xref: /linux/drivers/gpu/drm/i915/display/intel_dp.c (revision 604e2139a1026793b8c2172bd92c7e9d039a5cf0)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34 
35 #include <asm/byteorder.h>
36 
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
44 
45 #include "i915_debugfs.h"
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_atomic.h"
49 #include "intel_audio.h"
50 #include "intel_connector.h"
51 #include "intel_ddi.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
68 
69 #define DP_DPRX_ESI_LEN 14
70 
71 /* DP DSC throughput values used for slice count calculations KPixels/s */
72 #define DP_DSC_PEAK_PIXEL_RATE			2720000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
75 
76 /* DP DSC FEC Overhead factor = 1/(0.972261) */
77 #define DP_DSC_FEC_OVERHEAD_FACTOR		972261
78 
79 /* Compliance test status bits  */
80 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
81 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
84 
85 struct dp_link_dpll {
86 	int clock;
87 	struct dpll dpll;
88 };
89 
90 static const struct dp_link_dpll g4x_dpll[] = {
91 	{ 162000,
92 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93 	{ 270000,
94 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
95 };
96 
97 static const struct dp_link_dpll pch_dpll[] = {
98 	{ 162000,
99 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100 	{ 270000,
101 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
102 };
103 
104 static const struct dp_link_dpll vlv_dpll[] = {
105 	{ 162000,
106 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107 	{ 270000,
108 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
109 };
110 
111 /*
112  * CHV supports eDP 1.4 that have  more link rates.
113  * Below only provides the fixed rate but exclude variable rate.
114  */
115 static const struct dp_link_dpll chv_dpll[] = {
116 	/*
117 	 * CHV requires to program fractional division for m2.
118 	 * m2 is stored in fixed point format using formula below
119 	 * (m2_int << 22) | m2_fraction
120 	 */
121 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
122 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
124 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
125 };
126 
127 /* Constants for DP DSC configurations */
128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
129 
130 /* With Single pipe configuration, HW is capable of supporting maximum
131  * of 4 slices per line.
132  */
133 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
134 
135 /**
136  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137  * @intel_dp: DP struct
138  *
139  * If a CPU or PCH DP output is attached to an eDP panel, this function
140  * will return true, and false otherwise.
141  */
142 bool intel_dp_is_edp(struct intel_dp *intel_dp)
143 {
144 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145 
146 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 }
148 
149 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
150 {
151 	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
152 }
153 
154 static void intel_dp_link_down(struct intel_encoder *encoder,
155 			       const struct intel_crtc_state *old_crtc_state);
156 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
157 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
158 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
159 					   const struct intel_crtc_state *crtc_state);
160 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
161 				      enum pipe pipe);
162 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
163 
164 /* update sink rates from dpcd */
165 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
166 {
167 	static const int dp_rates[] = {
168 		162000, 270000, 540000, 810000
169 	};
170 	int i, max_rate;
171 
172 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
173 
174 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
175 		if (dp_rates[i] > max_rate)
176 			break;
177 		intel_dp->sink_rates[i] = dp_rates[i];
178 	}
179 
180 	intel_dp->num_sink_rates = i;
181 }
182 
183 /* Get length of rates array potentially limited by max_rate. */
184 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
185 {
186 	int i;
187 
188 	/* Limit results by potentially reduced max rate */
189 	for (i = 0; i < len; i++) {
190 		if (rates[len - i - 1] <= max_rate)
191 			return len - i;
192 	}
193 
194 	return 0;
195 }
196 
197 /* Get length of common rates array potentially limited by max_rate. */
198 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
199 					  int max_rate)
200 {
201 	return intel_dp_rate_limit_len(intel_dp->common_rates,
202 				       intel_dp->num_common_rates, max_rate);
203 }
204 
205 /* Theoretical max between source and sink */
206 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
207 {
208 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
209 }
210 
211 /* Theoretical max between source and sink */
212 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
213 {
214 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
215 	int source_max = intel_dig_port->max_lanes;
216 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
217 	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
218 
219 	return min3(source_max, sink_max, fia_max);
220 }
221 
222 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
223 {
224 	return intel_dp->max_link_lane_count;
225 }
226 
227 int
228 intel_dp_link_required(int pixel_clock, int bpp)
229 {
230 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
231 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
232 }
233 
234 int
235 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
236 {
237 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
238 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
239 	 * is transmitted every LS_Clk per lane, there is no need to account for
240 	 * the channel encoding that is done in the PHY layer here.
241 	 */
242 
243 	return max_link_clock * max_lanes;
244 }
245 
246 static int
247 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
248 {
249 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
250 	struct intel_encoder *encoder = &intel_dig_port->base;
251 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
252 	int max_dotclk = dev_priv->max_dotclk_freq;
253 	int ds_max_dotclk;
254 
255 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
256 
257 	if (type != DP_DS_PORT_TYPE_VGA)
258 		return max_dotclk;
259 
260 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
261 						    intel_dp->downstream_ports);
262 
263 	if (ds_max_dotclk != 0)
264 		max_dotclk = min(max_dotclk, ds_max_dotclk);
265 
266 	return max_dotclk;
267 }
268 
269 static int cnl_max_source_rate(struct intel_dp *intel_dp)
270 {
271 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
272 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
273 	enum port port = dig_port->base.port;
274 
275 	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
276 
277 	/* Low voltage SKUs are limited to max of 5.4G */
278 	if (voltage == VOLTAGE_INFO_0_85V)
279 		return 540000;
280 
281 	/* For this SKU 8.1G is supported in all ports */
282 	if (IS_CNL_WITH_PORT_F(dev_priv))
283 		return 810000;
284 
285 	/* For other SKUs, max rate on ports A and D is 5.4G */
286 	if (port == PORT_A || port == PORT_D)
287 		return 540000;
288 
289 	return 810000;
290 }
291 
292 static int icl_max_source_rate(struct intel_dp *intel_dp)
293 {
294 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
295 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
296 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
297 
298 	if (intel_phy_is_combo(dev_priv, phy) &&
299 	    !IS_ELKHARTLAKE(dev_priv) &&
300 	    !intel_dp_is_edp(intel_dp))
301 		return 540000;
302 
303 	return 810000;
304 }
305 
306 static void
307 intel_dp_set_source_rates(struct intel_dp *intel_dp)
308 {
309 	/* The values must be in increasing order */
310 	static const int cnl_rates[] = {
311 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
312 	};
313 	static const int bxt_rates[] = {
314 		162000, 216000, 243000, 270000, 324000, 432000, 540000
315 	};
316 	static const int skl_rates[] = {
317 		162000, 216000, 270000, 324000, 432000, 540000
318 	};
319 	static const int hsw_rates[] = {
320 		162000, 270000, 540000
321 	};
322 	static const int g4x_rates[] = {
323 		162000, 270000
324 	};
325 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
326 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
327 	const struct ddi_vbt_port_info *info =
328 		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
329 	const int *source_rates;
330 	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
331 
332 	/* This should only be done once */
333 	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
334 
335 	if (INTEL_GEN(dev_priv) >= 10) {
336 		source_rates = cnl_rates;
337 		size = ARRAY_SIZE(cnl_rates);
338 		if (IS_GEN(dev_priv, 10))
339 			max_rate = cnl_max_source_rate(intel_dp);
340 		else
341 			max_rate = icl_max_source_rate(intel_dp);
342 	} else if (IS_GEN9_LP(dev_priv)) {
343 		source_rates = bxt_rates;
344 		size = ARRAY_SIZE(bxt_rates);
345 	} else if (IS_GEN9_BC(dev_priv)) {
346 		source_rates = skl_rates;
347 		size = ARRAY_SIZE(skl_rates);
348 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
349 		   IS_BROADWELL(dev_priv)) {
350 		source_rates = hsw_rates;
351 		size = ARRAY_SIZE(hsw_rates);
352 	} else {
353 		source_rates = g4x_rates;
354 		size = ARRAY_SIZE(g4x_rates);
355 	}
356 
357 	if (max_rate && vbt_max_rate)
358 		max_rate = min(max_rate, vbt_max_rate);
359 	else if (vbt_max_rate)
360 		max_rate = vbt_max_rate;
361 
362 	if (max_rate)
363 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
364 
365 	intel_dp->source_rates = source_rates;
366 	intel_dp->num_source_rates = size;
367 }
368 
369 static int intersect_rates(const int *source_rates, int source_len,
370 			   const int *sink_rates, int sink_len,
371 			   int *common_rates)
372 {
373 	int i = 0, j = 0, k = 0;
374 
375 	while (i < source_len && j < sink_len) {
376 		if (source_rates[i] == sink_rates[j]) {
377 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
378 				return k;
379 			common_rates[k] = source_rates[i];
380 			++k;
381 			++i;
382 			++j;
383 		} else if (source_rates[i] < sink_rates[j]) {
384 			++i;
385 		} else {
386 			++j;
387 		}
388 	}
389 	return k;
390 }
391 
392 /* return index of rate in rates array, or -1 if not found */
393 static int intel_dp_rate_index(const int *rates, int len, int rate)
394 {
395 	int i;
396 
397 	for (i = 0; i < len; i++)
398 		if (rate == rates[i])
399 			return i;
400 
401 	return -1;
402 }
403 
404 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
405 {
406 	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
407 
408 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
409 						     intel_dp->num_source_rates,
410 						     intel_dp->sink_rates,
411 						     intel_dp->num_sink_rates,
412 						     intel_dp->common_rates);
413 
414 	/* Paranoia, there should always be something in common. */
415 	if (WARN_ON(intel_dp->num_common_rates == 0)) {
416 		intel_dp->common_rates[0] = 162000;
417 		intel_dp->num_common_rates = 1;
418 	}
419 }
420 
421 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
422 				       u8 lane_count)
423 {
424 	/*
425 	 * FIXME: we need to synchronize the current link parameters with
426 	 * hardware readout. Currently fast link training doesn't work on
427 	 * boot-up.
428 	 */
429 	if (link_rate == 0 ||
430 	    link_rate > intel_dp->max_link_rate)
431 		return false;
432 
433 	if (lane_count == 0 ||
434 	    lane_count > intel_dp_max_lane_count(intel_dp))
435 		return false;
436 
437 	return true;
438 }
439 
440 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
441 						     int link_rate,
442 						     u8 lane_count)
443 {
444 	const struct drm_display_mode *fixed_mode =
445 		intel_dp->attached_connector->panel.fixed_mode;
446 	int mode_rate, max_rate;
447 
448 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
449 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
450 	if (mode_rate > max_rate)
451 		return false;
452 
453 	return true;
454 }
455 
456 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
457 					    int link_rate, u8 lane_count)
458 {
459 	int index;
460 
461 	index = intel_dp_rate_index(intel_dp->common_rates,
462 				    intel_dp->num_common_rates,
463 				    link_rate);
464 	if (index > 0) {
465 		if (intel_dp_is_edp(intel_dp) &&
466 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
467 							      intel_dp->common_rates[index - 1],
468 							      lane_count)) {
469 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
470 			return 0;
471 		}
472 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
473 		intel_dp->max_link_lane_count = lane_count;
474 	} else if (lane_count > 1) {
475 		if (intel_dp_is_edp(intel_dp) &&
476 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
477 							      intel_dp_max_common_rate(intel_dp),
478 							      lane_count >> 1)) {
479 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
480 			return 0;
481 		}
482 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
483 		intel_dp->max_link_lane_count = lane_count >> 1;
484 	} else {
485 		DRM_ERROR("Link Training Unsuccessful\n");
486 		return -1;
487 	}
488 
489 	return 0;
490 }
491 
492 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
493 {
494 	return div_u64(mul_u32_u32(mode_clock, 1000000U),
495 		       DP_DSC_FEC_OVERHEAD_FACTOR);
496 }
497 
498 static int
499 small_joiner_ram_size_bits(struct drm_i915_private *i915)
500 {
501 	if (INTEL_GEN(i915) >= 11)
502 		return 7680 * 8;
503 	else
504 		return 6144 * 8;
505 }
506 
507 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
508 				       u32 link_clock, u32 lane_count,
509 				       u32 mode_clock, u32 mode_hdisplay)
510 {
511 	u32 bits_per_pixel, max_bpp_small_joiner_ram;
512 	int i;
513 
514 	/*
515 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
516 	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
517 	 * for SST -> TimeSlotsPerMTP is 1,
518 	 * for MST -> TimeSlotsPerMTP has to be calculated
519 	 */
520 	bits_per_pixel = (link_clock * lane_count * 8) /
521 			 intel_dp_mode_to_fec_clock(mode_clock);
522 	DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);
523 
524 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
525 	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
526 		mode_hdisplay;
527 	DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);
528 
529 	/*
530 	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
531 	 * check, output bpp from small joiner RAM check)
532 	 */
533 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
534 
535 	/* Error out if the max bpp is less than smallest allowed valid bpp */
536 	if (bits_per_pixel < valid_dsc_bpp[0]) {
537 		DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
538 			      bits_per_pixel, valid_dsc_bpp[0]);
539 		return 0;
540 	}
541 
542 	/* Find the nearest match in the array of known BPPs from VESA */
543 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
544 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
545 			break;
546 	}
547 	bits_per_pixel = valid_dsc_bpp[i];
548 
549 	/*
550 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
551 	 * fractional part is 0
552 	 */
553 	return bits_per_pixel << 4;
554 }
555 
556 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
557 				       int mode_clock, int mode_hdisplay)
558 {
559 	u8 min_slice_count, i;
560 	int max_slice_width;
561 
562 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
563 		min_slice_count = DIV_ROUND_UP(mode_clock,
564 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
565 	else
566 		min_slice_count = DIV_ROUND_UP(mode_clock,
567 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
568 
569 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
570 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
571 		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
572 			      max_slice_width);
573 		return 0;
574 	}
575 	/* Also take into account max slice width */
576 	min_slice_count = min_t(u8, min_slice_count,
577 				DIV_ROUND_UP(mode_hdisplay,
578 					     max_slice_width));
579 
580 	/* Find the closest match to the valid slice count values */
581 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
582 		if (valid_dsc_slicecount[i] >
583 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
584 						    false))
585 			break;
586 		if (min_slice_count  <= valid_dsc_slicecount[i])
587 			return valid_dsc_slicecount[i];
588 	}
589 
590 	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
591 	return 0;
592 }
593 
594 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
595 				  int hdisplay)
596 {
597 	/*
598 	 * Older platforms don't like hdisplay==4096 with DP.
599 	 *
600 	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
601 	 * and frame counter increment), but we don't get vblank interrupts,
602 	 * and the pipe underruns immediately. The link also doesn't seem
603 	 * to get trained properly.
604 	 *
605 	 * On CHV the vblank interrupts don't seem to disappear but
606 	 * otherwise the symptoms are similar.
607 	 *
608 	 * TODO: confirm the behaviour on HSW+
609 	 */
610 	return hdisplay == 4096 && !HAS_DDI(dev_priv);
611 }
612 
613 static enum drm_mode_status
614 intel_dp_mode_valid(struct drm_connector *connector,
615 		    struct drm_display_mode *mode)
616 {
617 	struct intel_dp *intel_dp = intel_attached_dp(connector);
618 	struct intel_connector *intel_connector = to_intel_connector(connector);
619 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
620 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
621 	int target_clock = mode->clock;
622 	int max_rate, mode_rate, max_lanes, max_link_clock;
623 	int max_dotclk;
624 	u16 dsc_max_output_bpp = 0;
625 	u8 dsc_slice_count = 0;
626 
627 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
628 		return MODE_NO_DBLESCAN;
629 
630 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
631 
632 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
633 		if (mode->hdisplay > fixed_mode->hdisplay)
634 			return MODE_PANEL;
635 
636 		if (mode->vdisplay > fixed_mode->vdisplay)
637 			return MODE_PANEL;
638 
639 		target_clock = fixed_mode->clock;
640 	}
641 
642 	max_link_clock = intel_dp_max_link_rate(intel_dp);
643 	max_lanes = intel_dp_max_lane_count(intel_dp);
644 
645 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
646 	mode_rate = intel_dp_link_required(target_clock, 18);
647 
648 	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
649 		return MODE_H_ILLEGAL;
650 
651 	/*
652 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
653 	 * integer value since we support only integer values of bpp.
654 	 */
655 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
656 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
657 		if (intel_dp_is_edp(intel_dp)) {
658 			dsc_max_output_bpp =
659 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
660 			dsc_slice_count =
661 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
662 								true);
663 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
664 			dsc_max_output_bpp =
665 				intel_dp_dsc_get_output_bpp(dev_priv,
666 							    max_link_clock,
667 							    max_lanes,
668 							    target_clock,
669 							    mode->hdisplay) >> 4;
670 			dsc_slice_count =
671 				intel_dp_dsc_get_slice_count(intel_dp,
672 							     target_clock,
673 							     mode->hdisplay);
674 		}
675 	}
676 
677 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
678 	    target_clock > max_dotclk)
679 		return MODE_CLOCK_HIGH;
680 
681 	if (mode->clock < 10000)
682 		return MODE_CLOCK_LOW;
683 
684 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
685 		return MODE_H_ILLEGAL;
686 
687 	return intel_mode_valid_max_plane_size(dev_priv, mode);
688 }
689 
690 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
691 {
692 	int i;
693 	u32 v = 0;
694 
695 	if (src_bytes > 4)
696 		src_bytes = 4;
697 	for (i = 0; i < src_bytes; i++)
698 		v |= ((u32)src[i]) << ((3 - i) * 8);
699 	return v;
700 }
701 
702 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
703 {
704 	int i;
705 	if (dst_bytes > 4)
706 		dst_bytes = 4;
707 	for (i = 0; i < dst_bytes; i++)
708 		dst[i] = src >> ((3-i) * 8);
709 }
710 
711 static void
712 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
713 static void
714 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
715 					      bool force_disable_vdd);
716 static void
717 intel_dp_pps_init(struct intel_dp *intel_dp);
718 
719 static intel_wakeref_t
720 pps_lock(struct intel_dp *intel_dp)
721 {
722 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
723 	intel_wakeref_t wakeref;
724 
725 	/*
726 	 * See intel_power_sequencer_reset() why we need
727 	 * a power domain reference here.
728 	 */
729 	wakeref = intel_display_power_get(dev_priv,
730 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
731 
732 	mutex_lock(&dev_priv->pps_mutex);
733 
734 	return wakeref;
735 }
736 
737 static intel_wakeref_t
738 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
739 {
740 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
741 
742 	mutex_unlock(&dev_priv->pps_mutex);
743 	intel_display_power_put(dev_priv,
744 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
745 				wakeref);
746 	return 0;
747 }
748 
749 #define with_pps_lock(dp, wf) \
750 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
751 
752 static void
753 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
754 {
755 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
756 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757 	enum pipe pipe = intel_dp->pps_pipe;
758 	bool pll_enabled, release_cl_override = false;
759 	enum dpio_phy phy = DPIO_PHY(pipe);
760 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
761 	u32 DP;
762 
763 	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
764 		 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
765 		 pipe_name(pipe), intel_dig_port->base.base.base.id,
766 		 intel_dig_port->base.base.name))
767 		return;
768 
769 	DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
770 		      pipe_name(pipe), intel_dig_port->base.base.base.id,
771 		      intel_dig_port->base.base.name);
772 
773 	/* Preserve the BIOS-computed detected bit. This is
774 	 * supposed to be read-only.
775 	 */
776 	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
777 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
778 	DP |= DP_PORT_WIDTH(1);
779 	DP |= DP_LINK_TRAIN_PAT_1;
780 
781 	if (IS_CHERRYVIEW(dev_priv))
782 		DP |= DP_PIPE_SEL_CHV(pipe);
783 	else
784 		DP |= DP_PIPE_SEL(pipe);
785 
786 	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
787 
788 	/*
789 	 * The DPLL for the pipe must be enabled for this to work.
790 	 * So enable temporarily it if it's not already enabled.
791 	 */
792 	if (!pll_enabled) {
793 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
794 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
795 
796 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
797 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
798 			DRM_ERROR("Failed to force on pll for pipe %c!\n",
799 				  pipe_name(pipe));
800 			return;
801 		}
802 	}
803 
804 	/*
805 	 * Similar magic as in intel_dp_enable_port().
806 	 * We _must_ do this port enable + disable trick
807 	 * to make this power sequencer lock onto the port.
808 	 * Otherwise even VDD force bit won't work.
809 	 */
810 	I915_WRITE(intel_dp->output_reg, DP);
811 	POSTING_READ(intel_dp->output_reg);
812 
813 	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
814 	POSTING_READ(intel_dp->output_reg);
815 
816 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
817 	POSTING_READ(intel_dp->output_reg);
818 
819 	if (!pll_enabled) {
820 		vlv_force_pll_off(dev_priv, pipe);
821 
822 		if (release_cl_override)
823 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
824 	}
825 }
826 
827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
828 {
829 	struct intel_encoder *encoder;
830 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
831 
832 	/*
833 	 * We don't have power sequencer currently.
834 	 * Pick one that's not used by other ports.
835 	 */
836 	for_each_intel_dp(&dev_priv->drm, encoder) {
837 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
838 
839 		if (encoder->type == INTEL_OUTPUT_EDP) {
840 			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
841 				intel_dp->active_pipe != intel_dp->pps_pipe);
842 
843 			if (intel_dp->pps_pipe != INVALID_PIPE)
844 				pipes &= ~(1 << intel_dp->pps_pipe);
845 		} else {
846 			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
847 
848 			if (intel_dp->active_pipe != INVALID_PIPE)
849 				pipes &= ~(1 << intel_dp->active_pipe);
850 		}
851 	}
852 
853 	if (pipes == 0)
854 		return INVALID_PIPE;
855 
856 	return ffs(pipes) - 1;
857 }
858 
859 static enum pipe
860 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
861 {
862 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
863 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
864 	enum pipe pipe;
865 
866 	lockdep_assert_held(&dev_priv->pps_mutex);
867 
868 	/* We should never land here with regular DP ports */
869 	WARN_ON(!intel_dp_is_edp(intel_dp));
870 
871 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
872 		intel_dp->active_pipe != intel_dp->pps_pipe);
873 
874 	if (intel_dp->pps_pipe != INVALID_PIPE)
875 		return intel_dp->pps_pipe;
876 
877 	pipe = vlv_find_free_pps(dev_priv);
878 
879 	/*
880 	 * Didn't find one. This should not happen since there
881 	 * are two power sequencers and up to two eDP ports.
882 	 */
883 	if (WARN_ON(pipe == INVALID_PIPE))
884 		pipe = PIPE_A;
885 
886 	vlv_steal_power_sequencer(dev_priv, pipe);
887 	intel_dp->pps_pipe = pipe;
888 
889 	DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
890 		      pipe_name(intel_dp->pps_pipe),
891 		      intel_dig_port->base.base.base.id,
892 		      intel_dig_port->base.base.name);
893 
894 	/* init power sequencer on this pipe and port */
895 	intel_dp_init_panel_power_sequencer(intel_dp);
896 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
897 
898 	/*
899 	 * Even vdd force doesn't work until we've made
900 	 * the power sequencer lock in on the port.
901 	 */
902 	vlv_power_sequencer_kick(intel_dp);
903 
904 	return intel_dp->pps_pipe;
905 }
906 
907 static int
908 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
909 {
910 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
911 	int backlight_controller = dev_priv->vbt.backlight.controller;
912 
913 	lockdep_assert_held(&dev_priv->pps_mutex);
914 
915 	/* We should never land here with regular DP ports */
916 	WARN_ON(!intel_dp_is_edp(intel_dp));
917 
918 	if (!intel_dp->pps_reset)
919 		return backlight_controller;
920 
921 	intel_dp->pps_reset = false;
922 
923 	/*
924 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
925 	 * has been setup during connector init.
926 	 */
927 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
928 
929 	return backlight_controller;
930 }
931 
932 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
933 			       enum pipe pipe);
934 
935 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
936 			       enum pipe pipe)
937 {
938 	return I915_READ(PP_STATUS(pipe)) & PP_ON;
939 }
940 
941 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
942 				enum pipe pipe)
943 {
944 	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
945 }
946 
947 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
948 			 enum pipe pipe)
949 {
950 	return true;
951 }
952 
953 static enum pipe
954 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
955 		     enum port port,
956 		     vlv_pipe_check pipe_check)
957 {
958 	enum pipe pipe;
959 
960 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
961 		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
962 			PANEL_PORT_SELECT_MASK;
963 
964 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
965 			continue;
966 
967 		if (!pipe_check(dev_priv, pipe))
968 			continue;
969 
970 		return pipe;
971 	}
972 
973 	return INVALID_PIPE;
974 }
975 
976 static void
977 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
978 {
979 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
980 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
981 	enum port port = intel_dig_port->base.port;
982 
983 	lockdep_assert_held(&dev_priv->pps_mutex);
984 
985 	/* try to find a pipe with this port selected */
986 	/* first pick one where the panel is on */
987 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
988 						  vlv_pipe_has_pp_on);
989 	/* didn't find one? pick one where vdd is on */
990 	if (intel_dp->pps_pipe == INVALID_PIPE)
991 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
992 							  vlv_pipe_has_vdd_on);
993 	/* didn't find one? pick one with just the correct port */
994 	if (intel_dp->pps_pipe == INVALID_PIPE)
995 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
996 							  vlv_pipe_any);
997 
998 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
999 	if (intel_dp->pps_pipe == INVALID_PIPE) {
1000 		DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n",
1001 			      intel_dig_port->base.base.base.id,
1002 			      intel_dig_port->base.base.name);
1003 		return;
1004 	}
1005 
1006 	DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1007 		      intel_dig_port->base.base.base.id,
1008 		      intel_dig_port->base.base.name,
1009 		      pipe_name(intel_dp->pps_pipe));
1010 
1011 	intel_dp_init_panel_power_sequencer(intel_dp);
1012 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1013 }
1014 
1015 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1016 {
1017 	struct intel_encoder *encoder;
1018 
1019 	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
1020 		    !IS_GEN9_LP(dev_priv)))
1021 		return;
1022 
1023 	/*
1024 	 * We can't grab pps_mutex here due to deadlock with power_domain
1025 	 * mutex when power_domain functions are called while holding pps_mutex.
1026 	 * That also means that in order to use pps_pipe the code needs to
1027 	 * hold both a power domain reference and pps_mutex, and the power domain
1028 	 * reference get/put must be done while _not_ holding pps_mutex.
1029 	 * pps_{lock,unlock}() do these steps in the correct order, so one
1030 	 * should use them always.
