1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/notifier.h> 31 #include <linux/reboot.h> 32 #include <linux/slab.h> 33 #include <linux/types.h> 34 35 #include <asm/byteorder.h> 36 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_crtc.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_hdcp.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/i915_drm.h> 44 45 #include "i915_debugfs.h" 46 #include "i915_drv.h" 47 #include "i915_trace.h" 48 #include "intel_atomic.h" 49 #include "intel_audio.h" 50 #include "intel_connector.h" 51 #include "intel_ddi.h" 52 #include "intel_display_debugfs.h" 53 #include "intel_display_types.h" 54 #include "intel_dp.h" 55 #include "intel_dp_link_training.h" 56 #include "intel_dp_mst.h" 57 #include "intel_dpio_phy.h" 58 #include "intel_fifo_underrun.h" 59 #include "intel_hdcp.h" 60 #include "intel_hdmi.h" 61 #include "intel_hotplug.h" 62 #include "intel_lspcon.h" 63 #include "intel_lvds.h" 64 #include "intel_panel.h" 65 #include "intel_psr.h" 66 #include "intel_sideband.h" 67 #include "intel_tc.h" 68 #include "intel_vdsc.h" 69 70 #define DP_DPRX_ESI_LEN 14 71 72 /* DP DSC throughput values used for slice count calculations KPixels/s */ 73 #define DP_DSC_PEAK_PIXEL_RATE 2720000 74 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 75 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 76 77 /* DP DSC FEC Overhead factor = 1/(0.972261) */ 78 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261 79 80 /* Compliance test status bits */ 81 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 82 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) 83 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) 84 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) 85 86 struct dp_link_dpll { 87 int clock; 88 struct dpll dpll; 89 }; 90 91 static const struct dp_link_dpll g4x_dpll[] = { 92 { 162000, 93 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, 94 { 270000, 95 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } 96 }; 97 98 static const struct dp_link_dpll pch_dpll[] = { 99 { 162000, 100 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, 101 { 270000, 102 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } 103 }; 104 105 static const struct dp_link_dpll vlv_dpll[] = { 106 { 162000, 107 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, 108 { 270000, 109 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } 110 }; 111 112 /* 113 * CHV supports eDP 1.4 that have more link rates. 114 * Below only provides the fixed rate but exclude variable rate. 115 */ 116 static const struct dp_link_dpll chv_dpll[] = { 117 /* 118 * CHV requires to program fractional division for m2. 119 * m2 is stored in fixed point format using formula below 120 * (m2_int << 22) | m2_fraction 121 */ 122 { 162000, /* m2_int = 32, m2_fraction = 1677722 */ 123 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, 124 { 270000, /* m2_int = 27, m2_fraction = 0 */ 125 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, 126 }; 127 128 /* Constants for DP DSC configurations */ 129 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 130 131 /* With Single pipe configuration, HW is capable of supporting maximum 132 * of 4 slices per line. 133 */ 134 static const u8 valid_dsc_slicecount[] = {1, 2, 4}; 135 136 /** 137 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 138 * @intel_dp: DP struct 139 * 140 * If a CPU or PCH DP output is attached to an eDP panel, this function 141 * will return true, and false otherwise. 142 */ 143 bool intel_dp_is_edp(struct intel_dp *intel_dp) 144 { 145 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 146 147 return intel_dig_port->base.type == INTEL_OUTPUT_EDP; 148 } 149 150 static void intel_dp_link_down(struct intel_encoder *encoder, 151 const struct intel_crtc_state *old_crtc_state); 152 static bool edp_panel_vdd_on(struct intel_dp *intel_dp); 153 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); 154 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 155 const struct intel_crtc_state *crtc_state); 156 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 157 enum pipe pipe); 158 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 159 160 /* update sink rates from dpcd */ 161 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 162 { 163 static const int dp_rates[] = { 164 162000, 270000, 540000, 810000 165 }; 166 int i, max_rate; 167 168 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 169 170 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 171 if (dp_rates[i] > max_rate) 172 break; 173 intel_dp->sink_rates[i] = dp_rates[i]; 174 } 175 176 intel_dp->num_sink_rates = i; 177 } 178 179 /* Get length of rates array potentially limited by max_rate. */ 180 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 181 { 182 int i; 183 184 /* Limit results by potentially reduced max rate */ 185 for (i = 0; i < len; i++) { 186 if (rates[len - i - 1] <= max_rate) 187 return len - i; 188 } 189 190 return 0; 191 } 192 193 /* Get length of common rates array potentially limited by max_rate. */ 194 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 195 int max_rate) 196 { 197 return intel_dp_rate_limit_len(intel_dp->common_rates, 198 intel_dp->num_common_rates, max_rate); 199 } 200 201 /* Theoretical max between source and sink */ 202 static int intel_dp_max_common_rate(struct intel_dp *intel_dp) 203 { 204 return intel_dp->common_rates[intel_dp->num_common_rates - 1]; 205 } 206 207 /* Theoretical max between source and sink */ 208 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 209 { 210 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 211 int source_max = intel_dig_port->max_lanes; 212 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); 213 int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port); 214 215 return min3(source_max, sink_max, fia_max); 216 } 217 218 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 219 { 220 return intel_dp->max_link_lane_count; 221 } 222 223 int 224 intel_dp_link_required(int pixel_clock, int bpp) 225 { 226 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 227 return DIV_ROUND_UP(pixel_clock * bpp, 8); 228 } 229 230 int 231 intel_dp_max_data_rate(int max_link_clock, int max_lanes) 232 { 233 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the 234 * link rate that is generally expressed in Gbps. Since, 8 bits of data 235 * is transmitted every LS_Clk per lane, there is no need to account for 236 * the channel encoding that is done in the PHY layer here. 237 */ 238 239 return max_link_clock * max_lanes; 240 } 241 242 static int 243 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp) 244 { 245 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 246 struct intel_encoder *encoder = &intel_dig_port->base; 247 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 248 int max_dotclk = dev_priv->max_dotclk_freq; 249 int ds_max_dotclk; 250 251 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 252 253 if (type != DP_DS_PORT_TYPE_VGA) 254 return max_dotclk; 255 256 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd, 257 intel_dp->downstream_ports); 258 259 if (ds_max_dotclk != 0) 260 max_dotclk = min(max_dotclk, ds_max_dotclk); 261 262 return max_dotclk; 263 } 264 265 static int cnl_max_source_rate(struct intel_dp *intel_dp) 266 { 267 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 268 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 269 enum port port = dig_port->base.port; 270 271 u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; 272 273 /* Low voltage SKUs are limited to max of 5.4G */ 274 if (voltage == VOLTAGE_INFO_0_85V) 275 return 540000; 276 277 /* For this SKU 8.1G is supported in all ports */ 278 if (IS_CNL_WITH_PORT_F(dev_priv)) 279 return 810000; 280 281 /* For other SKUs, max rate on ports A and D is 5.4G */ 282 if (port == PORT_A || port == PORT_D) 283 return 540000; 284 285 return 810000; 286 } 287 288 static int icl_max_source_rate(struct intel_dp *intel_dp) 289 { 290 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 291 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 292 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 293 294 if (intel_phy_is_combo(dev_priv, phy) && 295 !IS_ELKHARTLAKE(dev_priv) && 296 !intel_dp_is_edp(intel_dp)) 297 return 540000; 298 299 return 810000; 300 } 301 302 static void 303 intel_dp_set_source_rates(struct intel_dp *intel_dp) 304 { 305 /* The values must be in increasing order */ 306 static const int cnl_rates[] = { 307 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 308 }; 309 static const int bxt_rates[] = { 310 162000, 216000, 243000, 270000, 324000, 432000, 540000 311 }; 312 static const int skl_rates[] = { 313 162000, 216000, 270000, 324000, 432000, 540000 314 }; 315 static const int hsw_rates[] = { 316 162000, 270000, 540000 317 }; 318 static const int g4x_rates[] = { 319 162000, 270000 320 }; 321 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 322 struct intel_encoder *encoder = &dig_port->base; 323 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 324 const int *source_rates; 325 int size, max_rate = 0, vbt_max_rate; 326 327 /* This should only be done once */ 328 drm_WARN_ON(&dev_priv->drm, 329 intel_dp->source_rates || intel_dp->num_source_rates); 330 331 if (INTEL_GEN(dev_priv) >= 10) { 332 source_rates = cnl_rates; 333 size = ARRAY_SIZE(cnl_rates); 334 if (IS_GEN(dev_priv, 10)) 335 max_rate = cnl_max_source_rate(intel_dp); 336 else 337 max_rate = icl_max_source_rate(intel_dp); 338 } else if (IS_GEN9_LP(dev_priv)) { 339 source_rates = bxt_rates; 340 size = ARRAY_SIZE(bxt_rates); 341 } else if (IS_GEN9_BC(dev_priv)) { 342 source_rates = skl_rates; 343 size = ARRAY_SIZE(skl_rates); 344 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || 345 IS_BROADWELL(dev_priv)) { 346 source_rates = hsw_rates; 347 size = ARRAY_SIZE(hsw_rates); 348 } else { 349 source_rates = g4x_rates; 350 size = ARRAY_SIZE(g4x_rates); 351 } 352 353 vbt_max_rate = intel_bios_dp_max_link_rate(encoder); 354 if (max_rate && vbt_max_rate) 355 max_rate = min(max_rate, vbt_max_rate); 356 else if (vbt_max_rate) 357 max_rate = vbt_max_rate; 358 359 if (max_rate) 360 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 361 362 intel_dp->source_rates = source_rates; 363 intel_dp->num_source_rates = size; 364 } 365 366 static int intersect_rates(const int *source_rates, int source_len, 367 const int *sink_rates, int sink_len, 368 int *common_rates) 369 { 370 int i = 0, j = 0, k = 0; 371 372 while (i < source_len && j < sink_len) { 373 if (source_rates[i] == sink_rates[j]) { 374 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 375 return k; 376 common_rates[k] = source_rates[i]; 377 ++k; 378 ++i; 379 ++j; 380 } else if (source_rates[i] < sink_rates[j]) { 381 ++i; 382 } else { 383 ++j; 384 } 385 } 386 return k; 387 } 388 389 /* return index of rate in rates array, or -1 if not found */ 390 static int intel_dp_rate_index(const int *rates, int len, int rate) 391 { 392 int i; 393 394 for (i = 0; i < len; i++) 395 if (rate == rates[i]) 396 return i; 397 398 return -1; 399 } 400 401 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 402 { 403 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates); 404 405 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 406 intel_dp->num_source_rates, 407 intel_dp->sink_rates, 408 intel_dp->num_sink_rates, 409 intel_dp->common_rates); 410 411 /* Paranoia, there should always be something in common. */ 412 if (WARN_ON(intel_dp->num_common_rates == 0)) { 413 intel_dp->common_rates[0] = 162000; 414 intel_dp->num_common_rates = 1; 415 } 416 } 417 418 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 419 u8 lane_count) 420 { 421 /* 422 * FIXME: we need to synchronize the current link parameters with 423 * hardware readout. Currently fast link training doesn't work on 424 * boot-up. 425 */ 426 if (link_rate == 0 || 427 link_rate > intel_dp->max_link_rate) 428 return false; 429 430 if (lane_count == 0 || 431 lane_count > intel_dp_max_lane_count(intel_dp)) 432 return false; 433 434 return true; 435 } 436 437 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, 438 int link_rate, 439 u8 lane_count) 440 { 441 const struct drm_display_mode *fixed_mode = 442 intel_dp->attached_connector->panel.fixed_mode; 443 int mode_rate, max_rate; 444 445 mode_rate = intel_dp_link_required(fixed_mode->clock, 18); 446 max_rate = intel_dp_max_data_rate(link_rate, lane_count); 447 if (mode_rate > max_rate) 448 return false; 449 450 return true; 451 } 452 453 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, 454 int link_rate, u8 lane_count) 455 { 456 int index; 457 458 index = intel_dp_rate_index(intel_dp->common_rates, 459 intel_dp->num_common_rates, 460 link_rate); 461 if (index > 0) { 462 if (intel_dp_is_edp(intel_dp) && 463 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 464 intel_dp->common_rates[index - 1], 465 lane_count)) { 466 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 467 return 0; 468 } 469 intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; 470 intel_dp->max_link_lane_count = lane_count; 471 } else if (lane_count > 1) { 472 if (intel_dp_is_edp(intel_dp) && 473 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 474 intel_dp_max_common_rate(intel_dp), 475 lane_count >> 1)) { 476 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 477 return 0; 478 } 479 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 480 intel_dp->max_link_lane_count = lane_count >> 1; 481 } else { 482 DRM_ERROR("Link Training Unsuccessful\n"); 483 return -1; 484 } 485 486 return 0; 487 } 488 489 u32 intel_dp_mode_to_fec_clock(u32 mode_clock) 490 { 491 return div_u64(mul_u32_u32(mode_clock, 1000000U), 492 DP_DSC_FEC_OVERHEAD_FACTOR); 493 } 494 495 static int 496 small_joiner_ram_size_bits(struct drm_i915_private *i915) 497 { 498 if (INTEL_GEN(i915) >= 11) 499 return 7680 * 8; 500 else 501 return 6144 * 8; 502 } 503 504 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915, 505 u32 link_clock, u32 lane_count, 506 u32 mode_clock, u32 mode_hdisplay) 507 { 508 u32 bits_per_pixel, max_bpp_small_joiner_ram; 509 int i; 510 511 /* 512 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 513 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP) 514 * for SST -> TimeSlotsPerMTP is 1, 515 * for MST -> TimeSlotsPerMTP has to be calculated 516 */ 517 bits_per_pixel = (link_clock * lane_count * 8) / 518 intel_dp_mode_to_fec_clock(mode_clock); 519 drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel); 520 521 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 522 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / 523 mode_hdisplay; 524 drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n", 525 max_bpp_small_joiner_ram); 526 527 /* 528 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW 529 * check, output bpp from small joiner RAM check) 530 */ 531 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); 532 533 /* Error out if the max bpp is less than smallest allowed valid bpp */ 534 if (bits_per_pixel < valid_dsc_bpp[0]) { 535 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n", 536 bits_per_pixel, valid_dsc_bpp[0]); 537 return 0; 538 } 539 540 /* Find the nearest match in the array of known BPPs from VESA */ 541 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 542 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 543 break; 544 } 545 bits_per_pixel = valid_dsc_bpp[i]; 546 547 /* 548 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, 549 * fractional part is 0 550 */ 551 return bits_per_pixel << 4; 552 } 553 554 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, 555 int mode_clock, int mode_hdisplay) 556 { 557 u8 min_slice_count, i; 558 int max_slice_width; 559 560 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 561 min_slice_count = DIV_ROUND_UP(mode_clock, 562 DP_DSC_MAX_ENC_THROUGHPUT_0); 563 else 564 min_slice_count = DIV_ROUND_UP(mode_clock, 565 DP_DSC_MAX_ENC_THROUGHPUT_1); 566 567 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); 568 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 569 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n", 570 max_slice_width); 571 return 0; 572 } 573 /* Also take into account max slice width */ 574 min_slice_count = min_t(u8, min_slice_count, 575 DIV_ROUND_UP(mode_hdisplay, 576 max_slice_width)); 577 578 /* Find the closest match to the valid slice count values */ 579 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 580 if (valid_dsc_slicecount[i] > 581 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 582 false)) 583 break; 584 if (min_slice_count <= valid_dsc_slicecount[i]) 585 return valid_dsc_slicecount[i]; 586 } 587 588 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count); 589 return 0; 590 } 591 592 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv, 593 int hdisplay) 594 { 595 /* 596 * Older platforms don't like hdisplay==4096 with DP. 597 * 598 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline 599 * and frame counter increment), but we don't get vblank interrupts, 600 * and the pipe underruns immediately. The link also doesn't seem 601 * to get trained properly. 602 * 603 * On CHV the vblank interrupts don't seem to disappear but 604 * otherwise the symptoms are similar. 605 * 606 * TODO: confirm the behaviour on HSW+ 607 */ 608 return hdisplay == 4096 && !HAS_DDI(dev_priv); 609 } 610 611 static enum drm_mode_status 612 intel_dp_mode_valid(struct drm_connector *connector, 613 struct drm_display_mode *mode) 614 { 615 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 616 struct intel_connector *intel_connector = to_intel_connector(connector); 617 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; 618 struct drm_i915_private *dev_priv = to_i915(connector->dev); 619 int target_clock = mode->clock; 620 int max_rate, mode_rate, max_lanes, max_link_clock; 621 int max_dotclk; 622 u16 dsc_max_output_bpp = 0; 623 u8 dsc_slice_count = 0; 624 625 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 626 return MODE_NO_DBLESCAN; 627 628 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp); 629 630 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 631 if (mode->hdisplay > fixed_mode->hdisplay) 632 return MODE_PANEL; 633 634 if (mode->vdisplay > fixed_mode->vdisplay) 635 return MODE_PANEL; 636 637 target_clock = fixed_mode->clock; 638 } 639 640 max_link_clock = intel_dp_max_link_rate(intel_dp); 641 max_lanes = intel_dp_max_lane_count(intel_dp); 642 643 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); 644 mode_rate = intel_dp_link_required(target_clock, 18); 645 646 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay)) 647 return MODE_H_ILLEGAL; 648 649 /* 650 * Output bpp is stored in 6.4 format so right shift by 4 to get the 651 * integer value since we support only integer values of bpp. 652 */ 653 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && 654 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { 655 if (intel_dp_is_edp(intel_dp)) { 656 dsc_max_output_bpp = 657 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; 658 dsc_slice_count = 659 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 660 true); 661 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { 662 dsc_max_output_bpp = 663 intel_dp_dsc_get_output_bpp(dev_priv, 664 max_link_clock, 665 max_lanes, 666 target_clock, 667 mode->hdisplay) >> 4; 668 dsc_slice_count = 669 intel_dp_dsc_get_slice_count(intel_dp, 670 target_clock, 671 mode->hdisplay); 672 } 673 } 674 675 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) || 676 target_clock > max_dotclk) 677 return MODE_CLOCK_HIGH; 678 679 if (mode->clock < 10000) 680 return MODE_CLOCK_LOW; 681 682 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 683 return MODE_H_ILLEGAL; 684 685 return intel_mode_valid_max_plane_size(dev_priv, mode); 686 } 687 688 u32 intel_dp_pack_aux(const u8 *src, int src_bytes) 689 { 690 int i; 691 u32 v = 0; 692 693 if (src_bytes > 4) 694 src_bytes = 4; 695 for (i = 0; i < src_bytes; i++) 696 v |= ((u32)src[i]) << ((3 - i) * 8); 697 return v; 698 } 699 700 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) 701 { 702 int i; 703 if (dst_bytes > 4) 704 dst_bytes = 4; 705 for (i = 0; i < dst_bytes; i++) 706 dst[i] = src >> ((3-i) * 8); 707 } 708 709 static void 710 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); 711 static void 712 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 713 bool force_disable_vdd); 714 static void 715 intel_dp_pps_init(struct intel_dp *intel_dp); 716 717 static intel_wakeref_t 718 pps_lock(struct intel_dp *intel_dp) 719 { 720 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 721 intel_wakeref_t wakeref; 722 723 /* 724 * See intel_power_sequencer_reset() why we need 725 * a power domain reference here. 726 */ 727 wakeref = intel_display_power_get(dev_priv, 728 intel_aux_power_domain(dp_to_dig_port(intel_dp))); 729 730 mutex_lock(&dev_priv->pps_mutex); 731 732 return wakeref; 733 } 734 735 static intel_wakeref_t 736 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) 737 { 738 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 739 740 mutex_unlock(&dev_priv->pps_mutex); 741 intel_display_power_put(dev_priv, 742 intel_aux_power_domain(dp_to_dig_port(intel_dp)), 743 wakeref); 744 return 0; 745 } 746 747 #define with_pps_lock(dp, wf) \ 748 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) 749 750 static void 751 vlv_power_sequencer_kick(struct intel_dp *intel_dp) 752 { 753 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 754 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 755 enum pipe pipe = intel_dp->pps_pipe; 756 bool pll_enabled, release_cl_override = false; 757 enum dpio_phy phy = DPIO_PHY(pipe); 758 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 759 u32 DP; 760 761 if (drm_WARN(&dev_priv->drm, 762 intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN, 763 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n", 764 pipe_name(pipe), intel_dig_port->base.base.base.id, 765 intel_dig_port->base.base.name)) 766 return; 767 768 drm_dbg_kms(&dev_priv->drm, 769 "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n", 770 pipe_name(pipe), intel_dig_port->base.base.base.id, 771 intel_dig_port->base.base.name); 772 773 /* Preserve the BIOS-computed detected bit. This is 774 * supposed to be read-only. 775 */ 776 DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED; 777 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 778 DP |= DP_PORT_WIDTH(1); 779 DP |= DP_LINK_TRAIN_PAT_1; 780 781 if (IS_CHERRYVIEW(dev_priv)) 782 DP |= DP_PIPE_SEL_CHV(pipe); 783 else 784 DP |= DP_PIPE_SEL(pipe); 785 786 pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE; 787 788 /* 789 * The DPLL for the pipe must be enabled for this to work. 790 * So enable temporarily it if it's not already enabled. 791 */ 792 if (!pll_enabled) { 793 release_cl_override = IS_CHERRYVIEW(dev_priv) && 794 !chv_phy_powergate_ch(dev_priv, phy, ch, true); 795 796 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? 797 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { 798 drm_err(&dev_priv->drm, 799 "Failed to force on pll for pipe %c!\n", 800 pipe_name(pipe)); 801 return; 802 } 803 } 804 805 /* 806 * Similar magic as in intel_dp_enable_port(). 807 * We _must_ do this port enable + disable trick 808 * to make this power sequencer lock onto the port. 809 * Otherwise even VDD force bit won't work. 810 */ 811 intel_de_write(dev_priv, intel_dp->output_reg, DP); 812 intel_de_posting_read(dev_priv, intel_dp->output_reg); 813 814 intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN); 815 intel_de_posting_read(dev_priv, intel_dp->output_reg); 816 817 intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN); 818 intel_de_posting_read(dev_priv, intel_dp->output_reg); 819 820 if (!pll_enabled) { 821 vlv_force_pll_off(dev_priv, pipe); 822 823 if (release_cl_override) 824 chv_phy_powergate_ch(dev_priv, phy, ch, false); 825 } 826 } 827 828 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) 829 { 830 struct intel_encoder *encoder; 831 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); 832 833 /* 834 * We don't have power sequencer currently. 835 * Pick one that's not used by other ports. 836 */ 837 for_each_intel_dp(&dev_priv->drm, encoder) { 838 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 839 840 if (encoder->type == INTEL_OUTPUT_EDP) { 841 drm_WARN_ON(&dev_priv->drm, 842 intel_dp->active_pipe != INVALID_PIPE && 843 intel_dp->active_pipe != 844 intel_dp->pps_pipe); 845 846 if (intel_dp->pps_pipe != INVALID_PIPE) 847 pipes &= ~(1 << intel_dp->pps_pipe); 848 } else { 849 drm_WARN_ON(&dev_priv->drm, 850 intel_dp->pps_pipe != INVALID_PIPE); 851 852 if (intel_dp->active_pipe != INVALID_PIPE) 853 pipes &= ~(1 << intel_dp->active_pipe); 854 } 855 } 856 857 if (pipes == 0) 858 return INVALID_PIPE; 859 860 return ffs(pipes) - 1; 861 } 862 863 static enum pipe 864 vlv_power_sequencer_pipe(struct intel_dp *intel_dp) 865 { 866 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 867 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 868 enum pipe pipe; 869 870 lockdep_assert_held(&dev_priv->pps_mutex); 871 872 /* We should never land here with regular DP ports */ 873 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp)); 874 875 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE && 876 intel_dp->active_pipe != intel_dp->pps_pipe); 877 878 if (intel_dp->pps_pipe != INVALID_PIPE) 879 return intel_dp->pps_pipe; 880 881 pipe = vlv_find_free_pps(dev_priv); 882 883 /* 884 * Didn't find one. This should not happen since there 885 * are two power sequencers and up to two eDP ports. 886 */ 887 if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE)) 888 pipe = PIPE_A; 889 890 vlv_steal_power_sequencer(dev_priv, pipe); 891 intel_dp->pps_pipe = pipe; 892 893 drm_dbg_kms(&dev_priv->drm, 894 "picked pipe %c power sequencer for [ENCODER:%d:%s]\n", 895 pipe_name(intel_dp->pps_pipe), 896 intel_dig_port->base.base.base.id, 897 intel_dig_port->base.base.name); 898 899 /* init power sequencer on this pipe and port */ 900 intel_dp_init_panel_power_sequencer(intel_dp); 901 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 902 903 /* 904 * Even vdd force doesn't work until we've made 905 * the power sequencer lock in on the port. 906 */ 907 vlv_power_sequencer_kick(intel_dp); 908 909 return intel_dp->pps_pipe; 910 } 911 912 static int 913 bxt_power_sequencer_idx(struct intel_dp *intel_dp) 914 { 915 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 916 int backlight_controller = dev_priv->vbt.backlight.controller; 917 918 lockdep_assert_held(&dev_priv->pps_mutex); 919 920 /* We should never land here with regular DP ports */ 921 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp)); 922 923 if (!intel_dp->pps_reset) 924 return backlight_controller; 925 926 intel_dp->pps_reset = false; 927 928 /* 929 * Only the HW needs to be reprogrammed, the SW state is fixed and 930 * has been setup during connector init. 931 */ 932 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 933 934 return backlight_controller; 935 } 936 937 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, 938 enum pipe pipe); 939 940 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, 941 enum pipe pipe) 942 { 943 return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON; 944 } 945 946 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, 947 enum pipe pipe) 948 { 949 return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD; 950 } 951 952 static bool vlv_pipe_any(struct drm_i915_private *dev_priv, 953 enum pipe pipe) 954 { 955 return true; 956 } 957 958 static enum pipe 959 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, 960 enum port port, 961 vlv_pipe_check pipe_check) 962 { 963 enum pipe pipe; 964 965 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { 966 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) & 967 PANEL_PORT_SELECT_MASK; 968 969 if (port_sel != PANEL_PORT_SELECT_VLV(port)) 970 continue; 971 972 if (!pipe_check(dev_priv, pipe)) 973 continue; 974 975 return pipe; 976 } 977 978 return INVALID_PIPE; 979 } 980 981 static void 982 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) 983 { 984 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 985 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 986 enum port port = intel_dig_port->base.port; 987 988 lockdep_assert_held(&dev_priv->pps_mutex); 989 990 /* try to find a pipe with this port selected */ 991 /* first pick one where the panel is on */ 992 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 993 vlv_pipe_has_pp_on); 994 /* didn't find one? pick one where vdd is on */ 995 if (intel_dp->pps_pipe == INVALID_PIPE) 996 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 997 vlv_pipe_has_vdd_on); 998 /* didn't find one? pick one with just the correct port */ 999 if (intel_dp->pps_pipe == INVALID_PIPE) 1000 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 1001 vlv_pipe_any); 1002 1003 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ 1004 if (intel_dp->pps_pipe == INVALID_PIPE) { 1005 drm_dbg_kms(&dev_priv->drm, 1006 "no initial power sequencer for [ENCODER:%d:%s]\n", 1007 intel_dig_port->base.base.base.id, 1008 intel_dig_port->base.base.name); 1009 return; 1010 } 1011 1012 drm_dbg_kms(&dev_priv->drm, 1013 "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n", 1014 intel_dig_port->base.base.base.id, 1015 intel_dig_port->base.base.name, 1016 pipe_name(intel_dp->pps_pipe)); 1017 1018 intel_dp_init_panel_power_sequencer(intel_dp); 1019 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 1020 } 1021 1022 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) 1023 { 1024 struct intel_encoder *encoder; 1025 1026 if (drm_WARN_ON(&dev_priv->drm, 1027 !(IS_VALLEYVIEW(dev_priv) || 1028 IS_CHERRYVIEW(dev_priv) || 1029 IS_GEN9_LP(dev_priv)))) 1030 return; 1031 1032 /* 1033 * We can't grab pps_mutex here due to deadlock with power_domain 1034 * mutex when power_domain functions are called while holding pps_mutex. 1035 * That also means that in order to use pps_pipe the code needs to 1036 * hold both a power domain reference and pps_mutex, and the power domain 1037 * reference get/put must be done while _not_ holding pps_mutex. 1038 * pps_{lock,unlock}() do these steps in the correct order, so one 1039 * should use them always. 