xref: /linux/drivers/gpu/drm/i915/display/intel_dp.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34 
35 #include <asm/byteorder.h>
36 
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
44 
45 #include "i915_debugfs.h"
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_atomic.h"
49 #include "intel_audio.h"
50 #include "intel_connector.h"
51 #include "intel_ddi.h"
52 #include "intel_display_debugfs.h"
53 #include "intel_display_types.h"
54 #include "intel_dp.h"
55 #include "intel_dp_link_training.h"
56 #include "intel_dp_mst.h"
57 #include "intel_dpio_phy.h"
58 #include "intel_fifo_underrun.h"
59 #include "intel_hdcp.h"
60 #include "intel_hdmi.h"
61 #include "intel_hotplug.h"
62 #include "intel_lspcon.h"
63 #include "intel_lvds.h"
64 #include "intel_panel.h"
65 #include "intel_psr.h"
66 #include "intel_sideband.h"
67 #include "intel_tc.h"
68 #include "intel_vdsc.h"
69 
70 #define DP_DPRX_ESI_LEN 14
71 
72 /* DP DSC throughput values used for slice count calculations KPixels/s */
73 #define DP_DSC_PEAK_PIXEL_RATE			2720000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
75 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
76 
77 /* DP DSC FEC Overhead factor = 1/(0.972261) */
78 #define DP_DSC_FEC_OVERHEAD_FACTOR		972261
79 
80 /* Compliance test status bits  */
81 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
82 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
84 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
85 
86 struct dp_link_dpll {
87 	int clock;
88 	struct dpll dpll;
89 };
90 
91 static const struct dp_link_dpll g4x_dpll[] = {
92 	{ 162000,
93 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
94 	{ 270000,
95 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
96 };
97 
98 static const struct dp_link_dpll pch_dpll[] = {
99 	{ 162000,
100 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
101 	{ 270000,
102 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
103 };
104 
105 static const struct dp_link_dpll vlv_dpll[] = {
106 	{ 162000,
107 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
108 	{ 270000,
109 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
110 };
111 
112 /*
113  * CHV supports eDP 1.4 that have  more link rates.
114  * Below only provides the fixed rate but exclude variable rate.
115  */
116 static const struct dp_link_dpll chv_dpll[] = {
117 	/*
118 	 * CHV requires to program fractional division for m2.
119 	 * m2 is stored in fixed point format using formula below
120 	 * (m2_int << 22) | m2_fraction
121 	 */
122 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
123 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
124 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
125 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
126 };
127 
128 /* Constants for DP DSC configurations */
129 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
130 
131 /* With Single pipe configuration, HW is capable of supporting maximum
132  * of 4 slices per line.
133  */
134 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
135 
136 /**
137  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
138  * @intel_dp: DP struct
139  *
140  * If a CPU or PCH DP output is attached to an eDP panel, this function
141  * will return true, and false otherwise.
142  */
143 bool intel_dp_is_edp(struct intel_dp *intel_dp)
144 {
145 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
146 
147 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
148 }
149 
150 static void intel_dp_link_down(struct intel_encoder *encoder,
151 			       const struct intel_crtc_state *old_crtc_state);
152 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
153 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
154 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
155 					   const struct intel_crtc_state *crtc_state);
156 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
157 				      enum pipe pipe);
158 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
159 
160 /* update sink rates from dpcd */
161 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
162 {
163 	static const int dp_rates[] = {
164 		162000, 270000, 540000, 810000
165 	};
166 	int i, max_rate;
167 
168 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
169 
170 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
171 		if (dp_rates[i] > max_rate)
172 			break;
173 		intel_dp->sink_rates[i] = dp_rates[i];
174 	}
175 
176 	intel_dp->num_sink_rates = i;
177 }
178 
179 /* Get length of rates array potentially limited by max_rate. */
180 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
181 {
182 	int i;
183 
184 	/* Limit results by potentially reduced max rate */
185 	for (i = 0; i < len; i++) {
186 		if (rates[len - i - 1] <= max_rate)
187 			return len - i;
188 	}
189 
190 	return 0;
191 }
192 
193 /* Get length of common rates array potentially limited by max_rate. */
194 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
195 					  int max_rate)
196 {
197 	return intel_dp_rate_limit_len(intel_dp->common_rates,
198 				       intel_dp->num_common_rates, max_rate);
199 }
200 
201 /* Theoretical max between source and sink */
202 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
203 {
204 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
205 }
206 
207 /* Theoretical max between source and sink */
208 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
209 {
210 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
211 	int source_max = intel_dig_port->max_lanes;
212 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
213 	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
214 
215 	return min3(source_max, sink_max, fia_max);
216 }
217 
218 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
219 {
220 	return intel_dp->max_link_lane_count;
221 }
222 
223 int
224 intel_dp_link_required(int pixel_clock, int bpp)
225 {
226 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
227 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
228 }
229 
230 int
231 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
232 {
233 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
234 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
235 	 * is transmitted every LS_Clk per lane, there is no need to account for
236 	 * the channel encoding that is done in the PHY layer here.
237 	 */
238 
239 	return max_link_clock * max_lanes;
240 }
241 
242 static int
243 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
244 {
245 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
246 	struct intel_encoder *encoder = &intel_dig_port->base;
247 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
248 	int max_dotclk = dev_priv->max_dotclk_freq;
249 	int ds_max_dotclk;
250 
251 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
252 
253 	if (type != DP_DS_PORT_TYPE_VGA)
254 		return max_dotclk;
255 
256 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
257 						    intel_dp->downstream_ports);
258 
259 	if (ds_max_dotclk != 0)
260 		max_dotclk = min(max_dotclk, ds_max_dotclk);
261 
262 	return max_dotclk;
263 }
264 
265 static int cnl_max_source_rate(struct intel_dp *intel_dp)
266 {
267 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
268 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
269 	enum port port = dig_port->base.port;
270 
271 	u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
272 
273 	/* Low voltage SKUs are limited to max of 5.4G */
274 	if (voltage == VOLTAGE_INFO_0_85V)
275 		return 540000;
276 
277 	/* For this SKU 8.1G is supported in all ports */
278 	if (IS_CNL_WITH_PORT_F(dev_priv))
279 		return 810000;
280 
281 	/* For other SKUs, max rate on ports A and D is 5.4G */
282 	if (port == PORT_A || port == PORT_D)
283 		return 540000;
284 
285 	return 810000;
286 }
287 
288 static int icl_max_source_rate(struct intel_dp *intel_dp)
289 {
290 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
291 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
292 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
293 
294 	if (intel_phy_is_combo(dev_priv, phy) &&
295 	    !IS_ELKHARTLAKE(dev_priv) &&
296 	    !intel_dp_is_edp(intel_dp))
297 		return 540000;
298 
299 	return 810000;
300 }
301 
302 static void
303 intel_dp_set_source_rates(struct intel_dp *intel_dp)
304 {
305 	/* The values must be in increasing order */
306 	static const int cnl_rates[] = {
307 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
308 	};
309 	static const int bxt_rates[] = {
310 		162000, 216000, 243000, 270000, 324000, 432000, 540000
311 	};
312 	static const int skl_rates[] = {
313 		162000, 216000, 270000, 324000, 432000, 540000
314 	};
315 	static const int hsw_rates[] = {
316 		162000, 270000, 540000
317 	};
318 	static const int g4x_rates[] = {
319 		162000, 270000
320 	};
321 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
322 	struct intel_encoder *encoder = &dig_port->base;
323 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
324 	const int *source_rates;
325 	int size, max_rate = 0, vbt_max_rate;
326 
327 	/* This should only be done once */
328 	drm_WARN_ON(&dev_priv->drm,
329 		    intel_dp->source_rates || intel_dp->num_source_rates);
330 
331 	if (INTEL_GEN(dev_priv) >= 10) {
332 		source_rates = cnl_rates;
333 		size = ARRAY_SIZE(cnl_rates);
334 		if (IS_GEN(dev_priv, 10))
335 			max_rate = cnl_max_source_rate(intel_dp);
336 		else
337 			max_rate = icl_max_source_rate(intel_dp);
338 	} else if (IS_GEN9_LP(dev_priv)) {
339 		source_rates = bxt_rates;
340 		size = ARRAY_SIZE(bxt_rates);
341 	} else if (IS_GEN9_BC(dev_priv)) {
342 		source_rates = skl_rates;
343 		size = ARRAY_SIZE(skl_rates);
344 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
345 		   IS_BROADWELL(dev_priv)) {
346 		source_rates = hsw_rates;
347 		size = ARRAY_SIZE(hsw_rates);
348 	} else {
349 		source_rates = g4x_rates;
350 		size = ARRAY_SIZE(g4x_rates);
351 	}
352 
353 	vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
354 	if (max_rate && vbt_max_rate)
355 		max_rate = min(max_rate, vbt_max_rate);
356 	else if (vbt_max_rate)
357 		max_rate = vbt_max_rate;
358 
359 	if (max_rate)
360 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
361 
362 	intel_dp->source_rates = source_rates;
363 	intel_dp->num_source_rates = size;
364 }
365 
366 static int intersect_rates(const int *source_rates, int source_len,
367 			   const int *sink_rates, int sink_len,
368 			   int *common_rates)
369 {
370 	int i = 0, j = 0, k = 0;
371 
372 	while (i < source_len && j < sink_len) {
373 		if (source_rates[i] == sink_rates[j]) {
374 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
375 				return k;
376 			common_rates[k] = source_rates[i];
377 			++k;
378 			++i;
379 			++j;
380 		} else if (source_rates[i] < sink_rates[j]) {
381 			++i;
382 		} else {
383 			++j;
384 		}
385 	}
386 	return k;
387 }
388 
389 /* return index of rate in rates array, or -1 if not found */
390 static int intel_dp_rate_index(const int *rates, int len, int rate)
391 {
392 	int i;
393 
394 	for (i = 0; i < len; i++)
395 		if (rate == rates[i])
396 			return i;
397 
398 	return -1;
399 }
400 
401 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
402 {
403 	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
404 
405 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
406 						     intel_dp->num_source_rates,
407 						     intel_dp->sink_rates,
408 						     intel_dp->num_sink_rates,
409 						     intel_dp->common_rates);
410 
411 	/* Paranoia, there should always be something in common. */
412 	if (WARN_ON(intel_dp->num_common_rates == 0)) {
413 		intel_dp->common_rates[0] = 162000;
414 		intel_dp->num_common_rates = 1;
415 	}
416 }
417 
418 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
419 				       u8 lane_count)
420 {
421 	/*
422 	 * FIXME: we need to synchronize the current link parameters with
423 	 * hardware readout. Currently fast link training doesn't work on
424 	 * boot-up.
425 	 */
426 	if (link_rate == 0 ||
427 	    link_rate > intel_dp->max_link_rate)
428 		return false;
429 
430 	if (lane_count == 0 ||
431 	    lane_count > intel_dp_max_lane_count(intel_dp))
432 		return false;
433 
434 	return true;
435 }
436 
437 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
438 						     int link_rate,
439 						     u8 lane_count)
440 {
441 	const struct drm_display_mode *fixed_mode =
442 		intel_dp->attached_connector->panel.fixed_mode;
443 	int mode_rate, max_rate;
444 
445 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
446 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
447 	if (mode_rate > max_rate)
448 		return false;
449 
450 	return true;
451 }
452 
453 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
454 					    int link_rate, u8 lane_count)
455 {
456 	int index;
457 
458 	index = intel_dp_rate_index(intel_dp->common_rates,
459 				    intel_dp->num_common_rates,
460 				    link_rate);
461 	if (index > 0) {
462 		if (intel_dp_is_edp(intel_dp) &&
463 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
464 							      intel_dp->common_rates[index - 1],
465 							      lane_count)) {
466 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
467 			return 0;
468 		}
469 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
470 		intel_dp->max_link_lane_count = lane_count;
471 	} else if (lane_count > 1) {
472 		if (intel_dp_is_edp(intel_dp) &&
473 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
474 							      intel_dp_max_common_rate(intel_dp),
475 							      lane_count >> 1)) {
476 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
477 			return 0;
478 		}
479 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
480 		intel_dp->max_link_lane_count = lane_count >> 1;
481 	} else {
482 		DRM_ERROR("Link Training Unsuccessful\n");
483 		return -1;
484 	}
485 
486 	return 0;
487 }
488 
489 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
490 {
491 	return div_u64(mul_u32_u32(mode_clock, 1000000U),
492 		       DP_DSC_FEC_OVERHEAD_FACTOR);
493 }
494 
495 static int
496 small_joiner_ram_size_bits(struct drm_i915_private *i915)
497 {
498 	if (INTEL_GEN(i915) >= 11)
499 		return 7680 * 8;
500 	else
501 		return 6144 * 8;
502 }
503 
504 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
505 				       u32 link_clock, u32 lane_count,
506 				       u32 mode_clock, u32 mode_hdisplay)
507 {
508 	u32 bits_per_pixel, max_bpp_small_joiner_ram;
509 	int i;
510 
511 	/*
512 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
513 	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
514 	 * for SST -> TimeSlotsPerMTP is 1,
515 	 * for MST -> TimeSlotsPerMTP has to be calculated
516 	 */
517 	bits_per_pixel = (link_clock * lane_count * 8) /
518 			 intel_dp_mode_to_fec_clock(mode_clock);
519 	drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
520 
521 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
522 	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
523 		mode_hdisplay;
524 	drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
525 		    max_bpp_small_joiner_ram);
526 
527 	/*
528 	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
529 	 * check, output bpp from small joiner RAM check)
530 	 */
531 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
532 
533 	/* Error out if the max bpp is less than smallest allowed valid bpp */
534 	if (bits_per_pixel < valid_dsc_bpp[0]) {
535 		drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
536 			    bits_per_pixel, valid_dsc_bpp[0]);
537 		return 0;
538 	}
539 
540 	/* Find the nearest match in the array of known BPPs from VESA */
541 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
542 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
543 			break;
544 	}
545 	bits_per_pixel = valid_dsc_bpp[i];
546 
547 	/*
548 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
549 	 * fractional part is 0
550 	 */
551 	return bits_per_pixel << 4;
552 }
553 
554 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
555 				       int mode_clock, int mode_hdisplay)
556 {
557 	u8 min_slice_count, i;
558 	int max_slice_width;
559 
560 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
561 		min_slice_count = DIV_ROUND_UP(mode_clock,
562 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
563 	else
564 		min_slice_count = DIV_ROUND_UP(mode_clock,
565 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
566 
567 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
568 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
569 		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
570 			      max_slice_width);
571 		return 0;
572 	}
573 	/* Also take into account max slice width */
574 	min_slice_count = min_t(u8, min_slice_count,
575 				DIV_ROUND_UP(mode_hdisplay,
576 					     max_slice_width));
577 
578 	/* Find the closest match to the valid slice count values */
579 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
580 		if (valid_dsc_slicecount[i] >
581 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
582 						    false))
583 			break;
584 		if (min_slice_count  <= valid_dsc_slicecount[i])
585 			return valid_dsc_slicecount[i];
586 	}
587 
588 	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
589 	return 0;
590 }
591 
592 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
593 				  int hdisplay)
594 {
595 	/*
596 	 * Older platforms don't like hdisplay==4096 with DP.
597 	 *
598 	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
599 	 * and frame counter increment), but we don't get vblank interrupts,
600 	 * and the pipe underruns immediately. The link also doesn't seem
601 	 * to get trained properly.
602 	 *
603 	 * On CHV the vblank interrupts don't seem to disappear but
604 	 * otherwise the symptoms are similar.
605 	 *
606 	 * TODO: confirm the behaviour on HSW+
607 	 */
608 	return hdisplay == 4096 && !HAS_DDI(dev_priv);
609 }
610 
611 static enum drm_mode_status
612 intel_dp_mode_valid(struct drm_connector *connector,
613 		    struct drm_display_mode *mode)
614 {
615 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
616 	struct intel_connector *intel_connector = to_intel_connector(connector);
617 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
618 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
619 	int target_clock = mode->clock;
620 	int max_rate, mode_rate, max_lanes, max_link_clock;
621 	int max_dotclk;
622 	u16 dsc_max_output_bpp = 0;
623 	u8 dsc_slice_count = 0;
624 
625 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
626 		return MODE_NO_DBLESCAN;
627 
628 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
629 
630 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
631 		if (mode->hdisplay > fixed_mode->hdisplay)
632 			return MODE_PANEL;
633 
634 		if (mode->vdisplay > fixed_mode->vdisplay)
635 			return MODE_PANEL;
636 
637 		target_clock = fixed_mode->clock;
638 	}
639 
640 	max_link_clock = intel_dp_max_link_rate(intel_dp);
641 	max_lanes = intel_dp_max_lane_count(intel_dp);
642 
643 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
644 	mode_rate = intel_dp_link_required(target_clock, 18);
645 
646 	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
647 		return MODE_H_ILLEGAL;
648 
649 	/*
650 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
651 	 * integer value since we support only integer values of bpp.
652 	 */
653 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
654 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
655 		if (intel_dp_is_edp(intel_dp)) {
656 			dsc_max_output_bpp =
657 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
658 			dsc_slice_count =
659 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
660 								true);
661 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
662 			dsc_max_output_bpp =
663 				intel_dp_dsc_get_output_bpp(dev_priv,
664 							    max_link_clock,
665 							    max_lanes,
666 							    target_clock,
667 							    mode->hdisplay) >> 4;
668 			dsc_slice_count =
669 				intel_dp_dsc_get_slice_count(intel_dp,
670 							     target_clock,
671 							     mode->hdisplay);
672 		}
673 	}
674 
675 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
676 	    target_clock > max_dotclk)
677 		return MODE_CLOCK_HIGH;
678 
679 	if (mode->clock < 10000)
680 		return MODE_CLOCK_LOW;
681 
682 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
683 		return MODE_H_ILLEGAL;
684 
685 	return intel_mode_valid_max_plane_size(dev_priv, mode);
686 }
687 
688 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
689 {
690 	int i;
691 	u32 v = 0;
692 
693 	if (src_bytes > 4)
694 		src_bytes = 4;
695 	for (i = 0; i < src_bytes; i++)
696 		v |= ((u32)src[i]) << ((3 - i) * 8);
697 	return v;
698 }
699 
700 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
701 {
702 	int i;
703 	if (dst_bytes > 4)
704 		dst_bytes = 4;
705 	for (i = 0; i < dst_bytes; i++)
706 		dst[i] = src >> ((3-i) * 8);
707 }
708 
709 static void
710 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
711 static void
712 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
713 					      bool force_disable_vdd);
714 static void
715 intel_dp_pps_init(struct intel_dp *intel_dp);
716 
717 static intel_wakeref_t
718 pps_lock(struct intel_dp *intel_dp)
719 {
720 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
721 	intel_wakeref_t wakeref;
722 
723 	/*
724 	 * See intel_power_sequencer_reset() why we need
725 	 * a power domain reference here.
726 	 */
727 	wakeref = intel_display_power_get(dev_priv,
728 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
729 
730 	mutex_lock(&dev_priv->pps_mutex);
731 
732 	return wakeref;
733 }
734 
735 static intel_wakeref_t
736 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
737 {
738 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
739 
740 	mutex_unlock(&dev_priv->pps_mutex);
741 	intel_display_power_put(dev_priv,
742 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
743 				wakeref);
744 	return 0;
745 }
746 
747 #define with_pps_lock(dp, wf) \
748 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
749 
750 static void
751 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
752 {
753 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
754 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
755 	enum pipe pipe = intel_dp->pps_pipe;
756 	bool pll_enabled, release_cl_override = false;
757 	enum dpio_phy phy = DPIO_PHY(pipe);
758 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
759 	u32 DP;
760 
761 	if (drm_WARN(&dev_priv->drm,
762 		     intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
763 		     "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
764 		     pipe_name(pipe), intel_dig_port->base.base.base.id,
765 		     intel_dig_port->base.base.name))
766 		return;
767 
768 	drm_dbg_kms(&dev_priv->drm,
769 		    "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
770 		    pipe_name(pipe), intel_dig_port->base.base.base.id,
771 		    intel_dig_port->base.base.name);
772 
773 	/* Preserve the BIOS-computed detected bit. This is
774 	 * supposed to be read-only.
775 	 */
776 	DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
777 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
778 	DP |= DP_PORT_WIDTH(1);
779 	DP |= DP_LINK_TRAIN_PAT_1;
780 
781 	if (IS_CHERRYVIEW(dev_priv))
782 		DP |= DP_PIPE_SEL_CHV(pipe);
783 	else
784 		DP |= DP_PIPE_SEL(pipe);
785 
786 	pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
787 
788 	/*
789 	 * The DPLL for the pipe must be enabled for this to work.
790 	 * So enable temporarily it if it's not already enabled.
791 	 */
792 	if (!pll_enabled) {
793 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
794 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
795 
796 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
797 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
798 			drm_err(&dev_priv->drm,
799 				"Failed to force on pll for pipe %c!\n",
800 				pipe_name(pipe));
801 			return;
802 		}
803 	}
804 
805 	/*
806 	 * Similar magic as in intel_dp_enable_port().
807 	 * We _must_ do this port enable + disable trick
808 	 * to make this power sequencer lock onto the port.
809 	 * Otherwise even VDD force bit won't work.
810 	 */
811 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
812 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
813 
814 	intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
815 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
816 
817 	intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
818 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
819 
820 	if (!pll_enabled) {
821 		vlv_force_pll_off(dev_priv, pipe);
822 
823 		if (release_cl_override)
824 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
825 	}
826 }
827 
828 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
829 {
830 	struct intel_encoder *encoder;
831 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
832 
833 	/*
834 	 * We don't have power sequencer currently.
835 	 * Pick one that's not used by other ports.
836 	 */
837 	for_each_intel_dp(&dev_priv->drm, encoder) {
838 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
839 
840 		if (encoder->type == INTEL_OUTPUT_EDP) {
841 			drm_WARN_ON(&dev_priv->drm,
842 				    intel_dp->active_pipe != INVALID_PIPE &&
843 				    intel_dp->active_pipe !=
844 				    intel_dp->pps_pipe);
845 
846 			if (intel_dp->pps_pipe != INVALID_PIPE)
847 				pipes &= ~(1 << intel_dp->pps_pipe);
848 		} else {
849 			drm_WARN_ON(&dev_priv->drm,
850 				    intel_dp->pps_pipe != INVALID_PIPE);
851 
852 			if (intel_dp->active_pipe != INVALID_PIPE)
853 				pipes &= ~(1 << intel_dp->active_pipe);
854 		}
855 	}
856 
857 	if (pipes == 0)
858 		return INVALID_PIPE;
859 
860 	return ffs(pipes) - 1;
861 }
862 
863 static enum pipe
864 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
865 {
866 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
867 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
868 	enum pipe pipe;
869 
870 	lockdep_assert_held(&dev_priv->pps_mutex);
871 
872 	/* We should never land here with regular DP ports */
873 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
874 
875 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
876 		    intel_dp->active_pipe != intel_dp->pps_pipe);
877 
878 	if (intel_dp->pps_pipe != INVALID_PIPE)
879 		return intel_dp->pps_pipe;
880 
881 	pipe = vlv_find_free_pps(dev_priv);
882 
883 	/*
884 	 * Didn't find one. This should not happen since there
885 	 * are two power sequencers and up to two eDP ports.
886 	 */
887 	if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
888 		pipe = PIPE_A;
889 
890 	vlv_steal_power_sequencer(dev_priv, pipe);
891 	intel_dp->pps_pipe = pipe;
892 
893 	drm_dbg_kms(&dev_priv->drm,
894 		    "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
895 		    pipe_name(intel_dp->pps_pipe),
896 		    intel_dig_port->base.base.base.id,
897 		    intel_dig_port->base.base.name);
898 
899 	/* init power sequencer on this pipe and port */
900 	intel_dp_init_panel_power_sequencer(intel_dp);
901 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
902 
903 	/*
904 	 * Even vdd force doesn't work until we've made
905 	 * the power sequencer lock in on the port.
906 	 */
907 	vlv_power_sequencer_kick(intel_dp);
908 
909 	return intel_dp->pps_pipe;
910 }
911 
912 static int
913 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
914 {
915 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
916 	int backlight_controller = dev_priv->vbt.backlight.controller;
917 
918 	lockdep_assert_held(&dev_priv->pps_mutex);
919 
920 	/* We should never land here with regular DP ports */
921 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
922 
923 	if (!intel_dp->pps_reset)
924 		return backlight_controller;
925 
926 	intel_dp->pps_reset = false;
927 
928 	/*
929 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
930 	 * has been setup during connector init.
931 	 */
932 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
933 
934 	return backlight_controller;
935 }
936 
937 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
938 			       enum pipe pipe);
939 
940 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
941 			       enum pipe pipe)
942 {
943 	return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
944 }
945 
946 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
947 				enum pipe pipe)
948 {
949 	return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
950 }
951 
952 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
953 			 enum pipe pipe)
954 {
955 	return true;
956 }
957 
958 static enum pipe
959 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
960 		     enum port port,
961 		     vlv_pipe_check pipe_check)
962 {
963 	enum pipe pipe;
964 
965 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
966 		u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
967 			PANEL_PORT_SELECT_MASK;
968 
969 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
970 			continue;
971 
972 		if (!pipe_check(dev_priv, pipe))
973 			continue;
974 
975 		return pipe;
976 	}
977 
978 	return INVALID_PIPE;
979 }
980 
981 static void
982 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
983 {
984 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
985 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
986 	enum port port = intel_dig_port->base.port;
987 
988 	lockdep_assert_held(&dev_priv->pps_mutex);
989 
990 	/* try to find a pipe with this port selected */
991 	/* first pick one where the panel is on */
992 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
993 						  vlv_pipe_has_pp_on);
994 	/* didn't find one? pick one where vdd is on */
995 	if (intel_dp->pps_pipe == INVALID_PIPE)
996 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
997 							  vlv_pipe_has_vdd_on);
998 	/* didn't find one? pick one with just the correct port */
999 	if (intel_dp->pps_pipe == INVALID_PIPE)
1000 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1001 							  vlv_pipe_any);
1002 
1003 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1004 	if (intel_dp->pps_pipe == INVALID_PIPE) {
1005 		drm_dbg_kms(&dev_priv->drm,
1006 			    "no initial power sequencer for [ENCODER:%d:%s]\n",
1007 			    intel_dig_port->base.base.base.id,
1008 			    intel_dig_port->base.base.name);
1009 		return;
1010 	}
1011 
1012 	drm_dbg_kms(&dev_priv->drm,
1013 		    "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1014 		    intel_dig_port->base.base.base.id,
1015 		    intel_dig_port->base.base.name,
1016 		    pipe_name(intel_dp->pps_pipe));
1017 
1018 	intel_dp_init_panel_power_sequencer(intel_dp);
1019 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1020 }
1021 
1022 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1023 {
1024 	struct intel_encoder *encoder;
1025 
1026 	if (drm_WARN_ON(&dev_priv->drm,
1027 			!(IS_VALLEYVIEW(dev_priv) ||
1028 			  IS_CHERRYVIEW(dev_priv) ||
1029 			  IS_GEN9_LP(dev_priv))))
1030 		return;
1031 
1032 	/*
1033 	 * We can't grab pps_mutex here due to deadlock with power_domain
1034 	 * mutex when power_domain functions are called while holding pps_mutex.