1031 	 */
1032 
1033 	for_each_intel_dp(&dev_priv->drm, encoder) {
1034 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1035 
1036 		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
1037 
1038 		if (encoder->type != INTEL_OUTPUT_EDP)
1039 			continue;
1040 
1041 		if (IS_GEN9_LP(dev_priv))
1042 			intel_dp->pps_reset = true;
1043 		else
1044 			intel_dp->pps_pipe = INVALID_PIPE;
1045 	}
1046 }
1047 
1048 struct pps_registers {
1049 	i915_reg_t pp_ctrl;
1050 	i915_reg_t pp_stat;
1051 	i915_reg_t pp_on;
1052 	i915_reg_t pp_off;
1053 	i915_reg_t pp_div;
1054 };
1055 
1056 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1057 				    struct pps_registers *regs)
1058 {
1059 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1060 	int pps_idx = 0;
1061 
1062 	memset(regs, 0, sizeof(*regs));
1063 
1064 	if (IS_GEN9_LP(dev_priv))
1065 		pps_idx = bxt_power_sequencer_idx(intel_dp);
1066 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1067 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1068 
1069 	regs->pp_ctrl = PP_CONTROL(pps_idx);
1070 	regs->pp_stat = PP_STATUS(pps_idx);
1071 	regs->pp_on = PP_ON_DELAYS(pps_idx);
1072 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1073 
1074 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1075 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1076 		regs->pp_div = INVALID_MMIO_REG;
1077 	else
1078 		regs->pp_div = PP_DIVISOR(pps_idx);
1079 }
1080 
1081 static i915_reg_t
1082 _pp_ctrl_reg(struct intel_dp *intel_dp)
1083 {
1084 	struct pps_registers regs;
1085 
1086 	intel_pps_get_registers(intel_dp, &regs);
1087 
1088 	return regs.pp_ctrl;
1089 }
1090 
1091 static i915_reg_t
1092 _pp_stat_reg(struct intel_dp *intel_dp)
1093 {
1094 	struct pps_registers regs;
1095 
1096 	intel_pps_get_registers(intel_dp, &regs);
1097 
1098 	return regs.pp_stat;
1099 }
1100 
1101 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1102    This function only applicable when panel PM state is not to be tracked */
1103 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1104 			      void *unused)
1105 {
1106 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1107 						 edp_notifier);
1108 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1109 	intel_wakeref_t wakeref;
1110 
1111 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1112 		return 0;
1113 
1114 	with_pps_lock(intel_dp, wakeref) {
1115 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1116 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1117 			i915_reg_t pp_ctrl_reg, pp_div_reg;
1118 			u32 pp_div;
1119 
1120 			pp_ctrl_reg = PP_CONTROL(pipe);
1121 			pp_div_reg  = PP_DIVISOR(pipe);
1122 			pp_div = I915_READ(pp_div_reg);
1123 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
1124 
1125 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1126 			I915_WRITE(pp_div_reg, pp_div | 0x1F);
1127 			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1128 			msleep(intel_dp->panel_power_cycle_delay);
1129 		}
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1136 {
1137 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1138 
1139 	lockdep_assert_held(&dev_priv->pps_mutex);
1140 
1141 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1142 	    intel_dp->pps_pipe == INVALID_PIPE)
1143 		return false;
1144 
1145 	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1146 }
1147 
1148 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1149 {
1150 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1151 
1152 	lockdep_assert_held(&dev_priv->pps_mutex);
1153 
1154 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1155 	    intel_dp->pps_pipe == INVALID_PIPE)
1156 		return false;
1157 
1158 	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1159 }
1160 
1161 static void
1162 intel_dp_check_edp(struct intel_dp *intel_dp)
1163 {
1164 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1165 
1166 	if (!intel_dp_is_edp(intel_dp))
1167 		return;
1168 
1169 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1170 		WARN(1, "eDP powered off while attempting aux channel communication.\n");
1171 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1172 			      I915_READ(_pp_stat_reg(intel_dp)),
1173 			      I915_READ(_pp_ctrl_reg(intel_dp)));
1174 	}
1175 }
1176 
1177 static u32
1178 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1179 {
1180 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1181 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1182 	const unsigned int timeout_ms = 10;
1183 	u32 status;
1184 	bool done;
1185 
1186 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1187 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1188 				  msecs_to_jiffies_timeout(timeout_ms));
1189 
1190 	/* just trace the final value */
1191 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1192 
1193 	if (!done)
1194 		DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n",
1195 			  intel_dp->aux.name, timeout_ms, status);
1196 #undef C
1197 
1198 	return status;
1199 }
1200 
1201 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1202 {
1203 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1204 
1205 	if (index)
1206 		return 0;
1207 
1208 	/*
1209 	 * The clock divider is based off the hrawclk, and would like to run at
1210 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1211 	 */
1212 	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1213 }
1214 
1215 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1216 {
1217 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1218 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1219 
1220 	if (index)
1221 		return 0;
1222 
1223 	/*
1224 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1225 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1226 	 * divide by 2000 and use that
1227 	 */
1228 	if (dig_port->aux_ch == AUX_CH_A)
1229 		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1230 	else
1231 		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1232 }
1233 
1234 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1235 {
1236 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1237 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1238 
1239 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1240 		/* Workaround for non-ULT HSW */
1241 		switch (index) {
1242 		case 0: return 63;
1243 		case 1: return 72;
1244 		default: return 0;
1245 		}
1246 	}
1247 
1248 	return ilk_get_aux_clock_divider(intel_dp, index);
1249 }
1250 
1251 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1252 {
1253 	/*
1254 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1255 	 * derive the clock from CDCLK automatically). We still implement the
1256 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1257 	 */
1258 	return index ? 0 : 1;
1259 }
1260 
1261 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1262 				int send_bytes,
1263 				u32 aux_clock_divider)
1264 {
1265 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1266 	struct drm_i915_private *dev_priv =
1267 			to_i915(intel_dig_port->base.base.dev);
1268 	u32 precharge, timeout;
1269 
1270 	if (IS_GEN(dev_priv, 6))
1271 		precharge = 3;
1272 	else
1273 		precharge = 5;
1274 
1275 	if (IS_BROADWELL(dev_priv))
1276 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1277 	else
1278 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1279 
1280 	return DP_AUX_CH_CTL_SEND_BUSY |
1281 	       DP_AUX_CH_CTL_DONE |
1282 	       DP_AUX_CH_CTL_INTERRUPT |
1283 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1284 	       timeout |
1285 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1286 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1287 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1288 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1289 }
1290 
1291 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1292 				int send_bytes,
1293 				u32 unused)
1294 {
1295 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296 	struct drm_i915_private *i915 =
1297 			to_i915(intel_dig_port->base.base.dev);
1298 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1299 	u32 ret;
1300 
1301 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1302 	      DP_AUX_CH_CTL_DONE |
1303 	      DP_AUX_CH_CTL_INTERRUPT |
1304 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1305 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1306 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1307 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1308 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1309 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1310 
1311 	if (intel_phy_is_tc(i915, phy) &&
1312 	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1313 		ret |= DP_AUX_CH_CTL_TBT_IO;
1314 
1315 	return ret;
1316 }
1317 
1318 static int
1319 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1320 		  const u8 *send, int send_bytes,
1321 		  u8 *recv, int recv_size,
1322 		  u32 aux_send_ctl_flags)
1323 {
1324 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1325 	struct drm_i915_private *i915 =
1326 			to_i915(intel_dig_port->base.base.dev);
1327 	struct intel_uncore *uncore = &i915->uncore;
1328 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329 	bool is_tc_port = intel_phy_is_tc(i915, phy);
1330 	i915_reg_t ch_ctl, ch_data[5];
1331 	u32 aux_clock_divider;
1332 	enum intel_display_power_domain aux_domain =
1333 		intel_aux_power_domain(intel_dig_port);
1334 	intel_wakeref_t aux_wakeref;
1335 	intel_wakeref_t pps_wakeref;
1336 	int i, ret, recv_bytes;
1337 	int try, clock = 0;
1338 	u32 status;
1339 	bool vdd;
1340 
1341 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1342 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1343 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1344 
1345 	if (is_tc_port)
1346 		intel_tc_port_lock(intel_dig_port);
1347 
1348 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1349 	pps_wakeref = pps_lock(intel_dp);
1350 
1351 	/*
1352 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1353 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1354 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1355 	 * ourselves.
1356 	 */
1357 	vdd = edp_panel_vdd_on(intel_dp);
1358 
1359 	/* dp aux is extremely sensitive to irq latency, hence request the
1360 	 * lowest possible wakeup latency and so prevent the cpu from going into
1361 	 * deep sleep states.
1362 	 */
1363 	pm_qos_update_request(&i915->pm_qos, 0);
1364 
1365 	intel_dp_check_edp(intel_dp);
1366 
1367 	/* Try to wait for any previous AUX channel activity */
1368 	for (try = 0; try < 3; try++) {
1369 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1370 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1371 			break;
1372 		msleep(1);
1373 	}
1374 	/* just trace the final value */
1375 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1376 
1377 	if (try == 3) {
1378 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1379 
1380 		if (status != intel_dp->aux_busy_last_status) {
1381 			WARN(1, "dp_aux_ch not started status 0x%08x\n",
1382 			     status);
1383 			intel_dp->aux_busy_last_status = status;
1384 		}
1385 
1386 		ret = -EBUSY;
1387 		goto out;
1388 	}
1389 
1390 	/* Only 5 data registers! */
1391 	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1392 		ret = -E2BIG;
1393 		goto out;
1394 	}
1395 
1396 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1397 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1398 							  send_bytes,
1399 							  aux_clock_divider);
1400 
1401 		send_ctl |= aux_send_ctl_flags;
1402 
1403 		/* Must try at least 3 times according to DP spec */
1404 		for (try = 0; try < 5; try++) {
1405 			/* Load the send data into the aux channel data registers */
1406 			for (i = 0; i < send_bytes; i += 4)
1407 				intel_uncore_write(uncore,
1408 						   ch_data[i >> 2],
1409 						   intel_dp_pack_aux(send + i,
1410 								     send_bytes - i));
1411 
1412 			/* Send the command and wait for it to complete */
1413 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1414 
1415 			status = intel_dp_aux_wait_done(intel_dp);
1416 
1417 			/* Clear done status and any errors */
1418 			intel_uncore_write(uncore,
1419 					   ch_ctl,
1420 					   status |
1421 					   DP_AUX_CH_CTL_DONE |
1422 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1423 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1424 
1425 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1426 			 *   400us delay required for errors and timeouts
1427 			 *   Timeout errors from the HW already meet this
1428 			 *   requirement so skip to next iteration
1429 			 */
1430 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1431 				continue;
1432 
1433 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1434 				usleep_range(400, 500);
1435 				continue;
1436 			}
1437 			if (status & DP_AUX_CH_CTL_DONE)
1438 				goto done;
1439 		}
1440 	}
1441 
1442 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1443 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1444 		ret = -EBUSY;
1445 		goto out;
1446 	}
1447 
1448 done:
1449 	/* Check for timeout or receive error.
1450 	 * Timeouts occur when the sink is not connected
1451 	 */
1452 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1453 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1454 		ret = -EIO;
1455 		goto out;
1456 	}
1457 
1458 	/* Timeouts occur when the device isn't connected, so they're
1459 	 * "normal" -- don't fill the kernel log with these */
1460 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1461 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1462 		ret = -ETIMEDOUT;
1463 		goto out;
1464 	}
1465 
1466 	/* Unload any bytes sent back from the other side */
1467 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1468 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1469 
1470 	/*
1471 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1472 	 * We have no idea of what happened so we return -EBUSY so
1473 	 * drm layer takes care for the necessary retries.
1474 	 */
1475 	if (recv_bytes == 0 || recv_bytes > 20) {
1476 		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1477 			      recv_bytes);
1478 		ret = -EBUSY;
1479 		goto out;
1480 	}
1481 
1482 	if (recv_bytes > recv_size)
1483 		recv_bytes = recv_size;
1484 
1485 	for (i = 0; i < recv_bytes; i += 4)
1486 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1487 				    recv + i, recv_bytes - i);
1488 
1489 	ret = recv_bytes;
1490 out:
1491 	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1492 
1493 	if (vdd)
1494 		edp_panel_vdd_off(intel_dp, false);
1495 
1496 	pps_unlock(intel_dp, pps_wakeref);
1497 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1498 
1499 	if (is_tc_port)
1500 		intel_tc_port_unlock(intel_dig_port);
1501 
1502 	return ret;
1503 }
1504 
1505 #define BARE_ADDRESS_SIZE	3
1506 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1507 
1508 static void
1509 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1510 		    const struct drm_dp_aux_msg *msg)
1511 {
1512 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1513 	txbuf[1] = (msg->address >> 8) & 0xff;
1514 	txbuf[2] = msg->address & 0xff;
1515 	txbuf[3] = msg->size - 1;
1516 }
1517 
1518 static ssize_t
1519 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1520 {
1521 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1522 	u8 txbuf[20], rxbuf[20];
1523 	size_t txsize, rxsize;
1524 	int ret;
1525 
1526 	intel_dp_aux_header(txbuf, msg);
1527 
1528 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1529 	case DP_AUX_NATIVE_WRITE:
1530 	case DP_AUX_I2C_WRITE:
1531 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1532 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1533 		rxsize = 2; /* 0 or 1 data bytes */
1534 
1535 		if (WARN_ON(txsize > 20))
1536 			return -E2BIG;
1537 
1538 		WARN_ON(!msg->buffer != !msg->size);
1539 
1540 		if (msg->buffer)
1541 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1542 
1543 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1544 					rxbuf, rxsize, 0);
1545 		if (ret > 0) {
1546 			msg->reply = rxbuf[0] >> 4;
1547 
1548 			if (ret > 1) {
1549 				/* Number of bytes written in a short write. */
1550 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1551 			} else {
1552 				/* Return payload size. */
1553 				ret = msg->size;
1554 			}
1555 		}
1556 		break;
1557 
1558 	case DP_AUX_NATIVE_READ:
1559 	case DP_AUX_I2C_READ:
1560 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1561 		rxsize = msg->size + 1;
1562 
1563 		if (WARN_ON(rxsize > 20))
1564 			return -E2BIG;
1565 
1566 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1567 					rxbuf, rxsize, 0);
1568 		if (ret > 0) {
1569 			msg->reply = rxbuf[0] >> 4;
1570 			/*
1571 			 * Assume happy day, and copy the data. The caller is
1572 			 * expected to check msg->reply before touching it.
1573 			 *
1574 			 * Return payload size.
1575 			 */
1576 			ret--;
1577 			memcpy(msg->buffer, rxbuf + 1, ret);
1578 		}
1579 		break;
1580 
1581 	default:
1582 		ret = -EINVAL;
1583 		break;
1584 	}
1585 
1586 	return ret;
1587 }
1588 
1589 
1590 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1591 {
1592 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1593 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1594 	enum aux_ch aux_ch = dig_port->aux_ch;
1595 
1596 	switch (aux_ch) {
1597 	case AUX_CH_B:
1598 	case AUX_CH_C:
1599 	case AUX_CH_D:
1600 		return DP_AUX_CH_CTL(aux_ch);
1601 	default:
1602 		MISSING_CASE(aux_ch);
1603 		return DP_AUX_CH_CTL(AUX_CH_B);
1604 	}
1605 }
1606 
1607 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1608 {
1609 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1610 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1611 	enum aux_ch aux_ch = dig_port->aux_ch;
1612 
1613 	switch (aux_ch) {
1614 	case AUX_CH_B:
1615 	case AUX_CH_C:
1616 	case AUX_CH_D:
1617 		return DP_AUX_CH_DATA(aux_ch, index);
1618 	default:
1619 		MISSING_CASE(aux_ch);
1620 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1621 	}
1622 }
1623 
1624 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1625 {
1626 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1627 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1628 	enum aux_ch aux_ch = dig_port->aux_ch;
1629 
1630 	switch (aux_ch) {
1631 	case AUX_CH_A:
1632 		return DP_AUX_CH_CTL(aux_ch);
1633 	case AUX_CH_B:
1634 	case AUX_CH_C:
1635 	case AUX_CH_D:
1636 		return PCH_DP_AUX_CH_CTL(aux_ch);
1637 	default:
1638 		MISSING_CASE(aux_ch);
1639 		return DP_AUX_CH_CTL(AUX_CH_A);
1640 	}
1641 }
1642 
1643 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1644 {
1645 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647 	enum aux_ch aux_ch = dig_port->aux_ch;
1648 
1649 	switch (aux_ch) {
1650 	case AUX_CH_A:
1651 		return DP_AUX_CH_DATA(aux_ch, index);
1652 	case AUX_CH_B:
1653 	case AUX_CH_C:
1654 	case AUX_CH_D:
1655 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1656 	default:
1657 		MISSING_CASE(aux_ch);
1658 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1659 	}
1660 }
1661 
1662 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1663 {
1664 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1665 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1666 	enum aux_ch aux_ch = dig_port->aux_ch;
1667 
1668 	switch (aux_ch) {
1669 	case AUX_CH_A:
1670 	case AUX_CH_B:
1671 	case AUX_CH_C:
1672 	case AUX_CH_D:
1673 	case AUX_CH_E:
1674 	case AUX_CH_F:
1675 	case AUX_CH_G:
1676 		return DP_AUX_CH_CTL(aux_ch);
1677 	default:
1678 		MISSING_CASE(aux_ch);
1679 		return DP_AUX_CH_CTL(AUX_CH_A);
1680 	}
1681 }
1682 
1683 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1684 {
1685 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1686 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1687 	enum aux_ch aux_ch = dig_port->aux_ch;
1688 
1689 	switch (aux_ch) {
1690 	case AUX_CH_A:
1691 	case AUX_CH_B:
1692 	case AUX_CH_C:
1693 	case AUX_CH_D:
1694 	case AUX_CH_E:
1695 	case AUX_CH_F:
1696 	case AUX_CH_G:
1697 		return DP_AUX_CH_DATA(aux_ch, index);
1698 	default:
1699 		MISSING_CASE(aux_ch);
1700 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1701 	}
1702 }
1703 
1704 static void
1705 intel_dp_aux_fini(struct intel_dp *intel_dp)
1706 {
1707 	kfree(intel_dp->aux.name);
1708 }
1709 
1710 static void
1711 intel_dp_aux_init(struct intel_dp *intel_dp)
1712 {
1713 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1714 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1715 	struct intel_encoder *encoder = &dig_port->base;
1716 
1717 	if (INTEL_GEN(dev_priv) >= 9) {
1718 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1719 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1720 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1721 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1722 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1723 	} else {
1724 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1725 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1726 	}
1727 
1728 	if (INTEL_GEN(dev_priv) >= 9)
1729 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1730 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1731 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1732 	else if (HAS_PCH_SPLIT(dev_priv))
1733 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1734 	else
1735 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1736 
1737 	if (INTEL_GEN(dev_priv) >= 9)
1738 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1739 	else
1740 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1741 
1742 	drm_dp_aux_init(&intel_dp->aux);
1743 
1744 	/* Failure to allocate our preferred name is not critical */
1745 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1746 				       port_name(encoder->port));
1747 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1748 }
1749 
1750 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1751 {
1752 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1753 
1754 	return max_rate >= 540000;
1755 }
1756 
1757 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1758 {
1759 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1760 
1761 	return max_rate >= 810000;
1762 }
1763 
1764 static void
1765 intel_dp_set_clock(struct intel_encoder *encoder,
1766 		   struct intel_crtc_state *pipe_config)
1767 {
1768 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1769 	const struct dp_link_dpll *divisor = NULL;
1770 	int i, count = 0;
1771 
1772 	if (IS_G4X(dev_priv)) {
1773 		divisor = g4x_dpll;
1774 		count = ARRAY_SIZE(g4x_dpll);
1775 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1776 		divisor = pch_dpll;
1777 		count = ARRAY_SIZE(pch_dpll);
1778 	} else if (IS_CHERRYVIEW(dev_priv)) {
1779 		divisor = chv_dpll;
1780 		count = ARRAY_SIZE(chv_dpll);
1781 	} else if (IS_VALLEYVIEW(dev_priv)) {
1782 		divisor = vlv_dpll;
1783 		count = ARRAY_SIZE(vlv_dpll);
1784 	}
1785 
1786 	if (divisor && count) {
1787 		for (i = 0; i < count; i++) {
1788 			if (pipe_config->port_clock == divisor[i].clock) {
1789 				pipe_config->dpll = divisor[i].dpll;
1790 				pipe_config->clock_set = true;
1791 				break;
1792 			}
1793 		}
1794 	}
1795 }
1796 
1797 static void snprintf_int_array(char *str, size_t len,
1798 			       const int *array, int nelem)
1799 {
1800 	int i;
1801 
1802 	str[0] = '\0';
1803 
1804 	for (i = 0; i < nelem; i++) {
1805 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1806 		if (r >= len)
1807 			return;
1808 		str += r;
1809 		len -= r;
1810 	}
1811 }
1812 
1813 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1814 {
1815 	char str[128]; /* FIXME: too big for stack? */
1816 
1817 	if ((drm_debug & DRM_UT_KMS) == 0)
1818 		return;
1819 
1820 	snprintf_int_array(str, sizeof(str),
1821 			   intel_dp->source_rates, intel_dp->num_source_rates);
1822 	DRM_DEBUG_KMS("source rates: %s\n", str);
1823 
1824 	snprintf_int_array(str, sizeof(str),
1825 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1826 	DRM_DEBUG_KMS("sink rates: %s\n", str);
1827 
1828 	snprintf_int_array(str, sizeof(str),
1829 			   intel_dp->common_rates, intel_dp->num_common_rates);
1830 	DRM_DEBUG_KMS("common rates: %s\n", str);
1831 }
1832 
1833 int
1834 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1835 {
1836 	int len;
1837 
1838 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1839 	if (WARN_ON(len <= 0))
1840 		return 162000;
1841 
1842 	return intel_dp->common_rates[len - 1];
1843 }
1844 
1845 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1846 {
1847 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1848 				    intel_dp->num_sink_rates, rate);
1849 
1850 	if (WARN_ON(i < 0))
1851 		i = 0;
1852 
1853 	return i;
1854 }
1855 
1856 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1857 			   u8 *link_bw, u8 *rate_select)
1858 {
1859 	/* eDP 1.4 rate select method. */
1860 	if (intel_dp->use_rate_select) {
1861 		*link_bw = 0;
1862 		*rate_select =
1863 			intel_dp_rate_select(intel_dp, port_clock);
1864 	} else {
1865 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1866 		*rate_select = 0;
1867 	}
1868 }
1869 
1870 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1871 					 const struct intel_crtc_state *pipe_config)
1872 {
1873 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1874 
1875 	/* On TGL, FEC is supported on all Pipes */
1876 	if (INTEL_GEN(dev_priv) >= 12)
1877 		return true;
1878 
1879 	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1880 		return true;
1881 
1882 	return false;
1883 }
1884 
1885 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1886 				  const struct intel_crtc_state *pipe_config)
1887 {
1888 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1889 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
1890 }
1891 
1892 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
1893 					 const struct intel_crtc_state *pipe_config)
1894 {
1895 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1896 
1897 	if (!INTEL_INFO(dev_priv)->display.has_dsc)
1898 		return false;
1899 
1900 	/* On TGL, DSC is supported on all Pipes */
1901 	if (INTEL_GEN(dev_priv) >= 12)
1902 		return true;
1903 
1904 	if (INTEL_GEN(dev_priv) >= 10 &&
1905 	    pipe_config->cpu_transcoder != TRANSCODER_A)
1906 		return true;
1907 
1908 	return false;
1909 }
1910 
1911 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1912 				  const struct intel_crtc_state *pipe_config)
1913 {
1914 	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
1915 		return false;
1916 
1917 	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
1918 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1919 }
1920 
1921 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1922 				struct intel_crtc_state *pipe_config)
1923 {
1924 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1925 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1926 	int bpp, bpc;
1927 
1928 	bpp = pipe_config->pipe_bpp;
1929 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1930 
1931 	if (bpc > 0)
1932 		bpp = min(bpp, 3*bpc);
1933 
1934 	if (intel_dp_is_edp(intel_dp)) {
1935 		/* Get bpp from vbt only for panels that dont have bpp in edid */
1936 		if (intel_connector->base.display_info.bpc == 0 &&
1937 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1938 			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1939 				      dev_priv->vbt.edp.bpp);
1940 			bpp = dev_priv->vbt.edp.bpp;
1941 		}
1942 	}
1943 
1944 	return bpp;
1945 }
1946 
1947 /* Adjust link config limits based on compliance test requests. */
1948 void
1949 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1950 				  struct intel_crtc_state *pipe_config,
1951 				  struct link_config_limits *limits)
1952 {
1953 	/* For DP Compliance we override the computed bpp for the pipe */
1954 	if (intel_dp->compliance.test_data.bpc != 0) {
1955 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
1956 
1957 		limits->min_bpp = limits->max_bpp = bpp;
1958 		pipe_config->dither_force_disable = bpp == 6 * 3;
1959 
1960 		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1961 	}
1962 
1963 	/* Use values requested by Compliance Test Request */
1964 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1965 		int index;
1966 
1967 		/* Validate the compliance test data since max values
1968 		 * might have changed due to link train fallback.
1969 		 */
1970 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1971 					       intel_dp->compliance.test_lane_count)) {
1972 			index = intel_dp_rate_index(intel_dp->common_rates,
1973 						    intel_dp->num_common_rates,
1974 						    intel_dp->compliance.test_link_rate);
1975 			if (index >= 0)
1976 				limits->min_clock = limits->max_clock = index;
1977 			limits->min_lane_count = limits->max_lane_count =
1978 				intel_dp->compliance.test_lane_count;
1979 		}
1980 	}
1981 }
1982 
1983 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1984 {
1985 	/*
1986 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1987 	 * format of the number of bytes per pixel will be half the number
1988 	 * of bytes of RGB pixel.
1989 	 */
1990 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1991 		bpp /= 2;
1992 
1993 	return bpp;
1994 }
1995 
1996 /* Optimize link config in order: max bpp, min clock, min lanes */
1997 static int
1998 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1999 				  struct intel_crtc_state *pipe_config,
2000 				  const struct link_config_limits *limits)
2001 {
2002 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2003 	int bpp, clock, lane_count;
2004 	int mode_rate, link_clock, link_avail;
2005 
2006 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2007 		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2008 
2009 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2010 						   output_bpp);
2011 
2012 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2013 			for (lane_count = limits->min_lane_count;
2014 			     lane_count <= limits->max_lane_count;
2015 			     lane_count <<= 1) {
2016 				link_clock = intel_dp->common_rates[clock];
2017 				link_avail = intel_dp_max_data_rate(link_clock,
2018 								    lane_count);
2019 
2020 				if (mode_rate <= link_avail) {
2021 					pipe_config->lane_count = lane_count;
2022 					pipe_config->pipe_bpp = bpp;
2023 					pipe_config->port_clock = link_clock;
2024 
2025 					return 0;
2026 				}
2027 			}
2028 		}
2029 	}
2030 
2031 	return -EINVAL;
2032 }
2033 
2034 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2035 {
2036 	int i, num_bpc;
2037 	u8 dsc_bpc[3] = {0};
2038 
2039 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2040 						       dsc_bpc);
2041 	for (i = 0; i < num_bpc; i++) {
2042 		if (dsc_max_bpc >= dsc_bpc[i])
2043 			return dsc_bpc[i] * 3;
2044 	}
2045 
2046 	return 0;
2047 }
2048 
2049 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2050 				       struct intel_crtc_state *pipe_config,
2051 				       struct drm_connector_state *conn_state,
2052 				       struct link_config_limits *limits)
2053 {
2054 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2055 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2056 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2057 	u8 dsc_max_bpc;
2058 	int pipe_bpp;
2059 	int ret;
2060 
2061 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2062 		intel_dp_supports_fec(intel_dp, pipe_config);
2063 
2064 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2065 		return -EINVAL;
2066 
2067 	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2068 	if (INTEL_GEN(dev_priv) >= 12)
2069 		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2070 	else
2071 		dsc_max_bpc = min_t(u8, 10,
2072 				    conn_state->max_requested_bpc);
2073 
2074 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2075 
2076 	/* Min Input BPC for ICL+ is 8 */
2077 	if (pipe_bpp < 8 * 3) {
2078 		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2079 		return -EINVAL;
2080 	}
2081 
2082 	/*
2083 	 * For now enable DSC for max bpp, max link rate, max lane count.
