksv write over DP/AUX was empty\n"); 6440 return -EIO; 6441 } 6442 6443 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK; 6444 if (reply != DP_AUX_NATIVE_REPLY_ACK) { 6445 drm_dbg_kms(&i915->drm, 6446 "Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n", 6447 reply); 6448 return -EIO; 6449 } 6450 return 0; 6451 } 6452 6453 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, 6454 u8 *bksv) 6455 { 6456 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 6457 ssize_t ret; 6458 6459 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv, 6460 DRM_HDCP_KSV_LEN); 6461 if (ret != DRM_HDCP_KSV_LEN) { 6462 drm_dbg_kms(&i915->drm, 6463 "Read Bksv from DP/AUX failed (%zd)\n", ret); 6464 return ret >= 0 ? -EIO : ret; 6465 } 6466 return 0; 6467 } 6468 6469 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, 6470 u8 *bstatus) 6471 { 6472 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 6473 ssize_t ret; 6474 6475 /* 6476 * For some reason the HDMI and DP HDCP specs call this register 6477 * definition by different names. In the HDMI spec, it's called BSTATUS, 6478 * but in DP it's called BINFO. 6479 */ 6480 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO, 6481 bstatus, DRM_HDCP_BSTATUS_LEN); 6482 if (ret != DRM_HDCP_BSTATUS_LEN) { 6483 drm_dbg_kms(&i915->drm, 6484 "Read bstatus from DP/AUX failed (%zd)\n", ret); 6485 return ret >= 0 ? -EIO : ret; 6486 } 6487 return 0; 6488 } 6489 6490 static 6491 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port, 6492 u8 *bcaps) 6493 { 6494 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 6495 ssize_t ret; 6496 6497 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS, 6498 bcaps, 1); 6499 if (ret != 1) { 6500 drm_dbg_kms(&i915->drm, 6501 "Read bcaps from DP/AUX failed (%zd)\n", ret); 6502 return ret >= 0 ? -EIO : ret; 6503 } 6504 6505 return 0; 6506 } 6507 6508 static 6509 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, 6510 bool *repeater_present) 6511 { 6512 ssize_t ret; 6513 u8 bcaps; 6514 6515 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 6516 if (ret) 6517 return ret; 6518 6519 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT; 6520 return 0; 6521 } 6522 6523 static 6524 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, 6525 u8 *ri_prime) 6526 { 6527 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 6528 ssize_t ret; 6529 6530 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME, 6531 ri_prime, DRM_HDCP_RI_LEN); 6532 if (ret != DRM_HDCP_RI_LEN) { 6533 drm_dbg_kms(&i915->drm, "Read Ri' from DP/AUX failed (%zd)\n", 6534 ret); 6535 return ret >= 0 ? -EIO : ret; 6536 } 6537 return 0; 6538 } 6539 6540 static 6541 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, 6542 bool *ksv_ready) 6543 { 6544 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 6545 ssize_t ret; 6546 u8 bstatus; 6547 6548 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 6549 &bstatus, 1); 6550 if (ret != 1) { 6551 drm_dbg_kms(&i915->drm, 6552 "Read bstatus from DP/AUX failed (%zd)\n", ret); 6553 return ret >= 0 ? -EIO : ret; 6554 } 6555 *ksv_ready = bstatus & DP_BSTATUS_READY; 6556 return 0; 6557 } 6558 6559 static 6560 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, 6561 int num_downstream, u8 *ksv_fifo) 6562 { 6563 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 6564 ssize_t ret; 6565 int i; 6566 6567 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */ 6568 for (i = 0; i < num_downstream; i += 3) { 6569 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN; 6570 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6571 DP_AUX_HDCP_KSV_FIFO, 6572 ksv_fifo + i * DRM_HDCP_KSV_LEN, 6573 len); 6574 if (ret != len) { 6575 drm_dbg_kms(&i915->drm, 6576 "Read ksv[%d] from DP/AUX failed (%zd)\n", 6577 i, ret); 6578 return ret >= 0 ? -EIO : ret; 6579 } 6580 } 6581 return 0; 6582 } 6583 6584 static 6585 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, 6586 int i, u32 *part) 6587 { 6588 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 6589 ssize_t ret; 6590 6591 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 6592 return -EINVAL; 6593 6594 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6595 DP_AUX_HDCP_V_PRIME(i), part, 6596 DRM_HDCP_V_PRIME_PART_LEN); 6597 if (ret != DRM_HDCP_V_PRIME_PART_LEN) { 6598 drm_dbg_kms(&i915->drm, 6599 "Read v'[%d] from DP/AUX failed (%zd)\n", i, ret); 6600 return ret >= 0 ? -EIO : ret; 6601 } 6602 return 0; 6603 } 6604 6605 static 6606 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, 6607 bool enable) 6608 { 6609 /* Not used for single stream DisplayPort setups */ 6610 return 0; 6611 } 6612 6613 static 6614 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port) 6615 { 6616 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 6617 ssize_t ret; 6618 u8 bstatus; 6619 6620 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 6621 &bstatus, 1); 6622 if (ret != 1) { 6623 drm_dbg_kms(&i915->drm, 6624 "Read bstatus from DP/AUX failed (%zd)\n", ret); 6625 return false; 6626 } 6627 6628 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ)); 6629 } 6630 6631 static 6632 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port, 6633 bool *hdcp_capable) 6634 { 6635 ssize_t ret; 6636 u8 bcaps; 6637 6638 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 6639 if (ret) 6640 return ret; 6641 6642 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE; 6643 return 0; 6644 } 6645 6646 struct hdcp2_dp_errata_stream_type { 6647 u8 msg_id; 6648 u8 stream_type; 6649 } __packed; 6650 6651 struct hdcp2_dp_msg_data { 6652 u8 msg_id; 6653 u32 offset; 6654 bool msg_detectable; 6655 u32 timeout; 6656 u32 timeout2; /* Added for non_paired situation */ 6657 }; 6658 6659 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = { 6660 { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 }, 6661 { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET, 6662 false, HDCP_2_2_CERT_TIMEOUT_MS, 0 }, 6663 { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET, 6664 false, 0, 0 }, 6665 { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET, 6666 false, 0, 0 }, 6667 { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET, 6668 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS, 6669 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS }, 6670 { HDCP_2_2_AKE_SEND_PAIRING_INFO, 6671 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true, 6672 HDCP_2_2_PAIRING_TIMEOUT_MS, 0 }, 6673 { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 }, 6674 { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET, 6675 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 }, 6676 { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false, 6677 0, 0 }, 6678 { HDCP_2_2_REP_SEND_RECVID_LIST, 6679 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true, 6680 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 }, 6681 { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false, 6682 0, 0 }, 6683 { HDCP_2_2_REP_STREAM_MANAGE, 6684 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false, 6685 0, 0 }, 6686 { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET, 6687 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 }, 6688 /* local define to shovel this through the write_2_2 interface */ 6689 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50 6690 { HDCP_2_2_ERRATA_DP_STREAM_TYPE, 6691 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false, 6692 0, 0 }, 6693 }; 6694 6695 static int 6696 intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port, 6697 u8 *rx_status) 6698 { 6699 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 6700 ssize_t ret; 6701 6702 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6703 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status, 6704 HDCP_2_2_DP_RXSTATUS_LEN); 6705 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) { 