1035 	 * That also means that in order to use pps_pipe the code needs to
1036 	 * hold both a power domain reference and pps_mutex, and the power domain
1037 	 * reference get/put must be done while _not_ holding pps_mutex.
1038 	 * pps_{lock,unlock}() do these steps in the correct order, so one
1039 	 * should use them always.
1040 	 */
1041 
1042 	for_each_intel_dp(&dev_priv->drm, encoder) {
1043 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1044 
1045 		drm_WARN_ON(&dev_priv->drm,
1046 			    intel_dp->active_pipe != INVALID_PIPE);
1047 
1048 		if (encoder->type != INTEL_OUTPUT_EDP)
1049 			continue;
1050 
1051 		if (IS_GEN9_LP(dev_priv))
1052 			intel_dp->pps_reset = true;
1053 		else
1054 			intel_dp->pps_pipe = INVALID_PIPE;
1055 	}
1056 }
1057 
1058 struct pps_registers {
1059 	i915_reg_t pp_ctrl;
1060 	i915_reg_t pp_stat;
1061 	i915_reg_t pp_on;
1062 	i915_reg_t pp_off;
1063 	i915_reg_t pp_div;
1064 };
1065 
1066 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1067 				    struct pps_registers *regs)
1068 {
1069 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1070 	int pps_idx = 0;
1071 
1072 	memset(regs, 0, sizeof(*regs));
1073 
1074 	if (IS_GEN9_LP(dev_priv))
1075 		pps_idx = bxt_power_sequencer_idx(intel_dp);
1076 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1077 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1078 
1079 	regs->pp_ctrl = PP_CONTROL(pps_idx);
1080 	regs->pp_stat = PP_STATUS(pps_idx);
1081 	regs->pp_on = PP_ON_DELAYS(pps_idx);
1082 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1083 
1084 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1085 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1086 		regs->pp_div = INVALID_MMIO_REG;
1087 	else
1088 		regs->pp_div = PP_DIVISOR(pps_idx);
1089 }
1090 
1091 static i915_reg_t
1092 _pp_ctrl_reg(struct intel_dp *intel_dp)
1093 {
1094 	struct pps_registers regs;
1095 
1096 	intel_pps_get_registers(intel_dp, &regs);
1097 
1098 	return regs.pp_ctrl;
1099 }
1100 
1101 static i915_reg_t
1102 _pp_stat_reg(struct intel_dp *intel_dp)
1103 {
1104 	struct pps_registers regs;
1105 
1106 	intel_pps_get_registers(intel_dp, &regs);
1107 
1108 	return regs.pp_stat;
1109 }
1110 
1111 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1112    This function only applicable when panel PM state is not to be tracked */
1113 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1114 			      void *unused)
1115 {
1116 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1117 						 edp_notifier);
1118 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1119 	intel_wakeref_t wakeref;
1120 
1121 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1122 		return 0;
1123 
1124 	with_pps_lock(intel_dp, wakeref) {
1125 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1126 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1127 			i915_reg_t pp_ctrl_reg, pp_div_reg;
1128 			u32 pp_div;
1129 
1130 			pp_ctrl_reg = PP_CONTROL(pipe);
1131 			pp_div_reg  = PP_DIVISOR(pipe);
1132 			pp_div = intel_de_read(dev_priv, pp_div_reg);
1133 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
1134 
1135 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1136 			intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1137 			intel_de_write(dev_priv, pp_ctrl_reg,
1138 				       PANEL_UNLOCK_REGS);
1139 			msleep(intel_dp->panel_power_cycle_delay);
1140 		}
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1147 {
1148 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1149 
1150 	lockdep_assert_held(&dev_priv->pps_mutex);
1151 
1152 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1153 	    intel_dp->pps_pipe == INVALID_PIPE)
1154 		return false;
1155 
1156 	return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1157 }
1158 
1159 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1160 {
1161 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1162 
1163 	lockdep_assert_held(&dev_priv->pps_mutex);
1164 
1165 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1166 	    intel_dp->pps_pipe == INVALID_PIPE)
1167 		return false;
1168 
1169 	return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1170 }
1171 
1172 static void
1173 intel_dp_check_edp(struct intel_dp *intel_dp)
1174 {
1175 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1176 
1177 	if (!intel_dp_is_edp(intel_dp))
1178 		return;
1179 
1180 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1181 		drm_WARN(&dev_priv->drm, 1,
1182 			 "eDP powered off while attempting aux channel communication.\n");
1183 		drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1184 			    intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1185 			    intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1186 	}
1187 }
1188 
1189 static u32
1190 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1191 {
1192 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1193 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1194 	const unsigned int timeout_ms = 10;
1195 	u32 status;
1196 	bool done;
1197 
1198 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1199 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1200 				  msecs_to_jiffies_timeout(timeout_ms));
1201 
1202 	/* just trace the final value */
1203 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1204 
1205 	if (!done)
1206 		drm_err(&i915->drm,
1207 			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
1208 			intel_dp->aux.name, timeout_ms, status);
1209 #undef C
1210 
1211 	return status;
1212 }
1213 
1214 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1215 {
1216 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1217 
1218 	if (index)
1219 		return 0;
1220 
1221 	/*
1222 	 * The clock divider is based off the hrawclk, and would like to run at
1223 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1224 	 */
1225 	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1226 }
1227 
1228 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1229 {
1230 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1231 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1232 	u32 freq;
1233 
1234 	if (index)
1235 		return 0;
1236 
1237 	/*
1238 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1239 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1240 	 * divide by 2000 and use that
1241 	 */
1242 	if (dig_port->aux_ch == AUX_CH_A)
1243 		freq = dev_priv->cdclk.hw.cdclk;
1244 	else
1245 		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1246 	return DIV_ROUND_CLOSEST(freq, 2000);
1247 }
1248 
1249 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1250 {
1251 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1252 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1253 
1254 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1255 		/* Workaround for non-ULT HSW */
1256 		switch (index) {
1257 		case 0: return 63;
1258 		case 1: return 72;
1259 		default: return 0;
1260 		}
1261 	}
1262 
1263 	return ilk_get_aux_clock_divider(intel_dp, index);
1264 }
1265 
1266 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1267 {
1268 	/*
1269 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1270 	 * derive the clock from CDCLK automatically). We still implement the
1271 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1272 	 */
1273 	return index ? 0 : 1;
1274 }
1275 
1276 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1277 				int send_bytes,
1278 				u32 aux_clock_divider)
1279 {
1280 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1281 	struct drm_i915_private *dev_priv =
1282 			to_i915(intel_dig_port->base.base.dev);
1283 	u32 precharge, timeout;
1284 
1285 	if (IS_GEN(dev_priv, 6))
1286 		precharge = 3;
1287 	else
1288 		precharge = 5;
1289 
1290 	if (IS_BROADWELL(dev_priv))
1291 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1292 	else
1293 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1294 
1295 	return DP_AUX_CH_CTL_SEND_BUSY |
1296 	       DP_AUX_CH_CTL_DONE |
1297 	       DP_AUX_CH_CTL_INTERRUPT |
1298 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1299 	       timeout |
1300 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1301 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1302 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1303 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1304 }
1305 
1306 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1307 				int send_bytes,
1308 				u32 unused)
1309 {
1310 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1311 	struct drm_i915_private *i915 =
1312 			to_i915(intel_dig_port->base.base.dev);
1313 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1314 	u32 ret;
1315 
1316 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1317 	      DP_AUX_CH_CTL_DONE |
1318 	      DP_AUX_CH_CTL_INTERRUPT |
1319 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1320 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1321 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1322 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1323 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1324 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1325 
1326 	if (intel_phy_is_tc(i915, phy) &&
1327 	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1328 		ret |= DP_AUX_CH_CTL_TBT_IO;
1329 
1330 	return ret;
1331 }
1332 
1333 static int
1334 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1335 		  const u8 *send, int send_bytes,
1336 		  u8 *recv, int recv_size,
1337 		  u32 aux_send_ctl_flags)
1338 {
1339 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1340 	struct drm_i915_private *i915 =
1341 			to_i915(intel_dig_port->base.base.dev);
1342 	struct intel_uncore *uncore = &i915->uncore;
1343 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1344 	bool is_tc_port = intel_phy_is_tc(i915, phy);
1345 	i915_reg_t ch_ctl, ch_data[5];
1346 	u32 aux_clock_divider;
1347 	enum intel_display_power_domain aux_domain =
1348 		intel_aux_power_domain(intel_dig_port);
1349 	intel_wakeref_t aux_wakeref;
1350 	intel_wakeref_t pps_wakeref;
1351 	int i, ret, recv_bytes;
1352 	int try, clock = 0;
1353 	u32 status;
1354 	bool vdd;
1355 
1356 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1357 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1358 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1359 
1360 	if (is_tc_port)
1361 		intel_tc_port_lock(intel_dig_port);
1362 
1363 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1364 	pps_wakeref = pps_lock(intel_dp);
1365 
1366 	/*
1367 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1368 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1369 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1370 	 * ourselves.
1371 	 */
1372 	vdd = edp_panel_vdd_on(intel_dp);
1373 
1374 	/* dp aux is extremely sensitive to irq latency, hence request the
1375 	 * lowest possible wakeup latency and so prevent the cpu from going into
1376 	 * deep sleep states.
1377 	 */
1378 	pm_qos_update_request(&i915->pm_qos, 0);
1379 
1380 	intel_dp_check_edp(intel_dp);
1381 
1382 	/* Try to wait for any previous AUX channel activity */
1383 	for (try = 0; try < 3; try++) {
1384 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1385 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1386 			break;
1387 		msleep(1);
1388 	}
1389 	/* just trace the final value */
1390 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1391 
1392 	if (try == 3) {
1393 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1394 
1395 		if (status != intel_dp->aux_busy_last_status) {
1396 			drm_WARN(&i915->drm, 1,
1397 				 "%s: not started (status 0x%08x)\n",
1398 				 intel_dp->aux.name, status);
1399 			intel_dp->aux_busy_last_status = status;
1400 		}
1401 
1402 		ret = -EBUSY;
1403 		goto out;
1404 	}
1405 
1406 	/* Only 5 data registers! */
1407 	if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1408 		ret = -E2BIG;
1409 		goto out;
1410 	}
1411 
1412 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1413 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1414 							  send_bytes,
1415 							  aux_clock_divider);
1416 
1417 		send_ctl |= aux_send_ctl_flags;
1418 
1419 		/* Must try at least 3 times according to DP spec */
1420 		for (try = 0; try < 5; try++) {
1421 			/* Load the send data into the aux channel data registers */
1422 			for (i = 0; i < send_bytes; i += 4)
1423 				intel_uncore_write(uncore,
1424 						   ch_data[i >> 2],
1425 						   intel_dp_pack_aux(send + i,
1426 								     send_bytes - i));
1427 
1428 			/* Send the command and wait for it to complete */
1429 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1430 
1431 			status = intel_dp_aux_wait_done(intel_dp);
1432 
1433 			/* Clear done status and any errors */
1434 			intel_uncore_write(uncore,
1435 					   ch_ctl,
1436 					   status |
1437 					   DP_AUX_CH_CTL_DONE |
1438 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1439 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1440 
1441 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1442 			 *   400us delay required for errors and timeouts
1443 			 *   Timeout errors from the HW already meet this
1444 			 *   requirement so skip to next iteration
1445 			 */
1446 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1447 				continue;
1448 
1449 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1450 				usleep_range(400, 500);
1451 				continue;
1452 			}
1453 			if (status & DP_AUX_CH_CTL_DONE)
1454 				goto done;
1455 		}
1456 	}
1457 
1458 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1459 		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1460 			intel_dp->aux.name, status);
1461 		ret = -EBUSY;
1462 		goto out;
1463 	}
1464 
1465 done:
1466 	/* Check for timeout or receive error.
1467 	 * Timeouts occur when the sink is not connected
1468 	 */
1469 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1470 		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1471 			intel_dp->aux.name, status);
1472 		ret = -EIO;
1473 		goto out;
1474 	}
1475 
1476 	/* Timeouts occur when the device isn't connected, so they're
1477 	 * "normal" -- don't fill the kernel log with these */
1478 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1479 		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1480 			    intel_dp->aux.name, status);
1481 		ret = -ETIMEDOUT;
1482 		goto out;
1483 	}
1484 
1485 	/* Unload any bytes sent back from the other side */
1486 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1487 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1488 
1489 	/*
1490 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1491 	 * We have no idea of what happened so we return -EBUSY so
1492 	 * drm layer takes care for the necessary retries.
1493 	 */
1494 	if (recv_bytes == 0 || recv_bytes > 20) {
1495 		drm_dbg_kms(&i915->drm,
1496 			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
1497 			    intel_dp->aux.name, recv_bytes);
1498 		ret = -EBUSY;
1499 		goto out;
1500 	}
1501 
1502 	if (recv_bytes > recv_size)
1503 		recv_bytes = recv_size;
1504 
1505 	for (i = 0; i < recv_bytes; i += 4)
1506 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1507 				    recv + i, recv_bytes - i);
1508 
1509 	ret = recv_bytes;
1510 out:
1511 	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1512 
1513 	if (vdd)
1514 		edp_panel_vdd_off(intel_dp, false);
1515 
1516 	pps_unlock(intel_dp, pps_wakeref);
1517 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1518 
1519 	if (is_tc_port)
1520 		intel_tc_port_unlock(intel_dig_port);
1521 
1522 	return ret;
1523 }
1524 
1525 #define BARE_ADDRESS_SIZE	3
1526 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1527 
1528 static void
1529 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1530 		    const struct drm_dp_aux_msg *msg)
1531 {
1532 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1533 	txbuf[1] = (msg->address >> 8) & 0xff;
1534 	txbuf[2] = msg->address & 0xff;
1535 	txbuf[3] = msg->size - 1;
1536 }
1537 
1538 static ssize_t
1539 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1540 {
1541 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1542 	u8 txbuf[20], rxbuf[20];
1543 	size_t txsize, rxsize;
1544 	int ret;
1545 
1546 	intel_dp_aux_header(txbuf, msg);
1547 
1548 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1549 	case DP_AUX_NATIVE_WRITE:
1550 	case DP_AUX_I2C_WRITE:
1551 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1552 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1553 		rxsize = 2; /* 0 or 1 data bytes */
1554 
1555 		if (WARN_ON(txsize > 20))
1556 			return -E2BIG;
1557 
1558 		WARN_ON(!msg->buffer != !msg->size);
1559 
1560 		if (msg->buffer)
1561 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1562 
1563 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1564 					rxbuf, rxsize, 0);
1565 		if (ret > 0) {
1566 			msg->reply = rxbuf[0] >> 4;
1567 
1568 			if (ret > 1) {
1569 				/* Number of bytes written in a short write. */
1570 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1571 			} else {
1572 				/* Return payload size. */
1573 				ret = msg->size;
1574 			}
1575 		}
1576 		break;
1577 
1578 	case DP_AUX_NATIVE_READ:
1579 	case DP_AUX_I2C_READ:
1580 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1581 		rxsize = msg->size + 1;
1582 
1583 		if (WARN_ON(rxsize > 20))
1584 			return -E2BIG;
1585 
1586 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1587 					rxbuf, rxsize, 0);
1588 		if (ret > 0) {
1589 			msg->reply = rxbuf[0] >> 4;
1590 			/*
1591 			 * Assume happy day, and copy the data. The caller is
1592 			 * expected to check msg->reply before touching it.
1593 			 *
1594 			 * Return payload size.
1595 			 */
1596 			ret--;
1597 			memcpy(msg->buffer, rxbuf + 1, ret);
1598 		}
1599 		break;
1600 
1601 	default:
1602 		ret = -EINVAL;
1603 		break;
1604 	}
1605 
1606 	return ret;
1607 }
1608 
1609 
1610 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1611 {
1612 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1613 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1614 	enum aux_ch aux_ch = dig_port->aux_ch;
1615 
1616 	switch (aux_ch) {
1617 	case AUX_CH_B:
1618 	case AUX_CH_C:
1619 	case AUX_CH_D:
1620 		return DP_AUX_CH_CTL(aux_ch);
1621 	default:
1622 		MISSING_CASE(aux_ch);
1623 		return DP_AUX_CH_CTL(AUX_CH_B);
1624 	}
1625 }
1626 
1627 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1628 {
1629 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1630 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1631 	enum aux_ch aux_ch = dig_port->aux_ch;
1632 
1633 	switch (aux_ch) {
1634 	case AUX_CH_B:
1635 	case AUX_CH_C:
1636 	case AUX_CH_D:
1637 		return DP_AUX_CH_DATA(aux_ch, index);
1638 	default:
1639 		MISSING_CASE(aux_ch);
1640 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1641 	}
1642 }
1643 
1644 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1645 {
1646 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1647 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1648 	enum aux_ch aux_ch = dig_port->aux_ch;
1649 
1650 	switch (aux_ch) {
1651 	case AUX_CH_A:
1652 		return DP_AUX_CH_CTL(aux_ch);
1653 	case AUX_CH_B:
1654 	case AUX_CH_C:
1655 	case AUX_CH_D:
1656 		return PCH_DP_AUX_CH_CTL(aux_ch);
1657 	default:
1658 		MISSING_CASE(aux_ch);
1659 		return DP_AUX_CH_CTL(AUX_CH_A);
1660 	}
1661 }
1662 
1663 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1664 {
1665 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1666 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1667 	enum aux_ch aux_ch = dig_port->aux_ch;
1668 
1669 	switch (aux_ch) {
1670 	case AUX_CH_A:
1671 		return DP_AUX_CH_DATA(aux_ch, index);
1672 	case AUX_CH_B:
1673 	case AUX_CH_C:
1674 	case AUX_CH_D:
1675 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1676 	default:
1677 		MISSING_CASE(aux_ch);
1678 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1679 	}
1680 }
1681 
1682 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1683 {
1684 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1685 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1686 	enum aux_ch aux_ch = dig_port->aux_ch;
1687 
1688 	switch (aux_ch) {
1689 	case AUX_CH_A:
1690 	case AUX_CH_B:
1691 	case AUX_CH_C:
1692 	case AUX_CH_D:
1693 	case AUX_CH_E:
1694 	case AUX_CH_F:
1695 	case AUX_CH_G:
1696 		return DP_AUX_CH_CTL(aux_ch);
1697 	default:
1698 		MISSING_CASE(aux_ch);
1699 		return DP_AUX_CH_CTL(AUX_CH_A);
1700 	}
1701 }
1702 
1703 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1704 {
1705 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1706 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1707 	enum aux_ch aux_ch = dig_port->aux_ch;
1708 
1709 	switch (aux_ch) {
1710 	case AUX_CH_A:
1711 	case AUX_CH_B:
1712 	case AUX_CH_C:
1713 	case AUX_CH_D:
1714 	case AUX_CH_E:
1715 	case AUX_CH_F:
1716 	case AUX_CH_G:
1717 		return DP_AUX_CH_DATA(aux_ch, index);
1718 	default:
1719 		MISSING_CASE(aux_ch);
1720 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1721 	}
1722 }
1723 
1724 static void
1725 intel_dp_aux_fini(struct intel_dp *intel_dp)
1726 {
1727 	kfree(intel_dp->aux.name);
1728 }
1729 
1730 static void
1731 intel_dp_aux_init(struct intel_dp *intel_dp)
1732 {
1733 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1734 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1735 	struct intel_encoder *encoder = &dig_port->base;
1736 
1737 	if (INTEL_GEN(dev_priv) >= 9) {
1738 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1739 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1740 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1741 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1742 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1743 	} else {
1744 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1745 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1746 	}
1747 
1748 	if (INTEL_GEN(dev_priv) >= 9)
1749 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1750 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1751 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1752 	else if (HAS_PCH_SPLIT(dev_priv))
1753 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1754 	else
1755 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1756 
1757 	if (INTEL_GEN(dev_priv) >= 9)
1758 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1759 	else
1760 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1761 
1762 	drm_dp_aux_init(&intel_dp->aux);
1763 
1764 	/* Failure to allocate our preferred name is not critical */
1765 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1766 				       aux_ch_name(dig_port->aux_ch),
1767 				       port_name(encoder->port));
1768 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1769 }
1770 
1771 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1772 {
1773 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1774 
1775 	return max_rate >= 540000;
1776 }
1777 
1778 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1779 {
1780 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1781 
1782 	return max_rate >= 810000;
1783 }
1784 
1785 static void
1786 intel_dp_set_clock(struct intel_encoder *encoder,
1787 		   struct intel_crtc_state *pipe_config)
1788 {
1789 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1790 	const struct dp_link_dpll *divisor = NULL;
1791 	int i, count = 0;
1792 
1793 	if (IS_G4X(dev_priv)) {
1794 		divisor = g4x_dpll;
1795 		count = ARRAY_SIZE(g4x_dpll);
1796 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1797 		divisor = pch_dpll;
1798 		count = ARRAY_SIZE(pch_dpll);
1799 	} else if (IS_CHERRYVIEW(dev_priv)) {
1800 		divisor = chv_dpll;
1801 		count = ARRAY_SIZE(chv_dpll);
1802 	} else if (IS_VALLEYVIEW(dev_priv)) {
1803 		divisor = vlv_dpll;
1804 		count = ARRAY_SIZE(vlv_dpll);
1805 	}
1806 
1807 	if (divisor && count) {
1808 		for (i = 0; i < count; i++) {
1809 			if (pipe_config->port_clock == divisor[i].clock) {
1810 				pipe_config->dpll = divisor[i].dpll;
1811 				pipe_config->clock_set = true;
1812 				break;
1813 			}
1814 		}
1815 	}
1816 }
1817 
1818 static void snprintf_int_array(char *str, size_t len,
1819 			       const int *array, int nelem)
1820 {
1821 	int i;
1822 
1823 	str[0] = '\0';
1824 
1825 	for (i = 0; i < nelem; i++) {
1826 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1827 		if (r >= len)
1828 			return;
1829 		str += r;
1830 		len -= r;
1831 	}
1832 }
1833 
1834 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1835 {
1836 	char str[128]; /* FIXME: too big for stack? */
1837 
1838 	if (!drm_debug_enabled(DRM_UT_KMS))
1839 		return;
1840 
1841 	snprintf_int_array(str, sizeof(str),
1842 			   intel_dp->source_rates, intel_dp->num_source_rates);
1843 	DRM_DEBUG_KMS("source rates: %s\n", str);
1844 
1845 	snprintf_int_array(str, sizeof(str),
1846 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1847 	DRM_DEBUG_KMS("sink rates: %s\n", str);
1848 
1849 	snprintf_int_array(str, sizeof(str),
1850 			   intel_dp->common_rates, intel_dp->num_common_rates);
1851 	DRM_DEBUG_KMS("common rates: %s\n", str);
1852 }
1853 
1854 int
1855 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1856 {
1857 	int len;
1858 
1859 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1860 	if (WARN_ON(len <= 0))
1861 		return 162000;
1862 
1863 	return intel_dp->common_rates[len - 1];
1864 }
1865 
1866 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1867 {
1868 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1869 				    intel_dp->num_sink_rates, rate);
1870 
1871 	if (WARN_ON(i < 0))
1872 		i = 0;
1873 
1874 	return i;
1875 }
1876 
1877 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1878 			   u8 *link_bw, u8 *rate_select)
1879 {
1880 	/* eDP 1.4 rate select method. */
1881 	if (intel_dp->use_rate_select) {
1882 		*link_bw = 0;
1883 		*rate_select =
1884 			intel_dp_rate_select(intel_dp, port_clock);
1885 	} else {
1886 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1887 		*rate_select = 0;
1888 	}
1889 }
1890 
1891 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1892 					 const struct intel_crtc_state *pipe_config)
1893 {
1894 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1895 
1896 	/* On TGL, FEC is supported on all Pipes */
1897 	if (INTEL_GEN(dev_priv) >= 12)
1898 		return true;
1899 
1900 	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1901 		return true;
1902 
1903 	return false;
1904 }
1905 
1906 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1907 				  const struct intel_crtc_state *pipe_config)
1908 {
1909 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1910 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
1911 }
1912 
1913 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1914 				  const struct intel_crtc_state *crtc_state)
1915 {
1916 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1917 
1918 	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1919 		return false;
1920 
1921 	return intel_dsc_source_support(encoder, crtc_state) &&
1922 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1923 }
1924 
1925 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1926 				struct intel_crtc_state *pipe_config)
1927 {
1928 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1929 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1930 	int bpp, bpc;
1931 
1932 	bpp = pipe_config->pipe_bpp;
1933 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1934 
1935 	if (bpc > 0)
1936 		bpp = min(bpp, 3*bpc);
1937 
1938 	if (intel_dp_is_edp(intel_dp)) {
1939 		/* Get bpp from vbt only for panels that dont have bpp in edid */
1940 		if (intel_connector->base.display_info.bpc == 0 &&
1941 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1942 			drm_dbg_kms(&dev_priv->drm,
1943 				    "clamping bpp for eDP panel to BIOS-provided %i\n",
1944 				    dev_priv->vbt.edp.bpp);
1945 			bpp = dev_priv->vbt.edp.bpp;
1946 		}
1947 	}
1948 
1949 	return bpp;
1950 }
1951 
1952 /* Adjust link config limits based on compliance test requests. */
1953 void
1954 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1955 				  struct intel_crtc_state *pipe_config,
1956 				  struct link_config_limits *limits)
1957 {
1958 	/* For DP Compliance we override the computed bpp for the pipe */
1959 	if (intel_dp->compliance.test_data.bpc != 0) {
1960 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
1961 
1962 		limits->min_bpp = limits->max_bpp = bpp;
1963 		pipe_config->dither_force_disable = bpp == 6 * 3;
1964 
1965 		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1966 	}
1967 
1968 	/* Use values requested by Compliance Test Request */
1969 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1970 		int index;
1971 
1972 		/* Validate the compliance test data since max values
1973 		 * might have changed due to link train fallback.
1974 		 */
1975 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1976 					       intel_dp->compliance.test_lane_count)) {
1977 			index = intel_dp_rate_index(intel_dp->common_rates,
1978 						    intel_dp->num_common_rates,
1979 						    intel_dp->compliance.test_link_rate);
1980 			if (index >= 0)
1981 				limits->min_clock = limits->max_clock = index;
1982 			limits->min_lane_count = limits->max_lane_count =
1983 				intel_dp->compliance.test_lane_count;
1984 		}
1985 	}
1986 }
1987 
1988 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1989 {
1990 	/*
1991 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1992 	 * format of the number of bytes per pixel will be half the number
1993 	 * of bytes of RGB pixel.