2084 	 * Optimize this later for the minimum possible link rate/lane count
2085 	 * with DSC enabled for the requested mode.
2086 	 */
2087 	pipe_config->pipe_bpp = pipe_bpp;
2088 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2089 	pipe_config->lane_count = limits->max_lane_count;
2090 
2091 	if (intel_dp_is_edp(intel_dp)) {
2092 		pipe_config->dsc.compressed_bpp =
2093 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2094 			      pipe_config->pipe_bpp);
2095 		pipe_config->dsc.slice_count =
2096 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2097 							true);
2098 	} else {
2099 		u16 dsc_max_output_bpp;
2100 		u8 dsc_dp_slice_count;
2101 
2102 		dsc_max_output_bpp =
2103 			intel_dp_dsc_get_output_bpp(dev_priv,
2104 						    pipe_config->port_clock,
2105 						    pipe_config->lane_count,
2106 						    adjusted_mode->crtc_clock,
2107 						    adjusted_mode->crtc_hdisplay);
2108 		dsc_dp_slice_count =
2109 			intel_dp_dsc_get_slice_count(intel_dp,
2110 						     adjusted_mode->crtc_clock,
2111 						     adjusted_mode->crtc_hdisplay);
2112 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2113 			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2114 			return -EINVAL;
2115 		}
2116 		pipe_config->dsc.compressed_bpp = min_t(u16,
2117 							       dsc_max_output_bpp >> 4,
2118 							       pipe_config->pipe_bpp);
2119 		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2120 	}
2121 	/*
2122 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2123 	 * is greater than the maximum Cdclock and if slice count is even
2124 	 * then we need to use 2 VDSC instances.
2125 	 */
2126 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2127 		if (pipe_config->dsc.slice_count > 1) {
2128 			pipe_config->dsc.dsc_split = true;
2129 		} else {
2130 			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2131 			return -EINVAL;
2132 		}
2133 	}
2134 
2135 	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
2136 	if (ret < 0) {
2137 		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2138 			      "Compressed BPP = %d\n",
2139 			      pipe_config->pipe_bpp,
2140 			      pipe_config->dsc.compressed_bpp);
2141 		return ret;
2142 	}
2143 
2144 	pipe_config->dsc.compression_enable = true;
2145 	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2146 		      "Compressed Bpp = %d Slice Count = %d\n",
2147 		      pipe_config->pipe_bpp,
2148 		      pipe_config->dsc.compressed_bpp,
2149 		      pipe_config->dsc.slice_count);
2150 
2151 	return 0;
2152 }
2153 
2154 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2155 {
2156 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2157 		return 6 * 3;
2158 	else
2159 		return 8 * 3;
2160 }
2161 
2162 static int
2163 intel_dp_compute_link_config(struct intel_encoder *encoder,
2164 			     struct intel_crtc_state *pipe_config,
2165 			     struct drm_connector_state *conn_state)
2166 {
2167 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2168 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2169 	struct link_config_limits limits;
2170 	int common_len;
2171 	int ret;
2172 
2173 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2174 						    intel_dp->max_link_rate);
2175 
2176 	/* No common link rates between source and sink */
2177 	WARN_ON(common_len <= 0);
2178 
2179 	limits.min_clock = 0;
2180 	limits.max_clock = common_len - 1;
2181 
2182 	limits.min_lane_count = 1;
2183 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2184 
2185 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2186 	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2187 
2188 	if (intel_dp_is_edp(intel_dp)) {
2189 		/*
2190 		 * Use the maximum clock and number of lanes the eDP panel
2191 		 * advertizes being capable of. The panels are generally
2192 		 * designed to support only a single clock and lane
2193 		 * configuration, and typically these values correspond to the
2194 		 * native resolution of the panel.
2195 		 */
2196 		limits.min_lane_count = limits.max_lane_count;
2197 		limits.min_clock = limits.max_clock;
2198 	}
2199 
2200 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2201 
2202 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
2203 		      "max rate %d max bpp %d pixel clock %iKHz\n",
2204 		      limits.max_lane_count,
2205 		      intel_dp->common_rates[limits.max_clock],
2206 		      limits.max_bpp, adjusted_mode->crtc_clock);
2207 
2208 	/*
2209 	 * Optimize for slow and wide. This is the place to add alternative
2210 	 * optimization policy.
2211 	 */
2212 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2213 
2214 	/* enable compression if the mode doesn't fit available BW */
2215 	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2216 	if (ret || intel_dp->force_dsc_en) {
2217 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2218 						  conn_state, &limits);
2219 		if (ret < 0)
2220 			return ret;
2221 	}
2222 
2223 	if (pipe_config->dsc.compression_enable) {
2224 		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2225 			      pipe_config->lane_count, pipe_config->port_clock,
2226 			      pipe_config->pipe_bpp,
2227 			      pipe_config->dsc.compressed_bpp);
2228 
2229 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2230 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2231 						     pipe_config->dsc.compressed_bpp),
2232 			      intel_dp_max_data_rate(pipe_config->port_clock,
2233 						     pipe_config->lane_count));
2234 	} else {
2235 		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2236 			      pipe_config->lane_count, pipe_config->port_clock,
2237 			      pipe_config->pipe_bpp);
2238 
2239 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2240 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2241 						     pipe_config->pipe_bpp),
2242 			      intel_dp_max_data_rate(pipe_config->port_clock,
2243 						     pipe_config->lane_count));
2244 	}
2245 	return 0;
2246 }
2247 
2248 static int
2249 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2250 			 struct drm_connector *connector,
2251 			 struct intel_crtc_state *crtc_state)
2252 {
2253 	const struct drm_display_info *info = &connector->display_info;
2254 	const struct drm_display_mode *adjusted_mode =
2255 		&crtc_state->base.adjusted_mode;
2256 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2257 	int ret;
2258 
2259 	if (!drm_mode_is_420_only(info, adjusted_mode) ||
2260 	    !intel_dp_get_colorimetry_status(intel_dp) ||
2261 	    !connector->ycbcr_420_allowed)
2262 		return 0;
2263 
2264 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2265 
2266 	/* YCBCR 420 output conversion needs a scaler */
2267 	ret = skl_update_scaler_crtc(crtc_state);
2268 	if (ret) {
2269 		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2270 		return ret;
2271 	}
2272 
2273 	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2274 
2275 	return 0;
2276 }
2277 
2278 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2279 				  const struct drm_connector_state *conn_state)
2280 {
2281 	const struct intel_digital_connector_state *intel_conn_state =
2282 		to_intel_digital_connector_state(conn_state);
2283 	const struct drm_display_mode *adjusted_mode =
2284 		&crtc_state->base.adjusted_mode;
2285 
2286 	/*
2287 	 * Our YCbCr output is always limited range.
2288 	 * crtc_state->limited_color_range only applies to RGB,
2289 	 * and it must never be set for YCbCr or we risk setting
2290 	 * some conflicting bits in PIPECONF which will mess up
2291 	 * the colors on the monitor.
2292 	 */
2293 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2294 		return false;
2295 
2296 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2297 		/*
2298 		 * See:
2299 		 * CEA-861-E - 5.1 Default Encoding Parameters
2300 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2301 		 */
2302 		return crtc_state->pipe_bpp != 18 &&
2303 			drm_default_rgb_quant_range(adjusted_mode) ==
2304 			HDMI_QUANTIZATION_RANGE_LIMITED;
2305 	} else {
2306 		return intel_conn_state->broadcast_rgb ==
2307 			INTEL_BROADCAST_RGB_LIMITED;
2308 	}
2309 }
2310 
2311 int
2312 intel_dp_compute_config(struct intel_encoder *encoder,
2313 			struct intel_crtc_state *pipe_config,
2314 			struct drm_connector_state *conn_state)
2315 {
2316 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2317 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2318 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2319 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2320 	enum port port = encoder->port;
2321 	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
2322 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2323 	struct intel_digital_connector_state *intel_conn_state =
2324 		to_intel_digital_connector_state(conn_state);
2325 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2326 					   DP_DPCD_QUIRK_CONSTANT_N);
2327 	int ret = 0, output_bpp;
2328 
2329 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2330 		pipe_config->has_pch_encoder = true;
2331 
2332 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2333 
2334 	if (lspcon->active)
2335 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2336 	else
2337 		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2338 					       pipe_config);
2339 
2340 	if (ret)
2341 		return ret;
2342 
2343 	pipe_config->has_drrs = false;
2344 	if (IS_G4X(dev_priv) || port == PORT_A)
2345 		pipe_config->has_audio = false;
2346 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2347 		pipe_config->has_audio = intel_dp->has_audio;
2348 	else
2349 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2350 
2351 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2352 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2353 				       adjusted_mode);
2354 
2355 		if (INTEL_GEN(dev_priv) >= 9) {
2356 			ret = skl_update_scaler_crtc(pipe_config);
2357 			if (ret)
2358 				return ret;
2359 		}
2360 
2361 		if (HAS_GMCH(dev_priv))
2362 			intel_gmch_panel_fitting(intel_crtc, pipe_config,
2363 						 conn_state->scaling_mode);
2364 		else
2365 			intel_pch_panel_fitting(intel_crtc, pipe_config,
2366 						conn_state->scaling_mode);
2367 	}
2368 
2369 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2370 		return -EINVAL;
2371 
2372 	if (HAS_GMCH(dev_priv) &&
2373 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2374 		return -EINVAL;
2375 
2376 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2377 		return -EINVAL;
2378 
2379 	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2380 		return -EINVAL;
2381 
2382 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2383 	if (ret < 0)
2384 		return ret;
2385 
2386 	pipe_config->limited_color_range =
2387 		intel_dp_limited_color_range(pipe_config, conn_state);
2388 
2389 	if (pipe_config->dsc.compression_enable)
2390 		output_bpp = pipe_config->dsc.compressed_bpp;
2391 	else
2392 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2393 
2394 	intel_link_compute_m_n(output_bpp,
2395 			       pipe_config->lane_count,
2396 			       adjusted_mode->crtc_clock,
2397 			       pipe_config->port_clock,
2398 			       &pipe_config->dp_m_n,
2399 			       constant_n, pipe_config->fec_enable);
2400 
2401 	if (intel_connector->panel.downclock_mode != NULL &&
2402 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2403 			pipe_config->has_drrs = true;
2404 			intel_link_compute_m_n(output_bpp,
2405 					       pipe_config->lane_count,
2406 					       intel_connector->panel.downclock_mode->clock,
2407 					       pipe_config->port_clock,
2408 					       &pipe_config->dp_m2_n2,
2409 					       constant_n, pipe_config->fec_enable);
2410 	}
2411 
2412 	if (!HAS_DDI(dev_priv))
2413 		intel_dp_set_clock(encoder, pipe_config);
2414 
2415 	intel_psr_compute_config(intel_dp, pipe_config);
2416 
2417 	return 0;
2418 }
2419 
2420 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2421 			      int link_rate, u8 lane_count,
2422 			      bool link_mst)
2423 {
2424 	intel_dp->link_trained = false;
2425 	intel_dp->link_rate = link_rate;
2426 	intel_dp->lane_count = lane_count;
2427 	intel_dp->link_mst = link_mst;
2428 }
2429 
2430 static void intel_dp_prepare(struct intel_encoder *encoder,
2431 			     const struct intel_crtc_state *pipe_config)
2432 {
2433 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2434 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2435 	enum port port = encoder->port;
2436 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2437 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2438 
2439 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2440 				 pipe_config->lane_count,
2441 				 intel_crtc_has_type(pipe_config,
2442 						     INTEL_OUTPUT_DP_MST));
2443 
2444 	intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
2445 	intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
2446 
2447 	/*
2448 	 * There are four kinds of DP registers:
2449 	 *
2450 	 * 	IBX PCH
2451 	 * 	SNB CPU
2452 	 *	IVB CPU
2453 	 * 	CPT PCH
2454 	 *
2455 	 * IBX PCH and CPU are the same for almost everything,
2456 	 * except that the CPU DP PLL is configured in this
2457 	 * register
2458 	 *
2459 	 * CPT PCH is quite different, having many bits moved
2460 	 * to the TRANS_DP_CTL register instead. That
2461 	 * configuration happens (oddly) in ironlake_pch_enable
2462 	 */
2463 
2464 	/* Preserve the BIOS-computed detected bit. This is
2465 	 * supposed to be read-only.
2466 	 */
2467 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2468 
2469 	/* Handle DP bits in common between all three register formats */
2470 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2471 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2472 
2473 	/* Split out the IBX/CPU vs CPT settings */
2474 
2475 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2476 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2477 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2478 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2479 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2480 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2481 
2482 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2483 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2484 
2485 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2486 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2487 		u32 trans_dp;
2488 
2489 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2490 
2491 		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2492 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2493 			trans_dp |= TRANS_DP_ENH_FRAMING;
2494 		else
2495 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2496 		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2497 	} else {
2498 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2499 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2500 
2501 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2502 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2503 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2504 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2505 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2506 
2507 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2508 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2509 
2510 		if (IS_CHERRYVIEW(dev_priv))
2511 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2512 		else
2513 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2514 	}
2515 }
2516 
2517 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2518 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2519 
2520 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2521 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2522 
2523 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2524 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2525 
2526 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2527 
2528 static void wait_panel_status(struct intel_dp *intel_dp,
2529 				       u32 mask,
2530 				       u32 value)
2531 {
2532 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2533 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2534 
2535 	lockdep_assert_held(&dev_priv->pps_mutex);
2536 
2537 	intel_pps_verify_state(intel_dp);
2538 
2539 	pp_stat_reg = _pp_stat_reg(intel_dp);
2540 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2541 
2542 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2543 			mask, value,
2544 			I915_READ(pp_stat_reg),
2545 			I915_READ(pp_ctrl_reg));
2546 
2547 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2548 				       mask, value, 5000))
2549 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2550 				I915_READ(pp_stat_reg),
2551 				I915_READ(pp_ctrl_reg));
2552 
2553 	DRM_DEBUG_KMS("Wait complete\n");
2554 }
2555 
2556 static void wait_panel_on(struct intel_dp *intel_dp)
2557 {
2558 	DRM_DEBUG_KMS("Wait for panel power on\n");
2559 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2560 }
2561 
2562 static void wait_panel_off(struct intel_dp *intel_dp)
2563 {
2564 	DRM_DEBUG_KMS("Wait for panel power off time\n");
2565 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2566 }
2567 
2568 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2569 {
2570 	ktime_t panel_power_on_time;
2571 	s64 panel_power_off_duration;
2572 
2573 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2574 
2575 	/* take the difference of currrent time and panel power off time
2576 	 * and then make panel wait for t11_t12 if needed. */
2577 	panel_power_on_time = ktime_get_boottime();
2578 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2579 
2580 	/* When we disable the VDD override bit last we have to do the manual
2581 	 * wait. */
2582 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2583 		wait_remaining_ms_from_jiffies(jiffies,
2584 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2585 
2586 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2587 }
2588 
2589 static void wait_backlight_on(struct intel_dp *intel_dp)
2590 {
2591 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2592 				       intel_dp->backlight_on_delay);
2593 }
2594 
2595 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2596 {
2597 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2598 				       intel_dp->backlight_off_delay);
2599 }
2600 
2601 /* Read the current pp_control value, unlocking the register if it
2602  * is locked
2603  */
2604 
2605 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2606 {
2607 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2608 	u32 control;
2609 
2610 	lockdep_assert_held(&dev_priv->pps_mutex);
2611 
2612 	control = I915_READ(_pp_ctrl_reg(intel_dp));
2613 	if (WARN_ON(!HAS_DDI(dev_priv) &&
2614 		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2615 		control &= ~PANEL_UNLOCK_MASK;
2616 		control |= PANEL_UNLOCK_REGS;
2617 	}
2618 	return control;
2619 }
2620 
2621 /*
2622  * Must be paired with edp_panel_vdd_off().
2623  * Must hold pps_mutex around the whole on/off sequence.
2624  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2625  */
2626 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2627 {
2628 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2629 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2630 	u32 pp;
2631 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2632 	bool need_to_disable = !intel_dp->want_panel_vdd;
2633 
2634 	lockdep_assert_held(&dev_priv->pps_mutex);
2635 
2636 	if (!intel_dp_is_edp(intel_dp))
2637 		return false;
2638 
2639 	cancel_delayed_work(&intel_dp->panel_vdd_work);
2640 	intel_dp->want_panel_vdd = true;
2641 
2642 	if (edp_have_panel_vdd(intel_dp))
2643 		return need_to_disable;
2644 
2645 	intel_display_power_get(dev_priv,
2646 				intel_aux_power_domain(intel_dig_port));
2647 
2648 	DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n",
2649 		      intel_dig_port->base.base.base.id,
2650 		      intel_dig_port->base.base.name);
2651 
2652 	if (!edp_have_panel_power(intel_dp))
2653 		wait_panel_power_cycle(intel_dp);
2654 
2655 	pp = ironlake_get_pp_control(intel_dp);
2656 	pp |= EDP_FORCE_VDD;
2657 
2658 	pp_stat_reg = _pp_stat_reg(intel_dp);
2659 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2660 
2661 	I915_WRITE(pp_ctrl_reg, pp);
2662 	POSTING_READ(pp_ctrl_reg);
2663 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2664 			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2665 	/*
2666 	 * If the panel wasn't on, delay before accessing aux channel
2667 	 */
2668 	if (!edp_have_panel_power(intel_dp)) {
2669 		DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n",
2670 			      intel_dig_port->base.base.base.id,
2671 			      intel_dig_port->base.base.name);
2672 		msleep(intel_dp->panel_power_up_delay);
2673 	}
2674 
2675 	return need_to_disable;
2676 }
2677 
2678 /*
2679  * Must be paired with intel_edp_panel_vdd_off() or
2680  * intel_edp_panel_off().
2681  * Nested calls to these functions are not allowed since
2682  * we drop the lock. Caller must use some higher level
2683  * locking to prevent nested calls from other threads.
2684  */
2685 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2686 {
2687 	intel_wakeref_t wakeref;
2688 	bool vdd;
2689 
2690 	if (!intel_dp_is_edp(intel_dp))
2691 		return;
2692 
2693 	vdd = false;
2694 	with_pps_lock(intel_dp, wakeref)
2695 		vdd = edp_panel_vdd_on(intel_dp);
2696 	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2697 			dp_to_dig_port(intel_dp)->base.base.base.id,
2698 			dp_to_dig_port(intel_dp)->base.base.name);
2699 }
2700 
2701 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2702 {
2703 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2704 	struct intel_digital_port *intel_dig_port =
2705 		dp_to_dig_port(intel_dp);
2706 	u32 pp;
2707 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2708 
2709 	lockdep_assert_held(&dev_priv->pps_mutex);
2710 
2711 	WARN_ON(intel_dp->want_panel_vdd);
2712 
2713 	if (!edp_have_panel_vdd(intel_dp))
2714 		return;
2715 
2716 	DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n",
2717 		      intel_dig_port->base.base.base.id,
2718 		      intel_dig_port->base.base.name);
2719 
2720 	pp = ironlake_get_pp_control(intel_dp);
2721 	pp &= ~EDP_FORCE_VDD;
2722 
2723 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2724 	pp_stat_reg = _pp_stat_reg(intel_dp);
2725 
2726 	I915_WRITE(pp_ctrl_reg, pp);
2727 	POSTING_READ(pp_ctrl_reg);
2728 
2729 	/* Make sure sequencer is idle before allowing subsequent activity */
2730 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2731 	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2732 
2733 	if ((pp & PANEL_POWER_ON) == 0)
2734 		intel_dp->panel_power_off_time = ktime_get_boottime();
2735 
2736 	intel_display_power_put_unchecked(dev_priv,
2737 					  intel_aux_power_domain(intel_dig_port));
2738 }
2739 
2740 static void edp_panel_vdd_work(struct work_struct *__work)
2741 {
2742 	struct intel_dp *intel_dp =
2743 		container_of(to_delayed_work(__work),
2744 			     struct intel_dp, panel_vdd_work);
2745 	intel_wakeref_t wakeref;
2746 
2747 	with_pps_lock(intel_dp, wakeref) {
2748 		if (!intel_dp->want_panel_vdd)
2749 			edp_panel_vdd_off_sync(intel_dp);
2750 	}
2751 }
2752 
2753 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2754 {
2755 	unsigned long delay;
2756 
2757 	/*
2758 	 * Queue the timer to fire a long time from now (relative to the power
2759 	 * down delay) to keep the panel power up across a sequence of
2760 	 * operations.
2761 	 */
2762 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2763 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2764 }
2765 
2766 /*
2767  * Must be paired with edp_panel_vdd_on().
2768  * Must hold pps_mutex around the whole on/off sequence.
2769  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2770  */
2771 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2772 {
2773 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2774 
2775 	lockdep_assert_held(&dev_priv->pps_mutex);
2776 
2777 	if (!intel_dp_is_edp(intel_dp))
2778 		return;
2779 
2780 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2781 			dp_to_dig_port(intel_dp)->base.base.base.id,
2782 			dp_to_dig_port(intel_dp)->base.base.name);
2783 
2784 	intel_dp->want_panel_vdd = false;
2785 
2786 	if (sync)
2787 		edp_panel_vdd_off_sync(intel_dp);
2788 	else
2789 		edp_panel_vdd_schedule_off(intel_dp);
2790 }
2791 
2792 static void edp_panel_on(struct intel_dp *intel_dp)
2793 {
2794 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2795 	u32 pp;
2796 	i915_reg_t pp_ctrl_reg;
2797 
2798 	lockdep_assert_held(&dev_priv->pps_mutex);
2799 
2800 	if (!intel_dp_is_edp(intel_dp))
2801 		return;
2802 
2803 	DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n",
2804 		      dp_to_dig_port(intel_dp)->base.base.base.id,
2805 		      dp_to_dig_port(intel_dp)->base.base.name);
2806 
2807 	if (WARN(edp_have_panel_power(intel_dp),
2808 		 "[ENCODER:%d:%s] panel power already on\n",
2809 		 dp_to_dig_port(intel_dp)->base.base.base.id,
2810 		 dp_to_dig_port(intel_dp)->base.base.name))
2811 		return;
2812 
2813 	wait_panel_power_cycle(intel_dp);
2814 
2815 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2816 	pp = ironlake_get_pp_control(intel_dp);
2817 	if (IS_GEN(dev_priv, 5)) {
2818 		/* ILK workaround: disable reset around power sequence */
2819 		pp &= ~PANEL_POWER_RESET;
2820 		I915_WRITE(pp_ctrl_reg, pp);
2821 		POSTING_READ(pp_ctrl_reg);
2822 	}
2823 
2824 	pp |= PANEL_POWER_ON;
2825 	if (!IS_GEN(dev_priv, 5))
2826 		pp |= PANEL_POWER_RESET;
2827 
2828 	I915_WRITE(pp_ctrl_reg, pp);
2829 	POSTING_READ(pp_ctrl_reg);
2830 
2831 	wait_panel_on(intel_dp);
2832 	intel_dp->last_power_on = jiffies;
2833 
2834 	if (IS_GEN(dev_priv, 5)) {
2835 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2836 		I915_WRITE(pp_ctrl_reg, pp);
2837 		POSTING_READ(pp_ctrl_reg);
2838 	}
2839 }
2840 
2841 void intel_edp_panel_on(struct intel_dp *intel_dp)
2842 {
2843 	intel_wakeref_t wakeref;
2844 
2845 	if (!intel_dp_is_edp(intel_dp))
2846 		return;
2847 
2848 	with_pps_lock(intel_dp, wakeref)
2849 		edp_panel_on(intel_dp);
2850 }
2851 
2852 
2853 static void edp_panel_off(struct intel_dp *intel_dp)
2854 {
2855 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2856 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2857 	u32 pp;
2858 	i915_reg_t pp_ctrl_reg;
2859 
2860 	lockdep_assert_held(&dev_priv->pps_mutex);
2861 
2862 	if (!intel_dp_is_edp(intel_dp))
2863 		return;
2864 
2865 	DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n",
2866 		      dig_port->base.base.base.id, dig_port->base.base.name);
2867 
2868 	WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2869 	     dig_port->base.base.base.id, dig_port->base.base.name);
2870 
2871 	pp = ironlake_get_pp_control(intel_dp);
2872 	/* We need to switch off panel power _and_ force vdd, for otherwise some
2873 	 * panels get very unhappy and cease to work. */
2874 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2875 		EDP_BLC_ENABLE);
2876 
2877 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2878 
2879 	intel_dp->want_panel_vdd = false;
2880 
2881 	I915_WRITE(pp_ctrl_reg, pp);
2882 	POSTING_READ(pp_ctrl_reg);
2883 
2884 	wait_panel_off(intel_dp);
2885 	intel_dp->panel_power_off_time = ktime_get_boottime();
2886 
2887 	/* We got a reference when we enabled the VDD. */
2888 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2889 }
2890 
2891 void intel_edp_panel_off(struct intel_dp *intel_dp)
2892 {
2893 	intel_wakeref_t wakeref;
2894 
2895 	if (!intel_dp_is_edp(intel_dp))
2896 		return;
2897 
2898 	with_pps_lock(intel_dp, wakeref)
2899 		edp_panel_off(intel_dp);
2900 }
2901 
2902 /* Enable backlight in the panel power control. */
2903 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2904 {
2905 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2906 	intel_wakeref_t wakeref;
2907 
2908 	/*
2909 	 * If we enable the backlight right away following a panel power
2910 	 * on, we may see slight flicker as the panel syncs with the eDP
2911 	 * link.  So delay a bit to make sure the image is solid before
2912 	 * allowing it to appear.