1040 */ 1041 1042 for_each_intel_dp(&dev_priv->drm, encoder) { 1043 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1044 1045 drm_WARN_ON(&dev_priv->drm, 1046 intel_dp->active_pipe != INVALID_PIPE); 1047 1048 if (encoder->type != INTEL_OUTPUT_EDP) 1049 continue; 1050 1051 if (IS_GEN9_LP(dev_priv)) 1052 intel_dp->pps_reset = true; 1053 else 1054 intel_dp->pps_pipe = INVALID_PIPE; 1055 } 1056 } 1057 1058 struct pps_registers { 1059 i915_reg_t pp_ctrl; 1060 i915_reg_t pp_stat; 1061 i915_reg_t pp_on; 1062 i915_reg_t pp_off; 1063 i915_reg_t pp_div; 1064 }; 1065 1066 static void intel_pps_get_registers(struct intel_dp *intel_dp, 1067 struct pps_registers *regs) 1068 { 1069 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1070 int pps_idx = 0; 1071 1072 memset(regs, 0, sizeof(*regs)); 1073 1074 if (IS_GEN9_LP(dev_priv)) 1075 pps_idx = bxt_power_sequencer_idx(intel_dp); 1076 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1077 pps_idx = vlv_power_sequencer_pipe(intel_dp); 1078 1079 regs->pp_ctrl = PP_CONTROL(pps_idx); 1080 regs->pp_stat = PP_STATUS(pps_idx); 1081 regs->pp_on = PP_ON_DELAYS(pps_idx); 1082 regs->pp_off = PP_OFF_DELAYS(pps_idx); 1083 1084 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ 1085 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 1086 regs->pp_div = INVALID_MMIO_REG; 1087 else 1088 regs->pp_div = PP_DIVISOR(pps_idx); 1089 } 1090 1091 static i915_reg_t 1092 _pp_ctrl_reg(struct intel_dp *intel_dp) 1093 { 1094 struct pps_registers regs; 1095 1096 intel_pps_get_registers(intel_dp, ®s); 1097 1098 return regs.pp_ctrl; 1099 } 1100 1101 static i915_reg_t 1102 _pp_stat_reg(struct intel_dp *intel_dp) 1103 { 1104 struct pps_registers regs; 1105 1106 intel_pps_get_registers(intel_dp, ®s); 1107 1108 return regs.pp_stat; 1109 } 1110 1111 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing 1112 This function only applicable when panel PM state is not to be tracked */ 1113 static int edp_notify_handler(struct notifier_block *this, unsigned long code, 1114 void *unused) 1115 { 1116 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), 1117 edp_notifier); 1118 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1119 intel_wakeref_t wakeref; 1120 1121 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) 1122 return 0; 1123 1124 with_pps_lock(intel_dp, wakeref) { 1125 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1126 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); 1127 i915_reg_t pp_ctrl_reg, pp_div_reg; 1128 u32 pp_div; 1129 1130 pp_ctrl_reg = PP_CONTROL(pipe); 1131 pp_div_reg = PP_DIVISOR(pipe); 1132 pp_div = intel_de_read(dev_priv, pp_div_reg); 1133 pp_div &= PP_REFERENCE_DIVIDER_MASK; 1134 1135 /* 0x1F write to PP_DIV_REG sets max cycle delay */ 1136 intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F); 1137 intel_de_write(dev_priv, pp_ctrl_reg, 1138 PANEL_UNLOCK_REGS); 1139 msleep(intel_dp->panel_power_cycle_delay); 1140 } 1141 } 1142 1143 return 0; 1144 } 1145 1146 static bool edp_have_panel_power(struct intel_dp *intel_dp) 1147 { 1148 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1149 1150 lockdep_assert_held(&dev_priv->pps_mutex); 1151 1152 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1153 intel_dp->pps_pipe == INVALID_PIPE) 1154 return false; 1155 1156 return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0; 1157 } 1158 1159 static bool edp_have_panel_vdd(struct intel_dp *intel_dp) 1160 { 1161 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1162 1163 lockdep_assert_held(&dev_priv->pps_mutex); 1164 1165 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1166 intel_dp->pps_pipe == INVALID_PIPE) 1167 return false; 1168 1169 return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; 1170 } 1171 1172 static void 1173 intel_dp_check_edp(struct intel_dp *intel_dp) 1174 { 1175 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1176 1177 if (!intel_dp_is_edp(intel_dp)) 1178 return; 1179 1180 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { 1181 drm_WARN(&dev_priv->drm, 1, 1182 "eDP powered off while attempting aux channel communication.\n"); 1183 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n", 1184 intel_de_read(dev_priv, _pp_stat_reg(intel_dp)), 1185 intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp))); 1186 } 1187 } 1188 1189 static u32 1190 intel_dp_aux_wait_done(struct intel_dp *intel_dp) 1191 { 1192 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1193 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1194 const unsigned int timeout_ms = 10; 1195 u32 status; 1196 bool done; 1197 1198 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1199 done = wait_event_timeout(i915->gmbus_wait_queue, C, 1200 msecs_to_jiffies_timeout(timeout_ms)); 1201 1202 /* just trace the final value */ 1203 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1204 1205 if (!done) 1206 drm_err(&i915->drm, 1207 "%s: did not complete or timeout within %ums (status 0x%08x)\n", 1208 intel_dp->aux.name, timeout_ms, status); 1209 #undef C 1210 1211 return status; 1212 } 1213 1214 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1215 { 1216 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1217 1218 if (index) 1219 return 0; 1220 1221 /* 1222 * The clock divider is based off the hrawclk, and would like to run at 1223 * 2MHz. So, take the hrawclk value and divide by 2000 and use that 1224 */ 1225 return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000); 1226 } 1227 1228 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1229 { 1230 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1231 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1232 u32 freq; 1233 1234 if (index) 1235 return 0; 1236 1237 /* 1238 * The clock divider is based off the cdclk or PCH rawclk, and would 1239 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and 1240 * divide by 2000 and use that 1241 */ 1242 if (dig_port->aux_ch == AUX_CH_A) 1243 freq = dev_priv->cdclk.hw.cdclk; 1244 else 1245 freq = RUNTIME_INFO(dev_priv)->rawclk_freq; 1246 return DIV_ROUND_CLOSEST(freq, 2000); 1247 } 1248 1249 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1250 { 1251 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1252 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1253 1254 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { 1255 /* Workaround for non-ULT HSW */ 1256 switch (index) { 1257 case 0: return 63; 1258 case 1: return 72; 1259 default: return 0; 1260 } 1261 } 1262 1263 return ilk_get_aux_clock_divider(intel_dp, index); 1264 } 1265 1266 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1267 { 1268 /* 1269 * SKL doesn't need us to program the AUX clock divider (Hardware will 1270 * derive the clock from CDCLK automatically). We still implement the 1271 * get_aux_clock_divider vfunc to plug-in into the existing code. 1272 */ 1273 return index ? 0 : 1; 1274 } 1275 1276 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, 1277 int send_bytes, 1278 u32 aux_clock_divider) 1279 { 1280 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1281 struct drm_i915_private *dev_priv = 1282 to_i915(intel_dig_port->base.base.dev); 1283 u32 precharge, timeout; 1284 1285 if (IS_GEN(dev_priv, 6)) 1286 precharge = 3; 1287 else 1288 precharge = 5; 1289 1290 if (IS_BROADWELL(dev_priv)) 1291 timeout = DP_AUX_CH_CTL_TIME_OUT_600us; 1292 else 1293 timeout = DP_AUX_CH_CTL_TIME_OUT_400us; 1294 1295 return DP_AUX_CH_CTL_SEND_BUSY | 1296 DP_AUX_CH_CTL_DONE | 1297 DP_AUX_CH_CTL_INTERRUPT | 1298 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1299 timeout | 1300 DP_AUX_CH_CTL_RECEIVE_ERROR | 1301 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1302 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 1303 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); 1304 } 1305 1306 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, 1307 int send_bytes, 1308 u32 unused) 1309 { 1310 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1311 struct drm_i915_private *i915 = 1312 to_i915(intel_dig_port->base.base.dev); 1313 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1314 u32 ret; 1315 1316 ret = DP_AUX_CH_CTL_SEND_BUSY | 1317 DP_AUX_CH_CTL_DONE | 1318 DP_AUX_CH_CTL_INTERRUPT | 1319 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1320 DP_AUX_CH_CTL_TIME_OUT_MAX | 1321 DP_AUX_CH_CTL_RECEIVE_ERROR | 1322 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1323 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | 1324 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); 1325 1326 if (intel_phy_is_tc(i915, phy) && 1327 intel_dig_port->tc_mode == TC_PORT_TBT_ALT) 1328 ret |= DP_AUX_CH_CTL_TBT_IO; 1329 1330 return ret; 1331 } 1332 1333 static int 1334 intel_dp_aux_xfer(struct intel_dp *intel_dp, 1335 const u8 *send, int send_bytes, 1336 u8 *recv, int recv_size, 1337 u32 aux_send_ctl_flags) 1338 { 1339 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1340 struct drm_i915_private *i915 = 1341 to_i915(intel_dig_port->base.base.dev); 1342 struct intel_uncore *uncore = &i915->uncore; 1343 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1344 bool is_tc_port = intel_phy_is_tc(i915, phy); 1345 i915_reg_t ch_ctl, ch_data[5]; 1346 u32 aux_clock_divider; 1347 enum intel_display_power_domain aux_domain = 1348 intel_aux_power_domain(intel_dig_port); 1349 intel_wakeref_t aux_wakeref; 1350 intel_wakeref_t pps_wakeref; 1351 int i, ret, recv_bytes; 1352 int try, clock = 0; 1353 u32 status; 1354 bool vdd; 1355 1356 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1357 for (i = 0; i < ARRAY_SIZE(ch_data); i++) 1358 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); 1359 1360 if (is_tc_port) 1361 intel_tc_port_lock(intel_dig_port); 1362 1363 aux_wakeref = intel_display_power_get(i915, aux_domain); 1364 pps_wakeref = pps_lock(intel_dp); 1365 1366 /* 1367 * We will be called with VDD already enabled for dpcd/edid/oui reads. 1368 * In such cases we want to leave VDD enabled and it's up to upper layers 1369 * to turn it off. But for eg. i2c-dev access we need to turn it on/off 1370 * ourselves. 1371 */ 1372 vdd = edp_panel_vdd_on(intel_dp); 1373 1374 /* dp aux is extremely sensitive to irq latency, hence request the 1375 * lowest possible wakeup latency and so prevent the cpu from going into 1376 * deep sleep states. 1377 */ 1378 pm_qos_update_request(&i915->pm_qos, 0); 1379 1380 intel_dp_check_edp(intel_dp); 1381 1382 /* Try to wait for any previous AUX channel activity */ 1383 for (try = 0; try < 3; try++) { 1384 status = intel_uncore_read_notrace(uncore, ch_ctl); 1385 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1386 break; 1387 msleep(1); 1388 } 1389 /* just trace the final value */ 1390 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1391 1392 if (try == 3) { 1393 const u32 status = intel_uncore_read(uncore, ch_ctl); 1394 1395 if (status != intel_dp->aux_busy_last_status) { 1396 drm_WARN(&i915->drm, 1, 1397 "%s: not started (status 0x%08x)\n", 1398 intel_dp->aux.name, status); 1399 intel_dp->aux_busy_last_status = status; 1400 } 1401 1402 ret = -EBUSY; 1403 goto out; 1404 } 1405 1406 /* Only 5 data registers! */ 1407 if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) { 1408 ret = -E2BIG; 1409 goto out; 1410 } 1411 1412 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { 1413 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, 1414 send_bytes, 1415 aux_clock_divider); 1416 1417 send_ctl |= aux_send_ctl_flags; 1418 1419 /* Must try at least 3 times according to DP spec */ 1420 for (try = 0; try < 5; try++) { 1421 /* Load the send data into the aux channel data registers */ 1422 for (i = 0; i < send_bytes; i += 4) 1423 intel_uncore_write(uncore, 1424 ch_data[i >> 2], 1425 intel_dp_pack_aux(send + i, 1426 send_bytes - i)); 1427 1428 /* Send the command and wait for it to complete */ 1429 intel_uncore_write(uncore, ch_ctl, send_ctl); 1430 1431 status = intel_dp_aux_wait_done(intel_dp); 1432 1433 /* Clear done status and any errors */ 1434 intel_uncore_write(uncore, 1435 ch_ctl, 1436 status | 1437 DP_AUX_CH_CTL_DONE | 1438 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1439 DP_AUX_CH_CTL_RECEIVE_ERROR); 1440 1441 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 1442 * 400us delay required for errors and timeouts 1443 * Timeout errors from the HW already meet this 1444 * requirement so skip to next iteration 1445 */ 1446 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) 1447 continue; 1448 1449 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1450 usleep_range(400, 500); 1451 continue; 1452 } 1453 if (status & DP_AUX_CH_CTL_DONE) 1454 goto done; 1455 } 1456 } 1457 1458 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 1459 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n", 1460 intel_dp->aux.name, status); 1461 ret = -EBUSY; 1462 goto out; 1463 } 1464 1465 done: 1466 /* Check for timeout or receive error. 1467 * Timeouts occur when the sink is not connected 1468 */ 1469 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1470 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n", 1471 intel_dp->aux.name, status); 1472 ret = -EIO; 1473 goto out; 1474 } 1475 1476 /* Timeouts occur when the device isn't connected, so they're 1477 * "normal" -- don't fill the kernel log with these */ 1478 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 1479 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n", 1480 intel_dp->aux.name, status); 1481 ret = -ETIMEDOUT; 1482 goto out; 1483 } 1484 1485 /* Unload any bytes sent back from the other side */ 1486 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 1487 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 1488 1489 /* 1490 * By BSpec: "Message sizes of 0 or >20 are not allowed." 1491 * We have no idea of what happened so we return -EBUSY so 1492 * drm layer takes care for the necessary retries. 1493 */ 1494 if (recv_bytes == 0 || recv_bytes > 20) { 1495 drm_dbg_kms(&i915->drm, 1496 "%s: Forbidden recv_bytes = %d on aux transaction\n", 1497 intel_dp->aux.name, recv_bytes); 1498 ret = -EBUSY; 1499 goto out; 1500 } 1501 1502 if (recv_bytes > recv_size) 1503 recv_bytes = recv_size; 1504 1505 for (i = 0; i < recv_bytes; i += 4) 1506 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), 1507 recv + i, recv_bytes - i); 1508 1509 ret = recv_bytes; 1510 out: 1511 pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE); 1512 1513 if (vdd) 1514 edp_panel_vdd_off(intel_dp, false); 1515 1516 pps_unlock(intel_dp, pps_wakeref); 1517 intel_display_power_put_async(i915, aux_domain, aux_wakeref); 1518 1519 if (is_tc_port) 1520 intel_tc_port_unlock(intel_dig_port); 1521 1522 return ret; 1523 } 1524 1525 #define BARE_ADDRESS_SIZE 3 1526 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) 1527 1528 static void 1529 intel_dp_aux_header(u8 txbuf[HEADER_SIZE], 1530 const struct drm_dp_aux_msg *msg) 1531 { 1532 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); 1533 txbuf[1] = (msg->address >> 8) & 0xff; 1534 txbuf[2] = msg->address & 0xff; 1535 txbuf[3] = msg->size - 1; 1536 } 1537 1538 static ssize_t 1539 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1540 { 1541 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); 1542 u8 txbuf[20], rxbuf[20]; 1543 size_t txsize, rxsize; 1544 int ret; 1545 1546 intel_dp_aux_header(txbuf, msg); 1547 1548 switch (msg->request & ~DP_AUX_I2C_MOT) { 1549 case DP_AUX_NATIVE_WRITE: 1550 case DP_AUX_I2C_WRITE: 1551 case DP_AUX_I2C_WRITE_STATUS_UPDATE: 1552 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; 1553 rxsize = 2; /* 0 or 1 data bytes */ 1554 1555 if (WARN_ON(txsize > 20)) 1556 return -E2BIG; 1557 1558 WARN_ON(!msg->buffer != !msg->size); 1559 1560 if (msg->buffer) 1561 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); 1562 1563 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1564 rxbuf, rxsize, 0); 1565 if (ret > 0) { 1566 msg->reply = rxbuf[0] >> 4; 1567 1568 if (ret > 1) { 1569 /* Number of bytes written in a short write. */ 1570 ret = clamp_t(int, rxbuf[1], 0, msg->size); 1571 } else { 1572 /* Return payload size. */ 1573 ret = msg->size; 1574 } 1575 } 1576 break; 1577 1578 case DP_AUX_NATIVE_READ: 1579 case DP_AUX_I2C_READ: 1580 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; 1581 rxsize = msg->size + 1; 1582 1583 if (WARN_ON(rxsize > 20)) 1584 return -E2BIG; 1585 1586 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1587 rxbuf, rxsize, 0); 1588 if (ret > 0) { 1589 msg->reply = rxbuf[0] >> 4; 1590 /* 1591 * Assume happy day, and copy the data. The caller is 1592 * expected to check msg->reply before touching it. 1593 * 1594 * Return payload size. 1595 */ 1596 ret--; 1597 memcpy(msg->buffer, rxbuf + 1, ret); 1598 } 1599 break; 1600 1601 default: 1602 ret = -EINVAL; 1603 break; 1604 } 1605 1606 return ret; 1607 } 1608 1609 1610 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) 1611 { 1612 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1613 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1614 enum aux_ch aux_ch = dig_port->aux_ch; 1615 1616 switch (aux_ch) { 1617 case AUX_CH_B: 1618 case AUX_CH_C: 1619 case AUX_CH_D: 1620 return DP_AUX_CH_CTL(aux_ch); 1621 default: 1622 MISSING_CASE(aux_ch); 1623 return DP_AUX_CH_CTL(AUX_CH_B); 1624 } 1625 } 1626 1627 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) 1628 { 1629 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1630 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1631 enum aux_ch aux_ch = dig_port->aux_ch; 1632 1633 switch (aux_ch) { 1634 case AUX_CH_B: 1635 case AUX_CH_C: 1636 case AUX_CH_D: 1637 return DP_AUX_CH_DATA(aux_ch, index); 1638 default: 1639 MISSING_CASE(aux_ch); 1640 return DP_AUX_CH_DATA(AUX_CH_B, index); 1641 } 1642 } 1643 1644 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) 1645 { 1646 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1647 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1648 enum aux_ch aux_ch = dig_port->aux_ch; 1649 1650 switch (aux_ch) { 1651 case AUX_CH_A: 1652 return DP_AUX_CH_CTL(aux_ch); 1653 case AUX_CH_B: 1654 case AUX_CH_C: 1655 case AUX_CH_D: 1656 return PCH_DP_AUX_CH_CTL(aux_ch); 1657 default: 1658 MISSING_CASE(aux_ch); 1659 return DP_AUX_CH_CTL(AUX_CH_A); 1660 } 1661 } 1662 1663 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) 1664 { 1665 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1666 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1667 enum aux_ch aux_ch = dig_port->aux_ch; 1668 1669 switch (aux_ch) { 1670 case AUX_CH_A: 1671 return DP_AUX_CH_DATA(aux_ch, index); 1672 case AUX_CH_B: 1673 case AUX_CH_C: 1674 case AUX_CH_D: 1675 return PCH_DP_AUX_CH_DATA(aux_ch, index); 1676 default: 1677 MISSING_CASE(aux_ch); 1678 return DP_AUX_CH_DATA(AUX_CH_A, index); 1679 } 1680 } 1681 1682 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) 1683 { 1684 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1685 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1686 enum aux_ch aux_ch = dig_port->aux_ch; 1687 1688 switch (aux_ch) { 1689 case AUX_CH_A: 1690 case AUX_CH_B: 1691 case AUX_CH_C: 1692 case AUX_CH_D: 1693 case AUX_CH_E: 1694 case AUX_CH_F: 1695 case AUX_CH_G: 1696 return DP_AUX_CH_CTL(aux_ch); 1697 default: 1698 MISSING_CASE(aux_ch); 1699 return DP_AUX_CH_CTL(AUX_CH_A); 1700 } 1701 } 1702 1703 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) 1704 { 1705 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1706 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1707 enum aux_ch aux_ch = dig_port->aux_ch; 1708 1709 switch (aux_ch) { 1710 case AUX_CH_A: 1711 case AUX_CH_B: 1712 case AUX_CH_C: 1713 case AUX_CH_D: 1714 case AUX_CH_E: 1715 case AUX_CH_F: 1716 case AUX_CH_G: 1717 return DP_AUX_CH_DATA(aux_ch, index); 1718 default: 1719 MISSING_CASE(aux_ch); 1720 return DP_AUX_CH_DATA(AUX_CH_A, index); 1721 } 1722 } 1723 1724 static void 1725 intel_dp_aux_fini(struct intel_dp *intel_dp) 1726 { 1727 kfree(intel_dp->aux.name); 1728 } 1729 1730 static void 1731 intel_dp_aux_init(struct intel_dp *intel_dp) 1732 { 1733 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1734 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1735 struct intel_encoder *encoder = &dig_port->base; 1736 1737 if (INTEL_GEN(dev_priv) >= 9) { 1738 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; 1739 intel_dp->aux_ch_data_reg = skl_aux_data_reg; 1740 } else if (HAS_PCH_SPLIT(dev_priv)) { 1741 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; 1742 intel_dp->aux_ch_data_reg = ilk_aux_data_reg; 1743 } else { 1744 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; 1745 intel_dp->aux_ch_data_reg = g4x_aux_data_reg; 1746 } 1747 1748 if (INTEL_GEN(dev_priv) >= 9) 1749 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; 1750 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1751 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; 1752 else if (HAS_PCH_SPLIT(dev_priv)) 1753 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; 1754 else 1755 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; 1756 1757 if (INTEL_GEN(dev_priv) >= 9) 1758 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; 1759 else 1760 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; 1761 1762 drm_dp_aux_init(&intel_dp->aux); 1763 1764 /* Failure to allocate our preferred name is not critical */ 1765 intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c", 1766 aux_ch_name(dig_port->aux_ch), 1767 port_name(encoder->port)); 1768 intel_dp->aux.transfer = intel_dp_aux_transfer; 1769 } 1770 1771 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) 1772 { 1773 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1774 1775 return max_rate >= 540000; 1776 } 1777 1778 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) 1779 { 1780 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1781 1782 return max_rate >= 810000; 1783 } 1784 1785 static void 1786 intel_dp_set_clock(struct intel_encoder *encoder, 1787 struct intel_crtc_state *pipe_config) 1788 { 1789 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1790 const struct dp_link_dpll *divisor = NULL; 1791 int i, count = 0; 1792 1793 if (IS_G4X(dev_priv)) { 1794 divisor = g4x_dpll; 1795 count = ARRAY_SIZE(g4x_dpll); 1796 } else if (HAS_PCH_SPLIT(dev_priv)) { 1797 divisor = pch_dpll; 1798 count = ARRAY_SIZE(pch_dpll); 1799 } else if (IS_CHERRYVIEW(dev_priv)) { 1800 divisor = chv_dpll; 1801 count = ARRAY_SIZE(chv_dpll); 1802 } else if (IS_VALLEYVIEW(dev_priv)) { 1803 divisor = vlv_dpll; 1804 count = ARRAY_SIZE(vlv_dpll); 1805 } 1806 1807 if (divisor && count) { 1808 for (i = 0; i < count; i++) { 1809 if (pipe_config->port_clock == divisor[i].clock) { 1810 pipe_config->dpll = divisor[i].dpll; 1811 pipe_config->clock_set = true; 1812 break; 1813 } 1814 } 1815 } 1816 } 1817 1818 static void snprintf_int_array(char *str, size_t len, 1819 const int *array, int nelem) 1820 { 1821 int i; 1822 1823 str[0] = '\0'; 1824 1825 for (i = 0; i < nelem; i++) { 1826 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); 1827 if (r >= len) 1828 return; 1829 str += r; 1830 len -= r; 1831 } 1832 } 1833 1834 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1835 { 1836 char str[128]; /* FIXME: too big for stack? */ 1837 1838 if (!drm_debug_enabled(DRM_UT_KMS)) 1839 return; 1840 1841 snprintf_int_array(str, sizeof(str), 1842 intel_dp->source_rates, intel_dp->num_source_rates); 1843 DRM_DEBUG_KMS("source rates: %s\n", str); 1844 1845 snprintf_int_array(str, sizeof(str), 1846 intel_dp->sink_rates, intel_dp->num_sink_rates); 1847 DRM_DEBUG_KMS("sink rates: %s\n", str); 1848 1849 snprintf_int_array(str, sizeof(str), 1850 intel_dp->common_rates, intel_dp->num_common_rates); 1851 DRM_DEBUG_KMS("common rates: %s\n", str); 1852 } 1853 1854 int 1855 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1856 { 1857 int len; 1858 1859 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); 1860 if (WARN_ON(len <= 0)) 1861 return 162000; 1862 1863 return intel_dp->common_rates[len - 1]; 1864 } 1865 1866 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1867 { 1868 int i = intel_dp_rate_index(intel_dp->sink_rates, 1869 intel_dp->num_sink_rates, rate); 1870 1871 if (WARN_ON(i < 0)) 1872 i = 0; 1873 1874 return i; 1875 } 1876 1877 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1878 u8 *link_bw, u8 *rate_select) 1879 { 1880 /* eDP 1.4 rate select method. */ 1881 if (intel_dp->use_rate_select) { 1882 *link_bw = 0; 1883 *rate_select = 1884 intel_dp_rate_select(intel_dp, port_clock); 1885 } else { 1886 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1887 *rate_select = 0; 1888 } 1889 } 1890 1891 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1892 const struct intel_crtc_state *pipe_config) 1893 { 1894 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1895 1896 /* On TGL, FEC is supported on all Pipes */ 1897 if (INTEL_GEN(dev_priv) >= 12) 1898 return true; 1899 1900 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A) 1901 return true; 1902 1903 return false; 1904 } 1905 1906 static bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1907 const struct intel_crtc_state *pipe_config) 1908 { 1909 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1910 drm_dp_sink_supports_fec(intel_dp->fec_capable); 1911 } 1912 1913 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1914 const struct intel_crtc_state *crtc_state) 1915 { 1916 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 1917 1918 if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable) 1919 return false; 1920 1921 return intel_dsc_source_support(encoder, crtc_state) && 1922 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); 1923 } 1924 1925 static int intel_dp_compute_bpp(struct intel_dp *intel_dp, 1926 struct intel_crtc_state *pipe_config) 1927 { 1928 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1929 struct intel_connector *intel_connector = intel_dp->attached_connector; 1930 int bpp, bpc; 1931 1932 bpp = pipe_config->pipe_bpp; 1933 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports); 1934 1935 if (bpc > 0) 1936 bpp = min(bpp, 3*bpc); 1937 1938 if (intel_dp_is_edp(intel_dp)) { 1939 /* Get bpp from vbt only for panels that dont have bpp in edid */ 1940 if (intel_connector->base.display_info.bpc == 0 && 1941 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { 1942 drm_dbg_kms(&dev_priv->drm, 1943 "clamping bpp for eDP panel to BIOS-provided %i\n", 1944 dev_priv->vbt.edp.bpp); 1945 bpp = dev_priv->vbt.edp.bpp; 1946 } 1947 } 1948 1949 return bpp; 1950 } 1951 1952 /* Adjust link config limits based on compliance test requests. */ 1953 void 1954 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, 1955 struct intel_crtc_state *pipe_config, 1956 struct link_config_limits *limits) 1957 { 1958 /* For DP Compliance we override the computed bpp for the pipe */ 1959 if (intel_dp->compliance.test_data.bpc != 0) { 1960 int bpp = 3 * intel_dp->compliance.test_data.bpc; 1961 1962 limits->min_bpp = limits->max_bpp = bpp; 1963 pipe_config->dither_force_disable = bpp == 6 * 3; 1964 1965 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp); 1966 } 1967 1968 /* Use values requested by Compliance Test Request */ 1969 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 1970 int index; 1971 1972 /* Validate the compliance test data since max values 1973 * might have changed due to link train fallback. 1974 */ 1975 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, 1976 intel_dp->compliance.test_lane_count)) { 1977 index = intel_dp_rate_index(intel_dp->common_rates, 1978 intel_dp->num_common_rates, 1979 intel_dp->compliance.test_link_rate); 1980 if (index >= 0) 1981 limits->min_clock = limits->max_clock = index; 1982 limits->min_lane_count = limits->max_lane_count = 1983 intel_dp->compliance.test_lane_count; 1984 } 1985 } 1986 } 1987 1988 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp) 1989 { 1990 /* 1991 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 1992 * format of the number of bytes per pixel will be half the number 1993 * of bytes of RGB pixel. 1994 */ 1995 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1996 bpp /= 2; 1997 1998 return bpp; 1999 } 2000 2001 /* Optimize link config in order: max bpp, min clock, min lanes */ 2002 static int 2003 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 2004 struct intel_crtc_state *pipe_config, 2005 const struct link_config_limits *limits) 2006 { 2007 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2008 int bpp, clock, lane_count; 2009 int mode_rate, link_clock, link_avail; 2010 2011 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { 2012 int output_bpp = intel_dp_output_bpp(pipe_config, bpp); 2013 2014 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, 2015 output_bpp); 2016 2017 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { 2018 for (lane_count = limits->min_lane_count; 2019 lane_count <= limits->max_lane_count; 2020 lane_count <<= 1) { 2021 link_clock = intel_dp->common_rates[clock]; 2022 link_avail = intel_dp_max_data_rate(link_clock, 2023 lane_count); 2024 2025 if (mode_rate <= link_avail) { 2026 pipe_config->lane_count = lane_count; 2027 pipe_config->pipe_bpp = bpp; 2028 pipe_config->port_clock = link_clock; 2029 2030 return 0; 2031 } 2032 } 2033 } 2034 } 2035 2036 return -EINVAL; 2037 } 2038 2039 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) 2040 { 2041 int i, num_bpc; 2042 u8 dsc_bpc[3] = {0}; 2043 2044 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, 2045 dsc_bpc); 2046 for (i = 0; i < num_bpc; i++) { 2047 if (dsc_max_bpc >= dsc_bpc[i]) 2048 return dsc_bpc[i] * 3; 2049 } 2050 2051 return 0; 2052 } 2053 2054 #define DSC_SUPPORTED_VERSION_MIN 1 2055 2056 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder, 2057 struct intel_crtc_state *crtc_state) 2058 { 2059 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2060 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 2061 u8 line_buf_depth; 2062 int ret; 2063 2064 ret = intel_dsc_compute_params(encoder, crtc_state); 2065 if (ret) 2066 return ret; 2067 2068 /* 2069 * Slice Height of 8 works for all currently available panels. So start 2070 * with that if pic_height is an integral multiple of 8. Eventually add 2071 * logic to try multiple slice heights. 2072 */ 2073 if (vdsc_cfg->pic_height % 8 == 0) 2074 vdsc_cfg->slice_height = 8; 2075 else if (vdsc_cfg->pic_height % 4 == 0) 2076 vdsc_cfg->slice_height = 4; 2077 else 2078 vdsc_cfg->slice_height = 2; 2079 2080 vdsc_cfg->dsc_version_major = 2081 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 2082 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT; 2083 vdsc_cfg->dsc_version_minor = 2084 min(DSC_SUPPORTED_VERSION_MIN, 2085 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 2086 DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT); 2087 2088 vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] & 2089 DP_DSC_RGB; 2090 2091 line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd); 2092 if (!line_buf_depth) { 2093 DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n"); 2094 return -EINVAL; 2095 } 2096 2097 if (vdsc_cfg->dsc_version_minor == 2) 2098 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ? 