1994 	 */
1995 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1996 		bpp /= 2;
1997 
1998 	return bpp;
1999 }
2000 
2001 /* Optimize link config in order: max bpp, min clock, min lanes */
2002 static int
2003 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2004 				  struct intel_crtc_state *pipe_config,
2005 				  const struct link_config_limits *limits)
2006 {
2007 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2008 	int bpp, clock, lane_count;
2009 	int mode_rate, link_clock, link_avail;
2010 
2011 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2012 		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2013 
2014 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2015 						   output_bpp);
2016 
2017 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2018 			for (lane_count = limits->min_lane_count;
2019 			     lane_count <= limits->max_lane_count;
2020 			     lane_count <<= 1) {
2021 				link_clock = intel_dp->common_rates[clock];
2022 				link_avail = intel_dp_max_data_rate(link_clock,
2023 								    lane_count);
2024 
2025 				if (mode_rate <= link_avail) {
2026 					pipe_config->lane_count = lane_count;
2027 					pipe_config->pipe_bpp = bpp;
2028 					pipe_config->port_clock = link_clock;
2029 
2030 					return 0;
2031 				}
2032 			}
2033 		}
2034 	}
2035 
2036 	return -EINVAL;
2037 }
2038 
2039 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2040 {
2041 	int i, num_bpc;
2042 	u8 dsc_bpc[3] = {0};
2043 
2044 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2045 						       dsc_bpc);
2046 	for (i = 0; i < num_bpc; i++) {
2047 		if (dsc_max_bpc >= dsc_bpc[i])
2048 			return dsc_bpc[i] * 3;
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 #define DSC_SUPPORTED_VERSION_MIN		1
2055 
2056 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2057 				       struct intel_crtc_state *crtc_state)
2058 {
2059 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2060 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2061 	u8 line_buf_depth;
2062 	int ret;
2063 
2064 	ret = intel_dsc_compute_params(encoder, crtc_state);
2065 	if (ret)
2066 		return ret;
2067 
2068 	/*
2069 	 * Slice Height of 8 works for all currently available panels. So start
2070 	 * with that if pic_height is an integral multiple of 8. Eventually add
2071 	 * logic to try multiple slice heights.
2072 	 */
2073 	if (vdsc_cfg->pic_height % 8 == 0)
2074 		vdsc_cfg->slice_height = 8;
2075 	else if (vdsc_cfg->pic_height % 4 == 0)
2076 		vdsc_cfg->slice_height = 4;
2077 	else
2078 		vdsc_cfg->slice_height = 2;
2079 
2080 	vdsc_cfg->dsc_version_major =
2081 		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2082 		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2083 	vdsc_cfg->dsc_version_minor =
2084 		min(DSC_SUPPORTED_VERSION_MIN,
2085 		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2086 		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2087 
2088 	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2089 		DP_DSC_RGB;
2090 
2091 	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2092 	if (!line_buf_depth) {
2093 		DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n");
2094 		return -EINVAL;
2095 	}
2096 
2097 	if (vdsc_cfg->dsc_version_minor == 2)
2098 		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2099 			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2100 	else
2101 		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2102 			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2103 
2104 	vdsc_cfg->block_pred_enable =
2105 		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2106 		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2107 
2108 	return drm_dsc_compute_rc_parameters(vdsc_cfg);
2109 }
2110 
2111 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2112 				       struct intel_crtc_state *pipe_config,
2113 				       struct drm_connector_state *conn_state,
2114 				       struct link_config_limits *limits)
2115 {
2116 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2117 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2118 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2119 	u8 dsc_max_bpc;
2120 	int pipe_bpp;
2121 	int ret;
2122 
2123 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2124 		intel_dp_supports_fec(intel_dp, pipe_config);
2125 
2126 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2127 		return -EINVAL;
2128 
2129 	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2130 	if (INTEL_GEN(dev_priv) >= 12)
2131 		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2132 	else
2133 		dsc_max_bpc = min_t(u8, 10,
2134 				    conn_state->max_requested_bpc);
2135 
2136 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2137 
2138 	/* Min Input BPC for ICL+ is 8 */
2139 	if (pipe_bpp < 8 * 3) {
2140 		drm_dbg_kms(&dev_priv->drm,
2141 			    "No DSC support for less than 8bpc\n");
2142 		return -EINVAL;
2143 	}
2144 
2145 	/*
2146 	 * For now enable DSC for max bpp, max link rate, max lane count.
2147 	 * Optimize this later for the minimum possible link rate/lane count
2148 	 * with DSC enabled for the requested mode.
2149 	 */
2150 	pipe_config->pipe_bpp = pipe_bpp;
2151 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2152 	pipe_config->lane_count = limits->max_lane_count;
2153 
2154 	if (intel_dp_is_edp(intel_dp)) {
2155 		pipe_config->dsc.compressed_bpp =
2156 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2157 			      pipe_config->pipe_bpp);
2158 		pipe_config->dsc.slice_count =
2159 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2160 							true);
2161 	} else {
2162 		u16 dsc_max_output_bpp;
2163 		u8 dsc_dp_slice_count;
2164 
2165 		dsc_max_output_bpp =
2166 			intel_dp_dsc_get_output_bpp(dev_priv,
2167 						    pipe_config->port_clock,
2168 						    pipe_config->lane_count,
2169 						    adjusted_mode->crtc_clock,
2170 						    adjusted_mode->crtc_hdisplay);
2171 		dsc_dp_slice_count =
2172 			intel_dp_dsc_get_slice_count(intel_dp,
2173 						     adjusted_mode->crtc_clock,
2174 						     adjusted_mode->crtc_hdisplay);
2175 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2176 			drm_dbg_kms(&dev_priv->drm,
2177 				    "Compressed BPP/Slice Count not supported\n");
2178 			return -EINVAL;
2179 		}
2180 		pipe_config->dsc.compressed_bpp = min_t(u16,
2181 							       dsc_max_output_bpp >> 4,
2182 							       pipe_config->pipe_bpp);
2183 		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2184 	}
2185 	/*
2186 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2187 	 * is greater than the maximum Cdclock and if slice count is even
2188 	 * then we need to use 2 VDSC instances.
2189 	 */
2190 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2191 		if (pipe_config->dsc.slice_count > 1) {
2192 			pipe_config->dsc.dsc_split = true;
2193 		} else {
2194 			drm_dbg_kms(&dev_priv->drm,
2195 				    "Cannot split stream to use 2 VDSC instances\n");
2196 			return -EINVAL;
2197 		}
2198 	}
2199 
2200 	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2201 	if (ret < 0) {
2202 		drm_dbg_kms(&dev_priv->drm,
2203 			    "Cannot compute valid DSC parameters for Input Bpp = %d "
2204 			    "Compressed BPP = %d\n",
2205 			    pipe_config->pipe_bpp,
2206 			    pipe_config->dsc.compressed_bpp);
2207 		return ret;
2208 	}
2209 
2210 	pipe_config->dsc.compression_enable = true;
2211 	drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2212 		    "Compressed Bpp = %d Slice Count = %d\n",
2213 		    pipe_config->pipe_bpp,
2214 		    pipe_config->dsc.compressed_bpp,
2215 		    pipe_config->dsc.slice_count);
2216 
2217 	return 0;
2218 }
2219 
2220 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2221 {
2222 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2223 		return 6 * 3;
2224 	else
2225 		return 8 * 3;
2226 }
2227 
2228 static int
2229 intel_dp_compute_link_config(struct intel_encoder *encoder,
2230 			     struct intel_crtc_state *pipe_config,
2231 			     struct drm_connector_state *conn_state)
2232 {
2233 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2234 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2235 	struct link_config_limits limits;
2236 	int common_len;
2237 	int ret;
2238 
2239 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2240 						    intel_dp->max_link_rate);
2241 
2242 	/* No common link rates between source and sink */
2243 	drm_WARN_ON(encoder->base.dev, common_len <= 0);
2244 
2245 	limits.min_clock = 0;
2246 	limits.max_clock = common_len - 1;
2247 
2248 	limits.min_lane_count = 1;
2249 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2250 
2251 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2252 	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2253 
2254 	if (intel_dp_is_edp(intel_dp)) {
2255 		/*
2256 		 * Use the maximum clock and number of lanes the eDP panel
2257 		 * advertizes being capable of. The panels are generally
2258 		 * designed to support only a single clock and lane
2259 		 * configuration, and typically these values correspond to the
2260 		 * native resolution of the panel.
2261 		 */
2262 		limits.min_lane_count = limits.max_lane_count;
2263 		limits.min_clock = limits.max_clock;
2264 	}
2265 
2266 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2267 
2268 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
2269 		      "max rate %d max bpp %d pixel clock %iKHz\n",
2270 		      limits.max_lane_count,
2271 		      intel_dp->common_rates[limits.max_clock],
2272 		      limits.max_bpp, adjusted_mode->crtc_clock);
2273 
2274 	/*
2275 	 * Optimize for slow and wide. This is the place to add alternative
2276 	 * optimization policy.
2277 	 */
2278 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2279 
2280 	/* enable compression if the mode doesn't fit available BW */
2281 	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2282 	if (ret || intel_dp->force_dsc_en) {
2283 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2284 						  conn_state, &limits);
2285 		if (ret < 0)
2286 			return ret;
2287 	}
2288 
2289 	if (pipe_config->dsc.compression_enable) {
2290 		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2291 			      pipe_config->lane_count, pipe_config->port_clock,
2292 			      pipe_config->pipe_bpp,
2293 			      pipe_config->dsc.compressed_bpp);
2294 
2295 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2296 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2297 						     pipe_config->dsc.compressed_bpp),
2298 			      intel_dp_max_data_rate(pipe_config->port_clock,
2299 						     pipe_config->lane_count));
2300 	} else {
2301 		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2302 			      pipe_config->lane_count, pipe_config->port_clock,
2303 			      pipe_config->pipe_bpp);
2304 
2305 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2306 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2307 						     pipe_config->pipe_bpp),
2308 			      intel_dp_max_data_rate(pipe_config->port_clock,
2309 						     pipe_config->lane_count));
2310 	}
2311 	return 0;
2312 }
2313 
2314 static int
2315 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2316 			 struct drm_connector *connector,
2317 			 struct intel_crtc_state *crtc_state)
2318 {
2319 	const struct drm_display_info *info = &connector->display_info;
2320 	const struct drm_display_mode *adjusted_mode =
2321 		&crtc_state->hw.adjusted_mode;
2322 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2323 	int ret;
2324 
2325 	if (!drm_mode_is_420_only(info, adjusted_mode) ||
2326 	    !intel_dp_get_colorimetry_status(intel_dp) ||
2327 	    !connector->ycbcr_420_allowed)
2328 		return 0;
2329 
2330 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2331 
2332 	/* YCBCR 420 output conversion needs a scaler */
2333 	ret = skl_update_scaler_crtc(crtc_state);
2334 	if (ret) {
2335 		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2336 		return ret;
2337 	}
2338 
2339 	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2340 
2341 	return 0;
2342 }
2343 
2344 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2345 				  const struct drm_connector_state *conn_state)
2346 {
2347 	const struct intel_digital_connector_state *intel_conn_state =
2348 		to_intel_digital_connector_state(conn_state);
2349 	const struct drm_display_mode *adjusted_mode =
2350 		&crtc_state->hw.adjusted_mode;
2351 
2352 	/*
2353 	 * Our YCbCr output is always limited range.
2354 	 * crtc_state->limited_color_range only applies to RGB,
2355 	 * and it must never be set for YCbCr or we risk setting
2356 	 * some conflicting bits in PIPECONF which will mess up
2357 	 * the colors on the monitor.
2358 	 */
2359 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2360 		return false;
2361 
2362 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2363 		/*
2364 		 * See:
2365 		 * CEA-861-E - 5.1 Default Encoding Parameters
2366 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2367 		 */
2368 		return crtc_state->pipe_bpp != 18 &&
2369 			drm_default_rgb_quant_range(adjusted_mode) ==
2370 			HDMI_QUANTIZATION_RANGE_LIMITED;
2371 	} else {
2372 		return intel_conn_state->broadcast_rgb ==
2373 			INTEL_BROADCAST_RGB_LIMITED;
2374 	}
2375 }
2376 
2377 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2378 				    enum port port)
2379 {
2380 	if (IS_G4X(dev_priv))
2381 		return false;
2382 	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2383 		return false;
2384 
2385 	return true;
2386 }
2387 
2388 int
2389 intel_dp_compute_config(struct intel_encoder *encoder,
2390 			struct intel_crtc_state *pipe_config,
2391 			struct drm_connector_state *conn_state)
2392 {
2393 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2394 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2395 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2396 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2397 	enum port port = encoder->port;
2398 	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2399 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2400 	struct intel_digital_connector_state *intel_conn_state =
2401 		to_intel_digital_connector_state(conn_state);
2402 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2403 					   DP_DPCD_QUIRK_CONSTANT_N);
2404 	int ret = 0, output_bpp;
2405 
2406 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2407 		pipe_config->has_pch_encoder = true;
2408 
2409 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2410 
2411 	if (lspcon->active)
2412 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2413 	else
2414 		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2415 					       pipe_config);
2416 
2417 	if (ret)
2418 		return ret;
2419 
2420 	pipe_config->has_drrs = false;
2421 	if (!intel_dp_port_has_audio(dev_priv, port))
2422 		pipe_config->has_audio = false;
2423 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2424 		pipe_config->has_audio = intel_dp->has_audio;
2425 	else
2426 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2427 
2428 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2429 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2430 				       adjusted_mode);
2431 
2432 		if (INTEL_GEN(dev_priv) >= 9) {
2433 			ret = skl_update_scaler_crtc(pipe_config);
2434 			if (ret)
2435 				return ret;
2436 		}
2437 
2438 		if (HAS_GMCH(dev_priv))
2439 			intel_gmch_panel_fitting(intel_crtc, pipe_config,
2440 						 conn_state->scaling_mode);
2441 		else
2442 			intel_pch_panel_fitting(intel_crtc, pipe_config,
2443 						conn_state->scaling_mode);
2444 	}
2445 
2446 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2447 		return -EINVAL;
2448 
2449 	if (HAS_GMCH(dev_priv) &&
2450 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2451 		return -EINVAL;
2452 
2453 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2454 		return -EINVAL;
2455 
2456 	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2457 		return -EINVAL;
2458 
2459 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2460 	if (ret < 0)
2461 		return ret;
2462 
2463 	pipe_config->limited_color_range =
2464 		intel_dp_limited_color_range(pipe_config, conn_state);
2465 
2466 	if (pipe_config->dsc.compression_enable)
2467 		output_bpp = pipe_config->dsc.compressed_bpp;
2468 	else
2469 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2470 
2471 	intel_link_compute_m_n(output_bpp,
2472 			       pipe_config->lane_count,
2473 			       adjusted_mode->crtc_clock,
2474 			       pipe_config->port_clock,
2475 			       &pipe_config->dp_m_n,
2476 			       constant_n, pipe_config->fec_enable);
2477 
2478 	if (intel_connector->panel.downclock_mode != NULL &&
2479 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2480 			pipe_config->has_drrs = true;
2481 			intel_link_compute_m_n(output_bpp,
2482 					       pipe_config->lane_count,
2483 					       intel_connector->panel.downclock_mode->clock,
2484 					       pipe_config->port_clock,
2485 					       &pipe_config->dp_m2_n2,
2486 					       constant_n, pipe_config->fec_enable);
2487 	}
2488 
2489 	if (!HAS_DDI(dev_priv))
2490 		intel_dp_set_clock(encoder, pipe_config);
2491 
2492 	intel_psr_compute_config(intel_dp, pipe_config);
2493 
2494 	return 0;
2495 }
2496 
2497 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2498 			      int link_rate, u8 lane_count,
2499 			      bool link_mst)
2500 {
2501 	intel_dp->link_trained = false;
2502 	intel_dp->link_rate = link_rate;
2503 	intel_dp->lane_count = lane_count;
2504 	intel_dp->link_mst = link_mst;
2505 }
2506 
2507 static void intel_dp_prepare(struct intel_encoder *encoder,
2508 			     const struct intel_crtc_state *pipe_config)
2509 {
2510 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2511 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2512 	enum port port = encoder->port;
2513 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2514 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2515 
2516 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2517 				 pipe_config->lane_count,
2518 				 intel_crtc_has_type(pipe_config,
2519 						     INTEL_OUTPUT_DP_MST));
2520 
2521 	intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
2522 	intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
2523 
2524 	/*
2525 	 * There are four kinds of DP registers:
2526 	 *
2527 	 * 	IBX PCH
2528 	 * 	SNB CPU
2529 	 *	IVB CPU
2530 	 * 	CPT PCH
2531 	 *
2532 	 * IBX PCH and CPU are the same for almost everything,
2533 	 * except that the CPU DP PLL is configured in this
2534 	 * register
2535 	 *
2536 	 * CPT PCH is quite different, having many bits moved
2537 	 * to the TRANS_DP_CTL register instead. That
2538 	 * configuration happens (oddly) in ilk_pch_enable
2539 	 */
2540 
2541 	/* Preserve the BIOS-computed detected bit. This is
2542 	 * supposed to be read-only.
2543 	 */
2544 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2545 
2546 	/* Handle DP bits in common between all three register formats */
2547 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2548 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2549 
2550 	/* Split out the IBX/CPU vs CPT settings */
2551 
2552 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2553 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2554 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2555 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2556 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2557 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2558 
2559 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2560 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2561 
2562 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2563 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2564 		u32 trans_dp;
2565 
2566 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2567 
2568 		trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2569 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2570 			trans_dp |= TRANS_DP_ENH_FRAMING;
2571 		else
2572 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2573 		intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2574 	} else {
2575 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2576 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2577 
2578 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2579 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2580 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2581 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2582 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2583 
2584 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2585 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2586 
2587 		if (IS_CHERRYVIEW(dev_priv))
2588 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2589 		else
2590 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2591 	}
2592 }
2593 
2594 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2595 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2596 
2597 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2598 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2599 
2600 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2601 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2602 
2603 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2604 
2605 static void wait_panel_status(struct intel_dp *intel_dp,
2606 				       u32 mask,
2607 				       u32 value)
2608 {
2609 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2610 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2611 
2612 	lockdep_assert_held(&dev_priv->pps_mutex);
2613 
2614 	intel_pps_verify_state(intel_dp);
2615 
2616 	pp_stat_reg = _pp_stat_reg(intel_dp);
2617 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2618 
2619 	drm_dbg_kms(&dev_priv->drm,
2620 		    "mask %08x value %08x status %08x control %08x\n",
2621 		    mask, value,
2622 		    intel_de_read(dev_priv, pp_stat_reg),
2623 		    intel_de_read(dev_priv, pp_ctrl_reg));
2624 
2625 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2626 				       mask, value, 5000))
2627 		drm_err(&dev_priv->drm,
2628 			"Panel status timeout: status %08x control %08x\n",
2629 			intel_de_read(dev_priv, pp_stat_reg),
2630 			intel_de_read(dev_priv, pp_ctrl_reg));
2631 
2632 	drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2633 }
2634 
2635 static void wait_panel_on(struct intel_dp *intel_dp)
2636 {
2637 	DRM_DEBUG_KMS("Wait for panel power on\n");
2638 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2639 }
2640 
2641 static void wait_panel_off(struct intel_dp *intel_dp)
2642 {
2643 	DRM_DEBUG_KMS("Wait for panel power off time\n");
2644 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2645 }
2646 
2647 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2648 {
2649 	ktime_t panel_power_on_time;
2650 	s64 panel_power_off_duration;
2651 
2652 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2653 
2654 	/* take the difference of currrent time and panel power off time
2655 	 * and then make panel wait for t11_t12 if needed. */
2656 	panel_power_on_time = ktime_get_boottime();
2657 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2658 
2659 	/* When we disable the VDD override bit last we have to do the manual
2660 	 * wait. */
2661 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2662 		wait_remaining_ms_from_jiffies(jiffies,
2663 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2664 
2665 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2666 }
2667 
2668 static void wait_backlight_on(struct intel_dp *intel_dp)
2669 {
2670 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2671 				       intel_dp->backlight_on_delay);
2672 }
2673 
2674 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2675 {
2676 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2677 				       intel_dp->backlight_off_delay);
2678 }
2679 
2680 /* Read the current pp_control value, unlocking the register if it
2681  * is locked
2682  */
2683 
2684 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2685 {
2686 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2687 	u32 control;
2688 
2689 	lockdep_assert_held(&dev_priv->pps_mutex);
2690 
2691 	control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2692 	if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2693 			(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2694 		control &= ~PANEL_UNLOCK_MASK;
2695 		control |= PANEL_UNLOCK_REGS;
2696 	}
2697 	return control;
2698 }
2699 
2700 /*
2701  * Must be paired with edp_panel_vdd_off().
2702  * Must hold pps_mutex around the whole on/off sequence.
2703  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2704  */
2705 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2706 {
2707 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2708 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2709 	u32 pp;
2710 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2711 	bool need_to_disable = !intel_dp->want_panel_vdd;
2712 
2713 	lockdep_assert_held(&dev_priv->pps_mutex);
2714 
2715 	if (!intel_dp_is_edp(intel_dp))
2716 		return false;
2717 
2718 	cancel_delayed_work(&intel_dp->panel_vdd_work);
2719 	intel_dp->want_panel_vdd = true;
2720 
2721 	if (edp_have_panel_vdd(intel_dp))
2722 		return need_to_disable;
2723 
2724 	intel_display_power_get(dev_priv,
2725 				intel_aux_power_domain(intel_dig_port));
2726 
2727 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
2728 		    intel_dig_port->base.base.base.id,
2729 		    intel_dig_port->base.base.name);
2730 
2731 	if (!edp_have_panel_power(intel_dp))
2732 		wait_panel_power_cycle(intel_dp);
2733 
2734 	pp = ilk_get_pp_control(intel_dp);
2735 	pp |= EDP_FORCE_VDD;
2736 
2737 	pp_stat_reg = _pp_stat_reg(intel_dp);
2738 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2739 
2740 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2741 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2742 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2743 		    intel_de_read(dev_priv, pp_stat_reg),
2744 		    intel_de_read(dev_priv, pp_ctrl_reg));
2745 	/*
2746 	 * If the panel wasn't on, delay before accessing aux channel
2747 	 */
2748 	if (!edp_have_panel_power(intel_dp)) {
2749 		drm_dbg_kms(&dev_priv->drm,
2750 			    "[ENCODER:%d:%s] panel power wasn't enabled\n",
2751 			    intel_dig_port->base.base.base.id,
2752 			    intel_dig_port->base.base.name);
2753 		msleep(intel_dp->panel_power_up_delay);
2754 	}
2755 
2756 	return need_to_disable;
2757 }
2758 
2759 /*
2760  * Must be paired with intel_edp_panel_vdd_off() or
2761  * intel_edp_panel_off().
2762  * Nested calls to these functions are not allowed since
2763  * we drop the lock. Caller must use some higher level
2764  * locking to prevent nested calls from other threads.
2765  */
2766 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2767 {
2768 	intel_wakeref_t wakeref;
2769 	bool vdd;
2770 
2771 	if (!intel_dp_is_edp(intel_dp))
2772 		return;
2773 
2774 	vdd = false;
2775 	with_pps_lock(intel_dp, wakeref)
2776 		vdd = edp_panel_vdd_on(intel_dp);
2777 	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2778 			dp_to_dig_port(intel_dp)->base.base.base.id,
2779 			dp_to_dig_port(intel_dp)->base.base.name);
2780 }
2781 
2782 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2783 {
2784 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2785 	struct intel_digital_port *intel_dig_port =
2786 		dp_to_dig_port(intel_dp);
2787 	u32 pp;
2788 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2789 
2790 	lockdep_assert_held(&dev_priv->pps_mutex);
2791 
2792 	drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2793 
2794 	if (!edp_have_panel_vdd(intel_dp))
2795 		return;
2796 
2797 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
2798 		    intel_dig_port->base.base.base.id,
2799 		    intel_dig_port->base.base.name);
2800 
2801 	pp = ilk_get_pp_control(intel_dp);
2802 	pp &= ~EDP_FORCE_VDD;
2803 
2804 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2805 	pp_stat_reg = _pp_stat_reg(intel_dp);
2806 
2807 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2808 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2809 
2810 	/* Make sure sequencer is idle before allowing subsequent activity */
2811 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2812 		    intel_de_read(dev_priv, pp_stat_reg),
2813 		    intel_de_read(dev_priv, pp_ctrl_reg));
2814 
2815 	if ((pp & PANEL_POWER_ON) == 0)
2816 		intel_dp->panel_power_off_time = ktime_get_boottime();
2817 
2818 	intel_display_power_put_unchecked(dev_priv,
2819 					  intel_aux_power_domain(intel_dig_port));
2820 }
2821 
2822 static void edp_panel_vdd_work(struct work_struct *__work)
2823 {
2824 	struct intel_dp *intel_dp =
2825 		container_of(to_delayed_work(__work),
2826 			     struct intel_dp, panel_vdd_work);
2827 	intel_wakeref_t wakeref;
2828 
2829 	with_pps_lock(intel_dp, wakeref) {
2830 		if (!intel_dp->want_panel_vdd)
2831 			edp_panel_vdd_off_sync(intel_dp);
2832 	}
2833 }
2834 
2835 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2836 {
2837 	unsigned long delay;
2838 
2839 	/*
2840 	 * Queue the timer to fire a long time from now (relative to the power
2841 	 * down delay) to keep the panel power up across a sequence of
2842 	 * operations.
2843 	 */
2844 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2845 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2846 }
2847 
2848 /*
2849  * Must be paired with edp_panel_vdd_on().
2850  * Must hold pps_mutex around the whole on/off sequence.
2851  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2852  */
2853 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2854 {
2855 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2856 
2857 	lockdep_assert_held(&dev_priv->pps_mutex);
2858 
2859 	if (!intel_dp_is_edp(intel_dp))
2860 		return;
2861 
2862 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2863 			dp_to_dig_port(intel_dp)->base.base.base.id,
2864 			dp_to_dig_port(intel_dp)->base.base.name);
2865 
2866 	intel_dp->want_panel_vdd = false;
2867 
2868 	if (sync)
2869 		edp_panel_vdd_off_sync(intel_dp);
2870 	else
2871 		edp_panel_vdd_schedule_off(intel_dp);
2872 }
2873 
2874 static void edp_panel_on(struct intel_dp *intel_dp)
2875 {
2876 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2877 	u32 pp;
2878 	i915_reg_t pp_ctrl_reg;
2879 
2880 	lockdep_assert_held(&dev_priv->pps_mutex);
2881 
2882 	if (!intel_dp_is_edp(intel_dp))
2883 		return;
2884 
2885 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
2886 		    dp_to_dig_port(intel_dp)->base.base.base.id,
2887 		    dp_to_dig_port(intel_dp)->base.base.name);
2888 
2889 	if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
2890 		     "[ENCODER:%d:%s] panel power already on\n",
2891 		     dp_to_dig_port(intel_dp)->base.base.base.id,
2892 		     dp_to_dig_port(intel_dp)->base.base.name))
2893 		return;
2894 
2895 	wait_panel_power_cycle(intel_dp);
2896 
2897 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2898 	pp = ilk_get_pp_control(intel_dp);
2899 	if (IS_GEN(dev_priv, 5)) {
2900 		/* ILK workaround: disable reset around power sequence */
2901 		pp &= ~PANEL_POWER_RESET;
2902 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
2903 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
2904 	}
2905 
2906 	pp |= PANEL_POWER_ON;
2907 	if (!IS_GEN(dev_priv, 5))
2908 		pp |= PANEL_POWER_RESET;
2909 
2910 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2911 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2912 
2913 	wait_panel_on(intel_dp);
2914 	intel_dp->last_power_on = jiffies;
2915 
2916 	if (IS_GEN(dev_priv, 5)) {
2917 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2918 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
2919 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
2920 	}
2921 }
2922 
2923 void intel_edp_panel_on(struct intel_dp *intel_dp)
2924 {
2925 	intel_wakeref_t wakeref;
2926 
2927 	if (!intel_dp_is_edp(intel_dp))
2928 		return;
2929 
2930 	with_pps_lock(intel_dp, wakeref)
2931 		edp_panel_on(intel_dp);
2932 }
2933 
2934 
2935 static void edp_panel_off(struct intel_dp *intel_dp)
2936 {
2937 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2938 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2939 	u32 pp;
2940 	i915_reg_t pp_ctrl_reg;
2941 
2942 	lockdep_assert_held(&dev_priv->pps_mutex);
2943 
2944 	if (!intel_dp_is_edp(intel_dp))
2945 		return;
2946 
2947 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
2948 		    dig_port->base.base.base.id, dig_port->base.base.name);
2949 
2950 	drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
2951 		 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2952 		 dig_port->base.base.base.id, dig_port->base.base.name);
2953 
2954 	pp = ilk_get_pp_control(intel_dp);
2955 	/* We need to switch off panel power _and_ force vdd, for otherwise some
2956 	 * panels get very unhappy and cease to work. */
2957 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2958 		EDP_BLC_ENABLE);
2959 
2960 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2961 
2962 	intel_dp->want_panel_vdd = false;
2963 
2964 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2965 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2966 
2967 	wait_panel_off(intel_dp);
2968 	intel_dp->panel_power_off_time = ktime_get_boottime();
2969 
2970 	/* We got a reference when we enabled the VDD. */
2971 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2972 }
2973 
2974 void intel_edp_panel_off(struct intel_dp *intel_dp)
2975 {
2976 	intel_wakeref_t wakeref;
2977 
2978 	if (!intel_dp_is_edp(intel_dp))
2979 		return;
2980 
2981 	with_pps_lock(intel_dp, wakeref)
2982 		edp_panel_off(intel_dp);
2983 }
2984 
2985 /* Enable backlight in the panel power control. */
2986 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2987 {
2988 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2989 	intel_wakeref_t wakeref;
2990 
2991 	/*
2992 	 * If we enable the backlight right away following a panel power
2993 	 * on, we may see slight flicker as the panel syncs with the eDP
2994 	 * link.  So delay a bit to make sure the image is solid before
2995 	 * allowing it to appear.