2913 	 */
2914 	wait_backlight_on(intel_dp);
2915 
2916 	with_pps_lock(intel_dp, wakeref) {
2917 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2918 		u32 pp;
2919 
2920 		pp = ironlake_get_pp_control(intel_dp);
2921 		pp |= EDP_BLC_ENABLE;
2922 
2923 		I915_WRITE(pp_ctrl_reg, pp);
2924 		POSTING_READ(pp_ctrl_reg);
2925 	}
2926 }
2927 
2928 /* Enable backlight PWM and backlight PP control. */
2929 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2930 			    const struct drm_connector_state *conn_state)
2931 {
2932 	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2933 
2934 	if (!intel_dp_is_edp(intel_dp))
2935 		return;
2936 
2937 	DRM_DEBUG_KMS("\n");
2938 
2939 	intel_panel_enable_backlight(crtc_state, conn_state);
2940 	_intel_edp_backlight_on(intel_dp);
2941 }
2942 
2943 /* Disable backlight in the panel power control. */
2944 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2945 {
2946 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2947 	intel_wakeref_t wakeref;
2948 
2949 	if (!intel_dp_is_edp(intel_dp))
2950 		return;
2951 
2952 	with_pps_lock(intel_dp, wakeref) {
2953 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2954 		u32 pp;
2955 
2956 		pp = ironlake_get_pp_control(intel_dp);
2957 		pp &= ~EDP_BLC_ENABLE;
2958 
2959 		I915_WRITE(pp_ctrl_reg, pp);
2960 		POSTING_READ(pp_ctrl_reg);
2961 	}
2962 
2963 	intel_dp->last_backlight_off = jiffies;
2964 	edp_wait_backlight_off(intel_dp);
2965 }
2966 
2967 /* Disable backlight PP control and backlight PWM. */
2968 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2969 {
2970 	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2971 
2972 	if (!intel_dp_is_edp(intel_dp))
2973 		return;
2974 
2975 	DRM_DEBUG_KMS("\n");
2976 
2977 	_intel_edp_backlight_off(intel_dp);
2978 	intel_panel_disable_backlight(old_conn_state);
2979 }
2980 
2981 /*
2982  * Hook for controlling the panel power control backlight through the bl_power
2983  * sysfs attribute. Take care to handle multiple calls.
2984  */
2985 static void intel_edp_backlight_power(struct intel_connector *connector,
2986 				      bool enable)
2987 {
2988 	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2989 	intel_wakeref_t wakeref;
2990 	bool is_enabled;
2991 
2992 	is_enabled = false;
2993 	with_pps_lock(intel_dp, wakeref)
2994 		is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2995 	if (is_enabled == enable)
2996 		return;
2997 
2998 	DRM_DEBUG_KMS("panel power control backlight %s\n",
2999 		      enable ? "enable" : "disable");
3000 
3001 	if (enable)
3002 		_intel_edp_backlight_on(intel_dp);
3003 	else
3004 		_intel_edp_backlight_off(intel_dp);
3005 }
3006 
3007 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3008 {
3009 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3010 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3011 	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
3012 
3013 	I915_STATE_WARN(cur_state != state,
3014 			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3015 			dig_port->base.base.base.id, dig_port->base.base.name,
3016 			onoff(state), onoff(cur_state));
3017 }
3018 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3019 
3020 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3021 {
3022 	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
3023 
3024 	I915_STATE_WARN(cur_state != state,
3025 			"eDP PLL state assertion failure (expected %s, current %s)\n",
3026 			onoff(state), onoff(cur_state));
3027 }
3028 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3029 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3030 
3031 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
3032 				const struct intel_crtc_state *pipe_config)
3033 {
3034 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3035 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3036 
3037 	assert_pipe_disabled(dev_priv, crtc->pipe);
3038 	assert_dp_port_disabled(intel_dp);
3039 	assert_edp_pll_disabled(dev_priv);
3040 
3041 	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
3042 		      pipe_config->port_clock);
3043 
3044 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3045 
3046 	if (pipe_config->port_clock == 162000)
3047 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3048 	else
3049 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3050 
3051 	I915_WRITE(DP_A, intel_dp->DP);
3052 	POSTING_READ(DP_A);
3053 	udelay(500);
3054 
3055 	/*
3056 	 * [DevILK] Work around required when enabling DP PLL
3057 	 * while a pipe is enabled going to FDI:
3058 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3059 	 * 2. Program DP PLL enable
3060 	 */
3061 	if (IS_GEN(dev_priv, 5))
3062 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3063 
3064 	intel_dp->DP |= DP_PLL_ENABLE;
3065 
3066 	I915_WRITE(DP_A, intel_dp->DP);
3067 	POSTING_READ(DP_A);
3068 	udelay(200);
3069 }
3070 
3071 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
3072 				 const struct intel_crtc_state *old_crtc_state)
3073 {
3074 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3075 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3076 
3077 	assert_pipe_disabled(dev_priv, crtc->pipe);
3078 	assert_dp_port_disabled(intel_dp);
3079 	assert_edp_pll_enabled(dev_priv);
3080 
3081 	DRM_DEBUG_KMS("disabling eDP PLL\n");
3082 
3083 	intel_dp->DP &= ~DP_PLL_ENABLE;
3084 
3085 	I915_WRITE(DP_A, intel_dp->DP);
3086 	POSTING_READ(DP_A);
3087 	udelay(200);
3088 }
3089 
3090 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3091 {
3092 	/*
3093 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3094 	 * be capable of signalling downstream hpd with a long pulse.
3095 	 * Whether or not that means D3 is safe to use is not clear,
3096 	 * but let's assume so until proven otherwise.
3097 	 *
3098 	 * FIXME should really check all downstream ports...
3099 	 */
3100 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3101 		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
3102 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3103 }
3104 
3105 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3106 					   const struct intel_crtc_state *crtc_state,
3107 					   bool enable)
3108 {
3109 	int ret;
3110 
3111 	if (!crtc_state->dsc.compression_enable)
3112 		return;
3113 
3114 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3115 				 enable ? DP_DECOMPRESSION_EN : 0);
3116 	if (ret < 0)
3117 		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3118 			      enable ? "enable" : "disable");
3119 }
3120 
3121 /* If the sink supports it, try to set the power state appropriately */
3122 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3123 {
3124 	int ret, i;
3125 
3126 	/* Should have a valid DPCD by this point */
3127 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3128 		return;
3129 
3130 	if (mode != DRM_MODE_DPMS_ON) {
3131 		if (downstream_hpd_needs_d0(intel_dp))
3132 			return;
3133 
3134 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3135 					 DP_SET_POWER_D3);
3136 	} else {
3137 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3138 
3139 		/*
3140 		 * When turning on, we need to retry for 1ms to give the sink
3141 		 * time to wake up.
3142 		 */
3143 		for (i = 0; i < 3; i++) {
3144 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3145 						 DP_SET_POWER_D0);
3146 			if (ret == 1)
3147 				break;
3148 			msleep(1);
3149 		}
3150 
3151 		if (ret == 1 && lspcon->active)
3152 			lspcon_wait_pcon_mode(lspcon);
3153 	}
3154 
3155 	if (ret != 1)
3156 		DRM_DEBUG_KMS("failed to %s sink power state\n",
3157 			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3158 }
3159 
3160 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3161 				 enum port port, enum pipe *pipe)
3162 {
3163 	enum pipe p;
3164 
3165 	for_each_pipe(dev_priv, p) {
3166 		u32 val = I915_READ(TRANS_DP_CTL(p));
3167 
3168 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3169 			*pipe = p;
3170 			return true;
3171 		}
3172 	}
3173 
3174 	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
3175 
3176 	/* must initialize pipe to something for the asserts */
3177 	*pipe = PIPE_A;
3178 
3179 	return false;
3180 }
3181 
3182 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3183 			   i915_reg_t dp_reg, enum port port,
3184 			   enum pipe *pipe)
3185 {
3186 	bool ret;
3187 	u32 val;
3188 
3189 	val = I915_READ(dp_reg);
3190 
3191 	ret = val & DP_PORT_EN;
3192 
3193 	/* asserts want to know the pipe even if the port is disabled */
3194 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3195 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3196 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3197 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3198 	else if (IS_CHERRYVIEW(dev_priv))
3199 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3200 	else
3201 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3202 
3203 	return ret;
3204 }
3205 
3206 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3207 				  enum pipe *pipe)
3208 {
3209 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3210 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3211 	intel_wakeref_t wakeref;
3212 	bool ret;
3213 
3214 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3215 						     encoder->power_domain);
3216 	if (!wakeref)
3217 		return false;
3218 
3219 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3220 				    encoder->port, pipe);
3221 
3222 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3223 
3224 	return ret;
3225 }
3226 
3227 static void intel_dp_get_config(struct intel_encoder *encoder,
3228 				struct intel_crtc_state *pipe_config)
3229 {
3230 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3231 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3232 	u32 tmp, flags = 0;
3233 	enum port port = encoder->port;
3234 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3235 
3236 	if (encoder->type == INTEL_OUTPUT_EDP)
3237 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3238 	else
3239 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3240 
3241 	tmp = I915_READ(intel_dp->output_reg);
3242 
3243 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3244 
3245 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3246 		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3247 
3248 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3249 			flags |= DRM_MODE_FLAG_PHSYNC;
3250 		else
3251 			flags |= DRM_MODE_FLAG_NHSYNC;
3252 
3253 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3254 			flags |= DRM_MODE_FLAG_PVSYNC;
3255 		else
3256 			flags |= DRM_MODE_FLAG_NVSYNC;
3257 	} else {
3258 		if (tmp & DP_SYNC_HS_HIGH)
3259 			flags |= DRM_MODE_FLAG_PHSYNC;
3260 		else
3261 			flags |= DRM_MODE_FLAG_NHSYNC;
3262 
3263 		if (tmp & DP_SYNC_VS_HIGH)
3264 			flags |= DRM_MODE_FLAG_PVSYNC;
3265 		else
3266 			flags |= DRM_MODE_FLAG_NVSYNC;
3267 	}
3268 
3269 	pipe_config->base.adjusted_mode.flags |= flags;
3270 
3271 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3272 		pipe_config->limited_color_range = true;
3273 
3274 	pipe_config->lane_count =
3275 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3276 
3277 	intel_dp_get_m_n(crtc, pipe_config);
3278 
3279 	if (port == PORT_A) {
3280 		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3281 			pipe_config->port_clock = 162000;
3282 		else
3283 			pipe_config->port_clock = 270000;
3284 	}
3285 
3286 	pipe_config->base.adjusted_mode.crtc_clock =
3287 		intel_dotclock_calculate(pipe_config->port_clock,
3288 					 &pipe_config->dp_m_n);
3289 
3290 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3291 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3292 		/*
3293 		 * This is a big fat ugly hack.
3294 		 *
3295 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3296 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3297 		 * unknown we fail to light up. Yet the same BIOS boots up with
3298 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3299 		 * max, not what it tells us to use.
3300 		 *
3301 		 * Note: This will still be broken if the eDP panel is not lit
3302 		 * up by the BIOS, and thus we can't get the mode at module
3303 		 * load.
3304 		 */
3305 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3306 			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3307 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3308 	}
3309 }
3310 
3311 static void intel_disable_dp(struct intel_encoder *encoder,
3312 			     const struct intel_crtc_state *old_crtc_state,
3313 			     const struct drm_connector_state *old_conn_state)
3314 {
3315 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3316 
3317 	intel_dp->link_trained = false;
3318 
3319 	if (old_crtc_state->has_audio)
3320 		intel_audio_codec_disable(encoder,
3321 					  old_crtc_state, old_conn_state);
3322 
3323 	/* Make sure the panel is off before trying to change the mode. But also
3324 	 * ensure that we have vdd while we switch off the panel. */
3325 	intel_edp_panel_vdd_on(intel_dp);
3326 	intel_edp_backlight_off(old_conn_state);
3327 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3328 	intel_edp_panel_off(intel_dp);
3329 }
3330 
3331 static void g4x_disable_dp(struct intel_encoder *encoder,
3332 			   const struct intel_crtc_state *old_crtc_state,
3333 			   const struct drm_connector_state *old_conn_state)
3334 {
3335 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3336 }
3337 
3338 static void vlv_disable_dp(struct intel_encoder *encoder,
3339 			   const struct intel_crtc_state *old_crtc_state,
3340 			   const struct drm_connector_state *old_conn_state)
3341 {
3342 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3343 }
3344 
3345 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3346 				const struct intel_crtc_state *old_crtc_state,
3347 				const struct drm_connector_state *old_conn_state)
3348 {
3349 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3350 	enum port port = encoder->port;
3351 
3352 	/*
3353 	 * Bspec does not list a specific disable sequence for g4x DP.
3354 	 * Follow the ilk+ sequence (disable pipe before the port) for
3355 	 * g4x DP as it does not suffer from underruns like the normal
3356 	 * g4x modeset sequence (disable pipe after the port).
3357 	 */
3358 	intel_dp_link_down(encoder, old_crtc_state);
3359 
3360 	/* Only ilk+ has port A */
3361 	if (port == PORT_A)
3362 		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3363 }
3364 
3365 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3366 				const struct intel_crtc_state *old_crtc_state,
3367 				const struct drm_connector_state *old_conn_state)
3368 {
3369 	intel_dp_link_down(encoder, old_crtc_state);
3370 }
3371 
3372 static void chv_post_disable_dp(struct intel_encoder *encoder,
3373 				const struct intel_crtc_state *old_crtc_state,
3374 				const struct drm_connector_state *old_conn_state)
3375 {
3376 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3377 
3378 	intel_dp_link_down(encoder, old_crtc_state);
3379 
3380 	vlv_dpio_get(dev_priv);
3381 
3382 	/* Assert data lane reset */
3383 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3384 
3385 	vlv_dpio_put(dev_priv);
3386 }
3387 
3388 static void
3389 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3390 			 u32 *DP,
3391 			 u8 dp_train_pat)
3392 {
3393 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3394 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3395 	enum port port = intel_dig_port->base.port;
3396 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3397 
3398 	if (dp_train_pat & train_pat_mask)
3399 		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3400 			      dp_train_pat & train_pat_mask);
3401 
3402 	if (HAS_DDI(dev_priv)) {
3403 		u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl);
3404 
3405 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3406 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3407 		else
3408 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3409 
3410 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3411 		switch (dp_train_pat & train_pat_mask) {
3412 		case DP_TRAINING_PATTERN_DISABLE:
3413 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3414 
3415 			break;
3416 		case DP_TRAINING_PATTERN_1:
3417 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3418 			break;
3419 		case DP_TRAINING_PATTERN_2:
3420 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3421 			break;
3422 		case DP_TRAINING_PATTERN_3:
3423 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3424 			break;
3425 		case DP_TRAINING_PATTERN_4:
3426 			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3427 			break;
3428 		}
3429 		I915_WRITE(intel_dp->regs.dp_tp_ctl, temp);
3430 
3431 	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3432 		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3433 		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3434 
3435 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3436 		case DP_TRAINING_PATTERN_DISABLE:
3437 			*DP |= DP_LINK_TRAIN_OFF_CPT;
3438 			break;
3439 		case DP_TRAINING_PATTERN_1:
3440 			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3441 			break;
3442 		case DP_TRAINING_PATTERN_2:
3443 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3444 			break;
3445 		case DP_TRAINING_PATTERN_3:
3446 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3447 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3448 			break;
3449 		}
3450 
3451 	} else {
3452 		*DP &= ~DP_LINK_TRAIN_MASK;
3453 
3454 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3455 		case DP_TRAINING_PATTERN_DISABLE:
3456 			*DP |= DP_LINK_TRAIN_OFF;
3457 			break;
3458 		case DP_TRAINING_PATTERN_1:
3459 			*DP |= DP_LINK_TRAIN_PAT_1;
3460 			break;
3461 		case DP_TRAINING_PATTERN_2:
3462 			*DP |= DP_LINK_TRAIN_PAT_2;
3463 			break;
3464 		case DP_TRAINING_PATTERN_3:
3465 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3466 			*DP |= DP_LINK_TRAIN_PAT_2;
3467 			break;
3468 		}
3469 	}
3470 }
3471 
3472 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3473 				 const struct intel_crtc_state *old_crtc_state)
3474 {
3475 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3476 
3477 	/* enable with pattern 1 (as per spec) */
3478 
3479 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3480 
3481 	/*
3482 	 * Magic for VLV/CHV. We _must_ first set up the register
3483 	 * without actually enabling the port, and then do another
3484 	 * write to enable the port. Otherwise link training will
3485 	 * fail when the power sequencer is freshly used for this port.
3486 	 */
3487 	intel_dp->DP |= DP_PORT_EN;
3488 	if (old_crtc_state->has_audio)
3489 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3490 
3491 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3492 	POSTING_READ(intel_dp->output_reg);
3493 }
3494 
3495 static void intel_enable_dp(struct intel_encoder *encoder,
3496 			    const struct intel_crtc_state *pipe_config,
3497 			    const struct drm_connector_state *conn_state)
3498 {
3499 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3500 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3501 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3502 	u32 dp_reg = I915_READ(intel_dp->output_reg);
3503 	enum pipe pipe = crtc->pipe;
3504 	intel_wakeref_t wakeref;
3505 
3506 	if (WARN_ON(dp_reg & DP_PORT_EN))
3507 		return;
3508 
3509 	with_pps_lock(intel_dp, wakeref) {
3510 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3511 			vlv_init_panel_power_sequencer(encoder, pipe_config);
3512 
3513 		intel_dp_enable_port(intel_dp, pipe_config);
3514 
3515 		edp_panel_vdd_on(intel_dp);
3516 		edp_panel_on(intel_dp);
3517 		edp_panel_vdd_off(intel_dp, true);
3518 	}
3519 
3520 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3521 		unsigned int lane_mask = 0x0;
3522 
3523 		if (IS_CHERRYVIEW(dev_priv))
3524 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3525 
3526 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3527 				    lane_mask);
3528 	}
3529 
3530 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3531 	intel_dp_start_link_train(intel_dp);
3532 	intel_dp_stop_link_train(intel_dp);
3533 
3534 	if (pipe_config->has_audio) {
3535 		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3536 				 pipe_name(pipe));
3537 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3538 	}
3539 }
3540 
3541 static void g4x_enable_dp(struct intel_encoder *encoder,
3542 			  const struct intel_crtc_state *pipe_config,
3543 			  const struct drm_connector_state *conn_state)
3544 {
3545 	intel_enable_dp(encoder, pipe_config, conn_state);
3546 	intel_edp_backlight_on(pipe_config, conn_state);
3547 }
3548 
3549 static void vlv_enable_dp(struct intel_encoder *encoder,
3550 			  const struct intel_crtc_state *pipe_config,
3551 			  const struct drm_connector_state *conn_state)
3552 {
3553 	intel_edp_backlight_on(pipe_config, conn_state);
3554 }
3555 
3556 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3557 			      const struct intel_crtc_state *pipe_config,
3558 			      const struct drm_connector_state *conn_state)
3559 {
3560 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3561 	enum port port = encoder->port;
3562 
3563 	intel_dp_prepare(encoder, pipe_config);
3564 
3565 	/* Only ilk+ has port A */
3566 	if (port == PORT_A)
3567 		ironlake_edp_pll_on(intel_dp, pipe_config);
3568 }
3569 
3570 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3571 {
3572 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3573 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3574 	enum pipe pipe = intel_dp->pps_pipe;
3575 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3576 
3577 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3578 
3579 	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3580 		return;
3581 
3582 	edp_panel_vdd_off_sync(intel_dp);
3583 
3584 	/*
3585 	 * VLV seems to get confused when multiple power sequencers
3586 	 * have the same port selected (even if only one has power/vdd
3587 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
3588 	 * CHV on the other hand doesn't seem to mind having the same port
3589 	 * selected in multiple power sequencers, but let's clear the
3590 	 * port select always when logically disconnecting a power sequencer
3591 	 * from a port.
3592 	 */
3593 	DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3594 		      pipe_name(pipe), intel_dig_port->base.base.base.id,
3595 		      intel_dig_port->base.base.name);
3596 	I915_WRITE(pp_on_reg, 0);
3597 	POSTING_READ(pp_on_reg);
3598 
3599 	intel_dp->pps_pipe = INVALID_PIPE;
3600 }
3601 
3602 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3603 				      enum pipe pipe)
3604 {
3605 	struct intel_encoder *encoder;
3606 
3607 	lockdep_assert_held(&dev_priv->pps_mutex);
3608 
3609 	for_each_intel_dp(&dev_priv->drm, encoder) {
3610 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3611 
3612 		WARN(intel_dp->active_pipe == pipe,
3613 		     "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3614 		     pipe_name(pipe), encoder->base.base.id,
3615 		     encoder->base.name);
3616 
3617 		if (intel_dp->pps_pipe != pipe)
3618 			continue;
3619 
3620 		DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3621 			      pipe_name(pipe), encoder->base.base.id,
3622 			      encoder->base.name);
3623 
3624 		/* make sure vdd is off before we steal it */
3625 		vlv_detach_power_sequencer(intel_dp);
3626 	}
3627 }
3628 
3629 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3630 					   const struct intel_crtc_state *crtc_state)
3631 {
3632 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3633 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3634 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3635 
3636 	lockdep_assert_held(&dev_priv->pps_mutex);
3637 
3638 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3639 
3640 	if (intel_dp->pps_pipe != INVALID_PIPE &&
3641 	    intel_dp->pps_pipe != crtc->pipe) {
3642 		/*
3643 		 * If another power sequencer was being used on this
3644 		 * port previously make sure to turn off vdd there while
3645 		 * we still have control of it.
3646 		 */
3647 		vlv_detach_power_sequencer(intel_dp);
3648 	}
3649 
3650 	/*
3651 	 * We may be stealing the power
3652 	 * sequencer from another port.
