1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/iopoll.h> 31 #include <linux/log2.h> 32 #include <linux/math.h> 33 #include <linux/notifier.h> 34 #include <linux/seq_buf.h> 35 #include <linux/slab.h> 36 #include <linux/sort.h> 37 #include <linux/string_helpers.h> 38 #include <linux/timekeeping.h> 39 #include <linux/types.h> 40 #include <asm/byteorder.h> 41 42 #include <drm/display/drm_dp_helper.h> 43 #include <drm/display/drm_dp_tunnel.h> 44 #include <drm/display/drm_dsc_helper.h> 45 #include <drm/display/drm_hdmi_helper.h> 46 #include <drm/drm_atomic_helper.h> 47 #include <drm/drm_crtc.h> 48 #include <drm/drm_edid.h> 49 #include <drm/drm_fixed.h> 50 #include <drm/drm_print.h> 51 #include <drm/drm_probe_helper.h> 52 53 #include "g4x_dp.h" 54 #include "intel_alpm.h" 55 #include "intel_atomic.h" 56 #include "intel_audio.h" 57 #include "intel_backlight.h" 58 #include "intel_combo_phy_regs.h" 59 #include "intel_connector.h" 60 #include "intel_crtc.h" 61 #include "intel_crtc_state_dump.h" 62 #include "intel_cx0_phy.h" 63 #include "intel_ddi.h" 64 #include "intel_de.h" 65 #include "intel_display_driver.h" 66 #include "intel_display_jiffies.h" 67 #include "intel_display_utils.h" 68 #include "intel_display_regs.h" 69 #include "intel_display_rpm.h" 70 #include "intel_display_types.h" 71 #include "intel_dp.h" 72 #include "intel_dp_aux.h" 73 #include "intel_dp_hdcp.h" 74 #include "intel_dp_link_training.h" 75 #include "intel_dp_mst.h" 76 #include "intel_dp_test.h" 77 #include "intel_dp_tunnel.h" 78 #include "intel_dpio_phy.h" 79 #include "intel_dpll.h" 80 #include "intel_drrs.h" 81 #include "intel_encoder.h" 82 #include "intel_fifo_underrun.h" 83 #include "intel_hdcp.h" 84 #include "intel_hdmi.h" 85 #include "intel_hotplug.h" 86 #include "intel_hotplug_irq.h" 87 #include "intel_lspcon.h" 88 #include "intel_lvds.h" 89 #include "intel_modeset_lock.h" 90 #include "intel_panel.h" 91 #include "intel_pch_display.h" 92 #include "intel_pfit.h" 93 #include "intel_pps.h" 94 #include "intel_psr.h" 95 #include "intel_quirks.h" 96 #include "intel_tc.h" 97 #include "intel_vblank.h" 98 #include "intel_vdsc.h" 99 #include "intel_vrr.h" 100 101 /* Max DSC line buffer depth supported by HW. */ 102 #define INTEL_DP_DSC_MAX_LINE_BUF_DEPTH 13 103 104 /* DP DSC FEC Overhead factor in ppm = 1/(0.972261) = 1.028530 */ 105 #define DP_DSC_FEC_OVERHEAD_FACTOR 1028530 106 107 /* Constants for DP DSC configurations */ 108 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 109 110 /* 111 * With Single pipe configuration, HW is capable of supporting maximum of: 112 * 2 slices per line for ICL, BMG 113 * 4 slices per line for other platforms. 114 * For now consider a max of 2 slices per line, which works for all platforms. 115 * With this we can have max of 4 DSC Slices per pipe. 116 * 117 * For higher resolutions where 12 slice support is required with 118 * ultrajoiner, only then each pipe can support 3 slices. 119 * 120 * #TODO Split this better to use 4 slices/dsc engine where supported. 121 */ 122 static const u8 valid_dsc_slicecount[] = {1, 2, 3, 4}; 123 124 /** 125 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 126 * @intel_dp: DP struct 127 * 128 * If a CPU or PCH DP output is attached to an eDP panel, this function 129 * will return true, and false otherwise. 130 * 131 * This function is not safe to use prior to encoder type being set. 132 */ 133 bool intel_dp_is_edp(struct intel_dp *intel_dp) 134 { 135 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 136 137 return dig_port->base.type == INTEL_OUTPUT_EDP; 138 } 139 140 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 141 142 /* Is link rate UHBR and thus 128b/132b? */ 143 bool intel_dp_is_uhbr(const struct intel_crtc_state *crtc_state) 144 { 145 return drm_dp_is_uhbr_rate(crtc_state->port_clock); 146 } 147 148 /** 149 * intel_dp_link_symbol_size - get the link symbol size for a given link rate 150 * @rate: link rate in 10kbit/s units 151 * 152 * Returns the link symbol size in bits/symbol units depending on the link 153 * rate -> channel coding. 154 */ 155 int intel_dp_link_symbol_size(int rate) 156 { 157 return drm_dp_is_uhbr_rate(rate) ? 32 : 10; 158 } 159 160 /** 161 * intel_dp_link_symbol_clock - convert link rate to link symbol clock 162 * @rate: link rate in 10kbit/s units 163 * 164 * Returns the link symbol clock frequency in kHz units depending on the 165 * link rate and channel coding. 166 */ 167 int intel_dp_link_symbol_clock(int rate) 168 { 169 return DIV_ROUND_CLOSEST(rate * 10, intel_dp_link_symbol_size(rate)); 170 } 171 172 static int max_dprx_rate(struct intel_dp *intel_dp) 173 { 174 struct intel_display *display = to_intel_display(intel_dp); 175 int max_rate; 176 177 if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp)) 178 max_rate = drm_dp_tunnel_max_dprx_rate(intel_dp->tunnel); 179 else 180 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 181 182 /* 183 * Some platforms + eDP panels may not reliably support HBR3 184 * due to signal integrity limitations, despite advertising it. 185 * Cap the link rate to HBR2 to avoid unstable configurations for the 186 * known machines. 187 */ 188 if (intel_dp_is_edp(intel_dp) && intel_has_quirk(display, QUIRK_EDP_LIMIT_RATE_HBR2)) 189 max_rate = min(max_rate, 540000); 190 191 return max_rate; 192 } 193 194 static int max_dprx_lane_count(struct intel_dp *intel_dp) 195 { 196 if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp)) 197 return drm_dp_tunnel_max_dprx_lane_count(intel_dp->tunnel); 198 199 return drm_dp_max_lane_count(intel_dp->dpcd); 200 } 201 202 static void intel_dp_set_default_sink_rates(struct intel_dp *intel_dp) 203 { 204 intel_dp->sink_rates[0] = 162000; 205 intel_dp->num_sink_rates = 1; 206 } 207 208 /* update sink rates from dpcd */ 209 static void intel_dp_set_dpcd_sink_rates(struct intel_dp *intel_dp) 210 { 211 static const int dp_rates[] = { 212 162000, 270000, 540000, 810000 213 }; 214 int i, max_rate; 215 int max_lttpr_rate; 216 217 if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) { 218 /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */ 219 static const int quirk_rates[] = { 162000, 270000, 324000 }; 220 221 memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates)); 222 intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates); 223 224 return; 225 } 226 227 /* 228 * Sink rates for 8b/10b. 229 */ 230 max_rate = max_dprx_rate(intel_dp); 231 max_lttpr_rate = drm_dp_lttpr_max_link_rate(intel_dp->lttpr_common_caps); 232 if (max_lttpr_rate) 233 max_rate = min(max_rate, max_lttpr_rate); 234 235 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 236 if (dp_rates[i] > max_rate) 237 break; 238 intel_dp->sink_rates[i] = dp_rates[i]; 239 } 240 241 /* 242 * Sink rates for 128b/132b. If set, sink should support all 8b/10b 243 * rates and 10 Gbps. 244 */ 245 if (drm_dp_128b132b_supported(intel_dp->dpcd)) { 246 u8 uhbr_rates = 0; 247 248 BUILD_BUG_ON(ARRAY_SIZE(intel_dp->sink_rates) < ARRAY_SIZE(dp_rates) + 3); 249 250 drm_dp_dpcd_readb(&intel_dp->aux, 251 DP_128B132B_SUPPORTED_LINK_RATES, &uhbr_rates); 252 253 if (drm_dp_lttpr_count(intel_dp->lttpr_common_caps)) { 254 /* We have a repeater */ 255 if (intel_dp->lttpr_common_caps[0] >= 0x20 && 256 intel_dp->lttpr_common_caps[DP_MAIN_LINK_CHANNEL_CODING_PHY_REPEATER - 257 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV] & 258 DP_PHY_REPEATER_128B132B_SUPPORTED) { 259 /* Repeater supports 128b/132b, valid UHBR rates */ 260 uhbr_rates &= intel_dp->lttpr_common_caps[DP_PHY_REPEATER_128B132B_RATES - 261 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV]; 262 } else { 263 /* Does not support 128b/132b */ 264 uhbr_rates = 0; 265 } 266 } 267 268 if (uhbr_rates & DP_UHBR10) 269 intel_dp->sink_rates[i++] = 1000000; 270 if (uhbr_rates & DP_UHBR13_5) 271 intel_dp->sink_rates[i++] = 1350000; 272 if (uhbr_rates & DP_UHBR20) 273 intel_dp->sink_rates[i++] = 2000000; 274 } 275 276 intel_dp->num_sink_rates = i; 277 } 278 279 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 280 { 281 struct intel_display *display = to_intel_display(intel_dp); 282 struct intel_connector *connector = intel_dp->attached_connector; 283 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 284 struct intel_encoder *encoder = &intel_dig_port->base; 285 286 intel_dp_set_dpcd_sink_rates(intel_dp); 287 288 if (intel_dp->num_sink_rates) 289 return; 290 291 drm_err(display->drm, 292 "[CONNECTOR:%d:%s][ENCODER:%d:%s] Invalid DPCD with no link rates, using defaults\n", 293 connector->base.base.id, connector->base.name, 294 encoder->base.base.id, encoder->base.name); 295 296 intel_dp_set_default_sink_rates(intel_dp); 297 } 298 299 static void intel_dp_set_default_max_sink_lane_count(struct intel_dp *intel_dp) 300 { 301 intel_dp->max_sink_lane_count = 1; 302 } 303 304 static void intel_dp_set_max_sink_lane_count(struct intel_dp *intel_dp) 305 { 306 struct intel_display *display = to_intel_display(intel_dp); 307 struct intel_connector *connector = intel_dp->attached_connector; 308 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 309 struct intel_encoder *encoder = &intel_dig_port->base; 310 311 intel_dp->max_sink_lane_count = max_dprx_lane_count(intel_dp); 312 313 switch (intel_dp->max_sink_lane_count) { 314 case 1: 315 case 2: 316 case 4: 317 return; 318 } 319 320 drm_err(display->drm, 321 "[CONNECTOR:%d:%s][ENCODER:%d:%s] Invalid DPCD max lane count (%d), using default\n", 322 connector->base.base.id, connector->base.name, 323 encoder->base.base.id, encoder->base.name, 324 intel_dp->max_sink_lane_count); 325 326 intel_dp_set_default_max_sink_lane_count(intel_dp); 327 } 328 329 /* Get length of rates array potentially limited by max_rate. */ 330 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 331 { 332 int i; 333 334 /* Limit results by potentially reduced max rate */ 335 for (i = 0; i < len; i++) { 336 if (rates[len - i - 1] <= max_rate) 337 return len - i; 338 } 339 340 return 0; 341 } 342 343 /* Get length of common rates array potentially limited by max_rate. */ 344 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 345 int max_rate) 346 { 347 return intel_dp_rate_limit_len(intel_dp->common_rates, 348 intel_dp->num_common_rates, max_rate); 349 } 350 351 int intel_dp_common_rate(struct intel_dp *intel_dp, int index) 352 { 353 struct intel_display *display = to_intel_display(intel_dp); 354 355 if (drm_WARN_ON(display->drm, 356 index < 0 || index >= intel_dp->num_common_rates)) 357 return 162000; 358 359 return intel_dp->common_rates[index]; 360 } 361 362 /* Theoretical max between source and sink */ 363 int intel_dp_max_common_rate(struct intel_dp *intel_dp) 364 { 365 return intel_dp_common_rate(intel_dp, intel_dp->num_common_rates - 1); 366 } 367 368 int intel_dp_max_source_lane_count(struct intel_digital_port *dig_port) 369 { 370 int vbt_max_lanes = intel_bios_dp_max_lane_count(dig_port->base.devdata); 371 int max_lanes = dig_port->max_lanes; 372 373 if (vbt_max_lanes) 374 max_lanes = min(max_lanes, vbt_max_lanes); 375 376 return max_lanes; 377 } 378 379 /* Theoretical max between source and sink */ 380 int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 381 { 382 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 383 int source_max = intel_dp_max_source_lane_count(dig_port); 384 int sink_max = intel_dp->max_sink_lane_count; 385 int lane_max = intel_tc_port_max_lane_count(dig_port); 386 int lttpr_max = drm_dp_lttpr_max_lane_count(intel_dp->lttpr_common_caps); 387 388 if (lttpr_max) 389 sink_max = min(sink_max, lttpr_max); 390 391 return min3(source_max, sink_max, lane_max); 392 } 393 394 static int forced_lane_count(struct intel_dp *intel_dp) 395 { 396 return clamp(intel_dp->link.force_lane_count, 1, intel_dp_max_common_lane_count(intel_dp)); 397 } 398 399 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 400 { 401 int lane_count; 402 403 if (intel_dp->link.force_lane_count) 404 lane_count = forced_lane_count(intel_dp); 405 else 406 lane_count = intel_dp->link.max_lane_count; 407 408 switch (lane_count) { 409 case 1: 410 case 2: 411 case 4: 412 return lane_count; 413 default: 414 MISSING_CASE(lane_count); 415 return 1; 416 } 417 } 418 419 static int intel_dp_min_lane_count(struct intel_dp *intel_dp) 420 { 421 if (intel_dp->link.force_lane_count) 422 return forced_lane_count(intel_dp); 423 424 return 1; 425 } 426 427 /* 428 * The required data bandwidth for a mode with given pixel clock and bpp. This 429 * is the required net bandwidth independent of the data bandwidth efficiency. 430 * 431 * TODO: check if callers of this functions should use 432 * intel_dp_effective_data_rate() instead. 433 */ 434 int 435 intel_dp_link_required(int pixel_clock, int bpp) 436 { 437 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 438 return DIV_ROUND_UP(pixel_clock * bpp, 8); 439 } 440 441 /** 442 * intel_dp_effective_data_rate - Return the pixel data rate accounting for BW allocation overhead 443 * @pixel_clock: pixel clock in kHz 444 * @bpp_x16: bits per pixel .4 fixed point format 445 * @bw_overhead: BW allocation overhead in 1ppm units 446 * 447 * Return the effective pixel data rate in kB/sec units taking into account 448 * the provided SSC, FEC, DSC BW allocation overhead. 449 */ 450 int intel_dp_effective_data_rate(int pixel_clock, int bpp_x16, 451 int bw_overhead) 452 { 453 return DIV_ROUND_UP_ULL(mul_u32_u32(pixel_clock * bpp_x16, bw_overhead), 454 1000000 * 16 * 8); 455 } 456 457 /** 458 * intel_dp_max_link_data_rate: Calculate the maximum rate for the given link params 459 * @intel_dp: Intel DP object 460 * @max_dprx_rate: Maximum data rate of the DPRX 461 * @max_dprx_lanes: Maximum lane count of the DPRX 462 * 463 * Calculate the maximum data rate for the provided link parameters taking into 464 * account any BW limitations by a DP tunnel attached to @intel_dp. 465 * 466 * Returns the maximum data rate in kBps units. 467 */ 468 int intel_dp_max_link_data_rate(struct intel_dp *intel_dp, 469 int max_dprx_rate, int max_dprx_lanes) 470 { 471 int max_rate = drm_dp_max_dprx_data_rate(max_dprx_rate, max_dprx_lanes); 472 473 if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp)) 474 max_rate = min(max_rate, 475 drm_dp_tunnel_available_bw(intel_dp->tunnel)); 476 477 return max_rate; 478 } 479 480 bool intel_dp_has_joiner(struct intel_dp *intel_dp) 481 { 482 struct intel_display *display = to_intel_display(intel_dp); 483 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 484 struct intel_encoder *encoder = &intel_dig_port->base; 485 486 /* eDP MSO is not compatible with joiner */ 487 if (intel_dp->mso_link_count) 488 return false; 489 490 return DISPLAY_VER(display) >= 12 || 491 (DISPLAY_VER(display) == 11 && 492 encoder->port != PORT_A); 493 } 494 495 static int dg2_max_source_rate(struct intel_dp *intel_dp) 496 { 497 return intel_dp_is_edp(intel_dp) ? 810000 : 1350000; 498 } 499 500 static int icl_max_source_rate(struct intel_dp *intel_dp) 501 { 502 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 503 504 if (intel_encoder_is_combo(encoder) && !intel_dp_is_edp(intel_dp)) 505 return 540000; 506 507 return 810000; 508 } 509 510 static int ehl_max_source_rate(struct intel_dp *intel_dp) 511 { 512 if (intel_dp_is_edp(intel_dp)) 513 return 540000; 514 515 return 810000; 516 } 517 518 static int mtl_max_source_rate(struct intel_dp *intel_dp) 519 { 520 struct intel_display *display = to_intel_display(intel_dp); 521 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 522 523 if (intel_encoder_is_c10phy(encoder)) 524 return 810000; 525 526 if (DISPLAY_VERx100(display) == 1401) 527 return 1350000; 528 529 return 2000000; 530 } 531 532 static int vbt_max_link_rate(struct intel_dp *intel_dp) 533 { 534 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 535 int max_rate; 536 537 max_rate = intel_bios_dp_max_link_rate(encoder->devdata); 538 539 if (intel_dp_is_edp(intel_dp)) { 540 struct intel_connector *connector = intel_dp->attached_connector; 541 int edp_max_rate = connector->panel.vbt.edp.max_link_rate; 542 543 if (max_rate && edp_max_rate) 544 max_rate = min(max_rate, edp_max_rate); 545 else if (edp_max_rate) 546 max_rate = edp_max_rate; 547 } 548 549 return max_rate; 550 } 551 552 static void 553 intel_dp_set_source_rates(struct intel_dp *intel_dp) 554 { 555 /* The values must be in increasing order */ 556 static const int bmg_rates[] = { 557 162000, 216000, 243000, 270000, 324000, 432000, 540000, 675000, 558 810000, 1000000, 1350000, 559 }; 560 static const int mtl_rates[] = { 561 162000, 216000, 243000, 270000, 324000, 432000, 540000, 675000, 562 810000, 1000000, 2000000, 563 }; 564 static const int icl_rates[] = { 565 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000, 566 1000000, 1350000, 567 }; 568 static const int bxt_rates[] = { 569 162000, 216000, 243000, 270000, 324000, 432000, 540000 570 }; 571 static const int skl_rates[] = { 572 162000, 216000, 270000, 324000, 432000, 540000 573 }; 574 static const int hsw_rates[] = { 575 162000, 270000, 540000 576 }; 577 static const int g4x_rates[] = { 578 162000, 270000 579 }; 580 struct intel_display *display = to_intel_display(intel_dp); 581 const int *source_rates; 582 int size, max_rate = 0, vbt_max_rate; 583 584 /* This should only be done once */ 585 drm_WARN_ON(display->drm, 586 intel_dp->source_rates || intel_dp->num_source_rates); 587 588 if (DISPLAY_VER(display) >= 14) { 589 if (display->platform.battlemage) { 590 source_rates = bmg_rates; 591 size = ARRAY_SIZE(bmg_rates); 592 } else { 593 source_rates = mtl_rates; 594 size = ARRAY_SIZE(mtl_rates); 595 } 596 max_rate = mtl_max_source_rate(intel_dp); 597 } else if (DISPLAY_VER(display) >= 11) { 598 source_rates = icl_rates; 599 size = ARRAY_SIZE(icl_rates); 600 if (display->platform.dg2) 601 max_rate = dg2_max_source_rate(intel_dp); 602 else if (display->platform.alderlake_p || display->platform.alderlake_s || 603 display->platform.dg1 || display->platform.rocketlake) 604 max_rate = 810000; 605 else if (display->platform.jasperlake || display->platform.elkhartlake) 606 max_rate = ehl_max_source_rate(intel_dp); 607 else 608 max_rate = icl_max_source_rate(intel_dp); 609 } else if (display->platform.geminilake || display->platform.broxton) { 610 source_rates = bxt_rates; 611 size = ARRAY_SIZE(bxt_rates); 612 } else if (DISPLAY_VER(display) == 9) { 613 source_rates = skl_rates; 614 size = ARRAY_SIZE(skl_rates); 615 } else if ((display->platform.haswell && !display->platform.haswell_ulx) || 616 display->platform.broadwell) { 617 source_rates = hsw_rates; 618 size = ARRAY_SIZE(hsw_rates); 619 } else { 620 source_rates = g4x_rates; 621 size = ARRAY_SIZE(g4x_rates); 622 } 623 624 vbt_max_rate = vbt_max_link_rate(intel_dp); 625 if (max_rate && vbt_max_rate) 626 max_rate = min(max_rate, vbt_max_rate); 627 else if (vbt_max_rate) 628 max_rate = vbt_max_rate; 629 630 if (max_rate) 631 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 632 633 intel_dp->source_rates = source_rates; 634 intel_dp->num_source_rates = size; 635 } 636 637 static int intersect_rates(const int *source_rates, int source_len, 638 const int *sink_rates, int sink_len, 639 int *common_rates) 640 { 641 int i = 0, j = 0, k = 0; 642 643 while (i < source_len && j < sink_len) { 644 if (source_rates[i] == sink_rates[j]) { 645 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 646 return k; 647 common_rates[k] = source_rates[i]; 648 ++k; 649 ++i; 650 ++j; 651 } else if (source_rates[i] < sink_rates[j]) { 652 ++i; 653 } else { 654 ++j; 655 } 656 } 657 return k; 658 } 659 660 /* return index of rate in rates array, or -1 if not found */ 661 int intel_dp_rate_index(const int *rates, int len, int rate) 662 { 663 int i; 664 665 for (i = 0; i < len; i++) 666 if (rate == rates[i]) 667 return i; 668 669 return -1; 670 } 671 672 static int intel_dp_link_config_rate(struct intel_dp *intel_dp, 673 const struct intel_dp_link_config *lc) 674 { 675 return intel_dp_common_rate(intel_dp, lc->link_rate_idx); 676 } 677 678 static int intel_dp_link_config_lane_count(const struct intel_dp_link_config *lc) 679 { 680 return 1 << lc->lane_count_exp; 681 } 682 683 static int intel_dp_link_config_bw(struct intel_dp *intel_dp, 684 const struct intel_dp_link_config *lc) 685 { 686 return drm_dp_max_dprx_data_rate(intel_dp_link_config_rate(intel_dp, lc), 687 intel_dp_link_config_lane_count(lc)); 688 } 689 690 static int link_config_cmp_by_bw(const void *a, const void *b, const void *p) 691 { 692 struct intel_dp *intel_dp = (struct intel_dp *)p; /* remove const */ 693 const struct intel_dp_link_config *lc_a = a; 694 const struct intel_dp_link_config *lc_b = b; 695 int bw_a = intel_dp_link_config_bw(intel_dp, lc_a); 696 int bw_b = intel_dp_link_config_bw(intel_dp, lc_b); 697 698 if (bw_a != bw_b) 699 return bw_a - bw_b; 700 701 return intel_dp_link_config_rate(intel_dp, lc_a) - 702 intel_dp_link_config_rate(intel_dp, lc_b); 703 } 704 705 static void intel_dp_link_config_init(struct intel_dp *intel_dp) 706 { 707 struct intel_display *display = to_intel_display(intel_dp); 708 struct intel_dp_link_config *lc; 709 int num_common_lane_configs; 710 int i; 711 int j; 712 713 if (drm_WARN_ON(display->drm, !is_power_of_2(intel_dp_max_common_lane_count(intel_dp)))) 714 return; 715 716 num_common_lane_configs = ilog2(intel_dp_max_common_lane_count(intel_dp)) + 1; 717 718 if (drm_WARN_ON(display->drm, intel_dp->num_common_rates * num_common_lane_configs > 719 ARRAY_SIZE(intel_dp->link.configs))) 720 return; 721 722 intel_dp->link.num_configs = intel_dp->num_common_rates * num_common_lane_configs; 723 724 lc = &intel_dp->link.configs[0]; 725 for (i = 0; i < intel_dp->num_common_rates; i++) { 726 for (j = 0; j < num_common_lane_configs; j++) { 727 lc->lane_count_exp = j; 728 lc->link_rate_idx = i; 729 730 lc++; 731 } 732 } 733 734 sort_r(intel_dp->link.configs, intel_dp->link.num_configs, 735 sizeof(intel_dp->link.configs[0]), 736 link_config_cmp_by_bw, NULL, 737 intel_dp); 738 } 739 740 void intel_dp_link_config_get(struct intel_dp *intel_dp, int idx, int *link_rate, int *lane_count) 741 { 742 struct intel_display *display = to_intel_display(intel_dp); 743 const struct intel_dp_link_config *lc; 744 745 if (drm_WARN_ON(display->drm, idx < 0 || idx >= intel_dp->link.num_configs)) 746 idx = 0; 747 748 lc = &intel_dp->link.configs[idx]; 749 750 *link_rate = intel_dp_link_config_rate(intel_dp, lc); 751 *lane_count = intel_dp_link_config_lane_count(lc); 752 } 753 754 int intel_dp_link_config_index(struct intel_dp *intel_dp, int link_rate, int lane_count) 755 { 756 int link_rate_idx = intel_dp_rate_index(intel_dp->common_rates, intel_dp->num_common_rates, 757 link_rate); 758 int lane_count_exp = ilog2(lane_count); 759 int i; 760 761 for (i = 0; i < intel_dp->link.num_configs; i++) { 762 const struct intel_dp_link_config *lc = &intel_dp->link.configs[i]; 763 764 if (lc->lane_count_exp == lane_count_exp && 765 lc->link_rate_idx == link_rate_idx) 766 return i; 767 } 768 769 return -1; 770 } 771 772 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 773 { 774 struct intel_display *display = to_intel_display(intel_dp); 775 776 drm_WARN_ON(display->drm, 777 !intel_dp->num_source_rates || !intel_dp->num_sink_rates); 778 779 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 780 intel_dp->num_source_rates, 781 intel_dp->sink_rates, 782 intel_dp->num_sink_rates, 783 intel_dp->common_rates); 784 785 /* Paranoia, there should always be something in common. */ 786 if (drm_WARN_ON(display->drm, intel_dp->num_common_rates == 0)) { 787 intel_dp->common_rates[0] = 162000; 788 intel_dp->num_common_rates = 1; 789 } 790 791 intel_dp_link_config_init(intel_dp); 792 } 793 794 bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 795 u8 lane_count) 796 { 797 /* 798 * FIXME: we need to synchronize the current link parameters with 799 * hardware readout. Currently fast link training doesn't work on 800 * boot-up. 801 */ 802 if (link_rate == 0 || 803 link_rate > intel_dp->link.max_rate) 804 return false; 805 806 if (lane_count == 0 || 807 lane_count > intel_dp_max_lane_count(intel_dp)) 808 return false; 809 810 return true; 811 } 812 813 u32 intel_dp_mode_to_fec_clock(u32 mode_clock) 814 { 815 return div_u64(mul_u32_u32(mode_clock, DP_DSC_FEC_OVERHEAD_FACTOR), 816 1000000U); 817 } 818 819 int intel_dp_bw_fec_overhead(bool fec_enabled) 820 { 821 /* 822 * TODO: Calculate the actual overhead for a given mode. 823 * The hard-coded 1/0.972261=2.853% overhead factor 824 * corresponds (for instance) to the 8b/10b DP FEC 2.4% + 825 * 0.453% DSC overhead. This is enough for a 3840 width mode, 826 * which has a DSC overhead of up to ~0.2%, but may not be 827 * enough for a 1024 width mode where this is ~0.8% (on a 4 828 * lane DP link, with 2 DSC slices and 8 bpp color depth). 829 */ 830 return fec_enabled ? DP_DSC_FEC_OVERHEAD_FACTOR : 1000000; 831 } 832 833 static int 834 small_joiner_ram_size_bits(struct intel_display *display) 835 { 836 if (DISPLAY_VER(display) >= 13) 837 return 17280 * 8; 838 else if (DISPLAY_VER(display) >= 11) 839 return 7680 * 8; 840 else 841 return 6144 * 8; 842 } 843 844 static u32 intel_dp_dsc_nearest_valid_bpp(struct intel_display *display, u32 bpp, u32 pipe_bpp) 845 { 846 u32 bits_per_pixel = bpp; 847 int i; 848 849 /* Error out if the max bpp is less than smallest allowed valid bpp */ 850 if (bits_per_pixel < valid_dsc_bpp[0]) { 851 drm_dbg_kms(display->drm, "Unsupported BPP %u, min %u\n", 852 bits_per_pixel, valid_dsc_bpp[0]); 853 return 0; 854 } 855 856 /* From XE_LPD onwards we support from bpc upto uncompressed bpp-1 BPPs */ 857 if (DISPLAY_VER(display) >= 13) { 858 bits_per_pixel = min(bits_per_pixel, pipe_bpp - 1); 859 860 /* 861 * According to BSpec, 27 is the max DSC output bpp, 862 * 8 is the min DSC output bpp. 863 * While we can still clamp higher bpp values to 27, saving bandwidth, 864 * if it is required to oompress up to bpp < 8, means we can't do 865 * that and probably means we can't fit the required mode, even with 866 * DSC enabled. 867 */ 868 if (bits_per_pixel < 8) { 869 drm_dbg_kms(display->drm, 870 "Unsupported BPP %u, min 8\n", 871 bits_per_pixel); 872 return 0; 873 } 874 bits_per_pixel = min_t(u32, bits_per_pixel, 27); 875 } else { 876 /* Find the nearest match in the array of known BPPs from VESA */ 877 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 878 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 879 break; 880 } 881 drm_dbg_kms(display->drm, "Set dsc bpp from %d to VESA %d\n", 882 bits_per_pixel, valid_dsc_bpp[i]); 883 884 bits_per_pixel = valid_dsc_bpp[i]; 885 } 886 887 return bits_per_pixel; 888 } 889 890 static int bigjoiner_interface_bits(struct intel_display *display) 891 { 892 return DISPLAY_VER(display) >= 14 ? 36 : 24; 893 } 894 895 static u32 bigjoiner_bw_max_bpp(struct intel_display *display, u32 mode_clock, 896 int num_joined_pipes) 897 { 898 u32 max_bpp; 899 /* With bigjoiner multiple dsc engines are used in parallel so PPC is 2 */ 900 int ppc = 2; 901 int num_big_joiners = num_joined_pipes / 2; 902 903 max_bpp = display->cdclk.max_cdclk_freq * ppc * bigjoiner_interface_bits(display) / 904 intel_dp_mode_to_fec_clock(mode_clock); 905 906 max_bpp *= num_big_joiners; 907 908 return max_bpp; 909 910 } 911 912 static u32 small_joiner_ram_max_bpp(struct intel_display *display, 913 u32 mode_hdisplay, 914 int num_joined_pipes) 915 { 916 u32 max_bpp; 917 918 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 919 max_bpp = small_joiner_ram_size_bits(display) / mode_hdisplay; 920 921 max_bpp *= num_joined_pipes; 922 923 return max_bpp; 924 } 925 926 static int ultrajoiner_ram_bits(void) 927 { 928 return 4 * 72 * 512; 929 } 930 931 static u32 ultrajoiner_ram_max_bpp(u32 mode_hdisplay) 932 { 933 return ultrajoiner_ram_bits() / mode_hdisplay; 934 } 935 936 /* TODO: return a bpp_x16 value */ 937 static 938 u32 get_max_compressed_bpp_with_joiner(struct intel_display *display, 939 u32 mode_clock, u32 mode_hdisplay, 940 int num_joined_pipes) 941 { 942 u32 max_bpp = small_joiner_ram_max_bpp(display, mode_hdisplay, num_joined_pipes); 943 944 if (num_joined_pipes > 1) 945 max_bpp = min(max_bpp, bigjoiner_bw_max_bpp(display, mode_clock, 946 num_joined_pipes)); 947 if (num_joined_pipes == 4) 948 max_bpp = min(max_bpp, ultrajoiner_ram_max_bpp(mode_hdisplay)); 949 950 return max_bpp; 951 } 952 953 /* TODO: return a bpp_x16 value */ 954 u16 intel_dp_dsc_get_max_compressed_bpp(struct intel_display *display, 955 u32 link_clock, u32 lane_count, 956 u32 mode_clock, u32 mode_hdisplay, 957 int num_joined_pipes, 958 enum intel_output_format output_format, 959 u32 pipe_bpp, 960 u32 timeslots) 961 { 962 u32 bits_per_pixel, joiner_max_bpp; 963 964 /* 965 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 966 * (LinkSymbolClock)* 8 * (TimeSlots / 64) 967 * for SST -> TimeSlots is 64(i.e all TimeSlots that are available) 968 * for MST -> TimeSlots has to be calculated, based on mode requirements 969 * 970 * Due to FEC overhead, the available bw is reduced to 97.2261%. 