1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/notifier.h> 31 #include <linux/reboot.h> 32 #include <linux/slab.h> 33 #include <linux/types.h> 34 35 #include <asm/byteorder.h> 36 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_crtc.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_hdcp.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/i915_drm.h> 44 45 #include "i915_debugfs.h" 46 #include "i915_drv.h" 47 #include "i915_trace.h" 48 #include "intel_atomic.h" 49 #include "intel_audio.h" 50 #include "intel_connector.h" 51 #include "intel_ddi.h" 52 #include "intel_display_types.h" 53 #include "intel_dp.h" 54 #include "intel_dp_link_training.h" 55 #include "intel_dp_mst.h" 56 #include "intel_dpio_phy.h" 57 #include "intel_fifo_underrun.h" 58 #include "intel_hdcp.h" 59 #include "intel_hdmi.h" 60 #include "intel_hotplug.h" 61 #include "intel_lspcon.h" 62 #include "intel_lvds.h" 63 #include "intel_panel.h" 64 #include "intel_psr.h" 65 #include "intel_sideband.h" 66 #include "intel_tc.h" 67 #include "intel_vdsc.h" 68 69 #define DP_DPRX_ESI_LEN 14 70 71 /* DP DSC throughput values used for slice count calculations KPixels/s */ 72 #define DP_DSC_PEAK_PIXEL_RATE 2720000 73 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 74 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 75 76 /* DP DSC FEC Overhead factor = 1/(0.972261) */ 77 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261 78 79 /* Compliance test status bits */ 80 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 81 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) 82 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) 83 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) 84 85 struct dp_link_dpll { 86 int clock; 87 struct dpll dpll; 88 }; 89 90 static const struct dp_link_dpll g4x_dpll[] = { 91 { 162000, 92 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, 93 { 270000, 94 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } 95 }; 96 97 static const struct dp_link_dpll pch_dpll[] = { 98 { 162000, 99 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, 100 { 270000, 101 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } 102 }; 103 104 static const struct dp_link_dpll vlv_dpll[] = { 105 { 162000, 106 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, 107 { 270000, 108 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } 109 }; 110 111 /* 112 * CHV supports eDP 1.4 that have more link rates. 113 * Below only provides the fixed rate but exclude variable rate. 114 */ 115 static const struct dp_link_dpll chv_dpll[] = { 116 /* 117 * CHV requires to program fractional division for m2. 118 * m2 is stored in fixed point format using formula below 119 * (m2_int << 22) | m2_fraction 120 */ 121 { 162000, /* m2_int = 32, m2_fraction = 1677722 */ 122 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, 123 { 270000, /* m2_int = 27, m2_fraction = 0 */ 124 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, 125 }; 126 127 /* Constants for DP DSC configurations */ 128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 129 130 /* With Single pipe configuration, HW is capable of supporting maximum 131 * of 4 slices per line. 132 */ 133 static const u8 valid_dsc_slicecount[] = {1, 2, 4}; 134 135 /** 136 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 137 * @intel_dp: DP struct 138 * 139 * If a CPU or PCH DP output is attached to an eDP panel, this function 140 * will return true, and false otherwise. 141 */ 142 bool intel_dp_is_edp(struct intel_dp *intel_dp) 143 { 144 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 145 146 return intel_dig_port->base.type == INTEL_OUTPUT_EDP; 147 } 148 149 static struct intel_dp *intel_attached_dp(struct drm_connector *connector) 150 { 151 return enc_to_intel_dp(&intel_attached_encoder(connector)->base); 152 } 153 154 static void intel_dp_link_down(struct intel_encoder *encoder, 155 const struct intel_crtc_state *old_crtc_state); 156 static bool edp_panel_vdd_on(struct intel_dp *intel_dp); 157 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); 158 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 159 const struct intel_crtc_state *crtc_state); 160 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 161 enum pipe pipe); 162 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 163 164 /* update sink rates from dpcd */ 165 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 166 { 167 static const int dp_rates[] = { 168 162000, 270000, 540000, 810000 169 }; 170 int i, max_rate; 171 172 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 173 174 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 175 if (dp_rates[i] > max_rate) 176 break; 177 intel_dp->sink_rates[i] = dp_rates[i]; 178 } 179 180 intel_dp->num_sink_rates = i; 181 } 182 183 /* Get length of rates array potentially limited by max_rate. */ 184 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 185 { 186 int i; 187 188 /* Limit results by potentially reduced max rate */ 189 for (i = 0; i < len; i++) { 190 if (rates[len - i - 1] <= max_rate) 191 return len - i; 192 } 193 194 return 0; 195 } 196 197 /* Get length of common rates array potentially limited by max_rate. */ 198 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 199 int max_rate) 200 { 201 return intel_dp_rate_limit_len(intel_dp->common_rates, 202 intel_dp->num_common_rates, max_rate); 203 } 204 205 /* Theoretical max between source and sink */ 206 static int intel_dp_max_common_rate(struct intel_dp *intel_dp) 207 { 208 return intel_dp->common_rates[intel_dp->num_common_rates - 1]; 209 } 210 211 /* Theoretical max between source and sink */ 212 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 213 { 214 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 215 int source_max = intel_dig_port->max_lanes; 216 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); 217 int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port); 218 219 return min3(source_max, sink_max, fia_max); 220 } 221 222 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 223 { 224 return intel_dp->max_link_lane_count; 225 } 226 227 int 228 intel_dp_link_required(int pixel_clock, int bpp) 229 { 230 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 231 return DIV_ROUND_UP(pixel_clock * bpp, 8); 232 } 233 234 int 235 intel_dp_max_data_rate(int max_link_clock, int max_lanes) 236 { 237 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the 238 * link rate that is generally expressed in Gbps. Since, 8 bits of data 239 * is transmitted every LS_Clk per lane, there is no need to account for 240 * the channel encoding that is done in the PHY layer here. 241 */ 242 243 return max_link_clock * max_lanes; 244 } 245 246 static int 247 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp) 248 { 249 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 250 struct intel_encoder *encoder = &intel_dig_port->base; 251 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 252 int max_dotclk = dev_priv->max_dotclk_freq; 253 int ds_max_dotclk; 254 255 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 256 257 if (type != DP_DS_PORT_TYPE_VGA) 258 return max_dotclk; 259 260 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd, 261 intel_dp->downstream_ports); 262 263 if (ds_max_dotclk != 0) 264 max_dotclk = min(max_dotclk, ds_max_dotclk); 265 266 return max_dotclk; 267 } 268 269 static int cnl_max_source_rate(struct intel_dp *intel_dp) 270 { 271 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 272 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 273 enum port port = dig_port->base.port; 274 275 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; 276 277 /* Low voltage SKUs are limited to max of 5.4G */ 278 if (voltage == VOLTAGE_INFO_0_85V) 279 return 540000; 280 281 /* For this SKU 8.1G is supported in all ports */ 282 if (IS_CNL_WITH_PORT_F(dev_priv)) 283 return 810000; 284 285 /* For other SKUs, max rate on ports A and D is 5.4G */ 286 if (port == PORT_A || port == PORT_D) 287 return 540000; 288 289 return 810000; 290 } 291 292 static int icl_max_source_rate(struct intel_dp *intel_dp) 293 { 294 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 295 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 296 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 297 298 if (intel_phy_is_combo(dev_priv, phy) && 299 !IS_ELKHARTLAKE(dev_priv) && 300 !intel_dp_is_edp(intel_dp)) 301 return 540000; 302 303 return 810000; 304 } 305 306 static void 307 intel_dp_set_source_rates(struct intel_dp *intel_dp) 308 { 309 /* The values must be in increasing order */ 310 static const int cnl_rates[] = { 311 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 312 }; 313 static const int bxt_rates[] = { 314 162000, 216000, 243000, 270000, 324000, 432000, 540000 315 }; 316 static const int skl_rates[] = { 317 162000, 216000, 270000, 324000, 432000, 540000 318 }; 319 static const int hsw_rates[] = { 320 162000, 270000, 540000 321 }; 322 static const int g4x_rates[] = { 323 162000, 270000 324 }; 325 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 326 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 327 const struct ddi_vbt_port_info *info = 328 &dev_priv->vbt.ddi_port_info[dig_port->base.port]; 329 const int *source_rates; 330 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate; 331 332 /* This should only be done once */ 333 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates); 334 335 if (INTEL_GEN(dev_priv) >= 10) { 336 source_rates = cnl_rates; 337 size = ARRAY_SIZE(cnl_rates); 338 if (IS_GEN(dev_priv, 10)) 339 max_rate = cnl_max_source_rate(intel_dp); 340 else 341 max_rate = icl_max_source_rate(intel_dp); 342 } else if (IS_GEN9_LP(dev_priv)) { 343 source_rates = bxt_rates; 344 size = ARRAY_SIZE(bxt_rates); 345 } else if (IS_GEN9_BC(dev_priv)) { 346 source_rates = skl_rates; 347 size = ARRAY_SIZE(skl_rates); 348 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || 349 IS_BROADWELL(dev_priv)) { 350 source_rates = hsw_rates; 351 size = ARRAY_SIZE(hsw_rates); 352 } else { 353 source_rates = g4x_rates; 354 size = ARRAY_SIZE(g4x_rates); 355 } 356 357 if (max_rate && vbt_max_rate) 358 max_rate = min(max_rate, vbt_max_rate); 359 else if (vbt_max_rate) 360 max_rate = vbt_max_rate; 361 362 if (max_rate) 363 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 364 365 intel_dp->source_rates = source_rates; 366 intel_dp->num_source_rates = size; 367 } 368 369 static int intersect_rates(const int *source_rates, int source_len, 370 const int *sink_rates, int sink_len, 371 int *common_rates) 372 { 373 int i = 0, j = 0, k = 0; 374 375 while (i < source_len && j < sink_len) { 376 if (source_rates[i] == sink_rates[j]) { 377 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 378 return k; 379 common_rates[k] = source_rates[i]; 380 ++k; 381 ++i; 382 ++j; 383 } else if (source_rates[i] < sink_rates[j]) { 384 ++i; 385 } else { 386 ++j; 387 } 388 } 389 return k; 390 } 391 392 /* return index of rate in rates array, or -1 if not found */ 393 static int intel_dp_rate_index(const int *rates, int len, int rate) 394 { 395 int i; 396 397 for (i = 0; i < len; i++) 398 if (rate == rates[i]) 399 return i; 400 401 return -1; 402 } 403 404 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 405 { 406 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates); 407 408 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 409 intel_dp->num_source_rates, 410 intel_dp->sink_rates, 411 intel_dp->num_sink_rates, 412 intel_dp->common_rates); 413 414 /* Paranoia, there should always be something in common. */ 415 if (WARN_ON(intel_dp->num_common_rates == 0)) { 416 intel_dp->common_rates[0] = 162000; 417 intel_dp->num_common_rates = 1; 418 } 419 } 420 421 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 422 u8 lane_count) 423 { 424 /* 425 * FIXME: we need to synchronize the current link parameters with 426 * hardware readout. Currently fast link training doesn't work on 427 * boot-up. 428 */ 429 if (link_rate == 0 || 430 link_rate > intel_dp->max_link_rate) 431 return false; 432 433 if (lane_count == 0 || 434 lane_count > intel_dp_max_lane_count(intel_dp)) 435 return false; 436 437 return true; 438 } 439 440 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, 441 int link_rate, 442 u8 lane_count) 443 { 444 const struct drm_display_mode *fixed_mode = 445 intel_dp->attached_connector->panel.fixed_mode; 446 int mode_rate, max_rate; 447 448 mode_rate = intel_dp_link_required(fixed_mode->clock, 18); 449 max_rate = intel_dp_max_data_rate(link_rate, lane_count); 450 if (mode_rate > max_rate) 451 return false; 452 453 return true; 454 } 455 456 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, 457 int link_rate, u8 lane_count) 458 { 459 int index; 460 461 index = intel_dp_rate_index(intel_dp->common_rates, 462 intel_dp->num_common_rates, 463 link_rate); 464 if (index > 0) { 465 if (intel_dp_is_edp(intel_dp) && 466 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 467 intel_dp->common_rates[index - 1], 468 lane_count)) { 469 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 470 return 0; 471 } 472 intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; 473 intel_dp->max_link_lane_count = lane_count; 474 } else if (lane_count > 1) { 475 if (intel_dp_is_edp(intel_dp) && 476 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 477 intel_dp_max_common_rate(intel_dp), 478 lane_count >> 1)) { 479 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 480 return 0; 481 } 482 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 483 intel_dp->max_link_lane_count = lane_count >> 1; 484 } else { 485 DRM_ERROR("Link Training Unsuccessful\n"); 486 return -1; 487 } 488 489 return 0; 490 } 491 492 u32 intel_dp_mode_to_fec_clock(u32 mode_clock) 493 { 494 return div_u64(mul_u32_u32(mode_clock, 1000000U), 495 DP_DSC_FEC_OVERHEAD_FACTOR); 496 } 497 498 static int 499 small_joiner_ram_size_bits(struct drm_i915_private *i915) 500 { 501 if (INTEL_GEN(i915) >= 11) 502 return 7680 * 8; 503 else 504 return 6144 * 8; 505 } 506 507 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915, 508 u32 link_clock, u32 lane_count, 509 u32 mode_clock, u32 mode_hdisplay) 510 { 511 u32 bits_per_pixel, max_bpp_small_joiner_ram; 512 int i; 513 514 /* 515 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 516 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP) 517 * for SST -> TimeSlotsPerMTP is 1, 518 * for MST -> TimeSlotsPerMTP has to be calculated 519 */ 520 bits_per_pixel = (link_clock * lane_count * 8) / 521 intel_dp_mode_to_fec_clock(mode_clock); 522 DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel); 523 524 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 525 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / 526 mode_hdisplay; 527 DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram); 528 529 /* 530 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW 531 * check, output bpp from small joiner RAM check) 532 */ 533 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); 534 535 /* Error out if the max bpp is less than smallest allowed valid bpp */ 536 if (bits_per_pixel < valid_dsc_bpp[0]) { 537 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n", 538 bits_per_pixel, valid_dsc_bpp[0]); 539 return 0; 540 } 541 542 /* Find the nearest match in the array of known BPPs from VESA */ 543 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 544 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 545 break; 546 } 547 bits_per_pixel = valid_dsc_bpp[i]; 548 549 /* 550 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, 551 * fractional part is 0 552 */ 553 return bits_per_pixel << 4; 554 } 555 556 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, 557 int mode_clock, int mode_hdisplay) 558 { 559 u8 min_slice_count, i; 560 int max_slice_width; 561 562 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 563 min_slice_count = DIV_ROUND_UP(mode_clock, 564 DP_DSC_MAX_ENC_THROUGHPUT_0); 565 else 566 min_slice_count = DIV_ROUND_UP(mode_clock, 567 DP_DSC_MAX_ENC_THROUGHPUT_1); 568 569 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); 570 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 571 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n", 572 max_slice_width); 573 return 0; 574 } 575 /* Also take into account max slice width */ 576 min_slice_count = min_t(u8, min_slice_count, 577 DIV_ROUND_UP(mode_hdisplay, 578 max_slice_width)); 579 580 /* Find the closest match to the valid slice count values */ 581 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 582 if (valid_dsc_slicecount[i] > 583 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 584 false)) 585 break; 586 if (min_slice_count <= valid_dsc_slicecount[i]) 587 return valid_dsc_slicecount[i]; 588 } 589 590 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count); 591 return 0; 592 } 593 594 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv, 595 int hdisplay) 596 { 597 /* 598 * Older platforms don't like hdisplay==4096 with DP. 599 * 600 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline 601 * and frame counter increment), but we don't get vblank interrupts, 602 * and the pipe underruns immediately. The link also doesn't seem 603 * to get trained properly. 604 * 605 * On CHV the vblank interrupts don't seem to disappear but 606 * otherwise the symptoms are similar. 607 * 608 * TODO: confirm the behaviour on HSW+ 609 */ 610 return hdisplay == 4096 && !HAS_DDI(dev_priv); 611 } 612 613 static enum drm_mode_status 614 intel_dp_mode_valid(struct drm_connector *connector, 615 struct drm_display_mode *mode) 616 { 617 struct intel_dp *intel_dp = intel_attached_dp(connector); 618 struct intel_connector *intel_connector = to_intel_connector(connector); 619 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; 620 struct drm_i915_private *dev_priv = to_i915(connector->dev); 621 int target_clock = mode->clock; 622 int max_rate, mode_rate, max_lanes, max_link_clock; 623 int max_dotclk; 624 u16 dsc_max_output_bpp = 0; 625 u8 dsc_slice_count = 0; 626 627 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 628 return MODE_NO_DBLESCAN; 629 630 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp); 631 632 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 633 if (mode->hdisplay > fixed_mode->hdisplay) 634 return MODE_PANEL; 635 636 if (mode->vdisplay > fixed_mode->vdisplay) 637 return MODE_PANEL; 638 639 target_clock = fixed_mode->clock; 640 } 641 642 max_link_clock = intel_dp_max_link_rate(intel_dp); 643 max_lanes = intel_dp_max_lane_count(intel_dp); 644 645 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); 646 mode_rate = intel_dp_link_required(target_clock, 18); 647 648 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay)) 649 return MODE_H_ILLEGAL; 650 651 /* 652 * Output bpp is stored in 6.4 format so right shift by 4 to get the 653 * integer value since we support only integer values of bpp. 654 */ 655 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && 656 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { 657 if (intel_dp_is_edp(intel_dp)) { 658 dsc_max_output_bpp = 659 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; 660 dsc_slice_count = 661 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 662 true); 663 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { 664 dsc_max_output_bpp = 665 intel_dp_dsc_get_output_bpp(dev_priv, 666 max_link_clock, 667 max_lanes, 668 target_clock, 669 mode->hdisplay) >> 4; 670 dsc_slice_count = 671 intel_dp_dsc_get_slice_count(intel_dp, 672 target_clock, 673 mode->hdisplay); 674 } 675 } 676 677 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) || 678 target_clock > max_dotclk) 679 return MODE_CLOCK_HIGH; 680 681 if (mode->clock < 10000) 682 return MODE_CLOCK_LOW; 683 684 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 685 return MODE_H_ILLEGAL; 686 687 return intel_mode_valid_max_plane_size(dev_priv, mode); 688 } 689 690 u32 intel_dp_pack_aux(const u8 *src, int src_bytes) 691 { 692 int i; 693 u32 v = 0; 694 695 if (src_bytes > 4) 696 src_bytes = 4; 697 for (i = 0; i < src_bytes; i++) 698 v |= ((u32)src[i]) << ((3 - i) * 8); 699 return v; 700 } 701 702 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) 703 { 704 int i; 705 if (dst_bytes > 4) 706 dst_bytes = 4; 707 for (i = 0; i < dst_bytes; i++) 708 dst[i] = src >> ((3-i) * 8); 709 } 710 711 static void 712 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); 713 static void 714 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 715 bool force_disable_vdd); 716 static void 717 intel_dp_pps_init(struct intel_dp *intel_dp); 718 719 static intel_wakeref_t 720 pps_lock(struct intel_dp *intel_dp) 721 { 722 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 723 intel_wakeref_t wakeref; 724 725 /* 726 * See intel_power_sequencer_reset() why we need 727 * a power domain reference here. 728 */ 729 wakeref = intel_display_power_get(dev_priv, 730 intel_aux_power_domain(dp_to_dig_port(intel_dp))); 731 732 mutex_lock(&dev_priv->pps_mutex); 733 734 return wakeref; 735 } 736 737 static intel_wakeref_t 738 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) 739 { 740 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 741 742 mutex_unlock(&dev_priv->pps_mutex); 743 intel_display_power_put(dev_priv, 744 intel_aux_power_domain(dp_to_dig_port(intel_dp)), 745 wakeref); 746 return 0; 747 } 748 749 #define with_pps_lock(dp, wf) \ 750 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) 751 752 static void 753 vlv_power_sequencer_kick(struct intel_dp *intel_dp) 754 { 755 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 756 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 757 enum pipe pipe = intel_dp->pps_pipe; 758 bool pll_enabled, release_cl_override = false; 759 enum dpio_phy phy = DPIO_PHY(pipe); 760 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 761 u32 DP; 762 763 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN, 764 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n", 765 pipe_name(pipe), intel_dig_port->base.base.base.id, 766 intel_dig_port->base.base.name)) 767 return; 768 769 DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n", 770 pipe_name(pipe), intel_dig_port->base.base.base.id, 771 intel_dig_port->base.base.name); 772 773 /* Preserve the BIOS-computed detected bit. This is 774 * supposed to be read-only. 775 */ 776 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 777 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 778 DP |= DP_PORT_WIDTH(1); 779 DP |= DP_LINK_TRAIN_PAT_1; 780 781 if (IS_CHERRYVIEW(dev_priv)) 782 DP |= DP_PIPE_SEL_CHV(pipe); 783 else 784 DP |= DP_PIPE_SEL(pipe); 785 786 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE; 787 788 /* 789 * The DPLL for the pipe must be enabled for this to work. 790 * So enable temporarily it if it's not already enabled. 791 */ 792 if (!pll_enabled) { 793 release_cl_override = IS_CHERRYVIEW(dev_priv) && 794 !chv_phy_powergate_ch(dev_priv, phy, ch, true); 795 796 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? 797 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { 798 DRM_ERROR("Failed to force on pll for pipe %c!\n", 799 pipe_name(pipe)); 800 return; 801 } 802 } 803 804 /* 805 * Similar magic as in intel_dp_enable_port(). 806 * We _must_ do this port enable + disable trick 807 * to make this power sequencer lock onto the port. 808 * Otherwise even VDD force bit won't work. 809 */ 810 I915_WRITE(intel_dp->output_reg, DP); 811 POSTING_READ(intel_dp->output_reg); 812 813 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN); 814 POSTING_READ(intel_dp->output_reg); 815 816 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); 817 POSTING_READ(intel_dp->output_reg); 818 819 if (!pll_enabled) { 820 vlv_force_pll_off(dev_priv, pipe); 821 822 if (release_cl_override) 823 chv_phy_powergate_ch(dev_priv, phy, ch, false); 824 } 825 } 826 827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) 828 { 829 struct intel_encoder *encoder; 830 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); 831 832 /* 833 * We don't have power sequencer currently. 834 * Pick one that's not used by other ports. 835 */ 836 for_each_intel_dp(&dev_priv->drm, encoder) { 837 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 838 839 if (encoder->type == INTEL_OUTPUT_EDP) { 840 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 841 intel_dp->active_pipe != intel_dp->pps_pipe); 842 843 if (intel_dp->pps_pipe != INVALID_PIPE) 844 pipes &= ~(1 << intel_dp->pps_pipe); 845 } else { 846 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE); 847 848 if (intel_dp->active_pipe != INVALID_PIPE) 849 pipes &= ~(1 << intel_dp->active_pipe); 850 } 851 } 852 853 if (pipes == 0) 854 return INVALID_PIPE; 855 856 return ffs(pipes) - 1; 857 } 858 859 static enum pipe 860 vlv_power_sequencer_pipe(struct intel_dp *intel_dp) 861 { 862 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 863 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 864 enum pipe pipe; 865 866 lockdep_assert_held(&dev_priv->pps_mutex); 867 868 /* We should never land here with regular DP ports */ 869 WARN_ON(!intel_dp_is_edp(intel_dp)); 870 871 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 872 intel_dp->active_pipe != intel_dp->pps_pipe); 873 874 if (intel_dp->pps_pipe != INVALID_PIPE) 875 return intel_dp->pps_pipe; 876 877 pipe = vlv_find_free_pps(dev_priv); 878 879 /* 880 * Didn't find one. This should not happen since there 881 * are two power sequencers and up to two eDP ports. 882 */ 883 if (WARN_ON(pipe == INVALID_PIPE)) 884 pipe = PIPE_A; 885 886 vlv_steal_power_sequencer(dev_priv, pipe); 887 intel_dp->pps_pipe = pipe; 888 889 DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n", 890 pipe_name(intel_dp->pps_pipe), 891 intel_dig_port->base.base.base.id, 892 intel_dig_port->base.base.name); 893 894 /* init power sequencer on this pipe and port */ 895 intel_dp_init_panel_power_sequencer(intel_dp); 896 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 897 898 /* 899 * Even vdd force doesn't work until we've made 900 * the power sequencer lock in on the port. 901 */ 902 vlv_power_sequencer_kick(intel_dp); 903 904 return intel_dp->pps_pipe; 905 } 906 907 static int 908 bxt_power_sequencer_idx(struct intel_dp *intel_dp) 909 { 910 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 911 int backlight_controller = dev_priv->vbt.backlight.controller; 912 913 lockdep_assert_held(&dev_priv->pps_mutex); 914 915 /* We should never land here with regular DP ports */ 916 WARN_ON(!intel_dp_is_edp(intel_dp)); 917 918 if (!intel_dp->pps_reset) 919 return backlight_controller; 920 921 intel_dp->pps_reset = false; 922 923 /* 924 * Only the HW needs to be reprogrammed, the SW state is fixed and 925 * has been setup during connector init. 926 */ 927 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 928 929 return backlight_controller; 930 } 931 932 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, 933 enum pipe pipe); 934 935 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, 936 enum pipe pipe) 937 { 938 return I915_READ(PP_STATUS(pipe)) & PP_ON; 939 } 940 941 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, 942 enum pipe pipe) 943 { 944 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD; 945 } 946 947 static bool vlv_pipe_any(struct drm_i915_private *dev_priv, 948 enum pipe pipe) 949 { 950 return true; 951 } 952 953 static enum pipe 954 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, 955 enum port port, 956 vlv_pipe_check pipe_check) 957 { 958 enum pipe pipe; 959 960 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { 961 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) & 962 PANEL_PORT_SELECT_MASK; 963 964 if (port_sel != PANEL_PORT_SELECT_VLV(port)) 965 continue; 966 967 if (!pipe_check(dev_priv, pipe)) 968 continue; 969 970 return pipe; 971 } 972 973 return INVALID_PIPE; 974 } 975 976 static void 977 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) 978 { 979 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 980 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 981 enum port port = intel_dig_port->base.port; 982 983 lockdep_assert_held(&dev_priv->pps_mutex); 984 985 /* try to find a pipe with this port selected */ 986 /* first pick one where the panel is on */ 987 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 988 vlv_pipe_has_pp_on); 989 /* didn't find one? pick one where vdd is on */ 990 if (intel_dp->pps_pipe == INVALID_PIPE) 991 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 992 vlv_pipe_has_vdd_on); 993 /* didn't find one? pick one with just the correct port */ 994 if (intel_dp->pps_pipe == INVALID_PIPE) 995 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 996 vlv_pipe_any); 997 998 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ 999 if (intel_dp->pps_pipe == INVALID_PIPE) { 1000 DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n", 1001 intel_dig_port->base.base.base.id, 1002 intel_dig_port->base.base.name); 1003 return; 1004 } 1005 1006 DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n", 1007 intel_dig_port->base.base.base.id, 1008 intel_dig_port->base.base.name, 1009 pipe_name(intel_dp->pps_pipe)); 1010 1011 intel_dp_init_panel_power_sequencer(intel_dp); 1012 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 1013 } 1014 1015 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) 1016 { 1017 struct intel_encoder *encoder; 1018 1019 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 1020 !IS_GEN9_LP(dev_priv))) 1021 return; 1022 1023 /* 1024 * We can't grab pps_mutex here due to deadlock with power_domain 1025 * mutex when power_domain functions are called while holding pps_mutex. 