6706 drm_dbg_kms(&i915->drm, 6707 "Read bstatus from DP/AUX failed (%zd)\n", ret); 6708 return ret >= 0 ? -EIO : ret; 6709 } 6710 6711 return 0; 6712 } 6713 6714 static 6715 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port, 6716 u8 msg_id, bool *msg_ready) 6717 { 6718 u8 rx_status; 6719 int ret; 6720 6721 *msg_ready = false; 6722 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6723 if (ret < 0) 6724 return ret; 6725 6726 switch (msg_id) { 6727 case HDCP_2_2_AKE_SEND_HPRIME: 6728 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status)) 6729 *msg_ready = true; 6730 break; 6731 case HDCP_2_2_AKE_SEND_PAIRING_INFO: 6732 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status)) 6733 *msg_ready = true; 6734 break; 6735 case HDCP_2_2_REP_SEND_RECVID_LIST: 6736 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6737 *msg_ready = true; 6738 break; 6739 default: 6740 DRM_ERROR("Unidentified msg_id: %d\n", msg_id); 6741 return -EINVAL; 6742 } 6743 6744 return 0; 6745 } 6746 6747 static ssize_t 6748 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port, 6749 const struct hdcp2_dp_msg_data *hdcp2_msg_data) 6750 { 6751 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 6752 struct intel_dp *dp = &intel_dig_port->dp; 6753 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6754 u8 msg_id = hdcp2_msg_data->msg_id; 6755 int ret, timeout; 6756 bool msg_ready = false; 6757 6758 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired) 6759 timeout = hdcp2_msg_data->timeout2; 6760 else 6761 timeout = hdcp2_msg_data->timeout; 6762 6763 /* 6764 * There is no way to detect the CERT, LPRIME and STREAM_READY 6765 * availability. So Wait for timeout and read the msg. 6766 */ 6767 if (!hdcp2_msg_data->msg_detectable) { 6768 mdelay(timeout); 6769 ret = 0; 6770 } else { 6771 /* 6772 * As we want to check the msg availability at timeout, Ignoring 6773 * the timeout at wait for CP_IRQ. 6774 */ 6775 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout); 6776 ret = hdcp2_detect_msg_availability(intel_dig_port, 6777 msg_id, &msg_ready); 6778 if (!msg_ready) 6779 ret = -ETIMEDOUT; 6780 } 6781 6782 if (ret) 6783 drm_dbg_kms(&i915->drm, 6784 "msg_id %d, ret %d, timeout(mSec): %d\n", 6785 hdcp2_msg_data->msg_id, ret, timeout); 6786 6787 return ret; 6788 } 6789 6790 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id) 6791 { 6792 int i; 6793 6794 for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++) 6795 if (hdcp2_dp_msg_data[i].msg_id == msg_id) 6796 return &hdcp2_dp_msg_data[i]; 6797 6798 return NULL; 6799 } 6800 6801 static 6802 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port, 6803 void *buf, size_t size) 6804 { 6805 struct intel_dp *dp = &intel_dig_port->dp; 6806 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6807 unsigned int offset; 6808 u8 *byte = buf; 6809 ssize_t ret, bytes_to_write, len; 6810 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6811 6812 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte); 6813 if (!hdcp2_msg_data) 6814 return -EINVAL; 6815 6816 offset = hdcp2_msg_data->offset; 6817 6818 /* No msg_id in DP HDCP2.2 msgs */ 6819 bytes_to_write = size - 1; 6820 byte++; 6821 6822 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count); 6823 6824 while (bytes_to_write) { 6825 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ? 6826 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write; 6827 6828 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, 6829 offset, (void *)byte, len); 6830 if (ret < 0) 6831 return ret; 6832 6833 bytes_to_write -= ret; 6834 byte += ret; 6835 offset += ret; 6836 } 6837 6838 return size; 6839 } 6840 6841 static 6842 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port) 6843 { 6844 u8 rx_info[HDCP_2_2_RXINFO_LEN]; 6845 u32 dev_cnt; 6846 ssize_t ret; 6847 6848 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6849 DP_HDCP_2_2_REG_RXINFO_OFFSET, 6850 (void *)rx_info, HDCP_2_2_RXINFO_LEN); 6851 if (ret != HDCP_2_2_RXINFO_LEN) 6852 return ret >= 0 ? -EIO : ret; 6853 6854 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 6855 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 6856 6857 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT) 6858 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT; 6859 6860 ret = sizeof(struct hdcp2_rep_send_receiverid_list) - 6861 HDCP_2_2_RECEIVER_IDS_MAX_LEN + 6862 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN); 6863 6864 return ret; 6865 } 6866 6867 static 6868 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port, 6869 u8 msg_id, void *buf, size_t size) 6870 { 6871 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 6872 unsigned int offset; 6873 u8 *byte = buf; 6874 ssize_t ret, bytes_to_recv, len; 6875 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6876 6877 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id); 6878 if (!hdcp2_msg_data) 6879 return -EINVAL; 6880 offset = hdcp2_msg_data->offset; 6881 6882 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data); 6883 if (ret < 0) 6884 return ret; 6885 6886 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) { 6887 ret = get_receiver_id_list_size(intel_dig_port); 6888 if (ret < 0) 6889 return ret; 6890 6891 size = ret; 6892 } 6893 bytes_to_recv = size - 1; 6894 6895 /* DP adaptation msgs has no msg_id */ 6896 byte++; 6897 6898 while (bytes_to_recv) { 6899 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ? 6900 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv; 6901 6902 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset, 6903 (void *)byte, len); 6904 if (ret < 0) { 6905 drm_dbg_kms(&i915->drm, "msg_id %d, ret %zd\n", 6906 msg_id, ret); 6907 return ret; 6908 } 6909 6910 bytes_to_recv -= ret; 6911 byte += ret; 6912 offset += ret; 6913 } 6914 byte = buf; 6915 *byte = msg_id; 6916 6917 return size; 6918 } 6919 6920 static 6921 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port, 6922 bool is_repeater, u8 content_type) 6923 { 6924 int ret; 6925 struct hdcp2_dp_errata_stream_type stream_type_msg; 6926 6927 if (is_repeater) 6928 return 0; 6929 6930 /* 6931 * Errata for DP: As Stream type is used for encryption, Receiver 6932 * should be communicated with stream type for the decryption of the 6933 * content. 6934 * Repeater will be communicated with stream type as a part of it's 6935 * auth later in time. 6936 */ 6937 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE; 6938 stream_type_msg.stream_type = content_type; 6939 6940 ret = intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg, 6941 sizeof(stream_type_msg)); 6942 6943 return ret < 0 ? ret : 0; 6944 6945 } 6946 6947 static 6948 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port) 6949 { 6950 u8 rx_status; 6951 int ret; 6952 6953 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6954 if (ret) 6955 return ret; 6956 6957 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status)) 6958 ret = HDCP_REAUTH_REQUEST; 6959 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status)) 6960 ret = HDCP_LINK_INTEGRITY_FAILURE; 6961 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6962 ret = HDCP_TOPOLOGY_CHANGE; 6963 6964 return ret; 6965 } 6966 6967 static 6968 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port, 6969 bool *capable) 6970 { 6971 u8 rx_caps[3]; 6972 int ret; 6973 6974 *capable = false; 6975 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6976 DP_HDCP_2_2_REG_RX_CAPS_OFFSET, 6977 rx_caps, HDCP_2_2_RXCAPS_LEN); 6978 if (ret != HDCP_2_2_RXCAPS_LEN) 6979 return ret >= 0 ? -EIO : ret; 6980 6981 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL && 6982 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2])) 6983 *capable = true; 6984 6985 return 0; 6986 } 6987 6988 static const struct intel_hdcp_shim intel_dp_hdcp_shim = { 