2099 DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth; 2100 else 2101 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ? 2102 DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth; 2103 2104 vdsc_cfg->block_pred_enable = 2105 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] & 2106 DP_DSC_BLK_PREDICTION_IS_SUPPORTED; 2107 2108 return drm_dsc_compute_rc_parameters(vdsc_cfg); 2109 } 2110 2111 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 2112 struct intel_crtc_state *pipe_config, 2113 struct drm_connector_state *conn_state, 2114 struct link_config_limits *limits) 2115 { 2116 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2117 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2118 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2119 u8 dsc_max_bpc; 2120 int pipe_bpp; 2121 int ret; 2122 2123 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && 2124 intel_dp_supports_fec(intel_dp, pipe_config); 2125 2126 if (!intel_dp_supports_dsc(intel_dp, pipe_config)) 2127 return -EINVAL; 2128 2129 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ 2130 if (INTEL_GEN(dev_priv) >= 12) 2131 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc); 2132 else 2133 dsc_max_bpc = min_t(u8, 10, 2134 conn_state->max_requested_bpc); 2135 2136 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); 2137 2138 /* Min Input BPC for ICL+ is 8 */ 2139 if (pipe_bpp < 8 * 3) { 2140 drm_dbg_kms(&dev_priv->drm, 2141 "No DSC support for less than 8bpc\n"); 2142 return -EINVAL; 2143 } 2144 2145 /* 2146 * For now enable DSC for max bpp, max link rate, max lane count. 2147 * Optimize this later for the minimum possible link rate/lane count 2148 * with DSC enabled for the requested mode. 2149 */ 2150 pipe_config->pipe_bpp = pipe_bpp; 2151 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; 2152 pipe_config->lane_count = limits->max_lane_count; 2153 2154 if (intel_dp_is_edp(intel_dp)) { 2155 pipe_config->dsc.compressed_bpp = 2156 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, 2157 pipe_config->pipe_bpp); 2158 pipe_config->dsc.slice_count = 2159 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 2160 true); 2161 } else { 2162 u16 dsc_max_output_bpp; 2163 u8 dsc_dp_slice_count; 2164 2165 dsc_max_output_bpp = 2166 intel_dp_dsc_get_output_bpp(dev_priv, 2167 pipe_config->port_clock, 2168 pipe_config->lane_count, 2169 adjusted_mode->crtc_clock, 2170 adjusted_mode->crtc_hdisplay); 2171 dsc_dp_slice_count = 2172 intel_dp_dsc_get_slice_count(intel_dp, 2173 adjusted_mode->crtc_clock, 2174 adjusted_mode->crtc_hdisplay); 2175 if (!dsc_max_output_bpp || !dsc_dp_slice_count) { 2176 drm_dbg_kms(&dev_priv->drm, 2177 "Compressed BPP/Slice Count not supported\n"); 2178 return -EINVAL; 2179 } 2180 pipe_config->dsc.compressed_bpp = min_t(u16, 2181 dsc_max_output_bpp >> 4, 2182 pipe_config->pipe_bpp); 2183 pipe_config->dsc.slice_count = dsc_dp_slice_count; 2184 } 2185 /* 2186 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 2187 * is greater than the maximum Cdclock and if slice count is even 2188 * then we need to use 2 VDSC instances. 2189 */ 2190 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) { 2191 if (pipe_config->dsc.slice_count > 1) { 2192 pipe_config->dsc.dsc_split = true; 2193 } else { 2194 drm_dbg_kms(&dev_priv->drm, 2195 "Cannot split stream to use 2 VDSC instances\n"); 2196 return -EINVAL; 2197 } 2198 } 2199 2200 ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config); 2201 if (ret < 0) { 2202 drm_dbg_kms(&dev_priv->drm, 2203 "Cannot compute valid DSC parameters for Input Bpp = %d " 2204 "Compressed BPP = %d\n", 2205 pipe_config->pipe_bpp, 2206 pipe_config->dsc.compressed_bpp); 2207 return ret; 2208 } 2209 2210 pipe_config->dsc.compression_enable = true; 2211 drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d " 2212 "Compressed Bpp = %d Slice Count = %d\n", 2213 pipe_config->pipe_bpp, 2214 pipe_config->dsc.compressed_bpp, 2215 pipe_config->dsc.slice_count); 2216 2217 return 0; 2218 } 2219 2220 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state) 2221 { 2222 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 2223 return 6 * 3; 2224 else 2225 return 8 * 3; 2226 } 2227 2228 static int 2229 intel_dp_compute_link_config(struct intel_encoder *encoder, 2230 struct intel_crtc_state *pipe_config, 2231 struct drm_connector_state *conn_state) 2232 { 2233 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2234 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2235 struct link_config_limits limits; 2236 int common_len; 2237 int ret; 2238 2239 common_len = intel_dp_common_len_rate_limit(intel_dp, 2240 intel_dp->max_link_rate); 2241 2242 /* No common link rates between source and sink */ 2243 drm_WARN_ON(encoder->base.dev, common_len <= 0); 2244 2245 limits.min_clock = 0; 2246 limits.max_clock = common_len - 1; 2247 2248 limits.min_lane_count = 1; 2249 limits.max_lane_count = intel_dp_max_lane_count(intel_dp); 2250 2251 limits.min_bpp = intel_dp_min_bpp(pipe_config); 2252 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config); 2253 2254 if (intel_dp_is_edp(intel_dp)) { 2255 /* 2256 * Use the maximum clock and number of lanes the eDP panel 2257 * advertizes being capable of. The panels are generally 2258 * designed to support only a single clock and lane 2259 * configuration, and typically these values correspond to the 2260 * native resolution of the panel. 2261 */ 2262 limits.min_lane_count = limits.max_lane_count; 2263 limits.min_clock = limits.max_clock; 2264 } 2265 2266 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); 2267 2268 DRM_DEBUG_KMS("DP link computation with max lane count %i " 2269 "max rate %d max bpp %d pixel clock %iKHz\n", 2270 limits.max_lane_count, 2271 intel_dp->common_rates[limits.max_clock], 2272 limits.max_bpp, adjusted_mode->crtc_clock); 2273 2274 /* 2275 * Optimize for slow and wide. This is the place to add alternative 2276 * optimization policy. 2277 */ 2278 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); 2279 2280 /* enable compression if the mode doesn't fit available BW */ 2281 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en); 2282 if (ret || intel_dp->force_dsc_en) { 2283 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2284 conn_state, &limits); 2285 if (ret < 0) 2286 return ret; 2287 } 2288 2289 if (pipe_config->dsc.compression_enable) { 2290 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", 2291 pipe_config->lane_count, pipe_config->port_clock, 2292 pipe_config->pipe_bpp, 2293 pipe_config->dsc.compressed_bpp); 2294 2295 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2296 intel_dp_link_required(adjusted_mode->crtc_clock, 2297 pipe_config->dsc.compressed_bpp), 2298 intel_dp_max_data_rate(pipe_config->port_clock, 2299 pipe_config->lane_count)); 2300 } else { 2301 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n", 2302 pipe_config->lane_count, pipe_config->port_clock, 2303 pipe_config->pipe_bpp); 2304 2305 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2306 intel_dp_link_required(adjusted_mode->crtc_clock, 2307 pipe_config->pipe_bpp), 2308 intel_dp_max_data_rate(pipe_config->port_clock, 2309 pipe_config->lane_count)); 2310 } 2311 return 0; 2312 } 2313 2314 static int 2315 intel_dp_ycbcr420_config(struct intel_dp *intel_dp, 2316 struct drm_connector *connector, 2317 struct intel_crtc_state *crtc_state) 2318 { 2319 const struct drm_display_info *info = &connector->display_info; 2320 const struct drm_display_mode *adjusted_mode = 2321 &crtc_state->hw.adjusted_mode; 2322 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2323 int ret; 2324 2325 if (!drm_mode_is_420_only(info, adjusted_mode) || 2326 !intel_dp_get_colorimetry_status(intel_dp) || 2327 !connector->ycbcr_420_allowed) 2328 return 0; 2329 2330 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2331 2332 /* YCBCR 420 output conversion needs a scaler */ 2333 ret = skl_update_scaler_crtc(crtc_state); 2334 if (ret) { 2335 DRM_DEBUG_KMS("Scaler allocation for output failed\n"); 2336 return ret; 2337 } 2338 2339 intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN); 2340 2341 return 0; 2342 } 2343 2344 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2345 const struct drm_connector_state *conn_state) 2346 { 2347 const struct intel_digital_connector_state *intel_conn_state = 2348 to_intel_digital_connector_state(conn_state); 2349 const struct drm_display_mode *adjusted_mode = 2350 &crtc_state->hw.adjusted_mode; 2351 2352 /* 2353 * Our YCbCr output is always limited range. 2354 * crtc_state->limited_color_range only applies to RGB, 2355 * and it must never be set for YCbCr or we risk setting 2356 * some conflicting bits in PIPECONF which will mess up 2357 * the colors on the monitor. 2358 */ 2359 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2360 return false; 2361 2362 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2363 /* 2364 * See: 2365 * CEA-861-E - 5.1 Default Encoding Parameters 2366 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2367 */ 2368 return crtc_state->pipe_bpp != 18 && 2369 drm_default_rgb_quant_range(adjusted_mode) == 2370 HDMI_QUANTIZATION_RANGE_LIMITED; 2371 } else { 2372 return intel_conn_state->broadcast_rgb == 2373 INTEL_BROADCAST_RGB_LIMITED; 2374 } 2375 } 2376 2377 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv, 2378 enum port port) 2379 { 2380 if (IS_G4X(dev_priv)) 2381 return false; 2382 if (INTEL_GEN(dev_priv) < 12 && port == PORT_A) 2383 return false; 2384 2385 return true; 2386 } 2387 2388 int 2389 intel_dp_compute_config(struct intel_encoder *encoder, 2390 struct intel_crtc_state *pipe_config, 2391 struct drm_connector_state *conn_state) 2392 { 2393 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2394 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2395 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2396 struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder); 2397 enum port port = encoder->port; 2398 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc); 2399 struct intel_connector *intel_connector = intel_dp->attached_connector; 2400 struct intel_digital_connector_state *intel_conn_state = 2401 to_intel_digital_connector_state(conn_state); 2402 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 2403 DP_DPCD_QUIRK_CONSTANT_N); 2404 int ret = 0, output_bpp; 2405 2406 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) 2407 pipe_config->has_pch_encoder = true; 2408 2409 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2410 2411 if (lspcon->active) 2412 lspcon_ycbcr420_config(&intel_connector->base, pipe_config); 2413 else 2414 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base, 2415 pipe_config); 2416 2417 if (ret) 2418 return ret; 2419 2420 pipe_config->has_drrs = false; 2421 if (!intel_dp_port_has_audio(dev_priv, port)) 2422 pipe_config->has_audio = false; 2423 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2424 pipe_config->has_audio = intel_dp->has_audio; 2425 else 2426 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; 2427 2428 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { 2429 intel_fixed_panel_mode(intel_connector->panel.fixed_mode, 2430 adjusted_mode); 2431 2432 if (INTEL_GEN(dev_priv) >= 9) { 2433 ret = skl_update_scaler_crtc(pipe_config); 2434 if (ret) 2435 return ret; 2436 } 2437 2438 if (HAS_GMCH(dev_priv)) 2439 intel_gmch_panel_fitting(intel_crtc, pipe_config, 2440 conn_state->scaling_mode); 2441 else 2442 intel_pch_panel_fitting(intel_crtc, pipe_config, 2443 conn_state->scaling_mode); 2444 } 2445 2446 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2447 return -EINVAL; 2448 2449 if (HAS_GMCH(dev_priv) && 2450 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2451 return -EINVAL; 2452 2453 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2454 return -EINVAL; 2455 2456 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay)) 2457 return -EINVAL; 2458 2459 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); 2460 if (ret < 0) 2461 return ret; 2462 2463 pipe_config->limited_color_range = 2464 intel_dp_limited_color_range(pipe_config, conn_state); 2465 2466 if (pipe_config->dsc.compression_enable) 2467 output_bpp = pipe_config->dsc.compressed_bpp; 2468 else 2469 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp); 2470 2471 intel_link_compute_m_n(output_bpp, 2472 pipe_config->lane_count, 2473 adjusted_mode->crtc_clock, 2474 pipe_config->port_clock, 2475 &pipe_config->dp_m_n, 2476 constant_n, pipe_config->fec_enable); 2477 2478 if (intel_connector->panel.downclock_mode != NULL && 2479 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { 2480 pipe_config->has_drrs = true; 2481 intel_link_compute_m_n(output_bpp, 2482 pipe_config->lane_count, 2483 intel_connector->panel.downclock_mode->clock, 2484 pipe_config->port_clock, 2485 &pipe_config->dp_m2_n2, 2486 constant_n, pipe_config->fec_enable); 2487 } 2488 2489 if (!HAS_DDI(dev_priv)) 2490 intel_dp_set_clock(encoder, pipe_config); 2491 2492 intel_psr_compute_config(intel_dp, pipe_config); 2493 2494 return 0; 2495 } 2496 2497 void intel_dp_set_link_params(struct intel_dp *intel_dp, 2498 int link_rate, u8 lane_count, 2499 bool link_mst) 2500 { 2501 intel_dp->link_trained = false; 2502 intel_dp->link_rate = link_rate; 2503 intel_dp->lane_count = lane_count; 2504 intel_dp->link_mst = link_mst; 2505 } 2506 2507 static void intel_dp_prepare(struct intel_encoder *encoder, 2508 const struct intel_crtc_state *pipe_config) 2509 { 2510 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2511 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2512 enum port port = encoder->port; 2513 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 2514 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2515 2516 intel_dp_set_link_params(intel_dp, pipe_config->port_clock, 2517 pipe_config->lane_count, 2518 intel_crtc_has_type(pipe_config, 2519 INTEL_OUTPUT_DP_MST)); 2520 2521 intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port); 2522 intel_dp->regs.dp_tp_status = DP_TP_STATUS(port); 2523 2524 /* 2525 * There are four kinds of DP registers: 2526 * 2527 * IBX PCH 2528 * SNB CPU 2529 * IVB CPU 2530 * CPT PCH 2531 * 2532 * IBX PCH and CPU are the same for almost everything, 2533 * except that the CPU DP PLL is configured in this 2534 * register 2535 * 2536 * CPT PCH is quite different, having many bits moved 2537 * to the TRANS_DP_CTL register instead. That 2538 * configuration happens (oddly) in ilk_pch_enable 2539 */ 2540 2541 /* Preserve the BIOS-computed detected bit. This is 2542 * supposed to be read-only. 2543 */ 2544 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED; 2545 2546 /* Handle DP bits in common between all three register formats */ 2547 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 2548 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); 2549 2550 /* Split out the IBX/CPU vs CPT settings */ 2551 2552 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 2553 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2554 intel_dp->DP |= DP_SYNC_HS_HIGH; 2555 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2556 intel_dp->DP |= DP_SYNC_VS_HIGH; 2557 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2558 2559 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2560 intel_dp->DP |= DP_ENHANCED_FRAMING; 2561 2562 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); 2563 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 2564 u32 trans_dp; 2565 2566 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2567 2568 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe)); 2569 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2570 trans_dp |= TRANS_DP_ENH_FRAMING; 2571 else 2572 trans_dp &= ~TRANS_DP_ENH_FRAMING; 2573 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp); 2574 } else { 2575 if (IS_G4X(dev_priv) && pipe_config->limited_color_range) 2576 intel_dp->DP |= DP_COLOR_RANGE_16_235; 2577 2578 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2579 intel_dp->DP |= DP_SYNC_HS_HIGH; 2580 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2581 intel_dp->DP |= DP_SYNC_VS_HIGH; 2582 intel_dp->DP |= DP_LINK_TRAIN_OFF; 2583 2584 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2585 intel_dp->DP |= DP_ENHANCED_FRAMING; 2586 2587 if (IS_CHERRYVIEW(dev_priv)) 2588 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); 2589 else 2590 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); 2591 } 2592 } 2593 2594 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) 2595 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) 2596 2597 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) 2598 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) 2599 2600 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) 2601 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) 2602 2603 static void intel_pps_verify_state(struct intel_dp *intel_dp); 2604 2605 static void wait_panel_status(struct intel_dp *intel_dp, 2606 u32 mask, 2607 u32 value) 2608 { 2609 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2610 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2611 2612 lockdep_assert_held(&dev_priv->pps_mutex); 2613 2614 intel_pps_verify_state(intel_dp); 2615 2616 pp_stat_reg = _pp_stat_reg(intel_dp); 2617 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2618 2619 drm_dbg_kms(&dev_priv->drm, 2620 "mask %08x value %08x status %08x control %08x\n", 2621 mask, value, 2622 intel_de_read(dev_priv, pp_stat_reg), 2623 intel_de_read(dev_priv, pp_ctrl_reg)); 2624 2625 if (intel_de_wait_for_register(dev_priv, pp_stat_reg, 2626 mask, value, 5000)) 2627 drm_err(&dev_priv->drm, 2628 "Panel status timeout: status %08x control %08x\n", 2629 intel_de_read(dev_priv, pp_stat_reg), 2630 intel_de_read(dev_priv, pp_ctrl_reg)); 2631 2632 drm_dbg_kms(&dev_priv->drm, "Wait complete\n"); 2633 } 2634 2635 static void wait_panel_on(struct intel_dp *intel_dp) 2636 { 2637 DRM_DEBUG_KMS("Wait for panel power on\n"); 2638 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); 2639 } 2640 2641 static void wait_panel_off(struct intel_dp *intel_dp) 2642 { 2643 DRM_DEBUG_KMS("Wait for panel power off time\n"); 2644 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); 2645 } 2646 2647 static void wait_panel_power_cycle(struct intel_dp *intel_dp) 2648 { 2649 ktime_t panel_power_on_time; 2650 s64 panel_power_off_duration; 2651 2652 DRM_DEBUG_KMS("Wait for panel power cycle\n"); 2653 2654 /* take the difference of currrent time and panel power off time 2655 * and then make panel wait for t11_t12 if needed. */ 2656 panel_power_on_time = ktime_get_boottime(); 2657 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); 2658 2659 /* When we disable the VDD override bit last we have to do the manual 2660 * wait. */ 2661 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) 2662 wait_remaining_ms_from_jiffies(jiffies, 2663 intel_dp->panel_power_cycle_delay - panel_power_off_duration); 2664 2665 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); 2666 } 2667 2668 static void wait_backlight_on(struct intel_dp *intel_dp) 2669 { 2670 wait_remaining_ms_from_jiffies(intel_dp->last_power_on, 2671 intel_dp->backlight_on_delay); 2672 } 2673 2674 static void edp_wait_backlight_off(struct intel_dp *intel_dp) 2675 { 2676 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, 2677 intel_dp->backlight_off_delay); 2678 } 2679 2680 /* Read the current pp_control value, unlocking the register if it 2681 * is locked 2682 */ 2683 2684 static u32 ilk_get_pp_control(struct intel_dp *intel_dp) 2685 { 2686 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2687 u32 control; 2688 2689 lockdep_assert_held(&dev_priv->pps_mutex); 2690 2691 control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)); 2692 if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) && 2693 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { 2694 control &= ~PANEL_UNLOCK_MASK; 2695 control |= PANEL_UNLOCK_REGS; 2696 } 2697 return control; 2698 } 2699 2700 /* 2701 * Must be paired with edp_panel_vdd_off(). 2702 * Must hold pps_mutex around the whole on/off sequence. 2703 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2704 */ 2705 static bool edp_panel_vdd_on(struct intel_dp *intel_dp) 2706 { 2707 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2708 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 2709 u32 pp; 2710 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2711 bool need_to_disable = !intel_dp->want_panel_vdd; 2712 2713 lockdep_assert_held(&dev_priv->pps_mutex); 2714 2715 if (!intel_dp_is_edp(intel_dp)) 2716 return false; 2717 2718 cancel_delayed_work(&intel_dp->panel_vdd_work); 2719 intel_dp->want_panel_vdd = true; 2720 2721 if (edp_have_panel_vdd(intel_dp)) 2722 return need_to_disable; 2723 2724 intel_display_power_get(dev_priv, 2725 intel_aux_power_domain(intel_dig_port)); 2726 2727 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n", 2728 intel_dig_port->base.base.base.id, 2729 intel_dig_port->base.base.name); 2730 2731 if (!edp_have_panel_power(intel_dp)) 2732 wait_panel_power_cycle(intel_dp); 2733 2734 pp = ilk_get_pp_control(intel_dp); 2735 pp |= EDP_FORCE_VDD; 2736 2737 pp_stat_reg = _pp_stat_reg(intel_dp); 2738 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2739 2740 intel_de_write(dev_priv, pp_ctrl_reg, pp); 2741 intel_de_posting_read(dev_priv, pp_ctrl_reg); 2742 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2743 intel_de_read(dev_priv, pp_stat_reg), 2744 intel_de_read(dev_priv, pp_ctrl_reg)); 2745 /* 2746 * If the panel wasn't on, delay before accessing aux channel 2747 */ 2748 if (!edp_have_panel_power(intel_dp)) { 2749 drm_dbg_kms(&dev_priv->drm, 2750 "[ENCODER:%d:%s] panel power wasn't enabled\n", 2751 intel_dig_port->base.base.base.id, 2752 intel_dig_port->base.base.name); 2753 msleep(intel_dp->panel_power_up_delay); 2754 } 2755 2756 return need_to_disable; 2757 } 2758 2759 /* 2760 * Must be paired with intel_edp_panel_vdd_off() or 2761 * intel_edp_panel_off(). 2762 * Nested calls to these functions are not allowed since 2763 * we drop the lock. Caller must use some higher level 2764 * locking to prevent nested calls from other threads. 2765 */ 2766 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) 2767 { 2768 intel_wakeref_t wakeref; 2769 bool vdd; 2770 2771 if (!intel_dp_is_edp(intel_dp)) 2772 return; 2773 2774 vdd = false; 2775 with_pps_lock(intel_dp, wakeref) 2776 vdd = edp_panel_vdd_on(intel_dp); 2777 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n", 2778 dp_to_dig_port(intel_dp)->base.base.base.id, 2779 dp_to_dig_port(intel_dp)->base.base.name); 2780 } 2781 2782 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) 2783 { 2784 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2785 struct intel_digital_port *intel_dig_port = 2786 dp_to_dig_port(intel_dp); 2787 u32 pp; 2788 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2789 2790 lockdep_assert_held(&dev_priv->pps_mutex); 2791 2792 drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd); 2793 2794 if (!edp_have_panel_vdd(intel_dp)) 2795 return; 2796 2797 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n", 2798 intel_dig_port->base.base.base.id, 2799 intel_dig_port->base.base.name); 2800 2801 pp = ilk_get_pp_control(intel_dp); 2802 pp &= ~EDP_FORCE_VDD; 2803 2804 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2805 pp_stat_reg = _pp_stat_reg(intel_dp); 2806 2807 intel_de_write(dev_priv, pp_ctrl_reg, pp); 2808 intel_de_posting_read(dev_priv, pp_ctrl_reg); 2809 2810 /* Make sure sequencer is idle before allowing subsequent activity */ 2811 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2812 intel_de_read(dev_priv, pp_stat_reg), 2813 intel_de_read(dev_priv, pp_ctrl_reg)); 2814 2815 if ((pp & PANEL_POWER_ON) == 0) 2816 intel_dp->panel_power_off_time = ktime_get_boottime(); 2817 2818 intel_display_power_put_unchecked(dev_priv, 2819 intel_aux_power_domain(intel_dig_port)); 2820 } 2821 2822 static void edp_panel_vdd_work(struct work_struct *__work) 2823 { 2824 struct intel_dp *intel_dp = 2825 container_of(to_delayed_work(__work), 2826 struct intel_dp, panel_vdd_work); 2827 intel_wakeref_t wakeref; 2828 2829 with_pps_lock(intel_dp, wakeref) { 2830 if (!intel_dp->want_panel_vdd) 2831 edp_panel_vdd_off_sync(intel_dp); 2832 } 2833 } 2834 2835 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) 2836 { 2837 unsigned long delay; 2838 2839 /* 2840 * Queue the timer to fire a long time from now (relative to the power 2841 * down delay) to keep the panel power up across a sequence of 2842 * operations. 2843 */ 2844 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); 2845 schedule_delayed_work(&intel_dp->panel_vdd_work, delay); 2846 } 2847 2848 /* 2849 * Must be paired with edp_panel_vdd_on(). 2850 * Must hold pps_mutex around the whole on/off sequence. 2851 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2852 */ 2853 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) 2854 { 2855 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2856 2857 lockdep_assert_held(&dev_priv->pps_mutex); 2858 2859 if (!intel_dp_is_edp(intel_dp)) 2860 return; 2861 2862 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on", 2863 dp_to_dig_port(intel_dp)->base.base.base.id, 2864 dp_to_dig_port(intel_dp)->base.base.name); 2865 2866 intel_dp->want_panel_vdd = false; 2867 2868 if (sync) 2869 edp_panel_vdd_off_sync(intel_dp); 2870 else 2871 edp_panel_vdd_schedule_off(intel_dp); 2872 } 2873 2874 static void edp_panel_on(struct intel_dp *intel_dp) 2875 { 2876 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2877 u32 pp; 2878 i915_reg_t pp_ctrl_reg; 2879 2880 lockdep_assert_held(&dev_priv->pps_mutex); 2881 2882 if (!intel_dp_is_edp(intel_dp)) 2883 return; 2884 2885 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n", 2886 dp_to_dig_port(intel_dp)->base.base.base.id, 2887 dp_to_dig_port(intel_dp)->base.base.name); 2888 2889 if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp), 2890 "[ENCODER:%d:%s] panel power already on\n", 2891 dp_to_dig_port(intel_dp)->base.base.base.id, 2892 dp_to_dig_port(intel_dp)->base.base.name)) 2893 return; 2894 2895 wait_panel_power_cycle(intel_dp); 2896 2897 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2898 pp = ilk_get_pp_control(intel_dp); 2899 if (IS_GEN(dev_priv, 5)) { 2900 /* ILK workaround: disable reset around power sequence */ 2901 pp &= ~PANEL_POWER_RESET; 2902 intel_de_write(dev_priv, pp_ctrl_reg, pp); 2903 intel_de_posting_read(dev_priv, pp_ctrl_reg); 2904 } 2905 2906 pp |= PANEL_POWER_ON; 2907 if (!IS_GEN(dev_priv, 5)) 2908 pp |= PANEL_POWER_RESET; 2909 2910 intel_de_write(dev_priv, pp_ctrl_reg, pp); 2911 intel_de_posting_read(dev_priv, pp_ctrl_reg); 2912 2913 wait_panel_on(intel_dp); 2914 intel_dp->last_power_on = jiffies; 2915 2916 if (IS_GEN(dev_priv, 5)) { 2917 pp |= PANEL_POWER_RESET; /* restore panel reset bit */ 2918 intel_de_write(dev_priv, pp_ctrl_reg, pp); 2919 intel_de_posting_read(dev_priv, pp_ctrl_reg); 2920 } 2921 } 2922 2923 void intel_edp_panel_on(struct intel_dp *intel_dp) 2924 { 2925 intel_wakeref_t wakeref; 2926 2927 if (!intel_dp_is_edp(intel_dp)) 2928 return; 2929 2930 with_pps_lock(intel_dp, wakeref) 2931 edp_panel_on(intel_dp); 2932 } 2933 2934 2935 static void edp_panel_off(struct intel_dp *intel_dp) 2936 { 2937 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2938 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2939 u32 pp; 2940 i915_reg_t pp_ctrl_reg; 2941 2942 lockdep_assert_held(&dev_priv->pps_mutex); 2943 2944 if (!intel_dp_is_edp(intel_dp)) 2945 return; 2946 2947 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n", 2948 dig_port->base.base.base.id, dig_port->base.base.name); 2949 2950 drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd, 2951 "Need [ENCODER:%d:%s] VDD to turn off panel\n", 2952 dig_port->base.base.base.id, dig_port->base.base.name); 2953 2954 pp = ilk_get_pp_control(intel_dp); 2955 /* We need to switch off panel power _and_ force vdd, for otherwise some 2956 * panels get very unhappy and cease to work. */ 2957 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | 2958 EDP_BLC_ENABLE); 2959 2960 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2961 2962 intel_dp->want_panel_vdd = false; 2963 2964 intel_de_write(dev_priv, pp_ctrl_reg, pp); 2965 intel_de_posting_read(dev_priv, pp_ctrl_reg); 2966 2967 wait_panel_off(intel_dp); 2968 intel_dp->panel_power_off_time = ktime_get_boottime(); 2969 2970 /* We got a reference when we enabled the VDD. */ 2971 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); 2972 } 2973 2974 void intel_edp_panel_off(struct intel_dp *intel_dp) 2975 { 2976 intel_wakeref_t wakeref; 2977 2978 if (!intel_dp_is_edp(intel_dp)) 2979 return; 2980 2981 with_pps_lock(intel_dp, wakeref) 2982 edp_panel_off(intel_dp); 2983 } 2984 2985 /* Enable backlight in the panel power control. */ 2986 static void _intel_edp_backlight_on(struct intel_dp *intel_dp) 2987 { 2988 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2989 intel_wakeref_t wakeref; 2990 2991 /* 2992 * If we enable the backlight right away following a panel power 2993 * on, we may see slight flicker as the panel syncs with the eDP 2994 * link. So delay a bit to make sure the image is solid before 2995 * allowing it to appear. 2996 */ 2997 wait_backlight_on(intel_dp); 2998 2999 with_pps_lock(intel_dp, wakeref) { 3000 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3001 u32 pp; 3002 3003 pp = ilk_get_pp_control(intel_dp); 3004 pp |= EDP_BLC_ENABLE; 3005 3006 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3007 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3008 } 3009 } 3010 3011 /* Enable backlight PWM and backlight PP control. */ 3012 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 3013 const struct drm_connector_state *conn_state) 3014 { 3015 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder)); 3016 3017 if (!intel_dp_is_edp(intel_dp)) 3018 return; 3019 3020 DRM_DEBUG_KMS("\n"); 3021 3022 intel_panel_enable_backlight(crtc_state, conn_state); 3023 _intel_edp_backlight_on(intel_dp); 3024 } 3025 3026 /* Disable backlight in the panel power control. */ 3027 static void _intel_edp_backlight_off(struct intel_dp *intel_dp) 3028 { 3029 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3030 intel_wakeref_t wakeref; 3031 3032 if (!intel_dp_is_edp(intel_dp)) 3033 return; 3034 3035 with_pps_lock(intel_dp, wakeref) { 3036 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3037 u32 pp; 3038 3039 pp = ilk_get_pp_control(intel_dp); 3040 pp &= ~EDP_BLC_ENABLE; 3041 3042 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3043 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3044 } 3045 3046 intel_dp->last_backlight_off = jiffies; 3047 edp_wait_backlight_off(intel_dp); 3048 } 3049 3050 /* Disable backlight PP control and backlight PWM. */ 3051 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 3052 { 3053 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder)); 3054 3055 if (!intel_dp_is_edp(intel_dp)) 3056 return; 3057 3058 DRM_DEBUG_KMS("\n"); 3059 3060 _intel_edp_backlight_off(intel_dp); 3061 intel_panel_disable_backlight(old_conn_state); 3062 } 3063 3064 /* 3065 * Hook for controlling the panel power control backlight through the bl_power 3066 * sysfs attribute. Take care to handle multiple calls. 