3653 	 */
3654 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3655 
3656 	intel_dp->active_pipe = crtc->pipe;
3657 
3658 	if (!intel_dp_is_edp(intel_dp))
3659 		return;
3660 
3661 	/* now it's all ours */
3662 	intel_dp->pps_pipe = crtc->pipe;
3663 
3664 	DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3665 		      pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3666 		      encoder->base.name);
3667 
3668 	/* init power sequencer on this pipe and port */
3669 	intel_dp_init_panel_power_sequencer(intel_dp);
3670 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3671 }
3672 
3673 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3674 			      const struct intel_crtc_state *pipe_config,
3675 			      const struct drm_connector_state *conn_state)
3676 {
3677 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3678 
3679 	intel_enable_dp(encoder, pipe_config, conn_state);
3680 }
3681 
3682 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3683 				  const struct intel_crtc_state *pipe_config,
3684 				  const struct drm_connector_state *conn_state)
3685 {
3686 	intel_dp_prepare(encoder, pipe_config);
3687 
3688 	vlv_phy_pre_pll_enable(encoder, pipe_config);
3689 }
3690 
3691 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3692 			      const struct intel_crtc_state *pipe_config,
3693 			      const struct drm_connector_state *conn_state)
3694 {
3695 	chv_phy_pre_encoder_enable(encoder, pipe_config);
3696 
3697 	intel_enable_dp(encoder, pipe_config, conn_state);
3698 
3699 	/* Second common lane will stay alive on its own now */
3700 	chv_phy_release_cl2_override(encoder);
3701 }
3702 
3703 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3704 				  const struct intel_crtc_state *pipe_config,
3705 				  const struct drm_connector_state *conn_state)
3706 {
3707 	intel_dp_prepare(encoder, pipe_config);
3708 
3709 	chv_phy_pre_pll_enable(encoder, pipe_config);
3710 }
3711 
3712 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3713 				    const struct intel_crtc_state *old_crtc_state,
3714 				    const struct drm_connector_state *old_conn_state)
3715 {
3716 	chv_phy_post_pll_disable(encoder, old_crtc_state);
3717 }
3718 
3719 /*
3720  * Fetch AUX CH registers 0x202 - 0x207 which contain
3721  * link status information
3722  */
3723 bool
3724 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3725 {
3726 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3727 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3728 }
3729 
3730 /* These are source-specific values. */
3731 u8
3732 intel_dp_voltage_max(struct intel_dp *intel_dp)
3733 {
3734 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3735 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3736 	enum port port = encoder->port;
3737 
3738 	if (HAS_DDI(dev_priv))
3739 		return intel_ddi_dp_voltage_max(encoder);
3740 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3741 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3742 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3743 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3744 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3745 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3746 	else
3747 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3748 }
3749 
3750 u8
3751 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3752 {
3753 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3754 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3755 	enum port port = encoder->port;
3756 
3757 	if (HAS_DDI(dev_priv)) {
3758 		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3759 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3760 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3761 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3762 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3763 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3764 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3765 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3766 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3767 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3768 		default:
3769 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3770 		}
3771 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3772 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3773 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3774 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3775 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3776 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3777 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3778 		default:
3779 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3780 		}
3781 	} else {
3782 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3783 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3784 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3785 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3786 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3787 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3788 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3789 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3790 		default:
3791 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3792 		}
3793 	}
3794 }
3795 
3796 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3797 {
3798 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3799 	unsigned long demph_reg_value, preemph_reg_value,
3800 		uniqtranscale_reg_value;
3801 	u8 train_set = intel_dp->train_set[0];
3802 
3803 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3804 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3805 		preemph_reg_value = 0x0004000;
3806 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3807 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3808 			demph_reg_value = 0x2B405555;
3809 			uniqtranscale_reg_value = 0x552AB83A;
3810 			break;
3811 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3812 			demph_reg_value = 0x2B404040;
3813 			uniqtranscale_reg_value = 0x5548B83A;
3814 			break;
3815 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3816 			demph_reg_value = 0x2B245555;
3817 			uniqtranscale_reg_value = 0x5560B83A;
3818 			break;
3819 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3820 			demph_reg_value = 0x2B405555;
3821 			uniqtranscale_reg_value = 0x5598DA3A;
3822 			break;
3823 		default:
3824 			return 0;
3825 		}
3826 		break;
3827 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3828 		preemph_reg_value = 0x0002000;
3829 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3830 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3831 			demph_reg_value = 0x2B404040;
3832 			uniqtranscale_reg_value = 0x5552B83A;
3833 			break;
3834 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3835 			demph_reg_value = 0x2B404848;
3836 			uniqtranscale_reg_value = 0x5580B83A;
3837 			break;
3838 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3839 			demph_reg_value = 0x2B404040;
3840 			uniqtranscale_reg_value = 0x55ADDA3A;
3841 			break;
3842 		default:
3843 			return 0;
3844 		}
3845 		break;
3846 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3847 		preemph_reg_value = 0x0000000;
3848 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3849 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3850 			demph_reg_value = 0x2B305555;
3851 			uniqtranscale_reg_value = 0x5570B83A;
3852 			break;
3853 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3854 			demph_reg_value = 0x2B2B4040;
3855 			uniqtranscale_reg_value = 0x55ADDA3A;
3856 			break;
3857 		default:
3858 			return 0;
3859 		}
3860 		break;
3861 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3862 		preemph_reg_value = 0x0006000;
3863 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3864 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3865 			demph_reg_value = 0x1B405555;
3866 			uniqtranscale_reg_value = 0x55ADDA3A;
3867 			break;
3868 		default:
3869 			return 0;
3870 		}
3871 		break;
3872 	default:
3873 		return 0;
3874 	}
3875 
3876 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3877 				 uniqtranscale_reg_value, 0);
3878 
3879 	return 0;
3880 }
3881 
3882 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3883 {
3884 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3885 	u32 deemph_reg_value, margin_reg_value;
3886 	bool uniq_trans_scale = false;
3887 	u8 train_set = intel_dp->train_set[0];
3888 
3889 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3890 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3891 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3892 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3893 			deemph_reg_value = 128;
3894 			margin_reg_value = 52;
3895 			break;
3896 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3897 			deemph_reg_value = 128;
3898 			margin_reg_value = 77;
3899 			break;
3900 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3901 			deemph_reg_value = 128;
3902 			margin_reg_value = 102;
3903 			break;
3904 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3905 			deemph_reg_value = 128;
3906 			margin_reg_value = 154;
3907 			uniq_trans_scale = true;
3908 			break;
3909 		default:
3910 			return 0;
3911 		}
3912 		break;
3913 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3914 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3915 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3916 			deemph_reg_value = 85;
3917 			margin_reg_value = 78;
3918 			break;
3919 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3920 			deemph_reg_value = 85;
3921 			margin_reg_value = 116;
3922 			break;
3923 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3924 			deemph_reg_value = 85;
3925 			margin_reg_value = 154;
3926 			break;
3927 		default:
3928 			return 0;
3929 		}
3930 		break;
3931 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3932 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3933 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3934 			deemph_reg_value = 64;
3935 			margin_reg_value = 104;
3936 			break;
3937 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3938 			deemph_reg_value = 64;
3939 			margin_reg_value = 154;
3940 			break;
3941 		default:
3942 			return 0;
3943 		}
3944 		break;
3945 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3946 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3947 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3948 			deemph_reg_value = 43;
3949 			margin_reg_value = 154;
3950 			break;
3951 		default:
3952 			return 0;
3953 		}
3954 		break;
3955 	default:
3956 		return 0;
3957 	}
3958 
3959 	chv_set_phy_signal_level(encoder, deemph_reg_value,
3960 				 margin_reg_value, uniq_trans_scale);
3961 
3962 	return 0;
3963 }
3964 
3965 static u32
3966 g4x_signal_levels(u8 train_set)
3967 {
3968 	u32 signal_levels = 0;
3969 
3970 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3971 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3972 	default:
3973 		signal_levels |= DP_VOLTAGE_0_4;
3974 		break;
3975 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3976 		signal_levels |= DP_VOLTAGE_0_6;
3977 		break;
3978 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3979 		signal_levels |= DP_VOLTAGE_0_8;
3980 		break;
3981 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3982 		signal_levels |= DP_VOLTAGE_1_2;
3983 		break;
3984 	}
3985 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3986 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3987 	default:
3988 		signal_levels |= DP_PRE_EMPHASIS_0;
3989 		break;
3990 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3991 		signal_levels |= DP_PRE_EMPHASIS_3_5;
3992 		break;
3993 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3994 		signal_levels |= DP_PRE_EMPHASIS_6;
3995 		break;
3996 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3997 		signal_levels |= DP_PRE_EMPHASIS_9_5;
3998 		break;
3999 	}
4000 	return signal_levels;
4001 }
4002 
4003 /* SNB CPU eDP voltage swing and pre-emphasis control */
4004 static u32
4005 snb_cpu_edp_signal_levels(u8 train_set)
4006 {
4007 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4008 					 DP_TRAIN_PRE_EMPHASIS_MASK);
4009 	switch (signal_levels) {
4010 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4011 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4012 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4013 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4014 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4015 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4016 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4017 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4018 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4019 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4020 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4021 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4022 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4023 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4024 	default:
4025 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4026 			      "0x%x\n", signal_levels);
4027 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4028 	}
4029 }
4030 
4031 /* IVB CPU eDP voltage swing and pre-emphasis control */
4032 static u32
4033 ivb_cpu_edp_signal_levels(u8 train_set)
4034 {
4035 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4036 					 DP_TRAIN_PRE_EMPHASIS_MASK);
4037 	switch (signal_levels) {
4038 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4039 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4040 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4041 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4042 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4043 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
4044 
4045 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4046 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4047 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4048 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4049 
4050 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4051 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4052 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4053 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4054 
4055 	default:
4056 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4057 			      "0x%x\n", signal_levels);
4058 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
4059 	}
4060 }
4061 
4062 void
4063 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4064 {
4065 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4066 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4067 	enum port port = intel_dig_port->base.port;
4068 	u32 signal_levels, mask = 0;
4069 	u8 train_set = intel_dp->train_set[0];
4070 
4071 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4072 		signal_levels = bxt_signal_levels(intel_dp);
4073 	} else if (HAS_DDI(dev_priv)) {
4074 		signal_levels = ddi_signal_levels(intel_dp);
4075 		mask = DDI_BUF_EMP_MASK;
4076 	} else if (IS_CHERRYVIEW(dev_priv)) {
4077 		signal_levels = chv_signal_levels(intel_dp);
4078 	} else if (IS_VALLEYVIEW(dev_priv)) {
4079 		signal_levels = vlv_signal_levels(intel_dp);
4080 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4081 		signal_levels = ivb_cpu_edp_signal_levels(train_set);
4082 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4083 	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4084 		signal_levels = snb_cpu_edp_signal_levels(train_set);
4085 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4086 	} else {
4087 		signal_levels = g4x_signal_levels(train_set);
4088 		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4089 	}
4090 
4091 	if (mask)
4092 		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
4093 
4094 	DRM_DEBUG_KMS("Using vswing level %d\n",
4095 		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
4096 	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
4097 		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4098 			DP_TRAIN_PRE_EMPHASIS_SHIFT);
4099 
4100 	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4101 
4102 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4103 	POSTING_READ(intel_dp->output_reg);
4104 }
4105 
4106 void
4107 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4108 				       u8 dp_train_pat)
4109 {
4110 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4111 	struct drm_i915_private *dev_priv =
4112 		to_i915(intel_dig_port->base.base.dev);
4113 
4114 	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4115 
4116 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4117 	POSTING_READ(intel_dp->output_reg);
4118 }
4119 
4120 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4121 {
4122 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4123 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4124 	enum port port = intel_dig_port->base.port;
4125 	u32 val;
4126 
4127 	if (!HAS_DDI(dev_priv))
4128 		return;
4129 
4130 	val = I915_READ(intel_dp->regs.dp_tp_ctl);
4131 	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4132 	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4133 	I915_WRITE(intel_dp->regs.dp_tp_ctl, val);
4134 
4135 	/*
4136 	 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4137 	 * reason we need to set idle transmission mode is to work around a HW
4138 	 * issue where we enable the pipe while not in idle link-training mode.
4139 	 * In this case there is requirement to wait for a minimum number of
4140 	 * idle patterns to be sent.
4141 	 */
4142 	if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4143 		return;
4144 
4145 	if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4146 				  DP_TP_STATUS_IDLE_DONE, 1))
4147 		DRM_ERROR("Timed out waiting for DP idle patterns\n");
4148 }
4149 
4150 static void
4151 intel_dp_link_down(struct intel_encoder *encoder,
4152 		   const struct intel_crtc_state *old_crtc_state)
4153 {
4154 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4155 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4156 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4157 	enum port port = encoder->port;
4158 	u32 DP = intel_dp->DP;
4159 
4160 	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4161 		return;
4162 
4163 	DRM_DEBUG_KMS("\n");
4164 
4165 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4166 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4167 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4168 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4169 	} else {
4170 		DP &= ~DP_LINK_TRAIN_MASK;
4171 		DP |= DP_LINK_TRAIN_PAT_IDLE;
4172 	}
4173 	I915_WRITE(intel_dp->output_reg, DP);
4174 	POSTING_READ(intel_dp->output_reg);
4175 
4176 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4177 	I915_WRITE(intel_dp->output_reg, DP);
4178 	POSTING_READ(intel_dp->output_reg);
4179 
4180 	/*
4181 	 * HW workaround for IBX, we need to move the port
4182 	 * to transcoder A after disabling it to allow the
4183 	 * matching HDMI port to be enabled on transcoder A.
4184 	 */
4185 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4186 		/*
4187 		 * We get CPU/PCH FIFO underruns on the other pipe when
4188 		 * doing the workaround. Sweep them under the rug.
4189 		 */
4190 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4191 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4192 
4193 		/* always enable with pattern 1 (as per spec) */
4194 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4195 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4196 			DP_LINK_TRAIN_PAT_1;
4197 		I915_WRITE(intel_dp->output_reg, DP);
4198 		POSTING_READ(intel_dp->output_reg);
4199 
4200 		DP &= ~DP_PORT_EN;
4201 		I915_WRITE(intel_dp->output_reg, DP);
4202 		POSTING_READ(intel_dp->output_reg);
4203 
4204 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4205 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4206 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4207 	}
4208 
4209 	msleep(intel_dp->panel_power_down_delay);
4210 
4211 	intel_dp->DP = DP;
4212 
4213 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4214 		intel_wakeref_t wakeref;
4215 
4216 		with_pps_lock(intel_dp, wakeref)
4217 			intel_dp->active_pipe = INVALID_PIPE;
4218 	}
4219 }
4220 
4221 static void
4222 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4223 {
4224 	u8 dpcd_ext[6];
4225 
4226 	/*
4227 	 * Prior to DP1.3 the bit represented by
4228 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4229 	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4230 	 * the true capability of the panel. The only way to check is to
4231 	 * then compare 0000h and 2200h.
4232 	 */
4233 	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4234 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4235 		return;
4236 
4237 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4238 			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4239 		DRM_ERROR("DPCD failed read at extended capabilities\n");
4240 		return;
4241 	}
4242 
4243 	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4244 		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4245 		return;
4246 	}
4247 
4248 	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4249 		return;
4250 
4251 	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4252 		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4253 
4254 	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4255 }
4256 
4257 bool
4258 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4259 {
4260 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4261 			     sizeof(intel_dp->dpcd)) < 0)
4262 		return false; /* aux transfer failed */
4263 
4264 	intel_dp_extended_receiver_capabilities(intel_dp);
4265 
4266 	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4267 
4268 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
4269 }
4270 
4271 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4272 {
4273 	u8 dprx = 0;
4274 
4275 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4276 			      &dprx) != 1)
4277 		return false;
4278 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4279 }
4280 
4281 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4282 {
4283 	/*
4284 	 * Clear the cached register set to avoid using stale values
4285 	 * for the sinks that do not support DSC.
4286 	 */
4287 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4288 
4289 	/* Clear fec_capable to avoid using stale values */
4290 	intel_dp->fec_capable = 0;
4291 
4292 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4293 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4294 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4295 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4296 				     intel_dp->dsc_dpcd,
4297 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4298 			DRM_ERROR("Failed to read DPCD register 0x%x\n",
4299 				  DP_DSC_SUPPORT);
4300 
4301 		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4302 			      (int)sizeof(intel_dp->dsc_dpcd),
4303 			      intel_dp->dsc_dpcd);
4304 
4305 		/* FEC is supported only on DP 1.4 */
4306 		if (!intel_dp_is_edp(intel_dp) &&
4307 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4308 				      &intel_dp->fec_capable) < 0)
4309 			DRM_ERROR("Failed to read FEC DPCD register\n");
4310 
4311 		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4312 	}
4313 }
4314 
4315 static bool
4316 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4317 {
4318 	struct drm_i915_private *dev_priv =
4319 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4320 
4321 	/* this function is meant to be called only once */
4322 	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4323 
4324 	if (!intel_dp_read_dpcd(intel_dp))
4325 		return false;
4326 
4327 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4328 			 drm_dp_is_branch(intel_dp->dpcd));
4329 
4330 	/*
4331 	 * Read the eDP display control registers.
4332 	 *
4333 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4334 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4335 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4336 	 * method). The display control registers should read zero if they're
4337 	 * not supported anyway.
4338 	 */
4339 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4340 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4341 			     sizeof(intel_dp->edp_dpcd))
4342 		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4343 			      intel_dp->edp_dpcd);
4344 
4345 	/*
4346 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4347 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4348 	 */
4349 	intel_psr_init_dpcd(intel_dp);
4350 
4351 	/* Read the eDP 1.4+ supported link rates. */
4352 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4353 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4354 		int i;
4355 
4356 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4357 				sink_rates, sizeof(sink_rates));
4358 
4359 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4360 			int val = le16_to_cpu(sink_rates[i]);
4361 
4362 			if (val == 0)
4363 				break;
4364 
4365 			/* Value read multiplied by 200kHz gives the per-lane
4366 			 * link rate in kHz. The source rates are, however,
4367 			 * stored in terms of LS_Clk kHz. The full conversion
4368 			 * back to symbols is
4369 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4370 			 */
4371 			intel_dp->sink_rates[i] = (val * 200) / 10;
4372 		}
4373 		intel_dp->num_sink_rates = i;
4374 	}
4375 
4376 	/*
4377 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4378 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4379 	 */
4380 	if (intel_dp->num_sink_rates)
4381 		intel_dp->use_rate_select = true;
4382 	else
4383 		intel_dp_set_sink_rates(intel_dp);
4384 
4385 	intel_dp_set_common_rates(intel_dp);
4386 
4387 	/* Read the eDP DSC DPCD registers */
4388 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4389 		intel_dp_get_dsc_sink_cap(intel_dp);
4390 
4391 	return true;
4392 }
4393 
4394 
4395 static bool
4396 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4397 {
4398 	if (!intel_dp_read_dpcd(intel_dp))
4399 		return false;
4400 
4401 	/*
4402 	 * Don't clobber cached eDP rates. Also skip re-reading
4403 	 * the OUI/ID since we know it won't change.
4404 	 */
4405 	if (!intel_dp_is_edp(intel_dp)) {
4406 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4407 				 drm_dp_is_branch(intel_dp->dpcd));
4408 
4409 		intel_dp_set_sink_rates(intel_dp);
4410 		intel_dp_set_common_rates(intel_dp);
4411 	}
4412 
4413 	/*
4414 	 * Some eDP panels do not set a valid value for sink count, that is why
4415 	 * it don't care about read it here and in intel_edp_init_dpcd().
4416 	 */
4417 	if (!intel_dp_is_edp(intel_dp) &&
4418 	    !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4419 		u8 count;
4420 		ssize_t r;
4421 
4422 		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4423 		if (r < 1)
4424 			return false;
4425 
4426 		/*
4427 		 * Sink count can change between short pulse hpd hence
4428 		 * a member variable in intel_dp will track any changes
4429 		 * between short pulse interrupts.
4430 		 */
4431 		intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4432 
4433 		/*
4434 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4435 		 * a dongle is present but no display. Unless we require to know
4436 		 * if a dongle is present or not, we don't need to update
4437 		 * downstream port information. So, an early return here saves
4438 		 * time from performing other operations which are not required.
4439 		 */
4440 		if (!intel_dp->sink_count)
4441 			return false;
4442 	}
4443 
4444 	if (!drm_dp_is_branch(intel_dp->dpcd))
4445 		return true; /* native DP sink */
4446 
4447 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4448 		return true; /* no per-port downstream info */
4449 
4450 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4451 			     intel_dp->downstream_ports,
4452 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4453 		return false; /* downstream port status fetch failed */
4454 
4455 	return true;
4456 }
4457 
4458 static bool
4459 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4460 {
4461 	u8 mstm_cap;
4462 
4463 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4464 		return false;
4465 
4466 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4467 		return false;
4468 
4469 	return mstm_cap & DP_MST_CAP;
4470 }
4471 
4472 static bool
4473 intel_dp_can_mst(struct intel_dp *intel_dp)
4474 {
4475 	return i915_modparams.enable_dp_mst &&
4476 		intel_dp->can_mst &&
4477 		intel_dp_sink_can_mst(intel_dp);
4478 }
4479 
4480 static void
4481 intel_dp_configure_mst(struct intel_dp *intel_dp)
4482 {
4483 	struct intel_encoder *encoder =
4484 		&dp_to_dig_port(intel_dp)->base;
4485 	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4486 
4487 	DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4488 		      encoder->base.base.id, encoder->base.name,
4489 		      yesno(intel_dp->can_mst), yesno(sink_can_mst),
4490 		      yesno(i915_modparams.enable_dp_mst));
4491 
4492 	if (!intel_dp->can_mst)
4493 		return;
4494 
4495 	intel_dp->is_mst = sink_can_mst &&
4496 		i915_modparams.enable_dp_mst;
4497 
4498 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4499 					intel_dp->is_mst);
4500 }
4501 
4502 static bool
4503 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4504 {
4505 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4506 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4507 		DP_DPRX_ESI_LEN;
4508 }
4509 
4510 bool
4511 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4512 		       const struct drm_connector_state *conn_state)
4513 {
4514 	/*
4515 	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4516 	 * of Color Encoding Format and Content Color Gamut], in order to
4517 	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4518 	 */
4519 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4520 		return true;
4521 
4522 	switch (conn_state->colorspace) {
4523 	case DRM_MODE_COLORIMETRY_SYCC_601:
4524 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4525 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4526 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4527 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4528 		return true;
4529 	default:
4530 		break;
4531 	}
4532 
4533 	return false;
4534 }
4535 
4536 static void
4537 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
4538 		       const struct intel_crtc_state *crtc_state,
4539 		       const struct drm_connector_state *conn_state)
4540 {
4541 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4542 	struct dp_sdp vsc_sdp = {};
4543 
4544 	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4545 	vsc_sdp.sdp_header.HB0 = 0;
4546 	vsc_sdp.sdp_header.HB1 = 0x7;
4547 
4548 	/*
4549 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4550 	 * Colorimetry Format indication.
4551 	 */
4552 	vsc_sdp.sdp_header.HB2 = 0x5;
4553 
4554 	/*
4555 	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4556 	 * Colorimetry Format indication (HB2 = 05h).
4557 	 */
4558 	vsc_sdp.sdp_header.HB3 = 0x13;
4559 
4560 	/* DP 1.4a spec, Table 2-120 */
4561 	switch (crtc_state->output_format) {
4562 	case INTEL_OUTPUT_FORMAT_YCBCR444:
4563 		vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
4564 		break;
4565 	case INTEL_OUTPUT_FORMAT_YCBCR420:
4566 		vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
4567 		break;
4568 	case INTEL_OUTPUT_FORMAT_RGB:
4569 	default:
4570 		/* RGB: DB16[7:4] = 0h */
4571 		break;
4572 	}
4573 
4574 	switch (conn_state->colorspace) {
4575 	case DRM_MODE_COLORIMETRY_BT709_YCC:
4576 		vsc_sdp.db[16] |= 0x1;
4577 		break;
4578 	case DRM_MODE_COLORIMETRY_XVYCC_601:
4579 		vsc_sdp.db[16] |= 0x2;
4580 		break;
4581 	case DRM_MODE_COLORIMETRY_XVYCC_709:
4582 		vsc_sdp.db[16] |= 0x3;
4583 		break;
4584 	case DRM_MODE_COLORIMETRY_SYCC_601:
4585 		vsc_sdp.db[16] |= 0x4;
4586 		break;
4587 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4588 		vsc_sdp.db[16] |= 0x5;
4589 		break;
4590 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4591 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4592 		vsc_sdp.db[16] |= 0x6;
4593 		break;
4594 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4595 		vsc_sdp.db[16] |= 0x7;
4596 		break;
4597 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
4598 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
4599 		vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
4600 		break;
4601 	default:
4602 		/* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
4603 
4604 		/* RGB->YCBCR color conversion uses the BT.709 color space. */
4605 		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4606 			vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4607 		break;
4608 	}
4609 
4610 	/*
4611 	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4612 	 * the following Component Bit Depth values are defined:
4613 	 * 001b = 8bpc.
4614 	 * 010b = 10bpc.
4615 	 * 011b = 12bpc.
4616 	 * 100b = 16bpc.
4617 	 */
4618 	switch (crtc_state->pipe_bpp) {
4619 	case 24: /* 8bpc */
4620 		vsc_sdp.db[17] = 0x1;
4621 		break;
4622 	case 30: /* 10bpc */
4623 		vsc_sdp.db[17] = 0x2;
4624 		break;
4625 	case 36: /* 12bpc */
4626 		vsc_sdp.db[17] = 0x3;
4627 		break;
4628 	case 48: /* 16bpc */
4629 		vsc_sdp.db[17] = 0x4;
4630 		break;
4631 	default:
4632 		MISSING_CASE(crtc_state->pipe_bpp);
4633 		break;
4634 	}
4635 
4636 	/*
4637 	 * Dynamic Range (Bit 7)
4638 	 * 0 = VESA range, 1 = CTA range.
4639 	 * all YCbCr are always limited range
4640 	 */
4641 	vsc_sdp.db[17] |= 0x80;
4642 
4643 	/*
4644 	 * Content Type (Bits 2:0)
4645 	 * 000b = Not defined.
4646 	 * 001b = Graphics.
4647 	 * 010b = Photo.
4648 	 * 011b = Video.
4649 	 * 100b = Game
4650 	 * All other values are RESERVED.
4651 	 * Note: See CTA-861-G for the definition and expected
4652 	 * processing by a stream sink for the above contect types.
4653 	 */
4654 	vsc_sdp.db[18] = 0;
4655 
4656 	intel_dig_port->write_infoframe(&intel_dig_port->base,
4657 			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4658 }
4659 
4660 static void
4661 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
4662 					  const struct intel_crtc_state *crtc_state,
4663 					  const struct drm_connector_state *conn_state)
4664 {
4665 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4666 	struct dp_sdp infoframe_sdp = {};
4667 	struct hdmi_drm_infoframe drm_infoframe = {};
4668 	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4669 	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4670 	ssize_t len;
4671 	int ret;
4672 
4673 	ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
4674 	if (ret) {
4675 		DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
4676 		return;
4677 	}
4678 
4679 	len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
4680 	if (len < 0) {
4681 		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4682 		return;
4683 	}
4684 
4685 	if (len != infoframe_size) {
4686 		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4687 		return;
4688 	}
4689 
4690 	/*
4691 	 * Set up the infoframe sdp packet for HDR static metadata.
4692 	 * Prepare VSC Header for SU as per DP 1.4a spec,
4693 	 * Table 2-100 and Table 2-101
4694 	 */
4695 
4696 	/* Packet ID, 00h for non-Audio INFOFRAME */
4697 	infoframe_sdp.sdp_header.HB0 = 0;
4698 	/*
4699 	 * Packet Type 80h + Non-audio INFOFRAME Type value
4700 	 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
4701 	 */
4702 	infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
4703 	/*
4704 	 * Least Significant Eight Bits of (Data Byte Count – 1)
4705 	 * infoframe_size - 1,
4706 	 */
4707 	infoframe_sdp.sdp_header.HB2 = 0x1D;
4708 	/* INFOFRAME SDP Version Number */
4709 	infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
4710 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
4711 	infoframe_sdp.db[0] = drm_infoframe.version;
4712 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4713 	infoframe_sdp.db[1] = drm_infoframe.length;
4714 	/*
4715 	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4716 	 * HDMI_INFOFRAME_HEADER_SIZE
4717 	 */
4718 	BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4719 	memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4720 	       HDMI_DRM_INFOFRAME_SIZE);
4721 
4722 	/*
4723 	 * Size of DP infoframe sdp packet for HDR static metadata is consist of
4724 	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4725 	 * - Two Data Blocks: 2 bytes
4726 	 *    CTA Header Byte2 (INFOFRAME Version Number)
4727 	 *    CTA Header Byte3 (Length of INFOFRAME)
4728 	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4729 	 *
4730 	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4731 	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4732 	 * will pad rest of the size.