1026 * That also means that in order to use pps_pipe the code needs to 1027 * hold both a power domain reference and pps_mutex, and the power domain 1028 * reference get/put must be done while _not_ holding pps_mutex. 1029 * pps_{lock,unlock}() do these steps in the correct order, so one 1030 * should use them always. 1031 */ 1032 1033 for_each_intel_dp(&dev_priv->drm, encoder) { 1034 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 1035 1036 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 1037 1038 if (encoder->type != INTEL_OUTPUT_EDP) 1039 continue; 1040 1041 if (IS_GEN9_LP(dev_priv)) 1042 intel_dp->pps_reset = true; 1043 else 1044 intel_dp->pps_pipe = INVALID_PIPE; 1045 } 1046 } 1047 1048 struct pps_registers { 1049 i915_reg_t pp_ctrl; 1050 i915_reg_t pp_stat; 1051 i915_reg_t pp_on; 1052 i915_reg_t pp_off; 1053 i915_reg_t pp_div; 1054 }; 1055 1056 static void intel_pps_get_registers(struct intel_dp *intel_dp, 1057 struct pps_registers *regs) 1058 { 1059 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1060 int pps_idx = 0; 1061 1062 memset(regs, 0, sizeof(*regs)); 1063 1064 if (IS_GEN9_LP(dev_priv)) 1065 pps_idx = bxt_power_sequencer_idx(intel_dp); 1066 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1067 pps_idx = vlv_power_sequencer_pipe(intel_dp); 1068 1069 regs->pp_ctrl = PP_CONTROL(pps_idx); 1070 regs->pp_stat = PP_STATUS(pps_idx); 1071 regs->pp_on = PP_ON_DELAYS(pps_idx); 1072 regs->pp_off = PP_OFF_DELAYS(pps_idx); 1073 1074 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ 1075 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 1076 regs->pp_div = INVALID_MMIO_REG; 1077 else 1078 regs->pp_div = PP_DIVISOR(pps_idx); 1079 } 1080 1081 static i915_reg_t 1082 _pp_ctrl_reg(struct intel_dp *intel_dp) 1083 { 1084 struct pps_registers regs; 1085 1086 intel_pps_get_registers(intel_dp, ®s); 1087 1088 return regs.pp_ctrl; 1089 } 1090 1091 static i915_reg_t 1092 _pp_stat_reg(struct intel_dp *intel_dp) 1093 { 1094 struct pps_registers regs; 1095 1096 intel_pps_get_registers(intel_dp, ®s); 1097 1098 return regs.pp_stat; 1099 } 1100 1101 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing 1102 This function only applicable when panel PM state is not to be tracked */ 1103 static int edp_notify_handler(struct notifier_block *this, unsigned long code, 1104 void *unused) 1105 { 1106 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), 1107 edp_notifier); 1108 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1109 intel_wakeref_t wakeref; 1110 1111 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) 1112 return 0; 1113 1114 with_pps_lock(intel_dp, wakeref) { 1115 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1116 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); 1117 i915_reg_t pp_ctrl_reg, pp_div_reg; 1118 u32 pp_div; 1119 1120 pp_ctrl_reg = PP_CONTROL(pipe); 1121 pp_div_reg = PP_DIVISOR(pipe); 1122 pp_div = I915_READ(pp_div_reg); 1123 pp_div &= PP_REFERENCE_DIVIDER_MASK; 1124 1125 /* 0x1F write to PP_DIV_REG sets max cycle delay */ 1126 I915_WRITE(pp_div_reg, pp_div | 0x1F); 1127 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS); 1128 msleep(intel_dp->panel_power_cycle_delay); 1129 } 1130 } 1131 1132 return 0; 1133 } 1134 1135 static bool edp_have_panel_power(struct intel_dp *intel_dp) 1136 { 1137 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1138 1139 lockdep_assert_held(&dev_priv->pps_mutex); 1140 1141 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1142 intel_dp->pps_pipe == INVALID_PIPE) 1143 return false; 1144 1145 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; 1146 } 1147 1148 static bool edp_have_panel_vdd(struct intel_dp *intel_dp) 1149 { 1150 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1151 1152 lockdep_assert_held(&dev_priv->pps_mutex); 1153 1154 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1155 intel_dp->pps_pipe == INVALID_PIPE) 1156 return false; 1157 1158 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; 1159 } 1160 1161 static void 1162 intel_dp_check_edp(struct intel_dp *intel_dp) 1163 { 1164 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1165 1166 if (!intel_dp_is_edp(intel_dp)) 1167 return; 1168 1169 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { 1170 WARN(1, "eDP powered off while attempting aux channel communication.\n"); 1171 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", 1172 I915_READ(_pp_stat_reg(intel_dp)), 1173 I915_READ(_pp_ctrl_reg(intel_dp))); 1174 } 1175 } 1176 1177 static u32 1178 intel_dp_aux_wait_done(struct intel_dp *intel_dp) 1179 { 1180 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1181 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1182 const unsigned int timeout_ms = 10; 1183 u32 status; 1184 bool done; 1185 1186 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1187 done = wait_event_timeout(i915->gmbus_wait_queue, C, 1188 msecs_to_jiffies_timeout(timeout_ms)); 1189 1190 /* just trace the final value */ 1191 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1192 1193 if (!done) 1194 DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n", 1195 intel_dp->aux.name, timeout_ms, status); 1196 #undef C 1197 1198 return status; 1199 } 1200 1201 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1202 { 1203 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1204 1205 if (index) 1206 return 0; 1207 1208 /* 1209 * The clock divider is based off the hrawclk, and would like to run at 1210 * 2MHz. So, take the hrawclk value and divide by 2000 and use that 1211 */ 1212 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1213 } 1214 1215 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1216 { 1217 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1218 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1219 1220 if (index) 1221 return 0; 1222 1223 /* 1224 * The clock divider is based off the cdclk or PCH rawclk, and would 1225 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and 1226 * divide by 2000 and use that 1227 */ 1228 if (dig_port->aux_ch == AUX_CH_A) 1229 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000); 1230 else 1231 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1232 } 1233 1234 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1235 { 1236 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1237 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1238 1239 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { 1240 /* Workaround for non-ULT HSW */ 1241 switch (index) { 1242 case 0: return 63; 1243 case 1: return 72; 1244 default: return 0; 1245 } 1246 } 1247 1248 return ilk_get_aux_clock_divider(intel_dp, index); 1249 } 1250 1251 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1252 { 1253 /* 1254 * SKL doesn't need us to program the AUX clock divider (Hardware will 1255 * derive the clock from CDCLK automatically). We still implement the 1256 * get_aux_clock_divider vfunc to plug-in into the existing code. 1257 */ 1258 return index ? 0 : 1; 1259 } 1260 1261 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, 1262 int send_bytes, 1263 u32 aux_clock_divider) 1264 { 1265 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1266 struct drm_i915_private *dev_priv = 1267 to_i915(intel_dig_port->base.base.dev); 1268 u32 precharge, timeout; 1269 1270 if (IS_GEN(dev_priv, 6)) 1271 precharge = 3; 1272 else 1273 precharge = 5; 1274 1275 if (IS_BROADWELL(dev_priv)) 1276 timeout = DP_AUX_CH_CTL_TIME_OUT_600us; 1277 else 1278 timeout = DP_AUX_CH_CTL_TIME_OUT_400us; 1279 1280 return DP_AUX_CH_CTL_SEND_BUSY | 1281 DP_AUX_CH_CTL_DONE | 1282 DP_AUX_CH_CTL_INTERRUPT | 1283 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1284 timeout | 1285 DP_AUX_CH_CTL_RECEIVE_ERROR | 1286 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1287 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 1288 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); 1289 } 1290 1291 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, 1292 int send_bytes, 1293 u32 unused) 1294 { 1295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1296 struct drm_i915_private *i915 = 1297 to_i915(intel_dig_port->base.base.dev); 1298 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1299 u32 ret; 1300 1301 ret = DP_AUX_CH_CTL_SEND_BUSY | 1302 DP_AUX_CH_CTL_DONE | 1303 DP_AUX_CH_CTL_INTERRUPT | 1304 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1305 DP_AUX_CH_CTL_TIME_OUT_MAX | 1306 DP_AUX_CH_CTL_RECEIVE_ERROR | 1307 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1308 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | 1309 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); 1310 1311 if (intel_phy_is_tc(i915, phy) && 1312 intel_dig_port->tc_mode == TC_PORT_TBT_ALT) 1313 ret |= DP_AUX_CH_CTL_TBT_IO; 1314 1315 return ret; 1316 } 1317 1318 static int 1319 intel_dp_aux_xfer(struct intel_dp *intel_dp, 1320 const u8 *send, int send_bytes, 1321 u8 *recv, int recv_size, 1322 u32 aux_send_ctl_flags) 1323 { 1324 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1325 struct drm_i915_private *i915 = 1326 to_i915(intel_dig_port->base.base.dev); 1327 struct intel_uncore *uncore = &i915->uncore; 1328 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1329 bool is_tc_port = intel_phy_is_tc(i915, phy); 1330 i915_reg_t ch_ctl, ch_data[5]; 1331 u32 aux_clock_divider; 1332 enum intel_display_power_domain aux_domain = 1333 intel_aux_power_domain(intel_dig_port); 1334 intel_wakeref_t aux_wakeref; 1335 intel_wakeref_t pps_wakeref; 1336 int i, ret, recv_bytes; 1337 int try, clock = 0; 1338 u32 status; 1339 bool vdd; 1340 1341 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1342 for (i = 0; i < ARRAY_SIZE(ch_data); i++) 1343 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); 1344 1345 if (is_tc_port) 1346 intel_tc_port_lock(intel_dig_port); 1347 1348 aux_wakeref = intel_display_power_get(i915, aux_domain); 1349 pps_wakeref = pps_lock(intel_dp); 1350 1351 /* 1352 * We will be called with VDD already enabled for dpcd/edid/oui reads. 1353 * In such cases we want to leave VDD enabled and it's up to upper layers 1354 * to turn it off. But for eg. i2c-dev access we need to turn it on/off 1355 * ourselves. 1356 */ 1357 vdd = edp_panel_vdd_on(intel_dp); 1358 1359 /* dp aux is extremely sensitive to irq latency, hence request the 1360 * lowest possible wakeup latency and so prevent the cpu from going into 1361 * deep sleep states. 1362 */ 1363 pm_qos_update_request(&i915->pm_qos, 0); 1364 1365 intel_dp_check_edp(intel_dp); 1366 1367 /* Try to wait for any previous AUX channel activity */ 1368 for (try = 0; try < 3; try++) { 1369 status = intel_uncore_read_notrace(uncore, ch_ctl); 1370 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1371 break; 1372 msleep(1); 1373 } 1374 /* just trace the final value */ 1375 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1376 1377 if (try == 3) { 1378 const u32 status = intel_uncore_read(uncore, ch_ctl); 1379 1380 if (status != intel_dp->aux_busy_last_status) { 1381 WARN(1, "dp_aux_ch not started status 0x%08x\n", 1382 status); 1383 intel_dp->aux_busy_last_status = status; 1384 } 1385 1386 ret = -EBUSY; 1387 goto out; 1388 } 1389 1390 /* Only 5 data registers! */ 1391 if (WARN_ON(send_bytes > 20 || recv_size > 20)) { 1392 ret = -E2BIG; 1393 goto out; 1394 } 1395 1396 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { 1397 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, 1398 send_bytes, 1399 aux_clock_divider); 1400 1401 send_ctl |= aux_send_ctl_flags; 1402 1403 /* Must try at least 3 times according to DP spec */ 1404 for (try = 0; try < 5; try++) { 1405 /* Load the send data into the aux channel data registers */ 1406 for (i = 0; i < send_bytes; i += 4) 1407 intel_uncore_write(uncore, 1408 ch_data[i >> 2], 1409 intel_dp_pack_aux(send + i, 1410 send_bytes - i)); 1411 1412 /* Send the command and wait for it to complete */ 1413 intel_uncore_write(uncore, ch_ctl, send_ctl); 1414 1415 status = intel_dp_aux_wait_done(intel_dp); 1416 1417 /* Clear done status and any errors */ 1418 intel_uncore_write(uncore, 1419 ch_ctl, 1420 status | 1421 DP_AUX_CH_CTL_DONE | 1422 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1423 DP_AUX_CH_CTL_RECEIVE_ERROR); 1424 1425 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 1426 * 400us delay required for errors and timeouts 1427 * Timeout errors from the HW already meet this 1428 * requirement so skip to next iteration 1429 */ 1430 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) 1431 continue; 1432 1433 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1434 usleep_range(400, 500); 1435 continue; 1436 } 1437 if (status & DP_AUX_CH_CTL_DONE) 1438 goto done; 1439 } 1440 } 1441 1442 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 1443 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); 1444 ret = -EBUSY; 1445 goto out; 1446 } 1447 1448 done: 1449 /* Check for timeout or receive error. 1450 * Timeouts occur when the sink is not connected 1451 */ 1452 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1453 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); 1454 ret = -EIO; 1455 goto out; 1456 } 1457 1458 /* Timeouts occur when the device isn't connected, so they're 1459 * "normal" -- don't fill the kernel log with these */ 1460 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 1461 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); 1462 ret = -ETIMEDOUT; 1463 goto out; 1464 } 1465 1466 /* Unload any bytes sent back from the other side */ 1467 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 1468 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 1469 1470 /* 1471 * By BSpec: "Message sizes of 0 or >20 are not allowed." 1472 * We have no idea of what happened so we return -EBUSY so 1473 * drm layer takes care for the necessary retries. 1474 */ 1475 if (recv_bytes == 0 || recv_bytes > 20) { 1476 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n", 1477 recv_bytes); 1478 ret = -EBUSY; 1479 goto out; 1480 } 1481 1482 if (recv_bytes > recv_size) 1483 recv_bytes = recv_size; 1484 1485 for (i = 0; i < recv_bytes; i += 4) 1486 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), 1487 recv + i, recv_bytes - i); 1488 1489 ret = recv_bytes; 1490 out: 1491 pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE); 1492 1493 if (vdd) 1494 edp_panel_vdd_off(intel_dp, false); 1495 1496 pps_unlock(intel_dp, pps_wakeref); 1497 intel_display_power_put_async(i915, aux_domain, aux_wakeref); 1498 1499 if (is_tc_port) 1500 intel_tc_port_unlock(intel_dig_port); 1501 1502 return ret; 1503 } 1504 1505 #define BARE_ADDRESS_SIZE 3 1506 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) 1507 1508 static void 1509 intel_dp_aux_header(u8 txbuf[HEADER_SIZE], 1510 const struct drm_dp_aux_msg *msg) 1511 { 1512 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); 1513 txbuf[1] = (msg->address >> 8) & 0xff; 1514 txbuf[2] = msg->address & 0xff; 1515 txbuf[3] = msg->size - 1; 1516 } 1517 1518 static ssize_t 1519 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1520 { 1521 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); 1522 u8 txbuf[20], rxbuf[20]; 1523 size_t txsize, rxsize; 1524 int ret; 1525 1526 intel_dp_aux_header(txbuf, msg); 1527 1528 switch (msg->request & ~DP_AUX_I2C_MOT) { 1529 case DP_AUX_NATIVE_WRITE: 1530 case DP_AUX_I2C_WRITE: 1531 case DP_AUX_I2C_WRITE_STATUS_UPDATE: 1532 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; 1533 rxsize = 2; /* 0 or 1 data bytes */ 1534 1535 if (WARN_ON(txsize > 20)) 1536 return -E2BIG; 1537 1538 WARN_ON(!msg->buffer != !msg->size); 1539 1540 if (msg->buffer) 1541 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); 1542 1543 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1544 rxbuf, rxsize, 0); 1545 if (ret > 0) { 1546 msg->reply = rxbuf[0] >> 4; 1547 1548 if (ret > 1) { 1549 /* Number of bytes written in a short write. */ 1550 ret = clamp_t(int, rxbuf[1], 0, msg->size); 1551 } else { 1552 /* Return payload size. */ 1553 ret = msg->size; 1554 } 1555 } 1556 break; 1557 1558 case DP_AUX_NATIVE_READ: 1559 case DP_AUX_I2C_READ: 1560 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; 1561 rxsize = msg->size + 1; 1562 1563 if (WARN_ON(rxsize > 20)) 1564 return -E2BIG; 1565 1566 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1567 rxbuf, rxsize, 0); 1568 if (ret > 0) { 1569 msg->reply = rxbuf[0] >> 4; 1570 /* 1571 * Assume happy day, and copy the data. The caller is 1572 * expected to check msg->reply before touching it. 1573 * 1574 * Return payload size. 1575 */ 1576 ret--; 1577 memcpy(msg->buffer, rxbuf + 1, ret); 1578 } 1579 break; 1580 1581 default: 1582 ret = -EINVAL; 1583 break; 1584 } 1585 1586 return ret; 1587 } 1588 1589 1590 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) 1591 { 1592 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1593 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1594 enum aux_ch aux_ch = dig_port->aux_ch; 1595 1596 switch (aux_ch) { 1597 case AUX_CH_B: 1598 case AUX_CH_C: 1599 case AUX_CH_D: 1600 return DP_AUX_CH_CTL(aux_ch); 1601 default: 1602 MISSING_CASE(aux_ch); 1603 return DP_AUX_CH_CTL(AUX_CH_B); 1604 } 1605 } 1606 1607 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) 1608 { 1609 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1610 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1611 enum aux_ch aux_ch = dig_port->aux_ch; 1612 1613 switch (aux_ch) { 1614 case AUX_CH_B: 1615 case AUX_CH_C: 1616 case AUX_CH_D: 1617 return DP_AUX_CH_DATA(aux_ch, index); 1618 default: 1619 MISSING_CASE(aux_ch); 1620 return DP_AUX_CH_DATA(AUX_CH_B, index); 1621 } 1622 } 1623 1624 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) 1625 { 1626 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1627 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1628 enum aux_ch aux_ch = dig_port->aux_ch; 1629 1630 switch (aux_ch) { 1631 case AUX_CH_A: 1632 return DP_AUX_CH_CTL(aux_ch); 1633 case AUX_CH_B: 1634 case AUX_CH_C: 1635 case AUX_CH_D: 1636 return PCH_DP_AUX_CH_CTL(aux_ch); 1637 default: 1638 MISSING_CASE(aux_ch); 1639 return DP_AUX_CH_CTL(AUX_CH_A); 1640 } 1641 } 1642 1643 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) 1644 { 1645 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1646 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1647 enum aux_ch aux_ch = dig_port->aux_ch; 1648 1649 switch (aux_ch) { 1650 case AUX_CH_A: 1651 return DP_AUX_CH_DATA(aux_ch, index); 1652 case AUX_CH_B: 1653 case AUX_CH_C: 1654 case AUX_CH_D: 1655 return PCH_DP_AUX_CH_DATA(aux_ch, index); 1656 default: 1657 MISSING_CASE(aux_ch); 1658 return DP_AUX_CH_DATA(AUX_CH_A, index); 1659 } 1660 } 1661 1662 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) 1663 { 1664 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1665 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1666 enum aux_ch aux_ch = dig_port->aux_ch; 1667 1668 switch (aux_ch) { 1669 case AUX_CH_A: 1670 case AUX_CH_B: 1671 case AUX_CH_C: 1672 case AUX_CH_D: 1673 case AUX_CH_E: 1674 case AUX_CH_F: 1675 case AUX_CH_G: 1676 return DP_AUX_CH_CTL(aux_ch); 1677 default: 1678 MISSING_CASE(aux_ch); 1679 return DP_AUX_CH_CTL(AUX_CH_A); 1680 } 1681 } 1682 1683 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) 1684 { 1685 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1686 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1687 enum aux_ch aux_ch = dig_port->aux_ch; 1688 1689 switch (aux_ch) { 1690 case AUX_CH_A: 1691 case AUX_CH_B: 1692 case AUX_CH_C: 1693 case AUX_CH_D: 1694 case AUX_CH_E: 1695 case AUX_CH_F: 1696 case AUX_CH_G: 1697 return DP_AUX_CH_DATA(aux_ch, index); 1698 default: 1699 MISSING_CASE(aux_ch); 1700 return DP_AUX_CH_DATA(AUX_CH_A, index); 1701 } 1702 } 1703 1704 static void 1705 intel_dp_aux_fini(struct intel_dp *intel_dp) 1706 { 1707 kfree(intel_dp->aux.name); 1708 } 1709 1710 static void 1711 intel_dp_aux_init(struct intel_dp *intel_dp) 1712 { 1713 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1714 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1715 struct intel_encoder *encoder = &dig_port->base; 1716 1717 if (INTEL_GEN(dev_priv) >= 9) { 1718 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; 1719 intel_dp->aux_ch_data_reg = skl_aux_data_reg; 1720 } else if (HAS_PCH_SPLIT(dev_priv)) { 1721 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; 1722 intel_dp->aux_ch_data_reg = ilk_aux_data_reg; 1723 } else { 1724 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; 1725 intel_dp->aux_ch_data_reg = g4x_aux_data_reg; 1726 } 1727 1728 if (INTEL_GEN(dev_priv) >= 9) 1729 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; 1730 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1731 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; 1732 else if (HAS_PCH_SPLIT(dev_priv)) 1733 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; 1734 else 1735 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; 1736 1737 if (INTEL_GEN(dev_priv) >= 9) 1738 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; 1739 else 1740 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; 1741 1742 drm_dp_aux_init(&intel_dp->aux); 1743 1744 /* Failure to allocate our preferred name is not critical */ 1745 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", 1746 port_name(encoder->port)); 1747 intel_dp->aux.transfer = intel_dp_aux_transfer; 1748 } 1749 1750 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) 1751 { 1752 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1753 1754 return max_rate >= 540000; 1755 } 1756 1757 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) 1758 { 1759 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1760 1761 return max_rate >= 810000; 1762 } 1763 1764 static void 1765 intel_dp_set_clock(struct intel_encoder *encoder, 1766 struct intel_crtc_state *pipe_config) 1767 { 1768 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1769 const struct dp_link_dpll *divisor = NULL; 1770 int i, count = 0; 1771 1772 if (IS_G4X(dev_priv)) { 1773 divisor = g4x_dpll; 1774 count = ARRAY_SIZE(g4x_dpll); 1775 } else if (HAS_PCH_SPLIT(dev_priv)) { 1776 divisor = pch_dpll; 1777 count = ARRAY_SIZE(pch_dpll); 1778 } else if (IS_CHERRYVIEW(dev_priv)) { 1779 divisor = chv_dpll; 1780 count = ARRAY_SIZE(chv_dpll); 1781 } else if (IS_VALLEYVIEW(dev_priv)) { 1782 divisor = vlv_dpll; 1783 count = ARRAY_SIZE(vlv_dpll); 1784 } 1785 1786 if (divisor && count) { 1787 for (i = 0; i < count; i++) { 1788 if (pipe_config->port_clock == divisor[i].clock) { 1789 pipe_config->dpll = divisor[i].dpll; 1790 pipe_config->clock_set = true; 1791 break; 1792 } 1793 } 1794 } 1795 } 1796 1797 static void snprintf_int_array(char *str, size_t len, 1798 const int *array, int nelem) 1799 { 1800 int i; 1801 1802 str[0] = '\0'; 1803 1804 for (i = 0; i < nelem; i++) { 1805 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); 1806 if (r >= len) 1807 return; 1808 str += r; 1809 len -= r; 1810 } 1811 } 1812 1813 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1814 { 1815 char str[128]; /* FIXME: too big for stack? */ 1816 1817 if ((drm_debug & DRM_UT_KMS) == 0) 1818 return; 1819 1820 snprintf_int_array(str, sizeof(str), 1821 intel_dp->source_rates, intel_dp->num_source_rates); 1822 DRM_DEBUG_KMS("source rates: %s\n", str); 1823 1824 snprintf_int_array(str, sizeof(str), 1825 intel_dp->sink_rates, intel_dp->num_sink_rates); 1826 DRM_DEBUG_KMS("sink rates: %s\n", str); 1827 1828 snprintf_int_array(str, sizeof(str), 1829 intel_dp->common_rates, intel_dp->num_common_rates); 1830 DRM_DEBUG_KMS("common rates: %s\n", str); 1831 } 1832 1833 int 1834 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1835 { 1836 int len; 1837 1838 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); 1839 if (WARN_ON(len <= 0)) 1840 return 162000; 1841 1842 return intel_dp->common_rates[len - 1]; 1843 } 1844 1845 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1846 { 1847 int i = intel_dp_rate_index(intel_dp->sink_rates, 1848 intel_dp->num_sink_rates, rate); 1849 1850 if (WARN_ON(i < 0)) 1851 i = 0; 1852 1853 return i; 1854 } 1855 1856 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1857 u8 *link_bw, u8 *rate_select) 1858 { 1859 /* eDP 1.4 rate select method. */ 1860 if (intel_dp->use_rate_select) { 1861 *link_bw = 0; 1862 *rate_select = 1863 intel_dp_rate_select(intel_dp, port_clock); 1864 } else { 1865 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1866 *rate_select = 0; 1867 } 1868 } 1869 1870 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1871 const struct intel_crtc_state *pipe_config) 1872 { 1873 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1874 1875 /* On TGL, FEC is supported on all Pipes */ 1876 if (INTEL_GEN(dev_priv) >= 12) 1877 return true; 1878 1879 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A) 1880 return true; 1881 1882 return false; 1883 } 1884 1885 static bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1886 const struct intel_crtc_state *pipe_config) 1887 { 1888 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1889 drm_dp_sink_supports_fec(intel_dp->fec_capable); 1890 } 1891 1892 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp, 1893 const struct intel_crtc_state *pipe_config) 1894 { 1895 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1896 1897 if (!INTEL_INFO(dev_priv)->display.has_dsc) 1898 return false; 1899 1900 /* On TGL, DSC is supported on all Pipes */ 1901 if (INTEL_GEN(dev_priv) >= 12) 1902 return true; 1903 1904 if (INTEL_GEN(dev_priv) >= 10 && 1905 pipe_config->cpu_transcoder != TRANSCODER_A) 1906 return true; 1907 1908 return false; 1909 } 1910 1911 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1912 const struct intel_crtc_state *pipe_config) 1913 { 1914 if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable) 1915 return false; 1916 1917 return intel_dp_source_supports_dsc(intel_dp, pipe_config) && 1918 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); 1919 } 1920 1921 static int intel_dp_compute_bpp(struct intel_dp *intel_dp, 1922 struct intel_crtc_state *pipe_config) 1923 { 1924 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1925 struct intel_connector *intel_connector = intel_dp->attached_connector; 1926 int bpp, bpc; 1927 1928 bpp = pipe_config->pipe_bpp; 1929 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports); 1930 1931 if (bpc > 0) 1932 bpp = min(bpp, 3*bpc); 1933 1934 if (intel_dp_is_edp(intel_dp)) { 1935 /* Get bpp from vbt only for panels that dont have bpp in edid */ 1936 if (intel_connector->base.display_info.bpc == 0 && 1937 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { 1938 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", 1939 dev_priv->vbt.edp.bpp); 1940 bpp = dev_priv->vbt.edp.bpp; 1941 } 1942 } 1943 1944 return bpp; 1945 } 1946 1947 /* Adjust link config limits based on compliance test requests. */ 1948 void 1949 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, 1950 struct intel_crtc_state *pipe_config, 1951 struct link_config_limits *limits) 1952 { 1953 /* For DP Compliance we override the computed bpp for the pipe */ 1954 if (intel_dp->compliance.test_data.bpc != 0) { 1955 int bpp = 3 * intel_dp->compliance.test_data.bpc; 1956 1957 limits->min_bpp = limits->max_bpp = bpp; 1958 pipe_config->dither_force_disable = bpp == 6 * 3; 1959 1960 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp); 1961 } 1962 1963 /* Use values requested by Compliance Test Request */ 1964 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 1965 int index; 1966 1967 /* Validate the compliance test data since max values 1968 * might have changed due to link train fallback. 1969 */ 1970 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, 1971 intel_dp->compliance.test_lane_count)) { 1972 index = intel_dp_rate_index(intel_dp->common_rates, 1973 intel_dp->num_common_rates, 1974 intel_dp->compliance.test_link_rate); 1975 if (index >= 0) 1976 limits->min_clock = limits->max_clock = index; 1977 limits->min_lane_count = limits->max_lane_count = 1978 intel_dp->compliance.test_lane_count; 1979 } 1980 } 1981 } 1982 1983 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp) 1984 { 1985 /* 1986 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 1987 * format of the number of bytes per pixel will be half the number 1988 * of bytes of RGB pixel. 