971 * To support the given mode: 972 * Bandwidth required should be <= Available link Bandwidth * FEC Overhead 973 * =>ModeClock * bits_per_pixel <= Available Link Bandwidth * FEC Overhead 974 * =>bits_per_pixel <= Available link Bandwidth * FEC Overhead / ModeClock 975 * =>bits_per_pixel <= (NumberOfLanes * LinkSymbolClock) * 8 (TimeSlots / 64) / 976 * (ModeClock / FEC Overhead) 977 * =>bits_per_pixel <= (NumberOfLanes * LinkSymbolClock * TimeSlots) / 978 * (ModeClock / FEC Overhead * 8) 979 */ 980 bits_per_pixel = ((link_clock * lane_count) * timeslots) / 981 (intel_dp_mode_to_fec_clock(mode_clock) * 8); 982 983 /* Bandwidth required for 420 is half, that of 444 format */ 984 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 985 bits_per_pixel *= 2; 986 987 /* 988 * According to DSC 1.2a Section 4.1.1 Table 4.1 the maximum 989 * supported PPS value can be 63.9375 and with the further 990 * mention that for 420, 422 formats, bpp should be programmed double 991 * the target bpp restricting our target bpp to be 31.9375 at max. 992 */ 993 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 994 bits_per_pixel = min_t(u32, bits_per_pixel, 31); 995 996 drm_dbg_kms(display->drm, "Max link bpp is %u for %u timeslots " 997 "total bw %u pixel clock %u\n", 998 bits_per_pixel, timeslots, 999 (link_clock * lane_count * 8), 1000 intel_dp_mode_to_fec_clock(mode_clock)); 1001 1002 joiner_max_bpp = get_max_compressed_bpp_with_joiner(display, mode_clock, 1003 mode_hdisplay, num_joined_pipes); 1004 bits_per_pixel = min(bits_per_pixel, joiner_max_bpp); 1005 1006 bits_per_pixel = intel_dp_dsc_nearest_valid_bpp(display, bits_per_pixel, pipe_bpp); 1007 1008 return bits_per_pixel; 1009 } 1010 1011 u8 intel_dp_dsc_get_slice_count(const struct intel_connector *connector, 1012 int mode_clock, int mode_hdisplay, 1013 int num_joined_pipes) 1014 { 1015 struct intel_display *display = to_intel_display(connector); 1016 u8 min_slice_count, i; 1017 int max_slice_width; 1018 int tp_rgb_yuv444; 1019 int tp_yuv422_420; 1020 1021 /* 1022 * TODO: Use the throughput value specific to the actual RGB/YUV 1023 * format of the output. 1024 * The RGB/YUV444 throughput value should be always either equal 1025 * or smaller than the YUV422/420 value, but let's not depend on 1026 * this assumption. 1027 */ 1028 if (mode_clock > max(connector->dp.dsc_branch_caps.overall_throughput.rgb_yuv444, 1029 connector->dp.dsc_branch_caps.overall_throughput.yuv422_420)) 1030 return 0; 1031 1032 if (mode_hdisplay > connector->dp.dsc_branch_caps.max_line_width) 1033 return 0; 1034 1035 /* 1036 * TODO: Pass the total pixel rate of all the streams transferred to 1037 * an MST tiled display, calculate the total slice count for all tiles 1038 * from this and the per-tile slice count from the total slice count. 1039 */ 1040 tp_rgb_yuv444 = drm_dp_dsc_sink_max_slice_throughput(connector->dp.dsc_dpcd, 1041 mode_clock, true); 1042 tp_yuv422_420 = drm_dp_dsc_sink_max_slice_throughput(connector->dp.dsc_dpcd, 1043 mode_clock, false); 1044 1045 /* 1046 * TODO: Use the throughput value specific to the actual RGB/YUV 1047 * format of the output. 1048 * For now use the smaller of these, which is ok, potentially 1049 * resulting in a higher than required minimum slice count. 1050 * The RGB/YUV444 throughput value should be always either equal 1051 * or smaller than the YUV422/420 value, but let's not depend on 1052 * this assumption. 1053 */ 1054 min_slice_count = DIV_ROUND_UP(mode_clock, min(tp_rgb_yuv444, tp_yuv422_420)); 1055 1056 /* 1057 * Due to some DSC engine BW limitations, we need to enable second 1058 * slice and VDSC engine, whenever we approach close enough to max CDCLK 1059 */ 1060 if (mode_clock >= ((display->cdclk.max_cdclk_freq * 85) / 100)) 1061 min_slice_count = max_t(u8, min_slice_count, 2); 1062 1063 max_slice_width = drm_dp_dsc_sink_max_slice_width(connector->dp.dsc_dpcd); 1064 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 1065 drm_dbg_kms(display->drm, 1066 "Unsupported slice width %d by DP DSC Sink device\n", 1067 max_slice_width); 1068 return 0; 1069 } 1070 /* Also take into account max slice width */ 1071 min_slice_count = max_t(u8, min_slice_count, 1072 DIV_ROUND_UP(mode_hdisplay, 1073 max_slice_width)); 1074 1075 /* Find the closest match to the valid slice count values */ 1076 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 1077 u8 test_slice_count = valid_dsc_slicecount[i] * num_joined_pipes; 1078 1079 /* 1080 * 3 DSC Slices per pipe need 3 DSC engines, which is supported only 1081 * with Ultrajoiner only for some platforms. 1082 */ 1083 if (valid_dsc_slicecount[i] == 3 && 1084 (!HAS_DSC_3ENGINES(display) || num_joined_pipes != 4)) 1085 continue; 1086 1087 if (test_slice_count > 1088 drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd, false)) 1089 break; 1090 1091 /* 1092 * Bigjoiner needs small joiner to be enabled. 1093 * So there should be at least 2 dsc slices per pipe, 1094 * whenever bigjoiner is enabled. 1095 */ 1096 if (num_joined_pipes > 1 && valid_dsc_slicecount[i] < 2) 1097 continue; 1098 1099 if (mode_hdisplay % test_slice_count) 1100 continue; 1101 1102 if (min_slice_count <= test_slice_count) 1103 return test_slice_count; 1104 } 1105 1106 drm_dbg_kms(display->drm, "Unsupported Slice Count %d\n", 1107 min_slice_count); 1108 return 0; 1109 } 1110 1111 static bool source_can_output(struct intel_dp *intel_dp, 1112 enum intel_output_format format) 1113 { 1114 struct intel_display *display = to_intel_display(intel_dp); 1115 1116 switch (format) { 1117 case INTEL_OUTPUT_FORMAT_RGB: 1118 return true; 1119 1120 case INTEL_OUTPUT_FORMAT_YCBCR444: 1121 /* 1122 * No YCbCr output support on gmch platforms. 1123 * Also, ILK doesn't seem capable of DP YCbCr output. 1124 * The displayed image is severely corrupted. SNB+ is fine. 1125 */ 1126 return !HAS_GMCH(display) && !display->platform.ironlake; 1127 1128 case INTEL_OUTPUT_FORMAT_YCBCR420: 1129 /* Platform < Gen 11 cannot output YCbCr420 format */ 1130 return DISPLAY_VER(display) >= 11; 1131 1132 default: 1133 MISSING_CASE(format); 1134 return false; 1135 } 1136 } 1137 1138 static bool 1139 dfp_can_convert_from_rgb(struct intel_dp *intel_dp, 1140 enum intel_output_format sink_format) 1141 { 1142 if (!drm_dp_is_branch(intel_dp->dpcd)) 1143 return false; 1144 1145 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR444) 1146 return intel_dp->dfp.rgb_to_ycbcr; 1147 1148 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1149 return intel_dp->dfp.rgb_to_ycbcr && 1150 intel_dp->dfp.ycbcr_444_to_420; 1151 1152 return false; 1153 } 1154 1155 static bool 1156 dfp_can_convert_from_ycbcr444(struct intel_dp *intel_dp, 1157 enum intel_output_format sink_format) 1158 { 1159 if (!drm_dp_is_branch(intel_dp->dpcd)) 1160 return false; 1161 1162 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1163 return intel_dp->dfp.ycbcr_444_to_420; 1164 1165 return false; 1166 } 1167 1168 static bool 1169 dfp_can_convert(struct intel_dp *intel_dp, 1170 enum intel_output_format output_format, 1171 enum intel_output_format sink_format) 1172 { 1173 switch (output_format) { 1174 case INTEL_OUTPUT_FORMAT_RGB: 1175 return dfp_can_convert_from_rgb(intel_dp, sink_format); 1176 case INTEL_OUTPUT_FORMAT_YCBCR444: 1177 return dfp_can_convert_from_ycbcr444(intel_dp, sink_format); 1178 default: 1179 MISSING_CASE(output_format); 1180 return false; 1181 } 1182 1183 return false; 1184 } 1185 1186 static enum intel_output_format 1187 intel_dp_output_format(struct intel_connector *connector, 1188 enum intel_output_format sink_format) 1189 { 1190 struct intel_display *display = to_intel_display(connector); 1191 struct intel_dp *intel_dp = intel_attached_dp(connector); 1192 enum intel_output_format force_dsc_output_format = 1193 intel_dp->force_dsc_output_format; 1194 enum intel_output_format output_format; 1195 if (force_dsc_output_format) { 1196 if (source_can_output(intel_dp, force_dsc_output_format) && 1197 (!drm_dp_is_branch(intel_dp->dpcd) || 1198 sink_format != force_dsc_output_format || 1199 dfp_can_convert(intel_dp, force_dsc_output_format, sink_format))) 1200 return force_dsc_output_format; 1201 1202 drm_dbg_kms(display->drm, "Cannot force DSC output format\n"); 1203 } 1204 1205 if (sink_format == INTEL_OUTPUT_FORMAT_RGB || 1206 dfp_can_convert_from_rgb(intel_dp, sink_format)) 1207 output_format = INTEL_OUTPUT_FORMAT_RGB; 1208 1209 else if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR444 || 1210 dfp_can_convert_from_ycbcr444(intel_dp, sink_format)) 1211 output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 1212 1213 else 1214 output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 1215 1216 drm_WARN_ON(display->drm, !source_can_output(intel_dp, output_format)); 1217 1218 return output_format; 1219 } 1220 1221 int intel_dp_min_bpp(enum intel_output_format output_format) 1222 { 1223 if (output_format == INTEL_OUTPUT_FORMAT_RGB) 1224 return intel_display_min_pipe_bpp(); 1225 else 1226 return 8 * 3; 1227 } 1228 1229 int intel_dp_output_bpp(enum intel_output_format output_format, int bpp) 1230 { 1231 /* 1232 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 1233 * format of the number of bytes per pixel will be half the number 1234 * of bytes of RGB pixel. 1235 */ 1236 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1237 bpp /= 2; 1238 1239 return bpp; 1240 } 1241 1242 static enum intel_output_format 1243 intel_dp_sink_format(struct intel_connector *connector, 1244 const struct drm_display_mode *mode) 1245 { 1246 const struct drm_display_info *info = &connector->base.display_info; 1247 1248 if (drm_mode_is_420_only(info, mode)) 1249 return INTEL_OUTPUT_FORMAT_YCBCR420; 1250 1251 return INTEL_OUTPUT_FORMAT_RGB; 1252 } 1253 1254 static int 1255 intel_dp_mode_min_output_bpp(struct intel_connector *connector, 1256 const struct drm_display_mode *mode) 1257 { 1258 enum intel_output_format output_format, sink_format; 1259 1260 sink_format = intel_dp_sink_format(connector, mode); 1261 1262 output_format = intel_dp_output_format(connector, sink_format); 1263 1264 return intel_dp_output_bpp(output_format, intel_dp_min_bpp(output_format)); 1265 } 1266 1267 static bool intel_dp_hdisplay_bad(struct intel_display *display, 1268 int hdisplay) 1269 { 1270 /* 1271 * Older platforms don't like hdisplay==4096 with DP. 1272 * 1273 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline 1274 * and frame counter increment), but we don't get vblank interrupts, 1275 * and the pipe underruns immediately. The link also doesn't seem 1276 * to get trained properly. 1277 * 1278 * On CHV the vblank interrupts don't seem to disappear but 1279 * otherwise the symptoms are similar. 1280 * 1281 * TODO: confirm the behaviour on HSW+ 1282 */ 1283 return hdisplay == 4096 && !HAS_DDI(display); 1284 } 1285 1286 static int intel_dp_max_tmds_clock(struct intel_dp *intel_dp) 1287 { 1288 struct intel_connector *connector = intel_dp->attached_connector; 1289 const struct drm_display_info *info = &connector->base.display_info; 1290 int max_tmds_clock = intel_dp->dfp.max_tmds_clock; 1291 1292 /* Only consider the sink's max TMDS clock if we know this is a HDMI DFP */ 1293 if (max_tmds_clock && info->max_tmds_clock) 1294 max_tmds_clock = min(max_tmds_clock, info->max_tmds_clock); 1295 1296 return max_tmds_clock; 1297 } 1298 1299 static enum drm_mode_status 1300 intel_dp_tmds_clock_valid(struct intel_dp *intel_dp, 1301 int clock, int bpc, 1302 enum intel_output_format sink_format, 1303 bool respect_downstream_limits) 1304 { 1305 int tmds_clock, min_tmds_clock, max_tmds_clock; 1306 1307 if (!respect_downstream_limits) 1308 return MODE_OK; 1309 1310 tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format); 1311 1312 min_tmds_clock = intel_dp->dfp.min_tmds_clock; 1313 max_tmds_clock = intel_dp_max_tmds_clock(intel_dp); 1314 1315 if (min_tmds_clock && tmds_clock < min_tmds_clock) 1316 return MODE_CLOCK_LOW; 1317 1318 if (max_tmds_clock && tmds_clock > max_tmds_clock) 1319 return MODE_CLOCK_HIGH; 1320 1321 return MODE_OK; 1322 } 1323 1324 static enum drm_mode_status 1325 intel_dp_mode_valid_downstream(struct intel_connector *connector, 1326 const struct drm_display_mode *mode, 1327 int target_clock) 1328 { 1329 struct intel_dp *intel_dp = intel_attached_dp(connector); 1330 const struct drm_display_info *info = &connector->base.display_info; 1331 enum drm_mode_status status; 1332 enum intel_output_format sink_format; 1333 1334 /* If PCON supports FRL MODE, check FRL bandwidth constraints */ 1335 if (intel_dp->dfp.pcon_max_frl_bw) { 1336 int target_bw; 1337 int max_frl_bw; 1338 int bpp = intel_dp_mode_min_output_bpp(connector, mode); 1339 1340 target_bw = bpp * target_clock; 1341 1342 max_frl_bw = intel_dp->dfp.pcon_max_frl_bw; 1343 1344 /* converting bw from Gbps to Kbps*/ 1345 max_frl_bw = max_frl_bw * 1000000; 1346 1347 if (target_bw > max_frl_bw) 1348 return MODE_CLOCK_HIGH; 1349 1350 return MODE_OK; 1351 } 1352 1353 if (intel_dp->dfp.max_dotclock && 1354 target_clock > intel_dp->dfp.max_dotclock) 1355 return MODE_CLOCK_HIGH; 1356 1357 sink_format = intel_dp_sink_format(connector, mode); 1358 1359 /* Assume 8bpc for the DP++/HDMI/DVI TMDS clock check */ 1360 status = intel_dp_tmds_clock_valid(intel_dp, target_clock, 1361 8, sink_format, true); 1362 1363 if (status != MODE_OK) { 1364 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 1365 !connector->base.ycbcr_420_allowed || 1366 !drm_mode_is_420_also(info, mode)) 1367 return status; 1368 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420; 1369 status = intel_dp_tmds_clock_valid(intel_dp, target_clock, 1370 8, sink_format, true); 1371 if (status != MODE_OK) 1372 return status; 1373 } 1374 1375 return MODE_OK; 1376 } 1377 1378 static 1379 bool intel_dp_needs_joiner(struct intel_dp *intel_dp, 1380 struct intel_connector *connector, 1381 int hdisplay, int clock, 1382 int num_joined_pipes) 1383 { 1384 struct intel_display *display = to_intel_display(intel_dp); 1385 int hdisplay_limit; 1386 1387 if (!intel_dp_has_joiner(intel_dp)) 1388 return false; 1389 1390 num_joined_pipes /= 2; 1391 1392 hdisplay_limit = DISPLAY_VER(display) >= 30 ? 6144 : 5120; 1393 1394 return clock > num_joined_pipes * display->cdclk.max_dotclk_freq || 1395 hdisplay > num_joined_pipes * hdisplay_limit; 1396 } 1397 1398 int intel_dp_num_joined_pipes(struct intel_dp *intel_dp, 1399 struct intel_connector *connector, 1400 int hdisplay, int clock) 1401 { 1402 struct intel_display *display = to_intel_display(intel_dp); 1403 1404 if (connector->force_joined_pipes) 1405 return connector->force_joined_pipes; 1406 1407 if (HAS_ULTRAJOINER(display) && 1408 intel_dp_needs_joiner(intel_dp, connector, hdisplay, clock, 4)) 1409 return 4; 1410 1411 if ((HAS_BIGJOINER(display) || HAS_UNCOMPRESSED_JOINER(display)) && 1412 intel_dp_needs_joiner(intel_dp, connector, hdisplay, clock, 2)) 1413 return 2; 1414 1415 return 1; 1416 } 1417 1418 bool intel_dp_has_dsc(const struct intel_connector *connector) 1419 { 1420 struct intel_display *display = to_intel_display(connector); 1421 1422 if (!HAS_DSC(display)) 1423 return false; 1424 1425 if (connector->mst.dp && !HAS_DSC_MST(display)) 1426 return false; 1427 1428 if (connector->base.connector_type == DRM_MODE_CONNECTOR_eDP && 1429 connector->panel.vbt.edp.dsc_disable) 1430 return false; 1431 1432 if (!drm_dp_sink_supports_dsc(connector->dp.dsc_dpcd)) 1433 return false; 1434 1435 return true; 1436 } 1437 1438 static enum drm_mode_status 1439 intel_dp_mode_valid(struct drm_connector *_connector, 1440 const struct drm_display_mode *mode) 1441 { 1442 struct intel_display *display = to_intel_display(_connector->dev); 1443 struct intel_connector *connector = to_intel_connector(_connector); 1444 struct intel_dp *intel_dp = intel_attached_dp(connector); 1445 enum intel_output_format sink_format, output_format; 1446 const struct drm_display_mode *fixed_mode; 1447 int target_clock = mode->clock; 1448 int max_rate, mode_rate, max_lanes, max_link_clock; 1449 int max_dotclk = display->cdclk.max_dotclk_freq; 1450 u16 dsc_max_compressed_bpp = 0; 1451 u8 dsc_slice_count = 0; 1452 enum drm_mode_status status; 1453 bool dsc = false; 1454 int num_joined_pipes; 1455 1456 status = intel_cpu_transcoder_mode_valid(display, mode); 1457 if (status != MODE_OK) 1458 return status; 1459 1460 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 1461 return MODE_H_ILLEGAL; 1462 1463 if (mode->clock < 10000) 1464 return MODE_CLOCK_LOW; 1465 1466 fixed_mode = intel_panel_fixed_mode(connector, mode); 1467 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 1468 status = intel_panel_mode_valid(connector, mode); 1469 if (status != MODE_OK) 1470 return status; 1471 1472 target_clock = fixed_mode->clock; 1473 } 1474 1475 num_joined_pipes = intel_dp_num_joined_pipes(intel_dp, connector, 1476 mode->hdisplay, target_clock); 1477 max_dotclk *= num_joined_pipes; 1478 1479 sink_format = intel_dp_sink_format(connector, mode); 1480 output_format = intel_dp_output_format(connector, sink_format); 1481 1482 status = intel_pfit_mode_valid(display, mode, output_format, num_joined_pipes); 1483 if (status != MODE_OK) 1484 return status; 1485 1486 if (target_clock > max_dotclk) 1487 return MODE_CLOCK_HIGH; 1488 1489 if (intel_dp_hdisplay_bad(display, mode->hdisplay)) 1490 return MODE_H_ILLEGAL; 1491 1492 max_link_clock = intel_dp_max_link_rate(intel_dp); 1493 max_lanes = intel_dp_max_lane_count(intel_dp); 1494 1495 max_rate = intel_dp_max_link_data_rate(intel_dp, max_link_clock, max_lanes); 1496 1497 mode_rate = intel_dp_link_required(target_clock, 1498 intel_dp_mode_min_output_bpp(connector, mode)); 1499 1500 if (intel_dp_has_dsc(connector)) { 1501 int pipe_bpp; 1502 1503 /* 1504 * TBD pass the connector BPC, 1505 * for now U8_MAX so that max BPC on that platform would be picked 1506 */ 1507 pipe_bpp = intel_dp_dsc_compute_max_bpp(connector, U8_MAX); 1508 1509 /* 1510 * Output bpp is stored in 6.4 format so right shift by 4 to get the 1511 * integer value since we support only integer values of bpp. 1512 */ 1513 if (intel_dp_is_edp(intel_dp)) { 1514 dsc_max_compressed_bpp = 1515 drm_edp_dsc_sink_output_bpp(connector->dp.dsc_dpcd) >> 4; 1516 dsc_slice_count = 1517 drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd, 1518 true); 1519 } else if (drm_dp_sink_supports_fec(connector->dp.fec_capability)) { 1520 dsc_max_compressed_bpp = 1521 intel_dp_dsc_get_max_compressed_bpp(display, 1522 max_link_clock, 1523 max_lanes, 1524 target_clock, 1525 mode->hdisplay, 1526 num_joined_pipes, 1527 output_format, 1528 pipe_bpp, 64); 1529 dsc_slice_count = 1530 intel_dp_dsc_get_slice_count(connector, 1531 target_clock, 1532 mode->hdisplay, 1533 num_joined_pipes); 1534 } 1535 1536 dsc = dsc_max_compressed_bpp && dsc_slice_count; 1537 } 1538 1539 if (intel_dp_joiner_needs_dsc(display, num_joined_pipes) && !dsc) 1540 return MODE_CLOCK_HIGH; 1541 1542 if (mode_rate > max_rate && !dsc) 1543 return MODE_CLOCK_HIGH; 1544 1545 status = intel_dp_mode_valid_downstream(connector, mode, target_clock); 1546 if (status != MODE_OK) 1547 return status; 1548 1549 return intel_mode_valid_max_plane_size(display, mode, num_joined_pipes); 1550 } 1551 1552 bool intel_dp_source_supports_tps3(struct intel_display *display) 1553 { 1554 return DISPLAY_VER(display) >= 9 || 1555 display->platform.broadwell || display->platform.haswell; 1556 } 1557 1558 bool intel_dp_source_supports_tps4(struct intel_display *display) 1559 { 1560 return DISPLAY_VER(display) >= 10; 1561 } 1562 1563 static void seq_buf_print_array(struct seq_buf *s, const int *array, int nelem) 1564 { 1565 int i; 1566 1567 for (i = 0; i < nelem; i++) 1568 seq_buf_printf(s, "%s%d", i ? ", " : "", array[i]); 1569 } 1570 1571 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1572 { 1573 struct intel_display *display = to_intel_display(intel_dp); 1574 DECLARE_SEQ_BUF(s, 128); /* FIXME: too big for stack? */ 1575 1576 if (!drm_debug_enabled(DRM_UT_KMS)) 1577 return; 1578 1579 seq_buf_print_array(&s, intel_dp->source_rates, intel_dp->num_source_rates); 1580 drm_dbg_kms(display->drm, "source rates: %s\n", seq_buf_str(&s)); 1581 1582 seq_buf_clear(&s); 1583 seq_buf_print_array(&s, intel_dp->sink_rates, intel_dp->num_sink_rates); 1584 drm_dbg_kms(display->drm, "sink rates: %s\n", seq_buf_str(&s)); 1585 1586 seq_buf_clear(&s); 1587 seq_buf_print_array(&s, intel_dp->common_rates, intel_dp->num_common_rates); 1588 drm_dbg_kms(display->drm, "common rates: %s\n", seq_buf_str(&s)); 1589 } 1590 1591 static int forced_link_rate(struct intel_dp *intel_dp) 1592 { 1593 int len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->link.force_rate); 1594 1595 if (len == 0) 1596 return intel_dp_common_rate(intel_dp, 0); 1597 1598 return intel_dp_common_rate(intel_dp, len - 1); 1599 } 1600 1601 int 1602 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1603 { 1604 int len; 1605 1606 if (intel_dp->link.force_rate) 1607 return forced_link_rate(intel_dp); 1608 1609 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->link.max_rate); 1610 1611 return intel_dp_common_rate(intel_dp, len - 1); 1612 } 1613 1614 static int 1615 intel_dp_min_link_rate(struct intel_dp *intel_dp) 1616 { 1617 if (intel_dp->link.force_rate) 1618 return forced_link_rate(intel_dp); 1619 1620 return intel_dp_common_rate(intel_dp, 0); 1621 } 1622 1623 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1624 { 1625 struct intel_display *display = to_intel_display(intel_dp); 1626 int i = intel_dp_rate_index(intel_dp->sink_rates, 1627 intel_dp->num_sink_rates, rate); 1628 1629 if (drm_WARN_ON(display->drm, i < 0)) 1630 i = 0; 1631 1632 return i; 1633 } 1634 1635 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1636 u8 *link_bw, u8 *rate_select) 1637 { 1638 struct intel_display *display = to_intel_display(intel_dp); 1639 1640 /* FIXME g4x can't generate an exact 2.7GHz with the 96MHz non-SSC refclk */ 1641 if (display->platform.g4x && port_clock == 268800) 1642 port_clock = 270000; 1643 1644 /* eDP 1.4 rate select method. */ 1645 if (intel_dp->use_rate_select) { 1646 *link_bw = 0; 1647 *rate_select = 1648 intel_dp_rate_select(intel_dp, port_clock); 1649 } else { 1650 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1651 *rate_select = 0; 1652 } 1653 } 1654 1655 bool intel_dp_has_hdmi_sink(struct intel_dp *intel_dp) 1656 { 1657 struct intel_connector *connector = intel_dp->attached_connector; 1658 1659 return connector->base.display_info.is_hdmi; 1660 } 1661 1662 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1663 const struct intel_crtc_state *pipe_config) 1664 { 1665 struct intel_display *display = to_intel_display(intel_dp); 1666 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 1667 1668 if (DISPLAY_VER(display) >= 12) 1669 return true; 1670 1671 if (DISPLAY_VER(display) == 11 && encoder->port != PORT_A && 1672 !intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) 1673 return true; 1674 1675 return false; 1676 } 1677 1678 bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1679 const struct intel_connector *connector, 1680 const struct intel_crtc_state *pipe_config) 1681 { 1682 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1683 drm_dp_sink_supports_fec(connector->dp.fec_capability); 1684 } 1685 1686 bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1687 const struct intel_connector *connector, 1688 const struct intel_crtc_state *crtc_state) 1689 { 1690 if (!intel_dp_has_dsc(connector)) 1691 return false; 1692 1693 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP) && 1694 !intel_dp_supports_fec(intel_dp, connector, crtc_state)) 1695 return false; 1696 1697 return intel_dsc_source_support(crtc_state); 1698 } 1699 1700 static int intel_dp_hdmi_compute_bpc(struct intel_dp *intel_dp, 1701 const struct intel_crtc_state *crtc_state, 1702 int bpc, bool respect_downstream_limits) 1703 { 1704 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 1705 1706 /* 1707 * Current bpc could already be below 8bpc due to 1708 * FDI bandwidth constraints or other limits. 1709 * HDMI minimum is 8bpc however. 1710 */ 1711 bpc = max(bpc, 8); 1712 1713 /* 1714 * We will never exceed downstream TMDS clock limits while 1715 * attempting deep color. If the user insists on forcing an 1716 * out of spec mode they will have to be satisfied with 8bpc. 1717 */ 1718 if (!respect_downstream_limits) 1719 bpc = 8; 1720 1721 for (; bpc >= 8; bpc -= 2) { 1722 if (intel_hdmi_bpc_possible(crtc_state, bpc, 1723 intel_dp_has_hdmi_sink(intel_dp)) && 1724 intel_dp_tmds_clock_valid(intel_dp, clock, bpc, crtc_state->sink_format, 1725 respect_downstream_limits) == MODE_OK) 1726 return bpc; 1727 } 1728 1729 return -EINVAL; 1730 } 1731 1732 static int intel_dp_max_bpp(struct intel_dp *intel_dp, 1733 const struct intel_crtc_state *crtc_state, 1734 bool respect_downstream_limits) 1735 { 1736 struct intel_display *display = to_intel_display(intel_dp); 1737 struct intel_connector *connector = intel_dp->attached_connector; 1738 int bpp, bpc; 1739 1740 bpc = crtc_state->pipe_bpp / 3; 1741 1742 if (intel_dp->dfp.max_bpc) 1743 bpc = min_t(int, bpc, intel_dp->dfp.max_bpc); 1744 1745 if (intel_dp->dfp.min_tmds_clock) { 1746 int max_hdmi_bpc; 1747 1748 max_hdmi_bpc = intel_dp_hdmi_compute_bpc(intel_dp, crtc_state, bpc, 1749 respect_downstream_limits); 1750 if (max_hdmi_bpc < 0) 1751 return 0; 1752 1753 bpc = min(bpc, max_hdmi_bpc); 1754 } 1755 1756 bpp = bpc * 3; 1757 if (intel_dp_is_edp(intel_dp)) { 1758 /* Get bpp from vbt only for panels that dont have bpp in edid */ 1759 if (connector->base.display_info.bpc == 0 && 1760 connector->panel.vbt.edp.bpp && 1761 connector->panel.vbt.edp.bpp < bpp) { 1762 drm_dbg_kms(display->drm, 1763 "clamping bpp for eDP panel to BIOS-provided %i\n", 1764 connector->panel.vbt.edp.bpp); 1765 bpp = connector->panel.vbt.edp.bpp; 1766 } 1767 } 1768 1769 return bpp; 1770 } 1771 1772 static bool has_seamless_m_n(struct intel_connector *connector) 1773 { 1774 struct intel_display *display = to_intel_display(connector); 1775 1776 /* 1777 * Seamless M/N reprogramming only implemented 1778 * for BDW+ double buffered M/N registers so far. 1779 */ 1780 return HAS_DOUBLE_BUFFERED_M_N(display) && 1781 intel_panel_drrs_type(connector) == DRRS_TYPE_SEAMLESS; 1782 } 1783 1784 static int intel_dp_mode_clock(const struct intel_crtc_state *crtc_state, 1785 const struct drm_connector_state *conn_state) 1786 { 1787 struct intel_connector *connector = to_intel_connector(conn_state->connector); 1788 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 1789 1790 /* FIXME a bit of a mess wrt clock vs. crtc_clock */ 1791 if (has_seamless_m_n(connector)) 1792 return intel_panel_highest_mode(connector, adjusted_mode)->clock; 1793 else 1794 return adjusted_mode->crtc_clock; 1795 } 1796 1797 /* Optimize link config in order: max bpp, min clock, min lanes */ 1798 static int 1799 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 1800 struct intel_crtc_state *pipe_config, 1801 const struct drm_connector_state *conn_state, 1802 const struct link_config_limits *limits) 1803 { 1804 int bpp, i, lane_count, clock = intel_dp_mode_clock(pipe_config, conn_state); 1805 int mode_rate, link_rate, link_avail; 1806 1807 for (bpp = fxp_q4_to_int(limits->link.max_bpp_x16); 1808 bpp >= fxp_q4_to_int(limits->link.min_bpp_x16); 1809 bpp -= 2 * 3) { 1810 int link_bpp = intel_dp_output_bpp(pipe_config->output_format, bpp); 1811 1812 mode_rate = intel_dp_link_required(clock, link_bpp); 1813 1814 for (i = 0; i < intel_dp->num_common_rates; i++) { 1815 link_rate = intel_dp_common_rate(intel_dp, i); 1816 if (link_rate < limits->min_rate || 1817 link_rate > limits->max_rate) 1818 continue; 1819 1820 for (lane_count = limits->min_lane_count; 1821 lane_count <= limits->max_lane_count; 1822 lane_count <<= 1) { 1823 link_avail = intel_dp_max_link_data_rate(intel_dp, 1824 link_rate, 1825 lane_count); 1826 1827 1828 if (mode_rate <= link_avail) { 1829 pipe_config->lane_count = lane_count; 1830 pipe_config->pipe_bpp = bpp; 1831 pipe_config->port_clock = link_rate; 1832 1833 return 0; 1834 } 1835 } 1836 } 1837 } 1838 1839 return -EINVAL; 1840 } 1841 1842 int intel_dp_dsc_max_src_input_bpc(struct intel_display *display) 1843 { 1844 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ 1845 if (DISPLAY_VER(display) >= 12) 1846 return 12; 1847 if (DISPLAY_VER(display) == 11) 1848 return 10; 1849 1850 return intel_dp_dsc_min_src_input_bpc(); 1851 } 1852 1853 int intel_dp_dsc_compute_max_bpp(const struct intel_connector *connector, 1854 u8 max_req_bpc) 1855 { 1856 struct intel_display *display = to_intel_display(connector); 1857 int i, num_bpc; 1858 u8 dsc_bpc[3] = {}; 1859 int dsc_max_bpc; 1860 1861 dsc_max_bpc = intel_dp_dsc_max_src_input_bpc(display); 1862 1863 if (!dsc_max_bpc) 1864 return dsc_max_bpc; 1865 1866 dsc_max_bpc = min(dsc_max_bpc, max_req_bpc); 1867 1868 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(connector->dp.dsc_dpcd, 1869 dsc_bpc); 1870 for (i = 0; i < num_bpc; i++) { 1871 if (dsc_max_bpc >= dsc_bpc[i]) 1872 return dsc_bpc[i] * 3; 1873 } 1874 1875 return 0; 1876 } 1877 1878 static int intel_dp_source_dsc_version_minor(struct intel_display *display) 1879 { 1880 return DISPLAY_VER(display) >= 14 ? 