6989 .write_an_aksv = intel_dp_hdcp_write_an_aksv, 6990 .read_bksv = intel_dp_hdcp_read_bksv, 6991 .read_bstatus = intel_dp_hdcp_read_bstatus, 6992 .repeater_present = intel_dp_hdcp_repeater_present, 6993 .read_ri_prime = intel_dp_hdcp_read_ri_prime, 6994 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready, 6995 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo, 6996 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part, 6997 .toggle_signalling = intel_dp_hdcp_toggle_signalling, 6998 .check_link = intel_dp_hdcp_check_link, 6999 .hdcp_capable = intel_dp_hdcp_capable, 7000 .write_2_2_msg = intel_dp_hdcp2_write_msg, 7001 .read_2_2_msg = intel_dp_hdcp2_read_msg, 7002 .config_stream_type = intel_dp_hdcp2_config_stream_type, 7003 .check_2_2_link = intel_dp_hdcp2_check_link, 7004 .hdcp_2_2_capable = intel_dp_hdcp2_capable, 7005 .protocol = HDCP_PROTOCOL_DP, 7006 }; 7007 7008 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) 7009 { 7010 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7011 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 7012 7013 lockdep_assert_held(&dev_priv->pps_mutex); 7014 7015 if (!edp_have_panel_vdd(intel_dp)) 7016 return; 7017 7018 /* 7019 * The VDD bit needs a power domain reference, so if the bit is 7020 * already enabled when we boot or resume, grab this reference and 7021 * schedule a vdd off, so we don't hold on to the reference 7022 * indefinitely. 7023 */ 7024 drm_dbg_kms(&dev_priv->drm, 7025 "VDD left on by BIOS, adjusting state tracking\n"); 7026 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); 7027 7028 edp_panel_vdd_schedule_off(intel_dp); 7029 } 7030 7031 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) 7032 { 7033 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7034 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 7035 enum pipe pipe; 7036 7037 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 7038 encoder->port, &pipe)) 7039 return pipe; 7040 7041 return INVALID_PIPE; 7042 } 7043 7044 void intel_dp_encoder_reset(struct drm_encoder *encoder) 7045 { 7046 struct drm_i915_private *dev_priv = to_i915(encoder->dev); 7047 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder)); 7048 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 7049 intel_wakeref_t wakeref; 7050 7051 if (!HAS_DDI(dev_priv)) 7052 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg); 7053 7054 if (lspcon->active) 7055 lspcon_resume(lspcon); 7056 7057 intel_dp->reset_link_params = true; 7058 7059 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 7060 !intel_dp_is_edp(intel_dp)) 7061 return; 7062 7063 with_pps_lock(intel_dp, wakeref) { 7064 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7065 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 7066 7067 if (intel_dp_is_edp(intel_dp)) { 7068 /* 7069 * Reinit the power sequencer, in case BIOS did 7070 * something nasty with it. 7071 */ 7072 intel_dp_pps_init(intel_dp); 7073 intel_edp_panel_vdd_sanitize(intel_dp); 7074 } 7075 } 7076 } 7077 7078 static int intel_modeset_tile_group(struct intel_atomic_state *state, 7079 int tile_group_id) 7080 { 7081 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 7082 struct drm_connector_list_iter conn_iter; 7083 struct drm_connector *connector; 7084 int ret = 0; 7085 7086 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter); 7087 drm_for_each_connector_iter(connector, &conn_iter) { 7088 struct drm_connector_state *conn_state; 7089 struct intel_crtc_state *crtc_state; 7090 struct intel_crtc *crtc; 7091 7092 if (!connector->has_tile || 7093 connector->tile_group->id != tile_group_id) 7094 continue; 7095 7096 conn_state = drm_atomic_get_connector_state(&state->base, 7097 connector); 7098 if (IS_ERR(conn_state)) { 7099 ret = PTR_ERR(conn_state); 7100 break; 7101 } 7102 7103 crtc = to_intel_crtc(conn_state->crtc); 7104 7105 if (!crtc) 7106 continue; 7107 7108 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 7109 crtc_state->uapi.mode_changed = true; 7110 7111 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 7112 if (ret) 7113 break; 7114 } 7115 drm_connector_list_iter_end(&conn_iter); 7116 7117 return ret; 7118 } 7119 7120 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders) 7121 { 7122 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 7123 struct intel_crtc *crtc; 7124 7125 if (transcoders == 0) 7126 return 0; 7127 7128 for_each_intel_crtc(&dev_priv->drm, crtc) { 7129 struct intel_crtc_state *crtc_state; 7130 int ret; 7131 7132 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 7133 if (IS_ERR(crtc_state)) 7134 return PTR_ERR(crtc_state); 7135 7136 if (!crtc_state->hw.enable) 7137 continue; 7138 7139 if (!(transcoders & BIT(crtc_state->cpu_transcoder))) 7140 continue; 7141 7142 crtc_state->uapi.mode_changed = true; 7143 7144 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base); 7145 if (ret) 7146 return ret; 7147 7148 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 7149 if (ret) 7150 return ret; 7151 7152 transcoders &= ~BIT(crtc_state->cpu_transcoder); 7153 } 7154 7155 drm_WARN_ON(&dev_priv->drm, transcoders != 0); 7156 7157 return 0; 7158 } 7159 7160 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state, 7161 struct drm_connector *connector) 7162 { 7163 const struct drm_connector_state *old_conn_state = 7164 drm_atomic_get_old_connector_state(&state->base, connector); 7165 const struct intel_crtc_state *old_crtc_state; 7166 struct intel_crtc *crtc; 7167 u8 transcoders; 7168 7169 crtc = to_intel_crtc(old_conn_state->crtc); 7170 if (!crtc) 7171 return 0; 7172 7173 old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); 7174 7175 if (!old_crtc_state->hw.active) 7176 return 0; 7177 7178 transcoders = old_crtc_state->sync_mode_slaves_mask; 7179 if (old_crtc_state->master_transcoder != INVALID_TRANSCODER) 7180 transcoders |= BIT(old_crtc_state->master_transcoder); 7181 7182 return intel_modeset_affected_transcoders(state, 7183 transcoders); 7184 } 7185 7186 static int intel_dp_connector_atomic_check(struct drm_connector *conn, 7187 struct drm_atomic_state *_state) 7188 { 7189 struct drm_i915_private *dev_priv = to_i915(conn->dev); 7190 struct intel_atomic_state *state = to_intel_atomic_state(_state); 7191 int ret; 7192 7193 ret = intel_digital_connector_atomic_check(conn, &state->base); 7194 if (ret) 7195 return ret; 7196 7197 /* 7198 * We don't enable port sync on BDW due to missing w/as and 7199 * due to not having adjusted the modeset sequence appropriately. 7200 */ 7201 if (INTEL_GEN(dev_priv) < 9) 7202 return 0; 7203 7204 if (!intel_connector_needs_modeset(state, conn)) 7205 return 0; 7206 7207 if (conn->has_tile) { 7208 ret = intel_modeset_tile_group(state, conn->tile_group->id); 7209 if (ret) 7210 return ret; 7211 } 7212 7213 return intel_modeset_synced_crtcs(state, conn); 7214 } 7215 7216 static const struct drm_connector_funcs intel_dp_connector_funcs = { 7217 .force = intel_dp_force, 7218 .fill_modes = drm_helper_probe_single_connector_modes, 7219 .atomic_get_property = intel_digital_connector_atomic_get_property, 7220 .atomic_set_property = intel_digital_connector_atomic_set_property, 7221 .late_register = intel_dp_connector_register, 7222 .early_unregister = intel_dp_connector_unregister, 7223 .destroy = intel_connector_destroy, 7224 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 7225 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 7226 }; 7227 7228 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 7229 .detect_ctx = intel_dp_detect, 7230 .get_modes = intel_dp_get_modes, 7231 .mode_valid = intel_dp_mode_valid, 7232 .atomic_check = intel_dp_connector_atomic_check, 7233 }; 7234 7235 static const struct drm_encoder_funcs intel_dp_enc_funcs = { 7236 .reset = intel_dp_encoder_reset, 7237 .destroy = intel_dp_encoder_destroy, 7238 }; 7239 7240 static bool intel_edp_have_power(struct intel_dp *intel_dp) 7241 { 7242 intel_wakeref_t wakeref; 7243 bool have_power = false; 7244 7245 with_pps_lock(intel_dp, wakeref) { 7246 have_power = edp_have_panel_power(intel_dp) && 7247 edp_have_panel_vdd(intel_dp); 7248 } 7249 7250 return have_power; 7251 } 7252 7253 enum irqreturn 7254 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) 7255 { 7256 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 7257 struct intel_dp *intel_dp = &intel_dig_port->dp; 7258 7259 if (intel_dig_port->base.type == INTEL_OUTPUT_EDP && 7260 (long_hpd || !intel_edp_have_power(intel_dp))) { 7261 /* 7262 * vdd off can generate a long/short pulse on eDP which 7263 * would require vdd on to handle it, and thus we 7264 * would end up in an endless cycle of 7265 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..." 