1989 */ 1990 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1991 bpp /= 2; 1992 1993 return bpp; 1994 } 1995 1996 /* Optimize link config in order: max bpp, min clock, min lanes */ 1997 static int 1998 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 1999 struct intel_crtc_state *pipe_config, 2000 const struct link_config_limits *limits) 2001 { 2002 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2003 int bpp, clock, lane_count; 2004 int mode_rate, link_clock, link_avail; 2005 2006 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { 2007 int output_bpp = intel_dp_output_bpp(pipe_config, bpp); 2008 2009 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, 2010 output_bpp); 2011 2012 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { 2013 for (lane_count = limits->min_lane_count; 2014 lane_count <= limits->max_lane_count; 2015 lane_count <<= 1) { 2016 link_clock = intel_dp->common_rates[clock]; 2017 link_avail = intel_dp_max_data_rate(link_clock, 2018 lane_count); 2019 2020 if (mode_rate <= link_avail) { 2021 pipe_config->lane_count = lane_count; 2022 pipe_config->pipe_bpp = bpp; 2023 pipe_config->port_clock = link_clock; 2024 2025 return 0; 2026 } 2027 } 2028 } 2029 } 2030 2031 return -EINVAL; 2032 } 2033 2034 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) 2035 { 2036 int i, num_bpc; 2037 u8 dsc_bpc[3] = {0}; 2038 2039 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, 2040 dsc_bpc); 2041 for (i = 0; i < num_bpc; i++) { 2042 if (dsc_max_bpc >= dsc_bpc[i]) 2043 return dsc_bpc[i] * 3; 2044 } 2045 2046 return 0; 2047 } 2048 2049 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 2050 struct intel_crtc_state *pipe_config, 2051 struct drm_connector_state *conn_state, 2052 struct link_config_limits *limits) 2053 { 2054 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2055 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2056 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2057 u8 dsc_max_bpc; 2058 int pipe_bpp; 2059 int ret; 2060 2061 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && 2062 intel_dp_supports_fec(intel_dp, pipe_config); 2063 2064 if (!intel_dp_supports_dsc(intel_dp, pipe_config)) 2065 return -EINVAL; 2066 2067 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ 2068 if (INTEL_GEN(dev_priv) >= 12) 2069 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc); 2070 else 2071 dsc_max_bpc = min_t(u8, 10, 2072 conn_state->max_requested_bpc); 2073 2074 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); 2075 2076 /* Min Input BPC for ICL+ is 8 */ 2077 if (pipe_bpp < 8 * 3) { 2078 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n"); 2079 return -EINVAL; 2080 } 2081 2082 /* 2083 * For now enable DSC for max bpp, max link rate, max lane count. 2084 * Optimize this later for the minimum possible link rate/lane count 2085 * with DSC enabled for the requested mode. 2086 */ 2087 pipe_config->pipe_bpp = pipe_bpp; 2088 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; 2089 pipe_config->lane_count = limits->max_lane_count; 2090 2091 if (intel_dp_is_edp(intel_dp)) { 2092 pipe_config->dsc.compressed_bpp = 2093 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, 2094 pipe_config->pipe_bpp); 2095 pipe_config->dsc.slice_count = 2096 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 2097 true); 2098 } else { 2099 u16 dsc_max_output_bpp; 2100 u8 dsc_dp_slice_count; 2101 2102 dsc_max_output_bpp = 2103 intel_dp_dsc_get_output_bpp(dev_priv, 2104 pipe_config->port_clock, 2105 pipe_config->lane_count, 2106 adjusted_mode->crtc_clock, 2107 adjusted_mode->crtc_hdisplay); 2108 dsc_dp_slice_count = 2109 intel_dp_dsc_get_slice_count(intel_dp, 2110 adjusted_mode->crtc_clock, 2111 adjusted_mode->crtc_hdisplay); 2112 if (!dsc_max_output_bpp || !dsc_dp_slice_count) { 2113 DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n"); 2114 return -EINVAL; 2115 } 2116 pipe_config->dsc.compressed_bpp = min_t(u16, 2117 dsc_max_output_bpp >> 4, 2118 pipe_config->pipe_bpp); 2119 pipe_config->dsc.slice_count = dsc_dp_slice_count; 2120 } 2121 /* 2122 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 2123 * is greater than the maximum Cdclock and if slice count is even 2124 * then we need to use 2 VDSC instances. 2125 */ 2126 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) { 2127 if (pipe_config->dsc.slice_count > 1) { 2128 pipe_config->dsc.dsc_split = true; 2129 } else { 2130 DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n"); 2131 return -EINVAL; 2132 } 2133 } 2134 2135 ret = intel_dp_compute_dsc_params(intel_dp, pipe_config); 2136 if (ret < 0) { 2137 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d " 2138 "Compressed BPP = %d\n", 2139 pipe_config->pipe_bpp, 2140 pipe_config->dsc.compressed_bpp); 2141 return ret; 2142 } 2143 2144 pipe_config->dsc.compression_enable = true; 2145 DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d " 2146 "Compressed Bpp = %d Slice Count = %d\n", 2147 pipe_config->pipe_bpp, 2148 pipe_config->dsc.compressed_bpp, 2149 pipe_config->dsc.slice_count); 2150 2151 return 0; 2152 } 2153 2154 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state) 2155 { 2156 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 2157 return 6 * 3; 2158 else 2159 return 8 * 3; 2160 } 2161 2162 static int 2163 intel_dp_compute_link_config(struct intel_encoder *encoder, 2164 struct intel_crtc_state *pipe_config, 2165 struct drm_connector_state *conn_state) 2166 { 2167 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2168 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2169 struct link_config_limits limits; 2170 int common_len; 2171 int ret; 2172 2173 common_len = intel_dp_common_len_rate_limit(intel_dp, 2174 intel_dp->max_link_rate); 2175 2176 /* No common link rates between source and sink */ 2177 WARN_ON(common_len <= 0); 2178 2179 limits.min_clock = 0; 2180 limits.max_clock = common_len - 1; 2181 2182 limits.min_lane_count = 1; 2183 limits.max_lane_count = intel_dp_max_lane_count(intel_dp); 2184 2185 limits.min_bpp = intel_dp_min_bpp(pipe_config); 2186 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config); 2187 2188 if (intel_dp_is_edp(intel_dp)) { 2189 /* 2190 * Use the maximum clock and number of lanes the eDP panel 2191 * advertizes being capable of. The panels are generally 2192 * designed to support only a single clock and lane 2193 * configuration, and typically these values correspond to the 2194 * native resolution of the panel. 2195 */ 2196 limits.min_lane_count = limits.max_lane_count; 2197 limits.min_clock = limits.max_clock; 2198 } 2199 2200 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); 2201 2202 DRM_DEBUG_KMS("DP link computation with max lane count %i " 2203 "max rate %d max bpp %d pixel clock %iKHz\n", 2204 limits.max_lane_count, 2205 intel_dp->common_rates[limits.max_clock], 2206 limits.max_bpp, adjusted_mode->crtc_clock); 2207 2208 /* 2209 * Optimize for slow and wide. This is the place to add alternative 2210 * optimization policy. 2211 */ 2212 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); 2213 2214 /* enable compression if the mode doesn't fit available BW */ 2215 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en); 2216 if (ret || intel_dp->force_dsc_en) { 2217 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2218 conn_state, &limits); 2219 if (ret < 0) 2220 return ret; 2221 } 2222 2223 if (pipe_config->dsc.compression_enable) { 2224 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", 2225 pipe_config->lane_count, pipe_config->port_clock, 2226 pipe_config->pipe_bpp, 2227 pipe_config->dsc.compressed_bpp); 2228 2229 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2230 intel_dp_link_required(adjusted_mode->crtc_clock, 2231 pipe_config->dsc.compressed_bpp), 2232 intel_dp_max_data_rate(pipe_config->port_clock, 2233 pipe_config->lane_count)); 2234 } else { 2235 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n", 2236 pipe_config->lane_count, pipe_config->port_clock, 2237 pipe_config->pipe_bpp); 2238 2239 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2240 intel_dp_link_required(adjusted_mode->crtc_clock, 2241 pipe_config->pipe_bpp), 2242 intel_dp_max_data_rate(pipe_config->port_clock, 2243 pipe_config->lane_count)); 2244 } 2245 return 0; 2246 } 2247 2248 static int 2249 intel_dp_ycbcr420_config(struct intel_dp *intel_dp, 2250 struct drm_connector *connector, 2251 struct intel_crtc_state *crtc_state) 2252 { 2253 const struct drm_display_info *info = &connector->display_info; 2254 const struct drm_display_mode *adjusted_mode = 2255 &crtc_state->base.adjusted_mode; 2256 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 2257 int ret; 2258 2259 if (!drm_mode_is_420_only(info, adjusted_mode) || 2260 !intel_dp_get_colorimetry_status(intel_dp) || 2261 !connector->ycbcr_420_allowed) 2262 return 0; 2263 2264 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2265 2266 /* YCBCR 420 output conversion needs a scaler */ 2267 ret = skl_update_scaler_crtc(crtc_state); 2268 if (ret) { 2269 DRM_DEBUG_KMS("Scaler allocation for output failed\n"); 2270 return ret; 2271 } 2272 2273 intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN); 2274 2275 return 0; 2276 } 2277 2278 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2279 const struct drm_connector_state *conn_state) 2280 { 2281 const struct intel_digital_connector_state *intel_conn_state = 2282 to_intel_digital_connector_state(conn_state); 2283 const struct drm_display_mode *adjusted_mode = 2284 &crtc_state->base.adjusted_mode; 2285 2286 /* 2287 * Our YCbCr output is always limited range. 2288 * crtc_state->limited_color_range only applies to RGB, 2289 * and it must never be set for YCbCr or we risk setting 2290 * some conflicting bits in PIPECONF which will mess up 2291 * the colors on the monitor. 2292 */ 2293 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2294 return false; 2295 2296 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2297 /* 2298 * See: 2299 * CEA-861-E - 5.1 Default Encoding Parameters 2300 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2301 */ 2302 return crtc_state->pipe_bpp != 18 && 2303 drm_default_rgb_quant_range(adjusted_mode) == 2304 HDMI_QUANTIZATION_RANGE_LIMITED; 2305 } else { 2306 return intel_conn_state->broadcast_rgb == 2307 INTEL_BROADCAST_RGB_LIMITED; 2308 } 2309 } 2310 2311 int 2312 intel_dp_compute_config(struct intel_encoder *encoder, 2313 struct intel_crtc_state *pipe_config, 2314 struct drm_connector_state *conn_state) 2315 { 2316 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2317 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2318 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2319 struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base); 2320 enum port port = encoder->port; 2321 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc); 2322 struct intel_connector *intel_connector = intel_dp->attached_connector; 2323 struct intel_digital_connector_state *intel_conn_state = 2324 to_intel_digital_connector_state(conn_state); 2325 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 2326 DP_DPCD_QUIRK_CONSTANT_N); 2327 int ret = 0, output_bpp; 2328 2329 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) 2330 pipe_config->has_pch_encoder = true; 2331 2332 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2333 2334 if (lspcon->active) 2335 lspcon_ycbcr420_config(&intel_connector->base, pipe_config); 2336 else 2337 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base, 2338 pipe_config); 2339 2340 if (ret) 2341 return ret; 2342 2343 pipe_config->has_drrs = false; 2344 if (IS_G4X(dev_priv) || port == PORT_A) 2345 pipe_config->has_audio = false; 2346 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2347 pipe_config->has_audio = intel_dp->has_audio; 2348 else 2349 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; 2350 2351 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { 2352 intel_fixed_panel_mode(intel_connector->panel.fixed_mode, 2353 adjusted_mode); 2354 2355 if (INTEL_GEN(dev_priv) >= 9) { 2356 ret = skl_update_scaler_crtc(pipe_config); 2357 if (ret) 2358 return ret; 2359 } 2360 2361 if (HAS_GMCH(dev_priv)) 2362 intel_gmch_panel_fitting(intel_crtc, pipe_config, 2363 conn_state->scaling_mode); 2364 else 2365 intel_pch_panel_fitting(intel_crtc, pipe_config, 2366 conn_state->scaling_mode); 2367 } 2368 2369 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2370 return -EINVAL; 2371 2372 if (HAS_GMCH(dev_priv) && 2373 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2374 return -EINVAL; 2375 2376 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2377 return -EINVAL; 2378 2379 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay)) 2380 return -EINVAL; 2381 2382 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); 2383 if (ret < 0) 2384 return ret; 2385 2386 pipe_config->limited_color_range = 2387 intel_dp_limited_color_range(pipe_config, conn_state); 2388 2389 if (pipe_config->dsc.compression_enable) 2390 output_bpp = pipe_config->dsc.compressed_bpp; 2391 else 2392 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp); 2393 2394 intel_link_compute_m_n(output_bpp, 2395 pipe_config->lane_count, 2396 adjusted_mode->crtc_clock, 2397 pipe_config->port_clock, 2398 &pipe_config->dp_m_n, 2399 constant_n, pipe_config->fec_enable); 2400 2401 if (intel_connector->panel.downclock_mode != NULL && 2402 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { 2403 pipe_config->has_drrs = true; 2404 intel_link_compute_m_n(output_bpp, 2405 pipe_config->lane_count, 2406 intel_connector->panel.downclock_mode->clock, 2407 pipe_config->port_clock, 2408 &pipe_config->dp_m2_n2, 2409 constant_n, pipe_config->fec_enable); 2410 } 2411 2412 if (!HAS_DDI(dev_priv)) 2413 intel_dp_set_clock(encoder, pipe_config); 2414 2415 intel_psr_compute_config(intel_dp, pipe_config); 2416 2417 return 0; 2418 } 2419 2420 void intel_dp_set_link_params(struct intel_dp *intel_dp, 2421 int link_rate, u8 lane_count, 2422 bool link_mst) 2423 { 2424 intel_dp->link_trained = false; 2425 intel_dp->link_rate = link_rate; 2426 intel_dp->lane_count = lane_count; 2427 intel_dp->link_mst = link_mst; 2428 } 2429 2430 static void intel_dp_prepare(struct intel_encoder *encoder, 2431 const struct intel_crtc_state *pipe_config) 2432 { 2433 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2434 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2435 enum port port = encoder->port; 2436 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 2437 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2438 2439 intel_dp_set_link_params(intel_dp, pipe_config->port_clock, 2440 pipe_config->lane_count, 2441 intel_crtc_has_type(pipe_config, 2442 INTEL_OUTPUT_DP_MST)); 2443 2444 intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port); 2445 intel_dp->regs.dp_tp_status = DP_TP_STATUS(port); 2446 2447 /* 2448 * There are four kinds of DP registers: 2449 * 2450 * IBX PCH 2451 * SNB CPU 2452 * IVB CPU 2453 * CPT PCH 2454 * 2455 * IBX PCH and CPU are the same for almost everything, 2456 * except that the CPU DP PLL is configured in this 2457 * register 2458 * 2459 * CPT PCH is quite different, having many bits moved 2460 * to the TRANS_DP_CTL register instead. That 2461 * configuration happens (oddly) in ironlake_pch_enable 2462 */ 2463 2464 /* Preserve the BIOS-computed detected bit. This is 2465 * supposed to be read-only. 2466 */ 2467 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 2468 2469 /* Handle DP bits in common between all three register formats */ 2470 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 2471 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); 2472 2473 /* Split out the IBX/CPU vs CPT settings */ 2474 2475 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 2476 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2477 intel_dp->DP |= DP_SYNC_HS_HIGH; 2478 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2479 intel_dp->DP |= DP_SYNC_VS_HIGH; 2480 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2481 2482 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2483 intel_dp->DP |= DP_ENHANCED_FRAMING; 2484 2485 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); 2486 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 2487 u32 trans_dp; 2488 2489 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2490 2491 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 2492 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2493 trans_dp |= TRANS_DP_ENH_FRAMING; 2494 else 2495 trans_dp &= ~TRANS_DP_ENH_FRAMING; 2496 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp); 2497 } else { 2498 if (IS_G4X(dev_priv) && pipe_config->limited_color_range) 2499 intel_dp->DP |= DP_COLOR_RANGE_16_235; 2500 2501 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2502 intel_dp->DP |= DP_SYNC_HS_HIGH; 2503 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2504 intel_dp->DP |= DP_SYNC_VS_HIGH; 2505 intel_dp->DP |= DP_LINK_TRAIN_OFF; 2506 2507 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2508 intel_dp->DP |= DP_ENHANCED_FRAMING; 2509 2510 if (IS_CHERRYVIEW(dev_priv)) 2511 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); 2512 else 2513 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); 2514 } 2515 } 2516 2517 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) 2518 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) 2519 2520 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) 2521 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) 2522 2523 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) 2524 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) 2525 2526 static void intel_pps_verify_state(struct intel_dp *intel_dp); 2527 2528 static void wait_panel_status(struct intel_dp *intel_dp, 2529 u32 mask, 2530 u32 value) 2531 { 2532 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2533 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2534 2535 lockdep_assert_held(&dev_priv->pps_mutex); 2536 2537 intel_pps_verify_state(intel_dp); 2538 2539 pp_stat_reg = _pp_stat_reg(intel_dp); 2540 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2541 2542 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", 2543 mask, value, 2544 I915_READ(pp_stat_reg), 2545 I915_READ(pp_ctrl_reg)); 2546 2547 if (intel_de_wait_for_register(dev_priv, pp_stat_reg, 2548 mask, value, 5000)) 2549 DRM_ERROR("Panel status timeout: status %08x control %08x\n", 2550 I915_READ(pp_stat_reg), 2551 I915_READ(pp_ctrl_reg)); 2552 2553 DRM_DEBUG_KMS("Wait complete\n"); 2554 } 2555 2556 static void wait_panel_on(struct intel_dp *intel_dp) 2557 { 2558 DRM_DEBUG_KMS("Wait for panel power on\n"); 2559 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); 2560 } 2561 2562 static void wait_panel_off(struct intel_dp *intel_dp) 2563 { 2564 DRM_DEBUG_KMS("Wait for panel power off time\n"); 2565 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); 2566 } 2567 2568 static void wait_panel_power_cycle(struct intel_dp *intel_dp) 2569 { 2570 ktime_t panel_power_on_time; 2571 s64 panel_power_off_duration; 2572 2573 DRM_DEBUG_KMS("Wait for panel power cycle\n"); 2574 2575 /* take the difference of currrent time and panel power off time 2576 * and then make panel wait for t11_t12 if needed. */ 2577 panel_power_on_time = ktime_get_boottime(); 2578 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); 2579 2580 /* When we disable the VDD override bit last we have to do the manual 2581 * wait. */ 2582 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) 2583 wait_remaining_ms_from_jiffies(jiffies, 2584 intel_dp->panel_power_cycle_delay - panel_power_off_duration); 2585 2586 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); 2587 } 2588 2589 static void wait_backlight_on(struct intel_dp *intel_dp) 2590 { 2591 wait_remaining_ms_from_jiffies(intel_dp->last_power_on, 2592 intel_dp->backlight_on_delay); 2593 } 2594 2595 static void edp_wait_backlight_off(struct intel_dp *intel_dp) 2596 { 2597 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, 2598 intel_dp->backlight_off_delay); 2599 } 2600 2601 /* Read the current pp_control value, unlocking the register if it 2602 * is locked 2603 */ 2604 2605 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp) 2606 { 2607 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2608 u32 control; 2609 2610 lockdep_assert_held(&dev_priv->pps_mutex); 2611 2612 control = I915_READ(_pp_ctrl_reg(intel_dp)); 2613 if (WARN_ON(!HAS_DDI(dev_priv) && 2614 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { 2615 control &= ~PANEL_UNLOCK_MASK; 2616 control |= PANEL_UNLOCK_REGS; 2617 } 2618 return control; 2619 } 2620 2621 /* 2622 * Must be paired with edp_panel_vdd_off(). 2623 * Must hold pps_mutex around the whole on/off sequence. 2624 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2625 */ 2626 static bool edp_panel_vdd_on(struct intel_dp *intel_dp) 2627 { 2628 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2629 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 2630 u32 pp; 2631 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2632 bool need_to_disable = !intel_dp->want_panel_vdd; 2633 2634 lockdep_assert_held(&dev_priv->pps_mutex); 2635 2636 if (!intel_dp_is_edp(intel_dp)) 2637 return false; 2638 2639 cancel_delayed_work(&intel_dp->panel_vdd_work); 2640 intel_dp->want_panel_vdd = true; 2641 2642 if (edp_have_panel_vdd(intel_dp)) 2643 return need_to_disable; 2644 2645 intel_display_power_get(dev_priv, 2646 intel_aux_power_domain(intel_dig_port)); 2647 2648 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n", 2649 intel_dig_port->base.base.base.id, 2650 intel_dig_port->base.base.name); 2651 2652 if (!edp_have_panel_power(intel_dp)) 2653 wait_panel_power_cycle(intel_dp); 2654 2655 pp = ironlake_get_pp_control(intel_dp); 2656 pp |= EDP_FORCE_VDD; 2657 2658 pp_stat_reg = _pp_stat_reg(intel_dp); 2659 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2660 2661 I915_WRITE(pp_ctrl_reg, pp); 2662 POSTING_READ(pp_ctrl_reg); 2663 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2664 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2665 /* 2666 * If the panel wasn't on, delay before accessing aux channel 2667 */ 2668 if (!edp_have_panel_power(intel_dp)) { 2669 DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n", 2670 intel_dig_port->base.base.base.id, 2671 intel_dig_port->base.base.name); 2672 msleep(intel_dp->panel_power_up_delay); 2673 } 2674 2675 return need_to_disable; 2676 } 2677 2678 /* 2679 * Must be paired with intel_edp_panel_vdd_off() or 2680 * intel_edp_panel_off(). 2681 * Nested calls to these functions are not allowed since 2682 * we drop the lock. Caller must use some higher level 2683 * locking to prevent nested calls from other threads. 2684 */ 2685 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) 2686 { 2687 intel_wakeref_t wakeref; 2688 bool vdd; 2689 2690 if (!intel_dp_is_edp(intel_dp)) 2691 return; 2692 2693 vdd = false; 2694 with_pps_lock(intel_dp, wakeref) 2695 vdd = edp_panel_vdd_on(intel_dp); 2696 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n", 2697 dp_to_dig_port(intel_dp)->base.base.base.id, 2698 dp_to_dig_port(intel_dp)->base.base.name); 2699 } 2700 2701 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) 2702 { 2703 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2704 struct intel_digital_port *intel_dig_port = 2705 dp_to_dig_port(intel_dp); 2706 u32 pp; 2707 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2708 2709 lockdep_assert_held(&dev_priv->pps_mutex); 2710 2711 WARN_ON(intel_dp->want_panel_vdd); 2712 2713 if (!edp_have_panel_vdd(intel_dp)) 2714 return; 2715 2716 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n", 2717 intel_dig_port->base.base.base.id, 2718 intel_dig_port->base.base.name); 2719 2720 pp = ironlake_get_pp_control(intel_dp); 2721 pp &= ~EDP_FORCE_VDD; 2722 2723 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2724 pp_stat_reg = _pp_stat_reg(intel_dp); 2725 2726 I915_WRITE(pp_ctrl_reg, pp); 2727 POSTING_READ(pp_ctrl_reg); 2728 2729 /* Make sure sequencer is idle before allowing subsequent activity */ 2730 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2731 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2732 2733 if ((pp & PANEL_POWER_ON) == 0) 2734 intel_dp->panel_power_off_time = ktime_get_boottime(); 2735 2736 intel_display_power_put_unchecked(dev_priv, 2737 intel_aux_power_domain(intel_dig_port)); 2738 } 2739 2740 static void edp_panel_vdd_work(struct work_struct *__work) 2741 { 2742 struct intel_dp *intel_dp = 2743 container_of(to_delayed_work(__work), 2744 struct intel_dp, panel_vdd_work); 2745 intel_wakeref_t wakeref; 2746 2747 with_pps_lock(intel_dp, wakeref) { 2748 if (!intel_dp->want_panel_vdd) 2749 edp_panel_vdd_off_sync(intel_dp); 2750 } 2751 } 2752 2753 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) 2754 { 2755 unsigned long delay; 2756 2757 /* 2758 * Queue the timer to fire a long time from now (relative to the power 2759 * down delay) to keep the panel power up across a sequence of 2760 * operations. 2761 */ 2762 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); 2763 schedule_delayed_work(&intel_dp->panel_vdd_work, delay); 2764 } 2765 2766 /* 2767 * Must be paired with edp_panel_vdd_on(). 2768 * Must hold pps_mutex around the whole on/off sequence. 2769 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2770 */ 2771 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) 2772 { 2773 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2774 2775 lockdep_assert_held(&dev_priv->pps_mutex); 2776 2777 if (!intel_dp_is_edp(intel_dp)) 2778 return; 2779 2780 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on", 2781 dp_to_dig_port(intel_dp)->base.base.base.id, 2782 dp_to_dig_port(intel_dp)->base.base.name); 2783 2784 intel_dp->want_panel_vdd = false; 2785 2786 if (sync) 2787 edp_panel_vdd_off_sync(intel_dp); 2788 else 2789 edp_panel_vdd_schedule_off(intel_dp); 2790 } 2791 2792 static void edp_panel_on(struct intel_dp *intel_dp) 2793 { 2794 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2795 u32 pp; 2796 i915_reg_t pp_ctrl_reg; 2797 2798 lockdep_assert_held(&dev_priv->pps_mutex); 2799 2800 if (!intel_dp_is_edp(intel_dp)) 2801 return; 2802 2803 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n", 2804 dp_to_dig_port(intel_dp)->base.base.base.id, 2805 dp_to_dig_port(intel_dp)->base.base.name); 2806 2807 if (WARN(edp_have_panel_power(intel_dp), 2808 "[ENCODER:%d:%s] panel power already on\n", 2809 dp_to_dig_port(intel_dp)->base.base.base.id, 2810 dp_to_dig_port(intel_dp)->base.base.name)) 2811 return; 2812 2813 wait_panel_power_cycle(intel_dp); 2814 2815 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2816 pp = ironlake_get_pp_control(intel_dp); 2817 if (IS_GEN(dev_priv, 5)) { 2818 /* ILK workaround: disable reset around power sequence */ 2819 pp &= ~PANEL_POWER_RESET; 2820 I915_WRITE(pp_ctrl_reg, pp); 2821 POSTING_READ(pp_ctrl_reg); 2822 } 2823 2824 pp |= PANEL_POWER_ON; 2825 if (!IS_GEN(dev_priv, 5)) 2826 pp |= PANEL_POWER_RESET; 2827 2828 I915_WRITE(pp_ctrl_reg, pp); 2829 POSTING_READ(pp_ctrl_reg); 2830 2831 wait_panel_on(intel_dp); 2832 intel_dp->last_power_on = jiffies; 2833 2834 if (IS_GEN(dev_priv, 5)) { 2835 pp |= PANEL_POWER_RESET; /* restore panel reset bit */ 2836 I915_WRITE(pp_ctrl_reg, pp); 2837 POSTING_READ(pp_ctrl_reg); 2838 } 2839 } 2840 2841 void intel_edp_panel_on(struct intel_dp *intel_dp) 2842 { 2843 intel_wakeref_t wakeref; 2844 2845 if (!intel_dp_is_edp(intel_dp)) 2846 return; 2847 2848 with_pps_lock(intel_dp, wakeref) 2849 edp_panel_on(intel_dp); 2850 } 2851 2852 2853 static void edp_panel_off(struct intel_dp *intel_dp) 2854 { 2855 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2856 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2857 u32 pp; 2858 i915_reg_t pp_ctrl_reg; 2859 2860 lockdep_assert_held(&dev_priv->pps_mutex); 2861 2862 if (!intel_dp_is_edp(intel_dp)) 2863 return; 2864 2865 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n", 2866 dig_port->base.base.base.id, dig_port->base.base.name); 2867 2868 WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n", 2869 dig_port->base.base.base.id, dig_port->base.base.name); 2870 2871 pp = ironlake_get_pp_control(intel_dp); 2872 /* We need to switch off panel power _and_ force vdd, for otherwise some 2873 * panels get very unhappy and cease to work. */ 2874 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | 2875 EDP_BLC_ENABLE); 2876 2877 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2878 2879 intel_dp->want_panel_vdd = false; 2880 2881 I915_WRITE(pp_ctrl_reg, pp); 2882 POSTING_READ(pp_ctrl_reg); 2883 2884 wait_panel_off(intel_dp); 2885 intel_dp->panel_power_off_time = ktime_get_boottime(); 2886 2887 /* We got a reference when we enabled the VDD. */ 2888 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); 2889 } 2890 2891 void intel_edp_panel_off(struct intel_dp *intel_dp) 2892 { 2893 intel_wakeref_t wakeref; 2894 2895 if (!intel_dp_is_edp(intel_dp)) 2896 return; 2897 2898 with_pps_lock(intel_dp, wakeref) 2899 edp_panel_off(intel_dp); 2900 } 2901 2902 /* Enable backlight in the panel power control. */ 2903 static void _intel_edp_backlight_on(struct intel_dp *intel_dp) 2904 { 2905 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2906 intel_wakeref_t wakeref; 2907 2908 /* 2909 * If we enable the backlight right away following a panel power 2910 * on, we may see slight flicker as the panel syncs with the eDP 2911 * link. So delay a bit to make sure the image is solid before 2912 * allowing it to appear. 2913 */ 2914 wait_backlight_on(intel_dp); 2915 2916 with_pps_lock(intel_dp, wakeref) { 2917 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2918 u32 pp; 2919 2920 pp = ironlake_get_pp_control(intel_dp); 2921 pp |= EDP_BLC_ENABLE; 2922 2923 I915_WRITE(pp_ctrl_reg, pp); 2924 POSTING_READ(pp_ctrl_reg); 2925 } 2926 } 2927 2928 /* Enable backlight PWM and backlight PP control. */ 2929 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 2930 const struct drm_connector_state *conn_state) 2931 { 2932 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder); 2933 2934 if (!intel_dp_is_edp(intel_dp)) 2935 return; 2936 2937 DRM_DEBUG_KMS("\n"); 2938 2939 intel_panel_enable_backlight(crtc_state, conn_state); 2940 _intel_edp_backlight_on(intel_dp); 2941 } 2942 2943 /* Disable backlight in the panel power control. */ 2944 static void _intel_edp_backlight_off(struct intel_dp *intel_dp) 2945 { 2946 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2947 intel_wakeref_t wakeref; 2948 2949 if (!intel_dp_is_edp(intel_dp)) 2950 return; 2951 2952 with_pps_lock(intel_dp, wakeref) { 2953 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2954 u32 pp; 2955 2956 pp = ironlake_get_pp_control(intel_dp); 2957 pp &= ~EDP_BLC_ENABLE; 2958 2959 I915_WRITE(pp_ctrl_reg, pp); 2960 POSTING_READ(pp_ctrl_reg); 2961 } 2962 2963 intel_dp->last_backlight_off = jiffies; 2964 edp_wait_backlight_off(intel_dp); 2965 } 2966 2967 /* Disable backlight PP control and backlight PWM. */ 2968 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 2969 { 2970 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder); 2971 2972 if (!intel_dp_is_edp(intel_dp)) 2973 return; 2974 2975 DRM_DEBUG_KMS("\n"); 2976 2977 _intel_edp_backlight_off(intel_dp); 2978 intel_panel_disable_backlight(old_conn_state); 2979 } 2980 2981 /* 2982 * Hook for controlling the panel power control backlight through the bl_power 2983 * sysfs attribute. Take care to handle multiple calls. 