2 : 1; 1881 } 1882 1883 static int intel_dp_sink_dsc_version_minor(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]) 1884 { 1885 return (dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & DP_DSC_MINOR_MASK) >> 1886 DP_DSC_MINOR_SHIFT; 1887 } 1888 1889 static int intel_dp_get_slice_height(int vactive) 1890 { 1891 int slice_height; 1892 1893 /* 1894 * VDSC 1.2a spec in Section 3.8 Options for Slices implies that 108 1895 * lines is an optimal slice height, but any size can be used as long as 1896 * vertical active integer multiple and maximum vertical slice count 1897 * requirements are met. 1898 */ 1899 for (slice_height = 108; slice_height <= vactive; slice_height += 2) 1900 if (vactive % slice_height == 0) 1901 return slice_height; 1902 1903 /* 1904 * Highly unlikely we reach here as most of the resolutions will end up 1905 * finding appropriate slice_height in above loop but returning 1906 * slice_height as 2 here as it should work with all resolutions. 1907 */ 1908 return 2; 1909 } 1910 1911 static int intel_dp_dsc_compute_params(const struct intel_connector *connector, 1912 struct intel_crtc_state *crtc_state) 1913 { 1914 struct intel_display *display = to_intel_display(connector); 1915 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 1916 int ret; 1917 1918 /* 1919 * RC_MODEL_SIZE is currently a constant across all configurations. 1920 * 1921 * FIXME: Look into using sink defined DPCD DP_DSC_RC_BUF_BLK_SIZE and 1922 * DP_DSC_RC_BUF_SIZE for this. 1923 */ 1924 vdsc_cfg->rc_model_size = DSC_RC_MODEL_SIZE_CONST; 1925 vdsc_cfg->pic_height = crtc_state->hw.adjusted_mode.crtc_vdisplay; 1926 1927 vdsc_cfg->slice_height = intel_dp_get_slice_height(vdsc_cfg->pic_height); 1928 1929 ret = intel_dsc_compute_params(crtc_state); 1930 if (ret) 1931 return ret; 1932 1933 vdsc_cfg->dsc_version_major = 1934 (connector->dp.dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 1935 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT; 1936 vdsc_cfg->dsc_version_minor = 1937 min(intel_dp_source_dsc_version_minor(display), 1938 intel_dp_sink_dsc_version_minor(connector->dp.dsc_dpcd)); 1939 if (vdsc_cfg->convert_rgb) 1940 vdsc_cfg->convert_rgb = 1941 connector->dp.dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] & 1942 DP_DSC_RGB; 1943 1944 vdsc_cfg->line_buf_depth = min(INTEL_DP_DSC_MAX_LINE_BUF_DEPTH, 1945 drm_dp_dsc_sink_line_buf_depth(connector->dp.dsc_dpcd)); 1946 if (!vdsc_cfg->line_buf_depth) { 1947 drm_dbg_kms(display->drm, 1948 "DSC Sink Line Buffer Depth invalid\n"); 1949 return -EINVAL; 1950 } 1951 1952 vdsc_cfg->block_pred_enable = 1953 connector->dp.dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] & 1954 DP_DSC_BLK_PREDICTION_IS_SUPPORTED; 1955 1956 return drm_dsc_compute_rc_parameters(vdsc_cfg); 1957 } 1958 1959 static bool intel_dp_dsc_supports_format(const struct intel_connector *connector, 1960 enum intel_output_format output_format) 1961 { 1962 struct intel_display *display = to_intel_display(connector); 1963 u8 sink_dsc_format; 1964 1965 switch (output_format) { 1966 case INTEL_OUTPUT_FORMAT_RGB: 1967 sink_dsc_format = DP_DSC_RGB; 1968 break; 1969 case INTEL_OUTPUT_FORMAT_YCBCR444: 1970 sink_dsc_format = DP_DSC_YCbCr444; 1971 break; 1972 case INTEL_OUTPUT_FORMAT_YCBCR420: 1973 if (min(intel_dp_source_dsc_version_minor(display), 1974 intel_dp_sink_dsc_version_minor(connector->dp.dsc_dpcd)) < 2) 1975 return false; 1976 sink_dsc_format = DP_DSC_YCbCr420_Native; 1977 break; 1978 default: 1979 return false; 1980 } 1981 1982 return drm_dp_dsc_sink_supports_format(connector->dp.dsc_dpcd, sink_dsc_format); 1983 } 1984 1985 static bool is_bw_sufficient_for_dsc_config(int dsc_bpp_x16, u32 link_clock, 1986 u32 lane_count, u32 mode_clock, 1987 enum intel_output_format output_format, 1988 int timeslots) 1989 { 1990 u32 available_bw, required_bw; 1991 1992 available_bw = (link_clock * lane_count * timeslots * 16) / 8; 1993 required_bw = dsc_bpp_x16 * (intel_dp_mode_to_fec_clock(mode_clock)); 1994 1995 return available_bw > required_bw; 1996 } 1997 1998 static int dsc_compute_link_config(struct intel_dp *intel_dp, 1999 struct intel_crtc_state *pipe_config, 2000 struct drm_connector_state *conn_state, 2001 const struct link_config_limits *limits, 2002 int dsc_bpp_x16, 2003 int timeslots) 2004 { 2005 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2006 int link_rate, lane_count; 2007 int i; 2008 2009 for (i = 0; i < intel_dp->num_common_rates; i++) { 2010 link_rate = intel_dp_common_rate(intel_dp, i); 2011 if (link_rate < limits->min_rate || link_rate > limits->max_rate) 2012 continue; 2013 2014 for (lane_count = limits->min_lane_count; 2015 lane_count <= limits->max_lane_count; 2016 lane_count <<= 1) { 2017 2018 /* 2019 * FIXME: intel_dp_mtp_tu_compute_config() requires 2020 * ->lane_count and ->port_clock set before we know 2021 * they'll work. If we end up failing altogether, 2022 * they'll remain in crtc state. This shouldn't matter, 2023 * as we'd then bail out from compute config, but it's 2024 * just ugly. 2025 */ 2026 pipe_config->lane_count = lane_count; 2027 pipe_config->port_clock = link_rate; 2028 2029 if (drm_dp_is_uhbr_rate(link_rate)) { 2030 int ret; 2031 2032 ret = intel_dp_mtp_tu_compute_config(intel_dp, 2033 pipe_config, 2034 conn_state, 2035 dsc_bpp_x16, 2036 dsc_bpp_x16, 2037 0, true); 2038 if (ret) 2039 continue; 2040 } else { 2041 if (!is_bw_sufficient_for_dsc_config(dsc_bpp_x16, link_rate, 2042 lane_count, adjusted_mode->clock, 2043 pipe_config->output_format, 2044 timeslots)) 2045 continue; 2046 } 2047 2048 return 0; 2049 } 2050 } 2051 2052 return -EINVAL; 2053 } 2054 2055 static 2056 u16 intel_dp_dsc_max_sink_compressed_bppx16(const struct intel_connector *connector, 2057 const struct intel_crtc_state *pipe_config, 2058 int bpc) 2059 { 2060 u16 max_bppx16 = drm_edp_dsc_sink_output_bpp(connector->dp.dsc_dpcd); 2061 2062 if (max_bppx16) 2063 return max_bppx16; 2064 /* 2065 * If support not given in DPCD 67h, 68h use the Maximum Allowed bit rate 2066 * values as given in spec Table 2-157 DP v2.0 2067 */ 2068 switch (pipe_config->output_format) { 2069 case INTEL_OUTPUT_FORMAT_RGB: 2070 case INTEL_OUTPUT_FORMAT_YCBCR444: 2071 return (3 * bpc) << 4; 2072 case INTEL_OUTPUT_FORMAT_YCBCR420: 2073 return (3 * (bpc / 2)) << 4; 2074 default: 2075 MISSING_CASE(pipe_config->output_format); 2076 break; 2077 } 2078 2079 return 0; 2080 } 2081 2082 int intel_dp_dsc_sink_min_compressed_bpp(const struct intel_crtc_state *pipe_config) 2083 { 2084 /* From Mandatory bit rate range Support Table 2-157 (DP v2.0) */ 2085 switch (pipe_config->output_format) { 2086 case INTEL_OUTPUT_FORMAT_RGB: 2087 case INTEL_OUTPUT_FORMAT_YCBCR444: 2088 return 8; 2089 case INTEL_OUTPUT_FORMAT_YCBCR420: 2090 return 6; 2091 default: 2092 MISSING_CASE(pipe_config->output_format); 2093 break; 2094 } 2095 2096 return 0; 2097 } 2098 2099 int intel_dp_dsc_sink_max_compressed_bpp(const struct intel_connector *connector, 2100 const struct intel_crtc_state *pipe_config, 2101 int bpc) 2102 { 2103 return intel_dp_dsc_max_sink_compressed_bppx16(connector, 2104 pipe_config, bpc) >> 4; 2105 } 2106 2107 int intel_dp_dsc_min_src_compressed_bpp(void) 2108 { 2109 /* Min Compressed bpp supported by source is 8 */ 2110 return 8; 2111 } 2112 2113 static int dsc_src_max_compressed_bpp(struct intel_dp *intel_dp) 2114 { 2115 struct intel_display *display = to_intel_display(intel_dp); 2116 2117 /* 2118 * Forcing DSC and using the platform's max compressed bpp is seen to cause 2119 * underruns. Since DSC isn't needed in these cases, limit the 2120 * max compressed bpp to 18, which is a safe value across platforms with different 2121 * pipe bpps. 2122 */ 2123 if (intel_dp->force_dsc_en) 2124 return 18; 2125 2126 /* 2127 * Max Compressed bpp for Gen 13+ is 27bpp. 2128 * For earlier platform is 23bpp. (Bspec:49259). 2129 */ 2130 if (DISPLAY_VER(display) < 13) 2131 return 23; 2132 else 2133 return 27; 2134 } 2135 2136 /* 2137 * Note: for pre-13 display you still need to check the validity of each step. 2138 */ 2139 int intel_dp_dsc_bpp_step_x16(const struct intel_connector *connector) 2140 { 2141 struct intel_display *display = to_intel_display(connector); 2142 u8 incr = drm_dp_dsc_sink_bpp_incr(connector->dp.dsc_dpcd); 2143 2144 if (DISPLAY_VER(display) < 14 || !incr) 2145 return fxp_q4_from_int(1); 2146 2147 if (connector->mst.dp && 2148 !connector->link.force_bpp_x16 && !connector->mst.dp->force_dsc_fractional_bpp_en) 2149 return fxp_q4_from_int(1); 2150 2151 /* fxp q4 */ 2152 return fxp_q4_from_int(1) / incr; 2153 } 2154 2155 /* 2156 * Note: for bpp_x16 to be valid it must be also within the source/sink's 2157 * min..max bpp capability range. 2158 */ 2159 bool intel_dp_dsc_valid_compressed_bpp(struct intel_dp *intel_dp, int bpp_x16) 2160 { 2161 struct intel_display *display = to_intel_display(intel_dp); 2162 int i; 2163 2164 if (DISPLAY_VER(display) >= 13) { 2165 if (intel_dp->force_dsc_fractional_bpp_en && !fxp_q4_to_frac(bpp_x16)) 2166 return false; 2167 2168 return true; 2169 } 2170 2171 if (fxp_q4_to_frac(bpp_x16)) 2172 return false; 2173 2174 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp); i++) { 2175 if (fxp_q4_to_int(bpp_x16) == valid_dsc_bpp[i]) 2176 return true; 2177 } 2178 2179 return false; 2180 } 2181 2182 /* 2183 * Find the max compressed BPP we can find a link configuration for. The BPPs to 2184 * try depend on the source (platform) and sink. 2185 */ 2186 static int dsc_compute_compressed_bpp(struct intel_dp *intel_dp, 2187 struct intel_crtc_state *pipe_config, 2188 struct drm_connector_state *conn_state, 2189 const struct link_config_limits *limits, 2190 int pipe_bpp, 2191 int timeslots) 2192 { 2193 struct intel_display *display = to_intel_display(intel_dp); 2194 const struct intel_connector *connector = to_intel_connector(conn_state->connector); 2195 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2196 int output_bpp; 2197 int min_bpp_x16, max_bpp_x16, bpp_step_x16; 2198 int dsc_joiner_max_bpp; 2199 int num_joined_pipes = intel_crtc_num_joined_pipes(pipe_config); 2200 int bpp_x16; 2201 int ret; 2202 2203 dsc_joiner_max_bpp = get_max_compressed_bpp_with_joiner(display, adjusted_mode->clock, 2204 adjusted_mode->hdisplay, 2205 num_joined_pipes); 2206 max_bpp_x16 = min(fxp_q4_from_int(dsc_joiner_max_bpp), limits->link.max_bpp_x16); 2207 2208 bpp_step_x16 = intel_dp_dsc_bpp_step_x16(connector); 2209 2210 /* Compressed BPP should be less than the Input DSC bpp */ 2211 output_bpp = intel_dp_output_bpp(pipe_config->output_format, pipe_bpp); 2212 max_bpp_x16 = min(max_bpp_x16, fxp_q4_from_int(output_bpp) - bpp_step_x16); 2213 2214 drm_WARN_ON(display->drm, !is_power_of_2(bpp_step_x16)); 2215 min_bpp_x16 = round_up(limits->link.min_bpp_x16, bpp_step_x16); 2216 max_bpp_x16 = round_down(max_bpp_x16, bpp_step_x16); 2217 2218 for (bpp_x16 = max_bpp_x16; bpp_x16 >= min_bpp_x16; bpp_x16 -= bpp_step_x16) { 2219 if (!intel_dp_dsc_valid_compressed_bpp(intel_dp, bpp_x16)) 2220 continue; 2221 2222 ret = dsc_compute_link_config(intel_dp, 2223 pipe_config, 2224 conn_state, 2225 limits, 2226 bpp_x16, 2227 timeslots); 2228 if (ret == 0) { 2229 pipe_config->dsc.compressed_bpp_x16 = bpp_x16; 2230 if (intel_dp->force_dsc_fractional_bpp_en && 2231 fxp_q4_to_frac(bpp_x16)) 2232 drm_dbg_kms(display->drm, 2233 "Forcing DSC fractional bpp\n"); 2234 2235 return 0; 2236 } 2237 } 2238 2239 return -EINVAL; 2240 } 2241 2242 int intel_dp_dsc_min_src_input_bpc(void) 2243 { 2244 /* Min DSC Input BPC for ICL+ is 8 */ 2245 return 8; 2246 } 2247 2248 static 2249 bool is_dsc_pipe_bpp_sufficient(const struct link_config_limits *limits, 2250 int pipe_bpp) 2251 { 2252 return pipe_bpp >= limits->pipe.min_bpp && 2253 pipe_bpp <= limits->pipe.max_bpp; 2254 } 2255 2256 static 2257 int intel_dp_force_dsc_pipe_bpp(struct intel_dp *intel_dp, 2258 const struct link_config_limits *limits) 2259 { 2260 struct intel_display *display = to_intel_display(intel_dp); 2261 int forced_bpp; 2262 2263 if (!intel_dp->force_dsc_bpc) 2264 return 0; 2265 2266 forced_bpp = intel_dp->force_dsc_bpc * 3; 2267 2268 if (is_dsc_pipe_bpp_sufficient(limits, forced_bpp)) { 2269 drm_dbg_kms(display->drm, "Input DSC BPC forced to %d\n", 2270 intel_dp->force_dsc_bpc); 2271 return forced_bpp; 2272 } 2273 2274 drm_dbg_kms(display->drm, 2275 "Cannot force DSC BPC:%d, due to DSC BPC limits\n", 2276 intel_dp->force_dsc_bpc); 2277 2278 return 0; 2279 } 2280 2281 static int intel_dp_dsc_compute_pipe_bpp(struct intel_dp *intel_dp, 2282 struct intel_crtc_state *pipe_config, 2283 struct drm_connector_state *conn_state, 2284 const struct link_config_limits *limits, 2285 int timeslots) 2286 { 2287 const struct intel_connector *connector = 2288 to_intel_connector(conn_state->connector); 2289 u8 dsc_bpc[3] = {}; 2290 int forced_bpp, pipe_bpp; 2291 int num_bpc, i, ret; 2292 2293 forced_bpp = intel_dp_force_dsc_pipe_bpp(intel_dp, limits); 2294 2295 if (forced_bpp) { 2296 ret = dsc_compute_compressed_bpp(intel_dp, pipe_config, conn_state, 2297 limits, forced_bpp, timeslots); 2298 if (ret == 0) { 2299 pipe_config->pipe_bpp = forced_bpp; 2300 return 0; 2301 } 2302 } 2303 2304 /* 2305 * Get the maximum DSC bpc that will be supported by any valid 2306 * link configuration and compressed bpp. 2307 */ 2308 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(connector->dp.dsc_dpcd, dsc_bpc); 2309 for (i = 0; i < num_bpc; i++) { 2310 pipe_bpp = dsc_bpc[i] * 3; 2311 if (pipe_bpp < limits->pipe.min_bpp || pipe_bpp > limits->pipe.max_bpp) 2312 continue; 2313 2314 ret = dsc_compute_compressed_bpp(intel_dp, pipe_config, conn_state, 2315 limits, pipe_bpp, timeslots); 2316 if (ret == 0) { 2317 pipe_config->pipe_bpp = pipe_bpp; 2318 return 0; 2319 } 2320 } 2321 2322 return -EINVAL; 2323 } 2324 2325 static int intel_edp_dsc_compute_pipe_bpp(struct intel_dp *intel_dp, 2326 struct intel_crtc_state *pipe_config, 2327 struct drm_connector_state *conn_state, 2328 const struct link_config_limits *limits) 2329 { 2330 struct intel_display *display = to_intel_display(intel_dp); 2331 struct intel_connector *connector = 2332 to_intel_connector(conn_state->connector); 2333 int pipe_bpp, forced_bpp; 2334 int dsc_min_bpp; 2335 int dsc_max_bpp; 2336 2337 forced_bpp = intel_dp_force_dsc_pipe_bpp(intel_dp, limits); 2338 2339 if (forced_bpp) { 2340 pipe_bpp = forced_bpp; 2341 } else { 2342 int max_bpc = limits->pipe.max_bpp / 3; 2343 2344 /* For eDP use max bpp that can be supported with DSC. */ 2345 pipe_bpp = intel_dp_dsc_compute_max_bpp(connector, max_bpc); 2346 if (!is_dsc_pipe_bpp_sufficient(limits, pipe_bpp)) { 2347 drm_dbg_kms(display->drm, 2348 "Computed BPC is not in DSC BPC limits\n"); 2349 return -EINVAL; 2350 } 2351 } 2352 pipe_config->port_clock = limits->max_rate; 2353 pipe_config->lane_count = limits->max_lane_count; 2354 2355 dsc_min_bpp = fxp_q4_to_int_roundup(limits->link.min_bpp_x16); 2356 2357 dsc_max_bpp = fxp_q4_to_int(limits->link.max_bpp_x16); 2358 2359 /* Compressed BPP should be less than the Input DSC bpp */ 2360 dsc_max_bpp = min(dsc_max_bpp, pipe_bpp - 1); 2361 2362 pipe_config->dsc.compressed_bpp_x16 = 2363 fxp_q4_from_int(max(dsc_min_bpp, dsc_max_bpp)); 2364 2365 pipe_config->pipe_bpp = pipe_bpp; 2366 2367 return 0; 2368 } 2369 2370 /* 2371 * Return whether FEC must be enabled for 8b10b SST or MST links. On 128b132b 2372 * links FEC is always enabled implicitly by the HW, so this function returns 2373 * false for that case. 2374 */ 2375 bool intel_dp_needs_8b10b_fec(const struct intel_crtc_state *crtc_state, 2376 bool dsc_enabled_on_crtc) 2377 { 2378 if (intel_dp_is_uhbr(crtc_state)) 2379 return false; 2380 2381 /* 2382 * Though eDP v1.5 supports FEC with DSC, unlike DP, it is optional. 2383 * Since, FEC is a bandwidth overhead, continue to not enable it for 2384 * eDP. Until, there is a good reason to do so. 2385 */ 2386 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) 2387 return false; 2388 2389 return dsc_enabled_on_crtc || intel_dsc_enabled_on_link(crtc_state); 2390 } 2391 2392 int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 2393 struct intel_crtc_state *pipe_config, 2394 struct drm_connector_state *conn_state, 2395 const struct link_config_limits *limits, 2396 int timeslots) 2397 { 2398 struct intel_display *display = to_intel_display(intel_dp); 2399 const struct intel_connector *connector = 2400 to_intel_connector(conn_state->connector); 2401 const struct drm_display_mode *adjusted_mode = 2402 &pipe_config->hw.adjusted_mode; 2403 int num_joined_pipes = intel_crtc_num_joined_pipes(pipe_config); 2404 bool is_mst = intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST); 2405 int ret; 2406 2407 /* 2408 * FIXME: set the FEC enabled state once pipe_config->port_clock is 2409 * already known, so the UHBR/non-UHBR mode can be determined. 2410 */ 2411 pipe_config->fec_enable = intel_dp_needs_8b10b_fec(pipe_config, true); 2412 2413 if (!intel_dp_dsc_supports_format(connector, pipe_config->output_format)) 2414 return -EINVAL; 2415 2416 /* 2417 * Link parameters, pipe bpp and compressed bpp have already been 2418 * figured out for DP MST DSC. 2419 */ 2420 if (!is_mst) { 2421 if (intel_dp_is_edp(intel_dp)) 2422 ret = intel_edp_dsc_compute_pipe_bpp(intel_dp, pipe_config, 2423 conn_state, limits); 2424 else 2425 ret = intel_dp_dsc_compute_pipe_bpp(intel_dp, pipe_config, 2426 conn_state, limits, timeslots); 2427 if (ret) { 2428 drm_dbg_kms(display->drm, 2429 "No Valid pipe bpp for given mode ret = %d\n", ret); 2430 return ret; 2431 } 2432 } 2433 2434 /* Calculate Slice count */ 2435 if (intel_dp_is_edp(intel_dp)) { 2436 pipe_config->dsc.slice_count = 2437 drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd, 2438 true); 2439 if (!pipe_config->dsc.slice_count) { 2440 drm_dbg_kms(display->drm, 2441 "Unsupported Slice Count %d\n", 2442 pipe_config->dsc.slice_count); 2443 return -EINVAL; 2444 } 2445 } else { 2446 u8 dsc_dp_slice_count; 2447 2448 dsc_dp_slice_count = 2449 intel_dp_dsc_get_slice_count(connector, 2450 adjusted_mode->crtc_clock, 2451 adjusted_mode->crtc_hdisplay, 2452 num_joined_pipes); 2453 if (!dsc_dp_slice_count) { 2454 drm_dbg_kms(display->drm, 2455 "Compressed Slice Count not supported\n"); 2456 return -EINVAL; 2457 } 2458 2459 pipe_config->dsc.slice_count = dsc_dp_slice_count; 2460 } 2461 /* 2462 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 2463 * is greater than the maximum Cdclock and if slice count is even 2464 * then we need to use 2 VDSC instances. 2465 * In case of Ultrajoiner along with 12 slices we need to use 3 2466 * VDSC instances. 2467 */ 2468 if (pipe_config->joiner_pipes && num_joined_pipes == 4 && 2469 pipe_config->dsc.slice_count == 12) 2470 pipe_config->dsc.num_streams = 3; 2471 else if (pipe_config->joiner_pipes || pipe_config->dsc.slice_count > 1) 2472 pipe_config->dsc.num_streams = 2; 2473 else 2474 pipe_config->dsc.num_streams = 1; 2475 2476 ret = intel_dp_dsc_compute_params(connector, pipe_config); 2477 if (ret < 0) { 2478 drm_dbg_kms(display->drm, 2479 "Cannot compute valid DSC parameters for Input Bpp = %d" 2480 "Compressed BPP = " FXP_Q4_FMT "\n", 2481 pipe_config->pipe_bpp, 2482 FXP_Q4_ARGS(pipe_config->dsc.compressed_bpp_x16)); 2483 return ret; 2484 } 2485 2486 intel_dsc_enable_on_crtc(pipe_config); 2487 2488 drm_dbg_kms(display->drm, "DP DSC computed with Input Bpp = %d " 2489 "Compressed Bpp = " FXP_Q4_FMT " Slice Count = %d\n", 2490 pipe_config->pipe_bpp, 2491 FXP_Q4_ARGS(pipe_config->dsc.compressed_bpp_x16), 2492 pipe_config->dsc.slice_count); 2493 2494 return 0; 2495 } 2496 2497 static int 2498 dsc_throughput_quirk_max_bpp_x16(const struct intel_connector *connector, 2499 const struct intel_crtc_state *crtc_state) 2500 { 2501 const struct drm_display_mode *adjusted_mode = 2502 &crtc_state->hw.adjusted_mode; 2503 2504 if (!connector->dp.dsc_throughput_quirk) 2505 return INT_MAX; 2506 2507 /* 2508 * Synaptics Panamera branch devices have a problem decompressing a 2509 * stream with a compressed link-bpp higher than 12, if the pixel 2510 * clock is higher than ~50 % of the maximum overall throughput 2511 * reported by the branch device. Work around this by limiting the 2512 * maximum link bpp for such pixel clocks. 2513 * 2514 * TODO: Use the throughput value specific to the actual RGB/YUV 2515 * format of the output, after determining the pixel clock limit for 2516 * YUV modes. For now use the smaller of the throughput values, which 2517 * may result in limiting the link-bpp value already at a lower than 2518 * required mode clock in case of native YUV422/420 output formats. 2519 * The RGB/YUV444 throughput value should be always either equal or 2520 * smaller than the YUV422/420 value, but let's not depend on this 2521 * assumption. 2522 */ 2523 if (adjusted_mode->crtc_clock < 2524 min(connector->dp.dsc_branch_caps.overall_throughput.rgb_yuv444, 2525 connector->dp.dsc_branch_caps.overall_throughput.yuv422_420) / 2) 2526 return INT_MAX; 2527 2528 return fxp_q4_from_int(12); 2529 } 2530 2531 /* 2532 * Calculate the output link min, max bpp values in limits based on the pipe bpp 2533 * range, crtc_state and dsc mode. Return true on success. 2534 */ 2535 static bool 2536 intel_dp_compute_config_link_bpp_limits(struct intel_dp *intel_dp, 2537 const struct intel_connector *connector, 2538 const struct intel_crtc_state *crtc_state, 2539 bool dsc, 2540 struct link_config_limits *limits) 2541 { 2542 struct intel_display *display = to_intel_display(intel_dp); 2543 const struct drm_display_mode *adjusted_mode = 2544 &crtc_state->hw.adjusted_mode; 2545 const struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2546 const struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 2547 int max_link_bpp_x16; 2548 2549 max_link_bpp_x16 = min(crtc_state->max_link_bpp_x16, 2550 fxp_q4_from_int(limits->pipe.max_bpp)); 2551 2552 if (!dsc) { 2553 max_link_bpp_x16 = rounddown(max_link_bpp_x16, fxp_q4_from_int(2 * 3)); 2554 2555 if (max_link_bpp_x16 < fxp_q4_from_int(limits->pipe.min_bpp)) 2556 return false; 2557 2558 limits->link.min_bpp_x16 = fxp_q4_from_int(limits->pipe.min_bpp); 2559 } else { 2560 int dsc_src_min_bpp, dsc_sink_min_bpp, dsc_min_bpp; 2561 int dsc_src_max_bpp, dsc_sink_max_bpp, dsc_max_bpp; 2562 int throughput_max_bpp_x16; 2563 2564 dsc_src_min_bpp = intel_dp_dsc_min_src_compressed_bpp(); 2565 dsc_sink_min_bpp = intel_dp_dsc_sink_min_compressed_bpp(crtc_state); 2566 dsc_min_bpp = max(dsc_src_min_bpp, dsc_sink_min_bpp); 2567 limits->link.min_bpp_x16 = fxp_q4_from_int(dsc_min_bpp); 2568 2569 dsc_src_max_bpp = dsc_src_max_compressed_bpp(intel_dp); 2570 dsc_sink_max_bpp = intel_dp_dsc_sink_max_compressed_bpp(connector, 2571 crtc_state, 2572 limits->pipe.max_bpp / 3); 2573 dsc_max_bpp = dsc_sink_max_bpp ? 2574 min(dsc_sink_max_bpp, dsc_src_max_bpp) : dsc_src_max_bpp; 2575 2576 max_link_bpp_x16 = min(max_link_bpp_x16, fxp_q4_from_int(dsc_max_bpp)); 2577 2578 throughput_max_bpp_x16 = dsc_throughput_quirk_max_bpp_x16(connector, crtc_state); 2579 throughput_max_bpp_x16 = clamp(throughput_max_bpp_x16, 2580 limits->link.min_bpp_x16, max_link_bpp_x16); 2581 if (throughput_max_bpp_x16 < max_link_bpp_x16) { 2582 max_link_bpp_x16 = throughput_max_bpp_x16; 2583 2584 drm_dbg_kms(display->drm, 2585 "[CRTC:%d:%s][CONNECTOR:%d:%s] Decreasing link max bpp to " FXP_Q4_FMT " due to DSC throughput quirk\n", 2586 crtc->base.base.id, crtc->base.name, 2587 connector->base.base.id, connector->base.name, 2588 FXP_Q4_ARGS(max_link_bpp_x16)); 2589 } 2590 } 2591 2592 limits->link.max_bpp_x16 = max_link_bpp_x16; 2593 2594 drm_dbg_kms(display->drm, 2595 "[ENCODER:%d:%s][CRTC:%d:%s] DP link limits: pixel clock %d kHz DSC %s max lanes %d max rate %d max pipe_bpp %d max link_bpp " FXP_Q4_FMT "\n", 2596 encoder->base.base.id, encoder->base.name, 2597 crtc->base.base.id, crtc->base.name, 2598 adjusted_mode->crtc_clock, 2599 str_on_off(dsc), 2600 limits->max_lane_count, 2601 limits->max_rate, 2602 limits->pipe.max_bpp, 2603 FXP_Q4_ARGS(limits->link.max_bpp_x16)); 2604 2605 return true; 2606 } 2607 2608 static void 2609 intel_dp_dsc_compute_pipe_bpp_limits(struct intel_dp *intel_dp, 2610 struct link_config_limits *limits) 2611 { 2612 struct intel_display *display = to_intel_display(intel_dp); 2613 int dsc_min_bpc = intel_dp_dsc_min_src_input_bpc(); 2614 int dsc_max_bpc = intel_dp_dsc_max_src_input_bpc(display); 2615 2616 limits->pipe.max_bpp = clamp(limits->pipe.max_bpp, dsc_min_bpc * 3, dsc_max_bpc * 3); 2617 limits->pipe.min_bpp = clamp(limits->pipe.min_bpp, dsc_min_bpc * 3, dsc_max_bpc * 3); 2618 } 2619 2620 bool 2621 intel_dp_compute_config_limits(struct intel_dp *intel_dp, 2622 struct drm_connector_state *conn_state, 2623 struct intel_crtc_state *crtc_state, 2624 bool respect_downstream_limits, 2625 bool dsc, 2626 struct link_config_limits *limits) 2627 { 2628 bool is_mst = intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST); 2629 struct intel_connector *connector = 2630 to_intel_connector(conn_state->connector); 2631 2632 limits->min_rate = intel_dp_min_link_rate(intel_dp); 2633 limits->max_rate = intel_dp_max_link_rate(intel_dp); 2634 2635 limits->min_rate = min(limits->min_rate, limits->max_rate); 2636 2637 limits->min_lane_count = intel_dp_min_lane_count(intel_dp); 2638 limits->max_lane_count = intel_dp_max_lane_count(intel_dp); 2639 2640 limits->pipe.min_bpp = intel_dp_in_hdr_mode(conn_state) ? 30 : 2641 intel_dp_min_bpp(crtc_state->output_format); 2642 if (is_mst) { 2643 /* 2644 * FIXME: If all the streams can't fit into the link with their 2645 * current pipe_bpp we should reduce pipe_bpp across the board 2646 * until things start to fit. Until then we limit to <= 8bpc 2647 * since that's what was hardcoded for all MST streams 2648 * previously. This hack should be removed once we have the 2649 * proper retry logic in place. 2650 */ 2651 limits->pipe.max_bpp = min(crtc_state->pipe_bpp, 24); 2652 } else { 2653 limits->pipe.max_bpp = intel_dp_max_bpp(intel_dp, crtc_state, 2654 respect_downstream_limits); 2655 } 2656 2657 if (dsc) 2658 intel_dp_dsc_compute_pipe_bpp_limits(intel_dp, limits); 2659 2660 if (is_mst || intel_dp->use_max_params) { 2661 /* 2662 * For MST we always configure max link bw - the spec doesn't 2663 * seem to suggest we should do otherwise. 2664 * 2665 * Use the maximum clock and number of lanes the eDP panel 2666 * advertizes being capable of in case the initial fast 2667 * optimal params failed us. The panels are generally 2668 * designed to support only a single clock and lane 2669 * configuration, and typically on older panels these 2670 * values correspond to the native resolution of the panel. 