3067 */ 3068 static void intel_edp_backlight_power(struct intel_connector *connector, 3069 bool enable) 3070 { 3071 struct intel_dp *intel_dp = intel_attached_dp(connector); 3072 intel_wakeref_t wakeref; 3073 bool is_enabled; 3074 3075 is_enabled = false; 3076 with_pps_lock(intel_dp, wakeref) 3077 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE; 3078 if (is_enabled == enable) 3079 return; 3080 3081 DRM_DEBUG_KMS("panel power control backlight %s\n", 3082 enable ? "enable" : "disable"); 3083 3084 if (enable) 3085 _intel_edp_backlight_on(intel_dp); 3086 else 3087 _intel_edp_backlight_off(intel_dp); 3088 } 3089 3090 static void assert_dp_port(struct intel_dp *intel_dp, bool state) 3091 { 3092 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3093 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3094 bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN; 3095 3096 I915_STATE_WARN(cur_state != state, 3097 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n", 3098 dig_port->base.base.base.id, dig_port->base.base.name, 3099 onoff(state), onoff(cur_state)); 3100 } 3101 #define assert_dp_port_disabled(d) assert_dp_port((d), false) 3102 3103 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) 3104 { 3105 bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE; 3106 3107 I915_STATE_WARN(cur_state != state, 3108 "eDP PLL state assertion failure (expected %s, current %s)\n", 3109 onoff(state), onoff(cur_state)); 3110 } 3111 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) 3112 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) 3113 3114 static void ilk_edp_pll_on(struct intel_dp *intel_dp, 3115 const struct intel_crtc_state *pipe_config) 3116 { 3117 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3118 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3119 3120 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 3121 assert_dp_port_disabled(intel_dp); 3122 assert_edp_pll_disabled(dev_priv); 3123 3124 drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n", 3125 pipe_config->port_clock); 3126 3127 intel_dp->DP &= ~DP_PLL_FREQ_MASK; 3128 3129 if (pipe_config->port_clock == 162000) 3130 intel_dp->DP |= DP_PLL_FREQ_162MHZ; 3131 else 3132 intel_dp->DP |= DP_PLL_FREQ_270MHZ; 3133 3134 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3135 intel_de_posting_read(dev_priv, DP_A); 3136 udelay(500); 3137 3138 /* 3139 * [DevILK] Work around required when enabling DP PLL 3140 * while a pipe is enabled going to FDI: 3141 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI 3142 * 2. Program DP PLL enable 3143 */ 3144 if (IS_GEN(dev_priv, 5)) 3145 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); 3146 3147 intel_dp->DP |= DP_PLL_ENABLE; 3148 3149 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3150 intel_de_posting_read(dev_priv, DP_A); 3151 udelay(200); 3152 } 3153 3154 static void ilk_edp_pll_off(struct intel_dp *intel_dp, 3155 const struct intel_crtc_state *old_crtc_state) 3156 { 3157 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3158 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3159 3160 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 3161 assert_dp_port_disabled(intel_dp); 3162 assert_edp_pll_enabled(dev_priv); 3163 3164 drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n"); 3165 3166 intel_dp->DP &= ~DP_PLL_ENABLE; 3167 3168 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3169 intel_de_posting_read(dev_priv, DP_A); 3170 udelay(200); 3171 } 3172 3173 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 3174 { 3175 /* 3176 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 3177 * be capable of signalling downstream hpd with a long pulse. 3178 * Whether or not that means D3 is safe to use is not clear, 3179 * but let's assume so until proven otherwise. 3180 * 3181 * FIXME should really check all downstream ports... 3182 */ 3183 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 3184 drm_dp_is_branch(intel_dp->dpcd) && 3185 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 3186 } 3187 3188 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, 3189 const struct intel_crtc_state *crtc_state, 3190 bool enable) 3191 { 3192 int ret; 3193 3194 if (!crtc_state->dsc.compression_enable) 3195 return; 3196 3197 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, 3198 enable ? DP_DECOMPRESSION_EN : 0); 3199 if (ret < 0) 3200 DRM_DEBUG_KMS("Failed to %s sink decompression state\n", 3201 enable ? "enable" : "disable"); 3202 } 3203 3204 /* If the sink supports it, try to set the power state appropriately */ 3205 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) 3206 { 3207 int ret, i; 3208 3209 /* Should have a valid DPCD by this point */ 3210 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 3211 return; 3212 3213 if (mode != DRM_MODE_DPMS_ON) { 3214 if (downstream_hpd_needs_d0(intel_dp)) 3215 return; 3216 3217 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3218 DP_SET_POWER_D3); 3219 } else { 3220 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 3221 3222 /* 3223 * When turning on, we need to retry for 1ms to give the sink 3224 * time to wake up. 3225 */ 3226 for (i = 0; i < 3; i++) { 3227 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3228 DP_SET_POWER_D0); 3229 if (ret == 1) 3230 break; 3231 msleep(1); 3232 } 3233 3234 if (ret == 1 && lspcon->active) 3235 lspcon_wait_pcon_mode(lspcon); 3236 } 3237 3238 if (ret != 1) 3239 DRM_DEBUG_KMS("failed to %s sink power state\n", 3240 mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); 3241 } 3242 3243 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, 3244 enum port port, enum pipe *pipe) 3245 { 3246 enum pipe p; 3247 3248 for_each_pipe(dev_priv, p) { 3249 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p)); 3250 3251 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { 3252 *pipe = p; 3253 return true; 3254 } 3255 } 3256 3257 drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n", 3258 port_name(port)); 3259 3260 /* must initialize pipe to something for the asserts */ 3261 *pipe = PIPE_A; 3262 3263 return false; 3264 } 3265 3266 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, 3267 i915_reg_t dp_reg, enum port port, 3268 enum pipe *pipe) 3269 { 3270 bool ret; 3271 u32 val; 3272 3273 val = intel_de_read(dev_priv, dp_reg); 3274 3275 ret = val & DP_PORT_EN; 3276 3277 /* asserts want to know the pipe even if the port is disabled */ 3278 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3279 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; 3280 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3281 ret &= cpt_dp_port_selected(dev_priv, port, pipe); 3282 else if (IS_CHERRYVIEW(dev_priv)) 3283 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; 3284 else 3285 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; 3286 3287 return ret; 3288 } 3289 3290 static bool intel_dp_get_hw_state(struct intel_encoder *encoder, 3291 enum pipe *pipe) 3292 { 3293 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3294 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3295 intel_wakeref_t wakeref; 3296 bool ret; 3297 3298 wakeref = intel_display_power_get_if_enabled(dev_priv, 3299 encoder->power_domain); 3300 if (!wakeref) 3301 return false; 3302 3303 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 3304 encoder->port, pipe); 3305 3306 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 3307 3308 return ret; 3309 } 3310 3311 static void intel_dp_get_config(struct intel_encoder *encoder, 3312 struct intel_crtc_state *pipe_config) 3313 { 3314 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3315 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3316 u32 tmp, flags = 0; 3317 enum port port = encoder->port; 3318 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3319 3320 if (encoder->type == INTEL_OUTPUT_EDP) 3321 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); 3322 else 3323 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); 3324 3325 tmp = intel_de_read(dev_priv, intel_dp->output_reg); 3326 3327 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; 3328 3329 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 3330 u32 trans_dp = intel_de_read(dev_priv, 3331 TRANS_DP_CTL(crtc->pipe)); 3332 3333 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) 3334 flags |= DRM_MODE_FLAG_PHSYNC; 3335 else 3336 flags |= DRM_MODE_FLAG_NHSYNC; 3337 3338 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) 3339 flags |= DRM_MODE_FLAG_PVSYNC; 3340 else 3341 flags |= DRM_MODE_FLAG_NVSYNC; 3342 } else { 3343 if (tmp & DP_SYNC_HS_HIGH) 3344 flags |= DRM_MODE_FLAG_PHSYNC; 3345 else 3346 flags |= DRM_MODE_FLAG_NHSYNC; 3347 3348 if (tmp & DP_SYNC_VS_HIGH) 3349 flags |= DRM_MODE_FLAG_PVSYNC; 3350 else 3351 flags |= DRM_MODE_FLAG_NVSYNC; 3352 } 3353 3354 pipe_config->hw.adjusted_mode.flags |= flags; 3355 3356 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) 3357 pipe_config->limited_color_range = true; 3358 3359 pipe_config->lane_count = 3360 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; 3361 3362 intel_dp_get_m_n(crtc, pipe_config); 3363 3364 if (port == PORT_A) { 3365 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) 3366 pipe_config->port_clock = 162000; 3367 else 3368 pipe_config->port_clock = 270000; 3369 } 3370 3371 pipe_config->hw.adjusted_mode.crtc_clock = 3372 intel_dotclock_calculate(pipe_config->port_clock, 3373 &pipe_config->dp_m_n); 3374 3375 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && 3376 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { 3377 /* 3378 * This is a big fat ugly hack. 3379 * 3380 * Some machines in UEFI boot mode provide us a VBT that has 18 3381 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 3382 * unknown we fail to light up. Yet the same BIOS boots up with 3383 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 3384 * max, not what it tells us to use. 3385 * 3386 * Note: This will still be broken if the eDP panel is not lit 3387 * up by the BIOS, and thus we can't get the mode at module 3388 * load. 3389 */ 3390 drm_dbg_kms(&dev_priv->drm, 3391 "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 3392 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); 3393 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; 3394 } 3395 } 3396 3397 static void intel_disable_dp(struct intel_encoder *encoder, 3398 const struct intel_crtc_state *old_crtc_state, 3399 const struct drm_connector_state *old_conn_state) 3400 { 3401 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3402 3403 intel_dp->link_trained = false; 3404 3405 if (old_crtc_state->has_audio) 3406 intel_audio_codec_disable(encoder, 3407 old_crtc_state, old_conn_state); 3408 3409 /* Make sure the panel is off before trying to change the mode. But also 3410 * ensure that we have vdd while we switch off the panel. */ 3411 intel_edp_panel_vdd_on(intel_dp); 3412 intel_edp_backlight_off(old_conn_state); 3413 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); 3414 intel_edp_panel_off(intel_dp); 3415 } 3416 3417 static void g4x_disable_dp(struct intel_encoder *encoder, 3418 const struct intel_crtc_state *old_crtc_state, 3419 const struct drm_connector_state *old_conn_state) 3420 { 3421 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3422 } 3423 3424 static void vlv_disable_dp(struct intel_encoder *encoder, 3425 const struct intel_crtc_state *old_crtc_state, 3426 const struct drm_connector_state *old_conn_state) 3427 { 3428 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3429 } 3430 3431 static void g4x_post_disable_dp(struct intel_encoder *encoder, 3432 const struct intel_crtc_state *old_crtc_state, 3433 const struct drm_connector_state *old_conn_state) 3434 { 3435 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3436 enum port port = encoder->port; 3437 3438 /* 3439 * Bspec does not list a specific disable sequence for g4x DP. 3440 * Follow the ilk+ sequence (disable pipe before the port) for 3441 * g4x DP as it does not suffer from underruns like the normal 3442 * g4x modeset sequence (disable pipe after the port). 3443 */ 3444 intel_dp_link_down(encoder, old_crtc_state); 3445 3446 /* Only ilk+ has port A */ 3447 if (port == PORT_A) 3448 ilk_edp_pll_off(intel_dp, old_crtc_state); 3449 } 3450 3451 static void vlv_post_disable_dp(struct intel_encoder *encoder, 3452 const struct intel_crtc_state *old_crtc_state, 3453 const struct drm_connector_state *old_conn_state) 3454 { 3455 intel_dp_link_down(encoder, old_crtc_state); 3456 } 3457 3458 static void chv_post_disable_dp(struct intel_encoder *encoder, 3459 const struct intel_crtc_state *old_crtc_state, 3460 const struct drm_connector_state *old_conn_state) 3461 { 3462 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3463 3464 intel_dp_link_down(encoder, old_crtc_state); 3465 3466 vlv_dpio_get(dev_priv); 3467 3468 /* Assert data lane reset */ 3469 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 3470 3471 vlv_dpio_put(dev_priv); 3472 } 3473 3474 static void 3475 _intel_dp_set_link_train(struct intel_dp *intel_dp, 3476 u32 *DP, 3477 u8 dp_train_pat) 3478 { 3479 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3480 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3481 enum port port = intel_dig_port->base.port; 3482 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); 3483 3484 if (dp_train_pat & train_pat_mask) 3485 drm_dbg_kms(&dev_priv->drm, 3486 "Using DP training pattern TPS%d\n", 3487 dp_train_pat & train_pat_mask); 3488 3489 if (HAS_DDI(dev_priv)) { 3490 u32 temp = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl); 3491 3492 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) 3493 temp |= DP_TP_CTL_SCRAMBLE_DISABLE; 3494 else 3495 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; 3496 3497 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; 3498 switch (dp_train_pat & train_pat_mask) { 3499 case DP_TRAINING_PATTERN_DISABLE: 3500 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; 3501 3502 break; 3503 case DP_TRAINING_PATTERN_1: 3504 temp |= DP_TP_CTL_LINK_TRAIN_PAT1; 3505 break; 3506 case DP_TRAINING_PATTERN_2: 3507 temp |= DP_TP_CTL_LINK_TRAIN_PAT2; 3508 break; 3509 case DP_TRAINING_PATTERN_3: 3510 temp |= DP_TP_CTL_LINK_TRAIN_PAT3; 3511 break; 3512 case DP_TRAINING_PATTERN_4: 3513 temp |= DP_TP_CTL_LINK_TRAIN_PAT4; 3514 break; 3515 } 3516 intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, temp); 3517 3518 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 3519 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 3520 *DP &= ~DP_LINK_TRAIN_MASK_CPT; 3521 3522 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3523 case DP_TRAINING_PATTERN_DISABLE: 3524 *DP |= DP_LINK_TRAIN_OFF_CPT; 3525 break; 3526 case DP_TRAINING_PATTERN_1: 3527 *DP |= DP_LINK_TRAIN_PAT_1_CPT; 3528 break; 3529 case DP_TRAINING_PATTERN_2: 3530 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3531 break; 3532 case DP_TRAINING_PATTERN_3: 3533 drm_dbg_kms(&dev_priv->drm, 3534 "TPS3 not supported, using TPS2 instead\n"); 3535 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3536 break; 3537 } 3538 3539 } else { 3540 *DP &= ~DP_LINK_TRAIN_MASK; 3541 3542 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3543 case DP_TRAINING_PATTERN_DISABLE: 3544 *DP |= DP_LINK_TRAIN_OFF; 3545 break; 3546 case DP_TRAINING_PATTERN_1: 3547 *DP |= DP_LINK_TRAIN_PAT_1; 3548 break; 3549 case DP_TRAINING_PATTERN_2: 3550 *DP |= DP_LINK_TRAIN_PAT_2; 3551 break; 3552 case DP_TRAINING_PATTERN_3: 3553 drm_dbg_kms(&dev_priv->drm, 3554 "TPS3 not supported, using TPS2 instead\n"); 3555 *DP |= DP_LINK_TRAIN_PAT_2; 3556 break; 3557 } 3558 } 3559 } 3560 3561 static void intel_dp_enable_port(struct intel_dp *intel_dp, 3562 const struct intel_crtc_state *old_crtc_state) 3563 { 3564 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3565 3566 /* enable with pattern 1 (as per spec) */ 3567 3568 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); 3569 3570 /* 3571 * Magic for VLV/CHV. We _must_ first set up the register 3572 * without actually enabling the port, and then do another 3573 * write to enable the port. Otherwise link training will 3574 * fail when the power sequencer is freshly used for this port. 3575 */ 3576 intel_dp->DP |= DP_PORT_EN; 3577 if (old_crtc_state->has_audio) 3578 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 3579 3580 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 3581 intel_de_posting_read(dev_priv, intel_dp->output_reg); 3582 } 3583 3584 static void intel_enable_dp(struct intel_encoder *encoder, 3585 const struct intel_crtc_state *pipe_config, 3586 const struct drm_connector_state *conn_state) 3587 { 3588 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3589 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3590 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3591 u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg); 3592 enum pipe pipe = crtc->pipe; 3593 intel_wakeref_t wakeref; 3594 3595 if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN)) 3596 return; 3597 3598 with_pps_lock(intel_dp, wakeref) { 3599 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3600 vlv_init_panel_power_sequencer(encoder, pipe_config); 3601 3602 intel_dp_enable_port(intel_dp, pipe_config); 3603 3604 edp_panel_vdd_on(intel_dp); 3605 edp_panel_on(intel_dp); 3606 edp_panel_vdd_off(intel_dp, true); 3607 } 3608 3609 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3610 unsigned int lane_mask = 0x0; 3611 3612 if (IS_CHERRYVIEW(dev_priv)) 3613 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); 3614 3615 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), 3616 lane_mask); 3617 } 3618 3619 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); 3620 intel_dp_start_link_train(intel_dp); 3621 intel_dp_stop_link_train(intel_dp); 3622 3623 if (pipe_config->has_audio) { 3624 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n", 3625 pipe_name(pipe)); 3626 intel_audio_codec_enable(encoder, pipe_config, conn_state); 3627 } 3628 } 3629 3630 static void g4x_enable_dp(struct intel_encoder *encoder, 3631 const struct intel_crtc_state *pipe_config, 3632 const struct drm_connector_state *conn_state) 3633 { 3634 intel_enable_dp(encoder, pipe_config, conn_state); 3635 intel_edp_backlight_on(pipe_config, conn_state); 3636 } 3637 3638 static void vlv_enable_dp(struct intel_encoder *encoder, 3639 const struct intel_crtc_state *pipe_config, 3640 const struct drm_connector_state *conn_state) 3641 { 3642 intel_edp_backlight_on(pipe_config, conn_state); 3643 } 3644 3645 static void g4x_pre_enable_dp(struct intel_encoder *encoder, 3646 const struct intel_crtc_state *pipe_config, 3647 const struct drm_connector_state *conn_state) 3648 { 3649 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3650 enum port port = encoder->port; 3651 3652 intel_dp_prepare(encoder, pipe_config); 3653 3654 /* Only ilk+ has port A */ 3655 if (port == PORT_A) 3656 ilk_edp_pll_on(intel_dp, pipe_config); 3657 } 3658 3659 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) 3660 { 3661 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3662 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); 3663 enum pipe pipe = intel_dp->pps_pipe; 3664 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); 3665 3666 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE); 3667 3668 if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B)) 3669 return; 3670 3671 edp_panel_vdd_off_sync(intel_dp); 3672 3673 /* 3674 * VLV seems to get confused when multiple power sequencers 3675 * have the same port selected (even if only one has power/vdd 3676 * enabled). The failure manifests as vlv_wait_port_ready() failing 3677 * CHV on the other hand doesn't seem to mind having the same port 3678 * selected in multiple power sequencers, but let's clear the 3679 * port select always when logically disconnecting a power sequencer 3680 * from a port. 3681 */ 3682 drm_dbg_kms(&dev_priv->drm, 3683 "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n", 3684 pipe_name(pipe), intel_dig_port->base.base.base.id, 3685 intel_dig_port->base.base.name); 3686 intel_de_write(dev_priv, pp_on_reg, 0); 3687 intel_de_posting_read(dev_priv, pp_on_reg); 3688 3689 intel_dp->pps_pipe = INVALID_PIPE; 3690 } 3691 3692 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 3693 enum pipe pipe) 3694 { 3695 struct intel_encoder *encoder; 3696 3697 lockdep_assert_held(&dev_priv->pps_mutex); 3698 3699 for_each_intel_dp(&dev_priv->drm, encoder) { 3700 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3701 3702 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe, 3703 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n", 3704 pipe_name(pipe), encoder->base.base.id, 3705 encoder->base.name); 3706 3707 if (intel_dp->pps_pipe != pipe) 3708 continue; 3709 3710 drm_dbg_kms(&dev_priv->drm, 3711 "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n", 3712 pipe_name(pipe), encoder->base.base.id, 3713 encoder->base.name); 3714 3715 /* make sure vdd is off before we steal it */ 3716 vlv_detach_power_sequencer(intel_dp); 3717 } 3718 } 3719 3720 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 3721 const struct intel_crtc_state *crtc_state) 3722 { 3723 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3724 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3725 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3726 3727 lockdep_assert_held(&dev_priv->pps_mutex); 3728 3729 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE); 3730 3731 if (intel_dp->pps_pipe != INVALID_PIPE && 3732 intel_dp->pps_pipe != crtc->pipe) { 3733 /* 3734 * If another power sequencer was being used on this 3735 * port previously make sure to turn off vdd there while 3736 * we still have control of it. 3737 */ 3738 vlv_detach_power_sequencer(intel_dp); 3739 } 3740 3741 /* 3742 * We may be stealing the power 3743 * sequencer from another port. 3744 */ 3745 vlv_steal_power_sequencer(dev_priv, crtc->pipe); 3746 3747 intel_dp->active_pipe = crtc->pipe; 3748 3749 if (!intel_dp_is_edp(intel_dp)) 3750 return; 3751 3752 /* now it's all ours */ 3753 intel_dp->pps_pipe = crtc->pipe; 3754 3755 drm_dbg_kms(&dev_priv->drm, 3756 "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n", 3757 pipe_name(intel_dp->pps_pipe), encoder->base.base.id, 3758 encoder->base.name); 3759 3760 /* init power sequencer on this pipe and port */ 3761 intel_dp_init_panel_power_sequencer(intel_dp); 3762 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 3763 } 3764 3765 static void vlv_pre_enable_dp(struct intel_encoder *encoder, 3766 const struct intel_crtc_state *pipe_config, 3767 const struct drm_connector_state *conn_state) 3768 { 3769 vlv_phy_pre_encoder_enable(encoder, pipe_config); 3770 3771 intel_enable_dp(encoder, pipe_config, conn_state); 3772 } 3773 3774 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder, 3775 const struct intel_crtc_state *pipe_config, 3776 const struct drm_connector_state *conn_state) 3777 { 3778 intel_dp_prepare(encoder, pipe_config); 3779 3780 vlv_phy_pre_pll_enable(encoder, pipe_config); 3781 } 3782 3783 static void chv_pre_enable_dp(struct intel_encoder *encoder, 3784 const struct intel_crtc_state *pipe_config, 3785 const struct drm_connector_state *conn_state) 3786 { 3787 chv_phy_pre_encoder_enable(encoder, pipe_config); 3788 3789 intel_enable_dp(encoder, pipe_config, conn_state); 3790 3791 /* Second common lane will stay alive on its own now */ 3792 chv_phy_release_cl2_override(encoder); 3793 } 3794 3795 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder, 3796 const struct intel_crtc_state *pipe_config, 3797 const struct drm_connector_state *conn_state) 3798 { 3799 intel_dp_prepare(encoder, pipe_config); 3800 3801 chv_phy_pre_pll_enable(encoder, pipe_config); 3802 } 3803 3804 static void chv_dp_post_pll_disable(struct intel_encoder *encoder, 3805 const struct intel_crtc_state *old_crtc_state, 3806 const struct drm_connector_state *old_conn_state) 3807 { 3808 chv_phy_post_pll_disable(encoder, old_crtc_state); 3809 } 3810 3811 /* 3812 * Fetch AUX CH registers 0x202 - 0x207 which contain 3813 * link status information 3814 */ 3815 bool 3816 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) 3817 { 3818 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, 3819 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; 3820 } 3821 3822 /* These are source-specific values. */ 3823 u8 3824 intel_dp_voltage_max(struct intel_dp *intel_dp) 3825 { 3826 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3827 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3828 enum port port = encoder->port; 3829 3830 if (HAS_DDI(dev_priv)) 3831 return intel_ddi_dp_voltage_max(encoder); 3832 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3833 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3834 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3835 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3836 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3837 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3838 else 3839 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3840 } 3841 3842 u8 3843 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing) 3844 { 3845 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3846 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3847 enum port port = encoder->port; 3848 3849 if (HAS_DDI(dev_priv)) { 3850 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing); 3851 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3852 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3853 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3854 return DP_TRAIN_PRE_EMPH_LEVEL_3; 3855 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3856 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3857 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3858 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3859 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3860 default: 3861 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3862 } 3863 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3864 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3865 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3866 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3867 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3868 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3869 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3870 default: 3871 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3872 } 3873 } else { 3874 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3875 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3876 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3877 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3878 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3879 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3880 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3881 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3882 default: 3883 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3884 } 3885 } 3886 } 3887 3888 static u32 vlv_signal_levels(struct intel_dp *intel_dp) 3889 { 3890 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3891 unsigned long demph_reg_value, preemph_reg_value, 3892 uniqtranscale_reg_value; 3893 u8 train_set = intel_dp->train_set[0]; 3894 3895 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3896 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3897 preemph_reg_value = 0x0004000; 3898 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3899 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3900 demph_reg_value = 0x2B405555; 3901 uniqtranscale_reg_value = 0x552AB83A; 3902 break; 3903 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3904 demph_reg_value = 0x2B404040; 3905 uniqtranscale_reg_value = 0x5548B83A; 3906 break; 3907 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3908 demph_reg_value = 0x2B245555; 3909 uniqtranscale_reg_value = 0x5560B83A; 3910 break; 3911 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3912 demph_reg_value = 0x2B405555; 3913 uniqtranscale_reg_value = 0x5598DA3A; 3914 break; 3915 default: 3916 return 0; 3917 } 3918 break; 3919 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3920 preemph_reg_value = 0x0002000; 3921 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3922 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3923 demph_reg_value = 0x2B404040; 3924 uniqtranscale_reg_value = 0x5552B83A; 3925 break; 3926 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3927 demph_reg_value = 0x2B404848; 3928 uniqtranscale_reg_value = 0x5580B83A; 3929 break; 3930 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3931 demph_reg_value = 0x2B404040; 3932 uniqtranscale_reg_value = 0x55ADDA3A; 3933 break; 3934 default: 3935 return 0; 3936 } 3937 break; 3938 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3939 preemph_reg_value = 0x0000000; 3940 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3941 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3942 demph_reg_value = 0x2B305555; 3943 uniqtranscale_reg_value = 0x5570B83A; 3944 break; 3945 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3946 demph_reg_value = 0x2B2B4040; 3947 uniqtranscale_reg_value = 0x55ADDA3A; 3948 break; 3949 default: 3950 return 0; 3951 } 3952 break; 3953 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3954 preemph_reg_value = 0x0006000; 3955 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3956 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3957 demph_reg_value = 0x1B405555; 3958 uniqtranscale_reg_value = 0x55ADDA3A; 3959 break; 3960 default: 3961 return 0; 3962 } 3963 break; 3964 default: 3965 return 0; 3966 } 3967 3968 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, 3969 uniqtranscale_reg_value, 0); 3970 3971 return 0; 3972 } 3973 3974 static u32 chv_signal_levels(struct intel_dp *intel_dp) 3975 { 3976 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3977 u32 deemph_reg_value, margin_reg_value; 3978 