7266 */ 7267 drm_dbg_kms(&i915->drm, 7268 "ignoring %s hpd on eDP [ENCODER:%d:%s]\n", 7269 long_hpd ? "long" : "short", 7270 intel_dig_port->base.base.base.id, 7271 intel_dig_port->base.base.name); 7272 return IRQ_HANDLED; 7273 } 7274 7275 drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n", 7276 intel_dig_port->base.base.base.id, 7277 intel_dig_port->base.base.name, 7278 long_hpd ? "long" : "short"); 7279 7280 if (long_hpd) { 7281 intel_dp->reset_link_params = true; 7282 return IRQ_NONE; 7283 } 7284 7285 if (intel_dp->is_mst) { 7286 if (!intel_dp_check_mst_status(intel_dp)) 7287 return IRQ_NONE; 7288 } else if (!intel_dp_short_pulse(intel_dp)) { 7289 return IRQ_NONE; 7290 } 7291 7292 return IRQ_HANDLED; 7293 } 7294 7295 /* check the VBT to see whether the eDP is on another port */ 7296 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 7297 { 7298 /* 7299 * eDP not supported on g4x. so bail out early just 7300 * for a bit extra safety in case the VBT is bonkers. 7301 */ 7302 if (INTEL_GEN(dev_priv) < 5) 7303 return false; 7304 7305 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) 7306 return true; 7307 7308 return intel_bios_is_port_edp(dev_priv, port); 7309 } 7310 7311 static void 7312 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 7313 { 7314 struct drm_i915_private *dev_priv = to_i915(connector->dev); 7315 enum port port = dp_to_dig_port(intel_dp)->base.port; 7316 7317 if (!IS_G4X(dev_priv) && port != PORT_A) 7318 intel_attach_force_audio_property(connector); 7319 7320 intel_attach_broadcast_rgb_property(connector); 7321 if (HAS_GMCH(dev_priv)) 7322 drm_connector_attach_max_bpc_property(connector, 6, 10); 7323 else if (INTEL_GEN(dev_priv) >= 5) 7324 drm_connector_attach_max_bpc_property(connector, 6, 12); 7325 7326 intel_attach_colorspace_property(connector); 7327 7328 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11) 7329 drm_object_attach_property(&connector->base, 7330 connector->dev->mode_config.hdr_output_metadata_property, 7331 0); 7332 7333 if (intel_dp_is_edp(intel_dp)) { 7334 u32 allowed_scalers; 7335 7336 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); 7337 if (!HAS_GMCH(dev_priv)) 7338 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); 7339 7340 drm_connector_attach_scaling_mode_property(connector, allowed_scalers); 7341 7342 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; 7343 7344 } 7345 } 7346 7347 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) 7348 { 7349 intel_dp->panel_power_off_time = ktime_get_boottime(); 7350 intel_dp->last_power_on = jiffies; 7351 intel_dp->last_backlight_off = jiffies; 7352 } 7353 7354 static void 7355 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) 7356 { 7357 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7358 u32 pp_on, pp_off, pp_ctl; 7359 struct pps_registers regs; 7360 7361 intel_pps_get_registers(intel_dp, ®s); 7362 7363 pp_ctl = ilk_get_pp_control(intel_dp); 7364 7365 /* Ensure PPS is unlocked */ 7366 if (!HAS_DDI(dev_priv)) 7367 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl); 7368 7369 pp_on = intel_de_read(dev_priv, regs.pp_on); 7370 pp_off = intel_de_read(dev_priv, regs.pp_off); 7371 7372 /* Pull timing values out of registers */ 7373 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); 7374 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); 7375 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); 7376 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); 7377 7378 if (i915_mmio_reg_valid(regs.pp_div)) { 7379 u32 pp_div; 7380 7381 pp_div = intel_de_read(dev_priv, regs.pp_div); 7382 7383 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; 7384 } else { 7385 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; 7386 } 7387 } 7388 7389 static void 7390 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) 7391 { 7392 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 7393 state_name, 7394 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); 7395 } 7396 7397 static void 7398 intel_pps_verify_state(struct intel_dp *intel_dp) 7399 { 7400 struct edp_power_seq hw; 7401 struct edp_power_seq *sw = &intel_dp->pps_delays; 7402 7403 intel_pps_readout_hw_state(intel_dp, &hw); 7404 7405 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || 7406 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { 7407 DRM_ERROR("PPS state mismatch\n"); 7408 intel_pps_dump_state("sw", sw); 7409 intel_pps_dump_state("hw", &hw); 7410 } 7411 } 7412 7413 static void 7414 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) 7415 { 7416 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7417 struct edp_power_seq cur, vbt, spec, 7418 *final = &intel_dp->pps_delays; 7419 7420 lockdep_assert_held(&dev_priv->pps_mutex); 7421 7422 /* already initialized? */ 7423 if (final->t11_t12 != 0) 7424 return; 7425 7426 intel_pps_readout_hw_state(intel_dp, &cur); 7427 7428 intel_pps_dump_state("cur", &cur); 7429 7430 vbt = dev_priv->vbt.edp.pps; 7431 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay 7432 * of 500ms appears to be too short. Ocassionally the panel 7433 * just fails to power back on. Increasing the delay to 800ms 7434 * seems sufficient to avoid this problem. 7435 */ 7436 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { 7437 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); 7438 drm_dbg_kms(&dev_priv->drm, 7439 "Increasing T12 panel delay as per the quirk to %d\n", 7440 vbt.t11_t12); 7441 } 7442 /* T11_T12 delay is special and actually in units of 100ms, but zero 7443 * based in the hw (so we need to add 100 ms). But the sw vbt 7444 * table multiplies it with 1000 to make it in units of 100usec, 7445 * too. */ 7446 vbt.t11_t12 += 100 * 10; 7447 7448 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of 7449 * our hw here, which are all in 100usec. */ 7450 spec.t1_t3 = 210 * 10; 7451 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ 7452 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ 7453 spec.t10 = 500 * 10; 7454 /* This one is special and actually in units of 100ms, but zero 7455 * based in the hw (so we need to add 100 ms). But the sw vbt 7456 * table multiplies it with 1000 to make it in units of 100usec, 7457 * too. */ 7458 spec.t11_t12 = (510 + 100) * 10; 7459 7460 intel_pps_dump_state("vbt", &vbt); 7461 7462 /* Use the max of the register settings and vbt. If both are 7463 * unset, fall back to the spec limits. */ 7464 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ 7465 spec.field : \ 7466 max(cur.field, vbt.field)) 7467 assign_final(t1_t3); 7468 assign_final(t8); 7469 assign_final(t9); 7470 assign_final(t10); 7471 assign_final(t11_t12); 7472 #undef assign_final 7473 7474 #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) 7475 intel_dp->panel_power_up_delay = get_delay(t1_t3); 7476 intel_dp->backlight_on_delay = get_delay(t8); 7477 intel_dp->backlight_off_delay = get_delay(t9); 7478 intel_dp->panel_power_down_delay = get_delay(t10); 7479 intel_dp->panel_power_cycle_delay = get_delay(t11_t12); 7480 #undef get_delay 7481 7482 drm_dbg_kms(&dev_priv->drm, 7483 "panel power up delay %d, power down delay %d, power cycle delay %d\n", 7484 intel_dp->panel_power_up_delay, 7485 intel_dp->panel_power_down_delay, 7486 intel_dp->panel_power_cycle_delay); 7487 7488 drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n", 7489 intel_dp->backlight_on_delay, 7490 intel_dp->backlight_off_delay); 7491 7492 /* 7493 * We override the HW backlight delays to 1 because we do manual waits 7494 * on them. For T8, even BSpec recommends doing it. For T9, if we 7495 * don't do this, we'll end up waiting for the backlight off delay 7496 * twice: once when we do the manual sleep, and once when we disable 7497 * the panel and wait for the PP_STATUS bit to become zero. 7498 */ 7499 final->t8 = 1; 7500 final->t9 = 1; 7501 7502 /* 7503 * HW has only a 100msec granularity for t11_t12 so round it up 7504 * accordingly. 