2671 */ 2672 limits->min_lane_count = limits->max_lane_count; 2673 limits->min_rate = limits->max_rate; 2674 } 2675 2676 intel_dp_test_compute_config(intel_dp, crtc_state, limits); 2677 2678 return intel_dp_compute_config_link_bpp_limits(intel_dp, 2679 connector, 2680 crtc_state, 2681 dsc, 2682 limits); 2683 } 2684 2685 int intel_dp_config_required_rate(const struct intel_crtc_state *crtc_state) 2686 { 2687 const struct drm_display_mode *adjusted_mode = 2688 &crtc_state->hw.adjusted_mode; 2689 int bpp = crtc_state->dsc.compression_enable ? 2690 fxp_q4_to_int_roundup(crtc_state->dsc.compressed_bpp_x16) : 2691 crtc_state->pipe_bpp; 2692 2693 return intel_dp_link_required(adjusted_mode->crtc_clock, bpp); 2694 } 2695 2696 bool intel_dp_joiner_needs_dsc(struct intel_display *display, 2697 int num_joined_pipes) 2698 { 2699 /* 2700 * Pipe joiner needs compression up to display 12 due to bandwidth 2701 * limitation. DG2 onwards pipe joiner can be enabled without 2702 * compression. 2703 * Ultrajoiner always needs compression. 2704 */ 2705 return (!HAS_UNCOMPRESSED_JOINER(display) && num_joined_pipes == 2) || 2706 num_joined_pipes == 4; 2707 } 2708 2709 static int 2710 intel_dp_compute_link_config(struct intel_encoder *encoder, 2711 struct intel_crtc_state *pipe_config, 2712 struct drm_connector_state *conn_state, 2713 bool respect_downstream_limits) 2714 { 2715 struct intel_display *display = to_intel_display(encoder); 2716 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 2717 struct intel_connector *connector = 2718 to_intel_connector(conn_state->connector); 2719 const struct drm_display_mode *adjusted_mode = 2720 &pipe_config->hw.adjusted_mode; 2721 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2722 struct link_config_limits limits; 2723 bool dsc_needed, joiner_needs_dsc; 2724 int num_joined_pipes; 2725 int ret = 0; 2726 2727 if (pipe_config->fec_enable && 2728 !intel_dp_supports_fec(intel_dp, connector, pipe_config)) 2729 return -EINVAL; 2730 2731 num_joined_pipes = intel_dp_num_joined_pipes(intel_dp, connector, 2732 adjusted_mode->crtc_hdisplay, 2733 adjusted_mode->crtc_clock); 2734 if (num_joined_pipes > 1) 2735 pipe_config->joiner_pipes = GENMASK(crtc->pipe + num_joined_pipes - 1, crtc->pipe); 2736 2737 joiner_needs_dsc = intel_dp_joiner_needs_dsc(display, num_joined_pipes); 2738 2739 dsc_needed = joiner_needs_dsc || intel_dp->force_dsc_en || 2740 !intel_dp_compute_config_limits(intel_dp, conn_state, pipe_config, 2741 respect_downstream_limits, 2742 false, 2743 &limits); 2744 2745 if (!dsc_needed) { 2746 /* 2747 * Optimize for slow and wide for everything, because there are some 2748 * eDP 1.3 and 1.4 panels don't work well with fast and narrow. 2749 */ 2750 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, 2751 conn_state, &limits); 2752 if (!ret && intel_dp_is_uhbr(pipe_config)) 2753 ret = intel_dp_mtp_tu_compute_config(intel_dp, 2754 pipe_config, 2755 conn_state, 2756 fxp_q4_from_int(pipe_config->pipe_bpp), 2757 fxp_q4_from_int(pipe_config->pipe_bpp), 2758 0, false); 2759 if (ret) 2760 dsc_needed = true; 2761 } 2762 2763 if (dsc_needed && !intel_dp_supports_dsc(intel_dp, connector, pipe_config)) { 2764 drm_dbg_kms(display->drm, "DSC required but not available\n"); 2765 return -EINVAL; 2766 } 2767 2768 if (dsc_needed) { 2769 drm_dbg_kms(display->drm, 2770 "Try DSC (fallback=%s, joiner=%s, force=%s)\n", 2771 str_yes_no(ret), str_yes_no(joiner_needs_dsc), 2772 str_yes_no(intel_dp->force_dsc_en)); 2773 2774 if (!intel_dp_compute_config_limits(intel_dp, conn_state, pipe_config, 2775 respect_downstream_limits, 2776 true, 2777 &limits)) 2778 return -EINVAL; 2779 2780 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2781 conn_state, &limits, 64); 2782 if (ret < 0) 2783 return ret; 2784 } 2785 2786 drm_dbg_kms(display->drm, 2787 "DP lane count %d clock %d bpp input %d compressed " FXP_Q4_FMT " link rate required %d available %d\n", 2788 pipe_config->lane_count, pipe_config->port_clock, 2789 pipe_config->pipe_bpp, 2790 FXP_Q4_ARGS(pipe_config->dsc.compressed_bpp_x16), 2791 intel_dp_config_required_rate(pipe_config), 2792 intel_dp_max_link_data_rate(intel_dp, 2793 pipe_config->port_clock, 2794 pipe_config->lane_count)); 2795 2796 return 0; 2797 } 2798 2799 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2800 const struct drm_connector_state *conn_state) 2801 { 2802 const struct intel_digital_connector_state *intel_conn_state = 2803 to_intel_digital_connector_state(conn_state); 2804 const struct drm_display_mode *adjusted_mode = 2805 &crtc_state->hw.adjusted_mode; 2806 2807 /* 2808 * Our YCbCr output is always limited range. 2809 * crtc_state->limited_color_range only applies to RGB, 2810 * and it must never be set for YCbCr or we risk setting 2811 * some conflicting bits in TRANSCONF which will mess up 2812 * the colors on the monitor. 2813 */ 2814 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2815 return false; 2816 2817 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2818 /* 2819 * See: 2820 * CEA-861-E - 5.1 Default Encoding Parameters 2821 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2822 */ 2823 return crtc_state->pipe_bpp != 18 && 2824 drm_default_rgb_quant_range(adjusted_mode) == 2825 HDMI_QUANTIZATION_RANGE_LIMITED; 2826 } else { 2827 return intel_conn_state->broadcast_rgb == 2828 INTEL_BROADCAST_RGB_LIMITED; 2829 } 2830 } 2831 2832 static bool intel_dp_port_has_audio(struct intel_display *display, enum port port) 2833 { 2834 if (display->platform.g4x) 2835 return false; 2836 if (DISPLAY_VER(display) < 12 && port == PORT_A) 2837 return false; 2838 2839 return true; 2840 } 2841 2842 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state, 2843 const struct drm_connector_state *conn_state, 2844 struct drm_dp_vsc_sdp *vsc) 2845 { 2846 struct intel_display *display = to_intel_display(crtc_state); 2847 2848 if (crtc_state->has_panel_replay) { 2849 /* 2850 * Prepare VSC Header for SU as per DP 2.0 spec, Table 2-223 2851 * VSC SDP supporting 3D stereo, Panel Replay, and Pixel 2852 * Encoding/Colorimetry Format indication. 2853 */ 2854 vsc->revision = 0x7; 2855 } else { 2856 /* 2857 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 2858 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 2859 * Colorimetry Format indication. 2860 */ 2861 vsc->revision = 0x5; 2862 } 2863 2864 vsc->length = 0x13; 2865 2866 /* DP 1.4a spec, Table 2-120 */ 2867 switch (crtc_state->output_format) { 2868 case INTEL_OUTPUT_FORMAT_YCBCR444: 2869 vsc->pixelformat = DP_PIXELFORMAT_YUV444; 2870 break; 2871 case INTEL_OUTPUT_FORMAT_YCBCR420: 2872 vsc->pixelformat = DP_PIXELFORMAT_YUV420; 2873 break; 2874 case INTEL_OUTPUT_FORMAT_RGB: 2875 default: 2876 vsc->pixelformat = DP_PIXELFORMAT_RGB; 2877 } 2878 2879 switch (conn_state->colorspace) { 2880 case DRM_MODE_COLORIMETRY_BT709_YCC: 2881 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; 2882 break; 2883 case DRM_MODE_COLORIMETRY_XVYCC_601: 2884 vsc->colorimetry = DP_COLORIMETRY_XVYCC_601; 2885 break; 2886 case DRM_MODE_COLORIMETRY_XVYCC_709: 2887 vsc->colorimetry = DP_COLORIMETRY_XVYCC_709; 2888 break; 2889 case DRM_MODE_COLORIMETRY_SYCC_601: 2890 vsc->colorimetry = DP_COLORIMETRY_SYCC_601; 2891 break; 2892 case DRM_MODE_COLORIMETRY_OPYCC_601: 2893 vsc->colorimetry = DP_COLORIMETRY_OPYCC_601; 2894 break; 2895 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 2896 vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC; 2897 break; 2898 case DRM_MODE_COLORIMETRY_BT2020_RGB: 2899 vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB; 2900 break; 2901 case DRM_MODE_COLORIMETRY_BT2020_YCC: 2902 vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC; 2903 break; 2904 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: 2905 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: 2906 vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB; 2907 break; 2908 default: 2909 /* 2910 * RGB->YCBCR color conversion uses the BT.709 2911 * color space. 2912 */ 2913 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 2914 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; 2915 else 2916 vsc->colorimetry = DP_COLORIMETRY_DEFAULT; 2917 break; 2918 } 2919 2920 vsc->bpc = crtc_state->pipe_bpp / 3; 2921 2922 /* only RGB pixelformat supports 6 bpc */ 2923 drm_WARN_ON(display->drm, 2924 vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB); 2925 2926 /* all YCbCr are always limited range */ 2927 vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA; 2928 vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED; 2929 } 2930 2931 static void intel_dp_compute_as_sdp(struct intel_dp *intel_dp, 2932 struct intel_crtc_state *crtc_state) 2933 { 2934 struct drm_dp_as_sdp *as_sdp = &crtc_state->infoframes.as_sdp; 2935 const struct drm_display_mode *adjusted_mode = 2936 &crtc_state->hw.adjusted_mode; 2937 2938 if (!crtc_state->vrr.enable || !intel_dp->as_sdp_supported) 2939 return; 2940 2941 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_ADAPTIVE_SYNC); 2942 2943 as_sdp->sdp_type = DP_SDP_ADAPTIVE_SYNC; 2944 as_sdp->length = 0x9; 2945 as_sdp->duration_incr_ms = 0; 2946 as_sdp->vtotal = intel_vrr_vmin_vtotal(crtc_state); 2947 2948 if (crtc_state->cmrr.enable) { 2949 as_sdp->mode = DP_AS_SDP_FAVT_TRR_REACHED; 2950 as_sdp->target_rr = drm_mode_vrefresh(adjusted_mode); 2951 as_sdp->target_rr_divider = true; 2952 } else { 2953 as_sdp->mode = DP_AS_SDP_AVT_DYNAMIC_VTOTAL; 2954 as_sdp->target_rr = 0; 2955 } 2956 } 2957 2958 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp, 2959 struct intel_crtc_state *crtc_state, 2960 const struct drm_connector_state *conn_state) 2961 { 2962 struct drm_dp_vsc_sdp *vsc; 2963 2964 if ((!intel_dp->colorimetry_support || 2965 !intel_dp_needs_vsc_sdp(crtc_state, conn_state)) && 2966 !crtc_state->has_psr) 2967 return; 2968 2969 vsc = &crtc_state->infoframes.vsc; 2970 2971 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); 2972 vsc->sdp_type = DP_SDP_VSC; 2973 2974 /* Needs colorimetry */ 2975 if (intel_dp_needs_vsc_sdp(crtc_state, conn_state)) { 2976 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state, 2977 vsc); 2978 } else if (crtc_state->has_panel_replay) { 2979 /* 2980 * [Panel Replay without colorimetry info] 2981 * Prepare VSC Header for SU as per DP 2.0 spec, Table 2-223 2982 * VSC SDP supporting 3D stereo + Panel Replay. 2983 */ 2984 vsc->revision = 0x6; 2985 vsc->length = 0x10; 2986 } else if (crtc_state->has_sel_update) { 2987 /* 2988 * [PSR2 without colorimetry] 2989 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11 2990 * 3D stereo + PSR/PSR2 + Y-coordinate. 2991 */ 2992 vsc->revision = 0x4; 2993 vsc->length = 0xe; 2994 } else { 2995 /* 2996 * [PSR1] 2997 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 2998 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or 2999 * higher). 3000 */ 3001 vsc->revision = 0x2; 3002 vsc->length = 0x8; 3003 } 3004 } 3005 3006 bool 3007 intel_dp_in_hdr_mode(const struct drm_connector_state *conn_state) 3008 { 3009 struct hdr_output_metadata *hdr_metadata; 3010 3011 if (!conn_state->hdr_output_metadata) 3012 return false; 3013 3014 hdr_metadata = conn_state->hdr_output_metadata->data; 3015 3016 return hdr_metadata->hdmi_metadata_type1.eotf == HDMI_EOTF_SMPTE_ST2084; 3017 } 3018 3019 static void 3020 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp, 3021 struct intel_crtc_state *crtc_state, 3022 const struct drm_connector_state *conn_state) 3023 { 3024 struct intel_display *display = to_intel_display(intel_dp); 3025 int ret; 3026 struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm; 3027 3028 if (!conn_state->hdr_output_metadata) 3029 return; 3030 3031 ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state); 3032 3033 if (ret) { 3034 drm_dbg_kms(display->drm, 3035 "couldn't set HDR metadata in infoframe\n"); 3036 return; 3037 } 3038 3039 crtc_state->infoframes.enable |= 3040 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA); 3041 } 3042 3043 static bool can_enable_drrs(struct intel_connector *connector, 3044 const struct intel_crtc_state *pipe_config, 3045 const struct drm_display_mode *downclock_mode) 3046 { 3047 struct intel_display *display = to_intel_display(connector); 3048 3049 if (pipe_config->vrr.enable) 3050 return false; 3051 3052 /* 3053 * DRRS and PSR can't be enable together, so giving preference to PSR 3054 * as it allows more power-savings by complete shutting down display, 3055 * so to guarantee this, intel_drrs_compute_config() must be called 3056 * after intel_psr_compute_config(). 3057 */ 3058 if (pipe_config->has_psr) 3059 return false; 3060 3061 /* FIXME missing FDI M2/N2 etc. */ 3062 if (pipe_config->has_pch_encoder) 3063 return false; 3064 3065 if (!intel_cpu_transcoder_has_drrs(display, pipe_config->cpu_transcoder)) 3066 return false; 3067 3068 return downclock_mode && 3069 intel_panel_drrs_type(connector) == DRRS_TYPE_SEAMLESS; 3070 } 3071 3072 static void 3073 intel_dp_drrs_compute_config(struct intel_connector *connector, 3074 struct intel_crtc_state *pipe_config, 3075 int link_bpp_x16) 3076 { 3077 struct intel_display *display = to_intel_display(connector); 3078 const struct drm_display_mode *downclock_mode = 3079 intel_panel_downclock_mode(connector, &pipe_config->hw.adjusted_mode); 3080 int pixel_clock; 3081 3082 /* 3083 * FIXME all joined pipes share the same transcoder. 3084 * Need to account for that when updating M/N live. 3085 */ 3086 if (has_seamless_m_n(connector) && !pipe_config->joiner_pipes) 3087 pipe_config->update_m_n = true; 3088 3089 if (!can_enable_drrs(connector, pipe_config, downclock_mode)) { 3090 if (intel_cpu_transcoder_has_m2_n2(display, pipe_config->cpu_transcoder)) 3091 intel_zero_m_n(&pipe_config->dp_m2_n2); 3092 return; 3093 } 3094 3095 if (display->platform.ironlake || display->platform.sandybridge || 3096 display->platform.ivybridge) 3097 pipe_config->msa_timing_delay = connector->panel.vbt.edp.drrs_msa_timing_delay; 3098 3099 pipe_config->has_drrs = true; 3100 3101 pixel_clock = downclock_mode->clock; 3102 if (pipe_config->splitter.enable) 3103 pixel_clock /= pipe_config->splitter.link_count; 3104 3105 intel_link_compute_m_n(link_bpp_x16, pipe_config->lane_count, pixel_clock, 3106 pipe_config->port_clock, 3107 intel_dp_bw_fec_overhead(pipe_config->fec_enable), 3108 &pipe_config->dp_m2_n2); 3109 3110 /* FIXME: abstract this better */ 3111 if (pipe_config->splitter.enable) 3112 pipe_config->dp_m2_n2.data_m *= pipe_config->splitter.link_count; 3113 } 3114 3115 static bool intel_dp_has_audio(struct intel_encoder *encoder, 3116 const struct drm_connector_state *conn_state) 3117 { 3118 struct intel_display *display = to_intel_display(encoder); 3119 const struct intel_digital_connector_state *intel_conn_state = 3120 to_intel_digital_connector_state(conn_state); 3121 struct intel_connector *connector = 3122 to_intel_connector(conn_state->connector); 3123 3124 if (!intel_dp_port_has_audio(display, encoder->port)) 3125 return false; 3126 3127 if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 3128 return connector->base.display_info.has_audio; 3129 else 3130 return intel_conn_state->force_audio == HDMI_AUDIO_ON; 3131 } 3132 3133 static int 3134 intel_dp_compute_output_format(struct intel_encoder *encoder, 3135 struct intel_crtc_state *crtc_state, 3136 struct drm_connector_state *conn_state, 3137 bool respect_downstream_limits) 3138 { 3139 struct intel_display *display = to_intel_display(encoder); 3140 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3141 struct intel_connector *connector = intel_dp->attached_connector; 3142 const struct drm_display_info *info = &connector->base.display_info; 3143 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 3144 bool ycbcr_420_only; 3145 int ret; 3146 3147 ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode); 3148 3149 if (ycbcr_420_only && !connector->base.ycbcr_420_allowed) { 3150 drm_dbg_kms(display->drm, 3151 "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n"); 3152 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB; 3153 } else { 3154 crtc_state->sink_format = intel_dp_sink_format(connector, adjusted_mode); 3155 } 3156 3157 crtc_state->output_format = intel_dp_output_format(connector, crtc_state->sink_format); 3158 3159 ret = intel_dp_compute_link_config(encoder, crtc_state, conn_state, 3160 respect_downstream_limits); 3161 if (ret) { 3162 if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 3163 !connector->base.ycbcr_420_allowed || 3164 !drm_mode_is_420_also(info, adjusted_mode)) 3165 return ret; 3166 3167 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420; 3168 crtc_state->output_format = intel_dp_output_format(connector, 3169 crtc_state->sink_format); 3170 ret = intel_dp_compute_link_config(encoder, crtc_state, conn_state, 3171 respect_downstream_limits); 3172 } 3173 3174 return ret; 3175 } 3176 3177 void 3178 intel_dp_audio_compute_config(struct intel_encoder *encoder, 3179 struct intel_crtc_state *pipe_config, 3180 struct drm_connector_state *conn_state) 3181 { 3182 pipe_config->has_audio = 3183 intel_dp_has_audio(encoder, conn_state) && 3184 intel_audio_compute_config(encoder, pipe_config, conn_state); 3185 3186 pipe_config->sdp_split_enable = pipe_config->has_audio && 3187 intel_dp_is_uhbr(pipe_config); 3188 } 3189 3190 void 3191 intel_dp_queue_modeset_retry_for_link(struct intel_atomic_state *state, 3192 struct intel_encoder *encoder, 3193 const struct intel_crtc_state *crtc_state) 3194 { 3195 struct intel_connector *connector; 3196 struct intel_digital_connector_state *conn_state; 3197 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3198 int i; 3199 3200 if (intel_dp->needs_modeset_retry) 3201 return; 3202 3203 intel_dp->needs_modeset_retry = true; 3204 3205 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) { 3206 intel_connector_queue_modeset_retry_work(intel_dp->attached_connector); 3207 3208 return; 3209 } 3210 3211 for_each_new_intel_connector_in_state(state, connector, conn_state, i) { 3212 if (!conn_state->base.crtc) 3213 continue; 3214 3215 if (connector->mst.dp == intel_dp) 3216 intel_connector_queue_modeset_retry_work(connector); 3217 } 3218 } 3219 3220 int intel_dp_compute_min_hblank(struct intel_crtc_state *crtc_state, 3221 const struct drm_connector_state *conn_state) 3222 { 3223 struct intel_display *display = to_intel_display(crtc_state); 3224 const struct drm_display_mode *adjusted_mode = 3225 &crtc_state->hw.adjusted_mode; 3226 struct intel_connector *connector = to_intel_connector(conn_state->connector); 3227 int symbol_size = intel_dp_is_uhbr(crtc_state) ? 32 : 8; 3228 /* 3229 * min symbol cycles is 3(BS,VBID, BE) for 128b/132b and 3230 * 5(BS, VBID, MVID, MAUD, BE) for 8b/10b 3231 */ 3232 int min_sym_cycles = intel_dp_is_uhbr(crtc_state) ? 3 : 5; 3233 bool is_mst = intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST); 3234 int num_joined_pipes = intel_crtc_num_joined_pipes(crtc_state); 3235 int min_hblank; 3236 int max_lane_count = 4; 3237 int hactive_sym_cycles, htotal_sym_cycles; 3238 int dsc_slices = 0; 3239 int link_bpp_x16; 3240 3241 if (DISPLAY_VER(display) < 30) 3242 return 0; 3243 3244 /* MIN_HBLANK should be set only for 8b/10b MST or for 128b/132b SST/MST */ 3245 if (!is_mst && !intel_dp_is_uhbr(crtc_state)) 3246 return 0; 3247 3248 if (crtc_state->dsc.compression_enable) { 3249 dsc_slices = intel_dp_dsc_get_slice_count(connector, 3250 adjusted_mode->crtc_clock, 3251 adjusted_mode->crtc_hdisplay, 3252 num_joined_pipes); 3253 if (!dsc_slices) { 3254 drm_dbg(display->drm, "failed to calculate dsc slice count\n"); 3255 return -EINVAL; 3256 } 3257 } 3258 3259 if (crtc_state->dsc.compression_enable) 3260 link_bpp_x16 = crtc_state->dsc.compressed_bpp_x16; 3261 else 3262 link_bpp_x16 = fxp_q4_from_int(intel_dp_output_bpp(crtc_state->output_format, 3263 crtc_state->pipe_bpp)); 3264 3265 /* Calculate min Hblank Link Layer Symbol Cycle Count for 8b/10b MST & 128b/132b */ 3266 hactive_sym_cycles = drm_dp_link_symbol_cycles(max_lane_count, 3267 adjusted_mode->hdisplay, 3268 dsc_slices, 3269 link_bpp_x16, 3270 symbol_size, is_mst); 3271 htotal_sym_cycles = adjusted_mode->htotal * hactive_sym_cycles / 3272 adjusted_mode->hdisplay; 3273 3274 min_hblank = htotal_sym_cycles - hactive_sym_cycles; 3275 /* minimum Hblank calculation: https://groups.vesa.org/wg/DP/document/20494 */ 3276 min_hblank = max(min_hblank, min_sym_cycles); 3277 3278 /* 3279 * adjust the BlankingStart/BlankingEnd framing control from 3280 * the calculated value 3281 */ 3282 min_hblank = min_hblank - 2; 3283 3284 /* 3285 * min_hblank formula is undergoing a change, to avoid underrun use the 3286 * recomended value in spec to compare with the calculated one and use the 3287 * minimum value 3288 */ 3289 if (intel_dp_is_uhbr(crtc_state)) { 3290 /* 3291 * Note: Bspec requires a min_hblank of 2 for YCBCR420 3292 * with compressed bpp 6, but the minimum compressed bpp 3293 * supported by the driver is 8. 3294 */ 3295 drm_WARN_ON(display->drm, 3296 (crtc_state->dsc.compression_enable && 3297 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 && 3298 crtc_state->dsc.compressed_bpp_x16 < fxp_q4_from_int(8))); 3299 min_hblank = min(3, min_hblank); 3300 } else { 3301 min_hblank = min(10, min_hblank); 3302 } 3303 3304 crtc_state->min_hblank = min_hblank; 3305 3306 return 0; 3307 } 3308 3309 int 3310 intel_dp_compute_config(struct intel_encoder *encoder, 3311 struct intel_crtc_state *pipe_config, 3312 struct drm_connector_state *conn_state) 3313 { 3314 struct intel_display *display = to_intel_display(encoder); 3315 struct intel_atomic_state *state = to_intel_atomic_state(conn_state->state); 3316 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 3317 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3318 const struct drm_display_mode *fixed_mode; 3319 struct intel_connector *connector = intel_dp->attached_connector; 3320 int ret = 0, link_bpp_x16; 3321 3322 fixed_mode = intel_panel_fixed_mode(connector, adjusted_mode); 3323 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 3324 ret = intel_panel_compute_config(connector, adjusted_mode); 3325 if (ret) 3326 return ret; 3327 } 3328 3329 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 3330 return -EINVAL; 3331 3332 if (!connector->base.interlace_allowed && 3333 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 3334 return -EINVAL; 3335 3336 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 3337 return -EINVAL; 3338 3339 if (intel_dp_hdisplay_bad(display, adjusted_mode->crtc_hdisplay)) 3340 return -EINVAL; 3341 3342 /* 3343 * Try to respect downstream TMDS clock limits first, if 3344 * that fails assume the user might know something we don't. 3345 */ 3346 ret = intel_dp_compute_output_format(encoder, pipe_config, conn_state, true); 3347 if (ret) 3348 ret = intel_dp_compute_output_format(encoder, pipe_config, conn_state, false); 3349 if (ret) 3350 return ret; 3351 3352 if ((intel_dp_is_edp(intel_dp) && fixed_mode) || 3353 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) { 3354 ret = intel_pfit_compute_config(pipe_config, conn_state); 3355 if (ret) 3356 return ret; 3357 } 3358 3359 pipe_config->limited_color_range = 3360 intel_dp_limited_color_range(pipe_config, conn_state); 3361 3362 if (intel_dp_is_uhbr(pipe_config)) { 3363 /* 128b/132b SST also needs this */ 3364 pipe_config->mst_master_transcoder = pipe_config->cpu_transcoder; 3365 } else { 3366 pipe_config->enhanced_framing = 3367 drm_dp_enhanced_frame_cap(intel_dp->dpcd); 3368 } 3369 3370 if (pipe_config->dsc.compression_enable) 3371 link_bpp_x16 = pipe_config->dsc.compressed_bpp_x16; 3372 else 3373 link_bpp_x16 = fxp_q4_from_int(intel_dp_output_bpp(pipe_config->output_format, 3374 pipe_config->pipe_bpp)); 3375 3376 if (intel_dp->mso_link_count) { 3377 int n = intel_dp->mso_link_count; 3378 int overlap = intel_dp->mso_pixel_overlap; 3379 3380 pipe_config->splitter.enable = true; 3381 pipe_config->splitter.link_count = n; 3382 pipe_config->splitter.pixel_overlap = overlap; 3383 3384 drm_dbg_kms(display->drm, 3385 "MSO link count %d, pixel overlap %d\n", 3386 n, overlap); 3387 3388 adjusted_mode->crtc_hdisplay = adjusted_mode->crtc_hdisplay / n + overlap; 3389 adjusted_mode->crtc_hblank_start = adjusted_mode->crtc_hblank_start / n + overlap; 3390 adjusted_mode->crtc_hblank_end = adjusted_mode->crtc_hblank_end / n + overlap; 3391 adjusted_mode->crtc_hsync_start = adjusted_mode->crtc_hsync_start / n + overlap; 3392 adjusted_mode->crtc_hsync_end = adjusted_mode->crtc_hsync_end / n + overlap; 3393 adjusted_mode->crtc_htotal = adjusted_mode->crtc_htotal / n + overlap; 3394 adjusted_mode->crtc_clock /= n; 3395 } 3396 3397 intel_dp_audio_compute_config(encoder, pipe_config, conn_state); 3398 3399 if (!intel_dp_is_uhbr(pipe_config)) { 3400 intel_link_compute_m_n(link_bpp_x16, 3401 pipe_config->lane_count, 3402 adjusted_mode->crtc_clock, 3403 pipe_config->port_clock, 3404 intel_dp_bw_fec_overhead(pipe_config->fec_enable), 3405 &pipe_config->dp_m_n); 3406 } 3407 3408 ret = intel_dp_compute_min_hblank(pipe_config, conn_state); 3409 if (ret) 3410 return ret; 3411 3412 /* FIXME: abstract this better */ 3413 if (pipe_config->splitter.enable) 3414 pipe_config->dp_m_n.data_m *= pipe_config->splitter.link_count; 3415 3416 intel_vrr_compute_config(pipe_config, conn_state); 3417 intel_dp_compute_as_sdp(intel_dp, pipe_config); 3418 intel_psr_compute_config(intel_dp, pipe_config, conn_state); 3419 intel_alpm_lobf_compute_config(intel_dp, pipe_config, conn_state); 3420 intel_dp_drrs_compute_config(connector, pipe_config, link_bpp_x16); 3421 intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state); 3422 intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state); 3423 3424 return intel_dp_tunnel_atomic_compute_stream_bw(state, intel_dp, connector, 3425 pipe_config); 3426 } 3427 3428 void intel_dp_set_link_params(struct intel_dp *intel_dp, 3429 int link_rate, int lane_count) 3430 { 3431 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set)); 3432 intel_dp->link.active = false; 3433 intel_dp->needs_modeset_retry = false; 3434 intel_dp->link_rate = link_rate; 3435 intel_dp->lane_count = lane_count; 3436 } 3437 3438 void intel_dp_reset_link_params(struct intel_dp *intel_dp) 3439 { 3440 intel_dp->link.max_lane_count = intel_dp_max_common_lane_count(intel_dp); 3441 intel_dp->link.max_rate = intel_dp_max_common_rate(intel_dp); 3442 intel_dp->link.mst_probed_lane_count = 0; 3443 intel_dp->link.mst_probed_rate = 0; 3444 intel_dp->link.retrain_disabled = false; 3445 intel_dp->link.seq_train_failures = 0; 3446 } 3447 3448 /* Enable backlight PWM and backlight PP control. */ 3449 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 3450 const struct drm_connector_state *conn_state) 3451 { 3452 struct intel_display *display = to_intel_display(crtc_state); 3453 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder)); 3454 3455 if (!intel_dp_is_edp(intel_dp)) 3456 return; 3457 3458 drm_dbg_kms(display->drm, "\n"); 3459 3460 intel_backlight_enable(crtc_state, conn_state); 3461 intel_pps_backlight_on(intel_dp); 3462 } 3463 3464 /* Disable backlight PP control and backlight PWM. */ 3465 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 3466 { 3467 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder)); 3468 struct intel_display *display = to_intel_display(intel_dp); 3469 3470 if (!intel_dp_is_edp(intel_dp)) 3471 return; 3472 3473 drm_dbg_kms(display->drm, "\n"); 3474 3475 intel_pps_backlight_off(intel_dp); 3476 intel_backlight_disable(old_conn_state); 3477 } 3478 3479 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 3480 { 3481 /* 3482 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 3483 * be capable of signalling downstream hpd with a long pulse. 3484 * Whether or not that means D3 is safe to use is not clear, 3485 * but let's assume so until proven otherwise. 3486 * 3487 * FIXME should really check all downstream ports... 