bool uniq_trans_scale = false; 3979 u8 train_set = intel_dp->train_set[0]; 3980 3981 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3982 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3983 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3984 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3985 deemph_reg_value = 128; 3986 margin_reg_value = 52; 3987 break; 3988 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3989 deemph_reg_value = 128; 3990 margin_reg_value = 77; 3991 break; 3992 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3993 deemph_reg_value = 128; 3994 margin_reg_value = 102; 3995 break; 3996 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3997 deemph_reg_value = 128; 3998 margin_reg_value = 154; 3999 uniq_trans_scale = true; 4000 break; 4001 default: 4002 return 0; 4003 } 4004 break; 4005 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4006 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4007 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4008 deemph_reg_value = 85; 4009 margin_reg_value = 78; 4010 break; 4011 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4012 deemph_reg_value = 85; 4013 margin_reg_value = 116; 4014 break; 4015 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4016 deemph_reg_value = 85; 4017 margin_reg_value = 154; 4018 break; 4019 default: 4020 return 0; 4021 } 4022 break; 4023 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4024 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4025 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4026 deemph_reg_value = 64; 4027 margin_reg_value = 104; 4028 break; 4029 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4030 deemph_reg_value = 64; 4031 margin_reg_value = 154; 4032 break; 4033 default: 4034 return 0; 4035 } 4036 break; 4037 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4038 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4039 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4040 deemph_reg_value = 43; 4041 margin_reg_value = 154; 4042 break; 4043 default: 4044 return 0; 4045 } 4046 break; 4047 default: 4048 return 0; 4049 } 4050 4051 chv_set_phy_signal_level(encoder, deemph_reg_value, 4052 margin_reg_value, uniq_trans_scale); 4053 4054 return 0; 4055 } 4056 4057 static u32 4058 g4x_signal_levels(u8 train_set) 4059 { 4060 u32 signal_levels = 0; 4061 4062 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4063 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4064 default: 4065 signal_levels |= DP_VOLTAGE_0_4; 4066 break; 4067 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4068 signal_levels |= DP_VOLTAGE_0_6; 4069 break; 4070 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4071 signal_levels |= DP_VOLTAGE_0_8; 4072 break; 4073 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 4074 signal_levels |= DP_VOLTAGE_1_2; 4075 break; 4076 } 4077 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 4078 case DP_TRAIN_PRE_EMPH_LEVEL_0: 4079 default: 4080 signal_levels |= DP_PRE_EMPHASIS_0; 4081 break; 4082 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4083 signal_levels |= DP_PRE_EMPHASIS_3_5; 4084 break; 4085 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4086 signal_levels |= DP_PRE_EMPHASIS_6; 4087 break; 4088 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4089 signal_levels |= DP_PRE_EMPHASIS_9_5; 4090 break; 4091 } 4092 return signal_levels; 4093 } 4094 4095 /* SNB CPU eDP voltage swing and pre-emphasis control */ 4096 static u32 4097 snb_cpu_edp_signal_levels(u8 train_set) 4098 { 4099 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4100 DP_TRAIN_PRE_EMPHASIS_MASK); 4101 switch (signal_levels) { 4102 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4103 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4104 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4105 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4106 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; 4107 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4108 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4109 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; 4110 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4111 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4112 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; 4113 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4114 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4115 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; 4116 default: 4117 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4118 "0x%x\n", signal_levels); 4119 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4120 } 4121 } 4122 4123 /* IVB CPU eDP voltage swing and pre-emphasis control */ 4124 static u32 4125 ivb_cpu_edp_signal_levels(u8 train_set) 4126 { 4127 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4128 DP_TRAIN_PRE_EMPHASIS_MASK); 4129 switch (signal_levels) { 4130 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4131 return EDP_LINK_TRAIN_400MV_0DB_IVB; 4132 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4133 return EDP_LINK_TRAIN_400MV_3_5DB_IVB; 4134 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4135 return EDP_LINK_TRAIN_400MV_6DB_IVB; 4136 4137 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4138 return EDP_LINK_TRAIN_600MV_0DB_IVB; 4139 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4140 return EDP_LINK_TRAIN_600MV_3_5DB_IVB; 4141 4142 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4143 return EDP_LINK_TRAIN_800MV_0DB_IVB; 4144 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4145 return EDP_LINK_TRAIN_800MV_3_5DB_IVB; 4146 4147 default: 4148 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4149 "0x%x\n", signal_levels); 4150 return EDP_LINK_TRAIN_500MV_0DB_IVB; 4151 } 4152 } 4153 4154 void 4155 intel_dp_set_signal_levels(struct intel_dp *intel_dp) 4156 { 4157 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4158 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4159 enum port port = intel_dig_port->base.port; 4160 u32 signal_levels, mask = 0; 4161 u8 train_set = intel_dp->train_set[0]; 4162 4163 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) { 4164 signal_levels = bxt_signal_levels(intel_dp); 4165 } else if (HAS_DDI(dev_priv)) { 4166 signal_levels = ddi_signal_levels(intel_dp); 4167 mask = DDI_BUF_EMP_MASK; 4168 } else if (IS_CHERRYVIEW(dev_priv)) { 4169 signal_levels = chv_signal_levels(intel_dp); 4170 } else if (IS_VALLEYVIEW(dev_priv)) { 4171 signal_levels = vlv_signal_levels(intel_dp); 4172 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 4173 signal_levels = ivb_cpu_edp_signal_levels(train_set); 4174 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; 4175 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) { 4176 signal_levels = snb_cpu_edp_signal_levels(train_set); 4177 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; 4178 } else { 4179 signal_levels = g4x_signal_levels(train_set); 4180 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; 4181 } 4182 4183 if (mask) 4184 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", 4185 signal_levels); 4186 4187 drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n", 4188 train_set & DP_TRAIN_VOLTAGE_SWING_MASK, 4189 train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : ""); 4190 drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n", 4191 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> 4192 DP_TRAIN_PRE_EMPHASIS_SHIFT, 4193 train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ? 4194 " (max)" : ""); 4195 4196 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels; 4197 4198 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 4199 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4200 } 4201 4202 void 4203 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, 4204 u8 dp_train_pat) 4205 { 4206 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4207 struct drm_i915_private *dev_priv = 4208 to_i915(intel_dig_port->base.base.dev); 4209 4210 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat); 4211 4212 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 4213 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4214 } 4215 4216 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) 4217 { 4218 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4219 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4220 enum port port = intel_dig_port->base.port; 4221 u32 val; 4222 4223 if (!HAS_DDI(dev_priv)) 4224 return; 4225 4226 val = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl); 4227 val &= ~DP_TP_CTL_LINK_TRAIN_MASK; 4228 val |= DP_TP_CTL_LINK_TRAIN_IDLE; 4229 intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, val); 4230 4231 /* 4232 * Until TGL on PORT_A we can have only eDP in SST mode. There the only 4233 * reason we need to set idle transmission mode is to work around a HW 4234 * issue where we enable the pipe while not in idle link-training mode. 4235 * In this case there is requirement to wait for a minimum number of 4236 * idle patterns to be sent. 4237 */ 4238 if (port == PORT_A && INTEL_GEN(dev_priv) < 12) 4239 return; 4240 4241 if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status, 4242 DP_TP_STATUS_IDLE_DONE, 1)) 4243 drm_err(&dev_priv->drm, 4244 "Timed out waiting for DP idle patterns\n"); 4245 } 4246 4247 static void 4248 intel_dp_link_down(struct intel_encoder *encoder, 4249 const struct intel_crtc_state *old_crtc_state) 4250 { 4251 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4252 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4253 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 4254 enum port port = encoder->port; 4255 u32 DP = intel_dp->DP; 4256 4257 if (drm_WARN_ON(&dev_priv->drm, 4258 (intel_de_read(dev_priv, intel_dp->output_reg) & 4259 DP_PORT_EN) == 0)) 4260 return; 4261 4262 drm_dbg_kms(&dev_priv->drm, "\n"); 4263 4264 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 4265 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 4266 DP &= ~DP_LINK_TRAIN_MASK_CPT; 4267 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; 4268 } else { 4269 DP &= ~DP_LINK_TRAIN_MASK; 4270 DP |= DP_LINK_TRAIN_PAT_IDLE; 4271 } 4272 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4273 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4274 4275 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); 4276 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4277 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4278 4279 /* 4280 * HW workaround for IBX, we need to move the port 4281 * to transcoder A after disabling it to allow the 4282 * matching HDMI port to be enabled on transcoder A. 4283 */ 4284 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { 4285 /* 4286 * We get CPU/PCH FIFO underruns on the other pipe when 4287 * doing the workaround. Sweep them under the rug. 4288 */ 4289 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4290 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4291 4292 /* always enable with pattern 1 (as per spec) */ 4293 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); 4294 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | 4295 DP_LINK_TRAIN_PAT_1; 4296 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4297 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4298 4299 DP &= ~DP_PORT_EN; 4300 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4301 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4302 4303 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 4304 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4305 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4306 } 4307 4308 msleep(intel_dp->panel_power_down_delay); 4309 4310 intel_dp->DP = DP; 4311 4312 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4313 intel_wakeref_t wakeref; 4314 4315 with_pps_lock(intel_dp, wakeref) 4316 intel_dp->active_pipe = INVALID_PIPE; 4317 } 4318 } 4319 4320 static void 4321 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp) 4322 { 4323 u8 dpcd_ext[6]; 4324 4325 /* 4326 * Prior to DP1.3 the bit represented by 4327 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 4328 * if it is set DP_DPCD_REV at 0000h could be at a value less than 4329 * the true capability of the panel. The only way to check is to 4330 * then compare 0000h and 2200h. 4331 */ 4332 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 4333 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 4334 return; 4335 4336 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV, 4337 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) { 4338 DRM_ERROR("DPCD failed read at extended capabilities\n"); 4339 return; 4340 } 4341 4342 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 4343 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n"); 4344 return; 4345 } 4346 4347 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext))) 4348 return; 4349 4350 DRM_DEBUG_KMS("Base DPCD: %*ph\n", 4351 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd); 4352 4353 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)); 4354 } 4355 4356 bool 4357 intel_dp_read_dpcd(struct intel_dp *intel_dp) 4358 { 4359 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd, 4360 sizeof(intel_dp->dpcd)) < 0) 4361 return false; /* aux transfer failed */ 4362 4363 intel_dp_extended_receiver_capabilities(intel_dp); 4364 4365 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); 4366 4367 return intel_dp->dpcd[DP_DPCD_REV] != 0; 4368 } 4369 4370 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4371 { 4372 u8 dprx = 0; 4373 4374 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4375 &dprx) != 1) 4376 return false; 4377 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4378 } 4379 4380 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) 4381 { 4382 /* 4383 * Clear the cached register set to avoid using stale values 4384 * for the sinks that do not support DSC. 4385 */ 4386 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 4387 4388 /* Clear fec_capable to avoid using stale values */ 4389 intel_dp->fec_capable = 0; 4390 4391 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ 4392 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || 4393 intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4394 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, 4395 intel_dp->dsc_dpcd, 4396 sizeof(intel_dp->dsc_dpcd)) < 0) 4397 DRM_ERROR("Failed to read DPCD register 0x%x\n", 4398 DP_DSC_SUPPORT); 4399 4400 DRM_DEBUG_KMS("DSC DPCD: %*ph\n", 4401 (int)sizeof(intel_dp->dsc_dpcd), 4402 intel_dp->dsc_dpcd); 4403 4404 /* FEC is supported only on DP 1.4 */ 4405 if (!intel_dp_is_edp(intel_dp) && 4406 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, 4407 &intel_dp->fec_capable) < 0) 4408 DRM_ERROR("Failed to read FEC DPCD register\n"); 4409 4410 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable); 4411 } 4412 } 4413 4414 static bool 4415 intel_edp_init_dpcd(struct intel_dp *intel_dp) 4416 { 4417 struct drm_i915_private *dev_priv = 4418 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 4419 4420 /* this function is meant to be called only once */ 4421 drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0); 4422 4423 if (!intel_dp_read_dpcd(intel_dp)) 4424 return false; 4425 4426 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4427 drm_dp_is_branch(intel_dp->dpcd)); 4428 4429 /* 4430 * Read the eDP display control registers. 4431 * 4432 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4433 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4434 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4435 * method). The display control registers should read zero if they're 4436 * not supported anyway. 4437 */ 4438 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4439 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4440 sizeof(intel_dp->edp_dpcd)) 4441 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n", 4442 (int)sizeof(intel_dp->edp_dpcd), 4443 intel_dp->edp_dpcd); 4444 4445 /* 4446 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4447 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4448 */ 4449 intel_psr_init_dpcd(intel_dp); 4450 4451 /* Read the eDP 1.4+ supported link rates. */ 4452 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4453 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4454 int i; 4455 4456 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4457 sink_rates, sizeof(sink_rates)); 4458 4459 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4460 int val = le16_to_cpu(sink_rates[i]); 4461 4462 if (val == 0) 4463 break; 4464 4465 /* Value read multiplied by 200kHz gives the per-lane 4466 * link rate in kHz. The source rates are, however, 4467 * stored in terms of LS_Clk kHz. The full conversion 4468 * back to symbols is 4469 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4470 */ 4471 intel_dp->sink_rates[i] = (val * 200) / 10; 4472 } 4473 intel_dp->num_sink_rates = i; 4474 } 4475 4476 /* 4477 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4478 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4479 */ 4480 if (intel_dp->num_sink_rates) 4481 intel_dp->use_rate_select = true; 4482 else 4483 intel_dp_set_sink_rates(intel_dp); 4484 4485 intel_dp_set_common_rates(intel_dp); 4486 4487 /* Read the eDP DSC DPCD registers */ 4488 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4489 intel_dp_get_dsc_sink_cap(intel_dp); 4490 4491 return true; 4492 } 4493 4494 4495 static bool 4496 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4497 { 4498 if (!intel_dp_read_dpcd(intel_dp)) 4499 return false; 4500 4501 /* 4502 * Don't clobber cached eDP rates. Also skip re-reading 4503 * the OUI/ID since we know it won't change. 4504 */ 4505 if (!intel_dp_is_edp(intel_dp)) { 4506 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4507 drm_dp_is_branch(intel_dp->dpcd)); 4508 4509 intel_dp_set_sink_rates(intel_dp); 4510 intel_dp_set_common_rates(intel_dp); 4511 } 4512 4513 /* 4514 * Some eDP panels do not set a valid value for sink count, that is why 4515 * it don't care about read it here and in intel_edp_init_dpcd(). 4516 */ 4517 if (!intel_dp_is_edp(intel_dp) && 4518 !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) { 4519 u8 count; 4520 ssize_t r; 4521 4522 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count); 4523 if (r < 1) 4524 return false; 4525 4526 /* 4527 * Sink count can change between short pulse hpd hence 4528 * a member variable in intel_dp will track any changes 4529 * between short pulse interrupts. 4530 */ 4531 intel_dp->sink_count = DP_GET_SINK_COUNT(count); 4532 4533 /* 4534 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4535 * a dongle is present but no display. Unless we require to know 4536 * if a dongle is present or not, we don't need to update 4537 * downstream port information. So, an early return here saves 4538 * time from performing other operations which are not required. 4539 */ 4540 if (!intel_dp->sink_count) 4541 return false; 4542 } 4543 4544 if (!drm_dp_is_branch(intel_dp->dpcd)) 4545 return true; /* native DP sink */ 4546 4547 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) 4548 return true; /* no per-port downstream info */ 4549 4550 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, 4551 intel_dp->downstream_ports, 4552 DP_MAX_DOWNSTREAM_PORTS) < 0) 4553 return false; /* downstream port status fetch failed */ 4554 4555 return true; 4556 } 4557 4558 static bool 4559 intel_dp_sink_can_mst(struct intel_dp *intel_dp) 4560 { 4561 u8 mstm_cap; 4562 4563 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) 4564 return false; 4565 4566 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1) 4567 return false; 4568 4569 return mstm_cap & DP_MST_CAP; 4570 } 4571 4572 static bool 4573 intel_dp_can_mst(struct intel_dp *intel_dp) 4574 { 4575 return i915_modparams.enable_dp_mst && 4576 intel_dp->can_mst && 4577 intel_dp_sink_can_mst(intel_dp); 4578 } 4579 4580 static void 4581 intel_dp_configure_mst(struct intel_dp *intel_dp) 4582 { 4583 struct intel_encoder *encoder = 4584 &dp_to_dig_port(intel_dp)->base; 4585 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp); 4586 4587 DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n", 4588 encoder->base.base.id, encoder->base.name, 4589 yesno(intel_dp->can_mst), yesno(sink_can_mst), 4590 yesno(i915_modparams.enable_dp_mst)); 4591 4592 if (!intel_dp->can_mst) 4593 return; 4594 4595 intel_dp->is_mst = sink_can_mst && 4596 i915_modparams.enable_dp_mst; 4597 4598 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4599 intel_dp->is_mst); 4600 } 4601 4602 static bool 4603 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) 4604 { 4605 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, 4606 sink_irq_vector, DP_DPRX_ESI_LEN) == 4607 DP_DPRX_ESI_LEN; 4608 } 4609 4610 bool 4611 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state, 4612 const struct drm_connector_state *conn_state) 4613 { 4614 /* 4615 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication 4616 * of Color Encoding Format and Content Color Gamut], in order to 4617 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP. 4618 */ 4619 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4620 return true; 4621 4622 switch (conn_state->colorspace) { 4623 case DRM_MODE_COLORIMETRY_SYCC_601: 4624 case DRM_MODE_COLORIMETRY_OPYCC_601: 4625 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4626 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4627 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4628 return true; 4629 default: 4630 break; 4631 } 4632 4633 return false; 4634 } 4635 4636 static void 4637 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp, 4638 const struct intel_crtc_state *crtc_state, 4639 const struct drm_connector_state *conn_state) 4640 { 4641 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4642 struct dp_sdp vsc_sdp = {}; 4643 4644 /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */ 4645 vsc_sdp.sdp_header.HB0 = 0; 4646 vsc_sdp.sdp_header.HB1 = 0x7; 4647 4648 /* 4649 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 4650 * Colorimetry Format indication. 4651 */ 4652 vsc_sdp.sdp_header.HB2 = 0x5; 4653 4654 /* 4655 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/ 4656 * Colorimetry Format indication (HB2 = 05h). 4657 */ 4658 vsc_sdp.sdp_header.HB3 = 0x13; 4659 4660 /* DP 1.4a spec, Table 2-120 */ 4661 switch (crtc_state->output_format) { 4662 case INTEL_OUTPUT_FORMAT_YCBCR444: 4663 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */ 4664 break; 4665 case INTEL_OUTPUT_FORMAT_YCBCR420: 4666 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */ 4667 break; 4668 case INTEL_OUTPUT_FORMAT_RGB: 4669 default: 4670 /* RGB: DB16[7:4] = 0h */ 4671 break; 4672 } 4673 4674 switch (conn_state->colorspace) { 4675 case DRM_MODE_COLORIMETRY_BT709_YCC: 4676 vsc_sdp.db[16] |= 0x1; 4677 break; 4678 case DRM_MODE_COLORIMETRY_XVYCC_601: 4679 vsc_sdp.db[16] |= 0x2; 4680 break; 4681 case DRM_MODE_COLORIMETRY_XVYCC_709: 4682 vsc_sdp.db[16] |= 0x3; 4683 break; 4684 case DRM_MODE_COLORIMETRY_SYCC_601: 4685 vsc_sdp.db[16] |= 0x4; 4686 break; 4687 case DRM_MODE_COLORIMETRY_OPYCC_601: 4688 vsc_sdp.db[16] |= 0x5; 4689 break; 4690 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4691 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4692 vsc_sdp.db[16] |= 0x6; 4693 break; 4694 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4695 vsc_sdp.db[16] |= 0x7; 4696 break; 4697 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: 4698 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: 4699 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */ 4700 break; 4701 default: 4702 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */ 4703 4704 /* RGB->YCBCR color conversion uses the BT.709 color space. */ 4705 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4706 vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */ 4707 break; 4708 } 4709 4710 /* 4711 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only, 4712 * the following Component Bit Depth values are defined: 4713 * 001b = 8bpc. 4714 * 010b = 10bpc. 4715 * 011b = 12bpc. 4716 * 100b = 16bpc. 4717 */ 4718 switch (crtc_state->pipe_bpp) { 4719 case 24: /* 8bpc */ 4720 vsc_sdp.db[17] = 0x1; 4721 break; 4722 case 30: /* 10bpc */ 4723 vsc_sdp.db[17] = 0x2; 4724 break; 4725 case 36: /* 12bpc */ 4726 vsc_sdp.db[17] = 0x3; 4727 break; 4728 case 48: /* 16bpc */ 4729 vsc_sdp.db[17] = 0x4; 4730 break; 4731 default: 4732 MISSING_CASE(crtc_state->pipe_bpp); 4733 break; 4734 } 4735 4736 /* 4737 * Dynamic Range (Bit 7) 4738 * 0 = VESA range, 1 = CTA range. 4739 * all YCbCr are always limited range 4740 */ 4741 vsc_sdp.db[17] |= 0x80; 4742 4743 /* 4744 * Content Type (Bits 2:0) 4745 * 000b = Not defined. 4746 * 001b = Graphics. 4747 * 010b = Photo. 4748 * 011b = Video. 4749 * 100b = Game 4750 * All other values are RESERVED. 4751 * Note: See CTA-861-G for the definition and expected 4752 * processing by a stream sink for the above contect types. 4753 */ 4754 vsc_sdp.db[18] = 0; 4755 4756 intel_dig_port->write_infoframe(&intel_dig_port->base, 4757 crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp)); 4758 } 4759 4760 static void 4761 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp, 4762 const struct intel_crtc_state *crtc_state, 4763 const struct drm_connector_state *conn_state) 4764 { 4765 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4766 struct dp_sdp infoframe_sdp = {}; 4767 struct hdmi_drm_infoframe drm_infoframe = {}; 4768 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE; 4769 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE]; 4770 ssize_t len; 4771 int ret; 4772 4773 ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state); 4774 if (ret) { 4775 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n"); 4776 return; 4777 } 4778 4779 len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf)); 4780 if (len < 0) { 4781 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n"); 4782 return; 4783 } 4784 4785 if (len != infoframe_size) { 4786 DRM_DEBUG_KMS("wrong static hdr metadata size\n"); 4787 return; 4788 } 4789 4790 /* 4791 * Set up the infoframe sdp packet for HDR static metadata. 