7505 */ 7506 final->t11_t12 = roundup(final->t11_t12, 100 * 10); 7507 } 7508 7509 static void 7510 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 7511 bool force_disable_vdd) 7512 { 7513 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7514 u32 pp_on, pp_off, port_sel = 0; 7515 int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000; 7516 struct pps_registers regs; 7517 enum port port = dp_to_dig_port(intel_dp)->base.port; 7518 const struct edp_power_seq *seq = &intel_dp->pps_delays; 7519 7520 lockdep_assert_held(&dev_priv->pps_mutex); 7521 7522 intel_pps_get_registers(intel_dp, ®s); 7523 7524 /* 7525 * On some VLV machines the BIOS can leave the VDD 7526 * enabled even on power sequencers which aren't 7527 * hooked up to any port. This would mess up the 7528 * power domain tracking the first time we pick 7529 * one of these power sequencers for use since 7530 * edp_panel_vdd_on() would notice that the VDD was 7531 * already on and therefore wouldn't grab the power 7532 * domain reference. Disable VDD first to avoid this. 7533 * This also avoids spuriously turning the VDD on as 7534 * soon as the new power sequencer gets initialized. 7535 */ 7536 if (force_disable_vdd) { 7537 u32 pp = ilk_get_pp_control(intel_dp); 7538 7539 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON, 7540 "Panel power already on\n"); 7541 7542 if (pp & EDP_FORCE_VDD) 7543 drm_dbg_kms(&dev_priv->drm, 7544 "VDD already on, disabling first\n"); 7545 7546 pp &= ~EDP_FORCE_VDD; 7547 7548 intel_de_write(dev_priv, regs.pp_ctrl, pp); 7549 } 7550 7551 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | 7552 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); 7553 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | 7554 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); 7555 7556 /* Haswell doesn't have any port selection bits for the panel 7557 * power sequencer any more. */ 7558 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7559 port_sel = PANEL_PORT_SELECT_VLV(port); 7560 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 7561 switch (port) { 7562 case PORT_A: 7563 port_sel = PANEL_PORT_SELECT_DPA; 7564 break; 7565 case PORT_C: 7566 port_sel = PANEL_PORT_SELECT_DPC; 7567 break; 7568 case PORT_D: 7569 port_sel = PANEL_PORT_SELECT_DPD; 7570 break; 7571 default: 7572 MISSING_CASE(port); 7573 break; 7574 } 7575 } 7576 7577 pp_on |= port_sel; 7578 7579 intel_de_write(dev_priv, regs.pp_on, pp_on); 7580 intel_de_write(dev_priv, regs.pp_off, pp_off); 7581 7582 /* 7583 * Compute the divisor for the pp clock, simply match the Bspec formula. 7584 */ 7585 if (i915_mmio_reg_valid(regs.pp_div)) { 7586 intel_de_write(dev_priv, regs.pp_div, 7587 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); 7588 } else { 7589 u32 pp_ctl; 7590 7591 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl); 7592 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; 7593 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); 7594 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl); 7595 } 7596 7597 drm_dbg_kms(&dev_priv->drm, 7598 "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", 7599 intel_de_read(dev_priv, regs.pp_on), 7600 intel_de_read(dev_priv, regs.pp_off), 7601 i915_mmio_reg_valid(regs.pp_div) ? 7602 intel_de_read(dev_priv, regs.pp_div) : 7603 (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); 7604 } 7605 7606 static void intel_dp_pps_init(struct intel_dp *intel_dp) 7607 { 7608 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7609 7610 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7611 vlv_initial_power_sequencer_setup(intel_dp); 7612 } else { 7613 intel_dp_init_panel_power_sequencer(intel_dp); 7614 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 7615 } 7616 } 7617 7618 /** 7619 * intel_dp_set_drrs_state - program registers for RR switch to take effect 7620 * @dev_priv: i915 device 7621 * @crtc_state: a pointer to the active intel_crtc_state 7622 * @refresh_rate: RR to be programmed 7623 * 7624 * This function gets called when refresh rate (RR) has to be changed from 7625 * one frequency to another. Switches can be between high and low RR 7626 * supported by the panel or to any other RR based on media playback (in 7627 * this case, RR value needs to be passed from user space). 7628 * 7629 * The caller of this function needs to take a lock on dev_priv->drrs. 7630 */ 7631 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, 7632 const struct intel_crtc_state *crtc_state, 7633 int refresh_rate) 7634 { 7635 struct intel_dp *intel_dp = dev_priv->drrs.dp; 7636 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 7637 enum drrs_refresh_rate_type index = DRRS_HIGH_RR; 7638 7639 if (refresh_rate <= 0) { 7640 drm_dbg_kms(&dev_priv->drm, 7641 "Refresh rate should be positive non-zero.\n"); 7642 return; 7643 } 7644 7645 if (intel_dp == NULL) { 7646 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n"); 7647 return; 7648 } 7649 7650 if (!intel_crtc) { 7651 drm_dbg_kms(&dev_priv->drm, 7652 "DRRS: intel_crtc not initialized\n"); 7653 return; 7654 } 7655 7656 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { 7657 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n"); 7658 return; 7659 } 7660 7661 if (drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode) == 7662 refresh_rate) 7663 index = DRRS_LOW_RR; 7664 7665 if (index == dev_priv->drrs.refresh_rate_type) { 7666 drm_dbg_kms(&dev_priv->drm, 7667 "DRRS requested for previously set RR...ignoring\n"); 7668 return; 7669 } 7670 7671 if (!crtc_state->hw.active) { 7672 drm_dbg_kms(&dev_priv->drm, 7673 "eDP encoder disabled. CRTC not Active\n"); 7674 return; 7675 } 7676 7677 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { 7678 switch (index) { 7679 case DRRS_HIGH_RR: 7680 intel_dp_set_m_n(crtc_state, M1_N1); 7681 break; 7682 case DRRS_LOW_RR: 7683 intel_dp_set_m_n(crtc_state, M2_N2); 7684 break; 7685 case DRRS_MAX_RR: 7686 default: 7687 drm_err(&dev_priv->drm, 7688 "Unsupported refreshrate type\n"); 7689 } 7690 } else if (INTEL_GEN(dev_priv) > 6) { 7691 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); 7692 u32 val; 7693 7694 val = intel_de_read(dev_priv, reg); 7695 if (index > DRRS_HIGH_RR) { 7696 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7697 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; 7698 else 7699 val |= PIPECONF_EDP_RR_MODE_SWITCH; 7700 } else { 7701 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7702 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; 7703 else 7704 val &= ~PIPECONF_EDP_RR_MODE_SWITCH; 7705 } 7706 intel_de_write(dev_priv, reg, val); 7707 } 7708 7709 dev_priv->drrs.refresh_rate_type = index; 7710 7711 drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n", 7712 refresh_rate); 7713 } 7714 7715 /** 7716 * intel_edp_drrs_enable - init drrs struct if supported 7717 * @intel_dp: DP struct 7718 * @crtc_state: A pointer to the active crtc state. 