2996 	 */
2997 	wait_backlight_on(intel_dp);
2998 
2999 	with_pps_lock(intel_dp, wakeref) {
3000 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3001 		u32 pp;
3002 
3003 		pp = ilk_get_pp_control(intel_dp);
3004 		pp |= EDP_BLC_ENABLE;
3005 
3006 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3007 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3008 	}
3009 }
3010 
3011 /* Enable backlight PWM and backlight PP control. */
3012 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3013 			    const struct drm_connector_state *conn_state)
3014 {
3015 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3016 
3017 	if (!intel_dp_is_edp(intel_dp))
3018 		return;
3019 
3020 	DRM_DEBUG_KMS("\n");
3021 
3022 	intel_panel_enable_backlight(crtc_state, conn_state);
3023 	_intel_edp_backlight_on(intel_dp);
3024 }
3025 
3026 /* Disable backlight in the panel power control. */
3027 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3028 {
3029 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3030 	intel_wakeref_t wakeref;
3031 
3032 	if (!intel_dp_is_edp(intel_dp))
3033 		return;
3034 
3035 	with_pps_lock(intel_dp, wakeref) {
3036 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3037 		u32 pp;
3038 
3039 		pp = ilk_get_pp_control(intel_dp);
3040 		pp &= ~EDP_BLC_ENABLE;
3041 
3042 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3043 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3044 	}
3045 
3046 	intel_dp->last_backlight_off = jiffies;
3047 	edp_wait_backlight_off(intel_dp);
3048 }
3049 
3050 /* Disable backlight PP control and backlight PWM. */
3051 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3052 {
3053 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3054 
3055 	if (!intel_dp_is_edp(intel_dp))
3056 		return;
3057 
3058 	DRM_DEBUG_KMS("\n");
3059 
3060 	_intel_edp_backlight_off(intel_dp);
3061 	intel_panel_disable_backlight(old_conn_state);
3062 }
3063 
3064 /*
3065  * Hook for controlling the panel power control backlight through the bl_power
3066  * sysfs attribute. Take care to handle multiple calls.
3067  */
3068 static void intel_edp_backlight_power(struct intel_connector *connector,
3069 				      bool enable)
3070 {
3071 	struct intel_dp *intel_dp = intel_attached_dp(connector);
3072 	intel_wakeref_t wakeref;
3073 	bool is_enabled;
3074 
3075 	is_enabled = false;
3076 	with_pps_lock(intel_dp, wakeref)
3077 		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3078 	if (is_enabled == enable)
3079 		return;
3080 
3081 	DRM_DEBUG_KMS("panel power control backlight %s\n",
3082 		      enable ? "enable" : "disable");
3083 
3084 	if (enable)
3085 		_intel_edp_backlight_on(intel_dp);
3086 	else
3087 		_intel_edp_backlight_off(intel_dp);
3088 }
3089 
3090 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3091 {
3092 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3093 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3094 	bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3095 
3096 	I915_STATE_WARN(cur_state != state,
3097 			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3098 			dig_port->base.base.base.id, dig_port->base.base.name,
3099 			onoff(state), onoff(cur_state));
3100 }
3101 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3102 
3103 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3104 {
3105 	bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3106 
3107 	I915_STATE_WARN(cur_state != state,
3108 			"eDP PLL state assertion failure (expected %s, current %s)\n",
3109 			onoff(state), onoff(cur_state));
3110 }
3111 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3112 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3113 
3114 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3115 			   const struct intel_crtc_state *pipe_config)
3116 {
3117 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3118 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3119 
3120 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3121 	assert_dp_port_disabled(intel_dp);
3122 	assert_edp_pll_disabled(dev_priv);
3123 
3124 	drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3125 		    pipe_config->port_clock);
3126 
3127 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3128 
3129 	if (pipe_config->port_clock == 162000)
3130 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3131 	else
3132 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3133 
3134 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3135 	intel_de_posting_read(dev_priv, DP_A);
3136 	udelay(500);
3137 
3138 	/*
3139 	 * [DevILK] Work around required when enabling DP PLL
3140 	 * while a pipe is enabled going to FDI:
3141 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3142 	 * 2. Program DP PLL enable
3143 	 */
3144 	if (IS_GEN(dev_priv, 5))
3145 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3146 
3147 	intel_dp->DP |= DP_PLL_ENABLE;
3148 
3149 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3150 	intel_de_posting_read(dev_priv, DP_A);
3151 	udelay(200);
3152 }
3153 
3154 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3155 			    const struct intel_crtc_state *old_crtc_state)
3156 {
3157 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3158 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3159 
3160 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3161 	assert_dp_port_disabled(intel_dp);
3162 	assert_edp_pll_enabled(dev_priv);
3163 
3164 	drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3165 
3166 	intel_dp->DP &= ~DP_PLL_ENABLE;
3167 
3168 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3169 	intel_de_posting_read(dev_priv, DP_A);
3170 	udelay(200);
3171 }
3172 
3173 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3174 {
3175 	/*
3176 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3177 	 * be capable of signalling downstream hpd with a long pulse.
3178 	 * Whether or not that means D3 is safe to use is not clear,
3179 	 * but let's assume so until proven otherwise.
3180 	 *
3181 	 * FIXME should really check all downstream ports...
3182 	 */
3183 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3184 		drm_dp_is_branch(intel_dp->dpcd) &&
3185 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3186 }
3187 
3188 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3189 					   const struct intel_crtc_state *crtc_state,
3190 					   bool enable)
3191 {
3192 	int ret;
3193 
3194 	if (!crtc_state->dsc.compression_enable)
3195 		return;
3196 
3197 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3198 				 enable ? DP_DECOMPRESSION_EN : 0);
3199 	if (ret < 0)
3200 		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3201 			      enable ? "enable" : "disable");
3202 }
3203 
3204 /* If the sink supports it, try to set the power state appropriately */
3205 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3206 {
3207 	int ret, i;
3208 
3209 	/* Should have a valid DPCD by this point */
3210 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3211 		return;
3212 
3213 	if (mode != DRM_MODE_DPMS_ON) {
3214 		if (downstream_hpd_needs_d0(intel_dp))
3215 			return;
3216 
3217 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3218 					 DP_SET_POWER_D3);
3219 	} else {
3220 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3221 
3222 		/*
3223 		 * When turning on, we need to retry for 1ms to give the sink
3224 		 * time to wake up.
3225 		 */
3226 		for (i = 0; i < 3; i++) {
3227 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3228 						 DP_SET_POWER_D0);
3229 			if (ret == 1)
3230 				break;
3231 			msleep(1);
3232 		}
3233 
3234 		if (ret == 1 && lspcon->active)
3235 			lspcon_wait_pcon_mode(lspcon);
3236 	}
3237 
3238 	if (ret != 1)
3239 		DRM_DEBUG_KMS("failed to %s sink power state\n",
3240 			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3241 }
3242 
3243 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3244 				 enum port port, enum pipe *pipe)
3245 {
3246 	enum pipe p;
3247 
3248 	for_each_pipe(dev_priv, p) {
3249 		u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3250 
3251 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3252 			*pipe = p;
3253 			return true;
3254 		}
3255 	}
3256 
3257 	drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3258 		    port_name(port));
3259 
3260 	/* must initialize pipe to something for the asserts */
3261 	*pipe = PIPE_A;
3262 
3263 	return false;
3264 }
3265 
3266 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3267 			   i915_reg_t dp_reg, enum port port,
3268 			   enum pipe *pipe)
3269 {
3270 	bool ret;
3271 	u32 val;
3272 
3273 	val = intel_de_read(dev_priv, dp_reg);
3274 
3275 	ret = val & DP_PORT_EN;
3276 
3277 	/* asserts want to know the pipe even if the port is disabled */
3278 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3279 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3280 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3281 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3282 	else if (IS_CHERRYVIEW(dev_priv))
3283 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3284 	else
3285 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3286 
3287 	return ret;
3288 }
3289 
3290 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3291 				  enum pipe *pipe)
3292 {
3293 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3294 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3295 	intel_wakeref_t wakeref;
3296 	bool ret;
3297 
3298 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3299 						     encoder->power_domain);
3300 	if (!wakeref)
3301 		return false;
3302 
3303 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3304 				    encoder->port, pipe);
3305 
3306 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3307 
3308 	return ret;
3309 }
3310 
3311 static void intel_dp_get_config(struct intel_encoder *encoder,
3312 				struct intel_crtc_state *pipe_config)
3313 {
3314 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3315 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3316 	u32 tmp, flags = 0;
3317 	enum port port = encoder->port;
3318 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3319 
3320 	if (encoder->type == INTEL_OUTPUT_EDP)
3321 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3322 	else
3323 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3324 
3325 	tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3326 
3327 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3328 
3329 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3330 		u32 trans_dp = intel_de_read(dev_priv,
3331 					     TRANS_DP_CTL(crtc->pipe));
3332 
3333 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3334 			flags |= DRM_MODE_FLAG_PHSYNC;
3335 		else
3336 			flags |= DRM_MODE_FLAG_NHSYNC;
3337 
3338 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3339 			flags |= DRM_MODE_FLAG_PVSYNC;
3340 		else
3341 			flags |= DRM_MODE_FLAG_NVSYNC;
3342 	} else {
3343 		if (tmp & DP_SYNC_HS_HIGH)
3344 			flags |= DRM_MODE_FLAG_PHSYNC;
3345 		else
3346 			flags |= DRM_MODE_FLAG_NHSYNC;
3347 
3348 		if (tmp & DP_SYNC_VS_HIGH)
3349 			flags |= DRM_MODE_FLAG_PVSYNC;
3350 		else
3351 			flags |= DRM_MODE_FLAG_NVSYNC;
3352 	}
3353 
3354 	pipe_config->hw.adjusted_mode.flags |= flags;
3355 
3356 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3357 		pipe_config->limited_color_range = true;
3358 
3359 	pipe_config->lane_count =
3360 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3361 
3362 	intel_dp_get_m_n(crtc, pipe_config);
3363 
3364 	if (port == PORT_A) {
3365 		if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3366 			pipe_config->port_clock = 162000;
3367 		else
3368 			pipe_config->port_clock = 270000;
3369 	}
3370 
3371 	pipe_config->hw.adjusted_mode.crtc_clock =
3372 		intel_dotclock_calculate(pipe_config->port_clock,
3373 					 &pipe_config->dp_m_n);
3374 
3375 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3376 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3377 		/*
3378 		 * This is a big fat ugly hack.
3379 		 *
3380 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3381 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3382 		 * unknown we fail to light up. Yet the same BIOS boots up with
3383 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3384 		 * max, not what it tells us to use.
3385 		 *
3386 		 * Note: This will still be broken if the eDP panel is not lit
3387 		 * up by the BIOS, and thus we can't get the mode at module
3388 		 * load.
3389 		 */
3390 		drm_dbg_kms(&dev_priv->drm,
3391 			    "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3392 			    pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3393 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3394 	}
3395 }
3396 
3397 static void intel_disable_dp(struct intel_encoder *encoder,
3398 			     const struct intel_crtc_state *old_crtc_state,
3399 			     const struct drm_connector_state *old_conn_state)
3400 {
3401 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3402 
3403 	intel_dp->link_trained = false;
3404 
3405 	if (old_crtc_state->has_audio)
3406 		intel_audio_codec_disable(encoder,
3407 					  old_crtc_state, old_conn_state);
3408 
3409 	/* Make sure the panel is off before trying to change the mode. But also
3410 	 * ensure that we have vdd while we switch off the panel. */
3411 	intel_edp_panel_vdd_on(intel_dp);
3412 	intel_edp_backlight_off(old_conn_state);
3413 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3414 	intel_edp_panel_off(intel_dp);
3415 }
3416 
3417 static void g4x_disable_dp(struct intel_encoder *encoder,
3418 			   const struct intel_crtc_state *old_crtc_state,
3419 			   const struct drm_connector_state *old_conn_state)
3420 {
3421 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3422 }
3423 
3424 static void vlv_disable_dp(struct intel_encoder *encoder,
3425 			   const struct intel_crtc_state *old_crtc_state,
3426 			   const struct drm_connector_state *old_conn_state)
3427 {
3428 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3429 }
3430 
3431 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3432 				const struct intel_crtc_state *old_crtc_state,
3433 				const struct drm_connector_state *old_conn_state)
3434 {
3435 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3436 	enum port port = encoder->port;
3437 
3438 	/*
3439 	 * Bspec does not list a specific disable sequence for g4x DP.
3440 	 * Follow the ilk+ sequence (disable pipe before the port) for
3441 	 * g4x DP as it does not suffer from underruns like the normal
3442 	 * g4x modeset sequence (disable pipe after the port).
3443 	 */
3444 	intel_dp_link_down(encoder, old_crtc_state);
3445 
3446 	/* Only ilk+ has port A */
3447 	if (port == PORT_A)
3448 		ilk_edp_pll_off(intel_dp, old_crtc_state);
3449 }
3450 
3451 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3452 				const struct intel_crtc_state *old_crtc_state,
3453 				const struct drm_connector_state *old_conn_state)
3454 {
3455 	intel_dp_link_down(encoder, old_crtc_state);
3456 }
3457 
3458 static void chv_post_disable_dp(struct intel_encoder *encoder,
3459 				const struct intel_crtc_state *old_crtc_state,
3460 				const struct drm_connector_state *old_conn_state)
3461 {
3462 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3463 
3464 	intel_dp_link_down(encoder, old_crtc_state);
3465 
3466 	vlv_dpio_get(dev_priv);
3467 
3468 	/* Assert data lane reset */
3469 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3470 
3471 	vlv_dpio_put(dev_priv);
3472 }
3473 
3474 static void
3475 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3476 			 u32 *DP,
3477 			 u8 dp_train_pat)
3478 {
3479 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3480 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3481 	enum port port = intel_dig_port->base.port;
3482 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3483 
3484 	if (dp_train_pat & train_pat_mask)
3485 		drm_dbg_kms(&dev_priv->drm,
3486 			    "Using DP training pattern TPS%d\n",
3487 			    dp_train_pat & train_pat_mask);
3488 
3489 	if (HAS_DDI(dev_priv)) {
3490 		u32 temp = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
3491 
3492 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3493 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3494 		else
3495 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3496 
3497 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3498 		switch (dp_train_pat & train_pat_mask) {
3499 		case DP_TRAINING_PATTERN_DISABLE:
3500 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3501 
3502 			break;
3503 		case DP_TRAINING_PATTERN_1:
3504 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3505 			break;
3506 		case DP_TRAINING_PATTERN_2:
3507 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3508 			break;
3509 		case DP_TRAINING_PATTERN_3:
3510 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3511 			break;
3512 		case DP_TRAINING_PATTERN_4:
3513 			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3514 			break;
3515 		}
3516 		intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, temp);
3517 
3518 	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3519 		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3520 		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3521 
3522 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3523 		case DP_TRAINING_PATTERN_DISABLE:
3524 			*DP |= DP_LINK_TRAIN_OFF_CPT;
3525 			break;
3526 		case DP_TRAINING_PATTERN_1:
3527 			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3528 			break;
3529 		case DP_TRAINING_PATTERN_2:
3530 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3531 			break;
3532 		case DP_TRAINING_PATTERN_3:
3533 			drm_dbg_kms(&dev_priv->drm,
3534 				    "TPS3 not supported, using TPS2 instead\n");
3535 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3536 			break;
3537 		}
3538 
3539 	} else {
3540 		*DP &= ~DP_LINK_TRAIN_MASK;
3541 
3542 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3543 		case DP_TRAINING_PATTERN_DISABLE:
3544 			*DP |= DP_LINK_TRAIN_OFF;
3545 			break;
3546 		case DP_TRAINING_PATTERN_1:
3547 			*DP |= DP_LINK_TRAIN_PAT_1;
3548 			break;
3549 		case DP_TRAINING_PATTERN_2:
3550 			*DP |= DP_LINK_TRAIN_PAT_2;
3551 			break;
3552 		case DP_TRAINING_PATTERN_3:
3553 			drm_dbg_kms(&dev_priv->drm,
3554 				    "TPS3 not supported, using TPS2 instead\n");
3555 			*DP |= DP_LINK_TRAIN_PAT_2;
3556 			break;
3557 		}
3558 	}
3559 }
3560 
3561 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3562 				 const struct intel_crtc_state *old_crtc_state)
3563 {
3564 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3565 
3566 	/* enable with pattern 1 (as per spec) */
3567 
3568 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3569 
3570 	/*
3571 	 * Magic for VLV/CHV. We _must_ first set up the register
3572 	 * without actually enabling the port, and then do another
3573 	 * write to enable the port. Otherwise link training will
3574 	 * fail when the power sequencer is freshly used for this port.
3575 	 */
3576 	intel_dp->DP |= DP_PORT_EN;
3577 	if (old_crtc_state->has_audio)
3578 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3579 
3580 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3581 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3582 }
3583 
3584 static void intel_enable_dp(struct intel_encoder *encoder,
3585 			    const struct intel_crtc_state *pipe_config,
3586 			    const struct drm_connector_state *conn_state)
3587 {
3588 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3589 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3590 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3591 	u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3592 	enum pipe pipe = crtc->pipe;
3593 	intel_wakeref_t wakeref;
3594 
3595 	if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3596 		return;
3597 
3598 	with_pps_lock(intel_dp, wakeref) {
3599 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3600 			vlv_init_panel_power_sequencer(encoder, pipe_config);
3601 
3602 		intel_dp_enable_port(intel_dp, pipe_config);
3603 
3604 		edp_panel_vdd_on(intel_dp);
3605 		edp_panel_on(intel_dp);
3606 		edp_panel_vdd_off(intel_dp, true);
3607 	}
3608 
3609 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3610 		unsigned int lane_mask = 0x0;
3611 
3612 		if (IS_CHERRYVIEW(dev_priv))
3613 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3614 
3615 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3616 				    lane_mask);
3617 	}
3618 
3619 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3620 	intel_dp_start_link_train(intel_dp);
3621 	intel_dp_stop_link_train(intel_dp);
3622 
3623 	if (pipe_config->has_audio) {
3624 		drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3625 			pipe_name(pipe));
3626 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3627 	}
3628 }
3629 
3630 static void g4x_enable_dp(struct intel_encoder *encoder,
3631 			  const struct intel_crtc_state *pipe_config,
3632 			  const struct drm_connector_state *conn_state)
3633 {
3634 	intel_enable_dp(encoder, pipe_config, conn_state);
3635 	intel_edp_backlight_on(pipe_config, conn_state);
3636 }
3637 
3638 static void vlv_enable_dp(struct intel_encoder *encoder,
3639 			  const struct intel_crtc_state *pipe_config,
3640 			  const struct drm_connector_state *conn_state)
3641 {
3642 	intel_edp_backlight_on(pipe_config, conn_state);
3643 }
3644 
3645 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3646 			      const struct intel_crtc_state *pipe_config,
3647 			      const struct drm_connector_state *conn_state)
3648 {
3649 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3650 	enum port port = encoder->port;
3651 
3652 	intel_dp_prepare(encoder, pipe_config);
3653 
3654 	/* Only ilk+ has port A */
3655 	if (port == PORT_A)
3656 		ilk_edp_pll_on(intel_dp, pipe_config);
3657 }
3658 
3659 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3660 {
3661 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3662 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3663 	enum pipe pipe = intel_dp->pps_pipe;
3664 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3665 
3666 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3667 
3668 	if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3669 		return;
3670 
3671 	edp_panel_vdd_off_sync(intel_dp);
3672 
3673 	/*
3674 	 * VLV seems to get confused when multiple power sequencers
3675 	 * have the same port selected (even if only one has power/vdd
3676 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
3677 	 * CHV on the other hand doesn't seem to mind having the same port
3678 	 * selected in multiple power sequencers, but let's clear the
3679 	 * port select always when logically disconnecting a power sequencer
3680 	 * from a port.
3681 	 */
3682 	drm_dbg_kms(&dev_priv->drm,
3683 		    "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3684 		    pipe_name(pipe), intel_dig_port->base.base.base.id,
3685 		    intel_dig_port->base.base.name);
3686 	intel_de_write(dev_priv, pp_on_reg, 0);
3687 	intel_de_posting_read(dev_priv, pp_on_reg);
3688 
3689 	intel_dp->pps_pipe = INVALID_PIPE;
3690 }
3691 
3692 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3693 				      enum pipe pipe)
3694 {
3695 	struct intel_encoder *encoder;
3696 
3697 	lockdep_assert_held(&dev_priv->pps_mutex);
3698 
3699 	for_each_intel_dp(&dev_priv->drm, encoder) {
3700 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3701 
3702 		drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
3703 			 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3704 			 pipe_name(pipe), encoder->base.base.id,
3705 			 encoder->base.name);
3706 
3707 		if (intel_dp->pps_pipe != pipe)
3708 			continue;
3709 
3710 		drm_dbg_kms(&dev_priv->drm,
3711 			    "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3712 			    pipe_name(pipe), encoder->base.base.id,
3713 			    encoder->base.name);
3714 
3715 		/* make sure vdd is off before we steal it */
3716 		vlv_detach_power_sequencer(intel_dp);
3717 	}
3718 }
3719 
3720 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3721 					   const struct intel_crtc_state *crtc_state)
3722 {
3723 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3724 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3725 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3726 
3727 	lockdep_assert_held(&dev_priv->pps_mutex);
3728 
3729 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3730 
3731 	if (intel_dp->pps_pipe != INVALID_PIPE &&
3732 	    intel_dp->pps_pipe != crtc->pipe) {
3733 		/*
3734 		 * If another power sequencer was being used on this
3735 		 * port previously make sure to turn off vdd there while
3736 		 * we still have control of it.
3737 		 */
3738 		vlv_detach_power_sequencer(intel_dp);
3739 	}
3740 
3741 	/*
3742 	 * We may be stealing the power
3743 	 * sequencer from another port.