4733 	 */
4734 	intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
4735 					HDMI_PACKET_TYPE_GAMUT_METADATA,
4736 					&infoframe_sdp,
4737 					sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
4738 }
4739 
4740 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
4741 			 const struct intel_crtc_state *crtc_state,
4742 			 const struct drm_connector_state *conn_state)
4743 {
4744 	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4745 		return;
4746 
4747 	intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4748 }
4749 
4750 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
4751 				  const struct intel_crtc_state *crtc_state,
4752 				  const struct drm_connector_state *conn_state)
4753 {
4754 	if (!conn_state->hdr_output_metadata)
4755 		return;
4756 
4757 	intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
4758 						  crtc_state,
4759 						  conn_state);
4760 }
4761 
4762 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4763 {
4764 	int status = 0;
4765 	int test_link_rate;
4766 	u8 test_lane_count, test_link_bw;
4767 	/* (DP CTS 1.2)
4768 	 * 4.3.1.11
4769 	 */
4770 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4771 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4772 				   &test_lane_count);
4773 
4774 	if (status <= 0) {
4775 		DRM_DEBUG_KMS("Lane count read failed\n");
4776 		return DP_TEST_NAK;
4777 	}
4778 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4779 
4780 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4781 				   &test_link_bw);
4782 	if (status <= 0) {
4783 		DRM_DEBUG_KMS("Link Rate read failed\n");
4784 		return DP_TEST_NAK;
4785 	}
4786 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4787 
4788 	/* Validate the requested link rate and lane count */
4789 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4790 					test_lane_count))
4791 		return DP_TEST_NAK;
4792 
4793 	intel_dp->compliance.test_lane_count = test_lane_count;
4794 	intel_dp->compliance.test_link_rate = test_link_rate;
4795 
4796 	return DP_TEST_ACK;
4797 }
4798 
4799 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4800 {
4801 	u8 test_pattern;
4802 	u8 test_misc;
4803 	__be16 h_width, v_height;
4804 	int status = 0;
4805 
4806 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4807 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4808 				   &test_pattern);
4809 	if (status <= 0) {
4810 		DRM_DEBUG_KMS("Test pattern read failed\n");
4811 		return DP_TEST_NAK;
4812 	}
4813 	if (test_pattern != DP_COLOR_RAMP)
4814 		return DP_TEST_NAK;
4815 
4816 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4817 				  &h_width, 2);
4818 	if (status <= 0) {
4819 		DRM_DEBUG_KMS("H Width read failed\n");
4820 		return DP_TEST_NAK;
4821 	}
4822 
4823 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4824 				  &v_height, 2);
4825 	if (status <= 0) {
4826 		DRM_DEBUG_KMS("V Height read failed\n");
4827 		return DP_TEST_NAK;
4828 	}
4829 
4830 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4831 				   &test_misc);
4832 	if (status <= 0) {
4833 		DRM_DEBUG_KMS("TEST MISC read failed\n");
4834 		return DP_TEST_NAK;
4835 	}
4836 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4837 		return DP_TEST_NAK;
4838 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4839 		return DP_TEST_NAK;
4840 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4841 	case DP_TEST_BIT_DEPTH_6:
4842 		intel_dp->compliance.test_data.bpc = 6;
4843 		break;
4844 	case DP_TEST_BIT_DEPTH_8:
4845 		intel_dp->compliance.test_data.bpc = 8;
4846 		break;
4847 	default:
4848 		return DP_TEST_NAK;
4849 	}
4850 
4851 	intel_dp->compliance.test_data.video_pattern = test_pattern;
4852 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4853 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4854 	/* Set test active flag here so userspace doesn't interrupt things */
4855 	intel_dp->compliance.test_active = 1;
4856 
4857 	return DP_TEST_ACK;
4858 }
4859 
4860 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4861 {
4862 	u8 test_result = DP_TEST_ACK;
4863 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4864 	struct drm_connector *connector = &intel_connector->base;
4865 
4866 	if (intel_connector->detect_edid == NULL ||
4867 	    connector->edid_corrupt ||
4868 	    intel_dp->aux.i2c_defer_count > 6) {
4869 		/* Check EDID read for NACKs, DEFERs and corruption
4870 		 * (DP CTS 1.2 Core r1.1)
4871 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
4872 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
4873 		 *    4.2.2.6 : EDID corruption detected
4874 		 * Use failsafe mode for all cases
4875 		 */
4876 		if (intel_dp->aux.i2c_nack_count > 0 ||
4877 			intel_dp->aux.i2c_defer_count > 0)
4878 			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4879 				      intel_dp->aux.i2c_nack_count,
4880 				      intel_dp->aux.i2c_defer_count);
4881 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4882 	} else {
4883 		struct edid *block = intel_connector->detect_edid;
4884 
4885 		/* We have to write the checksum
4886 		 * of the last block read
4887 		 */
4888 		block += intel_connector->detect_edid->extensions;
4889 
4890 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4891 				       block->checksum) <= 0)
4892 			DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4893 
4894 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4895 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4896 	}
4897 
4898 	/* Set test active flag here so userspace doesn't interrupt things */
4899 	intel_dp->compliance.test_active = 1;
4900 
4901 	return test_result;
4902 }
4903 
4904 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4905 {
4906 	u8 test_result = DP_TEST_NAK;
4907 	return test_result;
4908 }
4909 
4910 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4911 {
4912 	u8 response = DP_TEST_NAK;
4913 	u8 request = 0;
4914 	int status;
4915 
4916 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4917 	if (status <= 0) {
4918 		DRM_DEBUG_KMS("Could not read test request from sink\n");
4919 		goto update_status;
4920 	}
4921 
4922 	switch (request) {
4923 	case DP_TEST_LINK_TRAINING:
4924 		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4925 		response = intel_dp_autotest_link_training(intel_dp);
4926 		break;
4927 	case DP_TEST_LINK_VIDEO_PATTERN:
4928 		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4929 		response = intel_dp_autotest_video_pattern(intel_dp);
4930 		break;
4931 	case DP_TEST_LINK_EDID_READ:
4932 		DRM_DEBUG_KMS("EDID test requested\n");
4933 		response = intel_dp_autotest_edid(intel_dp);
4934 		break;
4935 	case DP_TEST_LINK_PHY_TEST_PATTERN:
4936 		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4937 		response = intel_dp_autotest_phy_pattern(intel_dp);
4938 		break;
4939 	default:
4940 		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4941 		break;
4942 	}
4943 
4944 	if (response & DP_TEST_ACK)
4945 		intel_dp->compliance.test_type = request;
4946 
4947 update_status:
4948 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4949 	if (status <= 0)
4950 		DRM_DEBUG_KMS("Could not write test response to sink\n");
4951 }
4952 
4953 static int
4954 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4955 {
4956 	bool bret;
4957 
4958 	if (intel_dp->is_mst) {
4959 		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4960 		int ret = 0;
4961 		int retry;
4962 		bool handled;
4963 
4964 		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4965 		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4966 go_again:
4967 		if (bret == true) {
4968 
4969 			/* check link status - esi[10] = 0x200c */
4970 			if (intel_dp->active_mst_links > 0 &&
4971 			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4972 				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4973 				intel_dp_start_link_train(intel_dp);
4974 				intel_dp_stop_link_train(intel_dp);
4975 			}
4976 
4977 			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4978 			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4979 
4980 			if (handled) {
4981 				for (retry = 0; retry < 3; retry++) {
4982 					int wret;
4983 					wret = drm_dp_dpcd_write(&intel_dp->aux,
4984 								 DP_SINK_COUNT_ESI+1,
4985 								 &esi[1], 3);
4986 					if (wret == 3) {
4987 						break;
4988 					}
4989 				}
4990 
4991 				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4992 				if (bret == true) {
4993 					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4994 					goto go_again;
4995 				}
4996 			} else
4997 				ret = 0;
4998 
4999 			return ret;
5000 		} else {
5001 			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
5002 			intel_dp->is_mst = false;
5003 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5004 							intel_dp->is_mst);
5005 		}
5006 	}
5007 	return -EINVAL;
5008 }
5009 
5010 static bool
5011 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5012 {
5013 	u8 link_status[DP_LINK_STATUS_SIZE];
5014 
5015 	if (!intel_dp->link_trained)
5016 		return false;
5017 
5018 	/*
5019 	 * While PSR source HW is enabled, it will control main-link sending
5020 	 * frames, enabling and disabling it so trying to do a retrain will fail
5021 	 * as the link would or not be on or it could mix training patterns
5022 	 * and frame data at the same time causing retrain to fail.
5023 	 * Also when exiting PSR, HW will retrain the link anyways fixing
5024 	 * any link status error.
5025 	 */
5026 	if (intel_psr_enabled(intel_dp))
5027 		return false;
5028 
5029 	if (!intel_dp_get_link_status(intel_dp, link_status))
5030 		return false;
5031 
5032 	/*
5033 	 * Validate the cached values of intel_dp->link_rate and
5034 	 * intel_dp->lane_count before attempting to retrain.
5035 	 */
5036 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5037 					intel_dp->lane_count))
5038 		return false;
5039 
5040 	/* Retrain if Channel EQ or CR not ok */
5041 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5042 }
5043 
5044 int intel_dp_retrain_link(struct intel_encoder *encoder,
5045 			  struct drm_modeset_acquire_ctx *ctx)
5046 {
5047 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5048 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
5049 	struct intel_connector *connector = intel_dp->attached_connector;
5050 	struct drm_connector_state *conn_state;
5051 	struct intel_crtc_state *crtc_state;
5052 	struct intel_crtc *crtc;
5053 	int ret;
5054 
5055 	/* FIXME handle the MST connectors as well */
5056 
5057 	if (!connector || connector->base.status != connector_status_connected)
5058 		return 0;
5059 
5060 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5061 			       ctx);
5062 	if (ret)
5063 		return ret;
5064 
5065 	conn_state = connector->base.state;
5066 
5067 	crtc = to_intel_crtc(conn_state->crtc);
5068 	if (!crtc)
5069 		return 0;
5070 
5071 	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5072 	if (ret)
5073 		return ret;
5074 
5075 	crtc_state = to_intel_crtc_state(crtc->base.state);
5076 
5077 	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
5078 
5079 	if (!crtc_state->base.active)
5080 		return 0;
5081 
5082 	if (conn_state->commit &&
5083 	    !try_wait_for_completion(&conn_state->commit->hw_done))
5084 		return 0;
5085 
5086 	if (!intel_dp_needs_link_retrain(intel_dp))
5087 		return 0;
5088 
5089 	/* Suppress underruns caused by re-training */
5090 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5091 	if (crtc_state->has_pch_encoder)
5092 		intel_set_pch_fifo_underrun_reporting(dev_priv,
5093 						      intel_crtc_pch_transcoder(crtc), false);
5094 
5095 	intel_dp_start_link_train(intel_dp);
5096 	intel_dp_stop_link_train(intel_dp);
5097 
5098 	/* Keep underrun reporting disabled until things are stable */
5099 	intel_wait_for_vblank(dev_priv, crtc->pipe);
5100 
5101 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5102 	if (crtc_state->has_pch_encoder)
5103 		intel_set_pch_fifo_underrun_reporting(dev_priv,
5104 						      intel_crtc_pch_transcoder(crtc), true);
5105 
5106 	return 0;
5107 }
5108 
5109 /*
5110  * If display is now connected check links status,
5111  * there has been known issues of link loss triggering
5112  * long pulse.
5113  *
5114  * Some sinks (eg. ASUS PB287Q) seem to perform some
5115  * weird HPD ping pong during modesets. So we can apparently
5116  * end up with HPD going low during a modeset, and then
5117  * going back up soon after. And once that happens we must
5118  * retrain the link to get a picture. That's in case no
5119  * userspace component reacted to intermittent HPD dip.
5120  */
5121 static enum intel_hotplug_state
5122 intel_dp_hotplug(struct intel_encoder *encoder,
5123 		 struct intel_connector *connector,
5124 		 bool irq_received)
5125 {
5126 	struct drm_modeset_acquire_ctx ctx;
5127 	enum intel_hotplug_state state;
5128 	int ret;
5129 
5130 	state = intel_encoder_hotplug(encoder, connector, irq_received);
5131 
5132 	drm_modeset_acquire_init(&ctx, 0);
5133 
5134 	for (;;) {
5135 		ret = intel_dp_retrain_link(encoder, &ctx);
5136 
5137 		if (ret == -EDEADLK) {
5138 			drm_modeset_backoff(&ctx);
5139 			continue;
5140 		}
5141 
5142 		break;
5143 	}
5144 
5145 	drm_modeset_drop_locks(&ctx);
5146 	drm_modeset_acquire_fini(&ctx);
5147 	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
5148 
5149 	/*
5150 	 * Keeping it consistent with intel_ddi_hotplug() and
5151 	 * intel_hdmi_hotplug().
5152 	 */
5153 	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
5154 		state = INTEL_HOTPLUG_RETRY;
5155 
5156 	return state;
5157 }
5158 
5159 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5160 {
5161 	u8 val;
5162 
5163 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5164 		return;
5165 
5166 	if (drm_dp_dpcd_readb(&intel_dp->aux,
5167 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5168 		return;
5169 
5170 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5171 
5172 	if (val & DP_AUTOMATED_TEST_REQUEST)
5173 		intel_dp_handle_test_request(intel_dp);
5174 
5175 	if (val & DP_CP_IRQ)
5176 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5177 
5178 	if (val & DP_SINK_SPECIFIC_IRQ)
5179 		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5180 }
5181 
5182 /*
5183  * According to DP spec
5184  * 5.1.2:
5185  *  1. Read DPCD
5186  *  2. Configure link according to Receiver Capabilities
5187  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5188  *  4. Check link status on receipt of hot-plug interrupt
5189  *
5190  * intel_dp_short_pulse -  handles short pulse interrupts
5191  * when full detection is not required.
5192  * Returns %true if short pulse is handled and full detection
5193  * is NOT required and %false otherwise.
5194  */
5195 static bool
5196 intel_dp_short_pulse(struct intel_dp *intel_dp)
5197 {
5198 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5199 	u8 old_sink_count = intel_dp->sink_count;
5200 	bool ret;
5201 
5202 	/*
5203 	 * Clearing compliance test variables to allow capturing
5204 	 * of values for next automated test request.
5205 	 */
5206 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5207 
5208 	/*
5209 	 * Now read the DPCD to see if it's actually running
5210 	 * If the current value of sink count doesn't match with
5211 	 * the value that was stored earlier or dpcd read failed
5212 	 * we need to do full detection
5213 	 */
5214 	ret = intel_dp_get_dpcd(intel_dp);
5215 
5216 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
5217 		/* No need to proceed if we are going to do full detect */
5218 		return false;
5219 	}
5220 
5221 	intel_dp_check_service_irq(intel_dp);
5222 
5223 	/* Handle CEC interrupts, if any */
5224 	drm_dp_cec_irq(&intel_dp->aux);
5225 
5226 	/* defer to the hotplug work for link retraining if needed */
5227 	if (intel_dp_needs_link_retrain(intel_dp))
5228 		return false;
5229 
5230 	intel_psr_short_pulse(intel_dp);
5231 
5232 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5233 		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
5234 		/* Send a Hotplug Uevent to userspace to start modeset */
5235 		drm_kms_helper_hotplug_event(&dev_priv->drm);
5236 	}
5237 
5238 	return true;
5239 }
5240 
5241 /* XXX this is probably wrong for multiple downstream ports */
5242 static enum drm_connector_status
5243 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5244 {
5245 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5246 	u8 *dpcd = intel_dp->dpcd;
5247 	u8 type;
5248 
5249 	if (WARN_ON(intel_dp_is_edp(intel_dp)))
5250 		return connector_status_connected;
5251 
5252 	if (lspcon->active)
5253 		lspcon_resume(lspcon);
5254 
5255 	if (!intel_dp_get_dpcd(intel_dp))
5256 		return connector_status_disconnected;
5257 
5258 	/* if there's no downstream port, we're done */
5259 	if (!drm_dp_is_branch(dpcd))
5260 		return connector_status_connected;
5261 
5262 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5263 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5264 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5265 
5266 		return intel_dp->sink_count ?
5267 		connector_status_connected : connector_status_disconnected;
5268 	}
5269 
5270 	if (intel_dp_can_mst(intel_dp))
5271 		return connector_status_connected;
5272 
5273 	/* If no HPD, poke DDC gently */
5274 	if (drm_probe_ddc(&intel_dp->aux.ddc))
5275 		return connector_status_connected;
5276 
5277 	/* Well we tried, say unknown for unreliable port types */
5278 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5279 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5280 		if (type == DP_DS_PORT_TYPE_VGA ||
5281 		    type == DP_DS_PORT_TYPE_NON_EDID)
5282 			return connector_status_unknown;
5283 	} else {
5284 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5285 			DP_DWN_STRM_PORT_TYPE_MASK;
5286 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5287 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
5288 			return connector_status_unknown;
5289 	}
5290 
5291 	/* Anything else is out of spec, warn and ignore */
5292 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5293 	return connector_status_disconnected;
5294 }
5295 
5296 static enum drm_connector_status
5297 edp_detect(struct intel_dp *intel_dp)
5298 {
5299 	return connector_status_connected;
5300 }
5301 
5302 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5303 {
5304 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5305 	u32 bit;
5306 
5307 	switch (encoder->hpd_pin) {
5308 	case HPD_PORT_B:
5309 		bit = SDE_PORTB_HOTPLUG;
5310 		break;
5311 	case HPD_PORT_C:
5312 		bit = SDE_PORTC_HOTPLUG;
5313 		break;
5314 	case HPD_PORT_D:
5315 		bit = SDE_PORTD_HOTPLUG;
5316 		break;
5317 	default:
5318 		MISSING_CASE(encoder->hpd_pin);
5319 		return false;
5320 	}
5321 
5322 	return I915_READ(SDEISR) & bit;
5323 }
5324 
5325 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5326 {
5327 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5328 	u32 bit;
5329 
5330 	switch (encoder->hpd_pin) {
5331 	case HPD_PORT_B:
5332 		bit = SDE_PORTB_HOTPLUG_CPT;
5333 		break;
5334 	case HPD_PORT_C:
5335 		bit = SDE_PORTC_HOTPLUG_CPT;
5336 		break;
5337 	case HPD_PORT_D:
5338 		bit = SDE_PORTD_HOTPLUG_CPT;
5339 		break;
5340 	default:
5341 		MISSING_CASE(encoder->hpd_pin);
5342 		return false;
5343 	}
5344 
5345 	return I915_READ(SDEISR) & bit;
5346 }
5347 
5348 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5349 {
5350 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5351 	u32 bit;
5352 
5353 	switch (encoder->hpd_pin) {
5354 	case HPD_PORT_A:
5355 		bit = SDE_PORTA_HOTPLUG_SPT;
5356 		break;
5357 	case HPD_PORT_E:
5358 		bit = SDE_PORTE_HOTPLUG_SPT;
5359 		break;
5360 	default:
5361 		return cpt_digital_port_connected(encoder);
5362 	}
5363 
5364 	return I915_READ(SDEISR) & bit;
5365 }
5366 
5367 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5368 {
5369 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5370 	u32 bit;
5371 
5372 	switch (encoder->hpd_pin) {
5373 	case HPD_PORT_B:
5374 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5375 		break;
5376 	case HPD_PORT_C:
5377 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5378 		break;
5379 	case HPD_PORT_D:
5380 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5381 		break;
5382 	default:
5383 		MISSING_CASE(encoder->hpd_pin);
5384 		return false;
5385 	}
5386 
5387 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5388 }
5389 
5390 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5391 {
5392 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5393 	u32 bit;
5394 
5395 	switch (encoder->hpd_pin) {
5396 	case HPD_PORT_B:
5397 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5398 		break;
5399 	case HPD_PORT_C:
5400 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5401 		break;
5402 	case HPD_PORT_D:
5403 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5404 		break;
5405 	default:
5406 		MISSING_CASE(encoder->hpd_pin);
5407 		return false;
5408 	}
5409 
5410 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5411 }
5412 
5413 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5414 {
5415 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5416 
5417 	if (encoder->hpd_pin == HPD_PORT_A)
5418 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5419 	else
5420 		return ibx_digital_port_connected(encoder);
5421 }
5422 
5423 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5424 {
5425 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5426 
5427 	if (encoder->hpd_pin == HPD_PORT_A)
5428 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5429 	else
5430 		return cpt_digital_port_connected(encoder);
5431 }
5432 
5433 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5434 {
5435 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5436 
5437 	if (encoder->hpd_pin == HPD_PORT_A)
5438 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5439 	else
5440 		return cpt_digital_port_connected(encoder);
5441 }
5442 
5443 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5444 {
5445 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5446 
5447 	if (encoder->hpd_pin == HPD_PORT_A)
5448 		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5449 	else
5450 		return cpt_digital_port_connected(encoder);
5451 }
5452 
5453 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5454 {
5455 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5456 	u32 bit;
5457 
5458 	switch (encoder->hpd_pin) {
5459 	case HPD_PORT_A:
5460 		bit = BXT_DE_PORT_HP_DDIA;
5461 		break;
5462 	case HPD_PORT_B:
5463 		bit = BXT_DE_PORT_HP_DDIB;
5464 		break;
5465 	case HPD_PORT_C:
5466 		bit = BXT_DE_PORT_HP_DDIC;
5467 		break;
5468 	default:
5469 		MISSING_CASE(encoder->hpd_pin);
5470 		return false;
5471 	}
5472 
5473 	return I915_READ(GEN8_DE_PORT_ISR) & bit;
5474 }
5475 
5476 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
5477 				      enum phy phy)
5478 {
5479 	if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5480 		return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5481 
5482 	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5483 }
5484 
5485 static bool icl_digital_port_connected(struct intel_encoder *encoder)
5486 {
5487 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5488 	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5489 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5490 
5491 	if (intel_phy_is_combo(dev_priv, phy))
5492 		return intel_combo_phy_connected(dev_priv, phy);
5493 	else if (intel_phy_is_tc(dev_priv, phy))
5494 		return intel_tc_port_connected(dig_port);
5495 	else
5496 		MISSING_CASE(encoder->hpd_pin);
5497 
5498 	return false;
5499 }
5500 
5501 /*
5502  * intel_digital_port_connected - is the specified port connected?
5503  * @encoder: intel_encoder
5504  *
5505  * In cases where there's a connector physically connected but it can't be used
5506  * by our hardware we also return false, since the rest of the driver should
5507  * pretty much treat the port as disconnected. This is relevant for type-C
5508  * (starting on ICL) where there's ownership involved.
5509  *
5510  * Return %true if port is connected, %false otherwise.
5511  */
5512 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5513 {
5514 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5515 
5516 	if (HAS_GMCH(dev_priv)) {
5517 		if (IS_GM45(dev_priv))
5518 			return gm45_digital_port_connected(encoder);
5519 		else
5520 			return g4x_digital_port_connected(encoder);
5521 	}
5522 
5523 	if (INTEL_GEN(dev_priv) >= 11)
5524 		return icl_digital_port_connected(encoder);
5525 	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5526 		return spt_digital_port_connected(encoder);
5527 	else if (IS_GEN9_LP(dev_priv))
5528 		return bxt_digital_port_connected(encoder);
5529 	else if (IS_GEN(dev_priv, 8))
5530 		return bdw_digital_port_connected(encoder);
5531 	else if (IS_GEN(dev_priv, 7))
5532 		return ivb_digital_port_connected(encoder);
5533 	else if (IS_GEN(dev_priv, 6))
5534 		return snb_digital_port_connected(encoder);
5535 	else if (IS_GEN(dev_priv, 5))
5536 		return ilk_digital_port_connected(encoder);
5537 
5538 	MISSING_CASE(INTEL_GEN(dev_priv));
5539 	return false;
5540 }
5541 
5542 bool intel_digital_port_connected(struct intel_encoder *encoder)
5543 {
5544 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5545 	bool is_connected = false;
5546 	intel_wakeref_t wakeref;
5547 
5548 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5549 		is_connected = __intel_digital_port_connected(encoder);
5550 
5551 	return is_connected;
5552 }
5553 
5554 static struct edid *
5555 intel_dp_get_edid(struct intel_dp *intel_dp)
5556 {
5557 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5558 
5559 	/* use cached edid if we have one */
5560 	if (intel_connector->edid) {
5561 		/* invalid edid */
5562 		if (IS_ERR(intel_connector->edid))
5563 			return NULL;
5564 
5565 		return drm_edid_duplicate(intel_connector->edid);
5566 	} else
5567 		return drm_get_edid(&intel_connector->base,
5568 				    &intel_dp->aux.ddc);
5569 }
5570 
5571 static void
5572 intel_dp_set_edid(struct intel_dp *intel_dp)
5573 {
5574 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5575 	struct edid *edid;
5576 
5577 	intel_dp_unset_edid(intel_dp);
5578 	edid = intel_dp_get_edid(intel_dp);
5579 	intel_connector->detect_edid = edid;
5580 
5581 	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5582 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5583 }
5584 
5585 static void
5586 intel_dp_unset_edid(struct intel_dp *intel_dp)
5587 {
5588 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5589 
5590 	drm_dp_cec_unset_edid(&intel_dp->aux);
5591 	kfree(intel_connector->detect_edid);
5592 	intel_connector->detect_edid = NULL;
5593 
5594 	intel_dp->has_audio = false;
5595 }
5596 
5597 static int
5598 intel_dp_detect(struct drm_connector *connector,
5599 		struct drm_modeset_acquire_ctx *ctx,
5600 		bool force)
5601 {
5602 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5603 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5604 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5605 	struct intel_encoder *encoder = &dig_port->base;
5606 	enum drm_connector_status status;
5607 
5608 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5609 		      connector->base.id, connector->name);
5610 	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5611 
5612 	/* Can't disconnect eDP */
5613 	if (intel_dp_is_edp(intel_dp))
5614 		status = edp_detect(intel_dp);
5615 	else if (intel_digital_port_connected(encoder))
5616 		status = intel_dp_detect_dpcd(intel_dp);
5617 	else
5618 		status = connector_status_disconnected;
5619 
5620 	if (status == connector_status_disconnected) {
5621 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5622 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5623 
5624 		if (intel_dp->is_mst) {
5625 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5626 				      intel_dp->is_mst,
5627 				      intel_dp->mst_mgr.mst_state);
5628 			intel_dp->is_mst = false;
5629 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5630 							intel_dp->is_mst);
5631 		}
5632 
5633 		goto out;
5634 	}
5635 
5636 	if (intel_dp->reset_link_params) {
5637 		/* Initial max link lane count */
5638 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5639 
5640 		/* Initial max link rate */
5641 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5642 
5643 		intel_dp->reset_link_params = false;
5644 	}
5645 
5646 	intel_dp_print_rates(intel_dp);
5647 
5648 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5649 	if (INTEL_GEN(dev_priv) >= 11)
5650 		intel_dp_get_dsc_sink_cap(intel_dp);
5651 
5652 	intel_dp_configure_mst(intel_dp);
5653 
5654 	if (intel_dp->is_mst) {
5655 		/*
5656 		 * If we are in MST mode then this connector
5657 		 * won't appear connected or have anything
5658 		 * with EDID on it
5659 		 */
5660 		status = connector_status_disconnected;
5661 		goto out;
5662 	}
5663 
5664 	/*
5665 	 * Some external monitors do not signal loss of link synchronization
5666 	 * with an IRQ_HPD, so force a link status check.
5667 	 */
5668 	if (!intel_dp_is_edp(intel_dp)) {
5669 		int ret;
5670 
5671 		ret = intel_dp_retrain_link(encoder, ctx);
5672 		if (ret)
5673 			return ret;
5674 	}
5675 
5676 	/*
5677 	 * Clearing NACK and defer counts to get their exact values
5678 	 * while reading EDID which are required by Compliance tests
5679 	 * 4.2.2.4 and 4.2.2.5
5680 	 */
5681 	intel_dp->aux.i2c_nack_count = 0;
5682 	intel_dp->aux.i2c_defer_count = 0;
5683 
5684 	intel_dp_set_edid(intel_dp);
5685 	if (intel_dp_is_edp(intel_dp) ||
5686 	    to_intel_connector(connector)->detect_edid)
5687 		status = connector_status_connected;
5688 
5689 	intel_dp_check_service_irq(intel_dp);
5690 
5691 out:
5692 	if (status != connector_status_connected && !intel_dp->is_mst)
5693 		intel_dp_unset_edid(intel_dp);
5694 
5695 	/*
5696 	 * Make sure the refs for power wells enabled during detect are
5697 	 * dropped to avoid a new detect cycle triggered by HPD polling.
5698 	 */
5699 	intel_display_power_flush_work(dev_priv);
5700 
5701 	return status;
5702 }
5703 
5704 static void
5705 intel_dp_force(struct drm_connector *connector)
5706 {
5707 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5708 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5709 	struct intel_encoder *intel_encoder = &dig_port->base;
5710 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5711 	enum intel_display_power_domain aux_domain =
5712 		intel_aux_power_domain(dig_port);
5713 	intel_wakeref_t wakeref;
5714 
5715 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5716 		      connector->base.id, connector->name);
5717 	intel_dp_unset_edid(intel_dp);
5718 
5719 	if (connector->status != connector_status_connected)
5720 		return;
5721 
5722 	wakeref = intel_display_power_get(dev_priv, aux_domain);
5723 
5724 	intel_dp_set_edid(intel_dp);
5725 
5726 	intel_display_power_put(dev_priv, aux_domain, wakeref);
5727 }
5728 
5729 static int intel_dp_get_modes(struct drm_connector *connector)
5730 {
5731 	struct intel_connector *intel_connector = to_intel_connector(connector);
5732 	struct edid *edid;
5733 
5734 	edid = intel_connector->detect_edid;
5735 	if (edid) {
5736 		int ret = intel_connector_update_modes(connector, edid);
5737 		if (ret)
5738 			return ret;
5739 	}
5740 
5741 	/* if eDP has no EDID, fall back to fixed mode */
5742 	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5743 	    intel_connector->panel.fixed_mode) {
5744 		struct drm_display_mode *mode;
5745 
5746 		mode = drm_mode_duplicate(connector->dev,
5747 					  intel_connector->panel.fixed_mode);
5748 		if (mode) {
5749 			drm_mode_probed_add(connector, mode);
5750 			return 1;
5751 		}
5752 	}
5753 
5754 	return 0;
5755 }
5756 
5757 static int
5758 intel_dp_connector_register(struct drm_connector *connector)
5759 {
5760 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5761 	int ret;
5762 
5763 	ret = intel_connector_register(connector);
5764 	if (ret)
5765 		return ret;
5766 
5767 	i915_debugfs_connector_add(connector);
5768 
5769 	DRM_DEBUG_KMS("registering %s bus for %s\n",
5770 		      intel_dp->aux.name, connector->kdev->kobj.name);
5771 
5772 	intel_dp->aux.dev = connector->kdev;
5773 	ret = drm_dp_aux_register(&intel_dp->aux);
5774 	if (!ret)
5775 		drm_dp_cec_register_connector(&intel_dp->aux, connector);
5776 	return ret;
5777 }
5778 
5779 static void
5780 intel_dp_connector_unregister(struct drm_connector *connector)
5781 {
5782 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5783 
5784 	drm_dp_cec_unregister_connector(&intel_dp->aux);
5785 	drm_dp_aux_unregister(&intel_dp->aux);
5786 	intel_connector_unregister(connector);
5787 }
5788 
5789 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5790 {
5791 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5792 	struct intel_dp *intel_dp = &intel_dig_port->dp;
5793 
5794 	intel_dp_mst_encoder_cleanup(intel_dig_port);
5795 	if (intel_dp_is_edp(intel_dp)) {
5796 		intel_wakeref_t wakeref;
5797 
5798 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5799 		/*
5800 		 * vdd might still be enabled do to the delayed vdd off.