7719 * 7720 * Initializes frontbuffer_bits and drrs.dp 7721 */ 7722 void intel_edp_drrs_enable(struct intel_dp *intel_dp, 7723 const struct intel_crtc_state *crtc_state) 7724 { 7725 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7726 7727 if (!crtc_state->has_drrs) { 7728 drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n"); 7729 return; 7730 } 7731 7732 if (dev_priv->psr.enabled) { 7733 drm_dbg_kms(&dev_priv->drm, 7734 "PSR enabled. Not enabling DRRS.\n"); 7735 return; 7736 } 7737 7738 mutex_lock(&dev_priv->drrs.mutex); 7739 if (dev_priv->drrs.dp) { 7740 drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n"); 7741 goto unlock; 7742 } 7743 7744 dev_priv->drrs.busy_frontbuffer_bits = 0; 7745 7746 dev_priv->drrs.dp = intel_dp; 7747 7748 unlock: 7749 mutex_unlock(&dev_priv->drrs.mutex); 7750 } 7751 7752 /** 7753 * intel_edp_drrs_disable - Disable DRRS 7754 * @intel_dp: DP struct 7755 * @old_crtc_state: Pointer to old crtc_state. 7756 * 7757 */ 7758 void intel_edp_drrs_disable(struct intel_dp *intel_dp, 7759 const struct intel_crtc_state *old_crtc_state) 7760 { 7761 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7762 7763 if (!old_crtc_state->has_drrs) 7764 return; 7765 7766 mutex_lock(&dev_priv->drrs.mutex); 7767 if (!dev_priv->drrs.dp) { 7768 mutex_unlock(&dev_priv->drrs.mutex); 7769 return; 7770 } 7771 7772 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7773 intel_dp_set_drrs_state(dev_priv, old_crtc_state, 7774 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode)); 7775 7776 dev_priv->drrs.dp = NULL; 7777 mutex_unlock(&dev_priv->drrs.mutex); 7778 7779 cancel_delayed_work_sync(&dev_priv->drrs.work); 7780 } 7781 7782 static void intel_edp_drrs_downclock_work(struct work_struct *work) 7783 { 7784 struct drm_i915_private *dev_priv = 7785 container_of(work, typeof(*dev_priv), drrs.work.work); 7786 struct intel_dp *intel_dp; 7787 7788 mutex_lock(&dev_priv->drrs.mutex); 7789 7790 intel_dp = dev_priv->drrs.dp; 7791 7792 if (!intel_dp) 7793 goto unlock; 7794 7795 /* 7796 * The delayed work can race with an invalidate hence we need to 7797 * recheck. 7798 */ 7799 7800 if (dev_priv->drrs.busy_frontbuffer_bits) 7801 goto unlock; 7802 7803 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { 7804 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7805 7806 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7807 drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode)); 7808 } 7809 7810 unlock: 7811 mutex_unlock(&dev_priv->drrs.mutex); 7812 } 7813 7814 /** 7815 * intel_edp_drrs_invalidate - Disable Idleness DRRS 7816 * @dev_priv: i915 device 7817 * @frontbuffer_bits: frontbuffer plane tracking bits 7818 * 7819 * This function gets called everytime rendering on the given planes start. 7820 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). 7821 * 7822 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7823 */ 7824 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, 7825 unsigned int frontbuffer_bits) 7826 { 7827 struct intel_dp *intel_dp; 7828 struct drm_crtc *crtc; 7829 enum pipe pipe; 7830 7831 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7832 return; 7833 7834 cancel_delayed_work(&dev_priv->drrs.work); 7835 7836 mutex_lock(&dev_priv->drrs.mutex); 7837 7838 intel_dp = dev_priv->drrs.dp; 7839 if (!intel_dp) { 7840 mutex_unlock(&dev_priv->drrs.mutex); 7841 return; 7842 } 7843 7844 crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7845 pipe = to_intel_crtc(crtc)->pipe; 7846 7847 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7848 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; 7849 7850 /* invalidate means busy screen hence upclock */ 7851 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7852 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7853 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode)); 7854 7855 mutex_unlock(&dev_priv->drrs.mutex); 7856 } 7857 7858 /** 7859 * intel_edp_drrs_flush - Restart Idleness DRRS 7860 * @dev_priv: i915 device 7861 * @frontbuffer_bits: frontbuffer plane tracking bits 7862 * 7863 * This function gets called every time rendering on the given planes has 7864 * completed or flip on a crtc is completed. So DRRS should be upclocked 7865 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, 7866 * if no other planes are dirty. 7867 * 7868 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7869 */ 7870 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, 7871 unsigned int frontbuffer_bits) 7872 { 7873 struct intel_dp *intel_dp; 7874 struct drm_crtc *crtc; 7875 enum pipe pipe; 7876 7877 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7878 return; 7879 7880 cancel_delayed_work(&dev_priv->drrs.work); 7881 7882 mutex_lock(&dev_priv->drrs.mutex); 7883 7884 intel_dp = dev_priv->drrs.dp; 7885 if (!intel_dp) { 7886 mutex_unlock(&dev_priv->drrs.mutex); 7887 return; 7888 } 7889 7890 crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7891 pipe = to_intel_crtc(crtc)->pipe; 7892 7893 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7894 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; 7895 7896 /* flush means busy screen hence upclock */ 7897 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7898 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7899 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode)); 7900 7901 /* 7902 * flush also means no more activity hence schedule downclock, if all 7903 * other fbs are quiescent too 7904 */ 7905 if (!dev_priv->drrs.busy_frontbuffer_bits) 7906 schedule_delayed_work(&dev_priv->drrs.work, 7907 msecs_to_jiffies(1000)); 7908 mutex_unlock(&dev_priv->drrs.mutex); 7909 } 7910 7911 /** 7912 * DOC: Display Refresh Rate Switching (DRRS) 7913 * 7914 * Display Refresh Rate Switching (DRRS) is a power conservation feature 7915 * which enables swtching between low and high refresh rates, 7916 * dynamically, based on the usage scenario. This feature is applicable 7917 * for internal panels. 7918 * 7919 * Indication that the panel supports DRRS is given by the panel EDID, which 7920 * would list multiple refresh rates for one resolution. 7921 * 7922 * DRRS is of 2 types - static and seamless. 7923 * Static DRRS involves changing refresh rate (RR) by doing a full modeset 7924 * (may appear as a blink on screen) and is used in dock-undock scenario. 7925 * Seamless DRRS involves changing RR without any visual effect to the user 7926 * and can be used during normal system usage. This is done by programming 7927 * certain registers. 7928 * 7929 * Support for static/seamless DRRS may be indicated in the VBT based on 7930 * inputs from the panel spec. 7931 * 7932 * DRRS saves power by switching to low RR based on usage scenarios. 7933 * 7934 * The implementation is based on frontbuffer tracking implementation. When 7935 * there is a disturbance on the screen triggered by user activity or a periodic 7936 * system activity, DRRS is disabled (RR is changed to high RR). When there is 7937 * no movement on screen, after a timeout of 1 second, a switch to low RR is 7938 * made. 7939 * 7940 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() 7941 * and intel_edp_drrs_flush() are called. 7942 * 7943 * DRRS can be further extended to support other internal panels and also 7944 * the scenario of video playback wherein RR is set based on the rate 7945 * requested by userspace. 7946 */ 7947 7948 /** 7949 * intel_dp_drrs_init - Init basic DRRS work and mutex. 7950 * @connector: eDP connector 7951 * @fixed_mode: preferred mode of panel 7952 * 7953 * This function is called only once at driver load to initialize basic 7954 * DRRS stuff. 7955 * 7956 * Returns: 7957 * Downclock mode if panel supports it, else return NULL. 7958 * DRRS support is determined by the presence of downclock mode (apart 7959 * from VBT setting). 