3744 	 */
3745 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3746 
3747 	intel_dp->active_pipe = crtc->pipe;
3748 
3749 	if (!intel_dp_is_edp(intel_dp))
3750 		return;
3751 
3752 	/* now it's all ours */
3753 	intel_dp->pps_pipe = crtc->pipe;
3754 
3755 	drm_dbg_kms(&dev_priv->drm,
3756 		    "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3757 		    pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3758 		    encoder->base.name);
3759 
3760 	/* init power sequencer on this pipe and port */
3761 	intel_dp_init_panel_power_sequencer(intel_dp);
3762 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3763 }
3764 
3765 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3766 			      const struct intel_crtc_state *pipe_config,
3767 			      const struct drm_connector_state *conn_state)
3768 {
3769 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3770 
3771 	intel_enable_dp(encoder, pipe_config, conn_state);
3772 }
3773 
3774 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3775 				  const struct intel_crtc_state *pipe_config,
3776 				  const struct drm_connector_state *conn_state)
3777 {
3778 	intel_dp_prepare(encoder, pipe_config);
3779 
3780 	vlv_phy_pre_pll_enable(encoder, pipe_config);
3781 }
3782 
3783 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3784 			      const struct intel_crtc_state *pipe_config,
3785 			      const struct drm_connector_state *conn_state)
3786 {
3787 	chv_phy_pre_encoder_enable(encoder, pipe_config);
3788 
3789 	intel_enable_dp(encoder, pipe_config, conn_state);
3790 
3791 	/* Second common lane will stay alive on its own now */
3792 	chv_phy_release_cl2_override(encoder);
3793 }
3794 
3795 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3796 				  const struct intel_crtc_state *pipe_config,
3797 				  const struct drm_connector_state *conn_state)
3798 {
3799 	intel_dp_prepare(encoder, pipe_config);
3800 
3801 	chv_phy_pre_pll_enable(encoder, pipe_config);
3802 }
3803 
3804 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3805 				    const struct intel_crtc_state *old_crtc_state,
3806 				    const struct drm_connector_state *old_conn_state)
3807 {
3808 	chv_phy_post_pll_disable(encoder, old_crtc_state);
3809 }
3810 
3811 /*
3812  * Fetch AUX CH registers 0x202 - 0x207 which contain
3813  * link status information
3814  */
3815 bool
3816 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3817 {
3818 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3819 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3820 }
3821 
3822 /* These are source-specific values. */
3823 u8
3824 intel_dp_voltage_max(struct intel_dp *intel_dp)
3825 {
3826 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3827 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3828 	enum port port = encoder->port;
3829 
3830 	if (HAS_DDI(dev_priv))
3831 		return intel_ddi_dp_voltage_max(encoder);
3832 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3833 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3834 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3835 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3836 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3837 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3838 	else
3839 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3840 }
3841 
3842 u8
3843 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3844 {
3845 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3846 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3847 	enum port port = encoder->port;
3848 
3849 	if (HAS_DDI(dev_priv)) {
3850 		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3851 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3852 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3853 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3854 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3855 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3856 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3857 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3858 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3859 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3860 		default:
3861 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3862 		}
3863 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3864 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3865 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3866 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3867 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3868 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3869 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3870 		default:
3871 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3872 		}
3873 	} else {
3874 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3875 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3876 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3877 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3878 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3879 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3880 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3881 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3882 		default:
3883 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3884 		}
3885 	}
3886 }
3887 
3888 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3889 {
3890 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3891 	unsigned long demph_reg_value, preemph_reg_value,
3892 		uniqtranscale_reg_value;
3893 	u8 train_set = intel_dp->train_set[0];
3894 
3895 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3896 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3897 		preemph_reg_value = 0x0004000;
3898 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3899 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3900 			demph_reg_value = 0x2B405555;
3901 			uniqtranscale_reg_value = 0x552AB83A;
3902 			break;
3903 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3904 			demph_reg_value = 0x2B404040;
3905 			uniqtranscale_reg_value = 0x5548B83A;
3906 			break;
3907 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3908 			demph_reg_value = 0x2B245555;
3909 			uniqtranscale_reg_value = 0x5560B83A;
3910 			break;
3911 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3912 			demph_reg_value = 0x2B405555;
3913 			uniqtranscale_reg_value = 0x5598DA3A;
3914 			break;
3915 		default:
3916 			return 0;
3917 		}
3918 		break;
3919 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3920 		preemph_reg_value = 0x0002000;
3921 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3922 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3923 			demph_reg_value = 0x2B404040;
3924 			uniqtranscale_reg_value = 0x5552B83A;
3925 			break;
3926 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3927 			demph_reg_value = 0x2B404848;
3928 			uniqtranscale_reg_value = 0x5580B83A;
3929 			break;
3930 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3931 			demph_reg_value = 0x2B404040;
3932 			uniqtranscale_reg_value = 0x55ADDA3A;
3933 			break;
3934 		default:
3935 			return 0;
3936 		}
3937 		break;
3938 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3939 		preemph_reg_value = 0x0000000;
3940 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3941 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3942 			demph_reg_value = 0x2B305555;
3943 			uniqtranscale_reg_value = 0x5570B83A;
3944 			break;
3945 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3946 			demph_reg_value = 0x2B2B4040;
3947 			uniqtranscale_reg_value = 0x55ADDA3A;
3948 			break;
3949 		default:
3950 			return 0;
3951 		}
3952 		break;
3953 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3954 		preemph_reg_value = 0x0006000;
3955 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3956 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3957 			demph_reg_value = 0x1B405555;
3958 			uniqtranscale_reg_value = 0x55ADDA3A;
3959 			break;
3960 		default:
3961 			return 0;
3962 		}
3963 		break;
3964 	default:
3965 		return 0;
3966 	}
3967 
3968 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3969 				 uniqtranscale_reg_value, 0);
3970 
3971 	return 0;
3972 }
3973 
3974 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3975 {
3976 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3977 	u32 deemph_reg_value, margin_reg_value;
3978 	bool uniq_trans_scale = false;
3979 	u8 train_set = intel_dp->train_set[0];
3980 
3981 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3982 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3983 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3984 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3985 			deemph_reg_value = 128;
3986 			margin_reg_value = 52;
3987 			break;
3988 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3989 			deemph_reg_value = 128;
3990 			margin_reg_value = 77;
3991 			break;
3992 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3993 			deemph_reg_value = 128;
3994 			margin_reg_value = 102;
3995 			break;
3996 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3997 			deemph_reg_value = 128;
3998 			margin_reg_value = 154;
3999 			uniq_trans_scale = true;
4000 			break;
4001 		default:
4002 			return 0;
4003 		}
4004 		break;
4005 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4006 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4007 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4008 			deemph_reg_value = 85;
4009 			margin_reg_value = 78;
4010 			break;
4011 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4012 			deemph_reg_value = 85;
4013 			margin_reg_value = 116;
4014 			break;
4015 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4016 			deemph_reg_value = 85;
4017 			margin_reg_value = 154;
4018 			break;
4019 		default:
4020 			return 0;
4021 		}
4022 		break;
4023 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4024 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4025 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4026 			deemph_reg_value = 64;
4027 			margin_reg_value = 104;
4028 			break;
4029 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4030 			deemph_reg_value = 64;
4031 			margin_reg_value = 154;
4032 			break;
4033 		default:
4034 			return 0;
4035 		}
4036 		break;
4037 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4038 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4039 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4040 			deemph_reg_value = 43;
4041 			margin_reg_value = 154;
4042 			break;
4043 		default:
4044 			return 0;
4045 		}
4046 		break;
4047 	default:
4048 		return 0;
4049 	}
4050 
4051 	chv_set_phy_signal_level(encoder, deemph_reg_value,
4052 				 margin_reg_value, uniq_trans_scale);
4053 
4054 	return 0;
4055 }
4056 
4057 static u32
4058 g4x_signal_levels(u8 train_set)
4059 {
4060 	u32 signal_levels = 0;
4061 
4062 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4063 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4064 	default:
4065 		signal_levels |= DP_VOLTAGE_0_4;
4066 		break;
4067 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4068 		signal_levels |= DP_VOLTAGE_0_6;
4069 		break;
4070 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4071 		signal_levels |= DP_VOLTAGE_0_8;
4072 		break;
4073 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4074 		signal_levels |= DP_VOLTAGE_1_2;
4075 		break;
4076 	}
4077 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4078 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4079 	default:
4080 		signal_levels |= DP_PRE_EMPHASIS_0;
4081 		break;
4082 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4083 		signal_levels |= DP_PRE_EMPHASIS_3_5;
4084 		break;
4085 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4086 		signal_levels |= DP_PRE_EMPHASIS_6;
4087 		break;
4088 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4089 		signal_levels |= DP_PRE_EMPHASIS_9_5;
4090 		break;
4091 	}
4092 	return signal_levels;
4093 }
4094 
4095 /* SNB CPU eDP voltage swing and pre-emphasis control */
4096 static u32
4097 snb_cpu_edp_signal_levels(u8 train_set)
4098 {
4099 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4100 					 DP_TRAIN_PRE_EMPHASIS_MASK);
4101 	switch (signal_levels) {
4102 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4103 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4104 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4105 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4106 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4107 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4108 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4109 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4110 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4111 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4112 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4113 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4114 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4115 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4116 	default:
4117 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4118 			      "0x%x\n", signal_levels);
4119 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4120 	}
4121 }
4122 
4123 /* IVB CPU eDP voltage swing and pre-emphasis control */
4124 static u32
4125 ivb_cpu_edp_signal_levels(u8 train_set)
4126 {
4127 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4128 					 DP_TRAIN_PRE_EMPHASIS_MASK);
4129 	switch (signal_levels) {
4130 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4131 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4132 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4133 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4134 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4135 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
4136 
4137 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4138 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4139 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4140 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4141 
4142 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4143 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4144 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4145 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4146 
4147 	default:
4148 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4149 			      "0x%x\n", signal_levels);
4150 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
4151 	}
4152 }
4153 
4154 void
4155 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4156 {
4157 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4158 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4159 	enum port port = intel_dig_port->base.port;
4160 	u32 signal_levels, mask = 0;
4161 	u8 train_set = intel_dp->train_set[0];
4162 
4163 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4164 		signal_levels = bxt_signal_levels(intel_dp);
4165 	} else if (HAS_DDI(dev_priv)) {
4166 		signal_levels = ddi_signal_levels(intel_dp);
4167 		mask = DDI_BUF_EMP_MASK;
4168 	} else if (IS_CHERRYVIEW(dev_priv)) {
4169 		signal_levels = chv_signal_levels(intel_dp);
4170 	} else if (IS_VALLEYVIEW(dev_priv)) {
4171 		signal_levels = vlv_signal_levels(intel_dp);
4172 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4173 		signal_levels = ivb_cpu_edp_signal_levels(train_set);
4174 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4175 	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4176 		signal_levels = snb_cpu_edp_signal_levels(train_set);
4177 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4178 	} else {
4179 		signal_levels = g4x_signal_levels(train_set);
4180 		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4181 	}
4182 
4183 	if (mask)
4184 		drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4185 			    signal_levels);
4186 
4187 	drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4188 		    train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4189 		    train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4190 	drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4191 		    (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4192 		    DP_TRAIN_PRE_EMPHASIS_SHIFT,
4193 		    train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4194 		    " (max)" : "");
4195 
4196 	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4197 
4198 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4199 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4200 }
4201 
4202 void
4203 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4204 				       u8 dp_train_pat)
4205 {
4206 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4207 	struct drm_i915_private *dev_priv =
4208 		to_i915(intel_dig_port->base.base.dev);
4209 
4210 	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4211 
4212 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4213 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4214 }
4215 
4216 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4217 {
4218 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4219 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4220 	enum port port = intel_dig_port->base.port;
4221 	u32 val;
4222 
4223 	if (!HAS_DDI(dev_priv))
4224 		return;
4225 
4226 	val = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
4227 	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4228 	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4229 	intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, val);
4230 
4231 	/*
4232 	 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4233 	 * reason we need to set idle transmission mode is to work around a HW
4234 	 * issue where we enable the pipe while not in idle link-training mode.
4235 	 * In this case there is requirement to wait for a minimum number of
4236 	 * idle patterns to be sent.
4237 	 */
4238 	if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4239 		return;
4240 
4241 	if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4242 				  DP_TP_STATUS_IDLE_DONE, 1))
4243 		drm_err(&dev_priv->drm,
4244 			"Timed out waiting for DP idle patterns\n");
4245 }
4246 
4247 static void
4248 intel_dp_link_down(struct intel_encoder *encoder,
4249 		   const struct intel_crtc_state *old_crtc_state)
4250 {
4251 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4252 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4253 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4254 	enum port port = encoder->port;
4255 	u32 DP = intel_dp->DP;
4256 
4257 	if (drm_WARN_ON(&dev_priv->drm,
4258 			(intel_de_read(dev_priv, intel_dp->output_reg) &
4259 			 DP_PORT_EN) == 0))
4260 		return;
4261 
4262 	drm_dbg_kms(&dev_priv->drm, "\n");
4263 
4264 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4265 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4266 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4267 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4268 	} else {
4269 		DP &= ~DP_LINK_TRAIN_MASK;
4270 		DP |= DP_LINK_TRAIN_PAT_IDLE;
4271 	}
4272 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4273 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4274 
4275 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4276 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4277 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4278 
4279 	/*
4280 	 * HW workaround for IBX, we need to move the port
4281 	 * to transcoder A after disabling it to allow the
4282 	 * matching HDMI port to be enabled on transcoder A.
4283 	 */
4284 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4285 		/*
4286 		 * We get CPU/PCH FIFO underruns on the other pipe when
4287 		 * doing the workaround. Sweep them under the rug.
4288 		 */
4289 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4290 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4291 
4292 		/* always enable with pattern 1 (as per spec) */
4293 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4294 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4295 			DP_LINK_TRAIN_PAT_1;
4296 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4297 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4298 
4299 		DP &= ~DP_PORT_EN;
4300 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4301 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4302 
4303 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4304 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4305 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4306 	}
4307 
4308 	msleep(intel_dp->panel_power_down_delay);
4309 
4310 	intel_dp->DP = DP;
4311 
4312 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4313 		intel_wakeref_t wakeref;
4314 
4315 		with_pps_lock(intel_dp, wakeref)
4316 			intel_dp->active_pipe = INVALID_PIPE;
4317 	}
4318 }
4319 
4320 static void
4321 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4322 {
4323 	u8 dpcd_ext[6];
4324 
4325 	/*
4326 	 * Prior to DP1.3 the bit represented by
4327 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4328 	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4329 	 * the true capability of the panel. The only way to check is to
4330 	 * then compare 0000h and 2200h.
4331 	 */
4332 	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4333 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4334 		return;
4335 
4336 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4337 			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4338 		DRM_ERROR("DPCD failed read at extended capabilities\n");
4339 		return;
4340 	}
4341 
4342 	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4343 		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4344 		return;
4345 	}
4346 
4347 	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4348 		return;
4349 
4350 	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4351 		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4352 
4353 	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4354 }
4355 
4356 bool
4357 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4358 {
4359 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4360 			     sizeof(intel_dp->dpcd)) < 0)
4361 		return false; /* aux transfer failed */
4362 
4363 	intel_dp_extended_receiver_capabilities(intel_dp);
4364 
4365 	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4366 
4367 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
4368 }
4369 
4370 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4371 {
4372 	u8 dprx = 0;
4373 
4374 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4375 			      &dprx) != 1)
4376 		return false;
4377 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4378 }
4379 
4380 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4381 {
4382 	/*
4383 	 * Clear the cached register set to avoid using stale values
4384 	 * for the sinks that do not support DSC.
4385 	 */
4386 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4387 
4388 	/* Clear fec_capable to avoid using stale values */
4389 	intel_dp->fec_capable = 0;
4390 
4391 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4392 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4393 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4394 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4395 				     intel_dp->dsc_dpcd,
4396 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4397 			DRM_ERROR("Failed to read DPCD register 0x%x\n",
4398 				  DP_DSC_SUPPORT);
4399 
4400 		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4401 			      (int)sizeof(intel_dp->dsc_dpcd),
4402 			      intel_dp->dsc_dpcd);
4403 
4404 		/* FEC is supported only on DP 1.4 */
4405 		if (!intel_dp_is_edp(intel_dp) &&
4406 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4407 				      &intel_dp->fec_capable) < 0)
4408 			DRM_ERROR("Failed to read FEC DPCD register\n");
4409 
4410 		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4411 	}
4412 }
4413 
4414 static bool
4415 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4416 {
4417 	struct drm_i915_private *dev_priv =
4418 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4419 
4420 	/* this function is meant to be called only once */
4421 	drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4422 
4423 	if (!intel_dp_read_dpcd(intel_dp))
4424 		return false;
4425 
4426 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4427 			 drm_dp_is_branch(intel_dp->dpcd));
4428 
4429 	/*
4430 	 * Read the eDP display control registers.
4431 	 *
4432 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4433 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4434 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4435 	 * method). The display control registers should read zero if they're
4436 	 * not supported anyway.
4437 	 */
4438 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4439 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4440 			     sizeof(intel_dp->edp_dpcd))
4441 		drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4442 			    (int)sizeof(intel_dp->edp_dpcd),
4443 			    intel_dp->edp_dpcd);
4444 
4445 	/*
4446 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4447 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4448 	 */
4449 	intel_psr_init_dpcd(intel_dp);
4450 
4451 	/* Read the eDP 1.4+ supported link rates. */
4452 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4453 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4454 		int i;
4455 
4456 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4457 				sink_rates, sizeof(sink_rates));
4458 
4459 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4460 			int val = le16_to_cpu(sink_rates[i]);
4461 
4462 			if (val == 0)
4463 				break;
4464 
4465 			/* Value read multiplied by 200kHz gives the per-lane
4466 			 * link rate in kHz. The source rates are, however,
4467 			 * stored in terms of LS_Clk kHz. The full conversion
4468 			 * back to symbols is
4469 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4470 			 */
4471 			intel_dp->sink_rates[i] = (val * 200) / 10;
4472 		}
4473 		intel_dp->num_sink_rates = i;
4474 	}
4475 
4476 	/*
4477 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4478 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4479 	 */
4480 	if (intel_dp->num_sink_rates)
4481 		intel_dp->use_rate_select = true;
4482 	else
4483 		intel_dp_set_sink_rates(intel_dp);
4484 
4485 	intel_dp_set_common_rates(intel_dp);
4486 
4487 	/* Read the eDP DSC DPCD registers */
4488 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4489 		intel_dp_get_dsc_sink_cap(intel_dp);
4490 
4491 	return true;
4492 }
4493 
4494 
4495 static bool
4496 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4497 {
4498 	if (!intel_dp_read_dpcd(intel_dp))
4499 		return false;
4500 
4501 	/*
4502 	 * Don't clobber cached eDP rates. Also skip re-reading
4503 	 * the OUI/ID since we know it won't change.
4504 	 */
4505 	if (!intel_dp_is_edp(intel_dp)) {
4506 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4507 				 drm_dp_is_branch(intel_dp->dpcd));
4508 
4509 		intel_dp_set_sink_rates(intel_dp);
4510 		intel_dp_set_common_rates(intel_dp);
4511 	}
4512 
4513 	/*
4514 	 * Some eDP panels do not set a valid value for sink count, that is why
4515 	 * it don't care about read it here and in intel_edp_init_dpcd().
4516 	 */
4517 	if (!intel_dp_is_edp(intel_dp) &&
4518 	    !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4519 		u8 count;
4520 		ssize_t r;
4521 
4522 		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4523 		if (r < 1)
4524 			return false;
4525 
4526 		/*
4527 		 * Sink count can change between short pulse hpd hence
4528 		 * a member variable in intel_dp will track any changes
4529 		 * between short pulse interrupts.
4530 		 */
4531 		intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4532 
4533 		/*
4534 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4535 		 * a dongle is present but no display. Unless we require to know
4536 		 * if a dongle is present or not, we don't need to update
4537 		 * downstream port information. So, an early return here saves
4538 		 * time from performing other operations which are not required.
4539 		 */
4540 		if (!intel_dp->sink_count)
4541 			return false;
4542 	}
4543 
4544 	if (!drm_dp_is_branch(intel_dp->dpcd))
4545 		return true; /* native DP sink */
4546 
4547 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4548 		return true; /* no per-port downstream info */
4549 
4550 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4551 			     intel_dp->downstream_ports,
4552 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4553 		return false; /* downstream port status fetch failed */
4554 
4555 	return true;
4556 }
4557 
4558 static bool
4559 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4560 {
4561 	u8 mstm_cap;
4562 
4563 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4564 		return false;
4565 
4566 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4567 		return false;
4568 
4569 	return mstm_cap & DP_MST_CAP;
4570 }
4571 
4572 static bool
4573 intel_dp_can_mst(struct intel_dp *intel_dp)
4574 {
4575 	return i915_modparams.enable_dp_mst &&
4576 		intel_dp->can_mst &&
4577 		intel_dp_sink_can_mst(intel_dp);
4578 }
4579 
4580 static void
4581 intel_dp_configure_mst(struct intel_dp *intel_dp)
4582 {
4583 	struct intel_encoder *encoder =
4584 		&dp_to_dig_port(intel_dp)->base;
4585 	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4586 
4587 	DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4588 		      encoder->base.base.id, encoder->base.name,
4589 		      yesno(intel_dp->can_mst), yesno(sink_can_mst),
4590 		      yesno(i915_modparams.enable_dp_mst));
4591 
4592 	if (!intel_dp->can_mst)
4593 		return;
4594 
4595 	intel_dp->is_mst = sink_can_mst &&
4596 		i915_modparams.enable_dp_mst;
4597 
4598 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4599 					intel_dp->is_mst);
4600 }
4601 
4602 static bool
4603 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4604 {
4605 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4606 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4607 		DP_DPRX_ESI_LEN;
4608 }
4609 
4610 bool
4611 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4612 		       const struct drm_connector_state *conn_state)
4613 {
4614 	/*
4615 	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4616 	 * of Color Encoding Format and Content Color Gamut], in order to
4617 	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4618 	 */
4619 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4620 		return true;
4621 
4622 	switch (conn_state->colorspace) {
4623 	case DRM_MODE_COLORIMETRY_SYCC_601:
4624 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4625 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4626 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4627 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4628 		return true;
4629 	default:
4630 		break;
4631 	}
4632 
4633 	return false;
4634 }
4635 
4636 static void
4637 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
4638 		       const struct intel_crtc_state *crtc_state,
4639 		       const struct drm_connector_state *conn_state)
4640 {
4641 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4642 	struct dp_sdp vsc_sdp = {};
4643 
4644 	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4645 	vsc_sdp.sdp_header.HB0 = 0;
4646 	vsc_sdp.sdp_header.HB1 = 0x7;
4647 
4648 	/*
4649 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4650 	 * Colorimetry Format indication.
4651 	 */
4652 	vsc_sdp.sdp_header.HB2 = 0x5;
4653 
4654 	/*
4655 	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4656 	 * Colorimetry Format indication (HB2 = 05h).
4657 	 */
4658 	vsc_sdp.sdp_header.HB3 = 0x13;
4659 
4660 	/* DP 1.4a spec, Table 2-120 */
4661 	switch (crtc_state->output_format) {
4662 	case INTEL_OUTPUT_FORMAT_YCBCR444:
4663 		vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
4664 		break;
4665 	case INTEL_OUTPUT_FORMAT_YCBCR420:
4666 		vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
4667 		break;
4668 	case INTEL_OUTPUT_FORMAT_RGB:
4669 	default:
4670 		/* RGB: DB16[7:4] = 0h */
4671 		break;
4672 	}
4673 
4674 	switch (conn_state->colorspace) {
4675 	case DRM_MODE_COLORIMETRY_BT709_YCC:
4676 		vsc_sdp.db[16] |= 0x1;
4677 		break;
4678 	case DRM_MODE_COLORIMETRY_XVYCC_601:
4679 		vsc_sdp.db[16] |= 0x2;
4680 		break;
4681 	case DRM_MODE_COLORIMETRY_XVYCC_709:
4682 		vsc_sdp.db[16] |= 0x3;
4683 		break;
4684 	case DRM_MODE_COLORIMETRY_SYCC_601:
4685 		vsc_sdp.db[16] |= 0x4;
4686 		break;
4687 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4688 		vsc_sdp.db[16] |= 0x5;
4689 		break;
4690 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4691 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4692 		vsc_sdp.db[16] |= 0x6;
4693 		break;
4694 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4695 		vsc_sdp.db[16] |= 0x7;
4696 		break;
4697 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
4698 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
4699 		vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
4700 		break;
4701 	default:
4702 		/* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
4703 
4704 		/* RGB->YCBCR color conversion uses the BT.709 color space. */
4705 		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4706 			vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4707 		break;
4708 	}
4709 
4710 	/*
4711 	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4712 	 * the following Component Bit Depth values are defined:
4713 	 * 001b = 8bpc.
4714 	 * 010b = 10bpc.
4715 	 * 011b = 12bpc.
4716 	 * 100b = 16bpc.
4717 	 */
4718 	switch (crtc_state->pipe_bpp) {
4719 	case 24: /* 8bpc */
4720 		vsc_sdp.db[17] = 0x1;
4721 		break;
4722 	case 30: /* 10bpc */
4723 		vsc_sdp.db[17] = 0x2;
4724 		break;
4725 	case 36: /* 12bpc */
4726 		vsc_sdp.db[17] = 0x3;
4727 		break;
4728 	case 48: /* 16bpc */
4729 		vsc_sdp.db[17] = 0x4;
4730 		break;
4731 	default:
4732 		MISSING_CASE(crtc_state->pipe_bpp);
4733 		break;
4734 	}
4735 
4736 	/*
4737 	 * Dynamic Range (Bit 7)
4738 	 * 0 = VESA range, 1 = CTA range.
4739 	 * all YCbCr are always limited range
4740 	 */
4741 	vsc_sdp.db[17] |= 0x80;
4742 
4743 	/*
4744 	 * Content Type (Bits 2:0)
4745 	 * 000b = Not defined.
4746 	 * 001b = Graphics.
4747 	 * 010b = Photo.
4748 	 * 011b = Video.
4749 	 * 100b = Game
4750 	 * All other values are RESERVED.
4751 	 * Note: See CTA-861-G for the definition and expected
4752 	 * processing by a stream sink for the above contect types.
4753 	 */
4754 	vsc_sdp.db[18] = 0;
4755 
4756 	intel_dig_port->write_infoframe(&intel_dig_port->base,
4757 			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4758 }
4759 
4760 static void
4761 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
4762 					  const struct intel_crtc_state *crtc_state,
4763 					  const struct drm_connector_state *conn_state)
4764 {
4765 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4766 	struct dp_sdp infoframe_sdp = {};
4767 	struct hdmi_drm_infoframe drm_infoframe = {};
4768 	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4769 	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4770 	ssize_t len;
4771 	int ret;
4772 
4773 	ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
4774 	if (ret) {
4775 		DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
4776 		return;
4777 	}
4778 
4779 	len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
4780 	if (len < 0) {
4781 		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4782 		return;
4783 	}
4784 
4785 	if (len != infoframe_size) {
4786 		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4787 		return;
4788 	}
4789 
4790 	/*
4791 	 * Set up the infoframe sdp packet for HDR static metadata.
4792 	 * Prepare VSC Header for SU as per DP 1.4a spec,
4793 	 * Table 2-100 and Table 2-101
4794 	 */
4795 
4796 	/* Packet ID, 00h for non-Audio INFOFRAME */
4797 	infoframe_sdp.sdp_header.HB0 = 0;
4798 	/*
4799 	 * Packet Type 80h + Non-audio INFOFRAME Type value
4800 	 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
4801 	 */
4802 	infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
4803 	/*
4804 	 * Least Significant Eight Bits of (Data Byte Count – 1)
4805 	 * infoframe_size - 1,
4806 	 */
4807 	infoframe_sdp.sdp_header.HB2 = 0x1D;
4808 	/* INFOFRAME SDP Version Number */
4809 	infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
4810 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
4811 	infoframe_sdp.db[0] = drm_infoframe.version;
4812 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4813 	infoframe_sdp.db[1] = drm_infoframe.length;
4814 	/*
4815 	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4816 	 * HDMI_INFOFRAME_HEADER_SIZE
4817 	 */
4818 	BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4819 	memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4820 	       HDMI_DRM_INFOFRAME_SIZE);
4821 
4822 	/*
4823 	 * Size of DP infoframe sdp packet for HDR static metadata is consist of
4824 	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4825 	 * - Two Data Blocks: 2 bytes
4826 	 *    CTA Header Byte2 (INFOFRAME Version Number)
4827 	 *    CTA Header Byte3 (Length of INFOFRAME)
4828 	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4829 	 *
4830 	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4831 	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4832 	 * will pad rest of the size.