4792 * Prepare VSC Header for SU as per DP 1.4a spec, 4793 * Table 2-100 and Table 2-101 4794 */ 4795 4796 /* Packet ID, 00h for non-Audio INFOFRAME */ 4797 infoframe_sdp.sdp_header.HB0 = 0; 4798 /* 4799 * Packet Type 80h + Non-audio INFOFRAME Type value 4800 * HDMI_INFOFRAME_TYPE_DRM: 0x87, 4801 */ 4802 infoframe_sdp.sdp_header.HB1 = drm_infoframe.type; 4803 /* 4804 * Least Significant Eight Bits of (Data Byte Count – 1) 4805 * infoframe_size - 1, 4806 */ 4807 infoframe_sdp.sdp_header.HB2 = 0x1D; 4808 /* INFOFRAME SDP Version Number */ 4809 infoframe_sdp.sdp_header.HB3 = (0x13 << 2); 4810 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 4811 infoframe_sdp.db[0] = drm_infoframe.version; 4812 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 4813 infoframe_sdp.db[1] = drm_infoframe.length; 4814 /* 4815 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after 4816 * HDMI_INFOFRAME_HEADER_SIZE 4817 */ 4818 BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2); 4819 memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE], 4820 HDMI_DRM_INFOFRAME_SIZE); 4821 4822 /* 4823 * Size of DP infoframe sdp packet for HDR static metadata is consist of 4824 * - DP SDP Header(struct dp_sdp_header): 4 bytes 4825 * - Two Data Blocks: 2 bytes 4826 * CTA Header Byte2 (INFOFRAME Version Number) 4827 * CTA Header Byte3 (Length of INFOFRAME) 4828 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes 4829 * 4830 * Prior to GEN11's GMP register size is identical to DP HDR static metadata 4831 * infoframe size. But GEN11+ has larger than that size, write_infoframe 4832 * will pad rest of the size. 4833 */ 4834 intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state, 4835 HDMI_PACKET_TYPE_GAMUT_METADATA, 4836 &infoframe_sdp, 4837 sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE); 4838 } 4839 4840 void intel_dp_vsc_enable(struct intel_dp *intel_dp, 4841 const struct intel_crtc_state *crtc_state, 4842 const struct drm_connector_state *conn_state) 4843 { 4844 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state)) 4845 return; 4846 4847 intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state); 4848 } 4849 4850 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp, 4851 const struct intel_crtc_state *crtc_state, 4852 const struct drm_connector_state *conn_state) 4853 { 4854 if (!conn_state->hdr_output_metadata) 4855 return; 4856 4857 intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp, 4858 crtc_state, 4859 conn_state); 4860 } 4861 4862 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) 4863 { 4864 int status = 0; 4865 int test_link_rate; 4866 u8 test_lane_count, test_link_bw; 4867 /* (DP CTS 1.2) 4868 * 4.3.1.11 4869 */ 4870 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ 4871 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, 4872 &test_lane_count); 4873 4874 if (status <= 0) { 4875 DRM_DEBUG_KMS("Lane count read failed\n"); 4876 return DP_TEST_NAK; 4877 } 4878 test_lane_count &= DP_MAX_LANE_COUNT_MASK; 4879 4880 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, 4881 &test_link_bw); 4882 if (status <= 0) { 4883 DRM_DEBUG_KMS("Link Rate read failed\n"); 4884 return DP_TEST_NAK; 4885 } 4886 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); 4887 4888 /* Validate the requested link rate and lane count */ 4889 if (!intel_dp_link_params_valid(intel_dp, test_link_rate, 4890 test_lane_count)) 4891 return DP_TEST_NAK; 4892 4893 intel_dp->compliance.test_lane_count = test_lane_count; 4894 intel_dp->compliance.test_link_rate = test_link_rate; 4895 4896 return DP_TEST_ACK; 4897 } 4898 4899 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) 4900 { 4901 u8 test_pattern; 4902 u8 test_misc; 4903 __be16 h_width, v_height; 4904 int status = 0; 4905 4906 /* Read the TEST_PATTERN (DP CTS 3.1.5) */ 4907 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, 4908 &test_pattern); 4909 if (status <= 0) { 4910 DRM_DEBUG_KMS("Test pattern read failed\n"); 4911 return DP_TEST_NAK; 4912 } 4913 if (test_pattern != DP_COLOR_RAMP) 4914 return DP_TEST_NAK; 4915 4916 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, 4917 &h_width, 2); 4918 if (status <= 0) { 4919 DRM_DEBUG_KMS("H Width read failed\n"); 4920 return DP_TEST_NAK; 4921 } 4922 4923 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, 4924 &v_height, 2); 4925 if (status <= 0) { 4926 DRM_DEBUG_KMS("V Height read failed\n"); 4927 return DP_TEST_NAK; 4928 } 4929 4930 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, 4931 &test_misc); 4932 if (status <= 0) { 4933 DRM_DEBUG_KMS("TEST MISC read failed\n"); 4934 return DP_TEST_NAK; 4935 } 4936 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) 4937 return DP_TEST_NAK; 4938 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) 4939 return DP_TEST_NAK; 4940 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { 4941 case DP_TEST_BIT_DEPTH_6: 4942 intel_dp->compliance.test_data.bpc = 6; 4943 break; 4944 case DP_TEST_BIT_DEPTH_8: 4945 intel_dp->compliance.test_data.bpc = 8; 4946 break; 4947 default: 4948 return DP_TEST_NAK; 4949 } 4950 4951 intel_dp->compliance.test_data.video_pattern = test_pattern; 4952 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); 4953 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); 4954 /* Set test active flag here so userspace doesn't interrupt things */ 4955 intel_dp->compliance.test_active = true; 4956 4957 return DP_TEST_ACK; 4958 } 4959 4960 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) 4961 { 4962 u8 test_result = DP_TEST_ACK; 4963 struct intel_connector *intel_connector = intel_dp->attached_connector; 4964 struct drm_connector *connector = &intel_connector->base; 4965 4966 if (intel_connector->detect_edid == NULL || 4967 connector->edid_corrupt || 4968 intel_dp->aux.i2c_defer_count > 6) { 4969 /* Check EDID read for NACKs, DEFERs and corruption 4970 * (DP CTS 1.2 Core r1.1) 4971 * 4.2.2.4 : Failed EDID read, I2C_NAK 4972 * 4.2.2.5 : Failed EDID read, I2C_DEFER 4973 * 4.2.2.6 : EDID corruption detected 4974 * Use failsafe mode for all cases 4975 */ 4976 if (intel_dp->aux.i2c_nack_count > 0 || 4977 intel_dp->aux.i2c_defer_count > 0) 4978 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n", 4979 intel_dp->aux.i2c_nack_count, 4980 intel_dp->aux.i2c_defer_count); 4981 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; 4982 } else { 4983 struct edid *block = intel_connector->detect_edid; 4984 4985 /* We have to write the checksum 4986 * of the last block read 4987 */ 4988 block += intel_connector->detect_edid->extensions; 4989 4990 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, 4991 block->checksum) <= 0) 4992 DRM_DEBUG_KMS("Failed to write EDID checksum\n"); 4993 4994 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; 4995 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; 4996 } 4997 4998 /* Set test active flag here so userspace doesn't interrupt things */ 4999 intel_dp->compliance.test_active = true; 5000 5001 return test_result; 5002 } 5003 5004 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) 5005 { 5006 u8 test_result = DP_TEST_NAK; 5007 return test_result; 5008 } 5009 5010 static void intel_dp_handle_test_request(struct intel_dp *intel_dp) 5011 { 5012 u8 response = DP_TEST_NAK; 5013 u8 request = 0; 5014 int status; 5015 5016 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); 5017 if (status <= 0) { 5018 DRM_DEBUG_KMS("Could not read test request from sink\n"); 5019 goto update_status; 5020 } 5021 5022 switch (request) { 5023 case DP_TEST_LINK_TRAINING: 5024 DRM_DEBUG_KMS("LINK_TRAINING test requested\n"); 5025 response = intel_dp_autotest_link_training(intel_dp); 5026 break; 5027 case DP_TEST_LINK_VIDEO_PATTERN: 5028 DRM_DEBUG_KMS("TEST_PATTERN test requested\n"); 5029 response = intel_dp_autotest_video_pattern(intel_dp); 5030 break; 5031 case DP_TEST_LINK_EDID_READ: 5032 DRM_DEBUG_KMS("EDID test requested\n"); 5033 response = intel_dp_autotest_edid(intel_dp); 5034 break; 5035 case DP_TEST_LINK_PHY_TEST_PATTERN: 5036 DRM_DEBUG_KMS("PHY_PATTERN test requested\n"); 5037 response = intel_dp_autotest_phy_pattern(intel_dp); 5038 break; 5039 default: 5040 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request); 5041 break; 5042 } 5043 5044 if (response & DP_TEST_ACK) 5045 intel_dp->compliance.test_type = request; 5046 5047 update_status: 5048 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); 5049 if (status <= 0) 5050 DRM_DEBUG_KMS("Could not write test response to sink\n"); 5051 } 5052 5053 static int 5054 intel_dp_check_mst_status(struct intel_dp *intel_dp) 5055 { 5056 bool bret; 5057 5058 if (intel_dp->is_mst) { 5059 u8 esi[DP_DPRX_ESI_LEN] = { 0 }; 5060 int ret = 0; 5061 int retry; 5062 bool handled; 5063 5064 WARN_ON_ONCE(intel_dp->active_mst_links < 0); 5065 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 5066 go_again: 5067 if (bret == true) { 5068 5069 /* check link status - esi[10] = 0x200c */ 5070 if (intel_dp->active_mst_links > 0 && 5071 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { 5072 DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); 5073 intel_dp_start_link_train(intel_dp); 5074 intel_dp_stop_link_train(intel_dp); 5075 } 5076 5077 DRM_DEBUG_KMS("got esi %3ph\n", esi); 5078 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); 5079 5080 if (handled) { 5081 for (retry = 0; retry < 3; retry++) { 5082 int wret; 5083 wret = drm_dp_dpcd_write(&intel_dp->aux, 5084 DP_SINK_COUNT_ESI+1, 5085 &esi[1], 3); 5086 if (wret == 3) { 5087 break; 5088 } 5089 } 5090 5091 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 5092 if (bret == true) { 5093 DRM_DEBUG_KMS("got esi2 %3ph\n", esi); 5094 goto go_again; 5095 } 5096 } else 5097 ret = 0; 5098 5099 return ret; 5100 } else { 5101 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); 5102 intel_dp->is_mst = false; 5103 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5104 intel_dp->is_mst); 5105 } 5106 } 5107 return -EINVAL; 5108 } 5109 5110 static bool 5111 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 5112 { 5113 u8 link_status[DP_LINK_STATUS_SIZE]; 5114 5115 if (!intel_dp->link_trained) 5116 return false; 5117 5118 /* 5119 * While PSR source HW is enabled, it will control main-link sending 5120 * frames, enabling and disabling it so trying to do a retrain will fail 5121 * as the link would or not be on or it could mix training patterns 5122 * and frame data at the same time causing retrain to fail. 5123 * Also when exiting PSR, HW will retrain the link anyways fixing 5124 * any link status error. 5125 */ 5126 if (intel_psr_enabled(intel_dp)) 5127 return false; 5128 5129 if (!intel_dp_get_link_status(intel_dp, link_status)) 5130 return false; 5131 5132 /* 5133 * Validate the cached values of intel_dp->link_rate and 5134 * intel_dp->lane_count before attempting to retrain. 5135 */ 5136 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 5137 intel_dp->lane_count)) 5138 return false; 5139 5140 /* Retrain if Channel EQ or CR not ok */ 5141 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 5142 } 5143 5144 int intel_dp_retrain_link(struct intel_encoder *encoder, 5145 struct drm_modeset_acquire_ctx *ctx) 5146 { 5147 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5148 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5149 struct intel_connector *connector = intel_dp->attached_connector; 5150 struct drm_connector_state *conn_state; 5151 struct intel_crtc_state *crtc_state; 5152 struct intel_crtc *crtc; 5153 int ret; 5154 5155 /* FIXME handle the MST connectors as well */ 5156 5157 if (!connector || connector->base.status != connector_status_connected) 5158 return 0; 5159 5160 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 5161 ctx); 5162 if (ret) 5163 return ret; 5164 5165 conn_state = connector->base.state; 5166 5167 crtc = to_intel_crtc(conn_state->crtc); 5168 if (!crtc) 5169 return 0; 5170 5171 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 5172 if (ret) 5173 return ret; 5174 5175 crtc_state = to_intel_crtc_state(crtc->base.state); 5176 5177 drm_WARN_ON(&dev_priv->drm, !intel_crtc_has_dp_encoder(crtc_state)); 5178 5179 if (!crtc_state->hw.active) 5180 return 0; 5181 5182 if (conn_state->commit && 5183 !try_wait_for_completion(&conn_state->commit->hw_done)) 5184 return 0; 5185 5186 if (!intel_dp_needs_link_retrain(intel_dp)) 5187 return 0; 5188 5189 /* Suppress underruns caused by re-training */ 5190 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 5191 if (crtc_state->has_pch_encoder) 5192 intel_set_pch_fifo_underrun_reporting(dev_priv, 5193 intel_crtc_pch_transcoder(crtc), false); 5194 5195 intel_dp_start_link_train(intel_dp); 5196 intel_dp_stop_link_train(intel_dp); 5197 5198 /* Keep underrun reporting disabled until things are stable */ 5199 intel_wait_for_vblank(dev_priv, crtc->pipe); 5200 5201 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 5202 if (crtc_state->has_pch_encoder) 5203 intel_set_pch_fifo_underrun_reporting(dev_priv, 5204 intel_crtc_pch_transcoder(crtc), true); 5205 5206 return 0; 5207 } 5208 5209 /* 5210 * If display is now connected check links status, 5211 * there has been known issues of link loss triggering 5212 * long pulse. 5213 * 5214 * Some sinks (eg. ASUS PB287Q) seem to perform some 5215 * weird HPD ping pong during modesets. So we can apparently 5216 * end up with HPD going low during a modeset, and then 5217 * going back up soon after. And once that happens we must 5218 * retrain the link to get a picture. That's in case no 5219 * userspace component reacted to intermittent HPD dip. 5220 */ 5221 static enum intel_hotplug_state 5222 intel_dp_hotplug(struct intel_encoder *encoder, 5223 struct intel_connector *connector, 5224 bool irq_received) 5225 { 5226 struct drm_modeset_acquire_ctx ctx; 5227 enum intel_hotplug_state state; 5228 int ret; 5229 5230 state = intel_encoder_hotplug(encoder, connector, irq_received); 5231 5232 drm_modeset_acquire_init(&ctx, 0); 5233 5234 for (;;) { 5235 ret = intel_dp_retrain_link(encoder, &ctx); 5236 5237 if (ret == -EDEADLK) { 5238 drm_modeset_backoff(&ctx); 5239 continue; 5240 } 5241 5242 break; 5243 } 5244 5245 drm_modeset_drop_locks(&ctx); 5246 drm_modeset_acquire_fini(&ctx); 5247 drm_WARN(encoder->base.dev, ret, 5248 "Acquiring modeset locks failed with %i\n", ret); 5249 5250 /* 5251 * Keeping it consistent with intel_ddi_hotplug() and 5252 * intel_hdmi_hotplug(). 5253 */ 5254 if (state == INTEL_HOTPLUG_UNCHANGED && irq_received) 5255 state = INTEL_HOTPLUG_RETRY; 5256 5257 return state; 5258 } 5259 5260 static void intel_dp_check_service_irq(struct intel_dp *intel_dp) 5261 { 5262 u8 val; 5263 5264 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 5265 return; 5266 5267 if (drm_dp_dpcd_readb(&intel_dp->aux, 5268 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 5269 return; 5270 5271 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 5272 5273 if (val & DP_AUTOMATED_TEST_REQUEST) 5274 intel_dp_handle_test_request(intel_dp); 5275 5276 if (val & DP_CP_IRQ) 5277 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 5278 5279 if (val & DP_SINK_SPECIFIC_IRQ) 5280 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n"); 5281 } 5282 5283 /* 5284 * According to DP spec 5285 * 5.1.2: 5286 * 1. Read DPCD 5287 * 2. Configure link according to Receiver Capabilities 5288 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 5289 * 4. Check link status on receipt of hot-plug interrupt 5290 * 5291 * intel_dp_short_pulse - handles short pulse interrupts 5292 * when full detection is not required. 5293 * Returns %true if short pulse is handled and full detection 5294 * is NOT required and %false otherwise. 5295 */ 5296 static bool 5297 intel_dp_short_pulse(struct intel_dp *intel_dp) 5298 { 5299 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 5300 u8 old_sink_count = intel_dp->sink_count; 5301 bool ret; 5302 5303 /* 5304 * Clearing compliance test variables to allow capturing 5305 * of values for next automated test request. 5306 */ 5307 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5308 5309 /* 5310 * Now read the DPCD to see if it's actually running 5311 * If the current value of sink count doesn't match with 5312 * the value that was stored earlier or dpcd read failed 5313 * we need to do full detection 5314 */ 5315 ret = intel_dp_get_dpcd(intel_dp); 5316 5317 if ((old_sink_count != intel_dp->sink_count) || !ret) { 5318 /* No need to proceed if we are going to do full detect */ 5319 return false; 5320 } 5321 5322 intel_dp_check_service_irq(intel_dp); 5323 5324 /* Handle CEC interrupts, if any */ 5325 drm_dp_cec_irq(&intel_dp->aux); 5326 5327 /* defer to the hotplug work for link retraining if needed */ 5328 if (intel_dp_needs_link_retrain(intel_dp)) 5329 return false; 5330 5331 intel_psr_short_pulse(intel_dp); 5332 5333 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 5334 drm_dbg_kms(&dev_priv->drm, 5335 "Link Training Compliance Test requested\n"); 5336 /* Send a Hotplug Uevent to userspace to start modeset */ 5337 drm_kms_helper_hotplug_event(&dev_priv->drm); 5338 } 5339 5340 return true; 5341 } 5342 5343 /* XXX this is probably wrong for multiple downstream ports */ 5344 static enum drm_connector_status 5345 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 5346 { 5347 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 5348 u8 *dpcd = intel_dp->dpcd; 5349 u8 type; 5350 5351 if (WARN_ON(intel_dp_is_edp(intel_dp))) 5352 return connector_status_connected; 5353 5354 if (lspcon->active) 5355 lspcon_resume(lspcon); 5356 5357 if (!intel_dp_get_dpcd(intel_dp)) 5358 return connector_status_disconnected; 5359 5360 /* if there's no downstream port, we're done */ 5361 if (!drm_dp_is_branch(dpcd)) 5362 return connector_status_connected; 5363 5364 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 5365 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && 5366 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 5367 5368 return intel_dp->sink_count ? 5369 connector_status_connected : connector_status_disconnected; 5370 } 5371 5372 if (intel_dp_can_mst(intel_dp)) 5373 return connector_status_connected; 5374 5375 /* If no HPD, poke DDC gently */ 5376 if (drm_probe_ddc(&intel_dp->aux.ddc)) 5377 return connector_status_connected; 5378 5379 /* Well we tried, say unknown for unreliable port types */ 5380 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 5381 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 5382 if (type == DP_DS_PORT_TYPE_VGA || 5383 type == DP_DS_PORT_TYPE_NON_EDID) 5384 return connector_status_unknown; 5385 } else { 5386 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 5387 DP_DWN_STRM_PORT_TYPE_MASK; 5388 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 5389 type == DP_DWN_STRM_PORT_TYPE_OTHER) 5390 return connector_status_unknown; 5391 } 5392 5393 /* Anything else is out of spec, warn and ignore */ 5394 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); 5395 return connector_status_disconnected; 5396 } 5397 5398 static enum drm_connector_status 5399 edp_detect(struct intel_dp *intel_dp) 5400 { 5401 return connector_status_connected; 5402 } 5403 5404 static bool ibx_digital_port_connected(struct intel_encoder *encoder) 5405 { 5406 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5407 u32 bit; 5408 5409 switch (encoder->hpd_pin) { 5410 case HPD_PORT_B: 5411 bit = SDE_PORTB_HOTPLUG; 5412 break; 5413 case HPD_PORT_C: 5414 bit = SDE_PORTC_HOTPLUG; 5415 break; 5416 case HPD_PORT_D: 5417 bit = SDE_PORTD_HOTPLUG; 5418 break; 5419 default: 5420 MISSING_CASE(encoder->hpd_pin); 5421 return false; 5422 } 5423 5424 return intel_de_read(dev_priv, SDEISR) & bit; 5425 } 5426 5427 static bool cpt_digital_port_connected(struct intel_encoder *encoder) 5428 { 5429 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5430 u32 bit; 5431 5432 switch (encoder->hpd_pin) { 5433 case HPD_PORT_B: 5434 bit = SDE_PORTB_HOTPLUG_CPT; 5435 break; 5436 case HPD_PORT_C: 5437 bit = SDE_PORTC_HOTPLUG_CPT; 5438 break; 5439 case HPD_PORT_D: 5440 bit = SDE_PORTD_HOTPLUG_CPT; 5441 break; 5442 default: 5443 MISSING_CASE(encoder->hpd_pin); 5444 return false; 5445 } 5446 5447 return intel_de_read(dev_priv, SDEISR) & bit; 5448 } 5449 5450 static bool spt_digital_port_connected(struct intel_encoder *encoder) 5451 { 5452 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5453 u32 bit; 5454 5455 switch (encoder->hpd_pin) { 5456 case HPD_PORT_A: 5457 bit = SDE_PORTA_HOTPLUG_SPT; 5458 break; 5459 case HPD_PORT_E: 5460 bit = SDE_PORTE_HOTPLUG_SPT; 5461 break; 5462 default: 5463 return cpt_digital_port_connected(encoder); 5464 } 5465 5466 return intel_de_read(dev_priv, SDEISR) & bit; 5467 } 5468 5469 static bool g4x_digital_port_connected(struct intel_encoder *encoder) 5470 { 5471 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5472 u32 bit; 5473 5474 switch (encoder->hpd_pin) { 5475 case HPD_PORT_B: 5476 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; 5477 break; 5478 case HPD_PORT_C: 5479 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; 5480 break; 5481 case HPD_PORT_D: 5482 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; 5483 break; 5484 default: 5485 MISSING_CASE(encoder->hpd_pin); 5486 return false; 5487 } 5488 5489 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit; 5490 } 5491 5492 static bool gm45_digital_port_connected(struct intel_encoder *encoder) 5493 { 5494 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5495 u32 bit; 5496 5497 switch (encoder->hpd_pin) { 5498 case HPD_PORT_B: 5499 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; 5500 break; 5501 case HPD_PORT_C: 5502 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; 5503 break; 5504 case HPD_PORT_D: 5505 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; 5506 break; 5507 default: 5508 MISSING_CASE(encoder->hpd_pin); 5509 return false; 5510 } 5511 5512 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit; 5513 } 5514 5515 static bool ilk_digital_port_connected(struct intel_encoder *encoder) 5516 { 5517 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5518 5519 if (encoder->hpd_pin == HPD_PORT_A) 5520 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG; 5521 else 5522 return ibx_digital_port_connected(encoder); 5523 } 5524 5525 static bool snb_digital_port_connected(struct intel_encoder *encoder) 5526 { 5527 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5528 5529 if (encoder->hpd_pin == HPD_PORT_A) 5530 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG; 5531 else 5532 return cpt_digital_port_connected(encoder); 5533 } 5534 5535 static bool ivb_digital_port_connected(struct intel_encoder *encoder) 5536 { 5537 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5538 5539 if (encoder->hpd_pin == HPD_PORT_A) 5540 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG_IVB; 5541 else 5542 return cpt_digital_port_connected(encoder); 5543 } 5544 5545 static bool bdw_digital_port_connected(struct intel_encoder *encoder) 5546 { 5547 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5548 5549 if (encoder->hpd_pin == HPD_PORT_A) 5550 return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG; 5551 else 5552 return cpt_digital_port_connected(encoder); 5553 } 5554 5555 static bool bxt_digital_port_connected(struct intel_encoder *encoder) 5556 { 5557 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5558 u32 bit; 5559 5560 switch (encoder->hpd_pin) { 5561 case HPD_PORT_A: 5562 bit = BXT_DE_PORT_HP_DDIA; 5563 break; 5564 case HPD_PORT_B: 5565 bit = BXT_DE_PORT_HP_DDIB; 5566 break; 5567 case HPD_PORT_C: 5568 bit = BXT_DE_PORT_HP_DDIC; 5569 break; 5570 default: 5571 MISSING_CASE(encoder->hpd_pin); 5572 return false; 5573 } 5574 5575 return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & bit; 5576 } 5577 5578 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv, 5579 enum phy phy) 5580 { 5581 if (HAS_PCH_MCC(dev_priv) && phy == PHY_C) 5582 return intel_de_read(dev_priv, SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1); 5583 5584 return intel_de_read(dev_priv, SDEISR) & SDE_DDI_HOTPLUG_ICP(phy); 5585 } 5586 5587 static bool icp_digital_port_connected(struct intel_encoder *encoder) 5588 { 5589 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5590 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5591 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 5592 5593 if (intel_phy_is_combo(dev_priv, phy)) 5594 return intel_combo_phy_connected(dev_priv, phy); 5595 else if (intel_phy_is_tc(dev_priv, phy)) 5596 return intel_tc_port_connected(dig_port); 5597 else 5598 MISSING_CASE(encoder->hpd_pin); 5599 5600 return false; 5601 } 5602 5603 /* 5604 * intel_digital_port_connected - is the specified port connected? 5605 * @encoder: intel_encoder 5606 * 5607 * In cases where there's a connector physically connected but it can't be used 5608 * by our hardware we also return false, since the rest of the driver should 5609 * pretty much treat the port as disconnected. This is relevant for type-C 5610 * (starting on ICL) where there's ownership involved. 5611 * 5612 * Return %true if port is connected, %false otherwise. 5613 */ 5614 static bool __intel_digital_port_connected(struct intel_encoder *encoder) 5615 { 5616 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5617 5618 if (HAS_GMCH(dev_priv)) { 5619 if (IS_GM45(dev_priv)) 5620 return gm45_digital_port_connected(encoder); 5621 else 5622 return g4x_digital_port_connected(encoder); 5623 } 5624 5625 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 5626 return icp_digital_port_connected(encoder); 5627 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 5628 return spt_digital_port_connected(encoder); 5629 else if (IS_GEN9_LP(dev_priv)) 5630 return bxt_digital_port_connected(encoder); 5631 else if (IS_GEN(dev_priv, 8)) 5632 return bdw_digital_port_connected(encoder); 5633 else if (IS_GEN(dev_priv, 7)) 5634 return ivb_digital_port_connected(encoder); 5635 else if (IS_GEN(dev_priv, 6)) 5636 return snb_digital_port_connected(encoder); 5637 else if (IS_GEN(dev_priv, 5)) 5638 return ilk_digital_port_connected(encoder); 5639 5640 MISSING_CASE(INTEL_GEN(dev_priv)); 5641 return false; 5642 } 5643 5644 bool intel_digital_port_connected(struct intel_encoder *encoder) 5645 { 5646 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5647 bool is_connected = false; 5648 intel_wakeref_t wakeref; 5649 5650 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 5651 is_connected = __intel_digital_port_connected(encoder); 5652 5653 return is_connected; 5654 } 5655 5656 static struct edid * 5657 intel_dp_get_edid(struct intel_dp *intel_dp) 5658 { 5659 struct intel_connector *intel_connector = intel_dp->attached_connector; 5660 5661 /* use cached edid if we have one */ 5662 if (intel_connector->edid) { 5663 /* invalid edid */ 5664 if (IS_ERR(intel_connector->edid)) 5665 return NULL; 5666 5667 return drm_edid_duplicate(intel_connector->edid); 5668 } else 5669 return drm_get_edid(&intel_connector->base, 5670 &intel_dp->aux.ddc); 5671 } 5672 5673 static void 5674 intel_dp_set_edid(struct intel_dp *intel_dp) 5675 { 5676 struct intel_connector *intel_connector = intel_dp->attached_connector; 5677 struct edid *edid; 5678 5679 intel_dp_unset_edid(intel_dp); 5680 edid = intel_dp_get_edid(intel_dp); 5681 intel_connector->detect_edid = edid; 5682 5683 intel_dp->has_audio = drm_detect_monitor_audio(edid); 5684 drm_dp_cec_set_edid(&intel_dp->aux, edid); 5685 } 5686 5687 static void 5688 intel_dp_unset_edid(struct intel_dp *intel_dp) 5689 { 5690 struct intel_connector *intel_connector = intel_dp->attached_connector; 5691 5692 drm_dp_cec_unset_edid(&intel_dp->aux); 5693 kfree(intel_connector->detect_edid); 5694 intel_connector->detect_edid = NULL; 5695 5696 intel_dp->has_audio = false; 5697 } 5698 5699 static int 5700 intel_dp_detect(struct drm_connector *connector, 5701 struct drm_modeset_acquire_ctx *ctx, 5702 bool force) 5703 { 5704 struct drm_i915_private *dev_priv = to_i915(connector->dev); 5705 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5706 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5707 struct intel_encoder *encoder = &dig_port->base; 5708 enum drm_connector_status status; 5709 5710 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 5711 connector->base.id, connector->name); 5712 drm_WARN_ON(&dev_priv->drm, 5713 !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); 5714 5715 /* Can't disconnect eDP */ 5716 if (intel_dp_is_edp(intel_dp)) 5717 status = edp_detect(intel_dp); 5718 else if (intel_digital_port_connected(encoder)) 5719 status = intel_dp_detect_dpcd(intel_dp); 5720 else 5721 status = connector_status_disconnected; 5722 5723 if (status == connector_status_disconnected) { 5724 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5725 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 5726 5727 if (intel_dp->is_mst) { 5728 drm_dbg_kms(&dev_priv->drm, 5729 "MST device may have disappeared %d vs %d\n", 5730 intel_dp->is_mst, 5731 intel_dp->mst_mgr.mst_state); 5732 intel_dp->is_mst = false; 5733 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5734 intel_dp->is_mst); 5735 } 5736 5737 goto out; 5738 } 5739 5740 if (intel_dp->reset_link_params) { 5741 /* Initial max link lane count */ 5742 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 5743 5744 /* Initial max link rate */ 5745 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 5746 5747 intel_dp->reset_link_params = false; 5748 } 5749 5750 intel_dp_print_rates(intel_dp); 5751 5752 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 5753 if (INTEL_GEN(dev_priv) >= 11) 5754 intel_dp_get_dsc_sink_cap(intel_dp); 5755 5756 intel_dp_configure_mst(intel_dp); 5757 5758 if (intel_dp->is_mst) { 5759 /* 5760 * If we are in MST mode then this connector 5761 * won't appear connected or have anything 5762 * with EDID on it 5763 */ 5764 status = connector_status_disconnected; 5765 goto out; 5766 } 5767 5768 /* 5769 * Some external monitors do not signal loss of link synchronization 5770 * with an IRQ_HPD, so force a link status check. 5771 */ 5772 if (!intel_dp_is_edp(intel_dp)) { 5773 int ret; 5774 5775 ret = intel_dp_retrain_link(encoder, ctx); 5776 if (ret) 5777 return ret; 5778 } 5779 5780 /* 5781 * Clearing NACK and defer counts to get their exact values 5782 * while reading EDID which are required by Compliance tests 5783 * 4.2.2.4 and 4.2.2.5 5784 */ 5785 intel_dp->aux.i2c_nack_count = 0; 5786 intel_dp->aux.i2c_defer_count = 0; 5787 5788 intel_dp_set_edid(intel_dp); 5789 if (intel_dp_is_edp(intel_dp) || 5790 to_intel_connector(connector)->detect_edid) 5791 status = connector_status_connected; 5792 5793 intel_dp_check_service_irq(intel_dp); 5794 5795 out: 5796 if (status != connector_status_connected && !intel_dp->is_mst) 5797 intel_dp_unset_edid(intel_dp); 5798 5799 /* 5800 * Make sure the refs for power wells enabled during detect are 5801 * dropped to avoid a new detect cycle triggered by HPD polling. 5802 */ 5803 intel_display_power_flush_work(dev_priv); 5804 5805 return status; 5806 } 5807 5808 static void 5809 intel_dp_force(struct drm_connector *connector) 5810 { 5811 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5812 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5813 struct intel_encoder *intel_encoder = &dig_port->base; 5814 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); 5815 enum intel_display_power_domain aux_domain = 5816 intel_aux_power_domain(dig_port); 5817 intel_wakeref_t wakeref; 5818 5819 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 5820 connector->base.id, connector->name); 5821 intel_dp_unset_edid(intel_dp); 5822 5823 if (connector->status != connector_status_connected) 5824 return; 5825 5826 wakeref = intel_display_power_get(dev_priv, aux_domain); 5827 5828 intel_dp_set_edid(intel_dp); 5829 5830 intel_display_power_put(dev_priv, aux_domain, wakeref); 5831 } 5832 5833 static int intel_dp_get_modes(struct drm_connector *connector) 5834 { 5835 struct intel_connector *intel_connector = to_intel_connector(connector); 5836 struct edid *edid; 5837 5838 edid = intel_connector->detect_edid; 5839 if (edid) { 5840 int ret = intel_connector_update_modes(connector, edid); 5841 if (ret) 5842 return ret; 5843 } 5844 5845 /* if eDP has no EDID, fall back to fixed mode */ 5846 if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) && 5847 intel_connector->panel.fixed_mode) { 5848 struct drm_display_mode *mode; 5849 5850 mode = drm_mode_duplicate(connector->dev, 5851 intel_connector->panel.fixed_mode); 5852 if (mode) { 5853 drm_mode_probed_add(connector, mode); 5854 return 1; 5855 } 5856 } 5857 5858 return 0; 5859 } 5860 5861 static int 5862 intel_dp_connector_register(struct drm_connector *connector) 5863 { 5864 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5865 int ret; 5866 5867 ret = intel_connector_register(connector); 5868 if (ret) 5869 return ret; 5870 5871 intel_connector_debugfs_add(connector); 5872 5873 DRM_DEBUG_KMS("registering %s bus for %s\n", 5874 intel_dp->aux.name, connector->kdev->kobj.name); 5875 5876 intel_dp->aux.dev = connector->kdev; 5877 ret = drm_dp_aux_register(&intel_dp->aux); 5878 if (!ret) 5879 drm_dp_cec_register_connector(&intel_dp->aux, connector); 5880 return ret; 5881 } 5882 5883 static void 5884 intel_dp_connector_unregister(struct drm_connector *connector) 5885 { 5886 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5887 5888 drm_dp_cec_unregister_connector(&intel_dp->aux); 5889 drm_dp_aux_unregister(&intel_dp->aux); 5890 intel_connector_unregister(connector); 5891 } 5892 5893 void intel_dp_encoder_flush_work(struct drm_encoder *encoder) 5894 { 5895 struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder)); 5896 struct intel_dp *intel_dp = &intel_dig_port->dp; 5897 5898 intel_dp_mst_encoder_cleanup(intel_dig_port); 5899 if (intel_dp_is_edp(intel_dp)) { 5900 intel_wakeref_t wakeref; 5901 5902 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5903 /* 5904 * vdd might still be enabled do to the delayed vdd off. 5905 * Make sure vdd is actually turned off here. 5906 */ 5907 with_pps_lock(intel_dp, wakeref) 5908 edp_panel_vdd_off_sync(intel_dp); 5909 5910 if (intel_dp->edp_notifier.notifier_call) { 5911 unregister_reboot_notifier(&intel_dp->edp_notifier); 5912 intel_dp->edp_notifier.notifier_call = NULL; 5913 } 5914 } 5915 5916 intel_dp_aux_fini(intel_dp); 5917 } 5918 5919 static void intel_dp_encoder_destroy(struct drm_encoder *encoder) 5920 { 5921 intel_dp_encoder_flush_work(encoder); 5922 5923 drm_encoder_cleanup(encoder); 5924 kfree(enc_to_dig_port(to_intel_encoder(encoder))); 5925 } 5926 5927 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) 5928 { 5929 struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder); 5930 intel_wakeref_t wakeref; 5931 5932 if (!intel_dp_is_edp(intel_dp)) 5933 return; 5934 5935 /* 5936 * vdd might still be enabled do to the delayed vdd off. 5937 * Make sure vdd is actually turned off here. 5938 */ 5939 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5940 with_pps_lock(intel_dp, wakeref) 5941 edp_panel_vdd_off_sync(intel_dp); 5942 } 5943 5944 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout) 5945 { 5946 long ret; 5947 5948 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count)) 5949 ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C, 5950 msecs_to_jiffies(timeout)); 5951 5952 if (!ret) 5953 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n"); 5954 } 5955 5956 static 5957 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, 5958 u8 *an) 5959 { 5960 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base)); 5961 static const struct drm_dp_aux_msg msg = { 5962 .request = DP_AUX_NATIVE_WRITE, 5963 .address = DP_AUX_HDCP_AKSV, 5964 .size = DRM_HDCP_KSV_LEN, 5965 }; 5966 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0; 5967 ssize_t dpcd_ret; 5968 int ret; 5969 5970 /* Output An first, that's easy */ 5971 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN, 5972 an, DRM_HDCP_AN_LEN); 5973 if (dpcd_ret != DRM_HDCP_AN_LEN) { 5974 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n", 5975 dpcd_ret); 5976 return dpcd_ret >= 0 ? -EIO : dpcd_ret; 5977 } 5978 5979 /* 5980 * Since Aksv is Oh-So-Secret, we can't access it in software. So in 5981 * order to get it on the wire, we need to create the AUX header as if 5982 * we were writing the data, and then tickle the hardware to output the 5983 * data once the header is sent out. 5984 */ 5985 intel_dp_aux_header(txbuf, &msg); 5986 5987 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size, 5988 rxbuf, sizeof(rxbuf), 5989 DP_AUX_CH_CTL_AUX_AKSV_SELECT); 5990 if (ret < 0) { 5991 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret); 5992 return ret; 5993 } else if (ret == 0) { 5994 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n"); 5995 return -EIO; 5996 } 5997 5998 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK; 5999 if (reply != DP_AUX_NATIVE_REPLY_ACK) { 6000 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n", 6001 reply); 6002 return -EIO; 6003 } 6004 return 0; 6005 } 6006 6007 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, 6008 u8 *bksv) 6009 { 6010 ssize_t ret; 6011 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv, 6012 DRM_HDCP_KSV_LEN); 6013 if (ret != DRM_HDCP_KSV_LEN) { 6014 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret); 6015 return ret >= 0 ? -EIO : ret; 6016 } 6017 return 0; 6018 } 6019 6020 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, 6021 u8 *bstatus) 6022 { 6023 ssize_t ret; 6024 /* 6025 * For some reason the HDMI and DP HDCP specs call this register 6026 * definition by different names. In the HDMI spec, it's called BSTATUS, 6027 * but in DP it's called BINFO. 