3488 */ 3489 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 3490 drm_dp_is_branch(intel_dp->dpcd) && 3491 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 3492 } 3493 3494 static int 3495 write_dsc_decompression_flag(struct drm_dp_aux *aux, u8 flag, bool set) 3496 { 3497 int err; 3498 u8 val; 3499 3500 err = drm_dp_dpcd_readb(aux, DP_DSC_ENABLE, &val); 3501 if (err < 0) 3502 return err; 3503 3504 if (set) 3505 val |= flag; 3506 else 3507 val &= ~flag; 3508 3509 return drm_dp_dpcd_writeb(aux, DP_DSC_ENABLE, val); 3510 } 3511 3512 static void 3513 intel_dp_sink_set_dsc_decompression(struct intel_connector *connector, 3514 bool enable) 3515 { 3516 struct intel_display *display = to_intel_display(connector); 3517 3518 if (write_dsc_decompression_flag(connector->dp.dsc_decompression_aux, 3519 DP_DECOMPRESSION_EN, enable) < 0) 3520 drm_dbg_kms(display->drm, 3521 "Failed to %s sink decompression state\n", 3522 str_enable_disable(enable)); 3523 } 3524 3525 static void 3526 intel_dp_sink_set_dsc_passthrough(const struct intel_connector *connector, 3527 bool enable) 3528 { 3529 struct intel_display *display = to_intel_display(connector); 3530 struct drm_dp_aux *aux = connector->mst.port ? 3531 connector->mst.port->passthrough_aux : NULL; 3532 3533 if (!aux) 3534 return; 3535 3536 if (write_dsc_decompression_flag(aux, 3537 DP_DSC_PASSTHROUGH_EN, enable) < 0) 3538 drm_dbg_kms(display->drm, 3539 "Failed to %s sink compression passthrough state\n", 3540 str_enable_disable(enable)); 3541 } 3542 3543 static int intel_dp_dsc_aux_ref_count(struct intel_atomic_state *state, 3544 const struct intel_connector *connector, 3545 bool for_get_ref) 3546 { 3547 struct intel_display *display = to_intel_display(state); 3548 struct drm_connector *_connector_iter; 3549 struct drm_connector_state *old_conn_state; 3550 struct drm_connector_state *new_conn_state; 3551 int ref_count = 0; 3552 int i; 3553 3554 /* 3555 * On SST the decompression AUX device won't be shared, each connector 3556 * uses for this its own AUX targeting the sink device. 3557 */ 3558 if (!connector->mst.dp) 3559 return connector->dp.dsc_decompression_enabled ? 1 : 0; 3560 3561 for_each_oldnew_connector_in_state(&state->base, _connector_iter, 3562 old_conn_state, new_conn_state, i) { 3563 const struct intel_connector * 3564 connector_iter = to_intel_connector(_connector_iter); 3565 3566 if (connector_iter->mst.dp != connector->mst.dp) 3567 continue; 3568 3569 if (!connector_iter->dp.dsc_decompression_enabled) 3570 continue; 3571 3572 drm_WARN_ON(display->drm, 3573 (for_get_ref && !new_conn_state->crtc) || 3574 (!for_get_ref && !old_conn_state->crtc)); 3575 3576 if (connector_iter->dp.dsc_decompression_aux == 3577 connector->dp.dsc_decompression_aux) 3578 ref_count++; 3579 } 3580 3581 return ref_count; 3582 } 3583 3584 static bool intel_dp_dsc_aux_get_ref(struct intel_atomic_state *state, 3585 struct intel_connector *connector) 3586 { 3587 bool ret = intel_dp_dsc_aux_ref_count(state, connector, true) == 0; 3588 3589 connector->dp.dsc_decompression_enabled = true; 3590 3591 return ret; 3592 } 3593 3594 static bool intel_dp_dsc_aux_put_ref(struct intel_atomic_state *state, 3595 struct intel_connector *connector) 3596 { 3597 connector->dp.dsc_decompression_enabled = false; 3598 3599 return intel_dp_dsc_aux_ref_count(state, connector, false) == 0; 3600 } 3601 3602 /** 3603 * intel_dp_sink_enable_decompression - Enable DSC decompression in sink/last branch device 3604 * @state: atomic state 3605 * @connector: connector to enable the decompression for 3606 * @new_crtc_state: new state for the CRTC driving @connector 3607 * 3608 * Enable the DSC decompression if required in the %DP_DSC_ENABLE DPCD 3609 * register of the appropriate sink/branch device. On SST this is always the 3610 * sink device, whereas on MST based on each device's DSC capabilities it's 3611 * either the last branch device (enabling decompression in it) or both the 3612 * last branch device (enabling passthrough in it) and the sink device 3613 * (enabling decompression in it). 3614 */ 3615 void intel_dp_sink_enable_decompression(struct intel_atomic_state *state, 3616 struct intel_connector *connector, 3617 const struct intel_crtc_state *new_crtc_state) 3618 { 3619 struct intel_display *display = to_intel_display(state); 3620 3621 if (!new_crtc_state->dsc.compression_enable) 3622 return; 3623 3624 if (drm_WARN_ON(display->drm, 3625 !connector->dp.dsc_decompression_aux || 3626 connector->dp.dsc_decompression_enabled)) 3627 return; 3628 3629 if (!intel_dp_dsc_aux_get_ref(state, connector)) 3630 return; 3631 3632 intel_dp_sink_set_dsc_passthrough(connector, true); 3633 intel_dp_sink_set_dsc_decompression(connector, true); 3634 } 3635 3636 /** 3637 * intel_dp_sink_disable_decompression - Disable DSC decompression in sink/last branch device 3638 * @state: atomic state 3639 * @connector: connector to disable the decompression for 3640 * @old_crtc_state: old state for the CRTC driving @connector 3641 * 3642 * Disable the DSC decompression if required in the %DP_DSC_ENABLE DPCD 3643 * register of the appropriate sink/branch device, corresponding to the 3644 * sequence in intel_dp_sink_enable_decompression(). 3645 */ 3646 void intel_dp_sink_disable_decompression(struct intel_atomic_state *state, 3647 struct intel_connector *connector, 3648 const struct intel_crtc_state *old_crtc_state) 3649 { 3650 struct intel_display *display = to_intel_display(state); 3651 3652 if (!old_crtc_state->dsc.compression_enable) 3653 return; 3654 3655 if (drm_WARN_ON(display->drm, 3656 !connector->dp.dsc_decompression_aux || 3657 !connector->dp.dsc_decompression_enabled)) 3658 return; 3659 3660 if (!intel_dp_dsc_aux_put_ref(state, connector)) 3661 return; 3662 3663 intel_dp_sink_set_dsc_decompression(connector, false); 3664 intel_dp_sink_set_dsc_passthrough(connector, false); 3665 } 3666 3667 static void 3668 intel_dp_init_source_oui(struct intel_dp *intel_dp) 3669 { 3670 struct intel_display *display = to_intel_display(intel_dp); 3671 u8 oui[] = { 0x00, 0xaa, 0x01 }; 3672 u8 buf[3] = {}; 3673 3674 if (READ_ONCE(intel_dp->oui_valid)) 3675 return; 3676 3677 WRITE_ONCE(intel_dp->oui_valid, true); 3678 3679 /* 3680 * During driver init, we want to be careful and avoid changing the source OUI if it's 3681 * already set to what we want, so as to avoid clearing any state by accident 3682 */ 3683 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SOURCE_OUI, buf, sizeof(buf)) < 0) 3684 drm_dbg_kms(display->drm, "Failed to read source OUI\n"); 3685 3686 if (memcmp(oui, buf, sizeof(oui)) == 0) { 3687 /* Assume the OUI was written now. */ 3688 intel_dp->last_oui_write = jiffies; 3689 return; 3690 } 3691 3692 if (drm_dp_dpcd_write(&intel_dp->aux, DP_SOURCE_OUI, oui, sizeof(oui)) < 0) { 3693 drm_dbg_kms(display->drm, "Failed to write source OUI\n"); 3694 WRITE_ONCE(intel_dp->oui_valid, false); 3695 } 3696 3697 intel_dp->last_oui_write = jiffies; 3698 } 3699 3700 void intel_dp_invalidate_source_oui(struct intel_dp *intel_dp) 3701 { 3702 WRITE_ONCE(intel_dp->oui_valid, false); 3703 } 3704 3705 void intel_dp_wait_source_oui(struct intel_dp *intel_dp) 3706 { 3707 struct intel_display *display = to_intel_display(intel_dp); 3708 struct intel_connector *connector = intel_dp->attached_connector; 3709 3710 drm_dbg_kms(display->drm, 3711 "[CONNECTOR:%d:%s] Performing OUI wait (%u ms)\n", 3712 connector->base.base.id, connector->base.name, 3713 connector->panel.vbt.backlight.hdr_dpcd_refresh_timeout); 3714 3715 wait_remaining_ms_from_jiffies(intel_dp->last_oui_write, 3716 connector->panel.vbt.backlight.hdr_dpcd_refresh_timeout); 3717 } 3718 3719 /* If the device supports it, try to set the power state appropriately */ 3720 void intel_dp_set_power(struct intel_dp *intel_dp, u8 mode) 3721 { 3722 struct intel_display *display = to_intel_display(intel_dp); 3723 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3724 int ret, i; 3725 3726 /* Should have a valid DPCD by this point */ 3727 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 3728 return; 3729 3730 if (mode != DP_SET_POWER_D0) { 3731 if (downstream_hpd_needs_d0(intel_dp)) 3732 return; 3733 3734 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode); 3735 } else { 3736 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3737 3738 intel_lspcon_resume(dig_port); 3739 3740 /* Write the source OUI as early as possible */ 3741 intel_dp_init_source_oui(intel_dp); 3742 3743 /* 3744 * When turning on, we need to retry for 1ms to give the sink 3745 * time to wake up. 3746 */ 3747 for (i = 0; i < 3; i++) { 3748 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode); 3749 if (ret == 1) 3750 break; 3751 msleep(1); 3752 } 3753 3754 if (ret == 1 && intel_lspcon_active(dig_port)) 3755 intel_lspcon_wait_pcon_mode(dig_port); 3756 } 3757 3758 if (ret != 1) 3759 drm_dbg_kms(display->drm, 3760 "[ENCODER:%d:%s] Set power to %s failed\n", 3761 encoder->base.base.id, encoder->base.name, 3762 mode == DP_SET_POWER_D0 ? "D0" : "D3"); 3763 } 3764 3765 static bool 3766 intel_dp_get_dpcd(struct intel_dp *intel_dp); 3767 3768 /** 3769 * intel_dp_sync_state - sync the encoder state during init/resume 3770 * @encoder: intel encoder to sync 3771 * @crtc_state: state for the CRTC connected to the encoder 3772 * 3773 * Sync any state stored in the encoder wrt. HW state during driver init 3774 * and system resume. 3775 */ 3776 void intel_dp_sync_state(struct intel_encoder *encoder, 3777 const struct intel_crtc_state *crtc_state) 3778 { 3779 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3780 bool dpcd_updated = false; 3781 3782 /* 3783 * Don't clobber DPCD if it's been already read out during output 3784 * setup (eDP) or detect. 3785 */ 3786 if (crtc_state && intel_dp->dpcd[DP_DPCD_REV] == 0) { 3787 intel_dp_get_dpcd(intel_dp); 3788 dpcd_updated = true; 3789 } 3790 3791 intel_dp_tunnel_resume(intel_dp, crtc_state, dpcd_updated); 3792 3793 if (crtc_state) { 3794 intel_dp_reset_link_params(intel_dp); 3795 intel_dp_set_link_params(intel_dp, crtc_state->port_clock, crtc_state->lane_count); 3796 intel_dp->link.active = true; 3797 } 3798 } 3799 3800 bool intel_dp_initial_fastset_check(struct intel_encoder *encoder, 3801 struct intel_crtc_state *crtc_state) 3802 { 3803 struct intel_display *display = to_intel_display(encoder); 3804 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3805 bool fastset = true; 3806 3807 /* 3808 * If BIOS has set an unsupported or non-standard link rate for some 3809 * reason force an encoder recompute and full modeset. 3810 */ 3811 if (intel_dp_rate_index(intel_dp->source_rates, intel_dp->num_source_rates, 3812 crtc_state->port_clock) < 0) { 3813 drm_dbg_kms(display->drm, 3814 "[ENCODER:%d:%s] Forcing full modeset due to unsupported link rate\n", 3815 encoder->base.base.id, encoder->base.name); 3816 crtc_state->uapi.connectors_changed = true; 3817 fastset = false; 3818 } 3819 3820 /* 3821 * FIXME hack to force full modeset when DSC is being used. 3822 * 3823 * As long as we do not have full state readout and config comparison 3824 * of crtc_state->dsc, we have no way to ensure reliable fastset. 3825 * Remove once we have readout for DSC. 3826 */ 3827 if (crtc_state->dsc.compression_enable) { 3828 drm_dbg_kms(display->drm, 3829 "[ENCODER:%d:%s] Forcing full modeset due to DSC being enabled\n", 3830 encoder->base.base.id, encoder->base.name); 3831 crtc_state->uapi.mode_changed = true; 3832 fastset = false; 3833 } 3834 3835 if (CAN_PANEL_REPLAY(intel_dp)) { 3836 drm_dbg_kms(display->drm, 3837 "[ENCODER:%d:%s] Forcing full modeset to compute panel replay state\n", 3838 encoder->base.base.id, encoder->base.name); 3839 crtc_state->uapi.mode_changed = true; 3840 fastset = false; 3841 } 3842 3843 return fastset; 3844 } 3845 3846 static void intel_dp_get_pcon_dsc_cap(struct intel_dp *intel_dp) 3847 { 3848 struct intel_display *display = to_intel_display(intel_dp); 3849 3850 /* Clear the cached register set to avoid using stale values */ 3851 3852 memset(intel_dp->pcon_dsc_dpcd, 0, sizeof(intel_dp->pcon_dsc_dpcd)); 3853 3854 if (!drm_dp_is_branch(intel_dp->dpcd)) 3855 return; 3856 3857 if (drm_dp_dpcd_read(&intel_dp->aux, DP_PCON_DSC_ENCODER, 3858 intel_dp->pcon_dsc_dpcd, 3859 sizeof(intel_dp->pcon_dsc_dpcd)) < 0) 3860 drm_err(display->drm, "Failed to read DPCD register 0x%x\n", 3861 DP_PCON_DSC_ENCODER); 3862 3863 drm_dbg_kms(display->drm, "PCON ENCODER DSC DPCD: %*ph\n", 3864 (int)sizeof(intel_dp->pcon_dsc_dpcd), intel_dp->pcon_dsc_dpcd); 3865 } 3866 3867 static int intel_dp_pcon_get_frl_mask(u8 frl_bw_mask) 3868 { 3869 static const int bw_gbps[] = {9, 18, 24, 32, 40, 48}; 3870 int i; 3871 3872 for (i = ARRAY_SIZE(bw_gbps) - 1; i >= 0; i--) { 3873 if (frl_bw_mask & (1 << i)) 3874 return bw_gbps[i]; 3875 } 3876 return 0; 3877 } 3878 3879 static int intel_dp_pcon_set_frl_mask(int max_frl) 3880 { 3881 switch (max_frl) { 3882 case 48: 3883 return DP_PCON_FRL_BW_MASK_48GBPS; 3884 case 40: 3885 return DP_PCON_FRL_BW_MASK_40GBPS; 3886 case 32: 3887 return DP_PCON_FRL_BW_MASK_32GBPS; 3888 case 24: 3889 return DP_PCON_FRL_BW_MASK_24GBPS; 3890 case 18: 3891 return DP_PCON_FRL_BW_MASK_18GBPS; 3892 case 9: 3893 return DP_PCON_FRL_BW_MASK_9GBPS; 3894 } 3895 3896 return 0; 3897 } 3898 3899 static int intel_dp_hdmi_sink_max_frl(struct intel_dp *intel_dp) 3900 { 3901 struct intel_connector *connector = intel_dp->attached_connector; 3902 const struct drm_display_info *info = &connector->base.display_info; 3903 int max_frl_rate; 3904 int max_lanes, rate_per_lane; 3905 int max_dsc_lanes, dsc_rate_per_lane; 3906 3907 max_lanes = info->hdmi.max_lanes; 3908 rate_per_lane = info->hdmi.max_frl_rate_per_lane; 3909 max_frl_rate = max_lanes * rate_per_lane; 3910 3911 if (info->hdmi.dsc_cap.v_1p2) { 3912 max_dsc_lanes = info->hdmi.dsc_cap.max_lanes; 3913 dsc_rate_per_lane = info->hdmi.dsc_cap.max_frl_rate_per_lane; 3914 if (max_dsc_lanes && dsc_rate_per_lane) 3915 max_frl_rate = min(max_frl_rate, max_dsc_lanes * dsc_rate_per_lane); 3916 } 3917 3918 return max_frl_rate; 3919 } 3920 3921 static bool 3922 intel_dp_pcon_is_frl_trained(struct intel_dp *intel_dp, 3923 u8 max_frl_bw_mask, u8 *frl_trained_mask) 3924 { 3925 if (drm_dp_pcon_hdmi_link_active(&intel_dp->aux) && 3926 drm_dp_pcon_hdmi_link_mode(&intel_dp->aux, frl_trained_mask) == DP_PCON_HDMI_MODE_FRL && 3927 *frl_trained_mask >= max_frl_bw_mask) 3928 return true; 3929 3930 return false; 3931 } 3932 3933 static int intel_dp_pcon_start_frl_training(struct intel_dp *intel_dp) 3934 { 3935 struct intel_display *display = to_intel_display(intel_dp); 3936 #define TIMEOUT_FRL_READY_MS 500 3937 #define TIMEOUT_HDMI_LINK_ACTIVE_MS 1000 3938 int max_frl_bw, max_pcon_frl_bw, max_edid_frl_bw, ret; 3939 u8 max_frl_bw_mask = 0, frl_trained_mask; 3940 bool is_active; 3941 3942 max_pcon_frl_bw = intel_dp->dfp.pcon_max_frl_bw; 3943 drm_dbg(display->drm, "PCON max rate = %d Gbps\n", max_pcon_frl_bw); 3944 3945 max_edid_frl_bw = intel_dp_hdmi_sink_max_frl(intel_dp); 3946 drm_dbg(display->drm, "Sink max rate from EDID = %d Gbps\n", 3947 max_edid_frl_bw); 3948 3949 max_frl_bw = min(max_edid_frl_bw, max_pcon_frl_bw); 3950 3951 if (max_frl_bw <= 0) 3952 return -EINVAL; 3953 3954 max_frl_bw_mask = intel_dp_pcon_set_frl_mask(max_frl_bw); 3955 drm_dbg(display->drm, "MAX_FRL_BW_MASK = %u\n", max_frl_bw_mask); 3956 3957 if (intel_dp_pcon_is_frl_trained(intel_dp, max_frl_bw_mask, &frl_trained_mask)) 3958 goto frl_trained; 3959 3960 ret = drm_dp_pcon_frl_prepare(&intel_dp->aux, false); 3961 if (ret < 0) 3962 return ret; 3963 /* Wait for PCON to be FRL Ready */ 3964 ret = poll_timeout_us(is_active = drm_dp_pcon_is_frl_ready(&intel_dp->aux), 3965 is_active, 3966 1000, TIMEOUT_FRL_READY_MS * 1000, false); 3967 if (ret) 3968 return ret; 3969 3970 ret = drm_dp_pcon_frl_configure_1(&intel_dp->aux, max_frl_bw, 3971 DP_PCON_ENABLE_SEQUENTIAL_LINK); 3972 if (ret < 0) 3973 return ret; 3974 ret = drm_dp_pcon_frl_configure_2(&intel_dp->aux, max_frl_bw_mask, 3975 DP_PCON_FRL_LINK_TRAIN_NORMAL); 3976 if (ret < 0) 3977 return ret; 3978 ret = drm_dp_pcon_frl_enable(&intel_dp->aux); 3979 if (ret < 0) 3980 return ret; 3981 /* 3982 * Wait for FRL to be completed 3983 * Check if the HDMI Link is up and active. 3984 */ 3985 ret = poll_timeout_us(is_active = intel_dp_pcon_is_frl_trained(intel_dp, max_frl_bw_mask, &frl_trained_mask), 3986 is_active, 3987 1000, TIMEOUT_HDMI_LINK_ACTIVE_MS * 1000, false); 3988 if (ret) 3989 return ret; 3990 3991 frl_trained: 3992 drm_dbg(display->drm, "FRL_TRAINED_MASK = %u\n", frl_trained_mask); 3993 intel_dp->frl.trained_rate_gbps = intel_dp_pcon_get_frl_mask(frl_trained_mask); 3994 intel_dp->frl.is_trained = true; 3995 drm_dbg(display->drm, "FRL trained with : %d Gbps\n", 3996 intel_dp->frl.trained_rate_gbps); 3997 3998 return 0; 3999 } 4000 4001 static bool intel_dp_is_hdmi_2_1_sink(struct intel_dp *intel_dp) 4002 { 4003 if (drm_dp_is_branch(intel_dp->dpcd) && 4004 intel_dp_has_hdmi_sink(intel_dp) && 4005 intel_dp_hdmi_sink_max_frl(intel_dp) > 0) 4006 return true; 4007 4008 return false; 4009 } 4010 4011 static 4012 int intel_dp_pcon_set_tmds_mode(struct intel_dp *intel_dp) 4013 { 4014 int ret; 4015 u8 buf = 0; 4016 4017 /* Set PCON source control mode */ 4018 buf |= DP_PCON_ENABLE_SOURCE_CTL_MODE; 4019 4020 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); 4021 if (ret < 0) 4022 return ret; 4023 4024 /* Set HDMI LINK ENABLE */ 4025 buf |= DP_PCON_ENABLE_HDMI_LINK; 4026 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); 4027 if (ret < 0) 4028 return ret; 4029 4030 return 0; 4031 } 4032 4033 void intel_dp_check_frl_training(struct intel_dp *intel_dp) 4034 { 4035 struct intel_display *display = to_intel_display(intel_dp); 4036 4037 /* 4038 * Always go for FRL training if: 4039 * -PCON supports SRC_CTL_MODE (VESA DP2.0-HDMI2.1 PCON Spec Draft-1 Sec-7) 4040 * -sink is HDMI2.1 4041 */ 4042 if (!(intel_dp->downstream_ports[2] & DP_PCON_SOURCE_CTL_MODE) || 4043 !intel_dp_is_hdmi_2_1_sink(intel_dp) || 4044 intel_dp->frl.is_trained) 4045 return; 4046 4047 if (intel_dp_pcon_start_frl_training(intel_dp) < 0) { 4048 int ret, mode; 4049 4050 drm_dbg(display->drm, 4051 "Couldn't set FRL mode, continuing with TMDS mode\n"); 4052 ret = intel_dp_pcon_set_tmds_mode(intel_dp); 4053 mode = drm_dp_pcon_hdmi_link_mode(&intel_dp->aux, NULL); 4054 4055 if (ret < 0 || mode != DP_PCON_HDMI_MODE_TMDS) 4056 drm_dbg(display->drm, 4057 "Issue with PCON, cannot set TMDS mode\n"); 4058 } else { 4059 drm_dbg(display->drm, "FRL training Completed\n"); 4060 } 4061 } 4062 4063 static int 4064 intel_dp_pcon_dsc_enc_slice_height(const struct intel_crtc_state *crtc_state) 4065 { 4066 int vactive = crtc_state->hw.adjusted_mode.vdisplay; 4067 4068 return intel_hdmi_dsc_get_slice_height(vactive); 4069 } 4070 4071 static int 4072 intel_dp_pcon_dsc_enc_slices(struct intel_dp *intel_dp, 4073 const struct intel_crtc_state *crtc_state) 4074 { 4075 struct intel_connector *connector = intel_dp->attached_connector; 4076 const struct drm_display_info *info = &connector->base.display_info; 4077 int hdmi_throughput = info->hdmi.dsc_cap.clk_per_slice; 4078 int hdmi_max_slices = info->hdmi.dsc_cap.max_slices; 4079 int pcon_max_slices = drm_dp_pcon_dsc_max_slices(intel_dp->pcon_dsc_dpcd); 4080 int pcon_max_slice_width = drm_dp_pcon_dsc_max_slice_width(intel_dp->pcon_dsc_dpcd); 4081 4082 return intel_hdmi_dsc_get_num_slices(crtc_state, pcon_max_slices, 4083 pcon_max_slice_width, 4084 hdmi_max_slices, hdmi_throughput); 4085 } 4086 4087 static int 4088 intel_dp_pcon_dsc_enc_bpp(struct intel_dp *intel_dp, 4089 const struct intel_crtc_state *crtc_state, 4090 int num_slices, int slice_width) 4091 { 4092 struct intel_connector *connector = intel_dp->attached_connector; 4093 const struct drm_display_info *info = &connector->base.display_info; 4094 int output_format = crtc_state->output_format; 4095 bool hdmi_all_bpp = info->hdmi.dsc_cap.all_bpp; 4096 int pcon_fractional_bpp = drm_dp_pcon_dsc_bpp_incr(intel_dp->pcon_dsc_dpcd); 4097 int hdmi_max_chunk_bytes = 4098 info->hdmi.dsc_cap.total_chunk_kbytes * 1024; 4099 4100 return intel_hdmi_dsc_get_bpp(pcon_fractional_bpp, slice_width, 4101 num_slices, output_format, hdmi_all_bpp, 4102 hdmi_max_chunk_bytes); 4103 } 4104 4105 void 4106 intel_dp_pcon_dsc_configure(struct intel_dp *intel_dp, 4107 const struct intel_crtc_state *crtc_state) 4108 { 4109 struct intel_display *display = to_intel_display(intel_dp); 4110 struct intel_connector *connector = intel_dp->attached_connector; 4111 const struct drm_display_info *info; 4112 u8 pps_param[6]; 4113 int slice_height; 4114 int slice_width; 4115 int num_slices; 4116 int bits_per_pixel; 4117 int ret; 4118 bool hdmi_is_dsc_1_2; 4119 4120 if (!intel_dp_is_hdmi_2_1_sink(intel_dp)) 4121 return; 4122 4123 if (!connector) 4124 return; 4125 4126 info = &connector->base.display_info; 4127 4128 hdmi_is_dsc_1_2 = info->hdmi.dsc_cap.v_1p2; 4129 4130 if (!drm_dp_pcon_enc_is_dsc_1_2(intel_dp->pcon_dsc_dpcd) || 4131 !hdmi_is_dsc_1_2) 4132 return; 4133 4134 slice_height = intel_dp_pcon_dsc_enc_slice_height(crtc_state); 4135 if (!slice_height) 4136 return; 4137 4138 num_slices = intel_dp_pcon_dsc_enc_slices(intel_dp, crtc_state); 4139 if (!num_slices) 4140 return; 4141 4142 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, 4143 num_slices); 4144 4145 bits_per_pixel = intel_dp_pcon_dsc_enc_bpp(intel_dp, crtc_state, 4146 num_slices, slice_width); 4147 if (!bits_per_pixel) 4148 return; 4149 4150 pps_param[0] = slice_height & 0xFF; 4151 pps_param[1] = slice_height >> 8; 4152 pps_param[2] = slice_width & 0xFF; 4153 pps_param[3] = slice_width >> 8; 4154 pps_param[4] = bits_per_pixel & 0xFF; 4155 pps_param[5] = (bits_per_pixel >> 8) & 0x3; 4156 4157 ret = drm_dp_pcon_pps_override_param(&intel_dp->aux, pps_param); 4158 if (ret < 0) 4159 drm_dbg_kms(display->drm, "Failed to set pcon DSC\n"); 4160 } 4161 4162 void intel_dp_configure_protocol_converter(struct intel_dp *intel_dp, 4163 const struct intel_crtc_state *crtc_state) 4164 { 4165 struct intel_display *display = to_intel_display(intel_dp); 4166 bool ycbcr444_to_420 = false; 4167 bool rgb_to_ycbcr = false; 4168 u8 tmp; 4169 4170 if (intel_dp->dpcd[DP_DPCD_REV] < 0x13) 4171 return; 4172 4173 if (!drm_dp_is_branch(intel_dp->dpcd)) 4174 return; 4175 4176 tmp = intel_dp_has_hdmi_sink(intel_dp) ? DP_HDMI_DVI_OUTPUT_CONFIG : 0; 4177 4178 if (drm_dp_dpcd_writeb(&intel_dp->aux, 4179 DP_PROTOCOL_CONVERTER_CONTROL_0, tmp) != 1) 4180 drm_dbg_kms(display->drm, 4181 "Failed to %s protocol converter HDMI mode\n", 4182 str_enable_disable(intel_dp_has_hdmi_sink(intel_dp))); 4183 4184 if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) { 4185 switch (crtc_state->output_format) { 4186 case INTEL_OUTPUT_FORMAT_YCBCR420: 4187 break; 4188 case INTEL_OUTPUT_FORMAT_YCBCR444: 4189 ycbcr444_to_420 = true; 4190 break; 4191 case INTEL_OUTPUT_FORMAT_RGB: 4192 rgb_to_ycbcr = true; 4193 ycbcr444_to_420 = true; 4194 break; 4195 default: 4196 MISSING_CASE(crtc_state->output_format); 4197 break; 4198 } 4199 } else if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR444) { 4200 switch (crtc_state->output_format) { 4201 case INTEL_OUTPUT_FORMAT_YCBCR444: 4202 break; 4203 case INTEL_OUTPUT_FORMAT_RGB: 4204 rgb_to_ycbcr = true; 4205 break; 4206 default: 4207 MISSING_CASE(crtc_state->output_format); 4208 break; 4209 } 4210 } 4211 4212 tmp = ycbcr444_to_420 ? DP_CONVERSION_TO_YCBCR420_ENABLE : 0; 4213 4214 if (drm_dp_dpcd_writeb(&intel_dp->aux, 4215 DP_PROTOCOL_CONVERTER_CONTROL_1, tmp) != 1) 4216 drm_dbg_kms(display->drm, 4217 "Failed to %s protocol converter YCbCr 4:2:0 conversion mode\n", 4218 str_enable_disable(intel_dp->dfp.ycbcr_444_to_420)); 4219 4220 tmp = rgb_to_ycbcr ? DP_CONVERSION_BT709_RGB_YCBCR_ENABLE : 0; 4221 4222 if (drm_dp_pcon_convert_rgb_to_ycbcr(&intel_dp->aux, tmp) < 0) 4223 drm_dbg_kms(display->drm, 4224 "Failed to %s protocol converter RGB->YCbCr conversion mode\n", 4225 str_enable_disable(tmp)); 4226 } 4227 4228 static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4229 { 4230 u8 dprx = 0; 4231 4232 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4233 &dprx) != 1) 4234 return false; 4235 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4236 } 4237 4238 static void intel_dp_read_dsc_dpcd(struct drm_dp_aux *aux, 4239 u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]) 4240 { 4241 if (drm_dp_dpcd_read(aux, DP_DSC_SUPPORT, dsc_dpcd, 4242 DP_DSC_RECEIVER_CAP_SIZE) < 0) { 4243 drm_err(aux->drm_dev, 4244 "Failed to read DPCD register 0x%x\n", 4245 DP_DSC_SUPPORT); 4246 return; 4247 } 4248 4249 drm_dbg_kms(aux->drm_dev, "DSC DPCD: %*ph\n", 4250 DP_DSC_RECEIVER_CAP_SIZE, 4251 dsc_dpcd); 4252 } 4253 4254 static void init_dsc_overall_throughput_limits(struct intel_connector *connector, bool is_branch) 4255 { 4256 u8 branch_caps[DP_DSC_BRANCH_CAP_SIZE]; 4257 int line_width; 4258 4259 connector->dp.dsc_branch_caps.overall_throughput.rgb_yuv444 = INT_MAX; 4260 connector->dp.dsc_branch_caps.overall_throughput.yuv422_420 = INT_MAX; 4261 connector->dp.dsc_branch_caps.max_line_width = INT_MAX; 4262 4263 if (!is_branch) 4264 return; 4265 4266 if (drm_dp_dpcd_read_data(connector->dp.dsc_decompression_aux, 4267 DP_DSC_BRANCH_OVERALL_THROUGHPUT_0, branch_caps, 4268 sizeof(branch_caps)) != 0) 4269 return; 4270 4271 connector->dp.dsc_branch_caps.overall_throughput.rgb_yuv444 = 4272 drm_dp_dsc_branch_max_overall_throughput(branch_caps, true) ? : INT_MAX; 4273 4274 connector->dp.dsc_branch_caps.overall_throughput.yuv422_420 = 4275 drm_dp_dsc_branch_max_overall_throughput(branch_caps, false) ? : INT_MAX; 4276 4277 line_width = drm_dp_dsc_branch_max_line_width(branch_caps); 4278 connector->dp.dsc_branch_caps.max_line_width = line_width > 0 ? line_width : INT_MAX; 4279 } 4280 4281 void intel_dp_get_dsc_sink_cap(u8 dpcd_rev, 4282 const struct drm_dp_desc *desc, bool is_branch, 4283 struct intel_connector *connector) 4284 { 4285 struct intel_display *display = to_intel_display(connector); 4286 4287 /* 4288 * Clear the cached register set to avoid using stale values 4289 * for the sinks that do not support DSC. 4290 */ 4291 memset(connector->dp.dsc_dpcd, 0, sizeof(connector->dp.dsc_dpcd)); 4292 4293 /* Clear fec_capable to avoid using stale values */ 4294 connector->dp.fec_capability = 0; 4295 4296 memset(&connector->dp.dsc_branch_caps, 0, sizeof(connector->dp.dsc_branch_caps)); 4297 connector->dp.dsc_throughput_quirk = false; 4298 4299 if (dpcd_rev < DP_DPCD_REV_14) 4300 return; 4301 4302 intel_dp_read_dsc_dpcd(connector->dp.dsc_decompression_aux, 4303 connector->dp.dsc_dpcd); 4304 4305 if (drm_dp_dpcd_readb(connector->dp.dsc_decompression_aux, DP_FEC_CAPABILITY, 4306 &connector->dp.fec_capability) < 0) { 4307 drm_err(display->drm, "Failed to read FEC DPCD register\n"); 4308 return; 4309 } 4310 4311 drm_dbg_kms(display->drm, "FEC CAPABILITY: %x\n", 4312 connector->dp.fec_capability); 4313 4314 if (!(connector->dp.dsc_dpcd[0] & DP_DSC_DECOMPRESSION_IS_SUPPORTED)) 4315 return; 4316 4317 init_dsc_overall_throughput_limits(connector, is_branch); 4318 4319 /* 4320 * TODO: Move the HW rev check as well to the DRM core quirk table if 4321 * that's required after clarifying the list of affected devices. 