4833 	 */
4834 	intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
4835 					HDMI_PACKET_TYPE_GAMUT_METADATA,
4836 					&infoframe_sdp,
4837 					sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
4838 }
4839 
4840 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
4841 			 const struct intel_crtc_state *crtc_state,
4842 			 const struct drm_connector_state *conn_state)
4843 {
4844 	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4845 		return;
4846 
4847 	intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4848 }
4849 
4850 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
4851 				  const struct intel_crtc_state *crtc_state,
4852 				  const struct drm_connector_state *conn_state)
4853 {
4854 	if (!conn_state->hdr_output_metadata)
4855 		return;
4856 
4857 	intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
4858 						  crtc_state,
4859 						  conn_state);
4860 }
4861 
4862 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4863 {
4864 	int status = 0;
4865 	int test_link_rate;
4866 	u8 test_lane_count, test_link_bw;
4867 	/* (DP CTS 1.2)
4868 	 * 4.3.1.11
4869 	 */
4870 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4871 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4872 				   &test_lane_count);
4873 
4874 	if (status <= 0) {
4875 		DRM_DEBUG_KMS("Lane count read failed\n");
4876 		return DP_TEST_NAK;
4877 	}
4878 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4879 
4880 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4881 				   &test_link_bw);
4882 	if (status <= 0) {
4883 		DRM_DEBUG_KMS("Link Rate read failed\n");
4884 		return DP_TEST_NAK;
4885 	}
4886 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4887 
4888 	/* Validate the requested link rate and lane count */
4889 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4890 					test_lane_count))
4891 		return DP_TEST_NAK;
4892 
4893 	intel_dp->compliance.test_lane_count = test_lane_count;
4894 	intel_dp->compliance.test_link_rate = test_link_rate;
4895 
4896 	return DP_TEST_ACK;
4897 }
4898 
4899 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4900 {
4901 	u8 test_pattern;
4902 	u8 test_misc;
4903 	__be16 h_width, v_height;
4904 	int status = 0;
4905 
4906 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4907 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4908 				   &test_pattern);
4909 	if (status <= 0) {
4910 		DRM_DEBUG_KMS("Test pattern read failed\n");
4911 		return DP_TEST_NAK;
4912 	}
4913 	if (test_pattern != DP_COLOR_RAMP)
4914 		return DP_TEST_NAK;
4915 
4916 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4917 				  &h_width, 2);
4918 	if (status <= 0) {
4919 		DRM_DEBUG_KMS("H Width read failed\n");
4920 		return DP_TEST_NAK;
4921 	}
4922 
4923 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4924 				  &v_height, 2);
4925 	if (status <= 0) {
4926 		DRM_DEBUG_KMS("V Height read failed\n");
4927 		return DP_TEST_NAK;
4928 	}
4929 
4930 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4931 				   &test_misc);
4932 	if (status <= 0) {
4933 		DRM_DEBUG_KMS("TEST MISC read failed\n");
4934 		return DP_TEST_NAK;
4935 	}
4936 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4937 		return DP_TEST_NAK;
4938 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4939 		return DP_TEST_NAK;
4940 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4941 	case DP_TEST_BIT_DEPTH_6:
4942 		intel_dp->compliance.test_data.bpc = 6;
4943 		break;
4944 	case DP_TEST_BIT_DEPTH_8:
4945 		intel_dp->compliance.test_data.bpc = 8;
4946 		break;
4947 	default:
4948 		return DP_TEST_NAK;
4949 	}
4950 
4951 	intel_dp->compliance.test_data.video_pattern = test_pattern;
4952 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4953 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4954 	/* Set test active flag here so userspace doesn't interrupt things */
4955 	intel_dp->compliance.test_active = true;
4956 
4957 	return DP_TEST_ACK;
4958 }
4959 
4960 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4961 {
4962 	u8 test_result = DP_TEST_ACK;
4963 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4964 	struct drm_connector *connector = &intel_connector->base;
4965 
4966 	if (intel_connector->detect_edid == NULL ||
4967 	    connector->edid_corrupt ||
4968 	    intel_dp->aux.i2c_defer_count > 6) {
4969 		/* Check EDID read for NACKs, DEFERs and corruption
4970 		 * (DP CTS 1.2 Core r1.1)
4971 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
4972 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
4973 		 *    4.2.2.6 : EDID corruption detected
4974 		 * Use failsafe mode for all cases
4975 		 */
4976 		if (intel_dp->aux.i2c_nack_count > 0 ||
4977 			intel_dp->aux.i2c_defer_count > 0)
4978 			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4979 				      intel_dp->aux.i2c_nack_count,
4980 				      intel_dp->aux.i2c_defer_count);
4981 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4982 	} else {
4983 		struct edid *block = intel_connector->detect_edid;
4984 
4985 		/* We have to write the checksum
4986 		 * of the last block read
4987 		 */
4988 		block += intel_connector->detect_edid->extensions;
4989 
4990 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4991 				       block->checksum) <= 0)
4992 			DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4993 
4994 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4995 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4996 	}
4997 
4998 	/* Set test active flag here so userspace doesn't interrupt things */
4999 	intel_dp->compliance.test_active = true;
5000 
5001 	return test_result;
5002 }
5003 
5004 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5005 {
5006 	u8 test_result = DP_TEST_NAK;
5007 	return test_result;
5008 }
5009 
5010 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5011 {
5012 	u8 response = DP_TEST_NAK;
5013 	u8 request = 0;
5014 	int status;
5015 
5016 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5017 	if (status <= 0) {
5018 		DRM_DEBUG_KMS("Could not read test request from sink\n");
5019 		goto update_status;
5020 	}
5021 
5022 	switch (request) {
5023 	case DP_TEST_LINK_TRAINING:
5024 		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
5025 		response = intel_dp_autotest_link_training(intel_dp);
5026 		break;
5027 	case DP_TEST_LINK_VIDEO_PATTERN:
5028 		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
5029 		response = intel_dp_autotest_video_pattern(intel_dp);
5030 		break;
5031 	case DP_TEST_LINK_EDID_READ:
5032 		DRM_DEBUG_KMS("EDID test requested\n");
5033 		response = intel_dp_autotest_edid(intel_dp);
5034 		break;
5035 	case DP_TEST_LINK_PHY_TEST_PATTERN:
5036 		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
5037 		response = intel_dp_autotest_phy_pattern(intel_dp);
5038 		break;
5039 	default:
5040 		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
5041 		break;
5042 	}
5043 
5044 	if (response & DP_TEST_ACK)
5045 		intel_dp->compliance.test_type = request;
5046 
5047 update_status:
5048 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5049 	if (status <= 0)
5050 		DRM_DEBUG_KMS("Could not write test response to sink\n");
5051 }
5052 
5053 static int
5054 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5055 {
5056 	bool bret;
5057 
5058 	if (intel_dp->is_mst) {
5059 		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
5060 		int ret = 0;
5061 		int retry;
5062 		bool handled;
5063 
5064 		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5065 		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5066 go_again:
5067 		if (bret == true) {
5068 
5069 			/* check link status - esi[10] = 0x200c */
5070 			if (intel_dp->active_mst_links > 0 &&
5071 			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5072 				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
5073 				intel_dp_start_link_train(intel_dp);
5074 				intel_dp_stop_link_train(intel_dp);
5075 			}
5076 
5077 			DRM_DEBUG_KMS("got esi %3ph\n", esi);
5078 			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5079 
5080 			if (handled) {
5081 				for (retry = 0; retry < 3; retry++) {
5082 					int wret;
5083 					wret = drm_dp_dpcd_write(&intel_dp->aux,
5084 								 DP_SINK_COUNT_ESI+1,
5085 								 &esi[1], 3);
5086 					if (wret == 3) {
5087 						break;
5088 					}
5089 				}
5090 
5091 				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5092 				if (bret == true) {
5093 					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
5094 					goto go_again;
5095 				}
5096 			} else
5097 				ret = 0;
5098 
5099 			return ret;
5100 		} else {
5101 			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
5102 			intel_dp->is_mst = false;
5103 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5104 							intel_dp->is_mst);
5105 		}
5106 	}
5107 	return -EINVAL;
5108 }
5109 
5110 static bool
5111 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5112 {
5113 	u8 link_status[DP_LINK_STATUS_SIZE];
5114 
5115 	if (!intel_dp->link_trained)
5116 		return false;
5117 
5118 	/*
5119 	 * While PSR source HW is enabled, it will control main-link sending
5120 	 * frames, enabling and disabling it so trying to do a retrain will fail
5121 	 * as the link would or not be on or it could mix training patterns
5122 	 * and frame data at the same time causing retrain to fail.
5123 	 * Also when exiting PSR, HW will retrain the link anyways fixing
5124 	 * any link status error.
5125 	 */
5126 	if (intel_psr_enabled(intel_dp))
5127 		return false;
5128 
5129 	if (!intel_dp_get_link_status(intel_dp, link_status))
5130 		return false;
5131 
5132 	/*
5133 	 * Validate the cached values of intel_dp->link_rate and
5134 	 * intel_dp->lane_count before attempting to retrain.
5135 	 */
5136 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5137 					intel_dp->lane_count))
5138 		return false;
5139 
5140 	/* Retrain if Channel EQ or CR not ok */
5141 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5142 }
5143 
5144 int intel_dp_retrain_link(struct intel_encoder *encoder,
5145 			  struct drm_modeset_acquire_ctx *ctx)
5146 {
5147 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5148 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5149 	struct intel_connector *connector = intel_dp->attached_connector;
5150 	struct drm_connector_state *conn_state;
5151 	struct intel_crtc_state *crtc_state;
5152 	struct intel_crtc *crtc;
5153 	int ret;
5154 
5155 	/* FIXME handle the MST connectors as well */
5156 
5157 	if (!connector || connector->base.status != connector_status_connected)
5158 		return 0;
5159 
5160 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5161 			       ctx);
5162 	if (ret)
5163 		return ret;
5164 
5165 	conn_state = connector->base.state;
5166 
5167 	crtc = to_intel_crtc(conn_state->crtc);
5168 	if (!crtc)
5169 		return 0;
5170 
5171 	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5172 	if (ret)
5173 		return ret;
5174 
5175 	crtc_state = to_intel_crtc_state(crtc->base.state);
5176 
5177 	drm_WARN_ON(&dev_priv->drm, !intel_crtc_has_dp_encoder(crtc_state));
5178 
5179 	if (!crtc_state->hw.active)
5180 		return 0;
5181 
5182 	if (conn_state->commit &&
5183 	    !try_wait_for_completion(&conn_state->commit->hw_done))
5184 		return 0;
5185 
5186 	if (!intel_dp_needs_link_retrain(intel_dp))
5187 		return 0;
5188 
5189 	/* Suppress underruns caused by re-training */
5190 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5191 	if (crtc_state->has_pch_encoder)
5192 		intel_set_pch_fifo_underrun_reporting(dev_priv,
5193 						      intel_crtc_pch_transcoder(crtc), false);
5194 
5195 	intel_dp_start_link_train(intel_dp);
5196 	intel_dp_stop_link_train(intel_dp);
5197 
5198 	/* Keep underrun reporting disabled until things are stable */
5199 	intel_wait_for_vblank(dev_priv, crtc->pipe);
5200 
5201 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5202 	if (crtc_state->has_pch_encoder)
5203 		intel_set_pch_fifo_underrun_reporting(dev_priv,
5204 						      intel_crtc_pch_transcoder(crtc), true);
5205 
5206 	return 0;
5207 }
5208 
5209 /*
5210  * If display is now connected check links status,
5211  * there has been known issues of link loss triggering
5212  * long pulse.
5213  *
5214  * Some sinks (eg. ASUS PB287Q) seem to perform some
5215  * weird HPD ping pong during modesets. So we can apparently
5216  * end up with HPD going low during a modeset, and then
5217  * going back up soon after. And once that happens we must
5218  * retrain the link to get a picture. That's in case no
5219  * userspace component reacted to intermittent HPD dip.
5220  */
5221 static enum intel_hotplug_state
5222 intel_dp_hotplug(struct intel_encoder *encoder,
5223 		 struct intel_connector *connector,
5224 		 bool irq_received)
5225 {
5226 	struct drm_modeset_acquire_ctx ctx;
5227 	enum intel_hotplug_state state;
5228 	int ret;
5229 
5230 	state = intel_encoder_hotplug(encoder, connector, irq_received);
5231 
5232 	drm_modeset_acquire_init(&ctx, 0);
5233 
5234 	for (;;) {
5235 		ret = intel_dp_retrain_link(encoder, &ctx);
5236 
5237 		if (ret == -EDEADLK) {
5238 			drm_modeset_backoff(&ctx);
5239 			continue;
5240 		}
5241 
5242 		break;
5243 	}
5244 
5245 	drm_modeset_drop_locks(&ctx);
5246 	drm_modeset_acquire_fini(&ctx);
5247 	drm_WARN(encoder->base.dev, ret,
5248 		 "Acquiring modeset locks failed with %i\n", ret);
5249 
5250 	/*
5251 	 * Keeping it consistent with intel_ddi_hotplug() and
5252 	 * intel_hdmi_hotplug().
5253 	 */
5254 	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
5255 		state = INTEL_HOTPLUG_RETRY;
5256 
5257 	return state;
5258 }
5259 
5260 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5261 {
5262 	u8 val;
5263 
5264 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5265 		return;
5266 
5267 	if (drm_dp_dpcd_readb(&intel_dp->aux,
5268 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5269 		return;
5270 
5271 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5272 
5273 	if (val & DP_AUTOMATED_TEST_REQUEST)
5274 		intel_dp_handle_test_request(intel_dp);
5275 
5276 	if (val & DP_CP_IRQ)
5277 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5278 
5279 	if (val & DP_SINK_SPECIFIC_IRQ)
5280 		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5281 }
5282 
5283 /*
5284  * According to DP spec
5285  * 5.1.2:
5286  *  1. Read DPCD
5287  *  2. Configure link according to Receiver Capabilities
5288  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5289  *  4. Check link status on receipt of hot-plug interrupt
5290  *
5291  * intel_dp_short_pulse -  handles short pulse interrupts
5292  * when full detection is not required.
5293  * Returns %true if short pulse is handled and full detection
5294  * is NOT required and %false otherwise.
5295  */
5296 static bool
5297 intel_dp_short_pulse(struct intel_dp *intel_dp)
5298 {
5299 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5300 	u8 old_sink_count = intel_dp->sink_count;
5301 	bool ret;
5302 
5303 	/*
5304 	 * Clearing compliance test variables to allow capturing
5305 	 * of values for next automated test request.
5306 	 */
5307 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5308 
5309 	/*
5310 	 * Now read the DPCD to see if it's actually running
5311 	 * If the current value of sink count doesn't match with
5312 	 * the value that was stored earlier or dpcd read failed
5313 	 * we need to do full detection
5314 	 */
5315 	ret = intel_dp_get_dpcd(intel_dp);
5316 
5317 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
5318 		/* No need to proceed if we are going to do full detect */
5319 		return false;
5320 	}
5321 
5322 	intel_dp_check_service_irq(intel_dp);
5323 
5324 	/* Handle CEC interrupts, if any */
5325 	drm_dp_cec_irq(&intel_dp->aux);
5326 
5327 	/* defer to the hotplug work for link retraining if needed */
5328 	if (intel_dp_needs_link_retrain(intel_dp))
5329 		return false;
5330 
5331 	intel_psr_short_pulse(intel_dp);
5332 
5333 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5334 		drm_dbg_kms(&dev_priv->drm,
5335 			    "Link Training Compliance Test requested\n");
5336 		/* Send a Hotplug Uevent to userspace to start modeset */
5337 		drm_kms_helper_hotplug_event(&dev_priv->drm);
5338 	}
5339 
5340 	return true;
5341 }
5342 
5343 /* XXX this is probably wrong for multiple downstream ports */
5344 static enum drm_connector_status
5345 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5346 {
5347 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5348 	u8 *dpcd = intel_dp->dpcd;
5349 	u8 type;
5350 
5351 	if (WARN_ON(intel_dp_is_edp(intel_dp)))
5352 		return connector_status_connected;
5353 
5354 	if (lspcon->active)
5355 		lspcon_resume(lspcon);
5356 
5357 	if (!intel_dp_get_dpcd(intel_dp))
5358 		return connector_status_disconnected;
5359 
5360 	/* if there's no downstream port, we're done */
5361 	if (!drm_dp_is_branch(dpcd))
5362 		return connector_status_connected;
5363 
5364 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5365 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5366 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5367 
5368 		return intel_dp->sink_count ?
5369 		connector_status_connected : connector_status_disconnected;
5370 	}
5371 
5372 	if (intel_dp_can_mst(intel_dp))
5373 		return connector_status_connected;
5374 
5375 	/* If no HPD, poke DDC gently */
5376 	if (drm_probe_ddc(&intel_dp->aux.ddc))
5377 		return connector_status_connected;
5378 
5379 	/* Well we tried, say unknown for unreliable port types */
5380 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5381 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5382 		if (type == DP_DS_PORT_TYPE_VGA ||
5383 		    type == DP_DS_PORT_TYPE_NON_EDID)
5384 			return connector_status_unknown;
5385 	} else {
5386 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5387 			DP_DWN_STRM_PORT_TYPE_MASK;
5388 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5389 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
5390 			return connector_status_unknown;
5391 	}
5392 
5393 	/* Anything else is out of spec, warn and ignore */
5394 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5395 	return connector_status_disconnected;
5396 }
5397 
5398 static enum drm_connector_status
5399 edp_detect(struct intel_dp *intel_dp)
5400 {
5401 	return connector_status_connected;
5402 }
5403 
5404 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5405 {
5406 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5407 	u32 bit;
5408 
5409 	switch (encoder->hpd_pin) {
5410 	case HPD_PORT_B:
5411 		bit = SDE_PORTB_HOTPLUG;
5412 		break;
5413 	case HPD_PORT_C:
5414 		bit = SDE_PORTC_HOTPLUG;
5415 		break;
5416 	case HPD_PORT_D:
5417 		bit = SDE_PORTD_HOTPLUG;
5418 		break;
5419 	default:
5420 		MISSING_CASE(encoder->hpd_pin);
5421 		return false;
5422 	}
5423 
5424 	return intel_de_read(dev_priv, SDEISR) & bit;
5425 }
5426 
5427 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5428 {
5429 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5430 	u32 bit;
5431 
5432 	switch (encoder->hpd_pin) {
5433 	case HPD_PORT_B:
5434 		bit = SDE_PORTB_HOTPLUG_CPT;
5435 		break;
5436 	case HPD_PORT_C:
5437 		bit = SDE_PORTC_HOTPLUG_CPT;
5438 		break;
5439 	case HPD_PORT_D:
5440 		bit = SDE_PORTD_HOTPLUG_CPT;
5441 		break;
5442 	default:
5443 		MISSING_CASE(encoder->hpd_pin);
5444 		return false;
5445 	}
5446 
5447 	return intel_de_read(dev_priv, SDEISR) & bit;
5448 }
5449 
5450 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5451 {
5452 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5453 	u32 bit;
5454 
5455 	switch (encoder->hpd_pin) {
5456 	case HPD_PORT_A:
5457 		bit = SDE_PORTA_HOTPLUG_SPT;
5458 		break;
5459 	case HPD_PORT_E:
5460 		bit = SDE_PORTE_HOTPLUG_SPT;
5461 		break;
5462 	default:
5463 		return cpt_digital_port_connected(encoder);
5464 	}
5465 
5466 	return intel_de_read(dev_priv, SDEISR) & bit;
5467 }
5468 
5469 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5470 {
5471 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5472 	u32 bit;
5473 
5474 	switch (encoder->hpd_pin) {
5475 	case HPD_PORT_B:
5476 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5477 		break;
5478 	case HPD_PORT_C:
5479 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5480 		break;
5481 	case HPD_PORT_D:
5482 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5483 		break;
5484 	default:
5485 		MISSING_CASE(encoder->hpd_pin);
5486 		return false;
5487 	}
5488 
5489 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5490 }
5491 
5492 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5493 {
5494 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5495 	u32 bit;
5496 
5497 	switch (encoder->hpd_pin) {
5498 	case HPD_PORT_B:
5499 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5500 		break;
5501 	case HPD_PORT_C:
5502 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5503 		break;
5504 	case HPD_PORT_D:
5505 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5506 		break;
5507 	default:
5508 		MISSING_CASE(encoder->hpd_pin);
5509 		return false;
5510 	}
5511 
5512 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5513 }
5514 
5515 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5516 {
5517 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5518 
5519 	if (encoder->hpd_pin == HPD_PORT_A)
5520 		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5521 	else
5522 		return ibx_digital_port_connected(encoder);
5523 }
5524 
5525 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5526 {
5527 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5528 
5529 	if (encoder->hpd_pin == HPD_PORT_A)
5530 		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5531 	else
5532 		return cpt_digital_port_connected(encoder);
5533 }
5534 
5535 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5536 {
5537 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5538 
5539 	if (encoder->hpd_pin == HPD_PORT_A)
5540 		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG_IVB;
5541 	else
5542 		return cpt_digital_port_connected(encoder);
5543 }
5544 
5545 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5546 {
5547 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5548 
5549 	if (encoder->hpd_pin == HPD_PORT_A)
5550 		return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5551 	else
5552 		return cpt_digital_port_connected(encoder);
5553 }
5554 
5555 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5556 {
5557 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5558 	u32 bit;
5559 
5560 	switch (encoder->hpd_pin) {
5561 	case HPD_PORT_A:
5562 		bit = BXT_DE_PORT_HP_DDIA;
5563 		break;
5564 	case HPD_PORT_B:
5565 		bit = BXT_DE_PORT_HP_DDIB;
5566 		break;
5567 	case HPD_PORT_C:
5568 		bit = BXT_DE_PORT_HP_DDIC;
5569 		break;
5570 	default:
5571 		MISSING_CASE(encoder->hpd_pin);
5572 		return false;
5573 	}
5574 
5575 	return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & bit;
5576 }
5577 
5578 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
5579 				      enum phy phy)
5580 {
5581 	if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5582 		return intel_de_read(dev_priv, SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5583 
5584 	return intel_de_read(dev_priv, SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5585 }
5586 
5587 static bool icp_digital_port_connected(struct intel_encoder *encoder)
5588 {
5589 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5590 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5591 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5592 
5593 	if (intel_phy_is_combo(dev_priv, phy))
5594 		return intel_combo_phy_connected(dev_priv, phy);
5595 	else if (intel_phy_is_tc(dev_priv, phy))
5596 		return intel_tc_port_connected(dig_port);
5597 	else
5598 		MISSING_CASE(encoder->hpd_pin);
5599 
5600 	return false;
5601 }
5602 
5603 /*
5604  * intel_digital_port_connected - is the specified port connected?
5605  * @encoder: intel_encoder
5606  *
5607  * In cases where there's a connector physically connected but it can't be used
5608  * by our hardware we also return false, since the rest of the driver should
5609  * pretty much treat the port as disconnected. This is relevant for type-C
5610  * (starting on ICL) where there's ownership involved.
5611  *
5612  * Return %true if port is connected, %false otherwise.
5613  */
5614 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5615 {
5616 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5617 
5618 	if (HAS_GMCH(dev_priv)) {
5619 		if (IS_GM45(dev_priv))
5620 			return gm45_digital_port_connected(encoder);
5621 		else
5622 			return g4x_digital_port_connected(encoder);
5623 	}
5624 
5625 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
5626 		return icp_digital_port_connected(encoder);
5627 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
5628 		return spt_digital_port_connected(encoder);
5629 	else if (IS_GEN9_LP(dev_priv))
5630 		return bxt_digital_port_connected(encoder);
5631 	else if (IS_GEN(dev_priv, 8))
5632 		return bdw_digital_port_connected(encoder);
5633 	else if (IS_GEN(dev_priv, 7))
5634 		return ivb_digital_port_connected(encoder);
5635 	else if (IS_GEN(dev_priv, 6))
5636 		return snb_digital_port_connected(encoder);
5637 	else if (IS_GEN(dev_priv, 5))
5638 		return ilk_digital_port_connected(encoder);
5639 
5640 	MISSING_CASE(INTEL_GEN(dev_priv));
5641 	return false;
5642 }
5643 
5644 bool intel_digital_port_connected(struct intel_encoder *encoder)
5645 {
5646 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5647 	bool is_connected = false;
5648 	intel_wakeref_t wakeref;
5649 
5650 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5651 		is_connected = __intel_digital_port_connected(encoder);
5652 
5653 	return is_connected;
5654 }
5655 
5656 static struct edid *
5657 intel_dp_get_edid(struct intel_dp *intel_dp)
5658 {
5659 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5660 
5661 	/* use cached edid if we have one */
5662 	if (intel_connector->edid) {
5663 		/* invalid edid */
5664 		if (IS_ERR(intel_connector->edid))
5665 			return NULL;
5666 
5667 		return drm_edid_duplicate(intel_connector->edid);
5668 	} else
5669 		return drm_get_edid(&intel_connector->base,
5670 				    &intel_dp->aux.ddc);
5671 }
5672 
5673 static void
5674 intel_dp_set_edid(struct intel_dp *intel_dp)
5675 {
5676 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5677 	struct edid *edid;
5678 
5679 	intel_dp_unset_edid(intel_dp);
5680 	edid = intel_dp_get_edid(intel_dp);
5681 	intel_connector->detect_edid = edid;
5682 
5683 	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5684 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5685 }
5686 
5687 static void
5688 intel_dp_unset_edid(struct intel_dp *intel_dp)
5689 {
5690 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5691 
5692 	drm_dp_cec_unset_edid(&intel_dp->aux);
5693 	kfree(intel_connector->detect_edid);
5694 	intel_connector->detect_edid = NULL;
5695 
5696 	intel_dp->has_audio = false;
5697 }
5698 
5699 static int
5700 intel_dp_detect(struct drm_connector *connector,
5701 		struct drm_modeset_acquire_ctx *ctx,
5702 		bool force)
5703 {
5704 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5705 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5706 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5707 	struct intel_encoder *encoder = &dig_port->base;
5708 	enum drm_connector_status status;
5709 
5710 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
5711 		    connector->base.id, connector->name);
5712 	drm_WARN_ON(&dev_priv->drm,
5713 		    !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5714 
5715 	/* Can't disconnect eDP */
5716 	if (intel_dp_is_edp(intel_dp))
5717 		status = edp_detect(intel_dp);
5718 	else if (intel_digital_port_connected(encoder))
5719 		status = intel_dp_detect_dpcd(intel_dp);
5720 	else
5721 		status = connector_status_disconnected;
5722 
5723 	if (status == connector_status_disconnected) {
5724 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5725 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5726 
5727 		if (intel_dp->is_mst) {
5728 			drm_dbg_kms(&dev_priv->drm,
5729 				    "MST device may have disappeared %d vs %d\n",
5730 				    intel_dp->is_mst,
5731 				    intel_dp->mst_mgr.mst_state);
5732 			intel_dp->is_mst = false;
5733 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5734 							intel_dp->is_mst);
5735 		}
5736 
5737 		goto out;
5738 	}
5739 
5740 	if (intel_dp->reset_link_params) {
5741 		/* Initial max link lane count */
5742 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5743 
5744 		/* Initial max link rate */
5745 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5746 
5747 		intel_dp->reset_link_params = false;
5748 	}
5749 
5750 	intel_dp_print_rates(intel_dp);
5751 
5752 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5753 	if (INTEL_GEN(dev_priv) >= 11)
5754 		intel_dp_get_dsc_sink_cap(intel_dp);
5755 
5756 	intel_dp_configure_mst(intel_dp);
5757 
5758 	if (intel_dp->is_mst) {
5759 		/*
5760 		 * If we are in MST mode then this connector
5761 		 * won't appear connected or have anything
5762 		 * with EDID on it
5763 		 */
5764 		status = connector_status_disconnected;
5765 		goto out;
5766 	}
5767 
5768 	/*
5769 	 * Some external monitors do not signal loss of link synchronization
5770 	 * with an IRQ_HPD, so force a link status check.
5771 	 */
5772 	if (!intel_dp_is_edp(intel_dp)) {
5773 		int ret;
5774 
5775 		ret = intel_dp_retrain_link(encoder, ctx);
5776 		if (ret)
5777 			return ret;
5778 	}
5779 
5780 	/*
5781 	 * Clearing NACK and defer counts to get their exact values
5782 	 * while reading EDID which are required by Compliance tests
5783 	 * 4.2.2.4 and 4.2.2.5
5784 	 */
5785 	intel_dp->aux.i2c_nack_count = 0;
5786 	intel_dp->aux.i2c_defer_count = 0;
5787 
5788 	intel_dp_set_edid(intel_dp);
5789 	if (intel_dp_is_edp(intel_dp) ||
5790 	    to_intel_connector(connector)->detect_edid)
5791 		status = connector_status_connected;
5792 
5793 	intel_dp_check_service_irq(intel_dp);
5794 
5795 out:
5796 	if (status != connector_status_connected && !intel_dp->is_mst)
5797 		intel_dp_unset_edid(intel_dp);
5798 
5799 	/*
5800 	 * Make sure the refs for power wells enabled during detect are
5801 	 * dropped to avoid a new detect cycle triggered by HPD polling.