2984 */ 2985 static void intel_edp_backlight_power(struct intel_connector *connector, 2986 bool enable) 2987 { 2988 struct intel_dp *intel_dp = intel_attached_dp(&connector->base); 2989 intel_wakeref_t wakeref; 2990 bool is_enabled; 2991 2992 is_enabled = false; 2993 with_pps_lock(intel_dp, wakeref) 2994 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE; 2995 if (is_enabled == enable) 2996 return; 2997 2998 DRM_DEBUG_KMS("panel power control backlight %s\n", 2999 enable ? "enable" : "disable"); 3000 3001 if (enable) 3002 _intel_edp_backlight_on(intel_dp); 3003 else 3004 _intel_edp_backlight_off(intel_dp); 3005 } 3006 3007 static void assert_dp_port(struct intel_dp *intel_dp, bool state) 3008 { 3009 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3010 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3011 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN; 3012 3013 I915_STATE_WARN(cur_state != state, 3014 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n", 3015 dig_port->base.base.base.id, dig_port->base.base.name, 3016 onoff(state), onoff(cur_state)); 3017 } 3018 #define assert_dp_port_disabled(d) assert_dp_port((d), false) 3019 3020 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) 3021 { 3022 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE; 3023 3024 I915_STATE_WARN(cur_state != state, 3025 "eDP PLL state assertion failure (expected %s, current %s)\n", 3026 onoff(state), onoff(cur_state)); 3027 } 3028 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) 3029 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) 3030 3031 static void ironlake_edp_pll_on(struct intel_dp *intel_dp, 3032 const struct intel_crtc_state *pipe_config) 3033 { 3034 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3035 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3036 3037 assert_pipe_disabled(dev_priv, crtc->pipe); 3038 assert_dp_port_disabled(intel_dp); 3039 assert_edp_pll_disabled(dev_priv); 3040 3041 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n", 3042 pipe_config->port_clock); 3043 3044 intel_dp->DP &= ~DP_PLL_FREQ_MASK; 3045 3046 if (pipe_config->port_clock == 162000) 3047 intel_dp->DP |= DP_PLL_FREQ_162MHZ; 3048 else 3049 intel_dp->DP |= DP_PLL_FREQ_270MHZ; 3050 3051 I915_WRITE(DP_A, intel_dp->DP); 3052 POSTING_READ(DP_A); 3053 udelay(500); 3054 3055 /* 3056 * [DevILK] Work around required when enabling DP PLL 3057 * while a pipe is enabled going to FDI: 3058 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI 3059 * 2. Program DP PLL enable 3060 */ 3061 if (IS_GEN(dev_priv, 5)) 3062 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); 3063 3064 intel_dp->DP |= DP_PLL_ENABLE; 3065 3066 I915_WRITE(DP_A, intel_dp->DP); 3067 POSTING_READ(DP_A); 3068 udelay(200); 3069 } 3070 3071 static void ironlake_edp_pll_off(struct intel_dp *intel_dp, 3072 const struct intel_crtc_state *old_crtc_state) 3073 { 3074 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 3075 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3076 3077 assert_pipe_disabled(dev_priv, crtc->pipe); 3078 assert_dp_port_disabled(intel_dp); 3079 assert_edp_pll_enabled(dev_priv); 3080 3081 DRM_DEBUG_KMS("disabling eDP PLL\n"); 3082 3083 intel_dp->DP &= ~DP_PLL_ENABLE; 3084 3085 I915_WRITE(DP_A, intel_dp->DP); 3086 POSTING_READ(DP_A); 3087 udelay(200); 3088 } 3089 3090 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 3091 { 3092 /* 3093 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 3094 * be capable of signalling downstream hpd with a long pulse. 3095 * Whether or not that means D3 is safe to use is not clear, 3096 * but let's assume so until proven otherwise. 3097 * 3098 * FIXME should really check all downstream ports... 3099 */ 3100 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 3101 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT && 3102 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 3103 } 3104 3105 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, 3106 const struct intel_crtc_state *crtc_state, 3107 bool enable) 3108 { 3109 int ret; 3110 3111 if (!crtc_state->dsc.compression_enable) 3112 return; 3113 3114 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, 3115 enable ? DP_DECOMPRESSION_EN : 0); 3116 if (ret < 0) 3117 DRM_DEBUG_KMS("Failed to %s sink decompression state\n", 3118 enable ? "enable" : "disable"); 3119 } 3120 3121 /* If the sink supports it, try to set the power state appropriately */ 3122 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) 3123 { 3124 int ret, i; 3125 3126 /* Should have a valid DPCD by this point */ 3127 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 3128 return; 3129 3130 if (mode != DRM_MODE_DPMS_ON) { 3131 if (downstream_hpd_needs_d0(intel_dp)) 3132 return; 3133 3134 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3135 DP_SET_POWER_D3); 3136 } else { 3137 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 3138 3139 /* 3140 * When turning on, we need to retry for 1ms to give the sink 3141 * time to wake up. 3142 */ 3143 for (i = 0; i < 3; i++) { 3144 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3145 DP_SET_POWER_D0); 3146 if (ret == 1) 3147 break; 3148 msleep(1); 3149 } 3150 3151 if (ret == 1 && lspcon->active) 3152 lspcon_wait_pcon_mode(lspcon); 3153 } 3154 3155 if (ret != 1) 3156 DRM_DEBUG_KMS("failed to %s sink power state\n", 3157 mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); 3158 } 3159 3160 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, 3161 enum port port, enum pipe *pipe) 3162 { 3163 enum pipe p; 3164 3165 for_each_pipe(dev_priv, p) { 3166 u32 val = I915_READ(TRANS_DP_CTL(p)); 3167 3168 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { 3169 *pipe = p; 3170 return true; 3171 } 3172 } 3173 3174 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port)); 3175 3176 /* must initialize pipe to something for the asserts */ 3177 *pipe = PIPE_A; 3178 3179 return false; 3180 } 3181 3182 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, 3183 i915_reg_t dp_reg, enum port port, 3184 enum pipe *pipe) 3185 { 3186 bool ret; 3187 u32 val; 3188 3189 val = I915_READ(dp_reg); 3190 3191 ret = val & DP_PORT_EN; 3192 3193 /* asserts want to know the pipe even if the port is disabled */ 3194 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3195 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; 3196 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3197 ret &= cpt_dp_port_selected(dev_priv, port, pipe); 3198 else if (IS_CHERRYVIEW(dev_priv)) 3199 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; 3200 else 3201 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; 3202 3203 return ret; 3204 } 3205 3206 static bool intel_dp_get_hw_state(struct intel_encoder *encoder, 3207 enum pipe *pipe) 3208 { 3209 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3210 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3211 intel_wakeref_t wakeref; 3212 bool ret; 3213 3214 wakeref = intel_display_power_get_if_enabled(dev_priv, 3215 encoder->power_domain); 3216 if (!wakeref) 3217 return false; 3218 3219 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 3220 encoder->port, pipe); 3221 3222 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 3223 3224 return ret; 3225 } 3226 3227 static void intel_dp_get_config(struct intel_encoder *encoder, 3228 struct intel_crtc_state *pipe_config) 3229 { 3230 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3231 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3232 u32 tmp, flags = 0; 3233 enum port port = encoder->port; 3234 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3235 3236 if (encoder->type == INTEL_OUTPUT_EDP) 3237 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); 3238 else 3239 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); 3240 3241 tmp = I915_READ(intel_dp->output_reg); 3242 3243 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; 3244 3245 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 3246 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 3247 3248 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) 3249 flags |= DRM_MODE_FLAG_PHSYNC; 3250 else 3251 flags |= DRM_MODE_FLAG_NHSYNC; 3252 3253 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) 3254 flags |= DRM_MODE_FLAG_PVSYNC; 3255 else 3256 flags |= DRM_MODE_FLAG_NVSYNC; 3257 } else { 3258 if (tmp & DP_SYNC_HS_HIGH) 3259 flags |= DRM_MODE_FLAG_PHSYNC; 3260 else 3261 flags |= DRM_MODE_FLAG_NHSYNC; 3262 3263 if (tmp & DP_SYNC_VS_HIGH) 3264 flags |= DRM_MODE_FLAG_PVSYNC; 3265 else 3266 flags |= DRM_MODE_FLAG_NVSYNC; 3267 } 3268 3269 pipe_config->base.adjusted_mode.flags |= flags; 3270 3271 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) 3272 pipe_config->limited_color_range = true; 3273 3274 pipe_config->lane_count = 3275 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; 3276 3277 intel_dp_get_m_n(crtc, pipe_config); 3278 3279 if (port == PORT_A) { 3280 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) 3281 pipe_config->port_clock = 162000; 3282 else 3283 pipe_config->port_clock = 270000; 3284 } 3285 3286 pipe_config->base.adjusted_mode.crtc_clock = 3287 intel_dotclock_calculate(pipe_config->port_clock, 3288 &pipe_config->dp_m_n); 3289 3290 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && 3291 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { 3292 /* 3293 * This is a big fat ugly hack. 3294 * 3295 * Some machines in UEFI boot mode provide us a VBT that has 18 3296 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 3297 * unknown we fail to light up. Yet the same BIOS boots up with 3298 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 3299 * max, not what it tells us to use. 3300 * 3301 * Note: This will still be broken if the eDP panel is not lit 3302 * up by the BIOS, and thus we can't get the mode at module 3303 * load. 3304 */ 3305 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 3306 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); 3307 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; 3308 } 3309 } 3310 3311 static void intel_disable_dp(struct intel_encoder *encoder, 3312 const struct intel_crtc_state *old_crtc_state, 3313 const struct drm_connector_state *old_conn_state) 3314 { 3315 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3316 3317 intel_dp->link_trained = false; 3318 3319 if (old_crtc_state->has_audio) 3320 intel_audio_codec_disable(encoder, 3321 old_crtc_state, old_conn_state); 3322 3323 /* Make sure the panel is off before trying to change the mode. But also 3324 * ensure that we have vdd while we switch off the panel. */ 3325 intel_edp_panel_vdd_on(intel_dp); 3326 intel_edp_backlight_off(old_conn_state); 3327 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); 3328 intel_edp_panel_off(intel_dp); 3329 } 3330 3331 static void g4x_disable_dp(struct intel_encoder *encoder, 3332 const struct intel_crtc_state *old_crtc_state, 3333 const struct drm_connector_state *old_conn_state) 3334 { 3335 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3336 } 3337 3338 static void vlv_disable_dp(struct intel_encoder *encoder, 3339 const struct intel_crtc_state *old_crtc_state, 3340 const struct drm_connector_state *old_conn_state) 3341 { 3342 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3343 } 3344 3345 static void g4x_post_disable_dp(struct intel_encoder *encoder, 3346 const struct intel_crtc_state *old_crtc_state, 3347 const struct drm_connector_state *old_conn_state) 3348 { 3349 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3350 enum port port = encoder->port; 3351 3352 /* 3353 * Bspec does not list a specific disable sequence for g4x DP. 3354 * Follow the ilk+ sequence (disable pipe before the port) for 3355 * g4x DP as it does not suffer from underruns like the normal 3356 * g4x modeset sequence (disable pipe after the port). 3357 */ 3358 intel_dp_link_down(encoder, old_crtc_state); 3359 3360 /* Only ilk+ has port A */ 3361 if (port == PORT_A) 3362 ironlake_edp_pll_off(intel_dp, old_crtc_state); 3363 } 3364 3365 static void vlv_post_disable_dp(struct intel_encoder *encoder, 3366 const struct intel_crtc_state *old_crtc_state, 3367 const struct drm_connector_state *old_conn_state) 3368 { 3369 intel_dp_link_down(encoder, old_crtc_state); 3370 } 3371 3372 static void chv_post_disable_dp(struct intel_encoder *encoder, 3373 const struct intel_crtc_state *old_crtc_state, 3374 const struct drm_connector_state *old_conn_state) 3375 { 3376 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3377 3378 intel_dp_link_down(encoder, old_crtc_state); 3379 3380 vlv_dpio_get(dev_priv); 3381 3382 /* Assert data lane reset */ 3383 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 3384 3385 vlv_dpio_put(dev_priv); 3386 } 3387 3388 static void 3389 _intel_dp_set_link_train(struct intel_dp *intel_dp, 3390 u32 *DP, 3391 u8 dp_train_pat) 3392 { 3393 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3394 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3395 enum port port = intel_dig_port->base.port; 3396 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); 3397 3398 if (dp_train_pat & train_pat_mask) 3399 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n", 3400 dp_train_pat & train_pat_mask); 3401 3402 if (HAS_DDI(dev_priv)) { 3403 u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl); 3404 3405 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) 3406 temp |= DP_TP_CTL_SCRAMBLE_DISABLE; 3407 else 3408 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; 3409 3410 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; 3411 switch (dp_train_pat & train_pat_mask) { 3412 case DP_TRAINING_PATTERN_DISABLE: 3413 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; 3414 3415 break; 3416 case DP_TRAINING_PATTERN_1: 3417 temp |= DP_TP_CTL_LINK_TRAIN_PAT1; 3418 break; 3419 case DP_TRAINING_PATTERN_2: 3420 temp |= DP_TP_CTL_LINK_TRAIN_PAT2; 3421 break; 3422 case DP_TRAINING_PATTERN_3: 3423 temp |= DP_TP_CTL_LINK_TRAIN_PAT3; 3424 break; 3425 case DP_TRAINING_PATTERN_4: 3426 temp |= DP_TP_CTL_LINK_TRAIN_PAT4; 3427 break; 3428 } 3429 I915_WRITE(intel_dp->regs.dp_tp_ctl, temp); 3430 3431 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 3432 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 3433 *DP &= ~DP_LINK_TRAIN_MASK_CPT; 3434 3435 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3436 case DP_TRAINING_PATTERN_DISABLE: 3437 *DP |= DP_LINK_TRAIN_OFF_CPT; 3438 break; 3439 case DP_TRAINING_PATTERN_1: 3440 *DP |= DP_LINK_TRAIN_PAT_1_CPT; 3441 break; 3442 case DP_TRAINING_PATTERN_2: 3443 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3444 break; 3445 case DP_TRAINING_PATTERN_3: 3446 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3447 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3448 break; 3449 } 3450 3451 } else { 3452 *DP &= ~DP_LINK_TRAIN_MASK; 3453 3454 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3455 case DP_TRAINING_PATTERN_DISABLE: 3456 *DP |= DP_LINK_TRAIN_OFF; 3457 break; 3458 case DP_TRAINING_PATTERN_1: 3459 *DP |= DP_LINK_TRAIN_PAT_1; 3460 break; 3461 case DP_TRAINING_PATTERN_2: 3462 *DP |= DP_LINK_TRAIN_PAT_2; 3463 break; 3464 case DP_TRAINING_PATTERN_3: 3465 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3466 *DP |= DP_LINK_TRAIN_PAT_2; 3467 break; 3468 } 3469 } 3470 } 3471 3472 static void intel_dp_enable_port(struct intel_dp *intel_dp, 3473 const struct intel_crtc_state *old_crtc_state) 3474 { 3475 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3476 3477 /* enable with pattern 1 (as per spec) */ 3478 3479 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); 3480 3481 /* 3482 * Magic for VLV/CHV. We _must_ first set up the register 3483 * without actually enabling the port, and then do another 3484 * write to enable the port. Otherwise link training will 3485 * fail when the power sequencer is freshly used for this port. 3486 */ 3487 intel_dp->DP |= DP_PORT_EN; 3488 if (old_crtc_state->has_audio) 3489 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 3490 3491 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 3492 POSTING_READ(intel_dp->output_reg); 3493 } 3494 3495 static void intel_enable_dp(struct intel_encoder *encoder, 3496 const struct intel_crtc_state *pipe_config, 3497 const struct drm_connector_state *conn_state) 3498 { 3499 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3500 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3501 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3502 u32 dp_reg = I915_READ(intel_dp->output_reg); 3503 enum pipe pipe = crtc->pipe; 3504 intel_wakeref_t wakeref; 3505 3506 if (WARN_ON(dp_reg & DP_PORT_EN)) 3507 return; 3508 3509 with_pps_lock(intel_dp, wakeref) { 3510 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3511 vlv_init_panel_power_sequencer(encoder, pipe_config); 3512 3513 intel_dp_enable_port(intel_dp, pipe_config); 3514 3515 edp_panel_vdd_on(intel_dp); 3516 edp_panel_on(intel_dp); 3517 edp_panel_vdd_off(intel_dp, true); 3518 } 3519 3520 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3521 unsigned int lane_mask = 0x0; 3522 3523 if (IS_CHERRYVIEW(dev_priv)) 3524 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); 3525 3526 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), 3527 lane_mask); 3528 } 3529 3530 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); 3531 intel_dp_start_link_train(intel_dp); 3532 intel_dp_stop_link_train(intel_dp); 3533 3534 if (pipe_config->has_audio) { 3535 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", 3536 pipe_name(pipe)); 3537 intel_audio_codec_enable(encoder, pipe_config, conn_state); 3538 } 3539 } 3540 3541 static void g4x_enable_dp(struct intel_encoder *encoder, 3542 const struct intel_crtc_state *pipe_config, 3543 const struct drm_connector_state *conn_state) 3544 { 3545 intel_enable_dp(encoder, pipe_config, conn_state); 3546 intel_edp_backlight_on(pipe_config, conn_state); 3547 } 3548 3549 static void vlv_enable_dp(struct intel_encoder *encoder, 3550 const struct intel_crtc_state *pipe_config, 3551 const struct drm_connector_state *conn_state) 3552 { 3553 intel_edp_backlight_on(pipe_config, conn_state); 3554 } 3555 3556 static void g4x_pre_enable_dp(struct intel_encoder *encoder, 3557 const struct intel_crtc_state *pipe_config, 3558 const struct drm_connector_state *conn_state) 3559 { 3560 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3561 enum port port = encoder->port; 3562 3563 intel_dp_prepare(encoder, pipe_config); 3564 3565 /* Only ilk+ has port A */ 3566 if (port == PORT_A) 3567 ironlake_edp_pll_on(intel_dp, pipe_config); 3568 } 3569 3570 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) 3571 { 3572 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3573 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); 3574 enum pipe pipe = intel_dp->pps_pipe; 3575 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); 3576 3577 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3578 3579 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B)) 3580 return; 3581 3582 edp_panel_vdd_off_sync(intel_dp); 3583 3584 /* 3585 * VLV seems to get confused when multiple power sequencers 3586 * have the same port selected (even if only one has power/vdd 3587 * enabled). The failure manifests as vlv_wait_port_ready() failing 3588 * CHV on the other hand doesn't seem to mind having the same port 3589 * selected in multiple power sequencers, but let's clear the 3590 * port select always when logically disconnecting a power sequencer 3591 * from a port. 3592 */ 3593 DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n", 3594 pipe_name(pipe), intel_dig_port->base.base.base.id, 3595 intel_dig_port->base.base.name); 3596 I915_WRITE(pp_on_reg, 0); 3597 POSTING_READ(pp_on_reg); 3598 3599 intel_dp->pps_pipe = INVALID_PIPE; 3600 } 3601 3602 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 3603 enum pipe pipe) 3604 { 3605 struct intel_encoder *encoder; 3606 3607 lockdep_assert_held(&dev_priv->pps_mutex); 3608 3609 for_each_intel_dp(&dev_priv->drm, encoder) { 3610 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3611 3612 WARN(intel_dp->active_pipe == pipe, 3613 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n", 3614 pipe_name(pipe), encoder->base.base.id, 3615 encoder->base.name); 3616 3617 if (intel_dp->pps_pipe != pipe) 3618 continue; 3619 3620 DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n", 3621 pipe_name(pipe), encoder->base.base.id, 3622 encoder->base.name); 3623 3624 /* make sure vdd is off before we steal it */ 3625 vlv_detach_power_sequencer(intel_dp); 3626 } 3627 } 3628 3629 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 3630 const struct intel_crtc_state *crtc_state) 3631 { 3632 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3633 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3634 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 3635 3636 lockdep_assert_held(&dev_priv->pps_mutex); 3637 3638 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3639 3640 if (intel_dp->pps_pipe != INVALID_PIPE && 3641 intel_dp->pps_pipe != crtc->pipe) { 3642 /* 3643 * If another power sequencer was being used on this 3644 * port previously make sure to turn off vdd there while 3645 * we still have control of it. 3646 */ 3647 vlv_detach_power_sequencer(intel_dp); 3648 } 3649 3650 /* 3651 * We may be stealing the power 3652 * sequencer from another port. 3653 */ 3654 vlv_steal_power_sequencer(dev_priv, crtc->pipe); 3655 3656 intel_dp->active_pipe = crtc->pipe; 3657 3658 if (!intel_dp_is_edp(intel_dp)) 3659 return; 3660 3661 /* now it's all ours */ 3662 intel_dp->pps_pipe = crtc->pipe; 3663 3664 DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n", 3665 pipe_name(intel_dp->pps_pipe), encoder->base.base.id, 3666 encoder->base.name); 3667 3668 /* init power sequencer on this pipe and port */ 3669 intel_dp_init_panel_power_sequencer(intel_dp); 3670 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 3671 } 3672 3673 static void vlv_pre_enable_dp(struct intel_encoder *encoder, 3674 const struct intel_crtc_state *pipe_config, 3675 const struct drm_connector_state *conn_state) 3676 { 3677 vlv_phy_pre_encoder_enable(encoder, pipe_config); 3678 3679 intel_enable_dp(encoder, pipe_config, conn_state); 3680 } 3681 3682 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder, 3683 const struct intel_crtc_state *pipe_config, 3684 const struct drm_connector_state *conn_state) 3685 { 3686 intel_dp_prepare(encoder, pipe_config); 3687 3688 vlv_phy_pre_pll_enable(encoder, pipe_config); 3689 } 3690 3691 static void chv_pre_enable_dp(struct intel_encoder *encoder, 3692 const struct intel_crtc_state *pipe_config, 3693 const struct drm_connector_state *conn_state) 3694 { 3695 chv_phy_pre_encoder_enable(encoder, pipe_config); 3696 3697 intel_enable_dp(encoder, pipe_config, conn_state); 3698 3699 /* Second common lane will stay alive on its own now */ 3700 chv_phy_release_cl2_override(encoder); 3701 } 3702 3703 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder, 3704 const struct intel_crtc_state *pipe_config, 3705 const struct drm_connector_state *conn_state) 3706 { 3707 intel_dp_prepare(encoder, pipe_config); 3708 3709 chv_phy_pre_pll_enable(encoder, pipe_config); 3710 } 3711 3712 static void chv_dp_post_pll_disable(struct intel_encoder *encoder, 3713 const struct intel_crtc_state *old_crtc_state, 3714 const struct drm_connector_state *old_conn_state) 3715 { 3716 chv_phy_post_pll_disable(encoder, old_crtc_state); 3717 } 3718 3719 /* 3720 * Fetch AUX CH registers 0x202 - 0x207 which contain 3721 * link status information 3722 */ 3723 bool 3724 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) 3725 { 3726 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, 3727 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; 3728 } 3729 3730 /* These are source-specific values. */ 3731 u8 3732 intel_dp_voltage_max(struct intel_dp *intel_dp) 3733 { 3734 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3735 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3736 enum port port = encoder->port; 3737 3738 if (HAS_DDI(dev_priv)) 3739 return intel_ddi_dp_voltage_max(encoder); 3740 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3741 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3742 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3743 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3744 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3745 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3746 else 3747 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3748 } 3749 3750 u8 3751 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing) 3752 { 3753 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3754 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3755 enum port port = encoder->port; 3756 3757 if (HAS_DDI(dev_priv)) { 3758 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing); 3759 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3760 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3761 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3762 return DP_TRAIN_PRE_EMPH_LEVEL_3; 3763 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3764 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3765 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3766 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3767 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3768 default: 3769 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3770 } 3771 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3772 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3773 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3774 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3775 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3776 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3777 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3778 default: 3779 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3780 } 3781 } else { 3782 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3783 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3784 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3785 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3786 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3787 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3788 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3789 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3790 default: 3791 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3792 } 3793 } 3794 } 3795 3796 static u32 vlv_signal_levels(struct intel_dp *intel_dp) 3797 { 3798 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3799 unsigned long demph_reg_value, preemph_reg_value, 3800 uniqtranscale_reg_value; 3801 u8 train_set = intel_dp->train_set[0]; 3802 3803 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3804 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3805 preemph_reg_value = 0x0004000; 3806 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3807 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3808 demph_reg_value = 0x2B405555; 3809 uniqtranscale_reg_value = 0x552AB83A; 3810 break; 3811 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3812 demph_reg_value = 0x2B404040; 3813 uniqtranscale_reg_value = 0x5548B83A; 3814 break; 3815 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3816 demph_reg_value = 0x2B245555; 3817 uniqtranscale_reg_value = 0x5560B83A; 3818 break; 3819 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3820 demph_reg_value = 0x2B405555; 3821 uniqtranscale_reg_value = 0x5598DA3A; 3822 break; 3823 default: 3824 return 0; 3825 } 3826 break; 3827 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3828 preemph_reg_value = 0x0002000; 3829 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3830 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3831 demph_reg_value = 0x2B404040; 3832 uniqtranscale_reg_value = 0x5552B83A; 3833 break; 3834 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3835 demph_reg_value = 0x2B404848; 3836 uniqtranscale_reg_value = 0x5580B83A; 3837 break; 3838 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3839 demph_reg_value = 0x2B404040; 3840 uniqtranscale_reg_value = 0x55ADDA3A; 3841 break; 3842 default: 3843 return 0; 3844 } 3845 break; 3846 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3847 preemph_reg_value = 0x0000000; 3848 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3849 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3850 demph_reg_value = 0x2B305555; 3851 uniqtranscale_reg_value = 0x5570B83A; 3852 break; 3853 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3854 demph_reg_value = 0x2B2B4040; 3855 uniqtranscale_reg_value = 0x55ADDA3A; 3856 break; 3857 default: 3858 return 0; 3859 } 3860 break; 3861 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3862 preemph_reg_value = 0x0006000; 3863 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3864 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3865 demph_reg_value = 0x1B405555; 3866 uniqtranscale_reg_value = 0x55ADDA3A; 3867 break; 3868 default: 3869 return 0; 3870 } 3871 break; 3872 default: 3873 return 0; 3874 } 3875 3876 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, 3877 uniqtranscale_reg_value, 0); 3878 3879 return 0; 3880 } 3881 3882 static u32 chv_signal_levels(struct intel_dp *intel_dp) 3883 { 3884 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3885 u32 deemph_reg_value, margin_reg_value; 3886 bool uniq_trans_scale = false; 3887 u8 train_set = intel_dp->train_set[0]; 3888 3889 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3890 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3891 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3892 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3893 deemph_reg_value = 128; 3894 margin_reg_value = 52; 3895 break; 3896 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3897 deemph_reg_value = 128; 3898 margin_reg_value = 77; 3899 break; 3900 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3901 deemph_reg_value = 128; 3902 margin_reg_value = 102; 3903 break; 3904 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3905 deemph_reg_value = 128; 3906 margin_reg_value = 154; 3907 uniq_trans_scale = true; 3908 break; 3909 default: 3910 return 0; 3911 } 3912 break; 3913 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3914 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3915 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3916 deemph_reg_value = 85; 3917 margin_reg_value = 78; 3918 break; 3919 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3920 deemph_reg_value = 85; 3921 margin_reg_value = 116; 3922 break; 3923 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3924 deemph_reg_value = 85; 3925 margin_reg_value = 154; 3926 break; 3927 default: 3928 return 0; 3929 } 3930 break; 3931 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3932 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3933 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3934 deemph_reg_value = 64; 3935 margin_reg_value = 104; 3936 break; 3937 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3938 deemph_reg_value = 64; 3939 margin_reg_value = 154; 3940 break; 3941 default: 3942 return 0; 3943 } 3944 break; 3945 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3946 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3947 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3948 deemph_reg_value = 43; 3949 margin_reg_value = 154; 3950 break; 3951 default: 3952 return 0; 3953 } 3954 break; 3955 default: 3956 return 0; 3957 } 3958 3959 chv_set_phy_signal_level(encoder, deemph_reg_value, 3960 margin_reg_value, uniq_trans_scale); 3961 3962 return 0; 3963 } 3964 3965 static u32 3966 g4x_signal_levels(u8 train_set) 3967 { 3968 u32 signal_levels = 0; 3969 3970 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3971 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3972 default: 3973 signal_levels |= DP_VOLTAGE_0_4; 3974 break; 3975 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3976 signal_levels |= DP_VOLTAGE_0_6; 3977 break; 3978 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3979 signal_levels |= DP_VOLTAGE_0_8; 3980 break; 3981 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3982 signal_levels |= DP_VOLTAGE_1_2; 3983 break; 3984 } 3985 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3986 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3987 default: 3988 signal_levels |= DP_PRE_EMPHASIS_0; 3989 break; 3990 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3991 signal_levels |= DP_PRE_EMPHASIS_3_5; 3992 break; 3993 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3994 signal_levels |= DP_PRE_EMPHASIS_6; 3995 break; 3996 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3997 signal_levels |= DP_PRE_EMPHASIS_9_5; 3998 break; 3999 } 4000 return signal_levels; 4001 } 4002 4003 /* SNB CPU eDP voltage swing and pre-emphasis control */ 4004 static u32 4005 snb_cpu_edp_signal_levels(u8 train_set) 4006 { 4007 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4008 DP_TRAIN_PRE_EMPHASIS_MASK); 4009 switch (signal_levels) { 4010 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4011 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4012 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4013 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4014 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; 4015 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4016 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4017 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; 4018 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4019 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4020 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; 4021 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4022 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4023 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; 4024 default: 4025 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4026 "0x%x\n", signal_levels); 4027 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4028 } 4029 } 4030 4031 /* IVB CPU eDP voltage swing and pre-emphasis control */ 4032 static u32 4033 ivb_cpu_edp_signal_levels(u8 train_set) 4034 { 4035 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4036 DP_TRAIN_PRE_EMPHASIS_MASK); 4037 switch (signal_levels) { 4038 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4039 return EDP_LINK_TRAIN_400MV_0DB_IVB; 4040 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4041 return EDP_LINK_TRAIN_400MV_3_5DB_IVB; 4042 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4043 return EDP_LINK_TRAIN_400MV_6DB_IVB; 4044 4045 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4046 return EDP_LINK_TRAIN_600MV_0DB_IVB; 4047 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4048 return EDP_LINK_TRAIN_600MV_3_5DB_IVB; 4049 4050 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4051 return EDP_LINK_TRAIN_800MV_0DB_IVB; 4052 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4053 return EDP_LINK_TRAIN_800MV_3_5DB_IVB; 4054 4055 default: 4056 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4057 "0x%x\n", signal_levels); 4058 return EDP_LINK_TRAIN_500MV_0DB_IVB; 4059 } 4060 } 4061 4062 void 4063 intel_dp_set_signal_levels(struct intel_dp *intel_dp) 4064 { 4065 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4066 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4067 enum port port = intel_dig_port->base.port; 4068 u32 signal_levels, mask = 0; 4069 u8 train_set = intel_dp->train_set[0]; 4070 4071 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) { 4072 signal_levels = bxt_signal_levels(intel_dp); 4073 } else if (HAS_DDI(dev_priv)) { 4074 signal_levels = ddi_signal_levels(intel_dp); 4075 mask = DDI_BUF_EMP_MASK; 4076 } else if (IS_CHERRYVIEW(dev_priv)) { 4077 signal_levels = chv_signal_levels(intel_dp); 4078 } else if (IS_VALLEYVIEW(dev_priv)) { 4079 signal_levels = vlv_signal_levels(intel_dp); 4080 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 4081 signal_levels = ivb_cpu_edp_signal_levels(train_set); 4082 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; 4083 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) { 4084 signal_levels = snb_cpu_edp_signal_levels(train_set); 4085 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; 4086 } else { 4087 signal_levels = g4x_signal_levels(train_set); 4088 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; 4089 } 4090 4091 if (mask) 4092 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); 4093 4094 DRM_DEBUG_KMS("Using vswing level %d\n", 4095 train_set & DP_TRAIN_VOLTAGE_SWING_MASK); 4096 DRM_DEBUG_KMS("Using pre-emphasis level %d\n", 4097 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> 4098 DP_TRAIN_PRE_EMPHASIS_SHIFT); 4099 4100 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels; 4101 4102 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 4103 POSTING_READ(intel_dp->output_reg); 4104 } 4105 4106 void 4107 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, 4108 u8 dp_train_pat) 4109 { 4110 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4111 struct drm_i915_private *dev_priv = 4112 to_i915(intel_dig_port->base.base.dev); 4113 4114 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat); 4115 4116 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 4117 POSTING_READ(intel_dp->output_reg); 4118 } 4119 4120 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) 4121 { 4122 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4123 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4124 enum port port = intel_dig_port->base.port; 4125 u32 val; 4126 4127 if (!HAS_DDI(dev_priv)) 4128 return; 4129 4130 val = I915_READ(intel_dp->regs.dp_tp_ctl); 4131 val &= ~DP_TP_CTL_LINK_TRAIN_MASK; 4132 val |= DP_TP_CTL_LINK_TRAIN_IDLE; 4133 I915_WRITE(intel_dp->regs.dp_tp_ctl, val); 4134 4135 /* 4136 * Until TGL on PORT_A we can have only eDP in SST mode. There the only 4137 * reason we need to set idle transmission mode is to work around a HW 4138 * issue where we enable the pipe while not in idle link-training mode. 4139 * In this case there is requirement to wait for a minimum number of 4140 * idle patterns to be sent. 4141 */ 4142 if (port == PORT_A && INTEL_GEN(dev_priv) < 12) 4143 return; 4144 4145 if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status, 4146 DP_TP_STATUS_IDLE_DONE, 1)) 4147 DRM_ERROR("Timed out waiting for DP idle patterns\n"); 4148 } 4149 4150 static void 4151 intel_dp_link_down(struct intel_encoder *encoder, 4152 const struct intel_crtc_state *old_crtc_state) 4153 { 4154 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4155 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 4156 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 4157 enum port port = encoder->port; 4158 u32 DP = intel_dp->DP; 4159 4160 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) 4161 return; 4162 4163 DRM_DEBUG_KMS("\n"); 4164 4165 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 4166 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 4167 DP &= ~DP_LINK_TRAIN_MASK_CPT; 4168 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; 4169 } else { 4170 DP &= ~DP_LINK_TRAIN_MASK; 4171 DP |= DP_LINK_TRAIN_PAT_IDLE; 4172 } 4173 I915_WRITE(intel_dp->output_reg, DP); 4174 POSTING_READ(intel_dp->output_reg); 4175 4176 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); 4177 I915_WRITE(intel_dp->output_reg, DP); 4178 POSTING_READ(intel_dp->output_reg); 4179 4180 /* 4181 * HW workaround for IBX, we need to move the port 4182 * to transcoder A after disabling it to allow the 4183 * matching HDMI port to be enabled on transcoder A. 4184 */ 4185 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { 4186 /* 4187 * We get CPU/PCH FIFO underruns on the other pipe when 4188 * doing the workaround. Sweep them under the rug. 4189 */ 4190 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4191 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4192 4193 /* always enable with pattern 1 (as per spec) */ 4194 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); 4195 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | 4196 DP_LINK_TRAIN_PAT_1; 4197 I915_WRITE(intel_dp->output_reg, DP); 4198 POSTING_READ(intel_dp->output_reg); 4199 4200 DP &= ~DP_PORT_EN; 4201 I915_WRITE(intel_dp->output_reg, DP); 4202 POSTING_READ(intel_dp->output_reg); 4203 4204 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 4205 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4206 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4207 } 4208 4209 msleep(intel_dp->panel_power_down_delay); 4210 4211 intel_dp->DP = DP; 4212 4213 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4214 intel_wakeref_t wakeref; 4215 4216 with_pps_lock(intel_dp, wakeref) 4217 intel_dp->active_pipe = INVALID_PIPE; 4218 } 4219 } 4220 4221 static void 4222 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp) 4223 { 4224 u8 dpcd_ext[6]; 4225 4226 /* 4227 * Prior to DP1.3 the bit represented by 4228 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 4229 * if it is set DP_DPCD_REV at 0000h could be at a value less than 4230 * the true capability of the panel. The only way to check is to 4231 * then compare 0000h and 2200h. 4232 */ 4233 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 4234 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 4235 return; 4236 4237 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV, 4238 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) { 4239 DRM_ERROR("DPCD failed read at extended capabilities\n"); 4240 return; 4241 } 4242 4243 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 4244 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n"); 4245 return; 4246 } 4247 4248 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext))) 4249 return; 4250 4251 DRM_DEBUG_KMS("Base DPCD: %*ph\n", 4252 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd); 4253 4254 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)); 4255 } 4256 4257 bool 4258 intel_dp_read_dpcd(struct intel_dp *intel_dp) 4259 { 4260 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd, 4261 sizeof(intel_dp->dpcd)) < 0) 4262 return false; /* aux transfer failed */ 4263 4264 intel_dp_extended_receiver_capabilities(intel_dp); 4265 4266 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); 4267 4268 return intel_dp->dpcd[DP_DPCD_REV] != 0; 4269 } 4270 4271 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4272 { 4273 u8 dprx = 0; 4274 4275 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4276 &dprx) != 1) 4277 return false; 4278 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4279 } 4280 4281 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) 4282 { 4283 /* 4284 * Clear the cached register set to avoid using stale values 4285 * for the sinks that do not support DSC. 4286 */ 4287 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 4288 4289 /* Clear fec_capable to avoid using stale values */ 4290 intel_dp->fec_capable = 0; 4291 4292 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ 4293 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || 4294 intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4295 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, 4296 intel_dp->dsc_dpcd, 4297 sizeof(intel_dp->dsc_dpcd)) < 0) 4298 DRM_ERROR("Failed to read DPCD register 0x%x\n", 4299 DP_DSC_SUPPORT); 4300 4301 DRM_DEBUG_KMS("DSC DPCD: %*ph\n", 4302 (int)sizeof(intel_dp->dsc_dpcd), 4303 intel_dp->dsc_dpcd); 4304 4305 /* FEC is supported only on DP 1.4 */ 4306 if (!intel_dp_is_edp(intel_dp) && 4307 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, 4308 &intel_dp->fec_capable) < 0) 4309 DRM_ERROR("Failed to read FEC DPCD register\n"); 4310 4311 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable); 4312 } 4313 } 4314 4315 static bool 4316 intel_edp_init_dpcd(struct intel_dp *intel_dp) 4317 { 4318 struct drm_i915_private *dev_priv = 4319 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 4320 4321 /* this function is meant to be called only once */ 4322 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0); 4323 4324 if (!intel_dp_read_dpcd(intel_dp)) 4325 return false; 4326 4327 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4328 drm_dp_is_branch(intel_dp->dpcd)); 4329 4330 /* 4331 * Read the eDP display control registers. 4332 * 4333 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4334 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4335 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4336 * method). The display control registers should read zero if they're 4337 * not supported anyway. 4338 */ 4339 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4340 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4341 sizeof(intel_dp->edp_dpcd)) 4342 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd), 4343 intel_dp->edp_dpcd); 4344 4345 /* 4346 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4347 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4348 */ 4349 intel_psr_init_dpcd(intel_dp); 4350 4351 /* Read the eDP 1.4+ supported link rates. */ 4352 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4353 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4354 int i; 4355 4356 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4357 sink_rates, sizeof(sink_rates)); 4358 4359 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4360 int val = le16_to_cpu(sink_rates[i]); 4361 4362 if (val == 0) 4363 break; 4364 4365 /* Value read multiplied by 200kHz gives the per-lane 4366 * link rate in kHz. The source rates are, however, 4367 * stored in terms of LS_Clk kHz. The full conversion 4368 * back to symbols is 4369 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4370 */ 4371 intel_dp->sink_rates[i] = (val * 200) / 10; 4372 } 4373 intel_dp->num_sink_rates = i; 4374 } 4375 4376 /* 4377 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4378 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4379 */ 4380 if (intel_dp->num_sink_rates) 4381 intel_dp->use_rate_select = true; 4382 else 4383 intel_dp_set_sink_rates(intel_dp); 4384 4385 intel_dp_set_common_rates(intel_dp); 4386 4387 /* Read the eDP DSC DPCD registers */ 4388 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4389 intel_dp_get_dsc_sink_cap(intel_dp); 4390 4391 return true; 4392 } 4393 4394 4395 static bool 4396 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4397 { 4398 if (!intel_dp_read_dpcd(intel_dp)) 4399 return false; 4400 4401 /* 4402 * Don't clobber cached eDP rates. Also skip re-reading 4403 * the OUI/ID since we know it won't change. 4404 */ 4405 if (!intel_dp_is_edp(intel_dp)) { 4406 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4407 drm_dp_is_branch(intel_dp->dpcd)); 4408 4409 intel_dp_set_sink_rates(intel_dp); 4410 intel_dp_set_common_rates(intel_dp); 4411 } 4412 4413 /* 4414 * Some eDP panels do not set a valid value for sink count, that is why 4415 * it don't care about read it here and in intel_edp_init_dpcd(). 4416 */ 4417 if (!intel_dp_is_edp(intel_dp) && 4418 !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) { 4419 u8 count; 4420 ssize_t r; 4421 4422 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count); 4423 if (r < 1) 4424 return false; 4425 4426 /* 4427 * Sink count can change between short pulse hpd hence 4428 * a member variable in intel_dp will track any changes 4429 * between short pulse interrupts. 4430 */ 4431 intel_dp->sink_count = DP_GET_SINK_COUNT(count); 4432 4433 /* 4434 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4435 * a dongle is present but no display. Unless we require to know 4436 * if a dongle is present or not, we don't need to update 4437 * downstream port information. So, an early return here saves 4438 * time from performing other operations which are not required. 4439 */ 4440 if (!intel_dp->sink_count) 4441 return false; 4442 } 4443 4444 if (!drm_dp_is_branch(intel_dp->dpcd)) 4445 return true; /* native DP sink */ 4446 4447 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) 4448 return true; /* no per-port downstream info */ 4449 4450 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, 4451 intel_dp->downstream_ports, 4452 DP_MAX_DOWNSTREAM_PORTS) < 0) 4453 return false; /* downstream port status fetch failed */ 4454 4455 return true; 4456 } 4457 4458 static bool 4459 intel_dp_sink_can_mst(struct intel_dp *intel_dp) 4460 { 4461 u8 mstm_cap; 4462 4463 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) 4464 return false; 4465 4466 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1) 4467 return false; 4468 4469 return mstm_cap & DP_MST_CAP; 4470 } 4471 4472 static bool 4473 intel_dp_can_mst(struct intel_dp *intel_dp) 4474 { 4475 return i915_modparams.enable_dp_mst && 4476 intel_dp->can_mst && 4477 intel_dp_sink_can_mst(intel_dp); 4478 } 4479 4480 static void 4481 intel_dp_configure_mst(struct intel_dp *intel_dp) 4482 { 4483 struct intel_encoder *encoder = 4484 &dp_to_dig_port(intel_dp)->base; 4485 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp); 4486 4487 DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n", 4488 encoder->base.base.id, encoder->base.name, 4489 yesno(intel_dp->can_mst), yesno(sink_can_mst), 4490 yesno(i915_modparams.enable_dp_mst)); 4491 4492 if (!intel_dp->can_mst) 4493 return; 4494 4495 intel_dp->is_mst = sink_can_mst && 4496 i915_modparams.enable_dp_mst; 4497 4498 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4499 intel_dp->is_mst); 4500 } 4501 4502 static bool 4503 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) 4504 { 4505 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, 4506 sink_irq_vector, DP_DPRX_ESI_LEN) == 4507 DP_DPRX_ESI_LEN; 4508 } 4509 4510 bool 4511 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state, 4512 const struct drm_connector_state *conn_state) 4513 { 4514 /* 4515 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication 4516 * of Color Encoding Format and Content Color Gamut], in order to 4517 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP. 4518 */ 4519 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4520 return true; 4521 4522 switch (conn_state->colorspace) { 4523 case DRM_MODE_COLORIMETRY_SYCC_601: 4524 case DRM_MODE_COLORIMETRY_OPYCC_601: 4525 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4526 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4527 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4528 return true; 4529 default: 4530 break; 4531 } 4532 4533 return false; 4534 } 4535 4536 static void 4537 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp, 4538 const struct intel_crtc_state *crtc_state, 4539 const struct drm_connector_state *conn_state) 4540 { 4541 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4542 struct dp_sdp vsc_sdp = {}; 4543 4544 /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */ 4545 vsc_sdp.sdp_header.HB0 = 0; 4546 vsc_sdp.sdp_header.HB1 = 0x7; 4547 4548 /* 4549 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 4550 * Colorimetry Format indication. 4551 */ 4552 vsc_sdp.sdp_header.HB2 = 0x5; 4553 4554 /* 4555 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/ 4556 * Colorimetry Format indication (HB2 = 05h). 4557 */ 4558 vsc_sdp.sdp_header.HB3 = 0x13; 4559 4560 /* DP 1.4a spec, Table 2-120 */ 4561 switch (crtc_state->output_format) { 4562 case INTEL_OUTPUT_FORMAT_YCBCR444: 4563 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */ 4564 break; 4565 case INTEL_OUTPUT_FORMAT_YCBCR420: 4566 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */ 4567 break; 4568 case INTEL_OUTPUT_FORMAT_RGB: 4569 default: 4570 /* RGB: DB16[7:4] = 0h */ 4571 break; 4572 } 4573 4574 switch (conn_state->colorspace) { 4575 case DRM_MODE_COLORIMETRY_BT709_YCC: 4576 vsc_sdp.db[16] |= 0x1; 4577 break; 4578 case DRM_MODE_COLORIMETRY_XVYCC_601: 4579 vsc_sdp.db[16] |= 0x2; 4580 break; 4581 case DRM_MODE_COLORIMETRY_XVYCC_709: 4582 vsc_sdp.db[16] |= 0x3; 4583 break; 4584 case DRM_MODE_COLORIMETRY_SYCC_601: 4585 vsc_sdp.db[16] |= 0x4; 4586 break; 4587 case DRM_MODE_COLORIMETRY_OPYCC_601: 4588 vsc_sdp.db[16] |= 0x5; 4589 break; 4590 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4591 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4592 vsc_sdp.db[16] |= 0x6; 4593 break; 4594 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4595 vsc_sdp.db[16] |= 0x7; 4596 break; 4597 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: 4598 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: 4599 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */ 4600 break; 4601 default: 4602 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */ 4603 4604 /* RGB->YCBCR color conversion uses the BT.709 color space. */ 4605 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4606 vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */ 4607 break; 4608 } 4609 4610 /* 4611 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only, 4612 * the following Component Bit Depth values are defined: 4613 * 001b = 8bpc. 4614 * 010b = 10bpc. 4615 * 011b = 12bpc. 4616 * 100b = 16bpc. 4617 */ 4618 switch (crtc_state->pipe_bpp) { 4619 case 24: /* 8bpc */ 4620 vsc_sdp.db[17] = 0x1; 4621 break; 4622 case 30: /* 10bpc */ 4623 vsc_sdp.db[17] = 0x2; 4624 break; 4625 case 36: /* 12bpc */ 4626 vsc_sdp.db[17] = 0x3; 4627 break; 4628 case 48: /* 16bpc */ 4629 vsc_sdp.db[17] = 0x4; 4630 break; 4631 default: 4632 MISSING_CASE(crtc_state->pipe_bpp); 4633 break; 4634 } 4635 4636 /* 4637 * Dynamic Range (Bit 7) 4638 * 0 = VESA range, 1 = CTA range. 4639 * all YCbCr are always limited range 4640 */ 4641 vsc_sdp.db[17] |= 0x80; 4642 4643 /* 4644 * Content Type (Bits 2:0) 4645 * 000b = Not defined. 4646 * 001b = Graphics. 4647 * 010b = Photo. 4648 * 011b = Video. 4649 * 100b = Game 4650 * All other values are RESERVED. 4651 * Note: See CTA-861-G for the definition and expected 4652 * processing by a stream sink for the above contect types. 4653 */ 4654 vsc_sdp.db[18] = 0; 4655 4656 intel_dig_port->write_infoframe(&intel_dig_port->base, 4657 crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp)); 4658 } 4659 4660 static void 4661 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp, 4662 const struct intel_crtc_state *crtc_state, 4663 const struct drm_connector_state *conn_state) 4664 { 4665 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4666 struct dp_sdp infoframe_sdp = {}; 4667 struct hdmi_drm_infoframe drm_infoframe = {}; 4668 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE; 4669 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE]; 4670 ssize_t len; 4671 int ret; 4672 4673 ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state); 4674 if (ret) { 4675 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n"); 4676 return; 4677 } 4678 4679 len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf)); 4680 if (len < 0) { 4681 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n"); 4682 return; 4683 } 4684 4685 if (len != infoframe_size) { 4686 DRM_DEBUG_KMS("wrong static hdr metadata size\n"); 4687 return; 4688 } 4689 4690 /* 4691 * Set up the infoframe sdp packet for HDR static metadata. 