4322 */ 4323 if (drm_dp_has_quirk(desc, DP_DPCD_QUIRK_DSC_THROUGHPUT_BPP_LIMIT) && 4324 desc->ident.hw_rev == 0x10) 4325 connector->dp.dsc_throughput_quirk = true; 4326 } 4327 4328 static void intel_edp_get_dsc_sink_cap(u8 edp_dpcd_rev, struct intel_connector *connector) 4329 { 4330 if (edp_dpcd_rev < DP_EDP_14) 4331 return; 4332 4333 intel_dp_read_dsc_dpcd(connector->dp.dsc_decompression_aux, connector->dp.dsc_dpcd); 4334 4335 if (connector->dp.dsc_dpcd[0] & DP_DSC_DECOMPRESSION_IS_SUPPORTED) 4336 init_dsc_overall_throughput_limits(connector, false); 4337 } 4338 4339 static void 4340 intel_dp_detect_dsc_caps(struct intel_dp *intel_dp, struct intel_connector *connector) 4341 { 4342 struct intel_display *display = to_intel_display(intel_dp); 4343 4344 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 4345 if (!HAS_DSC(display)) 4346 return; 4347 4348 if (intel_dp_is_edp(intel_dp)) 4349 intel_edp_get_dsc_sink_cap(intel_dp->edp_dpcd[0], 4350 connector); 4351 else 4352 intel_dp_get_dsc_sink_cap(intel_dp->dpcd[DP_DPCD_REV], 4353 &intel_dp->desc, drm_dp_is_branch(intel_dp->dpcd), 4354 connector); 4355 } 4356 4357 static void intel_edp_mso_mode_fixup(struct intel_connector *connector, 4358 struct drm_display_mode *mode) 4359 { 4360 struct intel_display *display = to_intel_display(connector); 4361 struct intel_dp *intel_dp = intel_attached_dp(connector); 4362 int n = intel_dp->mso_link_count; 4363 int overlap = intel_dp->mso_pixel_overlap; 4364 4365 if (!mode || !n) 4366 return; 4367 4368 mode->hdisplay = (mode->hdisplay - overlap) * n; 4369 mode->hsync_start = (mode->hsync_start - overlap) * n; 4370 mode->hsync_end = (mode->hsync_end - overlap) * n; 4371 mode->htotal = (mode->htotal - overlap) * n; 4372 mode->clock *= n; 4373 4374 drm_mode_set_name(mode); 4375 4376 drm_dbg_kms(display->drm, 4377 "[CONNECTOR:%d:%s] using generated MSO mode: " DRM_MODE_FMT "\n", 4378 connector->base.base.id, connector->base.name, 4379 DRM_MODE_ARG(mode)); 4380 } 4381 4382 void intel_edp_fixup_vbt_bpp(struct intel_encoder *encoder, int pipe_bpp) 4383 { 4384 struct intel_display *display = to_intel_display(encoder); 4385 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4386 struct intel_connector *connector = intel_dp->attached_connector; 4387 4388 if (connector->panel.vbt.edp.bpp && pipe_bpp > connector->panel.vbt.edp.bpp) { 4389 /* 4390 * This is a big fat ugly hack. 4391 * 4392 * Some machines in UEFI boot mode provide us a VBT that has 18 4393 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 4394 * unknown we fail to light up. Yet the same BIOS boots up with 4395 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 4396 * max, not what it tells us to use. 4397 * 4398 * Note: This will still be broken if the eDP panel is not lit 4399 * up by the BIOS, and thus we can't get the mode at module 4400 * load. 4401 */ 4402 drm_dbg_kms(display->drm, 4403 "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 4404 pipe_bpp, connector->panel.vbt.edp.bpp); 4405 connector->panel.vbt.edp.bpp = pipe_bpp; 4406 } 4407 } 4408 4409 static void intel_edp_mso_init(struct intel_dp *intel_dp) 4410 { 4411 struct intel_display *display = to_intel_display(intel_dp); 4412 struct intel_connector *connector = intel_dp->attached_connector; 4413 struct drm_display_info *info = &connector->base.display_info; 4414 u8 mso; 4415 4416 if (intel_dp->edp_dpcd[0] < DP_EDP_14) 4417 return; 4418 4419 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_EDP_MSO_LINK_CAPABILITIES, &mso) != 1) { 4420 drm_err(display->drm, "Failed to read MSO cap\n"); 4421 return; 4422 } 4423 4424 /* Valid configurations are SST or MSO 2x1, 2x2, 4x1 */ 4425 mso &= DP_EDP_MSO_NUMBER_OF_LINKS_MASK; 4426 if (mso % 2 || mso > drm_dp_max_lane_count(intel_dp->dpcd)) { 4427 drm_err(display->drm, "Invalid MSO link count cap %u\n", mso); 4428 mso = 0; 4429 } 4430 4431 if (mso) { 4432 drm_dbg_kms(display->drm, 4433 "Sink MSO %ux%u configuration, pixel overlap %u\n", 4434 mso, drm_dp_max_lane_count(intel_dp->dpcd) / mso, 4435 info->mso_pixel_overlap); 4436 if (!HAS_MSO(display)) { 4437 drm_err(display->drm, 4438 "No source MSO support, disabling\n"); 4439 mso = 0; 4440 } 4441 } 4442 4443 intel_dp->mso_link_count = mso; 4444 intel_dp->mso_pixel_overlap = mso ? info->mso_pixel_overlap : 0; 4445 } 4446 4447 static void 4448 intel_edp_set_data_override_rates(struct intel_dp *intel_dp) 4449 { 4450 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 4451 int *sink_rates = intel_dp->sink_rates; 4452 int i, count = 0; 4453 4454 for (i = 0; i < intel_dp->num_sink_rates; i++) { 4455 if (intel_bios_encoder_reject_edp_rate(encoder->devdata, 4456 intel_dp->sink_rates[i])) 4457 continue; 4458 4459 sink_rates[count++] = intel_dp->sink_rates[i]; 4460 } 4461 intel_dp->num_sink_rates = count; 4462 } 4463 4464 static void 4465 intel_edp_set_sink_rates(struct intel_dp *intel_dp) 4466 { 4467 struct intel_display *display = to_intel_display(intel_dp); 4468 4469 intel_dp->num_sink_rates = 0; 4470 4471 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4472 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4473 int i; 4474 4475 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4476 sink_rates, sizeof(sink_rates)); 4477 4478 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4479 int rate; 4480 4481 /* Value read multiplied by 200kHz gives the per-lane 4482 * link rate in kHz. The source rates are, however, 4483 * stored in terms of LS_Clk kHz. The full conversion 4484 * back to symbols is 4485 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4486 */ 4487 rate = le16_to_cpu(sink_rates[i]) * 200 / 10; 4488 4489 if (rate == 0) 4490 break; 4491 4492 /* 4493 * Some platforms cannot reliably drive HBR3 rates due to PHY limitations, 4494 * even if the sink advertises support. Reject any sink rates above HBR2 on 4495 * the known machines for stable output. 4496 */ 4497 if (rate > 540000 && 4498 intel_has_quirk(display, QUIRK_EDP_LIMIT_RATE_HBR2)) 4499 break; 4500 4501 intel_dp->sink_rates[i] = rate; 4502 } 4503 intel_dp->num_sink_rates = i; 4504 } 4505 4506 /* 4507 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4508 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4509 */ 4510 if (intel_dp->num_sink_rates) 4511 intel_dp->use_rate_select = true; 4512 else 4513 intel_dp_set_sink_rates(intel_dp); 4514 4515 intel_edp_set_data_override_rates(intel_dp); 4516 } 4517 4518 static bool 4519 intel_edp_init_dpcd(struct intel_dp *intel_dp, struct intel_connector *connector) 4520 { 4521 struct intel_display *display = to_intel_display(intel_dp); 4522 4523 /* this function is meant to be called only once */ 4524 drm_WARN_ON(display->drm, intel_dp->dpcd[DP_DPCD_REV] != 0); 4525 4526 if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd) != 0) 4527 return false; 4528 4529 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4530 drm_dp_is_branch(intel_dp->dpcd)); 4531 intel_init_dpcd_quirks(intel_dp, &intel_dp->desc.ident); 4532 4533 intel_dp->colorimetry_support = 4534 intel_dp_get_colorimetry_status(intel_dp); 4535 4536 /* 4537 * Read the eDP display control registers. 4538 * 4539 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4540 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4541 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4542 * method). The display control registers should read zero if they're 4543 * not supported anyway. 4544 */ 4545 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4546 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4547 sizeof(intel_dp->edp_dpcd)) { 4548 drm_dbg_kms(display->drm, "eDP DPCD: %*ph\n", 4549 (int)sizeof(intel_dp->edp_dpcd), 4550 intel_dp->edp_dpcd); 4551 4552 intel_dp->use_max_params = intel_dp->edp_dpcd[0] < DP_EDP_14; 4553 } 4554 4555 /* 4556 * If needed, program our source OUI so we can make various Intel-specific AUX services 4557 * available (such as HDR backlight controls) 4558 */ 4559 intel_dp_init_source_oui(intel_dp); 4560 4561 /* 4562 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4563 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4564 */ 4565 intel_psr_init_dpcd(intel_dp); 4566 4567 intel_edp_set_sink_rates(intel_dp); 4568 intel_dp_set_max_sink_lane_count(intel_dp); 4569 4570 /* Read the eDP DSC DPCD registers */ 4571 intel_dp_detect_dsc_caps(intel_dp, connector); 4572 4573 return true; 4574 } 4575 4576 static bool 4577 intel_dp_has_sink_count(struct intel_dp *intel_dp) 4578 { 4579 if (!intel_dp->attached_connector) 4580 return false; 4581 4582 return drm_dp_read_sink_count_cap(&intel_dp->attached_connector->base, 4583 intel_dp->dpcd, 4584 &intel_dp->desc); 4585 } 4586 4587 void intel_dp_update_sink_caps(struct intel_dp *intel_dp) 4588 { 4589 intel_dp_set_sink_rates(intel_dp); 4590 intel_dp_set_max_sink_lane_count(intel_dp); 4591 intel_dp_set_common_rates(intel_dp); 4592 } 4593 4594 static bool 4595 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4596 { 4597 int ret; 4598 4599 if (intel_dp_init_lttpr_and_dprx_caps(intel_dp) < 0) 4600 return false; 4601 4602 /* 4603 * Don't clobber cached eDP rates. Also skip re-reading 4604 * the OUI/ID since we know it won't change. 4605 */ 4606 if (!intel_dp_is_edp(intel_dp)) { 4607 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4608 drm_dp_is_branch(intel_dp->dpcd)); 4609 4610 intel_init_dpcd_quirks(intel_dp, &intel_dp->desc.ident); 4611 4612 intel_dp->colorimetry_support = 4613 intel_dp_get_colorimetry_status(intel_dp); 4614 4615 intel_dp_update_sink_caps(intel_dp); 4616 } 4617 4618 if (intel_dp_has_sink_count(intel_dp)) { 4619 ret = drm_dp_read_sink_count(&intel_dp->aux); 4620 if (ret < 0) 4621 return false; 4622 4623 /* 4624 * Sink count can change between short pulse hpd hence 4625 * a member variable in intel_dp will track any changes 4626 * between short pulse interrupts. 4627 */ 4628 intel_dp->sink_count = ret; 4629 4630 /* 4631 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4632 * a dongle is present but no display. Unless we require to know 4633 * if a dongle is present or not, we don't need to update 4634 * downstream port information. So, an early return here saves 4635 * time from performing other operations which are not required. 4636 */ 4637 if (!intel_dp->sink_count) 4638 return false; 4639 } 4640 4641 return drm_dp_read_downstream_info(&intel_dp->aux, intel_dp->dpcd, 4642 intel_dp->downstream_ports) == 0; 4643 } 4644 4645 static const char *intel_dp_mst_mode_str(enum drm_dp_mst_mode mst_mode) 4646 { 4647 if (mst_mode == DRM_DP_MST) 4648 return "MST"; 4649 else if (mst_mode == DRM_DP_SST_SIDEBAND_MSG) 4650 return "SST w/ sideband messaging"; 4651 else 4652 return "SST"; 4653 } 4654 4655 static enum drm_dp_mst_mode 4656 intel_dp_mst_mode_choose(struct intel_dp *intel_dp, 4657 enum drm_dp_mst_mode sink_mst_mode) 4658 { 4659 struct intel_display *display = to_intel_display(intel_dp); 4660 4661 if (!display->params.enable_dp_mst) 4662 return DRM_DP_SST; 4663 4664 if (!intel_dp_mst_source_support(intel_dp)) 4665 return DRM_DP_SST; 4666 4667 if (sink_mst_mode == DRM_DP_SST_SIDEBAND_MSG && 4668 !(intel_dp->dpcd[DP_MAIN_LINK_CHANNEL_CODING] & DP_CAP_ANSI_128B132B)) 4669 return DRM_DP_SST; 4670 4671 return sink_mst_mode; 4672 } 4673 4674 static enum drm_dp_mst_mode 4675 intel_dp_mst_detect(struct intel_dp *intel_dp) 4676 { 4677 struct intel_display *display = to_intel_display(intel_dp); 4678 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 4679 enum drm_dp_mst_mode sink_mst_mode; 4680 enum drm_dp_mst_mode mst_detect; 4681 4682 sink_mst_mode = drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd); 4683 4684 mst_detect = intel_dp_mst_mode_choose(intel_dp, sink_mst_mode); 4685 4686 drm_dbg_kms(display->drm, 4687 "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s -> enable: %s\n", 4688 encoder->base.base.id, encoder->base.name, 4689 str_yes_no(intel_dp_mst_source_support(intel_dp)), 4690 intel_dp_mst_mode_str(sink_mst_mode), 4691 str_yes_no(display->params.enable_dp_mst), 4692 intel_dp_mst_mode_str(mst_detect)); 4693 4694 return mst_detect; 4695 } 4696 4697 static void 4698 intel_dp_mst_configure(struct intel_dp *intel_dp) 4699 { 4700 if (!intel_dp_mst_source_support(intel_dp)) 4701 return; 4702 4703 intel_dp->is_mst = intel_dp->mst_detect != DRM_DP_SST; 4704 4705 if (intel_dp->is_mst) 4706 intel_dp_mst_prepare_probe(intel_dp); 4707 4708 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst.mgr, intel_dp->is_mst); 4709 4710 /* Avoid stale info on the next detect cycle. */ 4711 intel_dp->mst_detect = DRM_DP_SST; 4712 } 4713 4714 static void 4715 intel_dp_mst_disconnect(struct intel_dp *intel_dp) 4716 { 4717 struct intel_display *display = to_intel_display(intel_dp); 4718 4719 if (!intel_dp->is_mst) 4720 return; 4721 4722 drm_dbg_kms(display->drm, 4723 "MST device may have disappeared %d vs %d\n", 4724 intel_dp->is_mst, intel_dp->mst.mgr.mst_state); 4725 intel_dp->is_mst = false; 4726 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst.mgr, intel_dp->is_mst); 4727 } 4728 4729 static bool 4730 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *esi) 4731 { 4732 struct intel_display *display = to_intel_display(intel_dp); 4733 4734 /* 4735 * Display WA for HSD #13013007775: mtl/arl/lnl 4736 * Read the sink count and link service IRQ registers in separate 4737 * transactions to prevent disconnecting the sink on a TBT link 4738 * inadvertently. 4739 */ 4740 if (IS_DISPLAY_VER(display, 14, 20) && !display->platform.battlemage) { 4741 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, esi, 3) != 3) 4742 return false; 4743 4744 /* DP_SINK_COUNT_ESI + 3 == DP_LINK_SERVICE_IRQ_VECTOR_ESI0 */ 4745 return drm_dp_dpcd_readb(&intel_dp->aux, DP_LINK_SERVICE_IRQ_VECTOR_ESI0, 4746 &esi[3]) == 1; 4747 } 4748 4749 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, esi, 4) == 4; 4750 } 4751 4752 static bool intel_dp_ack_sink_irq_esi(struct intel_dp *intel_dp, u8 esi[4]) 4753 { 4754 int retry; 4755 4756 for (retry = 0; retry < 3; retry++) { 4757 if (drm_dp_dpcd_write(&intel_dp->aux, DP_SINK_COUNT_ESI + 1, 4758 &esi[1], 3) == 3) 4759 return true; 4760 } 4761 4762 return false; 4763 } 4764 4765 bool 4766 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state, 4767 const struct drm_connector_state *conn_state) 4768 { 4769 /* 4770 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication 4771 * of Color Encoding Format and Content Color Gamut], in order to 4772 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP. 4773 */ 4774 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4775 return true; 4776 4777 switch (conn_state->colorspace) { 4778 case DRM_MODE_COLORIMETRY_SYCC_601: 4779 case DRM_MODE_COLORIMETRY_OPYCC_601: 4780 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4781 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4782 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4783 return true; 4784 default: 4785 break; 4786 } 4787 4788 return false; 4789 } 4790 4791 static ssize_t intel_dp_as_sdp_pack(const struct drm_dp_as_sdp *as_sdp, 4792 struct dp_sdp *sdp, size_t size) 4793 { 4794 size_t length = sizeof(struct dp_sdp); 4795 4796 if (size < length) 4797 return -ENOSPC; 4798 4799 memset(sdp, 0, size); 4800 4801 /* Prepare AS (Adaptive Sync) SDP Header */ 4802 sdp->sdp_header.HB0 = 0; 4803 sdp->sdp_header.HB1 = as_sdp->sdp_type; 4804 sdp->sdp_header.HB2 = 0x02; 4805 sdp->sdp_header.HB3 = as_sdp->length; 4806 4807 /* Fill AS (Adaptive Sync) SDP Payload */ 4808 sdp->db[0] = as_sdp->mode; 4809 sdp->db[1] = as_sdp->vtotal & 0xFF; 4810 sdp->db[2] = (as_sdp->vtotal >> 8) & 0xFF; 4811 sdp->db[3] = as_sdp->target_rr & 0xFF; 4812 sdp->db[4] = (as_sdp->target_rr >> 8) & 0x3; 4813 4814 if (as_sdp->target_rr_divider) 4815 sdp->db[4] |= 0x20; 4816 4817 return length; 4818 } 4819 4820 static ssize_t 4821 intel_dp_hdr_metadata_infoframe_sdp_pack(struct intel_display *display, 4822 const struct hdmi_drm_infoframe *drm_infoframe, 4823 struct dp_sdp *sdp, 4824 size_t size) 4825 { 4826 size_t length = sizeof(struct dp_sdp); 4827 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE; 4828 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE]; 4829 ssize_t len; 4830 4831 if (size < length) 4832 return -ENOSPC; 4833 4834 memset(sdp, 0, size); 4835 4836 len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf)); 4837 if (len < 0) { 4838 drm_dbg_kms(display->drm, 4839 "buffer size is smaller than hdr metadata infoframe\n"); 4840 return -ENOSPC; 4841 } 4842 4843 if (len != infoframe_size) { 4844 drm_dbg_kms(display->drm, "wrong static hdr metadata size\n"); 4845 return -ENOSPC; 4846 } 4847 4848 /* 4849 * Set up the infoframe sdp packet for HDR static metadata. 4850 * Prepare VSC Header for SU as per DP 1.4a spec, 4851 * Table 2-100 and Table 2-101 4852 */ 4853 4854 /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */ 4855 sdp->sdp_header.HB0 = 0; 4856 /* 4857 * Packet Type 80h + Non-audio INFOFRAME Type value 4858 * HDMI_INFOFRAME_TYPE_DRM: 0x87 4859 * - 80h + Non-audio INFOFRAME Type value 4860 * - InfoFrame Type: 0x07 4861 * [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame] 4862 */ 4863 sdp->sdp_header.HB1 = drm_infoframe->type; 4864 /* 4865 * Least Significant Eight Bits of (Data Byte Count – 1) 4866 * infoframe_size - 1 4867 */ 4868 sdp->sdp_header.HB2 = 0x1D; 4869 /* INFOFRAME SDP Version Number */ 4870 sdp->sdp_header.HB3 = (0x13 << 2); 4871 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 4872 sdp->db[0] = drm_infoframe->version; 4873 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 4874 sdp->db[1] = drm_infoframe->length; 4875 /* 4876 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after 4877 * HDMI_INFOFRAME_HEADER_SIZE 4878 */ 4879 BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2); 4880 memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE], 4881 HDMI_DRM_INFOFRAME_SIZE); 4882 4883 /* 4884 * Size of DP infoframe sdp packet for HDR static metadata consists of 4885 * - DP SDP Header(struct dp_sdp_header): 4 bytes 4886 * - Two Data Blocks: 2 bytes 4887 * CTA Header Byte2 (INFOFRAME Version Number) 4888 * CTA Header Byte3 (Length of INFOFRAME) 4889 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes 4890 * 4891 * Prior to GEN11's GMP register size is identical to DP HDR static metadata 4892 * infoframe size. But GEN11+ has larger than that size, write_infoframe 4893 * will pad rest of the size. 4894 */ 4895 return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE; 4896 } 4897 4898 static void intel_write_dp_sdp(struct intel_encoder *encoder, 4899 const struct intel_crtc_state *crtc_state, 4900 unsigned int type) 4901 { 4902 struct intel_display *display = to_intel_display(encoder); 4903 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 4904 struct dp_sdp sdp = {}; 4905 ssize_t len; 4906 4907 if ((crtc_state->infoframes.enable & 4908 intel_hdmi_infoframe_enable(type)) == 0) 4909 return; 4910 4911 switch (type) { 4912 case DP_SDP_VSC: 4913 len = drm_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp); 4914 break; 4915 case HDMI_PACKET_TYPE_GAMUT_METADATA: 4916 len = intel_dp_hdr_metadata_infoframe_sdp_pack(display, 4917 &crtc_state->infoframes.drm.drm, 4918 &sdp, sizeof(sdp)); 4919 break; 4920 case DP_SDP_ADAPTIVE_SYNC: 4921 len = intel_dp_as_sdp_pack(&crtc_state->infoframes.as_sdp, &sdp, 4922 sizeof(sdp)); 4923 break; 4924 default: 4925 MISSING_CASE(type); 4926 return; 4927 } 4928 4929 if (drm_WARN_ON(display->drm, len < 0)) 4930 return; 4931 4932 dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len); 4933 } 4934 4935 void intel_dp_set_infoframes(struct intel_encoder *encoder, 4936 bool enable, 4937 const struct intel_crtc_state *crtc_state, 4938 const struct drm_connector_state *conn_state) 4939 { 4940 struct intel_display *display = to_intel_display(encoder); 4941 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display, crtc_state->cpu_transcoder); 4942 u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW | 4943 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW | 4944 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK; 4945 4946 if (HAS_AS_SDP(display)) 4947 dip_enable |= VIDEO_DIP_ENABLE_AS_ADL; 4948 4949 u32 val = intel_de_read(display, reg) & ~dip_enable; 4950 4951 /* TODO: Sanitize DSC enabling wrt. intel_dsc_dp_pps_write(). */ 4952 if (!enable && HAS_DSC(display)) 4953 val &= ~VDIP_ENABLE_PPS; 4954 4955 /* 4956 * This routine disables VSC DIP if the function is called 4957 * to disable SDP or if it does not have PSR 4958 */ 4959 if (!enable || !crtc_state->has_psr) 4960 val &= ~VIDEO_DIP_ENABLE_VSC_HSW; 4961 4962 intel_de_write(display, reg, val); 4963 intel_de_posting_read(display, reg); 4964 4965 if (!enable) 4966 return; 4967 4968 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC); 4969 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_ADAPTIVE_SYNC); 4970 4971 intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA); 4972 } 4973 4974 static 4975 int intel_dp_as_sdp_unpack(struct drm_dp_as_sdp *as_sdp, 4976 const void *buffer, size_t size) 4977 { 4978 const struct dp_sdp *sdp = buffer; 4979 4980 if (size < sizeof(struct dp_sdp)) 4981 return -EINVAL; 4982 4983 memset(as_sdp, 0, sizeof(*as_sdp)); 4984 4985 if (sdp->sdp_header.HB0 != 0) 4986 return -EINVAL; 4987 4988 if (sdp->sdp_header.HB1 != DP_SDP_ADAPTIVE_SYNC) 4989 return -EINVAL; 4990 4991 if (sdp->sdp_header.HB2 != 0x02) 4992 return -EINVAL; 4993 4994 if ((sdp->sdp_header.HB3 & 0x3F) != 9) 4995 return -EINVAL; 4996 4997 as_sdp->length = sdp->sdp_header.HB3 & DP_ADAPTIVE_SYNC_SDP_LENGTH; 4998 as_sdp->mode = sdp->db[0] & DP_ADAPTIVE_SYNC_SDP_OPERATION_MODE; 4999 as_sdp->vtotal = (sdp->db[2] << 8) | sdp->db[1]; 5000 as_sdp->target_rr = (u64)sdp->db[3] | ((u64)sdp->db[4] & 0x3); 5001 as_sdp->target_rr_divider = sdp->db[4] & 0x20 ? true : false; 5002 5003 return 0; 5004 } 5005 5006 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc, 5007 const void *buffer, size_t size) 5008 { 5009 const struct dp_sdp *sdp = buffer; 5010 5011 if (size < sizeof(struct dp_sdp)) 5012 return -EINVAL; 5013 5014 memset(vsc, 0, sizeof(*vsc)); 5015 5016 if (sdp->sdp_header.HB0 != 0) 5017 return -EINVAL; 5018 5019 if (sdp->sdp_header.HB1 != DP_SDP_VSC) 5020 return -EINVAL; 5021 5022 vsc->sdp_type = sdp->sdp_header.HB1; 5023 vsc->revision = sdp->sdp_header.HB2; 5024 vsc->length = sdp->sdp_header.HB3; 5025 5026 if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) || 5027 (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe) || 5028 (sdp->sdp_header.HB2 == 0x6 && sdp->sdp_header.HB3 == 0x10)) { 5029 /* 5030 * - HB2 = 0x2, HB3 = 0x8 5031 * VSC SDP supporting 3D stereo + PSR 5032 * - HB2 = 0x4, HB3 = 0xe 5033 * VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of 5034 * first scan line of the SU region (applies to eDP v1.4b 5035 * and higher). 5036 * - HB2 = 0x6, HB3 = 0x10 5037 * VSC SDP supporting 3D stereo + Panel Replay. 5038 */ 5039 return 0; 5040 } else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) { 5041 /* 5042 * - HB2 = 0x5, HB3 = 0x13 5043 * VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry 5044 * Format. 5045 */ 5046 vsc->pixelformat = (sdp->db[16] >> 4) & 0xf; 5047 vsc->colorimetry = sdp->db[16] & 0xf; 5048 vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1; 5049 5050 switch (sdp->db[17] & 0x7) { 5051 case 0x0: 5052 vsc->bpc = 6; 5053 break; 5054 case 0x1: 5055 vsc->bpc = 8; 5056 break; 5057 case 0x2: 5058 vsc->bpc = 10; 5059 break; 5060 case 0x3: 5061 vsc->bpc = 12; 5062 break; 5063 case 0x4: 5064 vsc->bpc = 16; 5065 break; 5066 default: 5067 MISSING_CASE(sdp->db[17] & 0x7); 5068 return -EINVAL; 5069 } 5070 5071 vsc->content_type = sdp->db[18] & 0x7; 5072 } else { 5073 return -EINVAL; 5074 } 5075 5076 return 0; 5077 } 5078 5079 static void 5080 intel_read_dp_as_sdp(struct intel_encoder *encoder, 5081 struct intel_crtc_state *crtc_state, 5082 struct drm_dp_as_sdp *as_sdp) 5083 { 5084 struct intel_display *display = to_intel_display(encoder); 5085 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5086 unsigned int type = DP_SDP_ADAPTIVE_SYNC; 5087 struct dp_sdp sdp = {}; 5088 int ret; 5089 5090 if ((crtc_state->infoframes.enable & 5091 intel_hdmi_infoframe_enable(type)) == 0) 5092 return; 5093 5094 dig_port->read_infoframe(encoder, crtc_state, type, &sdp, 5095 sizeof(sdp)); 5096 5097 ret = intel_dp_as_sdp_unpack(as_sdp, &sdp, sizeof(sdp)); 5098 if (ret) 5099 drm_dbg_kms(display->drm, "Failed to unpack DP AS SDP\n"); 5100 } 5101 5102 static int 5103 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe, 5104 const void *buffer, size_t size) 5105 { 5106 int ret; 5107 5108 const struct dp_sdp *sdp = buffer; 5109 5110 if (size < sizeof(struct dp_sdp)) 5111 return -EINVAL; 5112 5113 if (sdp->sdp_header.HB0 != 0) 5114 return -EINVAL; 5115 5116 if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM) 5117 return -EINVAL; 5118 5119 /* 5120 * Least Significant Eight Bits of (Data Byte Count – 1) 5121 * 1Dh (i.e., Data Byte Count = 30 bytes). 5122 */ 5123 if (sdp->sdp_header.HB2 != 0x1D) 5124 return -EINVAL; 5125 5126 /* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */ 5127 if ((sdp->sdp_header.HB3 & 0x3) != 0) 5128 return -EINVAL; 5129 5130 /* INFOFRAME SDP Version Number */ 5131 if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13) 5132 return -EINVAL; 5133 5134 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 5135 if (sdp->db[0] != 1) 5136 return -EINVAL; 5137 5138 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 5139 if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE) 5140 return -EINVAL; 5141 5142 ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2], 5143 HDMI_DRM_INFOFRAME_SIZE); 5144 5145 return ret; 5146 } 5147 5148 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder, 5149 struct intel_crtc_state *crtc_state, 5150 struct drm_dp_vsc_sdp *vsc) 5151 { 5152 struct intel_display *display = to_intel_display(encoder); 5153 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5154 unsigned int type = DP_SDP_VSC; 5155 struct dp_sdp sdp = {}; 5156 int ret; 5157 5158 if ((crtc_state->infoframes.enable & 5159 intel_hdmi_infoframe_enable(type)) == 0) 5160 return; 5161 5162 dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp)); 5163 5164 ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp)); 5165 5166 if (ret) 5167 drm_dbg_kms(display->drm, "Failed to unpack DP VSC SDP\n"); 5168 } 5169 5170 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder, 5171 struct intel_crtc_state *crtc_state, 5172 struct hdmi_drm_infoframe *drm_infoframe) 5173 { 5174 struct intel_display *display = to_intel_display(encoder); 5175 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5176 unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA; 5177 struct dp_sdp sdp = {}; 5178 int ret; 5179 5180 if ((crtc_state->infoframes.enable & 5181 intel_hdmi_infoframe_enable(type)) == 0) 5182 return; 5183 5184 dig_port->read_infoframe(encoder, crtc_state, type, &sdp, 5185 sizeof(sdp)); 5186 5187 ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp, 5188 sizeof(sdp)); 5189 5190 if (ret) 5191 drm_dbg_kms(display->drm, 5192 "Failed to unpack DP HDR Metadata Infoframe SDP\n"); 5193 } 5194 5195 void intel_read_dp_sdp(struct intel_encoder *encoder, 5196 struct intel_crtc_state *crtc_state, 5197 unsigned int type) 5198 { 5199 switch (type) { 5200 case DP_SDP_VSC: 5201 intel_read_dp_vsc_sdp(encoder, crtc_state, 5202 &crtc_state->infoframes.vsc); 5203 break; 5204 case HDMI_PACKET_TYPE_GAMUT_METADATA: 5205 intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state, 5206 &crtc_state->infoframes.drm.drm); 5207 break; 5208 case DP_SDP_ADAPTIVE_SYNC: 5209 intel_read_dp_as_sdp(encoder, crtc_state, 5210 &crtc_state->infoframes.as_sdp); 5211 break; 5212 default: 5213 MISSING_CASE(type); 5214 break; 5215 } 5216 } 5217 5218 static bool intel_dp_link_ok(struct intel_dp *intel_dp, 5219 u8 link_status[DP_LINK_STATUS_SIZE]) 5220 { 5221 struct intel_display *display = to_intel_display(intel_dp); 5222 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 5223 bool uhbr = intel_dp->link_rate >= 1000000; 5224 bool ok; 5225 5226 if (uhbr) 5227 ok = drm_dp_128b132b_lane_channel_eq_done(link_status, 5228 intel_dp->lane_count); 5229 else 5230 ok = drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 5231 5232 if (ok) 5233 return true; 5234 5235 intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status); 5236 drm_dbg_kms(display->drm, 5237 "[ENCODER:%d:%s] %s link not ok, retraining\n", 5238 encoder->base.base.id, encoder->base.name, 5239 uhbr ? "128b/132b" : "8b/10b"); 5240 5241 return false; 5242 } 5243 5244 static void 5245 intel_dp_mst_hpd_irq(struct intel_dp *intel_dp, u8 *esi, u8 *ack) 5246 { 5247 bool handled = false; 5248 5249 drm_dp_mst_hpd_irq_handle_event(&intel_dp->mst.mgr, esi, ack, &handled); 5250 5251 if (esi[1] & DP_CP_IRQ) { 5252 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 5253 ack[1] |= DP_CP_IRQ; 5254 } 5255 } 5256 5257 static bool intel_dp_mst_link_status(struct intel_dp *intel_dp) 5258 { 5259 struct intel_display *display = to_intel_display(intel_dp); 5260 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 5261 u8 link_status[DP_LINK_STATUS_SIZE] = {}; 5262 const size_t esi_link_status_size = DP_LINK_STATUS_SIZE - 2; 5263 5264 if (drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS_ESI, link_status, 5265 esi_link_status_size) != esi_link_status_size) { 5266 drm_err(display->drm, 5267 "[ENCODER:%d:%s] Failed to read link status\n", 5268 encoder->base.base.id, encoder->base.name); 5269 return false; 5270 } 5271 5272 return intel_dp_link_ok(intel_dp, link_status); 5273 } 5274 5275 /** 5276 * intel_dp_check_mst_status - service any pending MST interrupts, check link status 5277 * @intel_dp: Intel DP struct 5278 * 5279 * Read any pending MST interrupts, call MST core to handle these and ack the 5280 * interrupts. Check if the main and AUX link state is ok. 5281 * 5282 * Returns: 5283 * - %true if pending interrupts were serviced (or no interrupts were 5284 * pending) w/o detecting an error condition. 