5802 	 */
5803 	intel_display_power_flush_work(dev_priv);
5804 
5805 	return status;
5806 }
5807 
5808 static void
5809 intel_dp_force(struct drm_connector *connector)
5810 {
5811 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5812 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5813 	struct intel_encoder *intel_encoder = &dig_port->base;
5814 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5815 	enum intel_display_power_domain aux_domain =
5816 		intel_aux_power_domain(dig_port);
5817 	intel_wakeref_t wakeref;
5818 
5819 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
5820 		    connector->base.id, connector->name);
5821 	intel_dp_unset_edid(intel_dp);
5822 
5823 	if (connector->status != connector_status_connected)
5824 		return;
5825 
5826 	wakeref = intel_display_power_get(dev_priv, aux_domain);
5827 
5828 	intel_dp_set_edid(intel_dp);
5829 
5830 	intel_display_power_put(dev_priv, aux_domain, wakeref);
5831 }
5832 
5833 static int intel_dp_get_modes(struct drm_connector *connector)
5834 {
5835 	struct intel_connector *intel_connector = to_intel_connector(connector);
5836 	struct edid *edid;
5837 
5838 	edid = intel_connector->detect_edid;
5839 	if (edid) {
5840 		int ret = intel_connector_update_modes(connector, edid);
5841 		if (ret)
5842 			return ret;
5843 	}
5844 
5845 	/* if eDP has no EDID, fall back to fixed mode */
5846 	if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
5847 	    intel_connector->panel.fixed_mode) {
5848 		struct drm_display_mode *mode;
5849 
5850 		mode = drm_mode_duplicate(connector->dev,
5851 					  intel_connector->panel.fixed_mode);
5852 		if (mode) {
5853 			drm_mode_probed_add(connector, mode);
5854 			return 1;
5855 		}
5856 	}
5857 
5858 	return 0;
5859 }
5860 
5861 static int
5862 intel_dp_connector_register(struct drm_connector *connector)
5863 {
5864 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5865 	int ret;
5866 
5867 	ret = intel_connector_register(connector);
5868 	if (ret)
5869 		return ret;
5870 
5871 	intel_connector_debugfs_add(connector);
5872 
5873 	DRM_DEBUG_KMS("registering %s bus for %s\n",
5874 		      intel_dp->aux.name, connector->kdev->kobj.name);
5875 
5876 	intel_dp->aux.dev = connector->kdev;
5877 	ret = drm_dp_aux_register(&intel_dp->aux);
5878 	if (!ret)
5879 		drm_dp_cec_register_connector(&intel_dp->aux, connector);
5880 	return ret;
5881 }
5882 
5883 static void
5884 intel_dp_connector_unregister(struct drm_connector *connector)
5885 {
5886 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5887 
5888 	drm_dp_cec_unregister_connector(&intel_dp->aux);
5889 	drm_dp_aux_unregister(&intel_dp->aux);
5890 	intel_connector_unregister(connector);
5891 }
5892 
5893 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5894 {
5895 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
5896 	struct intel_dp *intel_dp = &intel_dig_port->dp;
5897 
5898 	intel_dp_mst_encoder_cleanup(intel_dig_port);
5899 	if (intel_dp_is_edp(intel_dp)) {
5900 		intel_wakeref_t wakeref;
5901 
5902 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5903 		/*
5904 		 * vdd might still be enabled do to the delayed vdd off.
5905 		 * Make sure vdd is actually turned off here.
5906 		 */
5907 		with_pps_lock(intel_dp, wakeref)
5908 			edp_panel_vdd_off_sync(intel_dp);
5909 
5910 		if (intel_dp->edp_notifier.notifier_call) {
5911 			unregister_reboot_notifier(&intel_dp->edp_notifier);
5912 			intel_dp->edp_notifier.notifier_call = NULL;
5913 		}
5914 	}
5915 
5916 	intel_dp_aux_fini(intel_dp);
5917 }
5918 
5919 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5920 {
5921 	intel_dp_encoder_flush_work(encoder);
5922 
5923 	drm_encoder_cleanup(encoder);
5924 	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
5925 }
5926 
5927 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5928 {
5929 	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
5930 	intel_wakeref_t wakeref;
5931 
5932 	if (!intel_dp_is_edp(intel_dp))
5933 		return;
5934 
5935 	/*
5936 	 * vdd might still be enabled do to the delayed vdd off.
5937 	 * Make sure vdd is actually turned off here.
5938 	 */
5939 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5940 	with_pps_lock(intel_dp, wakeref)
5941 		edp_panel_vdd_off_sync(intel_dp);
5942 }
5943 
5944 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5945 {
5946 	long ret;
5947 
5948 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5949 	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5950 					       msecs_to_jiffies(timeout));
5951 
5952 	if (!ret)
5953 		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5954 }
5955 
5956 static
5957 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5958 				u8 *an)
5959 {
5960 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
5961 	static const struct drm_dp_aux_msg msg = {
5962 		.request = DP_AUX_NATIVE_WRITE,
5963 		.address = DP_AUX_HDCP_AKSV,
5964 		.size = DRM_HDCP_KSV_LEN,
5965 	};
5966 	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5967 	ssize_t dpcd_ret;
5968 	int ret;
5969 
5970 	/* Output An first, that's easy */
5971 	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5972 				     an, DRM_HDCP_AN_LEN);
5973 	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5974 		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5975 			      dpcd_ret);
5976 		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5977 	}
5978 
5979 	/*
5980 	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5981 	 * order to get it on the wire, we need to create the AUX header as if
5982 	 * we were writing the data, and then tickle the hardware to output the
5983 	 * data once the header is sent out.
5984 	 */
5985 	intel_dp_aux_header(txbuf, &msg);
5986 
5987 	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5988 				rxbuf, sizeof(rxbuf),
5989 				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5990 	if (ret < 0) {
5991 		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5992 		return ret;
5993 	} else if (ret == 0) {
5994 		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5995 		return -EIO;
5996 	}
5997 
5998 	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5999 	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
6000 		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
6001 			      reply);
6002 		return -EIO;
6003 	}
6004 	return 0;
6005 }
6006 
6007 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
6008 				   u8 *bksv)
6009 {
6010 	ssize_t ret;
6011 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
6012 			       DRM_HDCP_KSV_LEN);
6013 	if (ret != DRM_HDCP_KSV_LEN) {
6014 		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
6015 		return ret >= 0 ? -EIO : ret;
6016 	}
6017 	return 0;
6018 }
6019 
6020 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
6021 				      u8 *bstatus)
6022 {
6023 	ssize_t ret;
6024 	/*
6025 	 * For some reason the HDMI and DP HDCP specs call this register
6026 	 * definition by different names. In the HDMI spec, it's called BSTATUS,
6027 	 * but in DP it's called BINFO.
6028 	 */
6029 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
6030 			       bstatus, DRM_HDCP_BSTATUS_LEN);
6031 	if (ret != DRM_HDCP_BSTATUS_LEN) {
6032 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6033 		return ret >= 0 ? -EIO : ret;
6034 	}
6035 	return 0;
6036 }
6037 
6038 static
6039 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
6040 			     u8 *bcaps)
6041 {
6042 	ssize_t ret;
6043 
6044 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6045 			       bcaps, 1);
6046 	if (ret != 1) {
6047 		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
6048 		return ret >= 0 ? -EIO : ret;
6049 	}
6050 
6051 	return 0;
6052 }
6053 
6054 static
6055 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6056 				   bool *repeater_present)
6057 {
6058 	ssize_t ret;
6059 	u8 bcaps;
6060 
6061 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6062 	if (ret)
6063 		return ret;
6064 
6065 	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6066 	return 0;
6067 }
6068 
6069 static
6070 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6071 				u8 *ri_prime)
6072 {
6073 	ssize_t ret;
6074 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6075 			       ri_prime, DRM_HDCP_RI_LEN);
6076 	if (ret != DRM_HDCP_RI_LEN) {
6077 		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
6078 		return ret >= 0 ? -EIO : ret;
6079 	}
6080 	return 0;
6081 }
6082 
6083 static
6084 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6085 				 bool *ksv_ready)
6086 {
6087 	ssize_t ret;
6088 	u8 bstatus;
6089 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6090 			       &bstatus, 1);
6091 	if (ret != 1) {
6092 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6093 		return ret >= 0 ? -EIO : ret;
6094 	}
6095 	*ksv_ready = bstatus & DP_BSTATUS_READY;
6096 	return 0;
6097 }
6098 
6099 static
6100 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6101 				int num_downstream, u8 *ksv_fifo)
6102 {
6103 	ssize_t ret;
6104 	int i;
6105 
6106 	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6107 	for (i = 0; i < num_downstream; i += 3) {
6108 		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6109 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6110 				       DP_AUX_HDCP_KSV_FIFO,
6111 				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
6112 				       len);
6113 		if (ret != len) {
6114 			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
6115 				      i, ret);
6116 			return ret >= 0 ? -EIO : ret;
6117 		}
6118 	}
6119 	return 0;
6120 }
6121 
6122 static
6123 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6124 				    int i, u32 *part)
6125 {
6126 	ssize_t ret;
6127 
6128 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6129 		return -EINVAL;
6130 
6131 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6132 			       DP_AUX_HDCP_V_PRIME(i), part,
6133 			       DRM_HDCP_V_PRIME_PART_LEN);
6134 	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6135 		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6136 		return ret >= 0 ? -EIO : ret;
6137 	}
6138 	return 0;
6139 }
6140 
6141 static
6142 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6143 				    bool enable)
6144 {
6145 	/* Not used for single stream DisplayPort setups */
6146 	return 0;
6147 }
6148 
6149 static
6150 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6151 {
6152 	ssize_t ret;
6153 	u8 bstatus;
6154 
6155 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6156 			       &bstatus, 1);
6157 	if (ret != 1) {
6158 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6159 		return false;
6160 	}
6161 
6162 	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6163 }
6164 
6165 static
6166 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6167 			  bool *hdcp_capable)
6168 {
6169 	ssize_t ret;
6170 	u8 bcaps;
6171 
6172 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6173 	if (ret)
6174 		return ret;
6175 
6176 	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6177 	return 0;
6178 }
6179 
6180 struct hdcp2_dp_errata_stream_type {
6181 	u8	msg_id;
6182 	u8	stream_type;
6183 } __packed;
6184 
6185 struct hdcp2_dp_msg_data {
6186 	u8 msg_id;
6187 	u32 offset;
6188 	bool msg_detectable;
6189 	u32 timeout;
6190 	u32 timeout2; /* Added for non_paired situation */
6191 };
6192 
6193 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6194 	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6195 	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6196 	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6197 	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6198 	  false, 0, 0 },
6199 	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6200 	  false, 0, 0 },
6201 	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6202 	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6203 	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6204 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
6205 	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6206 	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6207 	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6208 	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6209 	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6210 	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6211 	  0, 0 },
6212 	{ HDCP_2_2_REP_SEND_RECVID_LIST,
6213 	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6214 	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6215 	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6216 	  0, 0 },
6217 	{ HDCP_2_2_REP_STREAM_MANAGE,
6218 	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6219 	  0, 0 },
6220 	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6221 	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6222 /* local define to shovel this through the write_2_2 interface */
6223 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6224 	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6225 	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6226 	  0, 0 },
6227 };
6228 
6229 static inline
6230 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6231 				  u8 *rx_status)
6232 {
6233 	ssize_t ret;
6234 
6235 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6236 			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6237 			       HDCP_2_2_DP_RXSTATUS_LEN);
6238 	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6239 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6240 		return ret >= 0 ? -EIO : ret;
6241 	}
6242 
6243 	return 0;
6244 }
6245 
6246 static
6247 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6248 				  u8 msg_id, bool *msg_ready)
6249 {
6250 	u8 rx_status;
6251 	int ret;
6252 
6253 	*msg_ready = false;
6254 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6255 	if (ret < 0)
6256 		return ret;
6257 
6258 	switch (msg_id) {
6259 	case HDCP_2_2_AKE_SEND_HPRIME:
6260 		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6261 			*msg_ready = true;
6262 		break;
6263 	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6264 		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6265 			*msg_ready = true;
6266 		break;
6267 	case HDCP_2_2_REP_SEND_RECVID_LIST:
6268 		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6269 			*msg_ready = true;
6270 		break;
6271 	default:
6272 		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6273 		return -EINVAL;
6274 	}
6275 
6276 	return 0;
6277 }
6278 
6279 static ssize_t
6280 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6281 			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6282 {
6283 	struct intel_dp *dp = &intel_dig_port->dp;
6284 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6285 	u8 msg_id = hdcp2_msg_data->msg_id;
6286 	int ret, timeout;
6287 	bool msg_ready = false;
6288 
6289 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6290 		timeout = hdcp2_msg_data->timeout2;
6291 	else
6292 		timeout = hdcp2_msg_data->timeout;
6293 
6294 	/*
6295 	 * There is no way to detect the CERT, LPRIME and STREAM_READY
6296 	 * availability. So Wait for timeout and read the msg.
6297 	 */
6298 	if (!hdcp2_msg_data->msg_detectable) {
6299 		mdelay(timeout);
6300 		ret = 0;
6301 	} else {
6302 		/*
6303 		 * As we want to check the msg availability at timeout, Ignoring
6304 		 * the timeout at wait for CP_IRQ.
6305 		 */
6306 		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6307 		ret = hdcp2_detect_msg_availability(intel_dig_port,
6308 						    msg_id, &msg_ready);
6309 		if (!msg_ready)
6310 			ret = -ETIMEDOUT;
6311 	}
6312 
6313 	if (ret)
6314 		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6315 			      hdcp2_msg_data->msg_id, ret, timeout);
6316 
6317 	return ret;
6318 }
6319 
6320 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6321 {
6322 	int i;
6323 
6324 	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6325 		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6326 			return &hdcp2_dp_msg_data[i];
6327 
6328 	return NULL;
6329 }
6330 
6331 static
6332 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6333 			     void *buf, size_t size)
6334 {
6335 	struct intel_dp *dp = &intel_dig_port->dp;
6336 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6337 	unsigned int offset;
6338 	u8 *byte = buf;
6339 	ssize_t ret, bytes_to_write, len;
6340 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6341 
6342 	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6343 	if (!hdcp2_msg_data)
6344 		return -EINVAL;
6345 
6346 	offset = hdcp2_msg_data->offset;
6347 
6348 	/* No msg_id in DP HDCP2.2 msgs */
6349 	bytes_to_write = size - 1;
6350 	byte++;
6351 
6352 	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6353 
6354 	while (bytes_to_write) {
6355 		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6356 				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6357 
6358 		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6359 					offset, (void *)byte, len);
6360 		if (ret < 0)
6361 			return ret;
6362 
6363 		bytes_to_write -= ret;
6364 		byte += ret;
6365 		offset += ret;
6366 	}
6367 
6368 	return size;
6369 }
6370 
6371 static
6372 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6373 {
6374 	u8 rx_info[HDCP_2_2_RXINFO_LEN];
6375 	u32 dev_cnt;
6376 	ssize_t ret;
6377 
6378 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6379 			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
6380 			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6381 	if (ret != HDCP_2_2_RXINFO_LEN)
6382 		return ret >= 0 ? -EIO : ret;
6383 
6384 	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6385 		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6386 
6387 	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6388 		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6389 
6390 	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6391 		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6392 		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6393 
6394 	return ret;
6395 }
6396 
6397 static
6398 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6399 			    u8 msg_id, void *buf, size_t size)
6400 {
6401 	unsigned int offset;
6402 	u8 *byte = buf;
6403 	ssize_t ret, bytes_to_recv, len;
6404 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6405 
6406 	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6407 	if (!hdcp2_msg_data)
6408 		return -EINVAL;
6409 	offset = hdcp2_msg_data->offset;
6410 
6411 	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6412 	if (ret < 0)
6413 		return ret;
6414 
6415 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6416 		ret = get_receiver_id_list_size(intel_dig_port);
6417 		if (ret < 0)
6418 			return ret;
6419 
6420 		size = ret;
6421 	}
6422 	bytes_to_recv = size - 1;
6423 
6424 	/* DP adaptation msgs has no msg_id */
6425 	byte++;
6426 
6427 	while (bytes_to_recv) {
6428 		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6429 		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6430 
6431 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6432 				       (void *)byte, len);
6433 		if (ret < 0) {
6434 			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6435 			return ret;
6436 		}
6437 
6438 		bytes_to_recv -= ret;
6439 		byte += ret;
6440 		offset += ret;
6441 	}
6442 	byte = buf;
6443 	*byte = msg_id;
6444 
6445 	return size;
6446 }
6447 
6448 static
6449 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6450 				      bool is_repeater, u8 content_type)
6451 {
6452 	struct hdcp2_dp_errata_stream_type stream_type_msg;
6453 
6454 	if (is_repeater)
6455 		return 0;
6456 
6457 	/*
6458 	 * Errata for DP: As Stream type is used for encryption, Receiver
6459 	 * should be communicated with stream type for the decryption of the
6460 	 * content.
6461 	 * Repeater will be communicated with stream type as a part of it's
6462 	 * auth later in time.
6463 	 */
6464 	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6465 	stream_type_msg.stream_type = content_type;
6466 
6467 	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6468 					sizeof(stream_type_msg));
6469 }
6470 
6471 static
6472 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6473 {
6474 	u8 rx_status;
6475 	int ret;
6476 
6477 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6478 	if (ret)
6479 		return ret;
6480 
6481 	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6482 		ret = HDCP_REAUTH_REQUEST;
6483 	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6484 		ret = HDCP_LINK_INTEGRITY_FAILURE;
6485 	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6486 		ret = HDCP_TOPOLOGY_CHANGE;
6487 
6488 	return ret;
6489 }
6490 
6491 static
6492 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6493 			   bool *capable)
6494 {
6495 	u8 rx_caps[3];
6496 	int ret;
6497 
6498 	*capable = false;
6499 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6500 			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6501 			       rx_caps, HDCP_2_2_RXCAPS_LEN);
6502 	if (ret != HDCP_2_2_RXCAPS_LEN)
6503 		return ret >= 0 ? -EIO : ret;
6504 
6505 	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6506 	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6507 		*capable = true;
6508 
6509 	return 0;
6510 }
6511 
6512 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6513 	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
6514 	.read_bksv = intel_dp_hdcp_read_bksv,
6515 	.read_bstatus = intel_dp_hdcp_read_bstatus,
6516 	.repeater_present = intel_dp_hdcp_repeater_present,
6517 	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
6518 	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6519 	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6520 	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6521 	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
6522 	.check_link = intel_dp_hdcp_check_link,
6523 	.hdcp_capable = intel_dp_hdcp_capable,
6524 	.write_2_2_msg = intel_dp_hdcp2_write_msg,
6525 	.read_2_2_msg = intel_dp_hdcp2_read_msg,
6526 	.config_stream_type = intel_dp_hdcp2_config_stream_type,
6527 	.check_2_2_link = intel_dp_hdcp2_check_link,
6528 	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
6529 	.protocol = HDCP_PROTOCOL_DP,
6530 };
6531 
6532 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6533 {
6534 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6535 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6536 
6537 	lockdep_assert_held(&dev_priv->pps_mutex);
6538 
6539 	if (!edp_have_panel_vdd(intel_dp))
6540 		return;
6541 
6542 	/*
6543 	 * The VDD bit needs a power domain reference, so if the bit is
6544 	 * already enabled when we boot or resume, grab this reference and
6545 	 * schedule a vdd off, so we don't hold on to the reference
6546 	 * indefinitely.
6547 	 */
6548 	drm_dbg_kms(&dev_priv->drm,
6549 		    "VDD left on by BIOS, adjusting state tracking\n");
6550 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6551 
6552 	edp_panel_vdd_schedule_off(intel_dp);
6553 }
6554 
6555 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6556 {
6557 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6558 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6559 	enum pipe pipe;
6560 
6561 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6562 				  encoder->port, &pipe))
6563 		return pipe;
6564 
6565 	return INVALID_PIPE;
6566 }
6567 
6568 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6569 {
6570 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6571 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6572 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6573 	intel_wakeref_t wakeref;
6574 
6575 	if (!HAS_DDI(dev_priv))
6576 		intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
6577 
6578 	if (lspcon->active)
6579 		lspcon_resume(lspcon);
6580 
6581 	intel_dp->reset_link_params = true;
6582 
6583 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6584 	    !intel_dp_is_edp(intel_dp))
6585 		return;
6586 
6587 	with_pps_lock(intel_dp, wakeref) {
6588 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6589 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6590 
6591 		if (intel_dp_is_edp(intel_dp)) {
6592 			/*
6593 			 * Reinit the power sequencer, in case BIOS did
6594 			 * something nasty with it.
6595 			 */
6596 			intel_dp_pps_init(intel_dp);
6597 			intel_edp_panel_vdd_sanitize(intel_dp);
6598 		}
6599 	}
6600 }
6601 
6602 static int intel_modeset_tile_group(struct intel_atomic_state *state,
6603 				    int tile_group_id)
6604 {
6605 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6606 	struct drm_connector_list_iter conn_iter;
6607 	struct drm_connector *connector;
6608 	int ret = 0;
6609 
6610 	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
6611 	drm_for_each_connector_iter(connector, &conn_iter) {
6612 		struct drm_connector_state *conn_state;
6613 		struct intel_crtc_state *crtc_state;
6614 		struct intel_crtc *crtc;
6615 
6616 		if (!connector->has_tile ||
6617 		    connector->tile_group->id != tile_group_id)
6618 			continue;
6619 
6620 		conn_state = drm_atomic_get_connector_state(&state->base,
6621 							    connector);
6622 		if (IS_ERR(conn_state)) {
6623 			ret = PTR_ERR(conn_state);
6624 			break;
6625 		}
6626 
6627 		crtc = to_intel_crtc(conn_state->crtc);
6628 
6629 		if (!crtc)
6630 			continue;
6631 
6632 		crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
6633 		crtc_state->uapi.mode_changed = true;
6634 
6635 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6636 		if (ret)
6637 			break;
6638 	}
6639 	drm_connector_list_iter_end(&conn_iter);
6640 
6641 	return ret;
6642 }
6643 
6644 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
6645 {
6646 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6647 	struct intel_crtc *crtc;
6648 
6649 	if (transcoders == 0)
6650 		return 0;
6651 
6652 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6653 		struct intel_crtc_state *crtc_state;
6654 		int ret;
6655 
6656 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
6657 		if (IS_ERR(crtc_state))
6658 			return PTR_ERR(crtc_state);
6659 
6660 		if (!crtc_state->hw.enable)
6661 			continue;
6662 
6663 		if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
6664 			continue;
6665 
6666 		crtc_state->uapi.mode_changed = true;
6667 
6668 		ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
6669 		if (ret)
6670 			return ret;
6671 
6672 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6673 		if (ret)
6674 			return ret;
6675 
6676 		transcoders &= ~BIT(crtc_state->cpu_transcoder);
6677 	}
6678 
6679 	drm_WARN_ON(&dev_priv->drm, transcoders != 0);
6680 
6681 	return 0;
6682 }
6683 
6684 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
6685 				      struct drm_connector *connector)
6686 {
6687 	const struct drm_connector_state *old_conn_state =
6688 		drm_atomic_get_old_connector_state(&state->base, connector);
6689 	const struct intel_crtc_state *old_crtc_state;
6690 	struct intel_crtc *crtc;
6691 	u8 transcoders;
6692 
6693 	crtc = to_intel_crtc(old_conn_state->crtc);
6694 	if (!crtc)
6695 		return 0;
6696 
6697 	old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
6698 
6699 	if (!old_crtc_state->hw.active)
6700 		return 0;
6701 
6702 	transcoders = old_crtc_state->sync_mode_slaves_mask;
6703 	if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
6704 		transcoders |= BIT(old_crtc_state->master_transcoder);
6705 
6706 	return intel_modeset_affected_transcoders(state,
6707 						  transcoders);
6708 }
6709 
6710 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
6711 					   struct drm_atomic_state *_state)
6712 {
6713 	struct drm_i915_private *dev_priv = to_i915(conn->dev);
6714 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
6715 	int ret;
6716 
6717 	ret = intel_digital_connector_atomic_check(conn, &state->base);
6718 	if (ret)
6719 		return ret;
6720 
6721 	if (INTEL_GEN(dev_priv) < 11)
6722 		return 0;
6723 
6724 	if (!intel_connector_needs_modeset(state, conn))
6725 		return 0;
6726 
6727 	if (conn->has_tile) {
6728 		ret = intel_modeset_tile_group(state, conn->tile_group->id);
6729 		if (ret)
6730 			return ret;
6731 	}
6732 
6733 	return intel_modeset_synced_crtcs(state, conn);
6734 }
6735 
6736 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6737 	.force = intel_dp_force,
6738 	.fill_modes = drm_helper_probe_single_connector_modes,
6739 	.atomic_get_property = intel_digital_connector_atomic_get_property,
6740 	.atomic_set_property = intel_digital_connector_atomic_set_property,
6741 	.late_register = intel_dp_connector_register,
6742 	.early_unregister = intel_dp_connector_unregister,
6743 	.destroy = intel_connector_destroy,
6744 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6745 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6746 };
6747 
6748 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6749 	.detect_ctx = intel_dp_detect,
6750 	.get_modes = intel_dp_get_modes,
6751 	.mode_valid = intel_dp_mode_valid,
6752 	.atomic_check = intel_dp_connector_atomic_check,
6753 };
6754 
6755 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6756 	.reset = intel_dp_encoder_reset,
6757 	.destroy = intel_dp_encoder_destroy,
6758 };
6759 
6760 enum irqreturn
6761 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6762 {
6763 	struct intel_dp *intel_dp = &intel_dig_port->dp;
6764 
6765 	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6766 		/*
6767 		 * vdd off can generate a long pulse on eDP which
6768 		 * would require vdd on to handle it, and thus we
6769 		 * would end up in an endless cycle of
6770 		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6771 		 */
6772 		DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6773 			      intel_dig_port->base.base.base.id,
6774 			      intel_dig_port->base.base.name);
6775 		return IRQ_HANDLED;
6776 	}
6777 
6778 	DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6779 		      intel_dig_port->base.base.base.id,
6780 		      intel_dig_port->base.base.name,
6781 		      long_hpd ? "long" : "short");
6782 
6783 	if (long_hpd) {
6784 		intel_dp->reset_link_params = true;
6785 		return IRQ_NONE;
6786 	}
6787 
6788 	if (intel_dp->is_mst) {
6789 		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6790 			/*
6791 			 * If we were in MST mode, and device is not
6792 			 * there, get out of MST mode
6793 			 */
6794 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6795 				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6796 			intel_dp->is_mst = false;
6797 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6798 							intel_dp->is_mst);
6799 
6800 			return IRQ_NONE;
6801 		}
6802 	}
6803 
6804 	if (!intel_dp->is_mst) {
6805 		bool handled;
6806 
6807 		handled = intel_dp_short_pulse(intel_dp);
6808 
6809 		if (!handled)
6810 			return IRQ_NONE;
6811 	}
6812 
6813 	return IRQ_HANDLED;
6814 }
6815 
6816 /* check the VBT to see whether the eDP is on another port */
6817 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6818 {
6819 	/*
6820 	 * eDP not supported on g4x. so bail out early just
6821 	 * for a bit extra safety in case the VBT is bonkers.