6028 */ 6029 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO, 6030 bstatus, DRM_HDCP_BSTATUS_LEN); 6031 if (ret != DRM_HDCP_BSTATUS_LEN) { 6032 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6033 return ret >= 0 ? -EIO : ret; 6034 } 6035 return 0; 6036 } 6037 6038 static 6039 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port, 6040 u8 *bcaps) 6041 { 6042 ssize_t ret; 6043 6044 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS, 6045 bcaps, 1); 6046 if (ret != 1) { 6047 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret); 6048 return ret >= 0 ? -EIO : ret; 6049 } 6050 6051 return 0; 6052 } 6053 6054 static 6055 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, 6056 bool *repeater_present) 6057 { 6058 ssize_t ret; 6059 u8 bcaps; 6060 6061 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 6062 if (ret) 6063 return ret; 6064 6065 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT; 6066 return 0; 6067 } 6068 6069 static 6070 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, 6071 u8 *ri_prime) 6072 { 6073 ssize_t ret; 6074 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME, 6075 ri_prime, DRM_HDCP_RI_LEN); 6076 if (ret != DRM_HDCP_RI_LEN) { 6077 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret); 6078 return ret >= 0 ? -EIO : ret; 6079 } 6080 return 0; 6081 } 6082 6083 static 6084 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, 6085 bool *ksv_ready) 6086 { 6087 ssize_t ret; 6088 u8 bstatus; 6089 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 6090 &bstatus, 1); 6091 if (ret != 1) { 6092 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6093 return ret >= 0 ? -EIO : ret; 6094 } 6095 *ksv_ready = bstatus & DP_BSTATUS_READY; 6096 return 0; 6097 } 6098 6099 static 6100 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, 6101 int num_downstream, u8 *ksv_fifo) 6102 { 6103 ssize_t ret; 6104 int i; 6105 6106 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */ 6107 for (i = 0; i < num_downstream; i += 3) { 6108 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN; 6109 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6110 DP_AUX_HDCP_KSV_FIFO, 6111 ksv_fifo + i * DRM_HDCP_KSV_LEN, 6112 len); 6113 if (ret != len) { 6114 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n", 6115 i, ret); 6116 return ret >= 0 ? -EIO : ret; 6117 } 6118 } 6119 return 0; 6120 } 6121 6122 static 6123 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, 6124 int i, u32 *part) 6125 { 6126 ssize_t ret; 6127 6128 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 6129 return -EINVAL; 6130 6131 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6132 DP_AUX_HDCP_V_PRIME(i), part, 6133 DRM_HDCP_V_PRIME_PART_LEN); 6134 if (ret != DRM_HDCP_V_PRIME_PART_LEN) { 6135 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret); 6136 return ret >= 0 ? -EIO : ret; 6137 } 6138 return 0; 6139 } 6140 6141 static 6142 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, 6143 bool enable) 6144 { 6145 /* Not used for single stream DisplayPort setups */ 6146 return 0; 6147 } 6148 6149 static 6150 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port) 6151 { 6152 ssize_t ret; 6153 u8 bstatus; 6154 6155 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 6156 &bstatus, 1); 6157 if (ret != 1) { 6158 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6159 return false; 6160 } 6161 6162 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ)); 6163 } 6164 6165 static 6166 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port, 6167 bool *hdcp_capable) 6168 { 6169 ssize_t ret; 6170 u8 bcaps; 6171 6172 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 6173 if (ret) 6174 return ret; 6175 6176 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE; 6177 return 0; 6178 } 6179 6180 struct hdcp2_dp_errata_stream_type { 6181 u8 msg_id; 6182 u8 stream_type; 6183 } __packed; 6184 6185 struct hdcp2_dp_msg_data { 6186 u8 msg_id; 6187 u32 offset; 6188 bool msg_detectable; 6189 u32 timeout; 6190 u32 timeout2; /* Added for non_paired situation */ 6191 }; 6192 6193 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = { 6194 { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 }, 6195 { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET, 6196 false, HDCP_2_2_CERT_TIMEOUT_MS, 0 }, 6197 { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET, 6198 false, 0, 0 }, 6199 { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET, 6200 false, 0, 0 }, 6201 { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET, 6202 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS, 6203 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS }, 6204 { HDCP_2_2_AKE_SEND_PAIRING_INFO, 6205 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true, 6206 HDCP_2_2_PAIRING_TIMEOUT_MS, 0 }, 6207 { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 }, 6208 { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET, 6209 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 }, 6210 { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false, 6211 0, 0 }, 6212 { HDCP_2_2_REP_SEND_RECVID_LIST, 6213 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true, 6214 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 }, 6215 { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false, 6216 0, 0 }, 6217 { HDCP_2_2_REP_STREAM_MANAGE, 6218 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false, 6219 0, 0 }, 6220 { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET, 6221 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 }, 6222 /* local define to shovel this through the write_2_2 interface */ 6223 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50 6224 { HDCP_2_2_ERRATA_DP_STREAM_TYPE, 6225 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false, 6226 0, 0 }, 6227 }; 6228 6229 static inline 6230 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port, 6231 u8 *rx_status) 6232 { 6233 ssize_t ret; 6234 6235 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6236 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status, 6237 HDCP_2_2_DP_RXSTATUS_LEN); 6238 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) { 6239 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6240 return ret >= 0 ? -EIO : ret; 6241 } 6242 6243 return 0; 6244 } 6245 6246 static 6247 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port, 6248 u8 msg_id, bool *msg_ready) 6249 { 6250 u8 rx_status; 6251 int ret; 6252 6253 *msg_ready = false; 6254 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6255 if (ret < 0) 6256 return ret; 6257 6258 switch (msg_id) { 6259 case HDCP_2_2_AKE_SEND_HPRIME: 6260 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status)) 6261 *msg_ready = true; 6262 break; 6263 case HDCP_2_2_AKE_SEND_PAIRING_INFO: 6264 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status)) 6265 *msg_ready = true; 6266 break; 6267 case HDCP_2_2_REP_SEND_RECVID_LIST: 6268 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6269 *msg_ready = true; 6270 break; 6271 default: 6272 DRM_ERROR("Unidentified msg_id: %d\n", msg_id); 6273 return -EINVAL; 6274 } 6275 6276 return 0; 6277 } 6278 6279 static ssize_t 6280 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port, 6281 const struct hdcp2_dp_msg_data *hdcp2_msg_data) 6282 { 6283 struct intel_dp *dp = &intel_dig_port->dp; 6284 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6285 u8 msg_id = hdcp2_msg_data->msg_id; 6286 int ret, timeout; 6287 bool msg_ready = false; 6288 6289 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired) 6290 timeout = hdcp2_msg_data->timeout2; 6291 else 6292 timeout = hdcp2_msg_data->timeout; 6293 6294 /* 6295 * There is no way to detect the CERT, LPRIME and STREAM_READY 6296 * availability. So Wait for timeout and read the msg. 6297 */ 6298 if (!hdcp2_msg_data->msg_detectable) { 6299 mdelay(timeout); 6300 ret = 0; 6301 } else { 6302 /* 6303 * As we want to check the msg availability at timeout, Ignoring 6304 * the timeout at wait for CP_IRQ. 6305 */ 6306 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout); 6307 ret = hdcp2_detect_msg_availability(intel_dig_port, 6308 msg_id, &msg_ready); 6309 if (!msg_ready) 6310 ret = -ETIMEDOUT; 6311 } 6312 6313 if (ret) 6314 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n", 6315 hdcp2_msg_data->msg_id, ret, timeout); 6316 6317 return ret; 6318 } 6319 6320 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id) 6321 { 6322 int i; 6323 6324 for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++) 6325 if (hdcp2_dp_msg_data[i].msg_id == msg_id) 6326 return &hdcp2_dp_msg_data[i]; 6327 6328 return NULL; 6329 } 6330 6331 static 6332 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port, 6333 void *buf, size_t size) 6334 { 6335 struct intel_dp *dp = &intel_dig_port->dp; 6336 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6337 unsigned int offset; 6338 u8 *byte = buf; 6339 ssize_t ret, bytes_to_write, len; 6340 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6341 6342 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte); 6343 if (!hdcp2_msg_data) 6344 return -EINVAL; 6345 6346 offset = hdcp2_msg_data->offset; 6347 6348 /* No msg_id in DP HDCP2.2 msgs */ 6349 bytes_to_write = size - 1; 6350 byte++; 6351 6352 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count); 6353 6354 while (bytes_to_write) { 6355 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ? 6356 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write; 6357 6358 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, 6359 offset, (void *)byte, len); 6360 if (ret < 0) 6361 return ret; 6362 6363 bytes_to_write -= ret; 6364 byte += ret; 6365 offset += ret; 6366 } 6367 6368 return size; 6369 } 6370 6371 static 6372 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port) 6373 { 6374 u8 rx_info[HDCP_2_2_RXINFO_LEN]; 6375 u32 dev_cnt; 6376 ssize_t ret; 6377 6378 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6379 DP_HDCP_2_2_REG_RXINFO_OFFSET, 6380 (void *)rx_info, HDCP_2_2_RXINFO_LEN); 6381 if (ret != HDCP_2_2_RXINFO_LEN) 6382 return ret >= 0 ? -EIO : ret; 6383 6384 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 6385 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 6386 6387 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT) 6388 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT; 6389 6390 ret = sizeof(struct hdcp2_rep_send_receiverid_list) - 6391 HDCP_2_2_RECEIVER_IDS_MAX_LEN + 6392 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN); 6393 6394 return ret; 6395 } 6396 6397 static 6398 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port, 6399 u8 msg_id, void *buf, size_t size) 6400 { 6401 unsigned int offset; 6402 u8 *byte = buf; 6403 ssize_t ret, bytes_to_recv, len; 6404 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6405 6406 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id); 6407 if (!hdcp2_msg_data) 6408 return -EINVAL; 6409 offset = hdcp2_msg_data->offset; 6410 6411 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data); 6412 if (ret < 0) 6413 return ret; 6414 6415 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) { 6416 ret = get_receiver_id_list_size(intel_dig_port); 6417 if (ret < 0) 6418 return ret; 6419 6420 size = ret; 6421 } 6422 bytes_to_recv = size - 1; 6423 6424 /* DP adaptation msgs has no msg_id */ 6425 byte++; 6426 6427 while (bytes_to_recv) { 6428 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ? 6429 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv; 6430 6431 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset, 6432 (void *)byte, len); 6433 if (ret < 0) { 6434 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret); 6435 return ret; 6436 } 6437 6438 bytes_to_recv -= ret; 6439 byte += ret; 6440 offset += ret; 6441 } 6442 byte = buf; 6443 *byte = msg_id; 6444 6445 return size; 6446 } 6447 6448 static 6449 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port, 6450 bool is_repeater, u8 content_type) 6451 { 6452 struct hdcp2_dp_errata_stream_type stream_type_msg; 6453 6454 if (is_repeater) 6455 return 0; 6456 6457 /* 6458 * Errata for DP: As Stream type is used for encryption, Receiver 6459 * should be communicated with stream type for the decryption of the 6460 * content. 6461 * Repeater will be communicated with stream type as a part of it's 6462 * auth later in time. 6463 */ 6464 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE; 6465 stream_type_msg.stream_type = content_type; 6466 6467 return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg, 6468 sizeof(stream_type_msg)); 6469 } 6470 6471 static 6472 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port) 6473 { 6474 u8 rx_status; 6475 int ret; 6476 6477 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6478 if (ret) 6479 return ret; 6480 6481 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status)) 6482 ret = HDCP_REAUTH_REQUEST; 6483 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status)) 6484 ret = HDCP_LINK_INTEGRITY_FAILURE; 6485 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6486 ret = HDCP_TOPOLOGY_CHANGE; 6487 6488 return ret; 6489 } 6490 6491 static 6492 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port, 6493 bool *capable) 6494 { 6495 u8 rx_caps[3]; 6496 int ret; 6497 6498 *capable = false; 6499 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6500 DP_HDCP_2_2_REG_RX_CAPS_OFFSET, 6501 rx_caps, HDCP_2_2_RXCAPS_LEN); 6502 if (ret != HDCP_2_2_RXCAPS_LEN) 6503 return ret >= 0 ? -EIO : ret; 6504 6505 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL && 6506 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2])) 6507 *capable = true; 6508 6509 return 0; 6510 } 6511 6512 static const struct intel_hdcp_shim intel_dp_hdcp_shim = { 6513 .write_an_aksv = intel_dp_hdcp_write_an_aksv, 6514 .read_bksv = intel_dp_hdcp_read_bksv, 6515 .read_bstatus = intel_dp_hdcp_read_bstatus, 6516 .repeater_present = intel_dp_hdcp_repeater_present, 6517 .read_ri_prime = intel_dp_hdcp_read_ri_prime, 6518 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready, 6519 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo, 6520 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part, 6521 .toggle_signalling = intel_dp_hdcp_toggle_signalling, 6522 .check_link = intel_dp_hdcp_check_link, 6523 .hdcp_capable = intel_dp_hdcp_capable, 6524 .write_2_2_msg = intel_dp_hdcp2_write_msg, 6525 .read_2_2_msg = intel_dp_hdcp2_read_msg, 6526 .config_stream_type = intel_dp_hdcp2_config_stream_type, 6527 .check_2_2_link = intel_dp_hdcp2_check_link, 6528 .hdcp_2_2_capable = intel_dp_hdcp2_capable, 6529 .protocol = HDCP_PROTOCOL_DP, 6530 }; 6531 6532 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) 6533 { 6534 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6535 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6536 6537 lockdep_assert_held(&dev_priv->pps_mutex); 6538 6539 if (!edp_have_panel_vdd(intel_dp)) 6540 return; 6541 6542 /* 6543 * The VDD bit needs a power domain reference, so if the bit is 6544 * already enabled when we boot or resume, grab this reference and 6545 * schedule a vdd off, so we don't hold on to the reference 6546 * indefinitely. 6547 */ 6548 drm_dbg_kms(&dev_priv->drm, 6549 "VDD left on by BIOS, adjusting state tracking\n"); 6550 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); 6551 6552 edp_panel_vdd_schedule_off(intel_dp); 6553 } 6554 6555 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) 6556 { 6557 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6558 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6559 enum pipe pipe; 6560 6561 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 6562 encoder->port, &pipe)) 6563 return pipe; 6564 6565 return INVALID_PIPE; 6566 } 6567 6568 void intel_dp_encoder_reset(struct drm_encoder *encoder) 6569 { 6570 struct drm_i915_private *dev_priv = to_i915(encoder->dev); 6571 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder)); 6572 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 6573 intel_wakeref_t wakeref; 6574 6575 if (!HAS_DDI(dev_priv)) 6576 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg); 6577 6578 if (lspcon->active) 6579 lspcon_resume(lspcon); 6580 6581 intel_dp->reset_link_params = true; 6582 6583 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 6584 !intel_dp_is_edp(intel_dp)) 6585 return; 6586 6587 with_pps_lock(intel_dp, wakeref) { 6588 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6589 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 6590 6591 if (intel_dp_is_edp(intel_dp)) { 6592 /* 6593 * Reinit the power sequencer, in case BIOS did 6594 * something nasty with it. 6595 */ 6596 intel_dp_pps_init(intel_dp); 6597 intel_edp_panel_vdd_sanitize(intel_dp); 6598 } 6599 } 6600 } 6601 6602 static int intel_modeset_tile_group(struct intel_atomic_state *state, 6603 int tile_group_id) 6604 { 6605 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6606 struct drm_connector_list_iter conn_iter; 6607 struct drm_connector *connector; 6608 int ret = 0; 6609 6610 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter); 6611 drm_for_each_connector_iter(connector, &conn_iter) { 6612 struct drm_connector_state *conn_state; 6613 struct intel_crtc_state *crtc_state; 6614 struct intel_crtc *crtc; 6615 6616 if (!connector->has_tile || 6617 connector->tile_group->id != tile_group_id) 6618 continue; 6619 6620 conn_state = drm_atomic_get_connector_state(&state->base, 6621 connector); 6622 if (IS_ERR(conn_state)) { 6623 ret = PTR_ERR(conn_state); 6624 break; 6625 } 6626 6627 crtc = to_intel_crtc(conn_state->crtc); 6628 6629 if (!crtc) 6630 continue; 6631 6632 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 6633 crtc_state->uapi.mode_changed = true; 6634 6635 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 6636 if (ret) 6637 break; 6638 } 6639 drm_connector_list_iter_end(&conn_iter); 6640 6641 return ret; 6642 } 6643 6644 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders) 6645 { 6646 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6647 struct intel_crtc *crtc; 6648 6649 if (transcoders == 0) 6650 return 0; 6651 6652 for_each_intel_crtc(&dev_priv->drm, crtc) { 6653 struct intel_crtc_state *crtc_state; 6654 int ret; 6655 6656 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 6657 if (IS_ERR(crtc_state)) 6658 return PTR_ERR(crtc_state); 6659 6660 if (!crtc_state->hw.enable) 6661 continue; 6662 6663 if (!(transcoders & BIT(crtc_state->cpu_transcoder))) 6664 continue; 6665 6666 crtc_state->uapi.mode_changed = true; 6667 6668 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base); 6669 if (ret) 6670 return ret; 6671 6672 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 6673 if (ret) 6674 return ret; 6675 6676 transcoders &= ~BIT(crtc_state->cpu_transcoder); 6677 } 6678 6679 drm_WARN_ON(&dev_priv->drm, transcoders != 0); 6680 6681 return 0; 6682 } 6683 6684 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state, 6685 struct drm_connector *connector) 6686 { 6687 const struct drm_connector_state *old_conn_state = 6688 drm_atomic_get_old_connector_state(&state->base, connector); 6689 const struct intel_crtc_state *old_crtc_state; 6690 struct intel_crtc *crtc; 6691 u8 transcoders; 6692 6693 crtc = to_intel_crtc(old_conn_state->crtc); 6694 if (!crtc) 6695 return 0; 6696 6697 old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); 6698 6699 if (!old_crtc_state->hw.active) 6700 return 0; 6701 6702 transcoders = old_crtc_state->sync_mode_slaves_mask; 6703 if (old_crtc_state->master_transcoder != INVALID_TRANSCODER) 6704 transcoders |= BIT(old_crtc_state->master_transcoder); 6705 6706 return intel_modeset_affected_transcoders(state, 6707 transcoders); 6708 } 6709 6710 static int intel_dp_connector_atomic_check(struct drm_connector *conn, 6711 struct drm_atomic_state *_state) 6712 { 6713 struct drm_i915_private *dev_priv = to_i915(conn->dev); 6714 struct intel_atomic_state *state = to_intel_atomic_state(_state); 6715 int ret; 6716 6717 ret = intel_digital_connector_atomic_check(conn, &state->base); 6718 if (ret) 6719 return ret; 6720 6721 if (INTEL_GEN(dev_priv) < 11) 6722 return 0; 6723 6724 if (!intel_connector_needs_modeset(state, conn)) 6725 return 0; 6726 6727 if (conn->has_tile) { 6728 ret = intel_modeset_tile_group(state, conn->tile_group->id); 6729 if (ret) 6730 return ret; 6731 } 6732 6733 return intel_modeset_synced_crtcs(state, conn); 6734 } 6735 6736 static const struct drm_connector_funcs intel_dp_connector_funcs = { 6737 .force = intel_dp_force, 6738 .fill_modes = drm_helper_probe_single_connector_modes, 6739 .atomic_get_property = intel_digital_connector_atomic_get_property, 6740 .atomic_set_property = intel_digital_connector_atomic_set_property, 6741 .late_register = intel_dp_connector_register, 6742 .early_unregister = intel_dp_connector_unregister, 6743 .destroy = intel_connector_destroy, 6744 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 6745 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 6746 }; 6747 6748 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 6749 .detect_ctx = intel_dp_detect, 6750 .get_modes = intel_dp_get_modes, 6751 .mode_valid = intel_dp_mode_valid, 6752 .atomic_check = intel_dp_connector_atomic_check, 6753 }; 6754 6755 static const struct drm_encoder_funcs intel_dp_enc_funcs = { 6756 .reset = intel_dp_encoder_reset, 6757 .destroy = intel_dp_encoder_destroy, 6758 }; 6759 6760 enum irqreturn 6761 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) 6762 { 6763 struct intel_dp *intel_dp = &intel_dig_port->dp; 6764 6765 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) { 6766 /* 6767 * vdd off can generate a long pulse on eDP which 6768 * would require vdd on to handle it, and thus we 6769 * would end up in an endless cycle of 6770 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..." 6771 */ 6772 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n", 6773 intel_dig_port->base.base.base.id, 6774 intel_dig_port->base.base.name); 6775 return IRQ_HANDLED; 6776 } 6777 6778 DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n", 6779 intel_dig_port->base.base.base.id, 6780 intel_dig_port->base.base.name, 6781 long_hpd ? "long" : "short"); 6782 6783 if (long_hpd) { 6784 intel_dp->reset_link_params = true; 6785 return IRQ_NONE; 6786 } 6787 6788 if (intel_dp->is_mst) { 6789 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) { 6790 /* 6791 * If we were in MST mode, and device is not 6792 * there, get out of MST mode 6793 */ 6794 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 6795 intel_dp->is_mst, intel_dp->mst_mgr.mst_state); 6796 intel_dp->is_mst = false; 6797 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 6798 intel_dp->is_mst); 6799 6800 return IRQ_NONE; 6801 } 6802 } 6803 6804 if (!intel_dp->is_mst) { 6805 bool handled; 6806 6807 handled = intel_dp_short_pulse(intel_dp); 6808 6809 if (!handled) 6810 return IRQ_NONE; 6811 } 6812 6813 return IRQ_HANDLED; 6814 } 6815 6816 /* check the VBT to see whether the eDP is on another port */ 6817 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 6818 { 6819 /* 6820 * eDP not supported on g4x. so bail out early just 6821 * for a bit extra safety in case the VBT is bonkers. 6822 */ 6823 if (INTEL_GEN(dev_priv) < 5) 6824 return false; 6825 6826 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) 6827 return true; 6828 6829 return intel_bios_is_port_edp(dev_priv, port); 6830 } 6831 6832 static void 6833 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 6834 { 6835 struct drm_i915_private *dev_priv = to_i915(connector->dev); 6836 enum port port = dp_to_dig_port(intel_dp)->base.port; 6837 6838 if (!IS_G4X(dev_priv) && port != PORT_A) 6839 intel_attach_force_audio_property(connector); 6840 6841 intel_attach_broadcast_rgb_property(connector); 6842 if (HAS_GMCH(dev_priv)) 6843 drm_connector_attach_max_bpc_property(connector, 6, 10); 6844 else if (INTEL_GEN(dev_priv) >= 5) 6845 drm_connector_attach_max_bpc_property(connector, 6, 12); 6846 6847 intel_attach_colorspace_property(connector); 6848 6849 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11) 6850 drm_object_attach_property(&connector->base, 6851 connector->dev->mode_config.hdr_output_metadata_property, 6852 0); 6853 6854 if (intel_dp_is_edp(intel_dp)) { 6855 u32 allowed_scalers; 6856 6857 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); 6858 if (!HAS_GMCH(dev_priv)) 6859 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); 6860 6861 drm_connector_attach_scaling_mode_property(connector, allowed_scalers); 6862 6863 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; 6864 6865 } 6866 } 6867 6868 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) 6869 { 6870 intel_dp->panel_power_off_time = ktime_get_boottime(); 6871 intel_dp->last_power_on = jiffies; 6872 intel_dp->last_backlight_off = jiffies; 6873 } 6874 6875 static void 6876 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) 6877 { 6878 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6879 u32 pp_on, pp_off, pp_ctl; 6880 struct pps_registers regs; 6881 6882 intel_pps_get_registers(intel_dp, ®s); 6883 6884 pp_ctl = ilk_get_pp_control(intel_dp); 6885 6886 /* Ensure PPS is unlocked */ 6887 if (!HAS_DDI(dev_priv)) 6888 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl); 6889 6890 pp_on = intel_de_read(dev_priv, regs.pp_on); 6891 pp_off = intel_de_read(dev_priv, regs.pp_off); 6892 6893 /* Pull timing values out of registers */ 6894 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); 6895 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); 6896 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); 6897 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); 6898 6899 if (i915_mmio_reg_valid(regs.pp_div)) { 6900 u32 pp_div; 6901 6902 pp_div = intel_de_read(dev_priv, regs.pp_div); 6903 6904 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; 6905 } else { 6906 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; 6907 } 6908 } 6909 6910 static void 6911 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) 6912 { 6913 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 6914 state_name, 6915 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); 6916 } 6917 6918 static void 6919 intel_pps_verify_state(struct intel_dp *intel_dp) 6920 { 6921 struct edp_power_seq hw; 6922 struct edp_power_seq *sw = &intel_dp->pps_delays; 6923 6924 intel_pps_readout_hw_state(intel_dp, &hw); 6925 6926 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || 6927 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { 6928 DRM_ERROR("PPS state mismatch\n"); 6929 intel_pps_dump_state("sw", sw); 6930 intel_pps_dump_state("hw", &hw); 6931 } 6932 } 6933 6934 static void 6935 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) 6936 { 6937 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6938 struct edp_power_seq cur, vbt, spec, 6939 *final = &intel_dp->pps_delays; 6940 6941 lockdep_assert_held(&dev_priv->pps_mutex); 6942 6943 /* already initialized? */ 6944 if (final->t11_t12 != 0) 6945 return; 6946 6947 intel_pps_readout_hw_state(intel_dp, &cur); 6948 6949 intel_pps_dump_state("cur", &cur); 6950 6951 vbt = dev_priv->vbt.edp.pps; 6952 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay 6953 * of 500ms appears to be too short. Ocassionally the panel 6954 * just fails to power back on. Increasing the delay to 800ms 6955 * seems sufficient to avoid this problem. 