4692 * Prepare VSC Header for SU as per DP 1.4a spec, 4693 * Table 2-100 and Table 2-101 4694 */ 4695 4696 /* Packet ID, 00h for non-Audio INFOFRAME */ 4697 infoframe_sdp.sdp_header.HB0 = 0; 4698 /* 4699 * Packet Type 80h + Non-audio INFOFRAME Type value 4700 * HDMI_INFOFRAME_TYPE_DRM: 0x87, 4701 */ 4702 infoframe_sdp.sdp_header.HB1 = drm_infoframe.type; 4703 /* 4704 * Least Significant Eight Bits of (Data Byte Count – 1) 4705 * infoframe_size - 1, 4706 */ 4707 infoframe_sdp.sdp_header.HB2 = 0x1D; 4708 /* INFOFRAME SDP Version Number */ 4709 infoframe_sdp.sdp_header.HB3 = (0x13 << 2); 4710 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 4711 infoframe_sdp.db[0] = drm_infoframe.version; 4712 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 4713 infoframe_sdp.db[1] = drm_infoframe.length; 4714 /* 4715 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after 4716 * HDMI_INFOFRAME_HEADER_SIZE 4717 */ 4718 BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2); 4719 memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE], 4720 HDMI_DRM_INFOFRAME_SIZE); 4721 4722 /* 4723 * Size of DP infoframe sdp packet for HDR static metadata is consist of 4724 * - DP SDP Header(struct dp_sdp_header): 4 bytes 4725 * - Two Data Blocks: 2 bytes 4726 * CTA Header Byte2 (INFOFRAME Version Number) 4727 * CTA Header Byte3 (Length of INFOFRAME) 4728 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes 4729 * 4730 * Prior to GEN11's GMP register size is identical to DP HDR static metadata 4731 * infoframe size. But GEN11+ has larger than that size, write_infoframe 4732 * will pad rest of the size. 4733 */ 4734 intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state, 4735 HDMI_PACKET_TYPE_GAMUT_METADATA, 4736 &infoframe_sdp, 4737 sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE); 4738 } 4739 4740 void intel_dp_vsc_enable(struct intel_dp *intel_dp, 4741 const struct intel_crtc_state *crtc_state, 4742 const struct drm_connector_state *conn_state) 4743 { 4744 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state)) 4745 return; 4746 4747 intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state); 4748 } 4749 4750 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp, 4751 const struct intel_crtc_state *crtc_state, 4752 const struct drm_connector_state *conn_state) 4753 { 4754 if (!conn_state->hdr_output_metadata) 4755 return; 4756 4757 intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp, 4758 crtc_state, 4759 conn_state); 4760 } 4761 4762 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) 4763 { 4764 int status = 0; 4765 int test_link_rate; 4766 u8 test_lane_count, test_link_bw; 4767 /* (DP CTS 1.2) 4768 * 4.3.1.11 4769 */ 4770 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ 4771 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, 4772 &test_lane_count); 4773 4774 if (status <= 0) { 4775 DRM_DEBUG_KMS("Lane count read failed\n"); 4776 return DP_TEST_NAK; 4777 } 4778 test_lane_count &= DP_MAX_LANE_COUNT_MASK; 4779 4780 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, 4781 &test_link_bw); 4782 if (status <= 0) { 4783 DRM_DEBUG_KMS("Link Rate read failed\n"); 4784 return DP_TEST_NAK; 4785 } 4786 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); 4787 4788 /* Validate the requested link rate and lane count */ 4789 if (!intel_dp_link_params_valid(intel_dp, test_link_rate, 4790 test_lane_count)) 4791 return DP_TEST_NAK; 4792 4793 intel_dp->compliance.test_lane_count = test_lane_count; 4794 intel_dp->compliance.test_link_rate = test_link_rate; 4795 4796 return DP_TEST_ACK; 4797 } 4798 4799 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) 4800 { 4801 u8 test_pattern; 4802 u8 test_misc; 4803 __be16 h_width, v_height; 4804 int status = 0; 4805 4806 /* Read the TEST_PATTERN (DP CTS 3.1.5) */ 4807 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, 4808 &test_pattern); 4809 if (status <= 0) { 4810 DRM_DEBUG_KMS("Test pattern read failed\n"); 4811 return DP_TEST_NAK; 4812 } 4813 if (test_pattern != DP_COLOR_RAMP) 4814 return DP_TEST_NAK; 4815 4816 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, 4817 &h_width, 2); 4818 if (status <= 0) { 4819 DRM_DEBUG_KMS("H Width read failed\n"); 4820 return DP_TEST_NAK; 4821 } 4822 4823 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, 4824 &v_height, 2); 4825 if (status <= 0) { 4826 DRM_DEBUG_KMS("V Height read failed\n"); 4827 return DP_TEST_NAK; 4828 } 4829 4830 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, 4831 &test_misc); 4832 if (status <= 0) { 4833 DRM_DEBUG_KMS("TEST MISC read failed\n"); 4834 return DP_TEST_NAK; 4835 } 4836 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) 4837 return DP_TEST_NAK; 4838 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) 4839 return DP_TEST_NAK; 4840 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { 4841 case DP_TEST_BIT_DEPTH_6: 4842 intel_dp->compliance.test_data.bpc = 6; 4843 break; 4844 case DP_TEST_BIT_DEPTH_8: 4845 intel_dp->compliance.test_data.bpc = 8; 4846 break; 4847 default: 4848 return DP_TEST_NAK; 4849 } 4850 4851 intel_dp->compliance.test_data.video_pattern = test_pattern; 4852 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); 4853 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); 4854 /* Set test active flag here so userspace doesn't interrupt things */ 4855 intel_dp->compliance.test_active = 1; 4856 4857 return DP_TEST_ACK; 4858 } 4859 4860 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) 4861 { 4862 u8 test_result = DP_TEST_ACK; 4863 struct intel_connector *intel_connector = intel_dp->attached_connector; 4864 struct drm_connector *connector = &intel_connector->base; 4865 4866 if (intel_connector->detect_edid == NULL || 4867 connector->edid_corrupt || 4868 intel_dp->aux.i2c_defer_count > 6) { 4869 /* Check EDID read for NACKs, DEFERs and corruption 4870 * (DP CTS 1.2 Core r1.1) 4871 * 4.2.2.4 : Failed EDID read, I2C_NAK 4872 * 4.2.2.5 : Failed EDID read, I2C_DEFER 4873 * 4.2.2.6 : EDID corruption detected 4874 * Use failsafe mode for all cases 4875 */ 4876 if (intel_dp->aux.i2c_nack_count > 0 || 4877 intel_dp->aux.i2c_defer_count > 0) 4878 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n", 4879 intel_dp->aux.i2c_nack_count, 4880 intel_dp->aux.i2c_defer_count); 4881 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; 4882 } else { 4883 struct edid *block = intel_connector->detect_edid; 4884 4885 /* We have to write the checksum 4886 * of the last block read 4887 */ 4888 block += intel_connector->detect_edid->extensions; 4889 4890 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, 4891 block->checksum) <= 0) 4892 DRM_DEBUG_KMS("Failed to write EDID checksum\n"); 4893 4894 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; 4895 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; 4896 } 4897 4898 /* Set test active flag here so userspace doesn't interrupt things */ 4899 intel_dp->compliance.test_active = 1; 4900 4901 return test_result; 4902 } 4903 4904 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) 4905 { 4906 u8 test_result = DP_TEST_NAK; 4907 return test_result; 4908 } 4909 4910 static void intel_dp_handle_test_request(struct intel_dp *intel_dp) 4911 { 4912 u8 response = DP_TEST_NAK; 4913 u8 request = 0; 4914 int status; 4915 4916 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); 4917 if (status <= 0) { 4918 DRM_DEBUG_KMS("Could not read test request from sink\n"); 4919 goto update_status; 4920 } 4921 4922 switch (request) { 4923 case DP_TEST_LINK_TRAINING: 4924 DRM_DEBUG_KMS("LINK_TRAINING test requested\n"); 4925 response = intel_dp_autotest_link_training(intel_dp); 4926 break; 4927 case DP_TEST_LINK_VIDEO_PATTERN: 4928 DRM_DEBUG_KMS("TEST_PATTERN test requested\n"); 4929 response = intel_dp_autotest_video_pattern(intel_dp); 4930 break; 4931 case DP_TEST_LINK_EDID_READ: 4932 DRM_DEBUG_KMS("EDID test requested\n"); 4933 response = intel_dp_autotest_edid(intel_dp); 4934 break; 4935 case DP_TEST_LINK_PHY_TEST_PATTERN: 4936 DRM_DEBUG_KMS("PHY_PATTERN test requested\n"); 4937 response = intel_dp_autotest_phy_pattern(intel_dp); 4938 break; 4939 default: 4940 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request); 4941 break; 4942 } 4943 4944 if (response & DP_TEST_ACK) 4945 intel_dp->compliance.test_type = request; 4946 4947 update_status: 4948 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); 4949 if (status <= 0) 4950 DRM_DEBUG_KMS("Could not write test response to sink\n"); 4951 } 4952 4953 static int 4954 intel_dp_check_mst_status(struct intel_dp *intel_dp) 4955 { 4956 bool bret; 4957 4958 if (intel_dp->is_mst) { 4959 u8 esi[DP_DPRX_ESI_LEN] = { 0 }; 4960 int ret = 0; 4961 int retry; 4962 bool handled; 4963 4964 WARN_ON_ONCE(intel_dp->active_mst_links < 0); 4965 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 4966 go_again: 4967 if (bret == true) { 4968 4969 /* check link status - esi[10] = 0x200c */ 4970 if (intel_dp->active_mst_links > 0 && 4971 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { 4972 DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); 4973 intel_dp_start_link_train(intel_dp); 4974 intel_dp_stop_link_train(intel_dp); 4975 } 4976 4977 DRM_DEBUG_KMS("got esi %3ph\n", esi); 4978 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); 4979 4980 if (handled) { 4981 for (retry = 0; retry < 3; retry++) { 4982 int wret; 4983 wret = drm_dp_dpcd_write(&intel_dp->aux, 4984 DP_SINK_COUNT_ESI+1, 4985 &esi[1], 3); 4986 if (wret == 3) { 4987 break; 4988 } 4989 } 4990 4991 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 4992 if (bret == true) { 4993 DRM_DEBUG_KMS("got esi2 %3ph\n", esi); 4994 goto go_again; 4995 } 4996 } else 4997 ret = 0; 4998 4999 return ret; 5000 } else { 5001 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); 5002 intel_dp->is_mst = false; 5003 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5004 intel_dp->is_mst); 5005 } 5006 } 5007 return -EINVAL; 5008 } 5009 5010 static bool 5011 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 5012 { 5013 u8 link_status[DP_LINK_STATUS_SIZE]; 5014 5015 if (!intel_dp->link_trained) 5016 return false; 5017 5018 /* 5019 * While PSR source HW is enabled, it will control main-link sending 5020 * frames, enabling and disabling it so trying to do a retrain will fail 5021 * as the link would or not be on or it could mix training patterns 5022 * and frame data at the same time causing retrain to fail. 5023 * Also when exiting PSR, HW will retrain the link anyways fixing 5024 * any link status error. 5025 */ 5026 if (intel_psr_enabled(intel_dp)) 5027 return false; 5028 5029 if (!intel_dp_get_link_status(intel_dp, link_status)) 5030 return false; 5031 5032 /* 5033 * Validate the cached values of intel_dp->link_rate and 5034 * intel_dp->lane_count before attempting to retrain. 5035 */ 5036 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 5037 intel_dp->lane_count)) 5038 return false; 5039 5040 /* Retrain if Channel EQ or CR not ok */ 5041 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 5042 } 5043 5044 int intel_dp_retrain_link(struct intel_encoder *encoder, 5045 struct drm_modeset_acquire_ctx *ctx) 5046 { 5047 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5048 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 5049 struct intel_connector *connector = intel_dp->attached_connector; 5050 struct drm_connector_state *conn_state; 5051 struct intel_crtc_state *crtc_state; 5052 struct intel_crtc *crtc; 5053 int ret; 5054 5055 /* FIXME handle the MST connectors as well */ 5056 5057 if (!connector || connector->base.status != connector_status_connected) 5058 return 0; 5059 5060 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 5061 ctx); 5062 if (ret) 5063 return ret; 5064 5065 conn_state = connector->base.state; 5066 5067 crtc = to_intel_crtc(conn_state->crtc); 5068 if (!crtc) 5069 return 0; 5070 5071 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 5072 if (ret) 5073 return ret; 5074 5075 crtc_state = to_intel_crtc_state(crtc->base.state); 5076 5077 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state)); 5078 5079 if (!crtc_state->base.active) 5080 return 0; 5081 5082 if (conn_state->commit && 5083 !try_wait_for_completion(&conn_state->commit->hw_done)) 5084 return 0; 5085 5086 if (!intel_dp_needs_link_retrain(intel_dp)) 5087 return 0; 5088 5089 /* Suppress underruns caused by re-training */ 5090 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 5091 if (crtc_state->has_pch_encoder) 5092 intel_set_pch_fifo_underrun_reporting(dev_priv, 5093 intel_crtc_pch_transcoder(crtc), false); 5094 5095 intel_dp_start_link_train(intel_dp); 5096 intel_dp_stop_link_train(intel_dp); 5097 5098 /* Keep underrun reporting disabled until things are stable */ 5099 intel_wait_for_vblank(dev_priv, crtc->pipe); 5100 5101 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 5102 if (crtc_state->has_pch_encoder) 5103 intel_set_pch_fifo_underrun_reporting(dev_priv, 5104 intel_crtc_pch_transcoder(crtc), true); 5105 5106 return 0; 5107 } 5108 5109 /* 5110 * If display is now connected check links status, 5111 * there has been known issues of link loss triggering 5112 * long pulse. 5113 * 5114 * Some sinks (eg. ASUS PB287Q) seem to perform some 5115 * weird HPD ping pong during modesets. So we can apparently 5116 * end up with HPD going low during a modeset, and then 5117 * going back up soon after. And once that happens we must 5118 * retrain the link to get a picture. That's in case no 5119 * userspace component reacted to intermittent HPD dip. 5120 */ 5121 static enum intel_hotplug_state 5122 intel_dp_hotplug(struct intel_encoder *encoder, 5123 struct intel_connector *connector, 5124 bool irq_received) 5125 { 5126 struct drm_modeset_acquire_ctx ctx; 5127 enum intel_hotplug_state state; 5128 int ret; 5129 5130 state = intel_encoder_hotplug(encoder, connector, irq_received); 5131 5132 drm_modeset_acquire_init(&ctx, 0); 5133 5134 for (;;) { 5135 ret = intel_dp_retrain_link(encoder, &ctx); 5136 5137 if (ret == -EDEADLK) { 5138 drm_modeset_backoff(&ctx); 5139 continue; 5140 } 5141 5142 break; 5143 } 5144 5145 drm_modeset_drop_locks(&ctx); 5146 drm_modeset_acquire_fini(&ctx); 5147 WARN(ret, "Acquiring modeset locks failed with %i\n", ret); 5148 5149 /* 5150 * Keeping it consistent with intel_ddi_hotplug() and 5151 * intel_hdmi_hotplug(). 5152 */ 5153 if (state == INTEL_HOTPLUG_UNCHANGED && irq_received) 5154 state = INTEL_HOTPLUG_RETRY; 5155 5156 return state; 5157 } 5158 5159 static void intel_dp_check_service_irq(struct intel_dp *intel_dp) 5160 { 5161 u8 val; 5162 5163 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 5164 return; 5165 5166 if (drm_dp_dpcd_readb(&intel_dp->aux, 5167 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 5168 return; 5169 5170 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 5171 5172 if (val & DP_AUTOMATED_TEST_REQUEST) 5173 intel_dp_handle_test_request(intel_dp); 5174 5175 if (val & DP_CP_IRQ) 5176 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 5177 5178 if (val & DP_SINK_SPECIFIC_IRQ) 5179 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n"); 5180 } 5181 5182 /* 5183 * According to DP spec 5184 * 5.1.2: 5185 * 1. Read DPCD 5186 * 2. Configure link according to Receiver Capabilities 5187 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 5188 * 4. Check link status on receipt of hot-plug interrupt 5189 * 5190 * intel_dp_short_pulse - handles short pulse interrupts 5191 * when full detection is not required. 5192 * Returns %true if short pulse is handled and full detection 5193 * is NOT required and %false otherwise. 5194 */ 5195 static bool 5196 intel_dp_short_pulse(struct intel_dp *intel_dp) 5197 { 5198 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 5199 u8 old_sink_count = intel_dp->sink_count; 5200 bool ret; 5201 5202 /* 5203 * Clearing compliance test variables to allow capturing 5204 * of values for next automated test request. 5205 */ 5206 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5207 5208 /* 5209 * Now read the DPCD to see if it's actually running 5210 * If the current value of sink count doesn't match with 5211 * the value that was stored earlier or dpcd read failed 5212 * we need to do full detection 5213 */ 5214 ret = intel_dp_get_dpcd(intel_dp); 5215 5216 if ((old_sink_count != intel_dp->sink_count) || !ret) { 5217 /* No need to proceed if we are going to do full detect */ 5218 return false; 5219 } 5220 5221 intel_dp_check_service_irq(intel_dp); 5222 5223 /* Handle CEC interrupts, if any */ 5224 drm_dp_cec_irq(&intel_dp->aux); 5225 5226 /* defer to the hotplug work for link retraining if needed */ 5227 if (intel_dp_needs_link_retrain(intel_dp)) 5228 return false; 5229 5230 intel_psr_short_pulse(intel_dp); 5231 5232 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 5233 DRM_DEBUG_KMS("Link Training Compliance Test requested\n"); 5234 /* Send a Hotplug Uevent to userspace to start modeset */ 5235 drm_kms_helper_hotplug_event(&dev_priv->drm); 5236 } 5237 5238 return true; 5239 } 5240 5241 /* XXX this is probably wrong for multiple downstream ports */ 5242 static enum drm_connector_status 5243 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 5244 { 5245 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 5246 u8 *dpcd = intel_dp->dpcd; 5247 u8 type; 5248 5249 if (WARN_ON(intel_dp_is_edp(intel_dp))) 5250 return connector_status_connected; 5251 5252 if (lspcon->active) 5253 lspcon_resume(lspcon); 5254 5255 if (!intel_dp_get_dpcd(intel_dp)) 5256 return connector_status_disconnected; 5257 5258 /* if there's no downstream port, we're done */ 5259 if (!drm_dp_is_branch(dpcd)) 5260 return connector_status_connected; 5261 5262 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 5263 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && 5264 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 5265 5266 return intel_dp->sink_count ? 5267 connector_status_connected : connector_status_disconnected; 5268 } 5269 5270 if (intel_dp_can_mst(intel_dp)) 5271 return connector_status_connected; 5272 5273 /* If no HPD, poke DDC gently */ 5274 if (drm_probe_ddc(&intel_dp->aux.ddc)) 5275 return connector_status_connected; 5276 5277 /* Well we tried, say unknown for unreliable port types */ 5278 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 5279 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 5280 if (type == DP_DS_PORT_TYPE_VGA || 5281 type == DP_DS_PORT_TYPE_NON_EDID) 5282 return connector_status_unknown; 5283 } else { 5284 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 5285 DP_DWN_STRM_PORT_TYPE_MASK; 5286 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 5287 type == DP_DWN_STRM_PORT_TYPE_OTHER) 5288 return connector_status_unknown; 5289 } 5290 5291 /* Anything else is out of spec, warn and ignore */ 5292 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); 5293 return connector_status_disconnected; 5294 } 5295 5296 static enum drm_connector_status 5297 edp_detect(struct intel_dp *intel_dp) 5298 { 5299 return connector_status_connected; 5300 } 5301 5302 static bool ibx_digital_port_connected(struct intel_encoder *encoder) 5303 { 5304 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5305 u32 bit; 5306 5307 switch (encoder->hpd_pin) { 5308 case HPD_PORT_B: 5309 bit = SDE_PORTB_HOTPLUG; 5310 break; 5311 case HPD_PORT_C: 5312 bit = SDE_PORTC_HOTPLUG; 5313 break; 5314 case HPD_PORT_D: 5315 bit = SDE_PORTD_HOTPLUG; 5316 break; 5317 default: 5318 MISSING_CASE(encoder->hpd_pin); 5319 return false; 5320 } 5321 5322 return I915_READ(SDEISR) & bit; 5323 } 5324 5325 static bool cpt_digital_port_connected(struct intel_encoder *encoder) 5326 { 5327 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5328 u32 bit; 5329 5330 switch (encoder->hpd_pin) { 5331 case HPD_PORT_B: 5332 bit = SDE_PORTB_HOTPLUG_CPT; 5333 break; 5334 case HPD_PORT_C: 5335 bit = SDE_PORTC_HOTPLUG_CPT; 5336 break; 5337 case HPD_PORT_D: 5338 bit = SDE_PORTD_HOTPLUG_CPT; 5339 break; 5340 default: 5341 MISSING_CASE(encoder->hpd_pin); 5342 return false; 5343 } 5344 5345 return I915_READ(SDEISR) & bit; 5346 } 5347 5348 static bool spt_digital_port_connected(struct intel_encoder *encoder) 5349 { 5350 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5351 u32 bit; 5352 5353 switch (encoder->hpd_pin) { 5354 case HPD_PORT_A: 5355 bit = SDE_PORTA_HOTPLUG_SPT; 5356 break; 5357 case HPD_PORT_E: 5358 bit = SDE_PORTE_HOTPLUG_SPT; 5359 break; 5360 default: 5361 return cpt_digital_port_connected(encoder); 5362 } 5363 5364 return I915_READ(SDEISR) & bit; 5365 } 5366 5367 static bool g4x_digital_port_connected(struct intel_encoder *encoder) 5368 { 5369 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5370 u32 bit; 5371 5372 switch (encoder->hpd_pin) { 5373 case HPD_PORT_B: 5374 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; 5375 break; 5376 case HPD_PORT_C: 5377 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; 5378 break; 5379 case HPD_PORT_D: 5380 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; 5381 break; 5382 default: 5383 MISSING_CASE(encoder->hpd_pin); 5384 return false; 5385 } 5386 5387 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5388 } 5389 5390 static bool gm45_digital_port_connected(struct intel_encoder *encoder) 5391 { 5392 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5393 u32 bit; 5394 5395 switch (encoder->hpd_pin) { 5396 case HPD_PORT_B: 5397 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; 5398 break; 5399 case HPD_PORT_C: 5400 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; 5401 break; 5402 case HPD_PORT_D: 5403 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; 5404 break; 5405 default: 5406 MISSING_CASE(encoder->hpd_pin); 5407 return false; 5408 } 5409 5410 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5411 } 5412 5413 static bool ilk_digital_port_connected(struct intel_encoder *encoder) 5414 { 5415 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5416 5417 if (encoder->hpd_pin == HPD_PORT_A) 5418 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5419 else 5420 return ibx_digital_port_connected(encoder); 5421 } 5422 5423 static bool snb_digital_port_connected(struct intel_encoder *encoder) 5424 { 5425 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5426 5427 if (encoder->hpd_pin == HPD_PORT_A) 5428 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5429 else 5430 return cpt_digital_port_connected(encoder); 5431 } 5432 5433 static bool ivb_digital_port_connected(struct intel_encoder *encoder) 5434 { 5435 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5436 5437 if (encoder->hpd_pin == HPD_PORT_A) 5438 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB; 5439 else 5440 return cpt_digital_port_connected(encoder); 5441 } 5442 5443 static bool bdw_digital_port_connected(struct intel_encoder *encoder) 5444 { 5445 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5446 5447 if (encoder->hpd_pin == HPD_PORT_A) 5448 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG; 5449 else 5450 return cpt_digital_port_connected(encoder); 5451 } 5452 5453 static bool bxt_digital_port_connected(struct intel_encoder *encoder) 5454 { 5455 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5456 u32 bit; 5457 5458 switch (encoder->hpd_pin) { 5459 case HPD_PORT_A: 5460 bit = BXT_DE_PORT_HP_DDIA; 5461 break; 5462 case HPD_PORT_B: 5463 bit = BXT_DE_PORT_HP_DDIB; 5464 break; 5465 case HPD_PORT_C: 5466 bit = BXT_DE_PORT_HP_DDIC; 5467 break; 5468 default: 5469 MISSING_CASE(encoder->hpd_pin); 5470 return false; 5471 } 5472 5473 return I915_READ(GEN8_DE_PORT_ISR) & bit; 5474 } 5475 5476 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv, 5477 enum phy phy) 5478 { 5479 if (HAS_PCH_MCC(dev_priv) && phy == PHY_C) 5480 return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1); 5481 5482 return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(phy); 5483 } 5484 5485 static bool icl_digital_port_connected(struct intel_encoder *encoder) 5486 { 5487 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5488 struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base); 5489 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 5490 5491 if (intel_phy_is_combo(dev_priv, phy)) 5492 return intel_combo_phy_connected(dev_priv, phy); 5493 else if (intel_phy_is_tc(dev_priv, phy)) 5494 return intel_tc_port_connected(dig_port); 5495 else 5496 MISSING_CASE(encoder->hpd_pin); 5497 5498 return false; 5499 } 5500 5501 /* 5502 * intel_digital_port_connected - is the specified port connected? 5503 * @encoder: intel_encoder 5504 * 5505 * In cases where there's a connector physically connected but it can't be used 5506 * by our hardware we also return false, since the rest of the driver should 5507 * pretty much treat the port as disconnected. This is relevant for type-C 5508 * (starting on ICL) where there's ownership involved. 5509 * 5510 * Return %true if port is connected, %false otherwise. 5511 */ 5512 static bool __intel_digital_port_connected(struct intel_encoder *encoder) 5513 { 5514 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5515 5516 if (HAS_GMCH(dev_priv)) { 5517 if (IS_GM45(dev_priv)) 5518 return gm45_digital_port_connected(encoder); 5519 else 5520 return g4x_digital_port_connected(encoder); 5521 } 5522 5523 if (INTEL_GEN(dev_priv) >= 11) 5524 return icl_digital_port_connected(encoder); 5525 else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv)) 5526 return spt_digital_port_connected(encoder); 5527 else if (IS_GEN9_LP(dev_priv)) 5528 return bxt_digital_port_connected(encoder); 5529 else if (IS_GEN(dev_priv, 8)) 5530 return bdw_digital_port_connected(encoder); 5531 else if (IS_GEN(dev_priv, 7)) 5532 return ivb_digital_port_connected(encoder); 5533 else if (IS_GEN(dev_priv, 6)) 5534 return snb_digital_port_connected(encoder); 5535 else if (IS_GEN(dev_priv, 5)) 5536 return ilk_digital_port_connected(encoder); 5537 5538 MISSING_CASE(INTEL_GEN(dev_priv)); 5539 return false; 5540 } 5541 5542 bool intel_digital_port_connected(struct intel_encoder *encoder) 5543 { 5544 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5545 bool is_connected = false; 5546 intel_wakeref_t wakeref; 5547 5548 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 5549 is_connected = __intel_digital_port_connected(encoder); 5550 5551 return is_connected; 5552 } 5553 5554 static struct edid * 5555 intel_dp_get_edid(struct intel_dp *intel_dp) 5556 { 5557 struct intel_connector *intel_connector = intel_dp->attached_connector; 5558 5559 /* use cached edid if we have one */ 5560 if (intel_connector->edid) { 5561 /* invalid edid */ 5562 if (IS_ERR(intel_connector->edid)) 5563 return NULL; 5564 5565 return drm_edid_duplicate(intel_connector->edid); 5566 } else 5567 return drm_get_edid(&intel_connector->base, 5568 &intel_dp->aux.ddc); 5569 } 5570 5571 static void 5572 intel_dp_set_edid(struct intel_dp *intel_dp) 5573 { 5574 struct intel_connector *intel_connector = intel_dp->attached_connector; 5575 struct edid *edid; 5576 5577 intel_dp_unset_edid(intel_dp); 5578 edid = intel_dp_get_edid(intel_dp); 5579 intel_connector->detect_edid = edid; 5580 5581 intel_dp->has_audio = drm_detect_monitor_audio(edid); 5582 drm_dp_cec_set_edid(&intel_dp->aux, edid); 5583 } 5584 5585 static void 5586 intel_dp_unset_edid(struct intel_dp *intel_dp) 5587 { 5588 struct intel_connector *intel_connector = intel_dp->attached_connector; 5589 5590 drm_dp_cec_unset_edid(&intel_dp->aux); 5591 kfree(intel_connector->detect_edid); 5592 intel_connector->detect_edid = NULL; 5593 5594 intel_dp->has_audio = false; 5595 } 5596 5597 static int 5598 intel_dp_detect(struct drm_connector *connector, 5599 struct drm_modeset_acquire_ctx *ctx, 5600 bool force) 5601 { 5602 struct drm_i915_private *dev_priv = to_i915(connector->dev); 5603 struct intel_dp *intel_dp = intel_attached_dp(connector); 5604 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5605 struct intel_encoder *encoder = &dig_port->base; 5606 enum drm_connector_status status; 5607 5608 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5609 connector->base.id, connector->name); 5610 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); 5611 5612 /* Can't disconnect eDP */ 5613 if (intel_dp_is_edp(intel_dp)) 5614 status = edp_detect(intel_dp); 5615 else if (intel_digital_port_connected(encoder)) 5616 status = intel_dp_detect_dpcd(intel_dp); 5617 else 5618 status = connector_status_disconnected; 5619 5620 if (status == connector_status_disconnected) { 5621 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5622 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 5623 5624 if (intel_dp->is_mst) { 5625 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 5626 intel_dp->is_mst, 5627 intel_dp->mst_mgr.mst_state); 5628 intel_dp->is_mst = false; 5629 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5630 intel_dp->is_mst); 5631 } 5632 5633 goto out; 5634 } 5635 5636 if (intel_dp->reset_link_params) { 5637 /* Initial max link lane count */ 5638 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 5639 5640 /* Initial max link rate */ 5641 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 5642 5643 intel_dp->reset_link_params = false; 5644 } 5645 5646 intel_dp_print_rates(intel_dp); 5647 5648 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 5649 if (INTEL_GEN(dev_priv) >= 11) 5650 intel_dp_get_dsc_sink_cap(intel_dp); 5651 5652 intel_dp_configure_mst(intel_dp); 5653 5654 if (intel_dp->is_mst) { 5655 /* 5656 * If we are in MST mode then this connector 5657 * won't appear connected or have anything 5658 * with EDID on it 5659 */ 5660 status = connector_status_disconnected; 5661 goto out; 5662 } 5663 5664 /* 5665 * Some external monitors do not signal loss of link synchronization 5666 * with an IRQ_HPD, so force a link status check. 5667 */ 5668 if (!intel_dp_is_edp(intel_dp)) { 5669 int ret; 5670 5671 ret = intel_dp_retrain_link(encoder, ctx); 5672 if (ret) 5673 return ret; 5674 } 5675 5676 /* 5677 * Clearing NACK and defer counts to get their exact values 5678 * while reading EDID which are required by Compliance tests 5679 * 4.2.2.4 and 4.2.2.5 5680 */ 5681 intel_dp->aux.i2c_nack_count = 0; 5682 intel_dp->aux.i2c_defer_count = 0; 5683 5684 intel_dp_set_edid(intel_dp); 5685 if (intel_dp_is_edp(intel_dp) || 5686 to_intel_connector(connector)->detect_edid) 5687 status = connector_status_connected; 5688 5689 intel_dp_check_service_irq(intel_dp); 5690 5691 out: 5692 if (status != connector_status_connected && !intel_dp->is_mst) 5693 intel_dp_unset_edid(intel_dp); 5694 5695 /* 5696 * Make sure the refs for power wells enabled during detect are 5697 * dropped to avoid a new detect cycle triggered by HPD polling. 