7960 */ 7961 static struct drm_display_mode * 7962 intel_dp_drrs_init(struct intel_connector *connector, 7963 struct drm_display_mode *fixed_mode) 7964 { 7965 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 7966 struct drm_display_mode *downclock_mode = NULL; 7967 7968 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); 7969 mutex_init(&dev_priv->drrs.mutex); 7970 7971 if (INTEL_GEN(dev_priv) <= 6) { 7972 drm_dbg_kms(&dev_priv->drm, 7973 "DRRS supported for Gen7 and above\n"); 7974 return NULL; 7975 } 7976 7977 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { 7978 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n"); 7979 return NULL; 7980 } 7981 7982 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); 7983 if (!downclock_mode) { 7984 drm_dbg_kms(&dev_priv->drm, 7985 "Downclock mode is not found. DRRS not supported\n"); 7986 return NULL; 7987 } 7988 7989 dev_priv->drrs.type = dev_priv->vbt.drrs_type; 7990 7991 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; 7992 drm_dbg_kms(&dev_priv->drm, 7993 "seamless DRRS supported for eDP panel.\n"); 7994 return downclock_mode; 7995 } 7996 7997 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 7998 struct intel_connector *intel_connector) 7999 { 8000 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 8001 struct drm_device *dev = &dev_priv->drm; 8002 struct drm_connector *connector = &intel_connector->base; 8003 struct drm_display_mode *fixed_mode = NULL; 8004 struct drm_display_mode *downclock_mode = NULL; 8005 bool has_dpcd; 8006 enum pipe pipe = INVALID_PIPE; 8007 intel_wakeref_t wakeref; 8008 struct edid *edid; 8009 8010 if (!intel_dp_is_edp(intel_dp)) 8011 return true; 8012 8013 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); 8014 8015 /* 8016 * On IBX/CPT we may get here with LVDS already registered. Since the 8017 * driver uses the only internal power sequencer available for both 8018 * eDP and LVDS bail out early in this case to prevent interfering 8019 * with an already powered-on LVDS power sequencer. 8020 */ 8021 if (intel_get_lvds_encoder(dev_priv)) { 8022 drm_WARN_ON(dev, 8023 !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 8024 drm_info(&dev_priv->drm, 8025 "LVDS was detected, not registering eDP\n"); 8026 8027 return false; 8028 } 8029 8030 with_pps_lock(intel_dp, wakeref) { 8031 intel_dp_init_panel_power_timestamps(intel_dp); 8032 intel_dp_pps_init(intel_dp); 8033 intel_edp_panel_vdd_sanitize(intel_dp); 8034 } 8035 8036 /* Cache DPCD and EDID for edp. */ 8037 has_dpcd = intel_edp_init_dpcd(intel_dp); 8038 8039 if (!has_dpcd) { 8040 /* if this fails, presume the device is a ghost */ 8041 drm_info(&dev_priv->drm, 8042 "failed to retrieve link info, disabling eDP\n"); 8043 goto out_vdd_off; 8044 } 8045 8046 mutex_lock(&dev->mode_config.mutex); 8047 edid = drm_get_edid(connector, &intel_dp->aux.ddc); 8048 if (edid) { 8049 if (drm_add_edid_modes(connector, edid)) { 8050 drm_connector_update_edid_property(connector, edid); 8051 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid); 8052 } else { 8053 kfree(edid); 8054 edid = ERR_PTR(-EINVAL); 8055 } 8056 } else { 8057 edid = ERR_PTR(-ENOENT); 8058 } 8059 intel_connector->edid = edid; 8060 8061 fixed_mode = intel_panel_edid_fixed_mode(intel_connector); 8062 if (fixed_mode) 8063 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); 8064 8065 /* fallback to VBT if available for eDP */ 8066 if (!fixed_mode) 8067 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); 8068 mutex_unlock(&dev->mode_config.mutex); 8069 8070 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 8071 intel_dp->edp_notifier.notifier_call = edp_notify_handler; 8072 register_reboot_notifier(&intel_dp->edp_notifier); 8073 8074 /* 8075 * Figure out the current pipe for the initial backlight setup. 8076 * If the current pipe isn't valid, try the PPS pipe, and if that 8077 * fails just assume pipe A. 8078 */ 8079 pipe = vlv_active_pipe(intel_dp); 8080 8081 if (pipe != PIPE_A && pipe != PIPE_B) 8082 pipe = intel_dp->pps_pipe; 8083 8084 if (pipe != PIPE_A && pipe != PIPE_B) 8085 pipe = PIPE_A; 8086 8087 drm_dbg_kms(&dev_priv->drm, 8088 "using pipe %c for initial backlight setup\n", 8089 pipe_name(pipe)); 8090 } 8091 8092 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); 8093 intel_connector->panel.backlight.power = intel_edp_backlight_power; 8094 intel_panel_setup_backlight(connector, pipe); 8095 8096 if (fixed_mode) { 8097 drm_connector_set_panel_orientation_with_quirk(connector, 8098 dev_priv->vbt.orientation, 8099 fixed_mode->hdisplay, fixed_mode->vdisplay); 8100 } 8101 8102 return true; 8103 8104 out_vdd_off: 8105 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 8106 /* 8107 * vdd might still be enabled do to the delayed vdd off. 8108 * Make sure vdd is actually turned off here. 8109 */ 8110 with_pps_lock(intel_dp, wakeref) 8111 edp_panel_vdd_off_sync(intel_dp); 8112 8113 return false; 8114 } 8115 8116 static void intel_dp_modeset_retry_work_fn(struct work_struct *work) 8117 { 8118 struct intel_connector *intel_connector; 8119 struct drm_connector *connector; 8120 8121 intel_connector = container_of(work, typeof(*intel_connector), 8122 modeset_retry_work); 8123 connector = &intel_connector->base; 8124 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, 8125 connector->name); 8126 8127 /* Grab the locks before changing connector property*/ 8128 mutex_lock(&connector->dev->mode_config.mutex); 8129 /* Set connector link status to BAD and send a Uevent to notify 8130 * userspace to do a modeset. 8131 */ 8132 drm_connector_set_link_status_property(connector, 8133 DRM_MODE_LINK_STATUS_BAD); 8134 mutex_unlock(&connector->dev->mode_config.mutex); 8135 /* Send Hotplug uevent so userspace can reprobe */ 8136 drm_kms_helper_hotplug_event(connector->dev); 8137 } 8138 8139 bool 8140 intel_dp_init_connector(struct intel_digital_port *intel_dig_port, 8141 struct intel_connector *intel_connector) 8142 { 8143 struct drm_connector *connector = &intel_connector->base; 8144 struct intel_dp *intel_dp = &intel_dig_port->dp; 8145 struct intel_encoder *intel_encoder = &intel_dig_port->base; 8146 struct drm_device *dev = intel_encoder->base.dev; 8147 struct drm_i915_private *dev_priv = to_i915(dev); 8148 enum port port = intel_encoder->port; 8149 enum phy phy = intel_port_to_phy(dev_priv, port); 8150 int type; 8151 8152 /* Initialize the work for modeset in case of link train failure */ 8153 INIT_WORK(&intel_connector->modeset_retry_work, 8154 intel_dp_modeset_retry_work_fn); 8155 8156 if (drm_WARN(dev, intel_dig_port->max_lanes < 1, 8157 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", 8158 intel_dig_port->max_lanes, intel_encoder->base.base.id, 8159 intel_encoder->base.name)) 8160 return false; 8161 8162 intel_dp->reset_link_params = true; 8163 intel_dp->pps_pipe = INVALID_PIPE; 8164 intel_dp->active_pipe = INVALID_PIPE; 8165 8166 /* Preserve the current hw state. */ 8167 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg); 8168 intel_dp->attached_connector = intel_connector; 8169 8170 if (intel_dp_is_port_edp(dev_priv, port)) { 8171 /* 8172 * Currently we don't support eDP on TypeC ports, although in 8173 * theory it could work on TypeC legacy ports. 