5801 		 * Make sure vdd is actually turned off here.
5802 		 */
5803 		with_pps_lock(intel_dp, wakeref)
5804 			edp_panel_vdd_off_sync(intel_dp);
5805 
5806 		if (intel_dp->edp_notifier.notifier_call) {
5807 			unregister_reboot_notifier(&intel_dp->edp_notifier);
5808 			intel_dp->edp_notifier.notifier_call = NULL;
5809 		}
5810 	}
5811 
5812 	intel_dp_aux_fini(intel_dp);
5813 }
5814 
5815 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5816 {
5817 	intel_dp_encoder_flush_work(encoder);
5818 
5819 	drm_encoder_cleanup(encoder);
5820 	kfree(enc_to_dig_port(encoder));
5821 }
5822 
5823 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5824 {
5825 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5826 	intel_wakeref_t wakeref;
5827 
5828 	if (!intel_dp_is_edp(intel_dp))
5829 		return;
5830 
5831 	/*
5832 	 * vdd might still be enabled do to the delayed vdd off.
5833 	 * Make sure vdd is actually turned off here.
5834 	 */
5835 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5836 	with_pps_lock(intel_dp, wakeref)
5837 		edp_panel_vdd_off_sync(intel_dp);
5838 }
5839 
5840 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5841 {
5842 	long ret;
5843 
5844 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5845 	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5846 					       msecs_to_jiffies(timeout));
5847 
5848 	if (!ret)
5849 		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5850 }
5851 
5852 static
5853 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5854 				u8 *an)
5855 {
5856 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5857 	static const struct drm_dp_aux_msg msg = {
5858 		.request = DP_AUX_NATIVE_WRITE,
5859 		.address = DP_AUX_HDCP_AKSV,
5860 		.size = DRM_HDCP_KSV_LEN,
5861 	};
5862 	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5863 	ssize_t dpcd_ret;
5864 	int ret;
5865 
5866 	/* Output An first, that's easy */
5867 	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5868 				     an, DRM_HDCP_AN_LEN);
5869 	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5870 		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5871 			      dpcd_ret);
5872 		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5873 	}
5874 
5875 	/*
5876 	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5877 	 * order to get it on the wire, we need to create the AUX header as if
5878 	 * we were writing the data, and then tickle the hardware to output the
5879 	 * data once the header is sent out.
5880 	 */
5881 	intel_dp_aux_header(txbuf, &msg);
5882 
5883 	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5884 				rxbuf, sizeof(rxbuf),
5885 				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5886 	if (ret < 0) {
5887 		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5888 		return ret;
5889 	} else if (ret == 0) {
5890 		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5891 		return -EIO;
5892 	}
5893 
5894 	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5895 	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5896 		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5897 			      reply);
5898 		return -EIO;
5899 	}
5900 	return 0;
5901 }
5902 
5903 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5904 				   u8 *bksv)
5905 {
5906 	ssize_t ret;
5907 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5908 			       DRM_HDCP_KSV_LEN);
5909 	if (ret != DRM_HDCP_KSV_LEN) {
5910 		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5911 		return ret >= 0 ? -EIO : ret;
5912 	}
5913 	return 0;
5914 }
5915 
5916 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5917 				      u8 *bstatus)
5918 {
5919 	ssize_t ret;
5920 	/*
5921 	 * For some reason the HDMI and DP HDCP specs call this register
5922 	 * definition by different names. In the HDMI spec, it's called BSTATUS,
5923 	 * but in DP it's called BINFO.
5924 	 */
5925 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5926 			       bstatus, DRM_HDCP_BSTATUS_LEN);
5927 	if (ret != DRM_HDCP_BSTATUS_LEN) {
5928 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5929 		return ret >= 0 ? -EIO : ret;
5930 	}
5931 	return 0;
5932 }
5933 
5934 static
5935 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5936 			     u8 *bcaps)
5937 {
5938 	ssize_t ret;
5939 
5940 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5941 			       bcaps, 1);
5942 	if (ret != 1) {
5943 		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5944 		return ret >= 0 ? -EIO : ret;
5945 	}
5946 
5947 	return 0;
5948 }
5949 
5950 static
5951 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5952 				   bool *repeater_present)
5953 {
5954 	ssize_t ret;
5955 	u8 bcaps;
5956 
5957 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5958 	if (ret)
5959 		return ret;
5960 
5961 	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5962 	return 0;
5963 }
5964 
5965 static
5966 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5967 				u8 *ri_prime)
5968 {
5969 	ssize_t ret;
5970 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5971 			       ri_prime, DRM_HDCP_RI_LEN);
5972 	if (ret != DRM_HDCP_RI_LEN) {
5973 		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5974 		return ret >= 0 ? -EIO : ret;
5975 	}
5976 	return 0;
5977 }
5978 
5979 static
5980 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5981 				 bool *ksv_ready)
5982 {
5983 	ssize_t ret;
5984 	u8 bstatus;
5985 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5986 			       &bstatus, 1);
5987 	if (ret != 1) {
5988 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5989 		return ret >= 0 ? -EIO : ret;
5990 	}
5991 	*ksv_ready = bstatus & DP_BSTATUS_READY;
5992 	return 0;
5993 }
5994 
5995 static
5996 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
5997 				int num_downstream, u8 *ksv_fifo)
5998 {
5999 	ssize_t ret;
6000 	int i;
6001 
6002 	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6003 	for (i = 0; i < num_downstream; i += 3) {
6004 		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6005 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6006 				       DP_AUX_HDCP_KSV_FIFO,
6007 				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
6008 				       len);
6009 		if (ret != len) {
6010 			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
6011 				      i, ret);
6012 			return ret >= 0 ? -EIO : ret;
6013 		}
6014 	}
6015 	return 0;
6016 }
6017 
6018 static
6019 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6020 				    int i, u32 *part)
6021 {
6022 	ssize_t ret;
6023 
6024 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6025 		return -EINVAL;
6026 
6027 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6028 			       DP_AUX_HDCP_V_PRIME(i), part,
6029 			       DRM_HDCP_V_PRIME_PART_LEN);
6030 	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6031 		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6032 		return ret >= 0 ? -EIO : ret;
6033 	}
6034 	return 0;
6035 }
6036 
6037 static
6038 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6039 				    bool enable)
6040 {
6041 	/* Not used for single stream DisplayPort setups */
6042 	return 0;
6043 }
6044 
6045 static
6046 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6047 {
6048 	ssize_t ret;
6049 	u8 bstatus;
6050 
6051 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6052 			       &bstatus, 1);
6053 	if (ret != 1) {
6054 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6055 		return false;
6056 	}
6057 
6058 	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6059 }
6060 
6061 static
6062 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6063 			  bool *hdcp_capable)
6064 {
6065 	ssize_t ret;
6066 	u8 bcaps;
6067 
6068 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6069 	if (ret)
6070 		return ret;
6071 
6072 	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6073 	return 0;
6074 }
6075 
6076 struct hdcp2_dp_errata_stream_type {
6077 	u8	msg_id;
6078 	u8	stream_type;
6079 } __packed;
6080 
6081 struct hdcp2_dp_msg_data {
6082 	u8 msg_id;
6083 	u32 offset;
6084 	bool msg_detectable;
6085 	u32 timeout;
6086 	u32 timeout2; /* Added for non_paired situation */
6087 };
6088 
6089 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6090 	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6091 	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6092 	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6093 	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6094 	  false, 0, 0 },
6095 	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6096 	  false, 0, 0 },
6097 	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6098 	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6099 	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6100 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
6101 	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6102 	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6103 	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6104 	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6105 	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6106 	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6107 	  0, 0 },
6108 	{ HDCP_2_2_REP_SEND_RECVID_LIST,
6109 	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6110 	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6111 	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6112 	  0, 0 },
6113 	{ HDCP_2_2_REP_STREAM_MANAGE,
6114 	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6115 	  0, 0 },
6116 	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6117 	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6118 /* local define to shovel this through the write_2_2 interface */
6119 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6120 	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6121 	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6122 	  0, 0 },
6123 };
6124 
6125 static inline
6126 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6127 				  u8 *rx_status)
6128 {
6129 	ssize_t ret;
6130 
6131 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6132 			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6133 			       HDCP_2_2_DP_RXSTATUS_LEN);
6134 	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6135 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6136 		return ret >= 0 ? -EIO : ret;
6137 	}
6138 
6139 	return 0;
6140 }
6141 
6142 static
6143 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6144 				  u8 msg_id, bool *msg_ready)
6145 {
6146 	u8 rx_status;
6147 	int ret;
6148 
6149 	*msg_ready = false;
6150 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6151 	if (ret < 0)
6152 		return ret;
6153 
6154 	switch (msg_id) {
6155 	case HDCP_2_2_AKE_SEND_HPRIME:
6156 		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6157 			*msg_ready = true;
6158 		break;
6159 	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6160 		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6161 			*msg_ready = true;
6162 		break;
6163 	case HDCP_2_2_REP_SEND_RECVID_LIST:
6164 		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6165 			*msg_ready = true;
6166 		break;
6167 	default:
6168 		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6169 		return -EINVAL;
6170 	}
6171 
6172 	return 0;
6173 }
6174 
6175 static ssize_t
6176 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6177 			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6178 {
6179 	struct intel_dp *dp = &intel_dig_port->dp;
6180 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6181 	u8 msg_id = hdcp2_msg_data->msg_id;
6182 	int ret, timeout;
6183 	bool msg_ready = false;
6184 
6185 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6186 		timeout = hdcp2_msg_data->timeout2;
6187 	else
6188 		timeout = hdcp2_msg_data->timeout;
6189 
6190 	/*
6191 	 * There is no way to detect the CERT, LPRIME and STREAM_READY
6192 	 * availability. So Wait for timeout and read the msg.
6193 	 */
6194 	if (!hdcp2_msg_data->msg_detectable) {
6195 		mdelay(timeout);
6196 		ret = 0;
6197 	} else {
6198 		/*
6199 		 * As we want to check the msg availability at timeout, Ignoring
6200 		 * the timeout at wait for CP_IRQ.
6201 		 */
6202 		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6203 		ret = hdcp2_detect_msg_availability(intel_dig_port,
6204 						    msg_id, &msg_ready);
6205 		if (!msg_ready)
6206 			ret = -ETIMEDOUT;
6207 	}
6208 
6209 	if (ret)
6210 		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6211 			      hdcp2_msg_data->msg_id, ret, timeout);
6212 
6213 	return ret;
6214 }
6215 
6216 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6217 {
6218 	int i;
6219 
6220 	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6221 		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6222 			return &hdcp2_dp_msg_data[i];
6223 
6224 	return NULL;
6225 }
6226 
6227 static
6228 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6229 			     void *buf, size_t size)
6230 {
6231 	struct intel_dp *dp = &intel_dig_port->dp;
6232 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6233 	unsigned int offset;
6234 	u8 *byte = buf;
6235 	ssize_t ret, bytes_to_write, len;
6236 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6237 
6238 	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6239 	if (!hdcp2_msg_data)
6240 		return -EINVAL;
6241 
6242 	offset = hdcp2_msg_data->offset;
6243 
6244 	/* No msg_id in DP HDCP2.2 msgs */
6245 	bytes_to_write = size - 1;
6246 	byte++;
6247 
6248 	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6249 
6250 	while (bytes_to_write) {
6251 		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6252 				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6253 
6254 		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6255 					offset, (void *)byte, len);
6256 		if (ret < 0)
6257 			return ret;
6258 
6259 		bytes_to_write -= ret;
6260 		byte += ret;
6261 		offset += ret;
6262 	}
6263 
6264 	return size;
6265 }
6266 
6267 static
6268 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6269 {
6270 	u8 rx_info[HDCP_2_2_RXINFO_LEN];
6271 	u32 dev_cnt;
6272 	ssize_t ret;
6273 
6274 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6275 			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
6276 			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6277 	if (ret != HDCP_2_2_RXINFO_LEN)
6278 		return ret >= 0 ? -EIO : ret;
6279 
6280 	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6281 		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6282 
6283 	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6284 		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6285 
6286 	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6287 		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6288 		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6289 
6290 	return ret;
6291 }
6292 
6293 static
6294 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6295 			    u8 msg_id, void *buf, size_t size)
6296 {
6297 	unsigned int offset;
6298 	u8 *byte = buf;
6299 	ssize_t ret, bytes_to_recv, len;
6300 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6301 
6302 	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6303 	if (!hdcp2_msg_data)
6304 		return -EINVAL;
6305 	offset = hdcp2_msg_data->offset;
6306 
6307 	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6308 	if (ret < 0)
6309 		return ret;
6310 
6311 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6312 		ret = get_receiver_id_list_size(intel_dig_port);
6313 		if (ret < 0)
6314 			return ret;
6315 
6316 		size = ret;
6317 	}
6318 	bytes_to_recv = size - 1;
6319 
6320 	/* DP adaptation msgs has no msg_id */
6321 	byte++;
6322 
6323 	while (bytes_to_recv) {
6324 		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6325 		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6326 
6327 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6328 				       (void *)byte, len);
6329 		if (ret < 0) {
6330 			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6331 			return ret;
6332 		}
6333 
6334 		bytes_to_recv -= ret;
6335 		byte += ret;
6336 		offset += ret;
6337 	}
6338 	byte = buf;
6339 	*byte = msg_id;
6340 
6341 	return size;
6342 }
6343 
6344 static
6345 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6346 				      bool is_repeater, u8 content_type)
6347 {
6348 	struct hdcp2_dp_errata_stream_type stream_type_msg;
6349 
6350 	if (is_repeater)
6351 		return 0;
6352 
6353 	/*
6354 	 * Errata for DP: As Stream type is used for encryption, Receiver
6355 	 * should be communicated with stream type for the decryption of the
6356 	 * content.
6357 	 * Repeater will be communicated with stream type as a part of it's
6358 	 * auth later in time.
6359 	 */
6360 	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6361 	stream_type_msg.stream_type = content_type;
6362 
6363 	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6364 					sizeof(stream_type_msg));
6365 }
6366 
6367 static
6368 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6369 {
6370 	u8 rx_status;
6371 	int ret;
6372 
6373 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6374 	if (ret)
6375 		return ret;
6376 
6377 	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6378 		ret = HDCP_REAUTH_REQUEST;
6379 	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6380 		ret = HDCP_LINK_INTEGRITY_FAILURE;
6381 	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6382 		ret = HDCP_TOPOLOGY_CHANGE;
6383 
6384 	return ret;
6385 }
6386 
6387 static
6388 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6389 			   bool *capable)
6390 {
6391 	u8 rx_caps[3];
6392 	int ret;
6393 
6394 	*capable = false;
6395 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6396 			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6397 			       rx_caps, HDCP_2_2_RXCAPS_LEN);
6398 	if (ret != HDCP_2_2_RXCAPS_LEN)
6399 		return ret >= 0 ? -EIO : ret;
6400 
6401 	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6402 	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6403 		*capable = true;
6404 
6405 	return 0;
6406 }
6407 
6408 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6409 	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
6410 	.read_bksv = intel_dp_hdcp_read_bksv,
6411 	.read_bstatus = intel_dp_hdcp_read_bstatus,
6412 	.repeater_present = intel_dp_hdcp_repeater_present,
6413 	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
6414 	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6415 	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6416 	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6417 	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
6418 	.check_link = intel_dp_hdcp_check_link,
6419 	.hdcp_capable = intel_dp_hdcp_capable,
6420 	.write_2_2_msg = intel_dp_hdcp2_write_msg,
6421 	.read_2_2_msg = intel_dp_hdcp2_read_msg,
6422 	.config_stream_type = intel_dp_hdcp2_config_stream_type,
6423 	.check_2_2_link = intel_dp_hdcp2_check_link,
6424 	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
6425 	.protocol = HDCP_PROTOCOL_DP,
6426 };
6427 
6428 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6429 {
6430 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6431 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6432 
6433 	lockdep_assert_held(&dev_priv->pps_mutex);
6434 
6435 	if (!edp_have_panel_vdd(intel_dp))
6436 		return;
6437 
6438 	/*
6439 	 * The VDD bit needs a power domain reference, so if the bit is
6440 	 * already enabled when we boot or resume, grab this reference and
6441 	 * schedule a vdd off, so we don't hold on to the reference
6442 	 * indefinitely.
6443 	 */
6444 	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6445 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6446 
6447 	edp_panel_vdd_schedule_off(intel_dp);
6448 }
6449 
6450 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6451 {
6452 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6453 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6454 	enum pipe pipe;
6455 
6456 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6457 				  encoder->port, &pipe))
6458 		return pipe;
6459 
6460 	return INVALID_PIPE;
6461 }
6462 
6463 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6464 {
6465 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6466 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
6467 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6468 	intel_wakeref_t wakeref;
6469 
6470 	if (!HAS_DDI(dev_priv))
6471 		intel_dp->DP = I915_READ(intel_dp->output_reg);
6472 
6473 	if (lspcon->active)
6474 		lspcon_resume(lspcon);
6475 
6476 	intel_dp->reset_link_params = true;
6477 
6478 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6479 	    !intel_dp_is_edp(intel_dp))
6480 		return;
6481 
6482 	with_pps_lock(intel_dp, wakeref) {
6483 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6484 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6485 
6486 		if (intel_dp_is_edp(intel_dp)) {
6487 			/*
6488 			 * Reinit the power sequencer, in case BIOS did
6489 			 * something nasty with it.
6490 			 */
6491 			intel_dp_pps_init(intel_dp);
6492 			intel_edp_panel_vdd_sanitize(intel_dp);
6493 		}
6494 	}
6495 }
6496 
6497 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6498 	.force = intel_dp_force,
6499 	.fill_modes = drm_helper_probe_single_connector_modes,
6500 	.atomic_get_property = intel_digital_connector_atomic_get_property,
6501 	.atomic_set_property = intel_digital_connector_atomic_set_property,
6502 	.late_register = intel_dp_connector_register,
6503 	.early_unregister = intel_dp_connector_unregister,
6504 	.destroy = intel_connector_destroy,
6505 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6506 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6507 };
6508 
6509 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6510 	.detect_ctx = intel_dp_detect,
6511 	.get_modes = intel_dp_get_modes,
6512 	.mode_valid = intel_dp_mode_valid,
6513 	.atomic_check = intel_digital_connector_atomic_check,
6514 };
6515 
6516 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6517 	.reset = intel_dp_encoder_reset,
6518 	.destroy = intel_dp_encoder_destroy,
6519 };
6520 
6521 enum irqreturn
6522 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6523 {
6524 	struct intel_dp *intel_dp = &intel_dig_port->dp;
6525 
6526 	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6527 		/*
6528 		 * vdd off can generate a long pulse on eDP which
6529 		 * would require vdd on to handle it, and thus we
6530 		 * would end up in an endless cycle of
6531 		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6532 		 */
6533 		DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6534 			      intel_dig_port->base.base.base.id,
6535 			      intel_dig_port->base.base.name);
6536 		return IRQ_HANDLED;
6537 	}
6538 
6539 	DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6540 		      intel_dig_port->base.base.base.id,
6541 		      intel_dig_port->base.base.name,
6542 		      long_hpd ? "long" : "short");
6543 
6544 	if (long_hpd) {
6545 		intel_dp->reset_link_params = true;
6546 		return IRQ_NONE;
6547 	}
6548 
6549 	if (intel_dp->is_mst) {
6550 		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6551 			/*
6552 			 * If we were in MST mode, and device is not
6553 			 * there, get out of MST mode
6554 			 */
6555 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6556 				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6557 			intel_dp->is_mst = false;
6558 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6559 							intel_dp->is_mst);
6560 
6561 			return IRQ_NONE;
6562 		}
6563 	}
6564 
6565 	if (!intel_dp->is_mst) {
6566 		bool handled;
6567 
6568 		handled = intel_dp_short_pulse(intel_dp);
6569 
6570 		if (!handled)
6571 			return IRQ_NONE;
6572 	}
6573 
6574 	return IRQ_HANDLED;
6575 }
6576 
6577 /* check the VBT to see whether the eDP is on another port */
6578 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6579 {
6580 	/*
6581 	 * eDP not supported on g4x. so bail out early just
6582 	 * for a bit extra safety in case the VBT is bonkers.
6583 	 */
6584 	if (INTEL_GEN(dev_priv) < 5)
6585 		return false;
6586 
6587 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6588 		return true;
6589 
6590 	return intel_bios_is_port_edp(dev_priv, port);
6591 }
6592 
6593 static void
6594 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6595 {
6596 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6597 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6598 
6599 	if (!IS_G4X(dev_priv) && port != PORT_A)
6600 		intel_attach_force_audio_property(connector);
6601 
6602 	intel_attach_broadcast_rgb_property(connector);
6603 	if (HAS_GMCH(dev_priv))
6604 		drm_connector_attach_max_bpc_property(connector, 6, 10);
6605 	else if (INTEL_GEN(dev_priv) >= 5)
6606 		drm_connector_attach_max_bpc_property(connector, 6, 12);
6607 
6608 	intel_attach_colorspace_property(connector);
6609 
6610 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6611 		drm_object_attach_property(&connector->base,
6612 					   connector->dev->mode_config.hdr_output_metadata_property,
6613 					   0);
6614 
6615 	if (intel_dp_is_edp(intel_dp)) {
6616 		u32 allowed_scalers;
6617 
6618 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6619 		if (!HAS_GMCH(dev_priv))
6620 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6621 
6622 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6623 
6624 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6625 
6626 	}
6627 }
6628 
6629 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6630 {
6631 	intel_dp->panel_power_off_time = ktime_get_boottime();
6632 	intel_dp->last_power_on = jiffies;
6633 	intel_dp->last_backlight_off = jiffies;
6634 }
6635 
6636 static void
6637 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6638 {
6639 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6640 	u32 pp_on, pp_off, pp_ctl;
6641 	struct pps_registers regs;
6642 
6643 	intel_pps_get_registers(intel_dp, &regs);
6644 
6645 	pp_ctl = ironlake_get_pp_control(intel_dp);
6646 
6647 	/* Ensure PPS is unlocked */
6648 	if (!HAS_DDI(dev_priv))
6649 		I915_WRITE(regs.pp_ctrl, pp_ctl);
6650 
6651 	pp_on = I915_READ(regs.pp_on);
6652 	pp_off = I915_READ(regs.pp_off);
6653 
6654 	/* Pull timing values out of registers */
6655 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6656 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6657 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6658 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6659 
6660 	if (i915_mmio_reg_valid(regs.pp_div)) {
6661 		u32 pp_div;
6662 
6663 		pp_div = I915_READ(regs.pp_div);
6664 
6665 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6666 	} else {
6667 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6668 	}
6669 }
6670 
6671 static void
6672 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6673 {
6674 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6675 		      state_name,
6676 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6677 }
6678 
6679 static void
6680 intel_pps_verify_state(struct intel_dp *intel_dp)
6681 {
6682 	struct edp_power_seq hw;
6683 	struct edp_power_seq *sw = &intel_dp->pps_delays;
6684 
6685 	intel_pps_readout_hw_state(intel_dp, &hw);
6686 
6687 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6688 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6689 		DRM_ERROR("PPS state mismatch\n");
6690 		intel_pps_dump_state("sw", sw);
6691 		intel_pps_dump_state("hw", &hw);
6692 	}
6693 }
6694 
6695 static void
6696 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6697 {
6698 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6699 	struct edp_power_seq cur, vbt, spec,
6700 		*final = &intel_dp->pps_delays;
6701 
6702 	lockdep_assert_held(&dev_priv->pps_mutex);
6703 
6704 	/* already initialized? */
6705 	if (final->t11_t12 != 0)
6706 		return;
6707 
6708 	intel_pps_readout_hw_state(intel_dp, &cur);
6709 
6710 	intel_pps_dump_state("cur", &cur);
6711 
6712 	vbt = dev_priv->vbt.edp.pps;
6713 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6714 	 * of 500ms appears to be too short. Ocassionally the panel
6715 	 * just fails to power back on. Increasing the delay to 800ms
6716 	 * seems sufficient to avoid this problem.
6717 	 */
6718 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6719 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6720 		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6721 			      vbt.t11_t12);
6722 	}
6723 	/* T11_T12 delay is special and actually in units of 100ms, but zero
6724 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6725 	 * table multiplies it with 1000 to make it in units of 100usec,
6726 	 * too. */
6727 	vbt.t11_t12 += 100 * 10;
6728 
6729 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6730 	 * our hw here, which are all in 100usec. */
6731 	spec.t1_t3 = 210 * 10;
6732 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6733 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6734 	spec.t10 = 500 * 10;
6735 	/* This one is special and actually in units of 100ms, but zero
6736 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6737 	 * table multiplies it with 1000 to make it in units of 100usec,
6738 	 * too. */
6739 	spec.t11_t12 = (510 + 100) * 10;
6740 
6741 	intel_pps_dump_state("vbt", &vbt);
6742 
6743 	/* Use the max of the register settings and vbt. If both are
6744 	 * unset, fall back to the spec limits. */
6745 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6746 				       spec.field : \
6747 				       max(cur.field, vbt.field))
6748 	assign_final(t1_t3);
6749 	assign_final(t8);
6750 	assign_final(t9);
6751 	assign_final(t10);
6752 	assign_final(t11_t12);
6753 #undef assign_final
6754 
6755 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6756 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
6757 	intel_dp->backlight_on_delay = get_delay(t8);
6758 	intel_dp->backlight_off_delay = get_delay(t9);
6759 	intel_dp->panel_power_down_delay = get_delay(t10);
6760 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6761 #undef get_delay
6762 
6763 	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6764 		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6765 		      intel_dp->panel_power_cycle_delay);
6766 
6767 	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6768 		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6769 
6770 	/*
6771 	 * We override the HW backlight delays to 1 because we do manual waits
6772 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
6773 	 * don't do this, we'll end up waiting for the backlight off delay
6774 	 * twice: once when we do the manual sleep, and once when we disable
6775 	 * the panel and wait for the PP_STATUS bit to become zero.