5285 * - %false if an error condition - like AUX failure or a loss of link - is 5286 * detected, or another condition - like a DP tunnel BW state change - needs 5287 * servicing from the hotplug work. 5288 */ 5289 static bool 5290 intel_dp_check_mst_status(struct intel_dp *intel_dp) 5291 { 5292 struct intel_display *display = to_intel_display(intel_dp); 5293 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5294 struct intel_encoder *encoder = &dig_port->base; 5295 bool link_ok = true; 5296 bool reprobe_needed = false; 5297 5298 for (;;) { 5299 u8 esi[4] = {}; 5300 u8 ack[4] = {}; 5301 5302 if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) { 5303 drm_dbg_kms(display->drm, 5304 "failed to get ESI - device may have failed\n"); 5305 link_ok = false; 5306 5307 break; 5308 } 5309 5310 drm_dbg_kms(display->drm, "DPRX ESI: %4ph\n", esi); 5311 5312 if (intel_dp_mst_active_streams(intel_dp) > 0 && link_ok && 5313 esi[3] & LINK_STATUS_CHANGED) { 5314 if (!intel_dp_mst_link_status(intel_dp)) 5315 link_ok = false; 5316 ack[3] |= LINK_STATUS_CHANGED; 5317 } 5318 5319 intel_dp_mst_hpd_irq(intel_dp, esi, ack); 5320 5321 if (esi[3] & DP_TUNNELING_IRQ) { 5322 if (drm_dp_tunnel_handle_irq(display->dp_tunnel_mgr, 5323 &intel_dp->aux)) 5324 reprobe_needed = true; 5325 ack[3] |= DP_TUNNELING_IRQ; 5326 } 5327 5328 if (mem_is_zero(ack, sizeof(ack))) 5329 break; 5330 5331 if (!intel_dp_ack_sink_irq_esi(intel_dp, ack)) 5332 drm_dbg_kms(display->drm, "Failed to ack ESI\n"); 5333 5334 if (ack[1] & (DP_DOWN_REP_MSG_RDY | DP_UP_REQ_MSG_RDY)) 5335 drm_dp_mst_hpd_irq_send_new_request(&intel_dp->mst.mgr); 5336 } 5337 5338 if (!link_ok || intel_dp->link.force_retrain) 5339 intel_encoder_link_check_queue_work(encoder, 0); 5340 5341 return !reprobe_needed; 5342 } 5343 5344 static void 5345 intel_dp_handle_hdmi_link_status_change(struct intel_dp *intel_dp) 5346 { 5347 bool is_active; 5348 u8 buf = 0; 5349 5350 is_active = drm_dp_pcon_hdmi_link_active(&intel_dp->aux); 5351 if (intel_dp->frl.is_trained && !is_active) { 5352 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf) < 0) 5353 return; 5354 5355 buf &= ~DP_PCON_ENABLE_HDMI_LINK; 5356 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf) < 0) 5357 return; 5358 5359 drm_dp_pcon_hdmi_frl_link_error_count(&intel_dp->aux, &intel_dp->attached_connector->base); 5360 5361 intel_dp->frl.is_trained = false; 5362 5363 /* Restart FRL training or fall back to TMDS mode */ 5364 intel_dp_check_frl_training(intel_dp); 5365 } 5366 } 5367 5368 static bool 5369 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 5370 { 5371 u8 link_status[DP_LINK_STATUS_SIZE]; 5372 5373 if (!intel_dp->link.active) 5374 return false; 5375 5376 /* 5377 * While PSR source HW is enabled, it will control main-link sending 5378 * frames, enabling and disabling it so trying to do a retrain will fail 5379 * as the link would or not be on or it could mix training patterns 5380 * and frame data at the same time causing retrain to fail. 5381 * Also when exiting PSR, HW will retrain the link anyways fixing 5382 * any link status error. 5383 */ 5384 if (intel_psr_enabled(intel_dp)) 5385 return false; 5386 5387 if (intel_dp->link.force_retrain) 5388 return true; 5389 5390 if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, DP_PHY_DPRX, 5391 link_status) < 0) 5392 return false; 5393 5394 /* 5395 * Validate the cached values of intel_dp->link_rate and 5396 * intel_dp->lane_count before attempting to retrain. 5397 * 5398 * FIXME would be nice to user the crtc state here, but since 5399 * we need to call this from the short HPD handler that seems 5400 * a bit hard. 5401 */ 5402 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 5403 intel_dp->lane_count)) 5404 return false; 5405 5406 if (intel_dp->link.retrain_disabled) 5407 return false; 5408 5409 if (intel_dp->link.seq_train_failures) 5410 return true; 5411 5412 /* Retrain if link not ok */ 5413 return !intel_dp_link_ok(intel_dp, link_status) && 5414 !intel_psr_link_ok(intel_dp); 5415 } 5416 5417 bool intel_dp_has_connector(struct intel_dp *intel_dp, 5418 const struct drm_connector_state *conn_state) 5419 { 5420 struct intel_display *display = to_intel_display(intel_dp); 5421 struct intel_encoder *encoder; 5422 enum pipe pipe; 5423 5424 if (!conn_state->best_encoder) 5425 return false; 5426 5427 /* SST */ 5428 encoder = &dp_to_dig_port(intel_dp)->base; 5429 if (conn_state->best_encoder == &encoder->base) 5430 return true; 5431 5432 /* MST */ 5433 for_each_pipe(display, pipe) { 5434 encoder = &intel_dp->mst.stream_encoders[pipe]->base; 5435 if (conn_state->best_encoder == &encoder->base) 5436 return true; 5437 } 5438 5439 return false; 5440 } 5441 5442 static void wait_for_connector_hw_done(const struct drm_connector_state *conn_state) 5443 { 5444 struct intel_connector *connector = to_intel_connector(conn_state->connector); 5445 struct intel_display *display = to_intel_display(connector); 5446 5447 drm_modeset_lock_assert_held(&display->drm->mode_config.connection_mutex); 5448 5449 if (!conn_state->commit) 5450 return; 5451 5452 drm_WARN_ON(display->drm, 5453 !wait_for_completion_timeout(&conn_state->commit->hw_done, 5454 msecs_to_jiffies(5000))); 5455 } 5456 5457 int intel_dp_get_active_pipes(struct intel_dp *intel_dp, 5458 struct drm_modeset_acquire_ctx *ctx, 5459 u8 *pipe_mask) 5460 { 5461 struct intel_display *display = to_intel_display(intel_dp); 5462 struct drm_connector_list_iter conn_iter; 5463 struct intel_connector *connector; 5464 int ret = 0; 5465 5466 *pipe_mask = 0; 5467 5468 drm_connector_list_iter_begin(display->drm, &conn_iter); 5469 for_each_intel_connector_iter(connector, &conn_iter) { 5470 struct drm_connector_state *conn_state = 5471 connector->base.state; 5472 struct intel_crtc_state *crtc_state; 5473 struct intel_crtc *crtc; 5474 5475 if (!intel_dp_has_connector(intel_dp, conn_state)) 5476 continue; 5477 5478 crtc = to_intel_crtc(conn_state->crtc); 5479 if (!crtc) 5480 continue; 5481 5482 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 5483 if (ret) 5484 break; 5485 5486 crtc_state = to_intel_crtc_state(crtc->base.state); 5487 5488 drm_WARN_ON(display->drm, 5489 !intel_crtc_has_dp_encoder(crtc_state)); 5490 5491 if (!crtc_state->hw.active) 5492 continue; 5493 5494 wait_for_connector_hw_done(conn_state); 5495 5496 *pipe_mask |= BIT(crtc->pipe); 5497 } 5498 drm_connector_list_iter_end(&conn_iter); 5499 5500 return ret; 5501 } 5502 5503 void intel_dp_flush_connector_commits(struct intel_connector *connector) 5504 { 5505 wait_for_connector_hw_done(connector->base.state); 5506 } 5507 5508 static bool intel_dp_is_connected(struct intel_dp *intel_dp) 5509 { 5510 struct intel_connector *connector = intel_dp->attached_connector; 5511 5512 return connector->base.status == connector_status_connected || 5513 intel_dp->is_mst; 5514 } 5515 5516 static int intel_dp_retrain_link(struct intel_encoder *encoder, 5517 struct drm_modeset_acquire_ctx *ctx) 5518 { 5519 struct intel_display *display = to_intel_display(encoder); 5520 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5521 u8 pipe_mask; 5522 int ret; 5523 5524 if (!intel_dp_is_connected(intel_dp)) 5525 return 0; 5526 5527 ret = drm_modeset_lock(&display->drm->mode_config.connection_mutex, 5528 ctx); 5529 if (ret) 5530 return ret; 5531 5532 if (!intel_dp_needs_link_retrain(intel_dp)) 5533 return 0; 5534 5535 ret = intel_dp_get_active_pipes(intel_dp, ctx, &pipe_mask); 5536 if (ret) 5537 return ret; 5538 5539 if (pipe_mask == 0) 5540 return 0; 5541 5542 if (!intel_dp_needs_link_retrain(intel_dp)) 5543 return 0; 5544 5545 drm_dbg_kms(display->drm, 5546 "[ENCODER:%d:%s] retraining link (forced %s)\n", 5547 encoder->base.base.id, encoder->base.name, 5548 str_yes_no(intel_dp->link.force_retrain)); 5549 5550 ret = intel_modeset_commit_pipes(display, pipe_mask, ctx); 5551 if (ret == -EDEADLK) 5552 return ret; 5553 5554 intel_dp->link.force_retrain = false; 5555 5556 if (ret) 5557 drm_dbg_kms(display->drm, 5558 "[ENCODER:%d:%s] link retraining failed: %pe\n", 5559 encoder->base.base.id, encoder->base.name, 5560 ERR_PTR(ret)); 5561 5562 return ret; 5563 } 5564 5565 void intel_dp_link_check(struct intel_encoder *encoder) 5566 { 5567 struct drm_modeset_acquire_ctx ctx; 5568 int ret; 5569 5570 intel_modeset_lock_ctx_retry(&ctx, NULL, 0, ret) 5571 ret = intel_dp_retrain_link(encoder, &ctx); 5572 } 5573 5574 void intel_dp_check_link_state(struct intel_dp *intel_dp) 5575 { 5576 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5577 struct intel_encoder *encoder = &dig_port->base; 5578 5579 if (!intel_dp_is_connected(intel_dp)) 5580 return; 5581 5582 if (!intel_dp_needs_link_retrain(intel_dp)) 5583 return; 5584 5585 intel_encoder_link_check_queue_work(encoder, 0); 5586 } 5587 5588 static void intel_dp_check_device_service_irq(struct intel_dp *intel_dp) 5589 { 5590 struct intel_display *display = to_intel_display(intel_dp); 5591 u8 val; 5592 5593 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 5594 return; 5595 5596 if (drm_dp_dpcd_readb(&intel_dp->aux, 5597 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 5598 return; 5599 5600 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 5601 5602 if (val & DP_AUTOMATED_TEST_REQUEST) 5603 intel_dp_test_request(intel_dp); 5604 5605 if (val & DP_CP_IRQ) 5606 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 5607 5608 if (val & DP_SINK_SPECIFIC_IRQ) 5609 drm_dbg_kms(display->drm, "Sink specific irq unhandled\n"); 5610 } 5611 5612 static bool intel_dp_check_link_service_irq(struct intel_dp *intel_dp) 5613 { 5614 struct intel_display *display = to_intel_display(intel_dp); 5615 bool reprobe_needed = false; 5616 u8 val; 5617 5618 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 5619 return false; 5620 5621 if (drm_dp_dpcd_readb(&intel_dp->aux, 5622 DP_LINK_SERVICE_IRQ_VECTOR_ESI0, &val) != 1 || !val) 5623 return false; 5624 5625 if ((val & DP_TUNNELING_IRQ) && 5626 drm_dp_tunnel_handle_irq(display->dp_tunnel_mgr, 5627 &intel_dp->aux)) 5628 reprobe_needed = true; 5629 5630 if (drm_dp_dpcd_writeb(&intel_dp->aux, 5631 DP_LINK_SERVICE_IRQ_VECTOR_ESI0, val) != 1) 5632 return reprobe_needed; 5633 5634 if (val & HDMI_LINK_STATUS_CHANGED) 5635 intel_dp_handle_hdmi_link_status_change(intel_dp); 5636 5637 return reprobe_needed; 5638 } 5639 5640 /* 5641 * According to DP spec 5642 * 5.1.2: 5643 * 1. Read DPCD 5644 * 2. Configure link according to Receiver Capabilities 5645 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 5646 * 4. Check link status on receipt of hot-plug interrupt 5647 * 5648 * intel_dp_short_pulse - handles short pulse interrupts 5649 * when full detection is not required. 5650 * Returns %true if short pulse is handled and full detection 5651 * is NOT required and %false otherwise. 5652 */ 5653 static bool 5654 intel_dp_short_pulse(struct intel_dp *intel_dp) 5655 { 5656 u8 old_sink_count = intel_dp->sink_count; 5657 bool reprobe_needed = false; 5658 bool ret; 5659 5660 intel_dp_test_reset(intel_dp); 5661 5662 /* 5663 * Now read the DPCD to see if it's actually running 5664 * If the current value of sink count doesn't match with 5665 * the value that was stored earlier or dpcd read failed 5666 * we need to do full detection 5667 */ 5668 ret = intel_dp_get_dpcd(intel_dp); 5669 5670 if ((old_sink_count != intel_dp->sink_count) || !ret) { 5671 /* No need to proceed if we are going to do full detect */ 5672 return false; 5673 } 5674 5675 intel_dp_check_device_service_irq(intel_dp); 5676 reprobe_needed = intel_dp_check_link_service_irq(intel_dp); 5677 5678 /* Handle CEC interrupts, if any */ 5679 drm_dp_cec_irq(&intel_dp->aux); 5680 5681 intel_dp_check_link_state(intel_dp); 5682 5683 intel_psr_short_pulse(intel_dp); 5684 5685 if (intel_alpm_get_error(intel_dp)) { 5686 intel_alpm_disable(intel_dp); 5687 intel_dp->alpm.sink_alpm_error = true; 5688 } 5689 5690 if (intel_dp_test_short_pulse(intel_dp)) 5691 reprobe_needed = true; 5692 5693 return !reprobe_needed; 5694 } 5695 5696 /* XXX this is probably wrong for multiple downstream ports */ 5697 static enum drm_connector_status 5698 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 5699 { 5700 struct intel_display *display = to_intel_display(intel_dp); 5701 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5702 u8 *dpcd = intel_dp->dpcd; 5703 u8 type; 5704 5705 if (drm_WARN_ON(display->drm, intel_dp_is_edp(intel_dp))) 5706 return connector_status_connected; 5707 5708 intel_lspcon_resume(dig_port); 5709 5710 if (!intel_dp_get_dpcd(intel_dp)) 5711 return connector_status_disconnected; 5712 5713 intel_dp->mst_detect = intel_dp_mst_detect(intel_dp); 5714 5715 /* if there's no downstream port, we're done */ 5716 if (!drm_dp_is_branch(dpcd)) 5717 return connector_status_connected; 5718 5719 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 5720 if (intel_dp_has_sink_count(intel_dp) && 5721 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 5722 return intel_dp->sink_count ? 5723 connector_status_connected : connector_status_disconnected; 5724 } 5725 5726 if (intel_dp->mst_detect == DRM_DP_MST) 5727 return connector_status_connected; 5728 5729 /* If no HPD, poke DDC gently */ 5730 if (drm_probe_ddc(&intel_dp->aux.ddc)) 5731 return connector_status_connected; 5732 5733 /* Well we tried, say unknown for unreliable port types */ 5734 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 5735 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 5736 if (type == DP_DS_PORT_TYPE_VGA || 5737 type == DP_DS_PORT_TYPE_NON_EDID) 5738 return connector_status_unknown; 5739 } else { 5740 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 5741 DP_DWN_STRM_PORT_TYPE_MASK; 5742 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 5743 type == DP_DWN_STRM_PORT_TYPE_OTHER) 5744 return connector_status_unknown; 5745 } 5746 5747 /* Anything else is out of spec, warn and ignore */ 5748 drm_dbg_kms(display->drm, "Broken DP branch device, ignoring\n"); 5749 return connector_status_disconnected; 5750 } 5751 5752 static enum drm_connector_status 5753 edp_detect(struct intel_dp *intel_dp) 5754 { 5755 return connector_status_connected; 5756 } 5757 5758 void intel_digital_port_lock(struct intel_encoder *encoder) 5759 { 5760 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5761 5762 if (dig_port->lock) 5763 dig_port->lock(dig_port); 5764 } 5765 5766 void intel_digital_port_unlock(struct intel_encoder *encoder) 5767 { 5768 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5769 5770 if (dig_port->unlock) 5771 dig_port->unlock(dig_port); 5772 } 5773 5774 /* 5775 * intel_digital_port_connected_locked - is the specified port connected? 5776 * @encoder: intel_encoder 5777 * 5778 * In cases where there's a connector physically connected but it can't be used 5779 * by our hardware we also return false, since the rest of the driver should 5780 * pretty much treat the port as disconnected. This is relevant for type-C 5781 * (starting on ICL) where there's ownership involved. 5782 * 5783 * The caller must hold the lock acquired by calling intel_digital_port_lock() 5784 * when calling this function. 5785 * 5786 * Return %true if port is connected, %false otherwise. 5787 */ 5788 bool intel_digital_port_connected_locked(struct intel_encoder *encoder) 5789 { 5790 struct intel_display *display = to_intel_display(encoder); 5791 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5792 bool is_glitch_free = intel_tc_port_handles_hpd_glitches(dig_port); 5793 bool is_connected = false; 5794 intel_wakeref_t wakeref; 5795 5796 with_intel_display_power(display, POWER_DOMAIN_DISPLAY_CORE, wakeref) { 5797 poll_timeout_us(is_connected = dig_port->connected(encoder), 5798 is_connected || is_glitch_free, 5799 30, 4000, false); 5800 } 5801 5802 return is_connected; 5803 } 5804 5805 bool intel_digital_port_connected(struct intel_encoder *encoder) 5806 { 5807 bool ret; 5808 5809 intel_digital_port_lock(encoder); 5810 ret = intel_digital_port_connected_locked(encoder); 5811 intel_digital_port_unlock(encoder); 5812 5813 return ret; 5814 } 5815 5816 static const struct drm_edid * 5817 intel_dp_get_edid(struct intel_dp *intel_dp) 5818 { 5819 struct intel_connector *connector = intel_dp->attached_connector; 5820 const struct drm_edid *fixed_edid = connector->panel.fixed_edid; 5821 5822 /* Use panel fixed edid if we have one */ 5823 if (fixed_edid) { 5824 /* invalid edid */ 5825 if (IS_ERR(fixed_edid)) 5826 return NULL; 5827 5828 return drm_edid_dup(fixed_edid); 5829 } 5830 5831 return drm_edid_read_ddc(&connector->base, &intel_dp->aux.ddc); 5832 } 5833 5834 static void 5835 intel_dp_update_dfp(struct intel_dp *intel_dp, 5836 const struct drm_edid *drm_edid) 5837 { 5838 struct intel_display *display = to_intel_display(intel_dp); 5839 struct intel_connector *connector = intel_dp->attached_connector; 5840 5841 intel_dp->dfp.max_bpc = 5842 drm_dp_downstream_max_bpc(intel_dp->dpcd, 5843 intel_dp->downstream_ports, drm_edid); 5844 5845 intel_dp->dfp.max_dotclock = 5846 drm_dp_downstream_max_dotclock(intel_dp->dpcd, 5847 intel_dp->downstream_ports); 5848 5849 intel_dp->dfp.min_tmds_clock = 5850 drm_dp_downstream_min_tmds_clock(intel_dp->dpcd, 5851 intel_dp->downstream_ports, 5852 drm_edid); 5853 intel_dp->dfp.max_tmds_clock = 5854 drm_dp_downstream_max_tmds_clock(intel_dp->dpcd, 5855 intel_dp->downstream_ports, 5856 drm_edid); 5857 5858 intel_dp->dfp.pcon_max_frl_bw = 5859 drm_dp_get_pcon_max_frl_bw(intel_dp->dpcd, 5860 intel_dp->downstream_ports); 5861 5862 drm_dbg_kms(display->drm, 5863 "[CONNECTOR:%d:%s] DFP max bpc %d, max dotclock %d, TMDS clock %d-%d, PCON Max FRL BW %dGbps\n", 5864 connector->base.base.id, connector->base.name, 5865 intel_dp->dfp.max_bpc, 5866 intel_dp->dfp.max_dotclock, 5867 intel_dp->dfp.min_tmds_clock, 5868 intel_dp->dfp.max_tmds_clock, 5869 intel_dp->dfp.pcon_max_frl_bw); 5870 5871 intel_dp_get_pcon_dsc_cap(intel_dp); 5872 } 5873 5874 static bool 5875 intel_dp_can_ycbcr420(struct intel_dp *intel_dp) 5876 { 5877 if (source_can_output(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR420) && 5878 (!drm_dp_is_branch(intel_dp->dpcd) || intel_dp->dfp.ycbcr420_passthrough)) 5879 return true; 5880 5881 if (source_can_output(intel_dp, INTEL_OUTPUT_FORMAT_RGB) && 5882 dfp_can_convert_from_rgb(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR420)) 5883 return true; 5884 5885 if (source_can_output(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR444) && 5886 dfp_can_convert_from_ycbcr444(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR420)) 5887 return true; 5888 5889 return false; 5890 } 5891 5892 static void 5893 intel_dp_update_420(struct intel_dp *intel_dp) 5894 { 5895 struct intel_display *display = to_intel_display(intel_dp); 5896 struct intel_connector *connector = intel_dp->attached_connector; 5897 5898 intel_dp->dfp.ycbcr420_passthrough = 5899 drm_dp_downstream_420_passthrough(intel_dp->dpcd, 5900 intel_dp->downstream_ports); 5901 /* on-board LSPCON always assumed to support 4:4:4->4:2:0 conversion */ 5902 intel_dp->dfp.ycbcr_444_to_420 = 5903 intel_lspcon_active(dp_to_dig_port(intel_dp)) || 5904 drm_dp_downstream_444_to_420_conversion(intel_dp->dpcd, 5905 intel_dp->downstream_ports); 5906 intel_dp->dfp.rgb_to_ycbcr = 5907 drm_dp_downstream_rgb_to_ycbcr_conversion(intel_dp->dpcd, 5908 intel_dp->downstream_ports, 5909 DP_DS_HDMI_BT709_RGB_YCBCR_CONV); 5910 5911 connector->base.ycbcr_420_allowed = intel_dp_can_ycbcr420(intel_dp); 5912 5913 drm_dbg_kms(display->drm, 5914 "[CONNECTOR:%d:%s] RGB->YcbCr conversion? %s, YCbCr 4:2:0 allowed? %s, YCbCr 4:4:4->4:2:0 conversion? %s\n", 5915 connector->base.base.id, connector->base.name, 5916 str_yes_no(intel_dp->dfp.rgb_to_ycbcr), 5917 str_yes_no(connector->base.ycbcr_420_allowed), 5918 str_yes_no(intel_dp->dfp.ycbcr_444_to_420)); 5919 } 5920 5921 static void 5922 intel_dp_set_edid(struct intel_dp *intel_dp) 5923 { 5924 struct intel_display *display = to_intel_display(intel_dp); 5925 struct intel_connector *connector = intel_dp->attached_connector; 5926 const struct drm_edid *drm_edid; 5927 bool vrr_capable; 5928 5929 intel_dp_unset_edid(intel_dp); 5930 drm_edid = intel_dp_get_edid(intel_dp); 5931 connector->detect_edid = drm_edid; 5932 5933 /* Below we depend on display info having been updated */ 5934 drm_edid_connector_update(&connector->base, drm_edid); 5935 5936 vrr_capable = intel_vrr_is_capable(connector); 5937 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] VRR capable: %s\n", 5938 connector->base.base.id, connector->base.name, str_yes_no(vrr_capable)); 5939 drm_connector_set_vrr_capable_property(&connector->base, vrr_capable); 5940 5941 intel_dp_update_dfp(intel_dp, drm_edid); 5942 intel_dp_update_420(intel_dp); 5943 5944 drm_dp_cec_attach(&intel_dp->aux, 5945 connector->base.display_info.source_physical_address); 5946 } 5947 5948 static void 5949 intel_dp_unset_edid(struct intel_dp *intel_dp) 5950 { 5951 struct intel_connector *connector = intel_dp->attached_connector; 5952 5953 drm_dp_cec_unset_edid(&intel_dp->aux); 5954 drm_edid_free(connector->detect_edid); 5955 connector->detect_edid = NULL; 5956 5957 intel_dp->dfp.max_bpc = 0; 5958 intel_dp->dfp.max_dotclock = 0; 5959 intel_dp->dfp.min_tmds_clock = 0; 5960 intel_dp->dfp.max_tmds_clock = 0; 5961 5962 intel_dp->dfp.pcon_max_frl_bw = 0; 5963 5964 intel_dp->dfp.ycbcr_444_to_420 = false; 5965 connector->base.ycbcr_420_allowed = false; 5966 5967 drm_connector_set_vrr_capable_property(&connector->base, 5968 false); 5969 } 5970 5971 static void 5972 intel_dp_detect_sdp_caps(struct intel_dp *intel_dp) 5973 { 5974 struct intel_display *display = to_intel_display(intel_dp); 5975 5976 intel_dp->as_sdp_supported = HAS_AS_SDP(display) && 5977 drm_dp_as_sdp_supported(&intel_dp->aux, intel_dp->dpcd); 5978 } 5979 5980 static bool intel_dp_needs_dpcd_probe(struct intel_dp *intel_dp, bool force_on_external) 5981 { 5982 struct intel_connector *connector = intel_dp->attached_connector; 5983 5984 if (intel_dp_is_edp(intel_dp)) 5985 return false; 5986 5987 if (force_on_external) 5988 return true; 5989 5990 if (intel_dp->is_mst) 5991 return false; 5992 5993 return drm_edid_has_quirk(&connector->base, DRM_EDID_QUIRK_DP_DPCD_PROBE); 5994 } 5995 5996 void intel_dp_dpcd_set_probe(struct intel_dp *intel_dp, bool force_on_external) 5997 { 5998 drm_dp_dpcd_set_probe(&intel_dp->aux, 5999 intel_dp_needs_dpcd_probe(intel_dp, force_on_external)); 6000 } 6001 6002 static int 6003 intel_dp_detect(struct drm_connector *_connector, 6004 struct drm_modeset_acquire_ctx *ctx, 6005 bool force) 6006 { 6007 struct intel_display *display = to_intel_display(_connector->dev); 6008 struct intel_connector *connector = to_intel_connector(_connector); 6009 struct intel_dp *intel_dp = intel_attached_dp(connector); 6010 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6011 struct intel_encoder *encoder = &dig_port->base; 6012 enum drm_connector_status status; 6013 int ret; 6014 6015 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n", 6016 connector->base.base.id, connector->base.name); 6017 drm_WARN_ON(display->drm, 6018 !drm_modeset_is_locked(&display->drm->mode_config.connection_mutex)); 6019 6020 if (!intel_display_device_enabled(display)) 6021 return connector_status_disconnected; 6022 6023 if (!intel_display_driver_check_access(display)) 6024 return connector->base.status; 6025 6026 intel_dp_flush_connector_commits(connector); 6027 6028 intel_pps_vdd_on(intel_dp); 6029 6030 /* Can't disconnect eDP */ 6031 if (intel_dp_is_edp(intel_dp)) 6032 status = edp_detect(intel_dp); 6033 else if (intel_digital_port_connected(encoder)) 6034 status = intel_dp_detect_dpcd(intel_dp); 6035 else 6036 status = connector_status_disconnected; 6037 6038 if (status != connector_status_disconnected && 6039 !intel_dp_mst_verify_dpcd_state(intel_dp)) 6040 /* 6041 * This requires retrying detection for instance to re-enable 6042 * the MST mode that got reset via a long HPD pulse. The retry 6043 * will happen either via the hotplug handler's retry logic, 6044 * ensured by setting the connector here to SST/disconnected, 6045 * or via a userspace connector probing in response to the 6046 * hotplug uevent sent when removing the MST connectors. 6047 */ 6048 status = connector_status_disconnected; 6049 6050 if (status == connector_status_disconnected) { 6051 intel_dp_test_reset(intel_dp); 6052 memset(connector->dp.dsc_dpcd, 0, sizeof(connector->dp.dsc_dpcd)); 6053 intel_dp->psr.sink_panel_replay_support = false; 6054 intel_dp->psr.sink_panel_replay_su_support = false; 6055 intel_dp->psr.sink_panel_replay_dsc_support = 6056 INTEL_DP_PANEL_REPLAY_DSC_NOT_SUPPORTED; 6057 6058 intel_dp_mst_disconnect(intel_dp); 6059 6060 intel_dp_tunnel_disconnect(intel_dp); 6061 6062 goto out_unset_edid; 6063 } 6064 6065 intel_dp_init_source_oui(intel_dp); 6066 6067 ret = intel_dp_tunnel_detect(intel_dp, ctx); 6068 if (ret == -EDEADLK) { 6069 status = ret; 6070 6071 goto out_vdd_off; 6072 } 6073 6074 if (ret == 1) 6075 connector->base.epoch_counter++; 6076 6077 if (!intel_dp_is_edp(intel_dp)) 6078 intel_psr_init_dpcd(intel_dp); 6079 6080 intel_dp_detect_dsc_caps(intel_dp, connector); 6081 6082 intel_dp_detect_sdp_caps(intel_dp); 6083 6084 if (intel_dp->reset_link_params) { 6085 intel_dp_reset_link_params(intel_dp); 6086 intel_dp->reset_link_params = false; 6087 } 6088 6089 intel_dp_mst_configure(intel_dp); 6090 6091 intel_dp_print_rates(intel_dp); 6092 6093 if (intel_dp->is_mst) { 6094 /* 6095 * If we are in MST mode then this connector 6096 * won't appear connected or have anything 6097 * with EDID on it 6098 */ 6099 status = connector_status_disconnected; 6100 goto out_unset_edid; 6101 } 6102 6103 /* 6104 * Some external monitors do not signal loss of link synchronization 6105 * with an IRQ_HPD, so force a link status check. 6106 * 6107 * TODO: this probably became redundant, so remove it: the link state 6108 * is rechecked/recovered now after modesets, where the loss of 6109 * synchronization tends to occur. 6110 */ 6111 if (!intel_dp_is_edp(intel_dp)) 6112 intel_dp_check_link_state(intel_dp); 6113 6114 /* 6115 * Clearing NACK and defer counts to get their exact values 6116 * while reading EDID which are required by Compliance tests 6117 * 4.2.2.4 and 4.2.2.5 6118 */ 6119 intel_dp->aux.i2c_nack_count = 0; 6120 intel_dp->aux.i2c_defer_count = 0; 6121 6122 intel_dp_set_edid(intel_dp); 6123 if (intel_dp_is_edp(intel_dp) || connector->detect_edid) 6124 status = connector_status_connected; 6125 6126 intel_dp_check_device_service_irq(intel_dp); 6127 6128 out_unset_edid: 6129 if (status != connector_status_connected && !intel_dp->is_mst) 6130 intel_dp_unset_edid(intel_dp); 6131 6132 intel_dp_dpcd_set_probe(intel_dp, false); 6133 6134 if (!intel_dp_is_edp(intel_dp)) 6135 drm_dp_set_subconnector_property(&connector->base, 6136 status, 6137 intel_dp->dpcd, 6138 intel_dp->downstream_ports); 6139 out_vdd_off: 6140 intel_pps_vdd_off(intel_dp); 6141 6142 return status; 6143 } 6144 6145 static void 6146 intel_dp_force(struct drm_connector *_connector) 6147 { 6148 struct intel_connector *connector = to_intel_connector(_connector); 6149 struct intel_display *display = to_intel_display(connector); 6150 struct intel_dp *intel_dp = intel_attached_dp(connector); 6151 6152 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n", 6153 connector->base.base.id, connector->base.name); 6154 6155 if (!intel_display_driver_check_access(display)) 6156 return; 6157 6158 intel_dp_unset_edid(intel_dp); 6159 6160 if (connector->base.status != connector_status_connected) 6161 return; 6162 6163 intel_dp_set_edid(intel_dp); 6164 6165 intel_dp_dpcd_set_probe(intel_dp, false); 6166 } 6167 6168 static int intel_dp_get_modes(struct drm_connector *_connector) 6169 { 6170 struct intel_display *display = to_intel_display(_connector->dev); 6171 struct intel_connector *connector = to_intel_connector(_connector); 6172 struct intel_dp *intel_dp = intel_attached_dp(connector); 6173 int num_modes; 6174 6175 /* drm_edid_connector_update() done in ->detect() or ->force() */ 6176 num_modes = drm_edid_connector_add_modes(&connector->base); 6177 6178 /* Also add fixed mode, which may or may not be present in EDID */ 6179 if (intel_dp_is_edp(intel_dp)) 6180 num_modes += intel_panel_get_modes(connector); 6181 6182 if (num_modes) 6183 return num_modes; 6184 6185 if (!connector->detect_edid) { 6186 struct drm_display_mode *mode; 6187 6188 mode = drm_dp_downstream_mode(display->drm, 6189 intel_dp->dpcd, 6190 intel_dp->downstream_ports); 6191 if (mode) { 6192 drm_mode_probed_add(&connector->base, mode); 6193 num_modes++; 6194 } 6195 } 6196 6197 return num_modes; 6198 } 6199 6200 static int 6201 intel_dp_connector_register(struct drm_connector *_connector) 6202 { 6203 struct intel_connector *connector = to_intel_connector(_connector); 6204 struct intel_display *display = to_intel_display(connector); 6205 struct intel_dp *intel_dp = intel_attached_dp(connector); 6206 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6207 int ret; 6208 6209 ret = intel_connector_register(&connector->base); 6210 if (ret) 6211 return ret; 6212 6213 drm_dbg_kms(display->drm, "registering %s bus for %s\n", 6214 intel_dp->aux.name, connector->base.kdev->kobj.name); 6215 6216 intel_dp->aux.dev = connector->base.kdev; 6217 ret = drm_dp_aux_register(&intel_dp->aux); 6218 if (!ret) 6219 drm_dp_cec_register_connector(&intel_dp->aux, &connector->base); 6220 6221 if (!intel_bios_encoder_is_lspcon(dig_port->base.devdata)) 6222 return ret; 6223 6224 /* 6225 * ToDo: Clean this up to handle lspcon init and resume more 6226 * efficiently and streamlined. 