5698 */ 5699 intel_display_power_flush_work(dev_priv); 5700 5701 return status; 5702 } 5703 5704 static void 5705 intel_dp_force(struct drm_connector *connector) 5706 { 5707 struct intel_dp *intel_dp = intel_attached_dp(connector); 5708 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5709 struct intel_encoder *intel_encoder = &dig_port->base; 5710 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); 5711 enum intel_display_power_domain aux_domain = 5712 intel_aux_power_domain(dig_port); 5713 intel_wakeref_t wakeref; 5714 5715 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5716 connector->base.id, connector->name); 5717 intel_dp_unset_edid(intel_dp); 5718 5719 if (connector->status != connector_status_connected) 5720 return; 5721 5722 wakeref = intel_display_power_get(dev_priv, aux_domain); 5723 5724 intel_dp_set_edid(intel_dp); 5725 5726 intel_display_power_put(dev_priv, aux_domain, wakeref); 5727 } 5728 5729 static int intel_dp_get_modes(struct drm_connector *connector) 5730 { 5731 struct intel_connector *intel_connector = to_intel_connector(connector); 5732 struct edid *edid; 5733 5734 edid = intel_connector->detect_edid; 5735 if (edid) { 5736 int ret = intel_connector_update_modes(connector, edid); 5737 if (ret) 5738 return ret; 5739 } 5740 5741 /* if eDP has no EDID, fall back to fixed mode */ 5742 if (intel_dp_is_edp(intel_attached_dp(connector)) && 5743 intel_connector->panel.fixed_mode) { 5744 struct drm_display_mode *mode; 5745 5746 mode = drm_mode_duplicate(connector->dev, 5747 intel_connector->panel.fixed_mode); 5748 if (mode) { 5749 drm_mode_probed_add(connector, mode); 5750 return 1; 5751 } 5752 } 5753 5754 return 0; 5755 } 5756 5757 static int 5758 intel_dp_connector_register(struct drm_connector *connector) 5759 { 5760 struct intel_dp *intel_dp = intel_attached_dp(connector); 5761 int ret; 5762 5763 ret = intel_connector_register(connector); 5764 if (ret) 5765 return ret; 5766 5767 i915_debugfs_connector_add(connector); 5768 5769 DRM_DEBUG_KMS("registering %s bus for %s\n", 5770 intel_dp->aux.name, connector->kdev->kobj.name); 5771 5772 intel_dp->aux.dev = connector->kdev; 5773 ret = drm_dp_aux_register(&intel_dp->aux); 5774 if (!ret) 5775 drm_dp_cec_register_connector(&intel_dp->aux, connector); 5776 return ret; 5777 } 5778 5779 static void 5780 intel_dp_connector_unregister(struct drm_connector *connector) 5781 { 5782 struct intel_dp *intel_dp = intel_attached_dp(connector); 5783 5784 drm_dp_cec_unregister_connector(&intel_dp->aux); 5785 drm_dp_aux_unregister(&intel_dp->aux); 5786 intel_connector_unregister(connector); 5787 } 5788 5789 void intel_dp_encoder_flush_work(struct drm_encoder *encoder) 5790 { 5791 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 5792 struct intel_dp *intel_dp = &intel_dig_port->dp; 5793 5794 intel_dp_mst_encoder_cleanup(intel_dig_port); 5795 if (intel_dp_is_edp(intel_dp)) { 5796 intel_wakeref_t wakeref; 5797 5798 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5799 /* 5800 * vdd might still be enabled do to the delayed vdd off. 5801 * Make sure vdd is actually turned off here. 5802 */ 5803 with_pps_lock(intel_dp, wakeref) 5804 edp_panel_vdd_off_sync(intel_dp); 5805 5806 if (intel_dp->edp_notifier.notifier_call) { 5807 unregister_reboot_notifier(&intel_dp->edp_notifier); 5808 intel_dp->edp_notifier.notifier_call = NULL; 5809 } 5810 } 5811 5812 intel_dp_aux_fini(intel_dp); 5813 } 5814 5815 static void intel_dp_encoder_destroy(struct drm_encoder *encoder) 5816 { 5817 intel_dp_encoder_flush_work(encoder); 5818 5819 drm_encoder_cleanup(encoder); 5820 kfree(enc_to_dig_port(encoder)); 5821 } 5822 5823 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) 5824 { 5825 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); 5826 intel_wakeref_t wakeref; 5827 5828 if (!intel_dp_is_edp(intel_dp)) 5829 return; 5830 5831 /* 5832 * vdd might still be enabled do to the delayed vdd off. 5833 * Make sure vdd is actually turned off here. 5834 */ 5835 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5836 with_pps_lock(intel_dp, wakeref) 5837 edp_panel_vdd_off_sync(intel_dp); 5838 } 5839 5840 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout) 5841 { 5842 long ret; 5843 5844 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count)) 5845 ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C, 5846 msecs_to_jiffies(timeout)); 5847 5848 if (!ret) 5849 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n"); 5850 } 5851 5852 static 5853 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, 5854 u8 *an) 5855 { 5856 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base); 5857 static const struct drm_dp_aux_msg msg = { 5858 .request = DP_AUX_NATIVE_WRITE, 5859 .address = DP_AUX_HDCP_AKSV, 5860 .size = DRM_HDCP_KSV_LEN, 5861 }; 5862 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0; 5863 ssize_t dpcd_ret; 5864 int ret; 5865 5866 /* Output An first, that's easy */ 5867 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN, 5868 an, DRM_HDCP_AN_LEN); 5869 if (dpcd_ret != DRM_HDCP_AN_LEN) { 5870 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n", 5871 dpcd_ret); 5872 return dpcd_ret >= 0 ? -EIO : dpcd_ret; 5873 } 5874 5875 /* 5876 * Since Aksv is Oh-So-Secret, we can't access it in software. So in 5877 * order to get it on the wire, we need to create the AUX header as if 5878 * we were writing the data, and then tickle the hardware to output the 5879 * data once the header is sent out. 5880 */ 5881 intel_dp_aux_header(txbuf, &msg); 5882 5883 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size, 5884 rxbuf, sizeof(rxbuf), 5885 DP_AUX_CH_CTL_AUX_AKSV_SELECT); 5886 if (ret < 0) { 5887 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret); 5888 return ret; 5889 } else if (ret == 0) { 5890 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n"); 5891 return -EIO; 5892 } 5893 5894 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK; 5895 if (reply != DP_AUX_NATIVE_REPLY_ACK) { 5896 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n", 5897 reply); 5898 return -EIO; 5899 } 5900 return 0; 5901 } 5902 5903 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, 5904 u8 *bksv) 5905 { 5906 ssize_t ret; 5907 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv, 5908 DRM_HDCP_KSV_LEN); 5909 if (ret != DRM_HDCP_KSV_LEN) { 5910 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret); 5911 return ret >= 0 ? -EIO : ret; 5912 } 5913 return 0; 5914 } 5915 5916 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, 5917 u8 *bstatus) 5918 { 5919 ssize_t ret; 5920 /* 5921 * For some reason the HDMI and DP HDCP specs call this register 5922 * definition by different names. In the HDMI spec, it's called BSTATUS, 5923 * but in DP it's called BINFO. 5924 */ 5925 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO, 5926 bstatus, DRM_HDCP_BSTATUS_LEN); 5927 if (ret != DRM_HDCP_BSTATUS_LEN) { 5928 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5929 return ret >= 0 ? -EIO : ret; 5930 } 5931 return 0; 5932 } 5933 5934 static 5935 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port, 5936 u8 *bcaps) 5937 { 5938 ssize_t ret; 5939 5940 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS, 5941 bcaps, 1); 5942 if (ret != 1) { 5943 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret); 5944 return ret >= 0 ? -EIO : ret; 5945 } 5946 5947 return 0; 5948 } 5949 5950 static 5951 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, 5952 bool *repeater_present) 5953 { 5954 ssize_t ret; 5955 u8 bcaps; 5956 5957 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 5958 if (ret) 5959 return ret; 5960 5961 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT; 5962 return 0; 5963 } 5964 5965 static 5966 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, 5967 u8 *ri_prime) 5968 { 5969 ssize_t ret; 5970 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME, 5971 ri_prime, DRM_HDCP_RI_LEN); 5972 if (ret != DRM_HDCP_RI_LEN) { 5973 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret); 5974 return ret >= 0 ? -EIO : ret; 5975 } 5976 return 0; 5977 } 5978 5979 static 5980 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, 5981 bool *ksv_ready) 5982 { 5983 ssize_t ret; 5984 u8 bstatus; 5985 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 5986 &bstatus, 1); 5987 if (ret != 1) { 5988 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5989 return ret >= 0 ? -EIO : ret; 5990 } 5991 *ksv_ready = bstatus & DP_BSTATUS_READY; 5992 return 0; 5993 } 5994 5995 static 5996 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, 5997 int num_downstream, u8 *ksv_fifo) 5998 { 5999 ssize_t ret; 6000 int i; 6001 6002 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */ 6003 for (i = 0; i < num_downstream; i += 3) { 6004 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN; 6005 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6006 DP_AUX_HDCP_KSV_FIFO, 6007 ksv_fifo + i * DRM_HDCP_KSV_LEN, 6008 len); 6009 if (ret != len) { 6010 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n", 6011 i, ret); 6012 return ret >= 0 ? -EIO : ret; 6013 } 6014 } 6015 return 0; 6016 } 6017 6018 static 6019 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, 6020 int i, u32 *part) 6021 { 6022 ssize_t ret; 6023 6024 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 6025 return -EINVAL; 6026 6027 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6028 DP_AUX_HDCP_V_PRIME(i), part, 6029 DRM_HDCP_V_PRIME_PART_LEN); 6030 if (ret != DRM_HDCP_V_PRIME_PART_LEN) { 6031 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret); 6032 return ret >= 0 ? -EIO : ret; 6033 } 6034 return 0; 6035 } 6036 6037 static 6038 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, 6039 bool enable) 6040 { 6041 /* Not used for single stream DisplayPort setups */ 6042 return 0; 6043 } 6044 6045 static 6046 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port) 6047 { 6048 ssize_t ret; 6049 u8 bstatus; 6050 6051 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 6052 &bstatus, 1); 6053 if (ret != 1) { 6054 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6055 return false; 6056 } 6057 6058 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ)); 6059 } 6060 6061 static 6062 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port, 6063 bool *hdcp_capable) 6064 { 6065 ssize_t ret; 6066 u8 bcaps; 6067 6068 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 6069 if (ret) 6070 return ret; 6071 6072 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE; 6073 return 0; 6074 } 6075 6076 struct hdcp2_dp_errata_stream_type { 6077 u8 msg_id; 6078 u8 stream_type; 6079 } __packed; 6080 6081 struct hdcp2_dp_msg_data { 6082 u8 msg_id; 6083 u32 offset; 6084 bool msg_detectable; 6085 u32 timeout; 6086 u32 timeout2; /* Added for non_paired situation */ 6087 }; 6088 6089 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = { 6090 { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 }, 6091 { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET, 6092 false, HDCP_2_2_CERT_TIMEOUT_MS, 0 }, 6093 { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET, 6094 false, 0, 0 }, 6095 { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET, 6096 false, 0, 0 }, 6097 { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET, 6098 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS, 6099 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS }, 6100 { HDCP_2_2_AKE_SEND_PAIRING_INFO, 6101 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true, 6102 HDCP_2_2_PAIRING_TIMEOUT_MS, 0 }, 6103 { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 }, 6104 { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET, 6105 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 }, 6106 { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false, 6107 0, 0 }, 6108 { HDCP_2_2_REP_SEND_RECVID_LIST, 6109 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true, 6110 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 }, 6111 { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false, 6112 0, 0 }, 6113 { HDCP_2_2_REP_STREAM_MANAGE, 6114 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false, 6115 0, 0 }, 6116 { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET, 6117 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 }, 6118 /* local define to shovel this through the write_2_2 interface */ 6119 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50 6120 { HDCP_2_2_ERRATA_DP_STREAM_TYPE, 6121 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false, 6122 0, 0 }, 6123 }; 6124 6125 static inline 6126 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port, 6127 u8 *rx_status) 6128 { 6129 ssize_t ret; 6130 6131 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6132 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status, 6133 HDCP_2_2_DP_RXSTATUS_LEN); 6134 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) { 6135 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6136 return ret >= 0 ? -EIO : ret; 6137 } 6138 6139 return 0; 6140 } 6141 6142 static 6143 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port, 6144 u8 msg_id, bool *msg_ready) 6145 { 6146 u8 rx_status; 6147 int ret; 6148 6149 *msg_ready = false; 6150 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6151 if (ret < 0) 6152 return ret; 6153 6154 switch (msg_id) { 6155 case HDCP_2_2_AKE_SEND_HPRIME: 6156 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status)) 6157 *msg_ready = true; 6158 break; 6159 case HDCP_2_2_AKE_SEND_PAIRING_INFO: 6160 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status)) 6161 *msg_ready = true; 6162 break; 6163 case HDCP_2_2_REP_SEND_RECVID_LIST: 6164 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6165 *msg_ready = true; 6166 break; 6167 default: 6168 DRM_ERROR("Unidentified msg_id: %d\n", msg_id); 6169 return -EINVAL; 6170 } 6171 6172 return 0; 6173 } 6174 6175 static ssize_t 6176 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port, 6177 const struct hdcp2_dp_msg_data *hdcp2_msg_data) 6178 { 6179 struct intel_dp *dp = &intel_dig_port->dp; 6180 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6181 u8 msg_id = hdcp2_msg_data->msg_id; 6182 int ret, timeout; 6183 bool msg_ready = false; 6184 6185 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired) 6186 timeout = hdcp2_msg_data->timeout2; 6187 else 6188 timeout = hdcp2_msg_data->timeout; 6189 6190 /* 6191 * There is no way to detect the CERT, LPRIME and STREAM_READY 6192 * availability. So Wait for timeout and read the msg. 6193 */ 6194 if (!hdcp2_msg_data->msg_detectable) { 6195 mdelay(timeout); 6196 ret = 0; 6197 } else { 6198 /* 6199 * As we want to check the msg availability at timeout, Ignoring 6200 * the timeout at wait for CP_IRQ. 6201 */ 6202 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout); 6203 ret = hdcp2_detect_msg_availability(intel_dig_port, 6204 msg_id, &msg_ready); 6205 if (!msg_ready) 6206 ret = -ETIMEDOUT; 6207 } 6208 6209 if (ret) 6210 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n", 6211 hdcp2_msg_data->msg_id, ret, timeout); 6212 6213 return ret; 6214 } 6215 6216 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id) 6217 { 6218 int i; 6219 6220 for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++) 6221 if (hdcp2_dp_msg_data[i].msg_id == msg_id) 6222 return &hdcp2_dp_msg_data[i]; 6223 6224 return NULL; 6225 } 6226 6227 static 6228 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port, 6229 void *buf, size_t size) 6230 { 6231 struct intel_dp *dp = &intel_dig_port->dp; 6232 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6233 unsigned int offset; 6234 u8 *byte = buf; 6235 ssize_t ret, bytes_to_write, len; 6236 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6237 6238 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte); 6239 if (!hdcp2_msg_data) 6240 return -EINVAL; 6241 6242 offset = hdcp2_msg_data->offset; 6243 6244 /* No msg_id in DP HDCP2.2 msgs */ 6245 bytes_to_write = size - 1; 6246 byte++; 6247 6248 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count); 6249 6250 while (bytes_to_write) { 6251 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ? 6252 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write; 6253 6254 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, 6255 offset, (void *)byte, len); 6256 if (ret < 0) 6257 return ret; 6258 6259 bytes_to_write -= ret; 6260 byte += ret; 6261 offset += ret; 6262 } 6263 6264 return size; 6265 } 6266 6267 static 6268 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port) 6269 { 6270 u8 rx_info[HDCP_2_2_RXINFO_LEN]; 6271 u32 dev_cnt; 6272 ssize_t ret; 6273 6274 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6275 DP_HDCP_2_2_REG_RXINFO_OFFSET, 6276 (void *)rx_info, HDCP_2_2_RXINFO_LEN); 6277 if (ret != HDCP_2_2_RXINFO_LEN) 6278 return ret >= 0 ? -EIO : ret; 6279 6280 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 6281 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 6282 6283 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT) 6284 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT; 6285 6286 ret = sizeof(struct hdcp2_rep_send_receiverid_list) - 6287 HDCP_2_2_RECEIVER_IDS_MAX_LEN + 6288 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN); 6289 6290 return ret; 6291 } 6292 6293 static 6294 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port, 6295 u8 msg_id, void *buf, size_t size) 6296 { 6297 unsigned int offset; 6298 u8 *byte = buf; 6299 ssize_t ret, bytes_to_recv, len; 6300 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6301 6302 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id); 6303 if (!hdcp2_msg_data) 6304 return -EINVAL; 6305 offset = hdcp2_msg_data->offset; 6306 6307 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data); 6308 if (ret < 0) 6309 return ret; 6310 6311 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) { 6312 ret = get_receiver_id_list_size(intel_dig_port); 6313 if (ret < 0) 6314 return ret; 6315 6316 size = ret; 6317 } 6318 bytes_to_recv = size - 1; 6319 6320 /* DP adaptation msgs has no msg_id */ 6321 byte++; 6322 6323 while (bytes_to_recv) { 6324 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ? 6325 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv; 6326 6327 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset, 6328 (void *)byte, len); 6329 if (ret < 0) { 6330 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret); 6331 return ret; 6332 } 6333 6334 bytes_to_recv -= ret; 6335 byte += ret; 6336 offset += ret; 6337 } 6338 byte = buf; 6339 *byte = msg_id; 6340 6341 return size; 6342 } 6343 6344 static 6345 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port, 6346 bool is_repeater, u8 content_type) 6347 { 6348 struct hdcp2_dp_errata_stream_type stream_type_msg; 6349 6350 if (is_repeater) 6351 return 0; 6352 6353 /* 6354 * Errata for DP: As Stream type is used for encryption, Receiver 6355 * should be communicated with stream type for the decryption of the 6356 * content. 6357 * Repeater will be communicated with stream type as a part of it's 6358 * auth later in time. 6359 */ 6360 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE; 6361 stream_type_msg.stream_type = content_type; 6362 6363 return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg, 6364 sizeof(stream_type_msg)); 6365 } 6366 6367 static 6368 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port) 6369 { 6370 u8 rx_status; 6371 int ret; 6372 6373 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6374 if (ret) 6375 return ret; 6376 6377 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status)) 6378 ret = HDCP_REAUTH_REQUEST; 6379 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status)) 6380 ret = HDCP_LINK_INTEGRITY_FAILURE; 6381 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6382 ret = HDCP_TOPOLOGY_CHANGE; 6383 6384 return ret; 6385 } 6386 6387 static 6388 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port, 6389 bool *capable) 6390 { 6391 u8 rx_caps[3]; 6392 int ret; 6393 6394 *capable = false; 6395 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6396 DP_HDCP_2_2_REG_RX_CAPS_OFFSET, 6397 rx_caps, HDCP_2_2_RXCAPS_LEN); 6398 if (ret != HDCP_2_2_RXCAPS_LEN) 6399 return ret >= 0 ? -EIO : ret; 6400 6401 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL && 6402 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2])) 6403 *capable = true; 6404 6405 return 0; 6406 } 6407 6408 static const struct intel_hdcp_shim intel_dp_hdcp_shim = { 6409 .write_an_aksv = intel_dp_hdcp_write_an_aksv, 6410 .read_bksv = intel_dp_hdcp_read_bksv, 6411 .read_bstatus = intel_dp_hdcp_read_bstatus, 6412 .repeater_present = intel_dp_hdcp_repeater_present, 6413 .read_ri_prime = intel_dp_hdcp_read_ri_prime, 6414 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready, 6415 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo, 6416 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part, 6417 .toggle_signalling = intel_dp_hdcp_toggle_signalling, 6418 .check_link = intel_dp_hdcp_check_link, 6419 .hdcp_capable = intel_dp_hdcp_capable, 6420 .write_2_2_msg = intel_dp_hdcp2_write_msg, 6421 .read_2_2_msg = intel_dp_hdcp2_read_msg, 6422 .config_stream_type = intel_dp_hdcp2_config_stream_type, 6423 .check_2_2_link = intel_dp_hdcp2_check_link, 6424 .hdcp_2_2_capable = intel_dp_hdcp2_capable, 6425 .protocol = HDCP_PROTOCOL_DP, 6426 }; 6427 6428 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) 6429 { 6430 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6431 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6432 6433 lockdep_assert_held(&dev_priv->pps_mutex); 6434 6435 if (!edp_have_panel_vdd(intel_dp)) 6436 return; 6437 6438 /* 6439 * The VDD bit needs a power domain reference, so if the bit is 6440 * already enabled when we boot or resume, grab this reference and 6441 * schedule a vdd off, so we don't hold on to the reference 6442 * indefinitely. 6443 */ 6444 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n"); 6445 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); 6446 6447 edp_panel_vdd_schedule_off(intel_dp); 6448 } 6449 6450 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) 6451 { 6452 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6453 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6454 enum pipe pipe; 6455 6456 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 6457 encoder->port, &pipe)) 6458 return pipe; 6459 6460 return INVALID_PIPE; 6461 } 6462 6463 void intel_dp_encoder_reset(struct drm_encoder *encoder) 6464 { 6465 struct drm_i915_private *dev_priv = to_i915(encoder->dev); 6466 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 6467 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 6468 intel_wakeref_t wakeref; 6469 6470 if (!HAS_DDI(dev_priv)) 6471 intel_dp->DP = I915_READ(intel_dp->output_reg); 6472 6473 if (lspcon->active) 6474 lspcon_resume(lspcon); 6475 6476 intel_dp->reset_link_params = true; 6477 6478 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 6479 !intel_dp_is_edp(intel_dp)) 6480 return; 6481 6482 with_pps_lock(intel_dp, wakeref) { 6483 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6484 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 6485 6486 if (intel_dp_is_edp(intel_dp)) { 6487 /* 6488 * Reinit the power sequencer, in case BIOS did 6489 * something nasty with it. 6490 */ 6491 intel_dp_pps_init(intel_dp); 6492 intel_edp_panel_vdd_sanitize(intel_dp); 6493 } 6494 } 6495 } 6496 6497 static const struct drm_connector_funcs intel_dp_connector_funcs = { 6498 .force = intel_dp_force, 6499 .fill_modes = drm_helper_probe_single_connector_modes, 6500 .atomic_get_property = intel_digital_connector_atomic_get_property, 6501 .atomic_set_property = intel_digital_connector_atomic_set_property, 6502 .late_register = intel_dp_connector_register, 6503 .early_unregister = intel_dp_connector_unregister, 6504 .destroy = intel_connector_destroy, 6505 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 6506 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 6507 }; 6508 6509 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 6510 .detect_ctx = intel_dp_detect, 6511 .get_modes = intel_dp_get_modes, 6512 .mode_valid = intel_dp_mode_valid, 6513 .atomic_check = intel_digital_connector_atomic_check, 6514 }; 6515 6516 static const struct drm_encoder_funcs intel_dp_enc_funcs = { 6517 .reset = intel_dp_encoder_reset, 6518 .destroy = intel_dp_encoder_destroy, 6519 }; 6520 6521 enum irqreturn 6522 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) 6523 { 6524 struct intel_dp *intel_dp = &intel_dig_port->dp; 6525 6526 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) { 6527 /* 6528 * vdd off can generate a long pulse on eDP which 6529 * would require vdd on to handle it, and thus we 6530 * would end up in an endless cycle of 6531 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..." 6532 */ 6533 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n", 6534 intel_dig_port->base.base.base.id, 6535 intel_dig_port->base.base.name); 6536 return IRQ_HANDLED; 6537 } 6538 6539 DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n", 6540 intel_dig_port->base.base.base.id, 6541 intel_dig_port->base.base.name, 6542 long_hpd ? "long" : "short"); 6543 6544 if (long_hpd) { 6545 intel_dp->reset_link_params = true; 6546 return IRQ_NONE; 6547 } 6548 6549 if (intel_dp->is_mst) { 6550 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) { 6551 /* 6552 * If we were in MST mode, and device is not 6553 * there, get out of MST mode 6554 */ 6555 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 6556 intel_dp->is_mst, intel_dp->mst_mgr.mst_state); 6557 intel_dp->is_mst = false; 6558 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 6559 intel_dp->is_mst); 6560 6561 return IRQ_NONE; 6562 } 6563 } 6564 6565 if (!intel_dp->is_mst) { 6566 bool handled; 6567 6568 handled = intel_dp_short_pulse(intel_dp); 6569 6570 if (!handled) 6571 return IRQ_NONE; 6572 } 6573 6574 return IRQ_HANDLED; 6575 } 6576 6577 /* check the VBT to see whether the eDP is on another port */ 6578 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 6579 { 6580 /* 6581 * eDP not supported on g4x. so bail out early just 6582 * for a bit extra safety in case the VBT is bonkers. 6583 */ 6584 if (INTEL_GEN(dev_priv) < 5) 6585 return false; 6586 6587 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) 6588 return true; 6589 6590 return intel_bios_is_port_edp(dev_priv, port); 6591 } 6592 6593 static void 6594 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 6595 { 6596 struct drm_i915_private *dev_priv = to_i915(connector->dev); 6597 enum port port = dp_to_dig_port(intel_dp)->base.port; 6598 6599 if (!IS_G4X(dev_priv) && port != PORT_A) 6600 intel_attach_force_audio_property(connector); 6601 6602 intel_attach_broadcast_rgb_property(connector); 6603 if (HAS_GMCH(dev_priv)) 6604 drm_connector_attach_max_bpc_property(connector, 6, 10); 6605 else if (INTEL_GEN(dev_priv) >= 5) 6606 drm_connector_attach_max_bpc_property(connector, 6, 12); 6607 6608 intel_attach_colorspace_property(connector); 6609 6610 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11) 6611 drm_object_attach_property(&connector->base, 6612 connector->dev->mode_config.hdr_output_metadata_property, 6613 0); 6614 6615 if (intel_dp_is_edp(intel_dp)) { 6616 u32 allowed_scalers; 6617 6618 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); 6619 if (!HAS_GMCH(dev_priv)) 6620 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); 6621 6622 drm_connector_attach_scaling_mode_property(connector, allowed_scalers); 6623 6624 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; 6625 6626 } 6627 } 6628 6629 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) 6630 { 6631 intel_dp->panel_power_off_time = ktime_get_boottime(); 6632 intel_dp->last_power_on = jiffies; 6633 intel_dp->last_backlight_off = jiffies; 6634 } 6635 6636 static void 6637 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) 6638 { 6639 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6640 u32 pp_on, pp_off, pp_ctl; 6641 struct pps_registers regs; 6642 6643 intel_pps_get_registers(intel_dp, ®s); 6644 6645 pp_ctl = ironlake_get_pp_control(intel_dp); 6646 6647 /* Ensure PPS is unlocked */ 6648 if (!HAS_DDI(dev_priv)) 6649 I915_WRITE(regs.pp_ctrl, pp_ctl); 6650 6651 pp_on = I915_READ(regs.pp_on); 6652 pp_off = I915_READ(regs.pp_off); 6653 6654 /* Pull timing values out of registers */ 6655 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); 6656 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); 6657 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); 6658 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); 6659 6660 if (i915_mmio_reg_valid(regs.pp_div)) { 6661 u32 pp_div; 6662 6663 pp_div = I915_READ(regs.pp_div); 6664 6665 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; 6666 } else { 6667 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; 6668 } 6669 } 6670 6671 static void 6672 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) 6673 { 6674 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 6675 state_name, 6676 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); 6677 } 6678 6679 static void 6680 intel_pps_verify_state(struct intel_dp *intel_dp) 6681 { 6682 struct edp_power_seq hw; 6683 struct edp_power_seq *sw = &intel_dp->pps_delays; 6684 6685 intel_pps_readout_hw_state(intel_dp, &hw); 6686 6687 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || 6688 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { 6689 DRM_ERROR("PPS state mismatch\n"); 6690 intel_pps_dump_state("sw", sw); 6691 intel_pps_dump_state("hw", &hw); 6692 } 6693 } 6694 6695 static void 6696 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) 6697 { 6698 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6699 struct edp_power_seq cur, vbt, spec, 6700 *final = &intel_dp->pps_delays; 6701 6702 lockdep_assert_held(&dev_priv->pps_mutex); 6703 6704 /* already initialized? */ 6705 if (final->t11_t12 != 0) 6706 return; 6707 6708 intel_pps_readout_hw_state(intel_dp, &cur); 6709 6710 intel_pps_dump_state("cur", &cur); 6711 6712 vbt = dev_priv->vbt.edp.pps; 6713 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay 6714 * of 500ms appears to be too short. Ocassionally the panel 6715 * just fails to power back on. Increasing the delay to 800ms 6716 * seems sufficient to avoid this problem. 