6776 	 */
6777 	final->t8 = 1;
6778 	final->t9 = 1;
6779 
6780 	/*
6781 	 * HW has only a 100msec granularity for t11_t12 so round it up
6782 	 * accordingly.
6783 	 */
6784 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6785 }
6786 
6787 static void
6788 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6789 					      bool force_disable_vdd)
6790 {
6791 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6792 	u32 pp_on, pp_off, port_sel = 0;
6793 	int div = dev_priv->rawclk_freq / 1000;
6794 	struct pps_registers regs;
6795 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6796 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6797 
6798 	lockdep_assert_held(&dev_priv->pps_mutex);
6799 
6800 	intel_pps_get_registers(intel_dp, &regs);
6801 
6802 	/*
6803 	 * On some VLV machines the BIOS can leave the VDD
6804 	 * enabled even on power sequencers which aren't
6805 	 * hooked up to any port. This would mess up the
6806 	 * power domain tracking the first time we pick
6807 	 * one of these power sequencers for use since
6808 	 * edp_panel_vdd_on() would notice that the VDD was
6809 	 * already on and therefore wouldn't grab the power
6810 	 * domain reference. Disable VDD first to avoid this.
6811 	 * This also avoids spuriously turning the VDD on as
6812 	 * soon as the new power sequencer gets initialized.
6813 	 */
6814 	if (force_disable_vdd) {
6815 		u32 pp = ironlake_get_pp_control(intel_dp);
6816 
6817 		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6818 
6819 		if (pp & EDP_FORCE_VDD)
6820 			DRM_DEBUG_KMS("VDD already on, disabling first\n");
6821 
6822 		pp &= ~EDP_FORCE_VDD;
6823 
6824 		I915_WRITE(regs.pp_ctrl, pp);
6825 	}
6826 
6827 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6828 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6829 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6830 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6831 
6832 	/* Haswell doesn't have any port selection bits for the panel
6833 	 * power sequencer any more. */
6834 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6835 		port_sel = PANEL_PORT_SELECT_VLV(port);
6836 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6837 		switch (port) {
6838 		case PORT_A:
6839 			port_sel = PANEL_PORT_SELECT_DPA;
6840 			break;
6841 		case PORT_C:
6842 			port_sel = PANEL_PORT_SELECT_DPC;
6843 			break;
6844 		case PORT_D:
6845 			port_sel = PANEL_PORT_SELECT_DPD;
6846 			break;
6847 		default:
6848 			MISSING_CASE(port);
6849 			break;
6850 		}
6851 	}
6852 
6853 	pp_on |= port_sel;
6854 
6855 	I915_WRITE(regs.pp_on, pp_on);
6856 	I915_WRITE(regs.pp_off, pp_off);
6857 
6858 	/*
6859 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
6860 	 */
6861 	if (i915_mmio_reg_valid(regs.pp_div)) {
6862 		I915_WRITE(regs.pp_div,
6863 			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6864 			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6865 	} else {
6866 		u32 pp_ctl;
6867 
6868 		pp_ctl = I915_READ(regs.pp_ctrl);
6869 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6870 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6871 		I915_WRITE(regs.pp_ctrl, pp_ctl);
6872 	}
6873 
6874 	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6875 		      I915_READ(regs.pp_on),
6876 		      I915_READ(regs.pp_off),
6877 		      i915_mmio_reg_valid(regs.pp_div) ?
6878 		      I915_READ(regs.pp_div) :
6879 		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6880 }
6881 
6882 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6883 {
6884 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6885 
6886 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6887 		vlv_initial_power_sequencer_setup(intel_dp);
6888 	} else {
6889 		intel_dp_init_panel_power_sequencer(intel_dp);
6890 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6891 	}
6892 }
6893 
6894 /**
6895  * intel_dp_set_drrs_state - program registers for RR switch to take effect
6896  * @dev_priv: i915 device
6897  * @crtc_state: a pointer to the active intel_crtc_state
6898  * @refresh_rate: RR to be programmed
6899  *
6900  * This function gets called when refresh rate (RR) has to be changed from
6901  * one frequency to another. Switches can be between high and low RR
6902  * supported by the panel or to any other RR based on media playback (in
6903  * this case, RR value needs to be passed from user space).
6904  *
6905  * The caller of this function needs to take a lock on dev_priv->drrs.
6906  */
6907 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6908 				    const struct intel_crtc_state *crtc_state,
6909 				    int refresh_rate)
6910 {
6911 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6912 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6913 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6914 
6915 	if (refresh_rate <= 0) {
6916 		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6917 		return;
6918 	}
6919 
6920 	if (intel_dp == NULL) {
6921 		DRM_DEBUG_KMS("DRRS not supported.\n");
6922 		return;
6923 	}
6924 
6925 	if (!intel_crtc) {
6926 		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6927 		return;
6928 	}
6929 
6930 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6931 		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6932 		return;
6933 	}
6934 
6935 	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6936 			refresh_rate)
6937 		index = DRRS_LOW_RR;
6938 
6939 	if (index == dev_priv->drrs.refresh_rate_type) {
6940 		DRM_DEBUG_KMS(
6941 			"DRRS requested for previously set RR...ignoring\n");
6942 		return;
6943 	}
6944 
6945 	if (!crtc_state->base.active) {
6946 		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6947 		return;
6948 	}
6949 
6950 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6951 		switch (index) {
6952 		case DRRS_HIGH_RR:
6953 			intel_dp_set_m_n(crtc_state, M1_N1);
6954 			break;
6955 		case DRRS_LOW_RR:
6956 			intel_dp_set_m_n(crtc_state, M2_N2);
6957 			break;
6958 		case DRRS_MAX_RR:
6959 		default:
6960 			DRM_ERROR("Unsupported refreshrate type\n");
6961 		}
6962 	} else if (INTEL_GEN(dev_priv) > 6) {
6963 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6964 		u32 val;
6965 
6966 		val = I915_READ(reg);
6967 		if (index > DRRS_HIGH_RR) {
6968 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6969 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6970 			else
6971 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6972 		} else {
6973 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6974 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6975 			else
6976 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6977 		}
6978 		I915_WRITE(reg, val);
6979 	}
6980 
6981 	dev_priv->drrs.refresh_rate_type = index;
6982 
6983 	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
6984 }
6985 
6986 /**
6987  * intel_edp_drrs_enable - init drrs struct if supported
6988  * @intel_dp: DP struct
6989  * @crtc_state: A pointer to the active crtc state.
6990  *
6991  * Initializes frontbuffer_bits and drrs.dp
6992  */
6993 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6994 			   const struct intel_crtc_state *crtc_state)
6995 {
6996 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6997 
6998 	if (!crtc_state->has_drrs) {
6999 		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
7000 		return;
7001 	}
7002 
7003 	if (dev_priv->psr.enabled) {
7004 		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
7005 		return;
7006 	}
7007 
7008 	mutex_lock(&dev_priv->drrs.mutex);
7009 	if (dev_priv->drrs.dp) {
7010 		DRM_DEBUG_KMS("DRRS already enabled\n");
7011 		goto unlock;
7012 	}
7013 
7014 	dev_priv->drrs.busy_frontbuffer_bits = 0;
7015 
7016 	dev_priv->drrs.dp = intel_dp;
7017 
7018 unlock:
7019 	mutex_unlock(&dev_priv->drrs.mutex);
7020 }
7021 
7022 /**
7023  * intel_edp_drrs_disable - Disable DRRS
7024  * @intel_dp: DP struct
7025  * @old_crtc_state: Pointer to old crtc_state.
7026  *
7027  */
7028 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7029 			    const struct intel_crtc_state *old_crtc_state)
7030 {
7031 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7032 
7033 	if (!old_crtc_state->has_drrs)
7034 		return;
7035 
7036 	mutex_lock(&dev_priv->drrs.mutex);
7037 	if (!dev_priv->drrs.dp) {
7038 		mutex_unlock(&dev_priv->drrs.mutex);
7039 		return;
7040 	}
7041 
7042 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7043 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7044 			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7045 
7046 	dev_priv->drrs.dp = NULL;
7047 	mutex_unlock(&dev_priv->drrs.mutex);
7048 
7049 	cancel_delayed_work_sync(&dev_priv->drrs.work);
7050 }
7051 
7052 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7053 {
7054 	struct drm_i915_private *dev_priv =
7055 		container_of(work, typeof(*dev_priv), drrs.work.work);
7056 	struct intel_dp *intel_dp;
7057 
7058 	mutex_lock(&dev_priv->drrs.mutex);
7059 
7060 	intel_dp = dev_priv->drrs.dp;
7061 
7062 	if (!intel_dp)
7063 		goto unlock;
7064 
7065 	/*
7066 	 * The delayed work can race with an invalidate hence we need to
7067 	 * recheck.
7068 	 */
7069 
7070 	if (dev_priv->drrs.busy_frontbuffer_bits)
7071 		goto unlock;
7072 
7073 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7074 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7075 
7076 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7077 			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7078 	}
7079 
7080 unlock:
7081 	mutex_unlock(&dev_priv->drrs.mutex);
7082 }
7083 
7084 /**
7085  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7086  * @dev_priv: i915 device
7087  * @frontbuffer_bits: frontbuffer plane tracking bits
7088  *
7089  * This function gets called everytime rendering on the given planes start.
7090  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7091  *
7092  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7093  */
7094 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7095 			       unsigned int frontbuffer_bits)
7096 {
7097 	struct drm_crtc *crtc;
7098 	enum pipe pipe;
7099 
7100 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7101 		return;
7102 
7103 	cancel_delayed_work(&dev_priv->drrs.work);
7104 
7105 	mutex_lock(&dev_priv->drrs.mutex);
7106 	if (!dev_priv->drrs.dp) {
7107 		mutex_unlock(&dev_priv->drrs.mutex);
7108 		return;
7109 	}
7110 
7111 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7112 	pipe = to_intel_crtc(crtc)->pipe;
7113 
7114 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7115 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7116 
7117 	/* invalidate means busy screen hence upclock */
7118 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7119 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7120 			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7121 
7122 	mutex_unlock(&dev_priv->drrs.mutex);
7123 }
7124 
7125 /**
7126  * intel_edp_drrs_flush - Restart Idleness DRRS
7127  * @dev_priv: i915 device
7128  * @frontbuffer_bits: frontbuffer plane tracking bits
7129  *
7130  * This function gets called every time rendering on the given planes has
7131  * completed or flip on a crtc is completed. So DRRS should be upclocked
7132  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7133  * if no other planes are dirty.
7134  *
7135  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7136  */
7137 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7138 			  unsigned int frontbuffer_bits)
7139 {
7140 	struct drm_crtc *crtc;
7141 	enum pipe pipe;
7142 
7143 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7144 		return;
7145 
7146 	cancel_delayed_work(&dev_priv->drrs.work);
7147 
7148 	mutex_lock(&dev_priv->drrs.mutex);
7149 	if (!dev_priv->drrs.dp) {
7150 		mutex_unlock(&dev_priv->drrs.mutex);
7151 		return;
7152 	}
7153 
7154 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7155 	pipe = to_intel_crtc(crtc)->pipe;
7156 
7157 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7158 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7159 
7160 	/* flush means busy screen hence upclock */
7161 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7162 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7163 				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7164 
7165 	/*
7166 	 * flush also means no more activity hence schedule downclock, if all
7167 	 * other fbs are quiescent too
7168 	 */
7169 	if (!dev_priv->drrs.busy_frontbuffer_bits)
7170 		schedule_delayed_work(&dev_priv->drrs.work,
7171 				msecs_to_jiffies(1000));
7172 	mutex_unlock(&dev_priv->drrs.mutex);
7173 }
7174 
7175 /**
7176  * DOC: Display Refresh Rate Switching (DRRS)
7177  *
7178  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7179  * which enables swtching between low and high refresh rates,
7180  * dynamically, based on the usage scenario. This feature is applicable
7181  * for internal panels.
7182  *
7183  * Indication that the panel supports DRRS is given by the panel EDID, which
7184  * would list multiple refresh rates for one resolution.
7185  *
7186  * DRRS is of 2 types - static and seamless.
7187  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7188  * (may appear as a blink on screen) and is used in dock-undock scenario.
7189  * Seamless DRRS involves changing RR without any visual effect to the user
7190  * and can be used during normal system usage. This is done by programming
7191  * certain registers.
7192  *
7193  * Support for static/seamless DRRS may be indicated in the VBT based on
7194  * inputs from the panel spec.
7195  *
7196  * DRRS saves power by switching to low RR based on usage scenarios.
7197  *
7198  * The implementation is based on frontbuffer tracking implementation.  When
7199  * there is a disturbance on the screen triggered by user activity or a periodic
7200  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7201  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7202  * made.
7203  *
7204  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7205  * and intel_edp_drrs_flush() are called.
7206  *
7207  * DRRS can be further extended to support other internal panels and also
7208  * the scenario of video playback wherein RR is set based on the rate
7209  * requested by userspace.
7210  */
7211 
7212 /**
7213  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7214  * @connector: eDP connector
7215  * @fixed_mode: preferred mode of panel
7216  *
7217  * This function is  called only once at driver load to initialize basic
7218  * DRRS stuff.
7219  *
7220  * Returns:
7221  * Downclock mode if panel supports it, else return NULL.
7222  * DRRS support is determined by the presence of downclock mode (apart
7223  * from VBT setting).
7224  */
7225 static struct drm_display_mode *
7226 intel_dp_drrs_init(struct intel_connector *connector,
7227 		   struct drm_display_mode *fixed_mode)
7228 {
7229 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7230 	struct drm_display_mode *downclock_mode = NULL;
7231 
7232 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7233 	mutex_init(&dev_priv->drrs.mutex);
7234 
7235 	if (INTEL_GEN(dev_priv) <= 6) {
7236 		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
7237 		return NULL;
7238 	}
7239 
7240 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7241 		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7242 		return NULL;
7243 	}
7244 
7245 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7246 	if (!downclock_mode) {
7247 		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7248 		return NULL;
7249 	}
7250 
7251 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7252 
7253 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7254 	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7255 	return downclock_mode;
7256 }
7257 
7258 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7259 				     struct intel_connector *intel_connector)
7260 {
7261 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7262 	struct drm_device *dev = &dev_priv->drm;
7263 	struct drm_connector *connector = &intel_connector->base;
7264 	struct drm_display_mode *fixed_mode = NULL;
7265 	struct drm_display_mode *downclock_mode = NULL;
7266 	bool has_dpcd;
7267 	enum pipe pipe = INVALID_PIPE;
7268 	intel_wakeref_t wakeref;
7269 	struct edid *edid;
7270 
7271 	if (!intel_dp_is_edp(intel_dp))
7272 		return true;
7273 
7274 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7275 
7276 	/*
7277 	 * On IBX/CPT we may get here with LVDS already registered. Since the
7278 	 * driver uses the only internal power sequencer available for both
7279 	 * eDP and LVDS bail out early in this case to prevent interfering
7280 	 * with an already powered-on LVDS power sequencer.
7281 	 */
7282 	if (intel_get_lvds_encoder(dev_priv)) {
7283 		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7284 		DRM_INFO("LVDS was detected, not registering eDP\n");
7285 
7286 		return false;
7287 	}
7288 
7289 	with_pps_lock(intel_dp, wakeref) {
7290 		intel_dp_init_panel_power_timestamps(intel_dp);
7291 		intel_dp_pps_init(intel_dp);
7292 		intel_edp_panel_vdd_sanitize(intel_dp);
7293 	}
7294 
7295 	/* Cache DPCD and EDID for edp. */
7296 	has_dpcd = intel_edp_init_dpcd(intel_dp);
7297 
7298 	if (!has_dpcd) {
7299 		/* if this fails, presume the device is a ghost */
7300 		DRM_INFO("failed to retrieve link info, disabling eDP\n");
7301 		goto out_vdd_off;
7302 	}
7303 
7304 	mutex_lock(&dev->mode_config.mutex);
7305 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7306 	if (edid) {
7307 		if (drm_add_edid_modes(connector, edid)) {
7308 			drm_connector_update_edid_property(connector,
7309 								edid);
7310 		} else {
7311 			kfree(edid);
7312 			edid = ERR_PTR(-EINVAL);
7313 		}
7314 	} else {
7315 		edid = ERR_PTR(-ENOENT);
7316 	}
7317 	intel_connector->edid = edid;
7318 
7319 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7320 	if (fixed_mode)
7321 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7322 
7323 	/* fallback to VBT if available for eDP */
7324 	if (!fixed_mode)
7325 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7326 	mutex_unlock(&dev->mode_config.mutex);
7327 
7328 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7329 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7330 		register_reboot_notifier(&intel_dp->edp_notifier);
7331 
7332 		/*
7333 		 * Figure out the current pipe for the initial backlight setup.
7334 		 * If the current pipe isn't valid, try the PPS pipe, and if that
7335 		 * fails just assume pipe A.
7336 		 */
7337 		pipe = vlv_active_pipe(intel_dp);
7338 
7339 		if (pipe != PIPE_A && pipe != PIPE_B)
7340 			pipe = intel_dp->pps_pipe;
7341 
7342 		if (pipe != PIPE_A && pipe != PIPE_B)
7343 			pipe = PIPE_A;
7344 
7345 		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7346 			      pipe_name(pipe));
7347 	}
7348 
7349 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7350 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7351 	intel_panel_setup_backlight(connector, pipe);
7352 
7353 	if (fixed_mode)
7354 		drm_connector_init_panel_orientation_property(
7355 			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7356 
7357 	return true;
7358 
7359 out_vdd_off:
7360 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7361 	/*
7362 	 * vdd might still be enabled do to the delayed vdd off.
7363 	 * Make sure vdd is actually turned off here.
7364 	 */
7365 	with_pps_lock(intel_dp, wakeref)
7366 		edp_panel_vdd_off_sync(intel_dp);
7367 
7368 	return false;
7369 }
7370 
7371 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7372 {
7373 	struct intel_connector *intel_connector;
7374 	struct drm_connector *connector;
7375 
7376 	intel_connector = container_of(work, typeof(*intel_connector),
7377 				       modeset_retry_work);
7378 	connector = &intel_connector->base;
7379 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7380 		      connector->name);
7381 
7382 	/* Grab the locks before changing connector property*/
7383 	mutex_lock(&connector->dev->mode_config.mutex);
7384 	/* Set connector link status to BAD and send a Uevent to notify
7385 	 * userspace to do a modeset.
7386 	 */
7387 	drm_connector_set_link_status_property(connector,
7388 					       DRM_MODE_LINK_STATUS_BAD);
7389 	mutex_unlock(&connector->dev->mode_config.mutex);
7390 	/* Send Hotplug uevent so userspace can reprobe */
7391 	drm_kms_helper_hotplug_event(connector->dev);
7392 }
7393 
7394 bool
7395 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7396 			struct intel_connector *intel_connector)
7397 {
7398 	struct drm_connector *connector = &intel_connector->base;
7399 	struct intel_dp *intel_dp = &intel_dig_port->dp;
7400 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
7401 	struct drm_device *dev = intel_encoder->base.dev;
7402 	struct drm_i915_private *dev_priv = to_i915(dev);
7403 	enum port port = intel_encoder->port;
7404 	enum phy phy = intel_port_to_phy(dev_priv, port);
7405 	int type;
7406 
7407 	/* Initialize the work for modeset in case of link train failure */
7408 	INIT_WORK(&intel_connector->modeset_retry_work,
7409 		  intel_dp_modeset_retry_work_fn);
7410 
7411 	if (WARN(intel_dig_port->max_lanes < 1,
7412 		 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7413 		 intel_dig_port->max_lanes, intel_encoder->base.base.id,
7414 		 intel_encoder->base.name))
7415 		return false;
7416 
7417 	intel_dp_set_source_rates(intel_dp);
7418 
7419 	intel_dp->reset_link_params = true;
7420 	intel_dp->pps_pipe = INVALID_PIPE;
7421 	intel_dp->active_pipe = INVALID_PIPE;
7422 
7423 	/* Preserve the current hw state. */
7424 	intel_dp->DP = I915_READ(intel_dp->output_reg);
7425 	intel_dp->attached_connector = intel_connector;
7426 
7427 	if (intel_dp_is_port_edp(dev_priv, port)) {
7428 		/*
7429 		 * Currently we don't support eDP on TypeC ports, although in
7430 		 * theory it could work on TypeC legacy ports.
7431 		 */
7432 		WARN_ON(intel_phy_is_tc(dev_priv, phy));
7433 		type = DRM_MODE_CONNECTOR_eDP;
7434 	} else {
7435 		type = DRM_MODE_CONNECTOR_DisplayPort;
7436 	}
7437 
7438 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7439 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7440 
7441 	/*
7442 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7443 	 * for DP the encoder type can be set by the caller to
7444 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7445 	 */
7446 	if (type == DRM_MODE_CONNECTOR_eDP)
7447 		intel_encoder->type = INTEL_OUTPUT_EDP;
7448 
7449 	/* eDP only on port B and/or C on vlv/chv */
7450 	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7451 		    intel_dp_is_edp(intel_dp) &&
7452 		    port != PORT_B && port != PORT_C))
7453 		return false;
7454 
7455 	DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n",
7456 		      type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7457 		      intel_encoder->base.base.id, intel_encoder->base.name);
7458 
7459 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7460 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7461 
7462 	if (!HAS_GMCH(dev_priv))
7463 		connector->interlace_allowed = true;
7464 	connector->doublescan_allowed = 0;
7465 
7466 	if (INTEL_GEN(dev_priv) >= 11)
7467 		connector->ycbcr_420_allowed = true;
7468 
7469 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7470 
7471 	intel_dp_aux_init(intel_dp);
7472 
7473 	intel_connector_attach_encoder(intel_connector, intel_encoder);
7474 
7475 	if (HAS_DDI(dev_priv))
7476 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7477 	else
7478 		intel_connector->get_hw_state = intel_connector_get_hw_state;
7479 
7480 	/* init MST on ports that can support it */
7481 	intel_dp_mst_encoder_init(intel_dig_port,
7482 				  intel_connector->base.base.id);
7483 
7484 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7485 		intel_dp_aux_fini(intel_dp);
7486 		intel_dp_mst_encoder_cleanup(intel_dig_port);
7487 		goto fail;
7488 	}
7489 
7490 	intel_dp_add_properties(intel_dp, connector);
7491 
7492 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7493 		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7494 		if (ret)
7495 			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7496 	}
7497 
7498 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7499 	 * 0xd.  Failure to do so will result in spurious interrupts being
7500 	 * generated on the port when a cable is not attached.
7501 	 */
7502 	if (IS_G45(dev_priv)) {
7503 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7504 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7505 	}
7506 
7507 	return true;
7508 
7509 fail:
7510 	drm_connector_cleanup(connector);
7511 
7512 	return false;
7513 }
7514 
7515 bool intel_dp_init(struct drm_i915_private *dev_priv,
7516 		   i915_reg_t output_reg,
7517 		   enum port port)
7518 {
7519 	struct intel_digital_port *intel_dig_port;
7520 	struct intel_encoder *intel_encoder;
7521 	struct drm_encoder *encoder;
7522 	struct intel_connector *intel_connector;
7523 
7524 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7525 	if (!intel_dig_port)
7526 		return false;
7527 
7528 	intel_connector = intel_connector_alloc();
7529 	if (!intel_connector)
7530 		goto err_connector_alloc;
7531 
7532 	intel_encoder = &intel_dig_port->base;
7533 	encoder = &intel_encoder->base;
7534 
7535 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7536 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7537 			     "DP %c", port_name(port)))
7538 		goto err_encoder_init;
7539 
7540 	intel_encoder->hotplug = intel_dp_hotplug;
7541 	intel_encoder->compute_config = intel_dp_compute_config;
7542 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7543 	intel_encoder->get_config = intel_dp_get_config;
7544 	intel_encoder->update_pipe = intel_panel_update_backlight;
7545 	intel_encoder->suspend = intel_dp_encoder_suspend;
7546 	if (IS_CHERRYVIEW(dev_priv)) {
7547 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7548 		intel_encoder->pre_enable = chv_pre_enable_dp;
7549 		intel_encoder->enable = vlv_enable_dp;
7550 		intel_encoder->disable = vlv_disable_dp;
7551 		intel_encoder->post_disable = chv_post_disable_dp;
7552 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7553 	} else if (IS_VALLEYVIEW(dev_priv)) {
7554 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7555 		intel_encoder->pre_enable = vlv_pre_enable_dp;
7556 		intel_encoder->enable = vlv_enable_dp;
7557 		intel_encoder->disable = vlv_disable_dp;
7558 		intel_encoder->post_disable = vlv_post_disable_dp;
7559 	} else {
7560 		intel_encoder->pre_enable = g4x_pre_enable_dp;
7561 		intel_encoder->enable = g4x_enable_dp;
7562 		intel_encoder->disable = g4x_disable_dp;
7563 		intel_encoder->post_disable = g4x_post_disable_dp;
7564 	}
7565 
7566 	intel_dig_port->dp.output_reg = output_reg;
7567 	intel_dig_port->max_lanes = 4;
7568 
7569 	intel_encoder->type = INTEL_OUTPUT_DP;
7570 	intel_encoder->power_domain = intel_port_to_power_domain(port);
7571 	if (IS_CHERRYVIEW(dev_priv)) {
7572 		if (port == PORT_D)
7573 			intel_encoder->pipe_mask = BIT(PIPE_C);
7574 		else
7575 			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7576 	} else {
7577 		intel_encoder->pipe_mask = ~0;
7578 	}
7579 	intel_encoder->cloneable = 0;
7580 	intel_encoder->port = port;
7581 
7582 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7583 
7584 	if (port != PORT_A)
7585 		intel_infoframe_init(intel_dig_port);
7586 
7587 	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7588 	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7589 		goto err_init_connector;
7590 
7591 	return true;
7592 
7593 err_init_connector:
7594 	drm_encoder_cleanup(encoder);
7595 err_encoder_init:
7596 	kfree(intel_connector);
7597 err_connector_alloc:
7598 	kfree(intel_dig_port);
7599 	return false;
7600 }
7601 
7602 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7603 {
7604 	struct intel_encoder *encoder;
7605 
7606 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7607 		struct intel_dp *intel_dp;
7608 
7609 		if (encoder->type != INTEL_OUTPUT_DDI)
7610 			continue;
7611 
7612 		intel_dp = enc_to_intel_dp(&encoder->base);
7613 
7614 		if (!intel_dp->can_mst)
7615 			continue;
7616 
7617 		if (intel_dp->is_mst)
7618 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7619 	}
7620 }
7621 
7622 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7623 {
7624 	struct intel_encoder *encoder;
7625 
7626 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7627 		struct intel_dp *intel_dp;
7628 		int ret;
7629 
7630 		if (encoder->type != INTEL_OUTPUT_DDI)
7631 			continue;
7632 
7633 		intel_dp = enc_to_intel_dp(&encoder->base);
7634 
7635 		if (!intel_dp->can_mst)
7636 			continue;
7637 
7638 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
7639 						     true);
7640 		if (ret) {
7641 			intel_dp->is_mst = false;
7642 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7643 							false);
7644 		}
7645 	}
7646 }
7647