6956 */ 6957 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { 6958 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); 6959 drm_dbg_kms(&dev_priv->drm, 6960 "Increasing T12 panel delay as per the quirk to %d\n", 6961 vbt.t11_t12); 6962 } 6963 /* T11_T12 delay is special and actually in units of 100ms, but zero 6964 * based in the hw (so we need to add 100 ms). But the sw vbt 6965 * table multiplies it with 1000 to make it in units of 100usec, 6966 * too. */ 6967 vbt.t11_t12 += 100 * 10; 6968 6969 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of 6970 * our hw here, which are all in 100usec. */ 6971 spec.t1_t3 = 210 * 10; 6972 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ 6973 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ 6974 spec.t10 = 500 * 10; 6975 /* This one is special and actually in units of 100ms, but zero 6976 * based in the hw (so we need to add 100 ms). But the sw vbt 6977 * table multiplies it with 1000 to make it in units of 100usec, 6978 * too. */ 6979 spec.t11_t12 = (510 + 100) * 10; 6980 6981 intel_pps_dump_state("vbt", &vbt); 6982 6983 /* Use the max of the register settings and vbt. If both are 6984 * unset, fall back to the spec limits. */ 6985 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ 6986 spec.field : \ 6987 max(cur.field, vbt.field)) 6988 assign_final(t1_t3); 6989 assign_final(t8); 6990 assign_final(t9); 6991 assign_final(t10); 6992 assign_final(t11_t12); 6993 #undef assign_final 6994 6995 #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) 6996 intel_dp->panel_power_up_delay = get_delay(t1_t3); 6997 intel_dp->backlight_on_delay = get_delay(t8); 6998 intel_dp->backlight_off_delay = get_delay(t9); 6999 intel_dp->panel_power_down_delay = get_delay(t10); 7000 intel_dp->panel_power_cycle_delay = get_delay(t11_t12); 7001 #undef get_delay 7002 7003 drm_dbg_kms(&dev_priv->drm, 7004 "panel power up delay %d, power down delay %d, power cycle delay %d\n", 7005 intel_dp->panel_power_up_delay, 7006 intel_dp->panel_power_down_delay, 7007 intel_dp->panel_power_cycle_delay); 7008 7009 drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n", 7010 intel_dp->backlight_on_delay, 7011 intel_dp->backlight_off_delay); 7012 7013 /* 7014 * We override the HW backlight delays to 1 because we do manual waits 7015 * on them. For T8, even BSpec recommends doing it. For T9, if we 7016 * don't do this, we'll end up waiting for the backlight off delay 7017 * twice: once when we do the manual sleep, and once when we disable 7018 * the panel and wait for the PP_STATUS bit to become zero. 7019 */ 7020 final->t8 = 1; 7021 final->t9 = 1; 7022 7023 /* 7024 * HW has only a 100msec granularity for t11_t12 so round it up 7025 * accordingly. 7026 */ 7027 final->t11_t12 = roundup(final->t11_t12, 100 * 10); 7028 } 7029 7030 static void 7031 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 7032 bool force_disable_vdd) 7033 { 7034 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7035 u32 pp_on, pp_off, port_sel = 0; 7036 int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000; 7037 struct pps_registers regs; 7038 enum port port = dp_to_dig_port(intel_dp)->base.port; 7039 const struct edp_power_seq *seq = &intel_dp->pps_delays; 7040 7041 lockdep_assert_held(&dev_priv->pps_mutex); 7042 7043 intel_pps_get_registers(intel_dp, ®s); 7044 7045 /* 7046 * On some VLV machines the BIOS can leave the VDD 7047 * enabled even on power sequencers which aren't 7048 * hooked up to any port. This would mess up the 7049 * power domain tracking the first time we pick 7050 * one of these power sequencers for use since 7051 * edp_panel_vdd_on() would notice that the VDD was 7052 * already on and therefore wouldn't grab the power 7053 * domain reference. Disable VDD first to avoid this. 7054 * This also avoids spuriously turning the VDD on as 7055 * soon as the new power sequencer gets initialized. 7056 */ 7057 if (force_disable_vdd) { 7058 u32 pp = ilk_get_pp_control(intel_dp); 7059 7060 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON, 7061 "Panel power already on\n"); 7062 7063 if (pp & EDP_FORCE_VDD) 7064 drm_dbg_kms(&dev_priv->drm, 7065 "VDD already on, disabling first\n"); 7066 7067 pp &= ~EDP_FORCE_VDD; 7068 7069 intel_de_write(dev_priv, regs.pp_ctrl, pp); 7070 } 7071 7072 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | 7073 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); 7074 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | 7075 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); 7076 7077 /* Haswell doesn't have any port selection bits for the panel 7078 * power sequencer any more. */ 7079 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7080 port_sel = PANEL_PORT_SELECT_VLV(port); 7081 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 7082 switch (port) { 7083 case PORT_A: 7084 port_sel = PANEL_PORT_SELECT_DPA; 7085 break; 7086 case PORT_C: 7087 port_sel = PANEL_PORT_SELECT_DPC; 7088 break; 7089 case PORT_D: 7090 port_sel = PANEL_PORT_SELECT_DPD; 7091 break; 7092 default: 7093 MISSING_CASE(port); 7094 break; 7095 } 7096 } 7097 7098 pp_on |= port_sel; 7099 7100 intel_de_write(dev_priv, regs.pp_on, pp_on); 7101 intel_de_write(dev_priv, regs.pp_off, pp_off); 7102 7103 /* 7104 * Compute the divisor for the pp clock, simply match the Bspec formula. 7105 */ 7106 if (i915_mmio_reg_valid(regs.pp_div)) { 7107 intel_de_write(dev_priv, regs.pp_div, 7108 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); 7109 } else { 7110 u32 pp_ctl; 7111 7112 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl); 7113 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; 7114 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); 7115 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl); 7116 } 7117 7118 drm_dbg_kms(&dev_priv->drm, 7119 "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", 7120 intel_de_read(dev_priv, regs.pp_on), 7121 intel_de_read(dev_priv, regs.pp_off), 7122 i915_mmio_reg_valid(regs.pp_div) ? 7123 intel_de_read(dev_priv, regs.pp_div) : 7124 (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); 7125 } 7126 7127 static void intel_dp_pps_init(struct intel_dp *intel_dp) 7128 { 7129 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7130 7131 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7132 vlv_initial_power_sequencer_setup(intel_dp); 7133 } else { 7134 intel_dp_init_panel_power_sequencer(intel_dp); 7135 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 7136 } 7137 } 7138 7139 /** 7140 * intel_dp_set_drrs_state - program registers for RR switch to take effect 7141 * @dev_priv: i915 device 7142 * @crtc_state: a pointer to the active intel_crtc_state 7143 * @refresh_rate: RR to be programmed 7144 * 7145 * This function gets called when refresh rate (RR) has to be changed from 7146 * one frequency to another. Switches can be between high and low RR 7147 * supported by the panel or to any other RR based on media playback (in 7148 * this case, RR value needs to be passed from user space). 7149 * 7150 * The caller of this function needs to take a lock on dev_priv->drrs. 7151 */ 7152 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, 7153 const struct intel_crtc_state *crtc_state, 7154 int refresh_rate) 7155 { 7156 struct intel_dp *intel_dp = dev_priv->drrs.dp; 7157 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 7158 enum drrs_refresh_rate_type index = DRRS_HIGH_RR; 7159 7160 if (refresh_rate <= 0) { 7161 drm_dbg_kms(&dev_priv->drm, 7162 "Refresh rate should be positive non-zero.\n"); 7163 return; 7164 } 7165 7166 if (intel_dp == NULL) { 7167 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n"); 7168 return; 7169 } 7170 7171 if (!intel_crtc) { 7172 drm_dbg_kms(&dev_priv->drm, 7173 "DRRS: intel_crtc not initialized\n"); 7174 return; 7175 } 7176 7177 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { 7178 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n"); 7179 return; 7180 } 7181 7182 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh == 7183 refresh_rate) 7184 index = DRRS_LOW_RR; 7185 7186 if (index == dev_priv->drrs.refresh_rate_type) { 7187 drm_dbg_kms(&dev_priv->drm, 7188 "DRRS requested for previously set RR...ignoring\n"); 7189 return; 7190 } 7191 7192 if (!crtc_state->hw.active) { 7193 drm_dbg_kms(&dev_priv->drm, 7194 "eDP encoder disabled. CRTC not Active\n"); 7195 return; 7196 } 7197 7198 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { 7199 switch (index) { 7200 case DRRS_HIGH_RR: 7201 intel_dp_set_m_n(crtc_state, M1_N1); 7202 break; 7203 case DRRS_LOW_RR: 7204 intel_dp_set_m_n(crtc_state, M2_N2); 7205 break; 7206 case DRRS_MAX_RR: 7207 default: 7208 drm_err(&dev_priv->drm, 7209 "Unsupported refreshrate type\n"); 7210 } 7211 } else if (INTEL_GEN(dev_priv) > 6) { 7212 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); 7213 u32 val; 7214 7215 val = intel_de_read(dev_priv, reg); 7216 if (index > DRRS_HIGH_RR) { 7217 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7218 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; 7219 else 7220 val |= PIPECONF_EDP_RR_MODE_SWITCH; 7221 } else { 7222 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7223 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; 7224 else 7225 val &= ~PIPECONF_EDP_RR_MODE_SWITCH; 7226 } 7227 intel_de_write(dev_priv, reg, val); 7228 } 7229 7230 dev_priv->drrs.refresh_rate_type = index; 7231 7232 drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n", 7233 refresh_rate); 7234 } 7235 7236 /** 7237 * intel_edp_drrs_enable - init drrs struct if supported 7238 * @intel_dp: DP struct 7239 * @crtc_state: A pointer to the active crtc state. 7240 * 7241 * Initializes frontbuffer_bits and drrs.dp 7242 */ 7243 void intel_edp_drrs_enable(struct intel_dp *intel_dp, 7244 const struct intel_crtc_state *crtc_state) 7245 { 7246 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7247 7248 if (!crtc_state->has_drrs) { 7249 drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n"); 7250 return; 7251 } 7252 7253 if (dev_priv->psr.enabled) { 7254 drm_dbg_kms(&dev_priv->drm, 7255 "PSR enabled. Not enabling DRRS.\n"); 7256 return; 7257 } 7258 7259 mutex_lock(&dev_priv->drrs.mutex); 7260 if (dev_priv->drrs.dp) { 7261 drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n"); 7262 goto unlock; 7263 } 7264 7265 dev_priv->drrs.busy_frontbuffer_bits = 0; 7266 7267 dev_priv->drrs.dp = intel_dp; 7268 7269 unlock: 7270 mutex_unlock(&dev_priv->drrs.mutex); 7271 } 7272 7273 /** 7274 * intel_edp_drrs_disable - Disable DRRS 7275 * @intel_dp: DP struct 7276 * @old_crtc_state: Pointer to old crtc_state. 7277 * 7278 */ 7279 void intel_edp_drrs_disable(struct intel_dp *intel_dp, 7280 const struct intel_crtc_state *old_crtc_state) 7281 { 7282 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7283 7284 if (!old_crtc_state->has_drrs) 7285 return; 7286 7287 mutex_lock(&dev_priv->drrs.mutex); 7288 if (!dev_priv->drrs.dp) { 7289 mutex_unlock(&dev_priv->drrs.mutex); 7290 return; 7291 } 7292 7293 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7294 intel_dp_set_drrs_state(dev_priv, old_crtc_state, 7295 intel_dp->attached_connector->panel.fixed_mode->vrefresh); 7296 7297 dev_priv->drrs.dp = NULL; 7298 mutex_unlock(&dev_priv->drrs.mutex); 7299 7300 cancel_delayed_work_sync(&dev_priv->drrs.work); 7301 } 7302 7303 static void intel_edp_drrs_downclock_work(struct work_struct *work) 7304 { 7305 struct drm_i915_private *dev_priv = 7306 container_of(work, typeof(*dev_priv), drrs.work.work); 7307 struct intel_dp *intel_dp; 7308 7309 mutex_lock(&dev_priv->drrs.mutex); 7310 7311 intel_dp = dev_priv->drrs.dp; 7312 7313 if (!intel_dp) 7314 goto unlock; 7315 7316 /* 7317 * The delayed work can race with an invalidate hence we need to 7318 * recheck. 7319 */ 7320 7321 if (dev_priv->drrs.busy_frontbuffer_bits) 7322 goto unlock; 7323 7324 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { 7325 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7326 7327 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7328 intel_dp->attached_connector->panel.downclock_mode->vrefresh); 7329 } 7330 7331 unlock: 7332 mutex_unlock(&dev_priv->drrs.mutex); 7333 } 7334 7335 /** 7336 * intel_edp_drrs_invalidate - Disable Idleness DRRS 7337 * @dev_priv: i915 device 7338 * @frontbuffer_bits: frontbuffer plane tracking bits 7339 * 7340 * This function gets called everytime rendering on the given planes start. 7341 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). 7342 * 7343 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7344 */ 7345 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, 7346 unsigned int frontbuffer_bits) 7347 { 7348 struct drm_crtc *crtc; 7349 enum pipe pipe; 7350 7351 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7352 return; 7353 7354 cancel_delayed_work(&dev_priv->drrs.work); 7355 7356 mutex_lock(&dev_priv->drrs.mutex); 7357 if (!dev_priv->drrs.dp) { 7358 mutex_unlock(&dev_priv->drrs.mutex); 7359 return; 7360 } 7361 7362 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 7363 pipe = to_intel_crtc(crtc)->pipe; 7364 7365 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7366 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; 7367 7368 /* invalidate means busy screen hence upclock */ 7369 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7370 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7371 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 7372 7373 mutex_unlock(&dev_priv->drrs.mutex); 7374 } 7375 7376 /** 7377 * intel_edp_drrs_flush - Restart Idleness DRRS 7378 * @dev_priv: i915 device 7379 * @frontbuffer_bits: frontbuffer plane tracking bits 7380 * 7381 * This function gets called every time rendering on the given planes has 7382 * completed or flip on a crtc is completed. So DRRS should be upclocked 7383 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, 7384 * if no other planes are dirty. 7385 * 7386 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7387 */ 7388 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, 7389 unsigned int frontbuffer_bits) 7390 { 7391 struct drm_crtc *crtc; 7392 enum pipe pipe; 7393 7394 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7395 return; 7396 7397 cancel_delayed_work(&dev_priv->drrs.work); 7398 7399 mutex_lock(&dev_priv->drrs.mutex); 7400 if (!dev_priv->drrs.dp) { 7401 mutex_unlock(&dev_priv->drrs.mutex); 7402 return; 7403 } 7404 7405 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 7406 pipe = to_intel_crtc(crtc)->pipe; 7407 7408 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7409 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; 7410 7411 /* flush means busy screen hence upclock */ 7412 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7413 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7414 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 7415 7416 /* 7417 * flush also means no more activity hence schedule downclock, if all 7418 * other fbs are quiescent too 7419 */ 7420 if (!dev_priv->drrs.busy_frontbuffer_bits) 7421 schedule_delayed_work(&dev_priv->drrs.work, 7422 msecs_to_jiffies(1000)); 7423 mutex_unlock(&dev_priv->drrs.mutex); 7424 } 7425 7426 /** 7427 * DOC: Display Refresh Rate Switching (DRRS) 7428 * 7429 * Display Refresh Rate Switching (DRRS) is a power conservation feature 7430 * which enables swtching between low and high refresh rates, 7431 * dynamically, based on the usage scenario. This feature is applicable 7432 * for internal panels. 7433 * 7434 * Indication that the panel supports DRRS is given by the panel EDID, which 7435 * would list multiple refresh rates for one resolution. 7436 * 7437 * DRRS is of 2 types - static and seamless. 7438 * Static DRRS involves changing refresh rate (RR) by doing a full modeset 7439 * (may appear as a blink on screen) and is used in dock-undock scenario. 7440 * Seamless DRRS involves changing RR without any visual effect to the user 7441 * and can be used during normal system usage. This is done by programming 7442 * certain registers. 7443 * 7444 * Support for static/seamless DRRS may be indicated in the VBT based on 7445 * inputs from the panel spec. 7446 * 7447 * DRRS saves power by switching to low RR based on usage scenarios. 7448 * 7449 * The implementation is based on frontbuffer tracking implementation. When 7450 * there is a disturbance on the screen triggered by user activity or a periodic 7451 * system activity, DRRS is disabled (RR is changed to high RR). When there is 7452 * no movement on screen, after a timeout of 1 second, a switch to low RR is 7453 * made. 7454 * 7455 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() 7456 * and intel_edp_drrs_flush() are called. 7457 * 7458 * DRRS can be further extended to support other internal panels and also 7459 * the scenario of video playback wherein RR is set based on the rate 7460 * requested by userspace. 7461 */ 7462 7463 /** 7464 * intel_dp_drrs_init - Init basic DRRS work and mutex. 7465 * @connector: eDP connector 7466 * @fixed_mode: preferred mode of panel 7467 * 7468 * This function is called only once at driver load to initialize basic 7469 * DRRS stuff. 7470 * 7471 * Returns: 7472 * Downclock mode if panel supports it, else return NULL. 7473 * DRRS support is determined by the presence of downclock mode (apart 7474 * from VBT setting). 7475 */ 7476 static struct drm_display_mode * 7477 intel_dp_drrs_init(struct intel_connector *connector, 7478 struct drm_display_mode *fixed_mode) 7479 { 7480 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 7481 struct drm_display_mode *downclock_mode = NULL; 7482 7483 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); 7484 mutex_init(&dev_priv->drrs.mutex); 7485 7486 if (INTEL_GEN(dev_priv) <= 6) { 7487 drm_dbg_kms(&dev_priv->drm, 7488 "DRRS supported for Gen7 and above\n"); 7489 return NULL; 7490 } 7491 7492 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { 7493 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n"); 7494 return NULL; 7495 } 7496 7497 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); 7498 if (!downclock_mode) { 7499 drm_dbg_kms(&dev_priv->drm, 7500 "Downclock mode is not found. DRRS not supported\n"); 7501 return NULL; 7502 } 7503 7504 dev_priv->drrs.type = dev_priv->vbt.drrs_type; 7505 7506 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; 7507 drm_dbg_kms(&dev_priv->drm, 7508 "seamless DRRS supported for eDP panel.\n"); 7509 return downclock_mode; 7510 } 7511 7512 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 7513 struct intel_connector *intel_connector) 7514 { 7515 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7516 struct drm_device *dev = &dev_priv->drm; 7517 struct drm_connector *connector = &intel_connector->base; 7518 struct drm_display_mode *fixed_mode = NULL; 7519 struct drm_display_mode *downclock_mode = NULL; 7520 bool has_dpcd; 7521 enum pipe pipe = INVALID_PIPE; 7522 intel_wakeref_t wakeref; 7523 struct edid *edid; 7524 7525 if (!intel_dp_is_edp(intel_dp)) 7526 return true; 7527 7528 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); 7529 7530 /* 7531 * On IBX/CPT we may get here with LVDS already registered. Since the 7532 * driver uses the only internal power sequencer available for both 7533 * eDP and LVDS bail out early in this case to prevent interfering 7534 * with an already powered-on LVDS power sequencer. 7535 */ 7536 if (intel_get_lvds_encoder(dev_priv)) { 7537 drm_WARN_ON(dev, 7538 !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 7539 drm_info(&dev_priv->drm, 7540 "LVDS was detected, not registering eDP\n"); 7541 7542 return false; 7543 } 7544 7545 with_pps_lock(intel_dp, wakeref) { 7546 intel_dp_init_panel_power_timestamps(intel_dp); 7547 intel_dp_pps_init(intel_dp); 7548 intel_edp_panel_vdd_sanitize(intel_dp); 7549 } 7550 7551 /* Cache DPCD and EDID for edp. */ 7552 has_dpcd = intel_edp_init_dpcd(intel_dp); 7553 7554 if (!has_dpcd) { 7555 /* if this fails, presume the device is a ghost */ 7556 drm_info(&dev_priv->drm, 7557 "failed to retrieve link info, disabling eDP\n"); 7558 goto out_vdd_off; 7559 } 7560 7561 mutex_lock(&dev->mode_config.mutex); 7562 edid = drm_get_edid(connector, &intel_dp->aux.ddc); 7563 if (edid) { 7564 if (drm_add_edid_modes(connector, edid)) { 7565 drm_connector_update_edid_property(connector, 7566 edid); 7567 } else { 7568 kfree(edid); 7569 edid = ERR_PTR(-EINVAL); 7570 } 7571 } else { 7572 edid = ERR_PTR(-ENOENT); 7573 } 7574 intel_connector->edid = edid; 7575 7576 fixed_mode = intel_panel_edid_fixed_mode(intel_connector); 7577 if (fixed_mode) 7578 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); 7579 7580 /* fallback to VBT if available for eDP */ 7581 if (!fixed_mode) 7582 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); 7583 mutex_unlock(&dev->mode_config.mutex); 7584 7585 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7586 intel_dp->edp_notifier.notifier_call = edp_notify_handler; 7587 register_reboot_notifier(&intel_dp->edp_notifier); 7588 7589 /* 7590 * Figure out the current pipe for the initial backlight setup. 7591 * If the current pipe isn't valid, try the PPS pipe, and if that 7592 * fails just assume pipe A. 7593 */ 7594 pipe = vlv_active_pipe(intel_dp); 7595 7596 if (pipe != PIPE_A && pipe != PIPE_B) 7597 pipe = intel_dp->pps_pipe; 7598 7599 if (pipe != PIPE_A && pipe != PIPE_B) 7600 pipe = PIPE_A; 7601 7602 drm_dbg_kms(&dev_priv->drm, 7603 "using pipe %c for initial backlight setup\n", 7604 pipe_name(pipe)); 7605 } 7606 7607 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); 7608 intel_connector->panel.backlight.power = intel_edp_backlight_power; 7609 intel_panel_setup_backlight(connector, pipe); 7610 7611 if (fixed_mode) { 7612 /* We do not know the orientation, but their might be a quirk */ 7613 drm_connector_set_panel_orientation_with_quirk(connector, 7614 DRM_MODE_PANEL_ORIENTATION_UNKNOWN, 7615 fixed_mode->hdisplay, fixed_mode->vdisplay); 7616 } 7617 7618 return true; 7619 7620 out_vdd_off: 7621 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 7622 /* 7623 * vdd might still be enabled do to the delayed vdd off. 7624 * Make sure vdd is actually turned off here. 7625 */ 7626 with_pps_lock(intel_dp, wakeref) 7627 edp_panel_vdd_off_sync(intel_dp); 7628 7629 return false; 7630 } 7631 7632 static void intel_dp_modeset_retry_work_fn(struct work_struct *work) 7633 { 7634 struct intel_connector *intel_connector; 7635 struct drm_connector *connector; 7636 7637 intel_connector = container_of(work, typeof(*intel_connector), 7638 modeset_retry_work); 7639 connector = &intel_connector->base; 7640 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, 7641 connector->name); 7642 7643 /* Grab the locks before changing connector property*/ 7644 mutex_lock(&connector->dev->mode_config.mutex); 7645 /* Set connector link status to BAD and send a Uevent to notify 7646 * userspace to do a modeset. 7647 */ 7648 drm_connector_set_link_status_property(connector, 7649 DRM_MODE_LINK_STATUS_BAD); 7650 mutex_unlock(&connector->dev->mode_config.mutex); 7651 /* Send Hotplug uevent so userspace can reprobe */ 7652 drm_kms_helper_hotplug_event(connector->dev); 7653 } 7654 7655 bool 7656 intel_dp_init_connector(struct intel_digital_port *intel_dig_port, 7657 struct intel_connector *intel_connector) 7658 { 7659 struct drm_connector *connector = &intel_connector->base; 7660 struct intel_dp *intel_dp = &intel_dig_port->dp; 7661 struct intel_encoder *intel_encoder = &intel_dig_port->base; 7662 struct drm_device *dev = intel_encoder->base.dev; 7663 struct drm_i915_private *dev_priv = to_i915(dev); 7664 enum port port = intel_encoder->port; 7665 enum phy phy = intel_port_to_phy(dev_priv, port); 7666 int type; 7667 7668 /* Initialize the work for modeset in case of link train failure */ 7669 INIT_WORK(&intel_connector->modeset_retry_work, 7670 intel_dp_modeset_retry_work_fn); 7671 7672 if (drm_WARN(dev, intel_dig_port->max_lanes < 1, 7673 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", 7674 intel_dig_port->max_lanes, intel_encoder->base.base.id, 7675 intel_encoder->base.name)) 7676 return false; 7677 7678 intel_dp_set_source_rates(intel_dp); 7679 7680 intel_dp->reset_link_params = true; 7681 intel_dp->pps_pipe = INVALID_PIPE; 7682 intel_dp->active_pipe = INVALID_PIPE; 7683 7684 /* Preserve the current hw state. */ 7685 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg); 7686 intel_dp->attached_connector = intel_connector; 7687 7688 if (intel_dp_is_port_edp(dev_priv, port)) { 7689 /* 7690 * Currently we don't support eDP on TypeC ports, although in 7691 * theory it could work on TypeC legacy ports. 7692 */ 7693 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy)); 7694 type = DRM_MODE_CONNECTOR_eDP; 7695 } else { 7696 type = DRM_MODE_CONNECTOR_DisplayPort; 7697 } 7698 7699 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7700 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 7701 7702 /* 7703 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but 7704 * for DP the encoder type can be set by the caller to 7705 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. 7706 */ 7707 if (type == DRM_MODE_CONNECTOR_eDP) 7708 intel_encoder->type = INTEL_OUTPUT_EDP; 7709 7710 /* eDP only on port B and/or C on vlv/chv */ 7711 if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) || 7712 IS_CHERRYVIEW(dev_priv)) && 7713 intel_dp_is_edp(intel_dp) && 7714 port != PORT_B && port != PORT_C)) 7715 return false; 7716 7717 drm_dbg_kms(&dev_priv->drm, 7718 "Adding %s connector on [ENCODER:%d:%s]\n", 7719 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 7720 intel_encoder->base.base.id, intel_encoder->base.name); 7721 7722 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); 7723 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); 7724 7725 if (!HAS_GMCH(dev_priv)) 7726 connector->interlace_allowed = true; 7727 connector->doublescan_allowed = 0; 7728 7729 if (INTEL_GEN(dev_priv) >= 11) 7730 connector->ycbcr_420_allowed = true; 7731 7732 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 7733 intel_connector->polled = DRM_CONNECTOR_POLL_HPD; 7734 7735 intel_dp_aux_init(intel_dp); 7736 7737 intel_connector_attach_encoder(intel_connector, intel_encoder); 7738 7739 if (HAS_DDI(dev_priv)) 7740 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 7741 else 7742 intel_connector->get_hw_state = intel_connector_get_hw_state; 7743 7744 /* init MST on ports that can support it */ 7745 intel_dp_mst_encoder_init(intel_dig_port, 7746 intel_connector->base.base.id); 7747 7748 if (!intel_edp_init_connector(intel_dp, intel_connector)) { 7749 intel_dp_aux_fini(intel_dp); 7750 intel_dp_mst_encoder_cleanup(intel_dig_port); 7751 goto fail; 7752 } 7753 7754 intel_dp_add_properties(intel_dp, connector); 7755 7756 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { 7757 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim); 7758 if (ret) 7759 drm_dbg_kms(&dev_priv->drm, 7760 "HDCP init failed, skipping.\n"); 7761 } 7762 7763 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 7764 * 0xd. Failure to do so will result in spurious interrupts being 7765 * generated on the port when a cable is not attached. 7766 */ 7767 if (IS_G45(dev_priv)) { 7768 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA); 7769 intel_de_write(dev_priv, PEG_BAND_GAP_DATA, 7770 (temp & ~0xf) | 0xd); 7771 } 7772 7773 return true; 7774 7775 fail: 7776 drm_connector_cleanup(connector); 7777 7778 return false; 7779 } 7780 7781 bool intel_dp_init(struct drm_i915_private *dev_priv, 7782 i915_reg_t output_reg, 7783 enum port port) 7784 { 7785 struct intel_digital_port *intel_dig_port; 7786 struct intel_encoder *intel_encoder; 7787 struct drm_encoder *encoder; 7788 struct intel_connector *intel_connector; 7789 7790 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); 7791 if (!intel_dig_port) 7792 return false; 7793 7794 intel_connector = intel_connector_alloc(); 7795 if (!intel_connector) 7796 goto err_connector_alloc; 7797 7798 intel_encoder = &intel_dig_port->base; 7799 encoder = &intel_encoder->base; 7800 7801 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 7802 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, 7803 "DP %c", port_name(port))) 7804 goto err_encoder_init; 7805 7806 intel_encoder->hotplug = intel_dp_hotplug; 7807 intel_encoder->compute_config = intel_dp_compute_config; 7808 intel_encoder->get_hw_state = intel_dp_get_hw_state; 7809 intel_encoder->get_config = intel_dp_get_config; 7810 intel_encoder->update_pipe = intel_panel_update_backlight; 7811 intel_encoder->suspend = intel_dp_encoder_suspend; 7812 if (IS_CHERRYVIEW(dev_priv)) { 7813 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; 7814 intel_encoder->pre_enable = chv_pre_enable_dp; 7815 intel_encoder->enable = vlv_enable_dp; 7816 intel_encoder->disable = vlv_disable_dp; 7817 intel_encoder->post_disable = chv_post_disable_dp; 7818 intel_encoder->post_pll_disable = chv_dp_post_pll_disable; 7819 } else if (IS_VALLEYVIEW(dev_priv)) { 7820 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; 7821 intel_encoder->pre_enable = vlv_pre_enable_dp; 7822 intel_encoder->enable = vlv_enable_dp; 7823 intel_encoder->disable = vlv_disable_dp; 7824 intel_encoder->post_disable = vlv_post_disable_dp; 7825 } else { 7826 intel_encoder->pre_enable = g4x_pre_enable_dp; 7827 intel_encoder->enable = g4x_enable_dp; 7828 intel_encoder->disable = g4x_disable_dp; 7829 intel_encoder->post_disable = g4x_post_disable_dp; 7830 } 7831 7832 intel_dig_port->dp.output_reg = output_reg; 7833 intel_dig_port->max_lanes = 4; 7834 7835 intel_encoder->type = INTEL_OUTPUT_DP; 7836 intel_encoder->power_domain = intel_port_to_power_domain(port); 7837 if (IS_CHERRYVIEW(dev_priv)) { 7838 if (port == PORT_D) 7839 intel_encoder->pipe_mask = BIT(PIPE_C); 7840 else 7841 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B); 7842 } else { 7843 intel_encoder->pipe_mask = ~0; 7844 } 7845 intel_encoder->cloneable = 0; 7846 intel_encoder->port = port; 7847 7848 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; 7849 7850 if (port != PORT_A) 7851 intel_infoframe_init(intel_dig_port); 7852 7853 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 7854 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) 7855 goto err_init_connector; 7856 7857 return true; 7858 7859 err_init_connector: 7860 drm_encoder_cleanup(encoder); 7861 err_encoder_init: 7862 kfree(intel_connector); 7863 err_connector_alloc: 7864 kfree(intel_dig_port); 7865 return false; 7866 } 7867 7868 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) 7869 { 7870 struct intel_encoder *encoder; 7871 7872 for_each_intel_encoder(&dev_priv->drm, encoder) { 7873 struct intel_dp *intel_dp; 7874 7875 if (encoder->type != INTEL_OUTPUT_DDI) 7876 continue; 7877 7878 intel_dp = enc_to_intel_dp(encoder); 7879 7880 if (!intel_dp->can_mst) 7881 continue; 7882 7883 if (intel_dp->is_mst) 7884 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); 7885 } 7886 } 7887 7888 void intel_dp_mst_resume(struct drm_i915_private *dev_priv) 7889 { 7890 struct intel_encoder *encoder; 7891 7892 for_each_intel_encoder(&dev_priv->drm, encoder) { 7893 struct intel_dp *intel_dp; 7894 int ret; 7895 7896 if (encoder->type != INTEL_OUTPUT_DDI) 7897 continue; 7898 7899 intel_dp = enc_to_intel_dp(encoder); 7900 7901 if (!intel_dp->can_mst) 7902 continue; 7903 7904 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr, 7905 true); 7906 if (ret) { 7907 intel_dp->is_mst = false; 7908 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 7909 false); 7910 } 7911 } 7912 } 7913