6717 */ 6718 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { 6719 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); 6720 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n", 6721 vbt.t11_t12); 6722 } 6723 /* T11_T12 delay is special and actually in units of 100ms, but zero 6724 * based in the hw (so we need to add 100 ms). But the sw vbt 6725 * table multiplies it with 1000 to make it in units of 100usec, 6726 * too. */ 6727 vbt.t11_t12 += 100 * 10; 6728 6729 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of 6730 * our hw here, which are all in 100usec. */ 6731 spec.t1_t3 = 210 * 10; 6732 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ 6733 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ 6734 spec.t10 = 500 * 10; 6735 /* This one is special and actually in units of 100ms, but zero 6736 * based in the hw (so we need to add 100 ms). But the sw vbt 6737 * table multiplies it with 1000 to make it in units of 100usec, 6738 * too. */ 6739 spec.t11_t12 = (510 + 100) * 10; 6740 6741 intel_pps_dump_state("vbt", &vbt); 6742 6743 /* Use the max of the register settings and vbt. If both are 6744 * unset, fall back to the spec limits. */ 6745 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ 6746 spec.field : \ 6747 max(cur.field, vbt.field)) 6748 assign_final(t1_t3); 6749 assign_final(t8); 6750 assign_final(t9); 6751 assign_final(t10); 6752 assign_final(t11_t12); 6753 #undef assign_final 6754 6755 #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) 6756 intel_dp->panel_power_up_delay = get_delay(t1_t3); 6757 intel_dp->backlight_on_delay = get_delay(t8); 6758 intel_dp->backlight_off_delay = get_delay(t9); 6759 intel_dp->panel_power_down_delay = get_delay(t10); 6760 intel_dp->panel_power_cycle_delay = get_delay(t11_t12); 6761 #undef get_delay 6762 6763 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", 6764 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, 6765 intel_dp->panel_power_cycle_delay); 6766 6767 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", 6768 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); 6769 6770 /* 6771 * We override the HW backlight delays to 1 because we do manual waits 6772 * on them. For T8, even BSpec recommends doing it. For T9, if we 6773 * don't do this, we'll end up waiting for the backlight off delay 6774 * twice: once when we do the manual sleep, and once when we disable 6775 * the panel and wait for the PP_STATUS bit to become zero. 6776 */ 6777 final->t8 = 1; 6778 final->t9 = 1; 6779 6780 /* 6781 * HW has only a 100msec granularity for t11_t12 so round it up 6782 * accordingly. 6783 */ 6784 final->t11_t12 = roundup(final->t11_t12, 100 * 10); 6785 } 6786 6787 static void 6788 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 6789 bool force_disable_vdd) 6790 { 6791 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6792 u32 pp_on, pp_off, port_sel = 0; 6793 int div = dev_priv->rawclk_freq / 1000; 6794 struct pps_registers regs; 6795 enum port port = dp_to_dig_port(intel_dp)->base.port; 6796 const struct edp_power_seq *seq = &intel_dp->pps_delays; 6797 6798 lockdep_assert_held(&dev_priv->pps_mutex); 6799 6800 intel_pps_get_registers(intel_dp, ®s); 6801 6802 /* 6803 * On some VLV machines the BIOS can leave the VDD 6804 * enabled even on power sequencers which aren't 6805 * hooked up to any port. This would mess up the 6806 * power domain tracking the first time we pick 6807 * one of these power sequencers for use since 6808 * edp_panel_vdd_on() would notice that the VDD was 6809 * already on and therefore wouldn't grab the power 6810 * domain reference. Disable VDD first to avoid this. 6811 * This also avoids spuriously turning the VDD on as 6812 * soon as the new power sequencer gets initialized. 6813 */ 6814 if (force_disable_vdd) { 6815 u32 pp = ironlake_get_pp_control(intel_dp); 6816 6817 WARN(pp & PANEL_POWER_ON, "Panel power already on\n"); 6818 6819 if (pp & EDP_FORCE_VDD) 6820 DRM_DEBUG_KMS("VDD already on, disabling first\n"); 6821 6822 pp &= ~EDP_FORCE_VDD; 6823 6824 I915_WRITE(regs.pp_ctrl, pp); 6825 } 6826 6827 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | 6828 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); 6829 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | 6830 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); 6831 6832 /* Haswell doesn't have any port selection bits for the panel 6833 * power sequencer any more. */ 6834 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6835 port_sel = PANEL_PORT_SELECT_VLV(port); 6836 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 6837 switch (port) { 6838 case PORT_A: 6839 port_sel = PANEL_PORT_SELECT_DPA; 6840 break; 6841 case PORT_C: 6842 port_sel = PANEL_PORT_SELECT_DPC; 6843 break; 6844 case PORT_D: 6845 port_sel = PANEL_PORT_SELECT_DPD; 6846 break; 6847 default: 6848 MISSING_CASE(port); 6849 break; 6850 } 6851 } 6852 6853 pp_on |= port_sel; 6854 6855 I915_WRITE(regs.pp_on, pp_on); 6856 I915_WRITE(regs.pp_off, pp_off); 6857 6858 /* 6859 * Compute the divisor for the pp clock, simply match the Bspec formula. 6860 */ 6861 if (i915_mmio_reg_valid(regs.pp_div)) { 6862 I915_WRITE(regs.pp_div, 6863 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | 6864 REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); 6865 } else { 6866 u32 pp_ctl; 6867 6868 pp_ctl = I915_READ(regs.pp_ctrl); 6869 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; 6870 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); 6871 I915_WRITE(regs.pp_ctrl, pp_ctl); 6872 } 6873 6874 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", 6875 I915_READ(regs.pp_on), 6876 I915_READ(regs.pp_off), 6877 i915_mmio_reg_valid(regs.pp_div) ? 6878 I915_READ(regs.pp_div) : 6879 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); 6880 } 6881 6882 static void intel_dp_pps_init(struct intel_dp *intel_dp) 6883 { 6884 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6885 6886 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6887 vlv_initial_power_sequencer_setup(intel_dp); 6888 } else { 6889 intel_dp_init_panel_power_sequencer(intel_dp); 6890 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 6891 } 6892 } 6893 6894 /** 6895 * intel_dp_set_drrs_state - program registers for RR switch to take effect 6896 * @dev_priv: i915 device 6897 * @crtc_state: a pointer to the active intel_crtc_state 6898 * @refresh_rate: RR to be programmed 6899 * 6900 * This function gets called when refresh rate (RR) has to be changed from 6901 * one frequency to another. Switches can be between high and low RR 6902 * supported by the panel or to any other RR based on media playback (in 6903 * this case, RR value needs to be passed from user space). 6904 * 6905 * The caller of this function needs to take a lock on dev_priv->drrs. 6906 */ 6907 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, 6908 const struct intel_crtc_state *crtc_state, 6909 int refresh_rate) 6910 { 6911 struct intel_dp *intel_dp = dev_priv->drrs.dp; 6912 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 6913 enum drrs_refresh_rate_type index = DRRS_HIGH_RR; 6914 6915 if (refresh_rate <= 0) { 6916 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n"); 6917 return; 6918 } 6919 6920 if (intel_dp == NULL) { 6921 DRM_DEBUG_KMS("DRRS not supported.\n"); 6922 return; 6923 } 6924 6925 if (!intel_crtc) { 6926 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n"); 6927 return; 6928 } 6929 6930 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { 6931 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n"); 6932 return; 6933 } 6934 6935 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh == 6936 refresh_rate) 6937 index = DRRS_LOW_RR; 6938 6939 if (index == dev_priv->drrs.refresh_rate_type) { 6940 DRM_DEBUG_KMS( 6941 "DRRS requested for previously set RR...ignoring\n"); 6942 return; 6943 } 6944 6945 if (!crtc_state->base.active) { 6946 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n"); 6947 return; 6948 } 6949 6950 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { 6951 switch (index) { 6952 case DRRS_HIGH_RR: 6953 intel_dp_set_m_n(crtc_state, M1_N1); 6954 break; 6955 case DRRS_LOW_RR: 6956 intel_dp_set_m_n(crtc_state, M2_N2); 6957 break; 6958 case DRRS_MAX_RR: 6959 default: 6960 DRM_ERROR("Unsupported refreshrate type\n"); 6961 } 6962 } else if (INTEL_GEN(dev_priv) > 6) { 6963 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); 6964 u32 val; 6965 6966 val = I915_READ(reg); 6967 if (index > DRRS_HIGH_RR) { 6968 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6969 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; 6970 else 6971 val |= PIPECONF_EDP_RR_MODE_SWITCH; 6972 } else { 6973 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6974 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; 6975 else 6976 val &= ~PIPECONF_EDP_RR_MODE_SWITCH; 6977 } 6978 I915_WRITE(reg, val); 6979 } 6980 6981 dev_priv->drrs.refresh_rate_type = index; 6982 6983 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate); 6984 } 6985 6986 /** 6987 * intel_edp_drrs_enable - init drrs struct if supported 6988 * @intel_dp: DP struct 6989 * @crtc_state: A pointer to the active crtc state. 6990 * 6991 * Initializes frontbuffer_bits and drrs.dp 6992 */ 6993 void intel_edp_drrs_enable(struct intel_dp *intel_dp, 6994 const struct intel_crtc_state *crtc_state) 6995 { 6996 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6997 6998 if (!crtc_state->has_drrs) { 6999 DRM_DEBUG_KMS("Panel doesn't support DRRS\n"); 7000 return; 7001 } 7002 7003 if (dev_priv->psr.enabled) { 7004 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n"); 7005 return; 7006 } 7007 7008 mutex_lock(&dev_priv->drrs.mutex); 7009 if (dev_priv->drrs.dp) { 7010 DRM_DEBUG_KMS("DRRS already enabled\n"); 7011 goto unlock; 7012 } 7013 7014 dev_priv->drrs.busy_frontbuffer_bits = 0; 7015 7016 dev_priv->drrs.dp = intel_dp; 7017 7018 unlock: 7019 mutex_unlock(&dev_priv->drrs.mutex); 7020 } 7021 7022 /** 7023 * intel_edp_drrs_disable - Disable DRRS 7024 * @intel_dp: DP struct 7025 * @old_crtc_state: Pointer to old crtc_state. 7026 * 7027 */ 7028 void intel_edp_drrs_disable(struct intel_dp *intel_dp, 7029 const struct intel_crtc_state *old_crtc_state) 7030 { 7031 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7032 7033 if (!old_crtc_state->has_drrs) 7034 return; 7035 7036 mutex_lock(&dev_priv->drrs.mutex); 7037 if (!dev_priv->drrs.dp) { 7038 mutex_unlock(&dev_priv->drrs.mutex); 7039 return; 7040 } 7041 7042 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7043 intel_dp_set_drrs_state(dev_priv, old_crtc_state, 7044 intel_dp->attached_connector->panel.fixed_mode->vrefresh); 7045 7046 dev_priv->drrs.dp = NULL; 7047 mutex_unlock(&dev_priv->drrs.mutex); 7048 7049 cancel_delayed_work_sync(&dev_priv->drrs.work); 7050 } 7051 7052 static void intel_edp_drrs_downclock_work(struct work_struct *work) 7053 { 7054 struct drm_i915_private *dev_priv = 7055 container_of(work, typeof(*dev_priv), drrs.work.work); 7056 struct intel_dp *intel_dp; 7057 7058 mutex_lock(&dev_priv->drrs.mutex); 7059 7060 intel_dp = dev_priv->drrs.dp; 7061 7062 if (!intel_dp) 7063 goto unlock; 7064 7065 /* 7066 * The delayed work can race with an invalidate hence we need to 7067 * recheck. 7068 */ 7069 7070 if (dev_priv->drrs.busy_frontbuffer_bits) 7071 goto unlock; 7072 7073 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { 7074 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7075 7076 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7077 intel_dp->attached_connector->panel.downclock_mode->vrefresh); 7078 } 7079 7080 unlock: 7081 mutex_unlock(&dev_priv->drrs.mutex); 7082 } 7083 7084 /** 7085 * intel_edp_drrs_invalidate - Disable Idleness DRRS 7086 * @dev_priv: i915 device 7087 * @frontbuffer_bits: frontbuffer plane tracking bits 7088 * 7089 * This function gets called everytime rendering on the given planes start. 7090 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). 7091 * 7092 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7093 */ 7094 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, 7095 unsigned int frontbuffer_bits) 7096 { 7097 struct drm_crtc *crtc; 7098 enum pipe pipe; 7099 7100 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7101 return; 7102 7103 cancel_delayed_work(&dev_priv->drrs.work); 7104 7105 mutex_lock(&dev_priv->drrs.mutex); 7106 if (!dev_priv->drrs.dp) { 7107 mutex_unlock(&dev_priv->drrs.mutex); 7108 return; 7109 } 7110 7111 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 7112 pipe = to_intel_crtc(crtc)->pipe; 7113 7114 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7115 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; 7116 7117 /* invalidate means busy screen hence upclock */ 7118 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7119 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7120 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 7121 7122 mutex_unlock(&dev_priv->drrs.mutex); 7123 } 7124 7125 /** 7126 * intel_edp_drrs_flush - Restart Idleness DRRS 7127 * @dev_priv: i915 device 7128 * @frontbuffer_bits: frontbuffer plane tracking bits 7129 * 7130 * This function gets called every time rendering on the given planes has 7131 * completed or flip on a crtc is completed. So DRRS should be upclocked 7132 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, 7133 * if no other planes are dirty. 7134 * 7135 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7136 */ 7137 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, 7138 unsigned int frontbuffer_bits) 7139 { 7140 struct drm_crtc *crtc; 7141 enum pipe pipe; 7142 7143 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7144 return; 7145 7146 cancel_delayed_work(&dev_priv->drrs.work); 7147 7148 mutex_lock(&dev_priv->drrs.mutex); 7149 if (!dev_priv->drrs.dp) { 7150 mutex_unlock(&dev_priv->drrs.mutex); 7151 return; 7152 } 7153 7154 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 7155 pipe = to_intel_crtc(crtc)->pipe; 7156 7157 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7158 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; 7159 7160 /* flush means busy screen hence upclock */ 7161 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7162 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7163 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 7164 7165 /* 7166 * flush also means no more activity hence schedule downclock, if all 7167 * other fbs are quiescent too 7168 */ 7169 if (!dev_priv->drrs.busy_frontbuffer_bits) 7170 schedule_delayed_work(&dev_priv->drrs.work, 7171 msecs_to_jiffies(1000)); 7172 mutex_unlock(&dev_priv->drrs.mutex); 7173 } 7174 7175 /** 7176 * DOC: Display Refresh Rate Switching (DRRS) 7177 * 7178 * Display Refresh Rate Switching (DRRS) is a power conservation feature 7179 * which enables swtching between low and high refresh rates, 7180 * dynamically, based on the usage scenario. This feature is applicable 7181 * for internal panels. 7182 * 7183 * Indication that the panel supports DRRS is given by the panel EDID, which 7184 * would list multiple refresh rates for one resolution. 7185 * 7186 * DRRS is of 2 types - static and seamless. 7187 * Static DRRS involves changing refresh rate (RR) by doing a full modeset 7188 * (may appear as a blink on screen) and is used in dock-undock scenario. 7189 * Seamless DRRS involves changing RR without any visual effect to the user 7190 * and can be used during normal system usage. This is done by programming 7191 * certain registers. 7192 * 7193 * Support for static/seamless DRRS may be indicated in the VBT based on 7194 * inputs from the panel spec. 7195 * 7196 * DRRS saves power by switching to low RR based on usage scenarios. 7197 * 7198 * The implementation is based on frontbuffer tracking implementation. When 7199 * there is a disturbance on the screen triggered by user activity or a periodic 7200 * system activity, DRRS is disabled (RR is changed to high RR). When there is 7201 * no movement on screen, after a timeout of 1 second, a switch to low RR is 7202 * made. 7203 * 7204 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() 7205 * and intel_edp_drrs_flush() are called. 7206 * 7207 * DRRS can be further extended to support other internal panels and also 7208 * the scenario of video playback wherein RR is set based on the rate 7209 * requested by userspace. 7210 */ 7211 7212 /** 7213 * intel_dp_drrs_init - Init basic DRRS work and mutex. 7214 * @connector: eDP connector 7215 * @fixed_mode: preferred mode of panel 7216 * 7217 * This function is called only once at driver load to initialize basic 7218 * DRRS stuff. 7219 * 7220 * Returns: 7221 * Downclock mode if panel supports it, else return NULL. 7222 * DRRS support is determined by the presence of downclock mode (apart 7223 * from VBT setting). 7224 */ 7225 static struct drm_display_mode * 7226 intel_dp_drrs_init(struct intel_connector *connector, 7227 struct drm_display_mode *fixed_mode) 7228 { 7229 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 7230 struct drm_display_mode *downclock_mode = NULL; 7231 7232 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); 7233 mutex_init(&dev_priv->drrs.mutex); 7234 7235 if (INTEL_GEN(dev_priv) <= 6) { 7236 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n"); 7237 return NULL; 7238 } 7239 7240 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { 7241 DRM_DEBUG_KMS("VBT doesn't support DRRS\n"); 7242 return NULL; 7243 } 7244 7245 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); 7246 if (!downclock_mode) { 7247 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n"); 7248 return NULL; 7249 } 7250 7251 dev_priv->drrs.type = dev_priv->vbt.drrs_type; 7252 7253 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; 7254 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n"); 7255 return downclock_mode; 7256 } 7257 7258 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 7259 struct intel_connector *intel_connector) 7260 { 7261 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7262 struct drm_device *dev = &dev_priv->drm; 7263 struct drm_connector *connector = &intel_connector->base; 7264 struct drm_display_mode *fixed_mode = NULL; 7265 struct drm_display_mode *downclock_mode = NULL; 7266 bool has_dpcd; 7267 enum pipe pipe = INVALID_PIPE; 7268 intel_wakeref_t wakeref; 7269 struct edid *edid; 7270 7271 if (!intel_dp_is_edp(intel_dp)) 7272 return true; 7273 7274 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); 7275 7276 /* 7277 * On IBX/CPT we may get here with LVDS already registered. Since the 7278 * driver uses the only internal power sequencer available for both 7279 * eDP and LVDS bail out early in this case to prevent interfering 7280 * with an already powered-on LVDS power sequencer. 7281 */ 7282 if (intel_get_lvds_encoder(dev_priv)) { 7283 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 7284 DRM_INFO("LVDS was detected, not registering eDP\n"); 7285 7286 return false; 7287 } 7288 7289 with_pps_lock(intel_dp, wakeref) { 7290 intel_dp_init_panel_power_timestamps(intel_dp); 7291 intel_dp_pps_init(intel_dp); 7292 intel_edp_panel_vdd_sanitize(intel_dp); 7293 } 7294 7295 /* Cache DPCD and EDID for edp. */ 7296 has_dpcd = intel_edp_init_dpcd(intel_dp); 7297 7298 if (!has_dpcd) { 7299 /* if this fails, presume the device is a ghost */ 7300 DRM_INFO("failed to retrieve link info, disabling eDP\n"); 7301 goto out_vdd_off; 7302 } 7303 7304 mutex_lock(&dev->mode_config.mutex); 7305 edid = drm_get_edid(connector, &intel_dp->aux.ddc); 7306 if (edid) { 7307 if (drm_add_edid_modes(connector, edid)) { 7308 drm_connector_update_edid_property(connector, 7309 edid); 7310 } else { 7311 kfree(edid); 7312 edid = ERR_PTR(-EINVAL); 7313 } 7314 } else { 7315 edid = ERR_PTR(-ENOENT); 7316 } 7317 intel_connector->edid = edid; 7318 7319 fixed_mode = intel_panel_edid_fixed_mode(intel_connector); 7320 if (fixed_mode) 7321 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); 7322 7323 /* fallback to VBT if available for eDP */ 7324 if (!fixed_mode) 7325 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); 7326 mutex_unlock(&dev->mode_config.mutex); 7327 7328 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7329 intel_dp->edp_notifier.notifier_call = edp_notify_handler; 7330 register_reboot_notifier(&intel_dp->edp_notifier); 7331 7332 /* 7333 * Figure out the current pipe for the initial backlight setup. 7334 * If the current pipe isn't valid, try the PPS pipe, and if that 7335 * fails just assume pipe A. 7336 */ 7337 pipe = vlv_active_pipe(intel_dp); 7338 7339 if (pipe != PIPE_A && pipe != PIPE_B) 7340 pipe = intel_dp->pps_pipe; 7341 7342 if (pipe != PIPE_A && pipe != PIPE_B) 7343 pipe = PIPE_A; 7344 7345 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n", 7346 pipe_name(pipe)); 7347 } 7348 7349 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); 7350 intel_connector->panel.backlight.power = intel_edp_backlight_power; 7351 intel_panel_setup_backlight(connector, pipe); 7352 7353 if (fixed_mode) 7354 drm_connector_init_panel_orientation_property( 7355 connector, fixed_mode->hdisplay, fixed_mode->vdisplay); 7356 7357 return true; 7358 7359 out_vdd_off: 7360 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 7361 /* 7362 * vdd might still be enabled do to the delayed vdd off. 7363 * Make sure vdd is actually turned off here. 7364 */ 7365 with_pps_lock(intel_dp, wakeref) 7366 edp_panel_vdd_off_sync(intel_dp); 7367 7368 return false; 7369 } 7370 7371 static void intel_dp_modeset_retry_work_fn(struct work_struct *work) 7372 { 7373 struct intel_connector *intel_connector; 7374 struct drm_connector *connector; 7375 7376 intel_connector = container_of(work, typeof(*intel_connector), 7377 modeset_retry_work); 7378 connector = &intel_connector->base; 7379 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, 7380 connector->name); 7381 7382 /* Grab the locks before changing connector property*/ 7383 mutex_lock(&connector->dev->mode_config.mutex); 7384 /* Set connector link status to BAD and send a Uevent to notify 7385 * userspace to do a modeset. 7386 */ 7387 drm_connector_set_link_status_property(connector, 7388 DRM_MODE_LINK_STATUS_BAD); 7389 mutex_unlock(&connector->dev->mode_config.mutex); 7390 /* Send Hotplug uevent so userspace can reprobe */ 7391 drm_kms_helper_hotplug_event(connector->dev); 7392 } 7393 7394 bool 7395 intel_dp_init_connector(struct intel_digital_port *intel_dig_port, 7396 struct intel_connector *intel_connector) 7397 { 7398 struct drm_connector *connector = &intel_connector->base; 7399 struct intel_dp *intel_dp = &intel_dig_port->dp; 7400 struct intel_encoder *intel_encoder = &intel_dig_port->base; 7401 struct drm_device *dev = intel_encoder->base.dev; 7402 struct drm_i915_private *dev_priv = to_i915(dev); 7403 enum port port = intel_encoder->port; 7404 enum phy phy = intel_port_to_phy(dev_priv, port); 7405 int type; 7406 7407 /* Initialize the work for modeset in case of link train failure */ 7408 INIT_WORK(&intel_connector->modeset_retry_work, 7409 intel_dp_modeset_retry_work_fn); 7410 7411 if (WARN(intel_dig_port->max_lanes < 1, 7412 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", 7413 intel_dig_port->max_lanes, intel_encoder->base.base.id, 7414 intel_encoder->base.name)) 7415 return false; 7416 7417 intel_dp_set_source_rates(intel_dp); 7418 7419 intel_dp->reset_link_params = true; 7420 intel_dp->pps_pipe = INVALID_PIPE; 7421 intel_dp->active_pipe = INVALID_PIPE; 7422 7423 /* Preserve the current hw state. */ 7424 intel_dp->DP = I915_READ(intel_dp->output_reg); 7425 intel_dp->attached_connector = intel_connector; 7426 7427 if (intel_dp_is_port_edp(dev_priv, port)) { 7428 /* 7429 * Currently we don't support eDP on TypeC ports, although in 7430 * theory it could work on TypeC legacy ports. 7431 */ 7432 WARN_ON(intel_phy_is_tc(dev_priv, phy)); 7433 type = DRM_MODE_CONNECTOR_eDP; 7434 } else { 7435 type = DRM_MODE_CONNECTOR_DisplayPort; 7436 } 7437 7438 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7439 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 7440 7441 /* 7442 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but 7443 * for DP the encoder type can be set by the caller to 7444 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. 7445 */ 7446 if (type == DRM_MODE_CONNECTOR_eDP) 7447 intel_encoder->type = INTEL_OUTPUT_EDP; 7448 7449 /* eDP only on port B and/or C on vlv/chv */ 7450 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 7451 intel_dp_is_edp(intel_dp) && 7452 port != PORT_B && port != PORT_C)) 7453 return false; 7454 7455 DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n", 7456 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 7457 intel_encoder->base.base.id, intel_encoder->base.name); 7458 7459 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); 7460 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); 7461 7462 if (!HAS_GMCH(dev_priv)) 7463 connector->interlace_allowed = true; 7464 connector->doublescan_allowed = 0; 7465 7466 if (INTEL_GEN(dev_priv) >= 11) 7467 connector->ycbcr_420_allowed = true; 7468 7469 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 7470 7471 intel_dp_aux_init(intel_dp); 7472 7473 intel_connector_attach_encoder(intel_connector, intel_encoder); 7474 7475 if (HAS_DDI(dev_priv)) 7476 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 7477 else 7478 intel_connector->get_hw_state = intel_connector_get_hw_state; 7479 7480 /* init MST on ports that can support it */ 7481 intel_dp_mst_encoder_init(intel_dig_port, 7482 intel_connector->base.base.id); 7483 7484 if (!intel_edp_init_connector(intel_dp, intel_connector)) { 7485 intel_dp_aux_fini(intel_dp); 7486 intel_dp_mst_encoder_cleanup(intel_dig_port); 7487 goto fail; 7488 } 7489 7490 intel_dp_add_properties(intel_dp, connector); 7491 7492 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { 7493 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim); 7494 if (ret) 7495 DRM_DEBUG_KMS("HDCP init failed, skipping.\n"); 7496 } 7497 7498 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 7499 * 0xd. Failure to do so will result in spurious interrupts being 7500 * generated on the port when a cable is not attached. 7501 */ 7502 if (IS_G45(dev_priv)) { 7503 u32 temp = I915_READ(PEG_BAND_GAP_DATA); 7504 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); 7505 } 7506 7507 return true; 7508 7509 fail: 7510 drm_connector_cleanup(connector); 7511 7512 return false; 7513 } 7514 7515 bool intel_dp_init(struct drm_i915_private *dev_priv, 7516 i915_reg_t output_reg, 7517 enum port port) 7518 { 7519 struct intel_digital_port *intel_dig_port; 7520 struct intel_encoder *intel_encoder; 7521 struct drm_encoder *encoder; 7522 struct intel_connector *intel_connector; 7523 7524 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); 7525 if (!intel_dig_port) 7526 return false; 7527 7528 intel_connector = intel_connector_alloc(); 7529 if (!intel_connector) 7530 goto err_connector_alloc; 7531 7532 intel_encoder = &intel_dig_port->base; 7533 encoder = &intel_encoder->base; 7534 7535 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 7536 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, 7537 "DP %c", port_name(port))) 7538 goto err_encoder_init; 7539 7540 intel_encoder->hotplug = intel_dp_hotplug; 7541 intel_encoder->compute_config = intel_dp_compute_config; 7542 intel_encoder->get_hw_state = intel_dp_get_hw_state; 7543 intel_encoder->get_config = intel_dp_get_config; 7544 intel_encoder->update_pipe = intel_panel_update_backlight; 7545 intel_encoder->suspend = intel_dp_encoder_suspend; 7546 if (IS_CHERRYVIEW(dev_priv)) { 7547 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; 7548 intel_encoder->pre_enable = chv_pre_enable_dp; 7549 intel_encoder->enable = vlv_enable_dp; 7550 intel_encoder->disable = vlv_disable_dp; 7551 intel_encoder->post_disable = chv_post_disable_dp; 7552 intel_encoder->post_pll_disable = chv_dp_post_pll_disable; 7553 } else if (IS_VALLEYVIEW(dev_priv)) { 7554 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; 7555 intel_encoder->pre_enable = vlv_pre_enable_dp; 7556 intel_encoder->enable = vlv_enable_dp; 7557 intel_encoder->disable = vlv_disable_dp; 7558 intel_encoder->post_disable = vlv_post_disable_dp; 7559 } else { 7560 intel_encoder->pre_enable = g4x_pre_enable_dp; 7561 intel_encoder->enable = g4x_enable_dp; 7562 intel_encoder->disable = g4x_disable_dp; 7563 intel_encoder->post_disable = g4x_post_disable_dp; 7564 } 7565 7566 intel_dig_port->dp.output_reg = output_reg; 7567 intel_dig_port->max_lanes = 4; 7568 7569 intel_encoder->type = INTEL_OUTPUT_DP; 7570 intel_encoder->power_domain = intel_port_to_power_domain(port); 7571 if (IS_CHERRYVIEW(dev_priv)) { 7572 if (port == PORT_D) 7573 intel_encoder->pipe_mask = BIT(PIPE_C); 7574 else 7575 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B); 7576 } else { 7577 intel_encoder->pipe_mask = ~0; 7578 } 7579 intel_encoder->cloneable = 0; 7580 intel_encoder->port = port; 7581 7582 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; 7583 7584 if (port != PORT_A) 7585 intel_infoframe_init(intel_dig_port); 7586 7587 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 7588 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) 7589 goto err_init_connector; 7590 7591 return true; 7592 7593 err_init_connector: 7594 drm_encoder_cleanup(encoder); 7595 err_encoder_init: 7596 kfree(intel_connector); 7597 err_connector_alloc: 7598 kfree(intel_dig_port); 7599 return false; 7600 } 7601 7602 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) 7603 { 7604 struct intel_encoder *encoder; 7605 7606 for_each_intel_encoder(&dev_priv->drm, encoder) { 7607 struct intel_dp *intel_dp; 7608 7609 if (encoder->type != INTEL_OUTPUT_DDI) 7610 continue; 7611 7612 intel_dp = enc_to_intel_dp(&encoder->base); 7613 7614 if (!intel_dp->can_mst) 7615 continue; 7616 7617 if (intel_dp->is_mst) 7618 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); 7619 } 7620 } 7621 7622 void intel_dp_mst_resume(struct drm_i915_private *dev_priv) 7623 { 7624 struct intel_encoder *encoder; 7625 7626 for_each_intel_encoder(&dev_priv->drm, encoder) { 7627 struct intel_dp *intel_dp; 7628 int ret; 7629 7630 if (encoder->type != INTEL_OUTPUT_DDI) 7631 continue; 7632 7633 intel_dp = enc_to_intel_dp(&encoder->base); 7634 7635 if (!intel_dp->can_mst) 7636 continue; 7637 7638 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr, 7639 true); 7640 if (ret) { 7641 intel_dp->is_mst = false; 7642 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 7643 false); 7644 } 7645 } 7646 } 7647