8174 */ 8175 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy)); 8176 type = DRM_MODE_CONNECTOR_eDP; 8177 intel_encoder->type = INTEL_OUTPUT_EDP; 8178 8179 /* eDP only on port B and/or C on vlv/chv */ 8180 if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) || 8181 IS_CHERRYVIEW(dev_priv)) && 8182 port != PORT_B && port != PORT_C)) 8183 return false; 8184 } else { 8185 type = DRM_MODE_CONNECTOR_DisplayPort; 8186 } 8187 8188 intel_dp_set_source_rates(intel_dp); 8189 8190 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8191 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 8192 8193 drm_dbg_kms(&dev_priv->drm, 8194 "Adding %s connector on [ENCODER:%d:%s]\n", 8195 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 8196 intel_encoder->base.base.id, intel_encoder->base.name); 8197 8198 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); 8199 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); 8200 8201 if (!HAS_GMCH(dev_priv)) 8202 connector->interlace_allowed = true; 8203 connector->doublescan_allowed = 0; 8204 8205 if (INTEL_GEN(dev_priv) >= 11) 8206 connector->ycbcr_420_allowed = true; 8207 8208 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 8209 intel_connector->polled = DRM_CONNECTOR_POLL_HPD; 8210 8211 intel_dp_aux_init(intel_dp); 8212 8213 intel_connector_attach_encoder(intel_connector, intel_encoder); 8214 8215 if (HAS_DDI(dev_priv)) 8216 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 8217 else 8218 intel_connector->get_hw_state = intel_connector_get_hw_state; 8219 8220 /* init MST on ports that can support it */ 8221 intel_dp_mst_encoder_init(intel_dig_port, 8222 intel_connector->base.base.id); 8223 8224 if (!intel_edp_init_connector(intel_dp, intel_connector)) { 8225 intel_dp_aux_fini(intel_dp); 8226 intel_dp_mst_encoder_cleanup(intel_dig_port); 8227 goto fail; 8228 } 8229 8230 intel_dp_add_properties(intel_dp, connector); 8231 8232 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { 8233 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim); 8234 if (ret) 8235 drm_dbg_kms(&dev_priv->drm, 8236 "HDCP init failed, skipping.\n"); 8237 } 8238 8239 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 8240 * 0xd. Failure to do so will result in spurious interrupts being 8241 * generated on the port when a cable is not attached. 8242 */ 8243 if (IS_G45(dev_priv)) { 8244 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA); 8245 intel_de_write(dev_priv, PEG_BAND_GAP_DATA, 8246 (temp & ~0xf) | 0xd); 8247 } 8248 8249 return true; 8250 8251 fail: 8252 drm_connector_cleanup(connector); 8253 8254 return false; 8255 } 8256 8257 bool intel_dp_init(struct drm_i915_private *dev_priv, 8258 i915_reg_t output_reg, 8259 enum port port) 8260 { 8261 struct intel_digital_port *intel_dig_port; 8262 struct intel_encoder *intel_encoder; 8263 struct drm_encoder *encoder; 8264 struct intel_connector *intel_connector; 8265 8266 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); 8267 if (!intel_dig_port) 8268 return false; 8269 8270 intel_connector = intel_connector_alloc(); 8271 if (!intel_connector) 8272 goto err_connector_alloc; 8273 8274 intel_encoder = &intel_dig_port->base; 8275 encoder = &intel_encoder->base; 8276 8277 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 8278 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, 8279 "DP %c", port_name(port))) 8280 goto err_encoder_init; 8281 8282 intel_encoder->hotplug = intel_dp_hotplug; 8283 intel_encoder->compute_config = intel_dp_compute_config; 8284 intel_encoder->get_hw_state = intel_dp_get_hw_state; 8285 intel_encoder->get_config = intel_dp_get_config; 8286 intel_encoder->update_pipe = intel_panel_update_backlight; 8287 intel_encoder->suspend = intel_dp_encoder_suspend; 8288 if (IS_CHERRYVIEW(dev_priv)) { 8289 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; 8290 intel_encoder->pre_enable = chv_pre_enable_dp; 8291 intel_encoder->enable = vlv_enable_dp; 8292 intel_encoder->disable = vlv_disable_dp; 8293 intel_encoder->post_disable = chv_post_disable_dp; 8294 intel_encoder->post_pll_disable = chv_dp_post_pll_disable; 8295 } else if (IS_VALLEYVIEW(dev_priv)) { 8296 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; 8297 intel_encoder->pre_enable = vlv_pre_enable_dp; 8298 intel_encoder->enable = vlv_enable_dp; 8299 intel_encoder->disable = vlv_disable_dp; 8300 intel_encoder->post_disable = vlv_post_disable_dp; 8301 } else { 8302 intel_encoder->pre_enable = g4x_pre_enable_dp; 8303 intel_encoder->enable = g4x_enable_dp; 8304 intel_encoder->disable = g4x_disable_dp; 8305 intel_encoder->post_disable = g4x_post_disable_dp; 8306 } 8307 8308 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 8309 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) 8310 intel_dig_port->dp.set_link_train = cpt_set_link_train; 8311 else 8312 intel_dig_port->dp.set_link_train = g4x_set_link_train; 8313 8314 if (IS_CHERRYVIEW(dev_priv)) 8315 intel_dig_port->dp.set_signal_levels = chv_set_signal_levels; 8316 else if (IS_VALLEYVIEW(dev_priv)) 8317 intel_dig_port->dp.set_signal_levels = vlv_set_signal_levels; 8318 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 8319 intel_dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels; 8320 else if (IS_GEN(dev_priv, 6) && port == PORT_A) 8321 intel_dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels; 8322 else 8323 intel_dig_port->dp.set_signal_levels = g4x_set_signal_levels; 8324 8325 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) || 8326 (HAS_PCH_SPLIT(dev_priv) && port != PORT_A)) { 8327 intel_dig_port->dp.preemph_max = intel_dp_pre_empemph_max_3; 8328 intel_dig_port->dp.voltage_max = intel_dp_voltage_max_3; 8329 } else { 8330 intel_dig_port->dp.preemph_max = intel_dp_pre_empemph_max_2; 8331 intel_dig_port->dp.voltage_max = intel_dp_voltage_max_2; 8332 } 8333 8334 intel_dig_port->dp.output_reg = output_reg; 8335 intel_dig_port->max_lanes = 4; 8336 intel_dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port); 8337 intel_dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port); 8338 8339 intel_encoder->type = INTEL_OUTPUT_DP; 8340 intel_encoder->power_domain = intel_port_to_power_domain(port); 8341 if (IS_CHERRYVIEW(dev_priv)) { 8342 if (port == PORT_D) 8343 intel_encoder->pipe_mask = BIT(PIPE_C); 8344 else 8345 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B); 8346 } else { 8347 intel_encoder->pipe_mask = ~0; 8348 } 8349 intel_encoder->cloneable = 0; 8350 intel_encoder->port = port; 8351 8352 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; 8353 8354 if (HAS_GMCH(dev_priv)) { 8355 if (IS_GM45(dev_priv)) 8356 intel_dig_port->connected = gm45_digital_port_connected; 8357 else 8358 intel_dig_port->connected = g4x_digital_port_connected; 8359 } else { 8360 if (port == PORT_A) 8361 intel_dig_port->connected = ilk_digital_port_connected; 8362 else 8363 intel_dig_port->connected = ibx_digital_port_connected; 8364 } 8365 8366 if (port != PORT_A) 8367 intel_infoframe_init(intel_dig_port); 8368 8369 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 8370 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) 8371 goto err_init_connector; 8372 8373 return true; 8374 8375 err_init_connector: 8376 drm_encoder_cleanup(encoder); 8377 err_encoder_init: 8378 kfree(intel_connector); 8379 err_connector_alloc: 8380 kfree(intel_dig_port); 8381 return false; 8382 } 8383 8384 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) 8385 { 8386 struct intel_encoder *encoder; 8387 8388 for_each_intel_encoder(&dev_priv->drm, encoder) { 8389 struct intel_dp *intel_dp; 8390 8391 if (encoder->type != INTEL_OUTPUT_DDI) 8392 continue; 8393 8394 intel_dp = enc_to_intel_dp(encoder); 8395 8396 if (!intel_dp->can_mst) 8397 continue; 8398 8399 if (intel_dp->is_mst) 8400 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); 8401 } 8402 } 8403 8404 void intel_dp_mst_resume(struct drm_i915_private *dev_priv) 8405 { 8406 struct intel_encoder *encoder; 8407 8408 for_each_intel_encoder(&dev_priv->drm, encoder) { 8409 struct intel_dp *intel_dp; 8410 int ret; 8411 8412 if (encoder->type != INTEL_OUTPUT_DDI) 8413 continue; 8414 8415 intel_dp = enc_to_intel_dp(encoder); 8416 8417 if (!intel_dp->can_mst) 8418 continue; 8419 8420 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr, 8421 true); 8422 if (ret) { 8423 intel_dp->is_mst = false; 8424 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 8425 false); 8426 } 8427 } 8428 } 8429