6227 */ 6228 if (intel_lspcon_init(dig_port)) { 6229 if (intel_lspcon_detect_hdr_capability(dig_port)) 6230 drm_connector_attach_hdr_output_metadata_property(&connector->base); 6231 } 6232 6233 return ret; 6234 } 6235 6236 static void 6237 intel_dp_connector_unregister(struct drm_connector *_connector) 6238 { 6239 struct intel_connector *connector = to_intel_connector(_connector); 6240 struct intel_dp *intel_dp = intel_attached_dp(connector); 6241 6242 drm_dp_cec_unregister_connector(&intel_dp->aux); 6243 drm_dp_aux_unregister(&intel_dp->aux); 6244 intel_connector_unregister(&connector->base); 6245 } 6246 6247 void intel_dp_connector_sync_state(struct intel_connector *connector, 6248 const struct intel_crtc_state *crtc_state) 6249 { 6250 struct intel_display *display = to_intel_display(connector); 6251 6252 if (crtc_state && crtc_state->dsc.compression_enable) { 6253 drm_WARN_ON(display->drm, 6254 !connector->dp.dsc_decompression_aux); 6255 connector->dp.dsc_decompression_enabled = true; 6256 } else { 6257 connector->dp.dsc_decompression_enabled = false; 6258 } 6259 } 6260 6261 void intel_dp_encoder_flush_work(struct drm_encoder *_encoder) 6262 { 6263 struct intel_encoder *encoder = to_intel_encoder(_encoder); 6264 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 6265 struct intel_dp *intel_dp = &dig_port->dp; 6266 6267 intel_encoder_link_check_flush_work(encoder); 6268 6269 intel_dp_mst_encoder_cleanup(dig_port); 6270 6271 intel_dp_tunnel_destroy(intel_dp); 6272 6273 intel_pps_vdd_off_sync(intel_dp); 6274 6275 /* 6276 * Ensure power off delay is respected on module remove, so that we can 6277 * reduce delays at driver probe. See pps_init_timestamps(). 6278 */ 6279 intel_pps_wait_power_cycle(intel_dp); 6280 6281 intel_dp_aux_fini(intel_dp); 6282 } 6283 6284 void intel_dp_encoder_suspend(struct intel_encoder *encoder) 6285 { 6286 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 6287 6288 intel_pps_vdd_off_sync(intel_dp); 6289 6290 intel_dp_tunnel_suspend(intel_dp); 6291 } 6292 6293 void intel_dp_encoder_shutdown(struct intel_encoder *encoder) 6294 { 6295 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 6296 6297 intel_pps_wait_power_cycle(intel_dp); 6298 } 6299 6300 static int intel_modeset_tile_group(struct intel_atomic_state *state, 6301 int tile_group_id) 6302 { 6303 struct intel_display *display = to_intel_display(state); 6304 struct drm_connector_list_iter conn_iter; 6305 struct intel_connector *connector; 6306 int ret = 0; 6307 6308 drm_connector_list_iter_begin(display->drm, &conn_iter); 6309 for_each_intel_connector_iter(connector, &conn_iter) { 6310 struct drm_connector_state *conn_state; 6311 struct intel_crtc_state *crtc_state; 6312 struct intel_crtc *crtc; 6313 6314 if (!connector->base.has_tile || 6315 connector->base.tile_group->id != tile_group_id) 6316 continue; 6317 6318 conn_state = drm_atomic_get_connector_state(&state->base, 6319 &connector->base); 6320 if (IS_ERR(conn_state)) { 6321 ret = PTR_ERR(conn_state); 6322 break; 6323 } 6324 6325 crtc = to_intel_crtc(conn_state->crtc); 6326 6327 if (!crtc) 6328 continue; 6329 6330 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 6331 crtc_state->uapi.mode_changed = true; 6332 6333 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 6334 if (ret) 6335 break; 6336 } 6337 drm_connector_list_iter_end(&conn_iter); 6338 6339 return ret; 6340 } 6341 6342 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders) 6343 { 6344 struct intel_display *display = to_intel_display(state); 6345 struct intel_crtc *crtc; 6346 6347 if (transcoders == 0) 6348 return 0; 6349 6350 for_each_intel_crtc(display->drm, crtc) { 6351 struct intel_crtc_state *crtc_state; 6352 int ret; 6353 6354 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 6355 if (IS_ERR(crtc_state)) 6356 return PTR_ERR(crtc_state); 6357 6358 if (!crtc_state->hw.enable) 6359 continue; 6360 6361 if (!(transcoders & BIT(crtc_state->cpu_transcoder))) 6362 continue; 6363 6364 crtc_state->uapi.mode_changed = true; 6365 6366 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base); 6367 if (ret) 6368 return ret; 6369 6370 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 6371 if (ret) 6372 return ret; 6373 6374 transcoders &= ~BIT(crtc_state->cpu_transcoder); 6375 } 6376 6377 drm_WARN_ON(display->drm, transcoders != 0); 6378 6379 return 0; 6380 } 6381 6382 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state, 6383 struct drm_connector *_connector) 6384 { 6385 struct intel_connector *connector = to_intel_connector(_connector); 6386 const struct drm_connector_state *old_conn_state = 6387 drm_atomic_get_old_connector_state(&state->base, &connector->base); 6388 const struct intel_crtc_state *old_crtc_state; 6389 struct intel_crtc *crtc; 6390 u8 transcoders; 6391 6392 crtc = to_intel_crtc(old_conn_state->crtc); 6393 if (!crtc) 6394 return 0; 6395 6396 old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); 6397 6398 if (!old_crtc_state->hw.active) 6399 return 0; 6400 6401 transcoders = old_crtc_state->sync_mode_slaves_mask; 6402 if (old_crtc_state->master_transcoder != INVALID_TRANSCODER) 6403 transcoders |= BIT(old_crtc_state->master_transcoder); 6404 6405 return intel_modeset_affected_transcoders(state, 6406 transcoders); 6407 } 6408 6409 static int intel_dp_connector_atomic_check(struct drm_connector *_connector, 6410 struct drm_atomic_state *_state) 6411 { 6412 struct intel_connector *connector = to_intel_connector(_connector); 6413 struct intel_display *display = to_intel_display(connector); 6414 struct intel_atomic_state *state = to_intel_atomic_state(_state); 6415 struct drm_connector_state *conn_state = 6416 drm_atomic_get_new_connector_state(_state, &connector->base); 6417 struct intel_dp *intel_dp = enc_to_intel_dp(connector->encoder); 6418 int ret; 6419 6420 ret = intel_digital_connector_atomic_check(&connector->base, &state->base); 6421 if (ret) 6422 return ret; 6423 6424 if (intel_dp_mst_source_support(intel_dp)) { 6425 ret = drm_dp_mst_root_conn_atomic_check(conn_state, &intel_dp->mst.mgr); 6426 if (ret) 6427 return ret; 6428 } 6429 6430 if (!intel_connector_needs_modeset(state, &connector->base)) 6431 return 0; 6432 6433 ret = intel_dp_tunnel_atomic_check_state(state, 6434 intel_dp, 6435 connector); 6436 if (ret) 6437 return ret; 6438 6439 /* 6440 * We don't enable port sync on BDW due to missing w/as and 6441 * due to not having adjusted the modeset sequence appropriately. 6442 */ 6443 if (DISPLAY_VER(display) < 9) 6444 return 0; 6445 6446 if (connector->base.has_tile) { 6447 ret = intel_modeset_tile_group(state, connector->base.tile_group->id); 6448 if (ret) 6449 return ret; 6450 } 6451 6452 return intel_modeset_synced_crtcs(state, &connector->base); 6453 } 6454 6455 static void intel_dp_oob_hotplug_event(struct drm_connector *_connector, 6456 enum drm_connector_status hpd_state) 6457 { 6458 struct intel_connector *connector = to_intel_connector(_connector); 6459 struct intel_display *display = to_intel_display(connector); 6460 struct intel_encoder *encoder = intel_attached_encoder(connector); 6461 bool hpd_high = hpd_state == connector_status_connected; 6462 unsigned int hpd_pin = encoder->hpd_pin; 6463 bool need_work = false; 6464 6465 spin_lock_irq(&display->irq.lock); 6466 if (hpd_high != test_bit(hpd_pin, &display->hotplug.oob_hotplug_last_state)) { 6467 display->hotplug.event_bits |= BIT(hpd_pin); 6468 6469 __assign_bit(hpd_pin, 6470 &display->hotplug.oob_hotplug_last_state, 6471 hpd_high); 6472 need_work = true; 6473 } 6474 spin_unlock_irq(&display->irq.lock); 6475 6476 if (need_work) 6477 intel_hpd_schedule_detection(display); 6478 } 6479 6480 static const struct drm_connector_funcs intel_dp_connector_funcs = { 6481 .force = intel_dp_force, 6482 .fill_modes = drm_helper_probe_single_connector_modes, 6483 .atomic_get_property = intel_digital_connector_atomic_get_property, 6484 .atomic_set_property = intel_digital_connector_atomic_set_property, 6485 .late_register = intel_dp_connector_register, 6486 .early_unregister = intel_dp_connector_unregister, 6487 .destroy = intel_connector_destroy, 6488 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 6489 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 6490 .oob_hotplug_event = intel_dp_oob_hotplug_event, 6491 }; 6492 6493 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 6494 .detect_ctx = intel_dp_detect, 6495 .get_modes = intel_dp_get_modes, 6496 .mode_valid = intel_dp_mode_valid, 6497 .atomic_check = intel_dp_connector_atomic_check, 6498 }; 6499 6500 enum irqreturn 6501 intel_dp_hpd_pulse(struct intel_digital_port *dig_port, bool long_hpd) 6502 { 6503 struct intel_display *display = to_intel_display(dig_port); 6504 struct intel_dp *intel_dp = &dig_port->dp; 6505 u8 dpcd[DP_RECEIVER_CAP_SIZE]; 6506 6507 if (dig_port->base.type == INTEL_OUTPUT_EDP && 6508 (long_hpd || 6509 intel_display_rpm_suspended(display) || 6510 !intel_pps_have_panel_power_or_vdd(intel_dp))) { 6511 /* 6512 * vdd off can generate a long/short pulse on eDP which 6513 * would require vdd on to handle it, and thus we 6514 * would end up in an endless cycle of 6515 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..." 6516 */ 6517 drm_dbg_kms(display->drm, 6518 "ignoring %s hpd on eDP [ENCODER:%d:%s]\n", 6519 long_hpd ? "long" : "short", 6520 dig_port->base.base.base.id, 6521 dig_port->base.base.name); 6522 return IRQ_HANDLED; 6523 } 6524 6525 drm_dbg_kms(display->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n", 6526 dig_port->base.base.base.id, 6527 dig_port->base.base.name, 6528 long_hpd ? "long" : "short"); 6529 6530 /* 6531 * TBT DP tunnels require the GFX driver to read out the DPRX caps in 6532 * response to long HPD pulses. The DP hotplug handler does that, 6533 * however the hotplug handler may be blocked by another 6534 * connector's/encoder's hotplug handler. Since the TBT CM may not 6535 * complete the DP tunnel BW request for the latter connector/encoder 6536 * waiting for this encoder's DPRX read, perform a dummy read here. 6537 */ 6538 if (long_hpd) { 6539 intel_dp_dpcd_set_probe(intel_dp, true); 6540 6541 intel_dp_read_dprx_caps(intel_dp, dpcd); 6542 6543 intel_dp->reset_link_params = true; 6544 intel_dp_invalidate_source_oui(intel_dp); 6545 6546 return IRQ_NONE; 6547 } 6548 6549 if (intel_dp->is_mst) { 6550 if (!intel_dp_check_mst_status(intel_dp)) 6551 return IRQ_NONE; 6552 } else if (!intel_dp_short_pulse(intel_dp)) { 6553 return IRQ_NONE; 6554 } 6555 6556 return IRQ_HANDLED; 6557 } 6558 6559 static bool _intel_dp_is_port_edp(struct intel_display *display, 6560 const struct intel_bios_encoder_data *devdata, 6561 enum port port) 6562 { 6563 /* 6564 * eDP not supported on g4x. so bail out early just 6565 * for a bit extra safety in case the VBT is bonkers. 6566 */ 6567 if (DISPLAY_VER(display) < 5) 6568 return false; 6569 6570 if (DISPLAY_VER(display) < 9 && port == PORT_A) 6571 return true; 6572 6573 return devdata && intel_bios_encoder_supports_edp(devdata); 6574 } 6575 6576 bool intel_dp_is_port_edp(struct intel_display *display, enum port port) 6577 { 6578 const struct intel_bios_encoder_data *devdata = 6579 intel_bios_encoder_data_lookup(display, port); 6580 6581 return _intel_dp_is_port_edp(display, devdata, port); 6582 } 6583 6584 bool 6585 intel_dp_has_gamut_metadata_dip(struct intel_encoder *encoder) 6586 { 6587 struct intel_display *display = to_intel_display(encoder); 6588 enum port port = encoder->port; 6589 6590 if (intel_bios_encoder_is_lspcon(encoder->devdata)) 6591 return false; 6592 6593 if (DISPLAY_VER(display) >= 11) 6594 return true; 6595 6596 if (port == PORT_A) 6597 return false; 6598 6599 if (display->platform.haswell || display->platform.broadwell || 6600 DISPLAY_VER(display) >= 9) 6601 return true; 6602 6603 return false; 6604 } 6605 6606 static void 6607 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *_connector) 6608 { 6609 struct intel_connector *connector = to_intel_connector(_connector); 6610 struct intel_display *display = to_intel_display(intel_dp); 6611 enum port port = dp_to_dig_port(intel_dp)->base.port; 6612 6613 if (!intel_dp_is_edp(intel_dp)) 6614 drm_connector_attach_dp_subconnector_property(&connector->base); 6615 6616 if (!display->platform.g4x && port != PORT_A) 6617 intel_attach_force_audio_property(&connector->base); 6618 6619 intel_attach_broadcast_rgb_property(&connector->base); 6620 if (HAS_GMCH(display)) 6621 drm_connector_attach_max_bpc_property(&connector->base, 6, 10); 6622 else if (DISPLAY_VER(display) >= 5) 6623 drm_connector_attach_max_bpc_property(&connector->base, 6, 12); 6624 6625 /* Register HDMI colorspace for case of lspcon */ 6626 if (intel_bios_encoder_is_lspcon(dp_to_dig_port(intel_dp)->base.devdata)) { 6627 drm_connector_attach_content_type_property(&connector->base); 6628 intel_attach_hdmi_colorspace_property(&connector->base); 6629 } else { 6630 intel_attach_dp_colorspace_property(&connector->base); 6631 } 6632 6633 if (intel_dp_has_gamut_metadata_dip(&dp_to_dig_port(intel_dp)->base)) 6634 drm_connector_attach_hdr_output_metadata_property(&connector->base); 6635 6636 if (HAS_VRR(display)) 6637 drm_connector_attach_vrr_capable_property(&connector->base); 6638 } 6639 6640 static void 6641 intel_edp_add_properties(struct intel_dp *intel_dp) 6642 { 6643 struct intel_display *display = to_intel_display(intel_dp); 6644 struct intel_connector *connector = intel_dp->attached_connector; 6645 const struct drm_display_mode *fixed_mode = 6646 intel_panel_preferred_fixed_mode(connector); 6647 6648 intel_attach_scaling_mode_property(&connector->base); 6649 6650 drm_connector_set_panel_orientation_with_quirk(&connector->base, 6651 display->vbt.orientation, 6652 fixed_mode->hdisplay, 6653 fixed_mode->vdisplay); 6654 } 6655 6656 static void intel_edp_backlight_setup(struct intel_dp *intel_dp, 6657 struct intel_connector *connector) 6658 { 6659 struct intel_display *display = to_intel_display(intel_dp); 6660 enum pipe pipe = INVALID_PIPE; 6661 6662 if (display->platform.valleyview || display->platform.cherryview) 6663 pipe = vlv_pps_backlight_initial_pipe(intel_dp); 6664 6665 intel_backlight_setup(connector, pipe); 6666 } 6667 6668 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 6669 struct intel_connector *connector) 6670 { 6671 struct intel_display *display = to_intel_display(intel_dp); 6672 struct drm_display_mode *fixed_mode; 6673 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6674 bool has_dpcd; 6675 const struct drm_edid *drm_edid; 6676 6677 if (!intel_dp_is_edp(intel_dp)) 6678 return true; 6679 6680 /* 6681 * On IBX/CPT we may get here with LVDS already registered. Since the 6682 * driver uses the only internal power sequencer available for both 6683 * eDP and LVDS bail out early in this case to prevent interfering 6684 * with an already powered-on LVDS power sequencer. 6685 */ 6686 if (intel_get_lvds_encoder(display)) { 6687 drm_WARN_ON(display->drm, 6688 !(HAS_PCH_IBX(display) || HAS_PCH_CPT(display))); 6689 drm_info(display->drm, 6690 "LVDS was detected, not registering eDP\n"); 6691 6692 return false; 6693 } 6694 6695 intel_bios_init_panel_early(display, &connector->panel, 6696 encoder->devdata); 6697 6698 if (!intel_pps_init(intel_dp)) { 6699 drm_info(display->drm, 6700 "[ENCODER:%d:%s] unusable PPS, disabling eDP\n", 6701 encoder->base.base.id, encoder->base.name); 6702 /* 6703 * The BIOS may have still enabled VDD on the PPS even 6704 * though it's unusable. Make sure we turn it back off 6705 * and to release the power domain references/etc. 6706 */ 6707 goto out_vdd_off; 6708 } 6709 6710 /* 6711 * Enable HPD sense for live status check. 6712 * intel_hpd_irq_setup() will turn it off again 6713 * if it's no longer needed later. 6714 * 6715 * The DPCD probe below will make sure VDD is on. 6716 */ 6717 intel_hpd_enable_detection(encoder); 6718 6719 intel_alpm_init(intel_dp); 6720 6721 /* Cache DPCD and EDID for edp. */ 6722 has_dpcd = intel_edp_init_dpcd(intel_dp, connector); 6723 6724 if (!has_dpcd) { 6725 /* if this fails, presume the device is a ghost */ 6726 drm_info(display->drm, 6727 "[ENCODER:%d:%s] failed to retrieve link info, disabling eDP\n", 6728 encoder->base.base.id, encoder->base.name); 6729 goto out_vdd_off; 6730 } 6731 6732 /* 6733 * VBT and straps are liars. Also check HPD as that seems 6734 * to be the most reliable piece of information available. 6735 * 6736 * ... expect on devices that forgot to hook HPD up for eDP 6737 * (eg. Acer Chromebook C710), so we'll check it only if multiple 6738 * ports are attempting to use the same AUX CH, according to VBT. 6739 */ 6740 if (intel_bios_dp_has_shared_aux_ch(encoder->devdata)) { 6741 /* 6742 * If this fails, presume the DPCD answer came 6743 * from some other port using the same AUX CH. 6744 * 6745 * FIXME maybe cleaner to check this before the 6746 * DPCD read? Would need sort out the VDD handling... 6747 */ 6748 if (!intel_digital_port_connected(encoder)) { 6749 drm_info(display->drm, 6750 "[ENCODER:%d:%s] HPD is down, disabling eDP\n", 6751 encoder->base.base.id, encoder->base.name); 6752 goto out_vdd_off; 6753 } 6754 6755 /* 6756 * Unfortunately even the HPD based detection fails on 6757 * eg. Asus B360M-A (CFL+CNP), so as a last resort fall 6758 * back to checking for a VGA branch device. Only do this 6759 * on known affected platforms to minimize false positives. 6760 */ 6761 if (DISPLAY_VER(display) == 9 && drm_dp_is_branch(intel_dp->dpcd) && 6762 (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) == 6763 DP_DWN_STRM_PORT_TYPE_ANALOG) { 6764 drm_info(display->drm, 6765 "[ENCODER:%d:%s] VGA converter detected, disabling eDP\n", 6766 encoder->base.base.id, encoder->base.name); 6767 goto out_vdd_off; 6768 } 6769 } 6770 6771 mutex_lock(&display->drm->mode_config.mutex); 6772 drm_edid = drm_edid_read_ddc(&connector->base, connector->base.ddc); 6773 if (!drm_edid) { 6774 /* Fallback to EDID from ACPI OpRegion, if any */ 6775 drm_edid = intel_opregion_get_edid(connector); 6776 if (drm_edid) 6777 drm_dbg_kms(display->drm, 6778 "[CONNECTOR:%d:%s] Using OpRegion EDID\n", 6779 connector->base.base.id, connector->base.name); 6780 } 6781 if (drm_edid) { 6782 if (drm_edid_connector_update(&connector->base, drm_edid) || 6783 !drm_edid_connector_add_modes(&connector->base)) { 6784 drm_edid_connector_update(&connector->base, NULL); 6785 drm_edid_free(drm_edid); 6786 drm_edid = ERR_PTR(-EINVAL); 6787 } 6788 } else { 6789 drm_edid = ERR_PTR(-ENOENT); 6790 } 6791 6792 intel_bios_init_panel_late(display, &connector->panel, encoder->devdata, 6793 IS_ERR(drm_edid) ? NULL : drm_edid); 6794 6795 intel_panel_add_edid_fixed_modes(connector, true); 6796 6797 /* MSO requires information from the EDID */ 6798 intel_edp_mso_init(intel_dp); 6799 6800 /* multiply the mode clock and horizontal timings for MSO */ 6801 list_for_each_entry(fixed_mode, &connector->panel.fixed_modes, head) 6802 intel_edp_mso_mode_fixup(connector, fixed_mode); 6803 6804 /* fallback to VBT if available for eDP */ 6805 if (!intel_panel_preferred_fixed_mode(connector)) 6806 intel_panel_add_vbt_lfp_fixed_mode(connector); 6807 6808 mutex_unlock(&display->drm->mode_config.mutex); 6809 6810 if (!intel_panel_preferred_fixed_mode(connector)) { 6811 drm_info(display->drm, 6812 "[ENCODER:%d:%s] failed to find fixed mode for the panel, disabling eDP\n", 6813 encoder->base.base.id, encoder->base.name); 6814 goto out_vdd_off; 6815 } 6816 6817 intel_panel_init(connector, drm_edid); 6818 6819 intel_edp_backlight_setup(intel_dp, connector); 6820 6821 intel_edp_add_properties(intel_dp); 6822 6823 intel_pps_init_late(intel_dp); 6824 6825 return true; 6826 6827 out_vdd_off: 6828 intel_pps_vdd_off_sync(intel_dp); 6829 intel_bios_fini_panel(&connector->panel); 6830 6831 return false; 6832 } 6833 6834 bool 6835 intel_dp_init_connector(struct intel_digital_port *dig_port, 6836 struct intel_connector *connector) 6837 { 6838 struct intel_display *display = to_intel_display(dig_port); 6839 struct intel_dp *intel_dp = &dig_port->dp; 6840 struct intel_encoder *encoder = &dig_port->base; 6841 struct drm_device *dev = encoder->base.dev; 6842 enum port port = encoder->port; 6843 int type; 6844 6845 if (drm_WARN(dev, dig_port->max_lanes < 1, 6846 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", 6847 dig_port->max_lanes, encoder->base.base.id, 6848 encoder->base.name)) 6849 return false; 6850 6851 intel_dp->reset_link_params = true; 6852 6853 /* Preserve the current hw state. */ 6854 intel_dp->DP = intel_de_read(display, intel_dp->output_reg); 6855 intel_dp->attached_connector = connector; 6856 6857 if (_intel_dp_is_port_edp(display, encoder->devdata, port)) { 6858 /* 6859 * Currently we don't support eDP on TypeC ports for DISPLAY_VER < 30, 6860 * although in theory it could work on TypeC legacy ports. 6861 */ 6862 drm_WARN_ON(dev, intel_encoder_is_tc(encoder) && 6863 DISPLAY_VER(display) < 30); 6864 type = DRM_MODE_CONNECTOR_eDP; 6865 encoder->type = INTEL_OUTPUT_EDP; 6866 6867 /* eDP only on port B and/or C on vlv/chv */ 6868 if (drm_WARN_ON(dev, (display->platform.valleyview || 6869 display->platform.cherryview) && 6870 port != PORT_B && port != PORT_C)) 6871 return false; 6872 } else { 6873 type = DRM_MODE_CONNECTOR_DisplayPort; 6874 } 6875 6876 intel_dp_set_default_sink_rates(intel_dp); 6877 intel_dp_set_default_max_sink_lane_count(intel_dp); 6878 6879 if (display->platform.valleyview || display->platform.cherryview) 6880 vlv_pps_pipe_init(intel_dp); 6881 6882 intel_dp_aux_init(intel_dp); 6883 connector->dp.dsc_decompression_aux = &intel_dp->aux; 6884 6885 drm_dbg_kms(display->drm, 6886 "Adding %s connector on [ENCODER:%d:%s]\n", 6887 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 6888 encoder->base.base.id, encoder->base.name); 6889 6890 drm_connector_init_with_ddc(dev, &connector->base, &intel_dp_connector_funcs, 6891 type, &intel_dp->aux.ddc); 6892 drm_connector_helper_add(&connector->base, &intel_dp_connector_helper_funcs); 6893 6894 if (!HAS_GMCH(display) && DISPLAY_VER(display) < 12) 6895 connector->base.interlace_allowed = true; 6896 6897 if (type != DRM_MODE_CONNECTOR_eDP) 6898 connector->polled = DRM_CONNECTOR_POLL_HPD; 6899 connector->base.polled = connector->polled; 6900 6901 intel_connector_attach_encoder(connector, encoder); 6902 6903 if (HAS_DDI(display)) 6904 connector->get_hw_state = intel_ddi_connector_get_hw_state; 6905 else 6906 connector->get_hw_state = intel_connector_get_hw_state; 6907 connector->sync_state = intel_dp_connector_sync_state; 6908 6909 if (!intel_edp_init_connector(intel_dp, connector)) { 6910 intel_dp_aux_fini(intel_dp); 6911 goto fail; 6912 } 6913 6914 intel_dp_set_source_rates(intel_dp); 6915 intel_dp_set_common_rates(intel_dp); 6916 intel_dp_reset_link_params(intel_dp); 6917 6918 /* init MST on ports that can support it */ 6919 intel_dp_mst_encoder_init(dig_port, connector->base.base.id); 6920 6921 intel_dp_add_properties(intel_dp, &connector->base); 6922 6923 if (is_hdcp_supported(display, port) && !intel_dp_is_edp(intel_dp)) { 6924 int ret = intel_dp_hdcp_init(dig_port, connector); 6925 if (ret) 6926 drm_dbg_kms(display->drm, 6927 "HDCP init failed, skipping.\n"); 6928 } 6929 6930 intel_dp->frl.is_trained = false; 6931 intel_dp->frl.trained_rate_gbps = 0; 6932 6933 intel_psr_init(intel_dp); 6934 6935 return true; 6936 6937 fail: 6938 intel_display_power_flush_work(display); 6939 drm_connector_cleanup(&connector->base); 6940 6941 return false; 6942 } 6943 6944 void intel_dp_mst_suspend(struct intel_display *display) 6945 { 6946 struct intel_encoder *encoder; 6947 6948 if (!HAS_DISPLAY(display)) 6949 return; 6950 6951 for_each_intel_encoder(display->drm, encoder) { 6952 struct intel_dp *intel_dp; 6953 6954 if (encoder->type != INTEL_OUTPUT_DDI) 6955 continue; 6956 6957 intel_dp = enc_to_intel_dp(encoder); 6958 6959 if (!intel_dp_mst_source_support(intel_dp)) 6960 continue; 6961 6962 if (intel_dp->is_mst) 6963 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst.mgr); 6964 } 6965 } 6966 6967 void intel_dp_mst_resume(struct intel_display *display) 6968 { 6969 struct intel_encoder *encoder; 6970 6971 if (!HAS_DISPLAY(display)) 6972 return; 6973 6974 for_each_intel_encoder(display->drm, encoder) { 6975 struct intel_dp *intel_dp; 6976 int ret; 6977 6978 if (encoder->type != INTEL_OUTPUT_DDI) 6979 continue; 6980 6981 intel_dp = enc_to_intel_dp(encoder); 6982 6983 if (!intel_dp_mst_source_support(intel_dp)) 6984 continue; 6985 6986 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst.mgr, true); 6987 if (ret) { 6988 intel_dp->is_mst = false; 6989 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst.mgr, false); 6990 } 6991 } 6992 } 6993 6994 static 6995 int intel_dp_sdp_compute_config_late(struct intel_crtc_state *crtc_state) 6996 { 6997 struct intel_display *display = to_intel_display(crtc_state); 6998 int guardband = intel_crtc_vblank_length(crtc_state); 6999 int min_sdp_guardband = intel_dp_sdp_min_guardband(crtc_state, false); 7000 7001 if (guardband < min_sdp_guardband) { 7002 drm_dbg_kms(display->drm, "guardband %d < min sdp guardband %d\n", 7003 guardband, min_sdp_guardband); 7004 return -EINVAL; 7005 } 7006 7007 return 0; 7008 } 7009 7010 int intel_dp_compute_config_late(struct intel_encoder *encoder, 7011 struct intel_crtc_state *crtc_state, 7012 struct drm_connector_state *conn_state) 7013 { 7014 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 7015 int ret; 7016 7017 intel_psr_compute_config_late(intel_dp, crtc_state); 7018 7019 ret = intel_dp_sdp_compute_config_late(crtc_state); 7020 if (ret) 7021 return ret; 7022 7023 return 0; 7024 } 7025 7026 static 7027 int intel_dp_get_lines_for_sdp(const struct intel_crtc_state *crtc_state, u32 type) 7028 { 7029 switch (type) { 7030 case DP_SDP_VSC_EXT_VESA: 7031 case DP_SDP_VSC_EXT_CEA: 7032 return 10; 7033 case HDMI_PACKET_TYPE_GAMUT_METADATA: 7034 return 8; 7035 case DP_SDP_PPS: 7036 return 7; 7037 case DP_SDP_ADAPTIVE_SYNC: 7038 return crtc_state->vrr.vsync_start + 1; 7039 default: 7040 break; 7041 } 7042 7043 return 0; 7044 } 7045 7046 int intel_dp_sdp_min_guardband(const struct intel_crtc_state *crtc_state, 7047 bool assume_all_enabled) 7048 { 7049 struct intel_display *display = to_intel_display(crtc_state); 7050 int sdp_guardband = 0; 7051 7052 if (assume_all_enabled || 7053 crtc_state->infoframes.enable & 7054 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) 7055 sdp_guardband = max(sdp_guardband, 7056 intel_dp_get_lines_for_sdp(crtc_state, 7057 HDMI_PACKET_TYPE_GAMUT_METADATA)); 7058 7059 if (assume_all_enabled || 7060 crtc_state->dsc.compression_enable) 7061 sdp_guardband = max(sdp_guardband, 7062 intel_dp_get_lines_for_sdp(crtc_state, DP_SDP_PPS)); 7063 7064 if ((assume_all_enabled && HAS_AS_SDP(display)) || 7065 crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(DP_SDP_ADAPTIVE_SYNC)) 7066 sdp_guardband = max(sdp_guardband, 7067 intel_dp_get_lines_for_sdp(crtc_state, DP_SDP_ADAPTIVE_SYNC)); 7068 7069 return sdp_guardband; 7070 } 7071