6822 	 */
6823 	if (INTEL_GEN(dev_priv) < 5)
6824 		return false;
6825 
6826 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6827 		return true;
6828 
6829 	return intel_bios_is_port_edp(dev_priv, port);
6830 }
6831 
6832 static void
6833 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6834 {
6835 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6836 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6837 
6838 	if (!IS_G4X(dev_priv) && port != PORT_A)
6839 		intel_attach_force_audio_property(connector);
6840 
6841 	intel_attach_broadcast_rgb_property(connector);
6842 	if (HAS_GMCH(dev_priv))
6843 		drm_connector_attach_max_bpc_property(connector, 6, 10);
6844 	else if (INTEL_GEN(dev_priv) >= 5)
6845 		drm_connector_attach_max_bpc_property(connector, 6, 12);
6846 
6847 	intel_attach_colorspace_property(connector);
6848 
6849 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6850 		drm_object_attach_property(&connector->base,
6851 					   connector->dev->mode_config.hdr_output_metadata_property,
6852 					   0);
6853 
6854 	if (intel_dp_is_edp(intel_dp)) {
6855 		u32 allowed_scalers;
6856 
6857 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6858 		if (!HAS_GMCH(dev_priv))
6859 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6860 
6861 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6862 
6863 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6864 
6865 	}
6866 }
6867 
6868 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6869 {
6870 	intel_dp->panel_power_off_time = ktime_get_boottime();
6871 	intel_dp->last_power_on = jiffies;
6872 	intel_dp->last_backlight_off = jiffies;
6873 }
6874 
6875 static void
6876 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6877 {
6878 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6879 	u32 pp_on, pp_off, pp_ctl;
6880 	struct pps_registers regs;
6881 
6882 	intel_pps_get_registers(intel_dp, &regs);
6883 
6884 	pp_ctl = ilk_get_pp_control(intel_dp);
6885 
6886 	/* Ensure PPS is unlocked */
6887 	if (!HAS_DDI(dev_priv))
6888 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
6889 
6890 	pp_on = intel_de_read(dev_priv, regs.pp_on);
6891 	pp_off = intel_de_read(dev_priv, regs.pp_off);
6892 
6893 	/* Pull timing values out of registers */
6894 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6895 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6896 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6897 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6898 
6899 	if (i915_mmio_reg_valid(regs.pp_div)) {
6900 		u32 pp_div;
6901 
6902 		pp_div = intel_de_read(dev_priv, regs.pp_div);
6903 
6904 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6905 	} else {
6906 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6907 	}
6908 }
6909 
6910 static void
6911 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6912 {
6913 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6914 		      state_name,
6915 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6916 }
6917 
6918 static void
6919 intel_pps_verify_state(struct intel_dp *intel_dp)
6920 {
6921 	struct edp_power_seq hw;
6922 	struct edp_power_seq *sw = &intel_dp->pps_delays;
6923 
6924 	intel_pps_readout_hw_state(intel_dp, &hw);
6925 
6926 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6927 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6928 		DRM_ERROR("PPS state mismatch\n");
6929 		intel_pps_dump_state("sw", sw);
6930 		intel_pps_dump_state("hw", &hw);
6931 	}
6932 }
6933 
6934 static void
6935 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6936 {
6937 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6938 	struct edp_power_seq cur, vbt, spec,
6939 		*final = &intel_dp->pps_delays;
6940 
6941 	lockdep_assert_held(&dev_priv->pps_mutex);
6942 
6943 	/* already initialized? */
6944 	if (final->t11_t12 != 0)
6945 		return;
6946 
6947 	intel_pps_readout_hw_state(intel_dp, &cur);
6948 
6949 	intel_pps_dump_state("cur", &cur);
6950 
6951 	vbt = dev_priv->vbt.edp.pps;
6952 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6953 	 * of 500ms appears to be too short. Ocassionally the panel
6954 	 * just fails to power back on. Increasing the delay to 800ms
6955 	 * seems sufficient to avoid this problem.
6956 	 */
6957 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6958 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6959 		drm_dbg_kms(&dev_priv->drm,
6960 			    "Increasing T12 panel delay as per the quirk to %d\n",
6961 			    vbt.t11_t12);
6962 	}
6963 	/* T11_T12 delay is special and actually in units of 100ms, but zero
6964 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6965 	 * table multiplies it with 1000 to make it in units of 100usec,
6966 	 * too. */
6967 	vbt.t11_t12 += 100 * 10;
6968 
6969 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6970 	 * our hw here, which are all in 100usec. */
6971 	spec.t1_t3 = 210 * 10;
6972 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6973 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6974 	spec.t10 = 500 * 10;
6975 	/* This one is special and actually in units of 100ms, but zero
6976 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6977 	 * table multiplies it with 1000 to make it in units of 100usec,
6978 	 * too. */
6979 	spec.t11_t12 = (510 + 100) * 10;
6980 
6981 	intel_pps_dump_state("vbt", &vbt);
6982 
6983 	/* Use the max of the register settings and vbt. If both are
6984 	 * unset, fall back to the spec limits. */
6985 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6986 				       spec.field : \
6987 				       max(cur.field, vbt.field))
6988 	assign_final(t1_t3);
6989 	assign_final(t8);
6990 	assign_final(t9);
6991 	assign_final(t10);
6992 	assign_final(t11_t12);
6993 #undef assign_final
6994 
6995 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6996 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
6997 	intel_dp->backlight_on_delay = get_delay(t8);
6998 	intel_dp->backlight_off_delay = get_delay(t9);
6999 	intel_dp->panel_power_down_delay = get_delay(t10);
7000 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7001 #undef get_delay
7002 
7003 	drm_dbg_kms(&dev_priv->drm,
7004 		    "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7005 		    intel_dp->panel_power_up_delay,
7006 		    intel_dp->panel_power_down_delay,
7007 		    intel_dp->panel_power_cycle_delay);
7008 
7009 	drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7010 		    intel_dp->backlight_on_delay,
7011 		    intel_dp->backlight_off_delay);
7012 
7013 	/*
7014 	 * We override the HW backlight delays to 1 because we do manual waits
7015 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
7016 	 * don't do this, we'll end up waiting for the backlight off delay
7017 	 * twice: once when we do the manual sleep, and once when we disable
7018 	 * the panel and wait for the PP_STATUS bit to become zero.
7019 	 */
7020 	final->t8 = 1;
7021 	final->t9 = 1;
7022 
7023 	/*
7024 	 * HW has only a 100msec granularity for t11_t12 so round it up
7025 	 * accordingly.
7026 	 */
7027 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7028 }
7029 
7030 static void
7031 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7032 					      bool force_disable_vdd)
7033 {
7034 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7035 	u32 pp_on, pp_off, port_sel = 0;
7036 	int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7037 	struct pps_registers regs;
7038 	enum port port = dp_to_dig_port(intel_dp)->base.port;
7039 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
7040 
7041 	lockdep_assert_held(&dev_priv->pps_mutex);
7042 
7043 	intel_pps_get_registers(intel_dp, &regs);
7044 
7045 	/*
7046 	 * On some VLV machines the BIOS can leave the VDD
7047 	 * enabled even on power sequencers which aren't
7048 	 * hooked up to any port. This would mess up the
7049 	 * power domain tracking the first time we pick
7050 	 * one of these power sequencers for use since
7051 	 * edp_panel_vdd_on() would notice that the VDD was
7052 	 * already on and therefore wouldn't grab the power
7053 	 * domain reference. Disable VDD first to avoid this.
7054 	 * This also avoids spuriously turning the VDD on as
7055 	 * soon as the new power sequencer gets initialized.
7056 	 */
7057 	if (force_disable_vdd) {
7058 		u32 pp = ilk_get_pp_control(intel_dp);
7059 
7060 		drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7061 			 "Panel power already on\n");
7062 
7063 		if (pp & EDP_FORCE_VDD)
7064 			drm_dbg_kms(&dev_priv->drm,
7065 				    "VDD already on, disabling first\n");
7066 
7067 		pp &= ~EDP_FORCE_VDD;
7068 
7069 		intel_de_write(dev_priv, regs.pp_ctrl, pp);
7070 	}
7071 
7072 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7073 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7074 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7075 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7076 
7077 	/* Haswell doesn't have any port selection bits for the panel
7078 	 * power sequencer any more. */
7079 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7080 		port_sel = PANEL_PORT_SELECT_VLV(port);
7081 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7082 		switch (port) {
7083 		case PORT_A:
7084 			port_sel = PANEL_PORT_SELECT_DPA;
7085 			break;
7086 		case PORT_C:
7087 			port_sel = PANEL_PORT_SELECT_DPC;
7088 			break;
7089 		case PORT_D:
7090 			port_sel = PANEL_PORT_SELECT_DPD;
7091 			break;
7092 		default:
7093 			MISSING_CASE(port);
7094 			break;
7095 		}
7096 	}
7097 
7098 	pp_on |= port_sel;
7099 
7100 	intel_de_write(dev_priv, regs.pp_on, pp_on);
7101 	intel_de_write(dev_priv, regs.pp_off, pp_off);
7102 
7103 	/*
7104 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
7105 	 */
7106 	if (i915_mmio_reg_valid(regs.pp_div)) {
7107 		intel_de_write(dev_priv, regs.pp_div,
7108 			       REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7109 	} else {
7110 		u32 pp_ctl;
7111 
7112 		pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7113 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7114 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7115 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7116 	}
7117 
7118 	drm_dbg_kms(&dev_priv->drm,
7119 		    "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7120 		    intel_de_read(dev_priv, regs.pp_on),
7121 		    intel_de_read(dev_priv, regs.pp_off),
7122 		    i915_mmio_reg_valid(regs.pp_div) ?
7123 		    intel_de_read(dev_priv, regs.pp_div) :
7124 		    (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7125 }
7126 
7127 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7128 {
7129 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7130 
7131 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7132 		vlv_initial_power_sequencer_setup(intel_dp);
7133 	} else {
7134 		intel_dp_init_panel_power_sequencer(intel_dp);
7135 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7136 	}
7137 }
7138 
7139 /**
7140  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7141  * @dev_priv: i915 device
7142  * @crtc_state: a pointer to the active intel_crtc_state
7143  * @refresh_rate: RR to be programmed
7144  *
7145  * This function gets called when refresh rate (RR) has to be changed from
7146  * one frequency to another. Switches can be between high and low RR
7147  * supported by the panel or to any other RR based on media playback (in
7148  * this case, RR value needs to be passed from user space).
7149  *
7150  * The caller of this function needs to take a lock on dev_priv->drrs.
7151  */
7152 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7153 				    const struct intel_crtc_state *crtc_state,
7154 				    int refresh_rate)
7155 {
7156 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
7157 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7158 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7159 
7160 	if (refresh_rate <= 0) {
7161 		drm_dbg_kms(&dev_priv->drm,
7162 			    "Refresh rate should be positive non-zero.\n");
7163 		return;
7164 	}
7165 
7166 	if (intel_dp == NULL) {
7167 		drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7168 		return;
7169 	}
7170 
7171 	if (!intel_crtc) {
7172 		drm_dbg_kms(&dev_priv->drm,
7173 			    "DRRS: intel_crtc not initialized\n");
7174 		return;
7175 	}
7176 
7177 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7178 		drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7179 		return;
7180 	}
7181 
7182 	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
7183 			refresh_rate)
7184 		index = DRRS_LOW_RR;
7185 
7186 	if (index == dev_priv->drrs.refresh_rate_type) {
7187 		drm_dbg_kms(&dev_priv->drm,
7188 			    "DRRS requested for previously set RR...ignoring\n");
7189 		return;
7190 	}
7191 
7192 	if (!crtc_state->hw.active) {
7193 		drm_dbg_kms(&dev_priv->drm,
7194 			    "eDP encoder disabled. CRTC not Active\n");
7195 		return;
7196 	}
7197 
7198 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7199 		switch (index) {
7200 		case DRRS_HIGH_RR:
7201 			intel_dp_set_m_n(crtc_state, M1_N1);
7202 			break;
7203 		case DRRS_LOW_RR:
7204 			intel_dp_set_m_n(crtc_state, M2_N2);
7205 			break;
7206 		case DRRS_MAX_RR:
7207 		default:
7208 			drm_err(&dev_priv->drm,
7209 				"Unsupported refreshrate type\n");
7210 		}
7211 	} else if (INTEL_GEN(dev_priv) > 6) {
7212 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7213 		u32 val;
7214 
7215 		val = intel_de_read(dev_priv, reg);
7216 		if (index > DRRS_HIGH_RR) {
7217 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7218 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7219 			else
7220 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7221 		} else {
7222 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7223 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7224 			else
7225 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7226 		}
7227 		intel_de_write(dev_priv, reg, val);
7228 	}
7229 
7230 	dev_priv->drrs.refresh_rate_type = index;
7231 
7232 	drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7233 		    refresh_rate);
7234 }
7235 
7236 /**
7237  * intel_edp_drrs_enable - init drrs struct if supported
7238  * @intel_dp: DP struct
7239  * @crtc_state: A pointer to the active crtc state.
7240  *
7241  * Initializes frontbuffer_bits and drrs.dp
7242  */
7243 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7244 			   const struct intel_crtc_state *crtc_state)
7245 {
7246 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7247 
7248 	if (!crtc_state->has_drrs) {
7249 		drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
7250 		return;
7251 	}
7252 
7253 	if (dev_priv->psr.enabled) {
7254 		drm_dbg_kms(&dev_priv->drm,
7255 			    "PSR enabled. Not enabling DRRS.\n");
7256 		return;
7257 	}
7258 
7259 	mutex_lock(&dev_priv->drrs.mutex);
7260 	if (dev_priv->drrs.dp) {
7261 		drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
7262 		goto unlock;
7263 	}
7264 
7265 	dev_priv->drrs.busy_frontbuffer_bits = 0;
7266 
7267 	dev_priv->drrs.dp = intel_dp;
7268 
7269 unlock:
7270 	mutex_unlock(&dev_priv->drrs.mutex);
7271 }
7272 
7273 /**
7274  * intel_edp_drrs_disable - Disable DRRS
7275  * @intel_dp: DP struct
7276  * @old_crtc_state: Pointer to old crtc_state.
7277  *
7278  */
7279 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7280 			    const struct intel_crtc_state *old_crtc_state)
7281 {
7282 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7283 
7284 	if (!old_crtc_state->has_drrs)
7285 		return;
7286 
7287 	mutex_lock(&dev_priv->drrs.mutex);
7288 	if (!dev_priv->drrs.dp) {
7289 		mutex_unlock(&dev_priv->drrs.mutex);
7290 		return;
7291 	}
7292 
7293 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7294 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7295 			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7296 
7297 	dev_priv->drrs.dp = NULL;
7298 	mutex_unlock(&dev_priv->drrs.mutex);
7299 
7300 	cancel_delayed_work_sync(&dev_priv->drrs.work);
7301 }
7302 
7303 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7304 {
7305 	struct drm_i915_private *dev_priv =
7306 		container_of(work, typeof(*dev_priv), drrs.work.work);
7307 	struct intel_dp *intel_dp;
7308 
7309 	mutex_lock(&dev_priv->drrs.mutex);
7310 
7311 	intel_dp = dev_priv->drrs.dp;
7312 
7313 	if (!intel_dp)
7314 		goto unlock;
7315 
7316 	/*
7317 	 * The delayed work can race with an invalidate hence we need to
7318 	 * recheck.
7319 	 */
7320 
7321 	if (dev_priv->drrs.busy_frontbuffer_bits)
7322 		goto unlock;
7323 
7324 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7325 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7326 
7327 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7328 			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7329 	}
7330 
7331 unlock:
7332 	mutex_unlock(&dev_priv->drrs.mutex);
7333 }
7334 
7335 /**
7336  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7337  * @dev_priv: i915 device
7338  * @frontbuffer_bits: frontbuffer plane tracking bits
7339  *
7340  * This function gets called everytime rendering on the given planes start.
7341  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7342  *
7343  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7344  */
7345 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7346 			       unsigned int frontbuffer_bits)
7347 {
7348 	struct drm_crtc *crtc;
7349 	enum pipe pipe;
7350 
7351 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7352 		return;
7353 
7354 	cancel_delayed_work(&dev_priv->drrs.work);
7355 
7356 	mutex_lock(&dev_priv->drrs.mutex);
7357 	if (!dev_priv->drrs.dp) {
7358 		mutex_unlock(&dev_priv->drrs.mutex);
7359 		return;
7360 	}
7361 
7362 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7363 	pipe = to_intel_crtc(crtc)->pipe;
7364 
7365 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7366 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7367 
7368 	/* invalidate means busy screen hence upclock */
7369 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7370 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7371 			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7372 
7373 	mutex_unlock(&dev_priv->drrs.mutex);
7374 }
7375 
7376 /**
7377  * intel_edp_drrs_flush - Restart Idleness DRRS
7378  * @dev_priv: i915 device
7379  * @frontbuffer_bits: frontbuffer plane tracking bits
7380  *
7381  * This function gets called every time rendering on the given planes has
7382  * completed or flip on a crtc is completed. So DRRS should be upclocked
7383  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7384  * if no other planes are dirty.
7385  *
7386  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7387  */
7388 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7389 			  unsigned int frontbuffer_bits)
7390 {
7391 	struct drm_crtc *crtc;
7392 	enum pipe pipe;
7393 
7394 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7395 		return;
7396 
7397 	cancel_delayed_work(&dev_priv->drrs.work);
7398 
7399 	mutex_lock(&dev_priv->drrs.mutex);
7400 	if (!dev_priv->drrs.dp) {
7401 		mutex_unlock(&dev_priv->drrs.mutex);
7402 		return;
7403 	}
7404 
7405 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7406 	pipe = to_intel_crtc(crtc)->pipe;
7407 
7408 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7409 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7410 
7411 	/* flush means busy screen hence upclock */
7412 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7413 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7414 				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7415 
7416 	/*
7417 	 * flush also means no more activity hence schedule downclock, if all
7418 	 * other fbs are quiescent too
7419 	 */
7420 	if (!dev_priv->drrs.busy_frontbuffer_bits)
7421 		schedule_delayed_work(&dev_priv->drrs.work,
7422 				msecs_to_jiffies(1000));
7423 	mutex_unlock(&dev_priv->drrs.mutex);
7424 }
7425 
7426 /**
7427  * DOC: Display Refresh Rate Switching (DRRS)
7428  *
7429  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7430  * which enables swtching between low and high refresh rates,
7431  * dynamically, based on the usage scenario. This feature is applicable
7432  * for internal panels.
7433  *
7434  * Indication that the panel supports DRRS is given by the panel EDID, which
7435  * would list multiple refresh rates for one resolution.
7436  *
7437  * DRRS is of 2 types - static and seamless.
7438  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7439  * (may appear as a blink on screen) and is used in dock-undock scenario.
7440  * Seamless DRRS involves changing RR without any visual effect to the user
7441  * and can be used during normal system usage. This is done by programming
7442  * certain registers.
7443  *
7444  * Support for static/seamless DRRS may be indicated in the VBT based on
7445  * inputs from the panel spec.
7446  *
7447  * DRRS saves power by switching to low RR based on usage scenarios.
7448  *
7449  * The implementation is based on frontbuffer tracking implementation.  When
7450  * there is a disturbance on the screen triggered by user activity or a periodic
7451  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7452  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7453  * made.
7454  *
7455  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7456  * and intel_edp_drrs_flush() are called.
7457  *
7458  * DRRS can be further extended to support other internal panels and also
7459  * the scenario of video playback wherein RR is set based on the rate
7460  * requested by userspace.
7461  */
7462 
7463 /**
7464  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7465  * @connector: eDP connector
7466  * @fixed_mode: preferred mode of panel
7467  *
7468  * This function is  called only once at driver load to initialize basic
7469  * DRRS stuff.
7470  *
7471  * Returns:
7472  * Downclock mode if panel supports it, else return NULL.
7473  * DRRS support is determined by the presence of downclock mode (apart
7474  * from VBT setting).
7475  */
7476 static struct drm_display_mode *
7477 intel_dp_drrs_init(struct intel_connector *connector,
7478 		   struct drm_display_mode *fixed_mode)
7479 {
7480 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7481 	struct drm_display_mode *downclock_mode = NULL;
7482 
7483 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7484 	mutex_init(&dev_priv->drrs.mutex);
7485 
7486 	if (INTEL_GEN(dev_priv) <= 6) {
7487 		drm_dbg_kms(&dev_priv->drm,
7488 			    "DRRS supported for Gen7 and above\n");
7489 		return NULL;
7490 	}
7491 
7492 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7493 		drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7494 		return NULL;
7495 	}
7496 
7497 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7498 	if (!downclock_mode) {
7499 		drm_dbg_kms(&dev_priv->drm,
7500 			    "Downclock mode is not found. DRRS not supported\n");
7501 		return NULL;
7502 	}
7503 
7504 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7505 
7506 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7507 	drm_dbg_kms(&dev_priv->drm,
7508 		    "seamless DRRS supported for eDP panel.\n");
7509 	return downclock_mode;
7510 }
7511 
7512 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7513 				     struct intel_connector *intel_connector)
7514 {
7515 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7516 	struct drm_device *dev = &dev_priv->drm;
7517 	struct drm_connector *connector = &intel_connector->base;
7518 	struct drm_display_mode *fixed_mode = NULL;
7519 	struct drm_display_mode *downclock_mode = NULL;
7520 	bool has_dpcd;
7521 	enum pipe pipe = INVALID_PIPE;
7522 	intel_wakeref_t wakeref;
7523 	struct edid *edid;
7524 
7525 	if (!intel_dp_is_edp(intel_dp))
7526 		return true;
7527 
7528 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7529 
7530 	/*
7531 	 * On IBX/CPT we may get here with LVDS already registered. Since the
7532 	 * driver uses the only internal power sequencer available for both
7533 	 * eDP and LVDS bail out early in this case to prevent interfering
7534 	 * with an already powered-on LVDS power sequencer.
7535 	 */
7536 	if (intel_get_lvds_encoder(dev_priv)) {
7537 		drm_WARN_ON(dev,
7538 			    !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7539 		drm_info(&dev_priv->drm,
7540 			 "LVDS was detected, not registering eDP\n");
7541 
7542 		return false;
7543 	}
7544 
7545 	with_pps_lock(intel_dp, wakeref) {
7546 		intel_dp_init_panel_power_timestamps(intel_dp);
7547 		intel_dp_pps_init(intel_dp);
7548 		intel_edp_panel_vdd_sanitize(intel_dp);
7549 	}
7550 
7551 	/* Cache DPCD and EDID for edp. */
7552 	has_dpcd = intel_edp_init_dpcd(intel_dp);
7553 
7554 	if (!has_dpcd) {
7555 		/* if this fails, presume the device is a ghost */
7556 		drm_info(&dev_priv->drm,
7557 			 "failed to retrieve link info, disabling eDP\n");
7558 		goto out_vdd_off;
7559 	}
7560 
7561 	mutex_lock(&dev->mode_config.mutex);
7562 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7563 	if (edid) {
7564 		if (drm_add_edid_modes(connector, edid)) {
7565 			drm_connector_update_edid_property(connector,
7566 								edid);
7567 		} else {
7568 			kfree(edid);
7569 			edid = ERR_PTR(-EINVAL);
7570 		}
7571 	} else {
7572 		edid = ERR_PTR(-ENOENT);
7573 	}
7574 	intel_connector->edid = edid;
7575 
7576 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7577 	if (fixed_mode)
7578 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7579 
7580 	/* fallback to VBT if available for eDP */
7581 	if (!fixed_mode)
7582 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7583 	mutex_unlock(&dev->mode_config.mutex);
7584 
7585 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7586 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7587 		register_reboot_notifier(&intel_dp->edp_notifier);
7588 
7589 		/*
7590 		 * Figure out the current pipe for the initial backlight setup.
7591 		 * If the current pipe isn't valid, try the PPS pipe, and if that
7592 		 * fails just assume pipe A.
7593 		 */
7594 		pipe = vlv_active_pipe(intel_dp);
7595 
7596 		if (pipe != PIPE_A && pipe != PIPE_B)
7597 			pipe = intel_dp->pps_pipe;
7598 
7599 		if (pipe != PIPE_A && pipe != PIPE_B)
7600 			pipe = PIPE_A;
7601 
7602 		drm_dbg_kms(&dev_priv->drm,
7603 			    "using pipe %c for initial backlight setup\n",
7604 			    pipe_name(pipe));
7605 	}
7606 
7607 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7608 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7609 	intel_panel_setup_backlight(connector, pipe);
7610 
7611 	if (fixed_mode) {
7612 		/* We do not know the orientation, but their might be a quirk */
7613 		drm_connector_set_panel_orientation_with_quirk(connector,
7614 				DRM_MODE_PANEL_ORIENTATION_UNKNOWN,
7615 				fixed_mode->hdisplay, fixed_mode->vdisplay);
7616 	}
7617 
7618 	return true;
7619 
7620 out_vdd_off:
7621 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7622 	/*
7623 	 * vdd might still be enabled do to the delayed vdd off.
7624 	 * Make sure vdd is actually turned off here.
7625 	 */
7626 	with_pps_lock(intel_dp, wakeref)
7627 		edp_panel_vdd_off_sync(intel_dp);
7628 
7629 	return false;
7630 }
7631 
7632 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7633 {
7634 	struct intel_connector *intel_connector;
7635 	struct drm_connector *connector;
7636 
7637 	intel_connector = container_of(work, typeof(*intel_connector),
7638 				       modeset_retry_work);
7639 	connector = &intel_connector->base;
7640 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7641 		      connector->name);
7642 
7643 	/* Grab the locks before changing connector property*/
7644 	mutex_lock(&connector->dev->mode_config.mutex);
7645 	/* Set connector link status to BAD and send a Uevent to notify
7646 	 * userspace to do a modeset.
7647 	 */
7648 	drm_connector_set_link_status_property(connector,
7649 					       DRM_MODE_LINK_STATUS_BAD);
7650 	mutex_unlock(&connector->dev->mode_config.mutex);
7651 	/* Send Hotplug uevent so userspace can reprobe */
7652 	drm_kms_helper_hotplug_event(connector->dev);
7653 }
7654 
7655 bool
7656 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7657 			struct intel_connector *intel_connector)
7658 {
7659 	struct drm_connector *connector = &intel_connector->base;
7660 	struct intel_dp *intel_dp = &intel_dig_port->dp;
7661 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
7662 	struct drm_device *dev = intel_encoder->base.dev;
7663 	struct drm_i915_private *dev_priv = to_i915(dev);
7664 	enum port port = intel_encoder->port;
7665 	enum phy phy = intel_port_to_phy(dev_priv, port);
7666 	int type;
7667 
7668 	/* Initialize the work for modeset in case of link train failure */
7669 	INIT_WORK(&intel_connector->modeset_retry_work,
7670 		  intel_dp_modeset_retry_work_fn);
7671 
7672 	if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
7673 		     "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7674 		     intel_dig_port->max_lanes, intel_encoder->base.base.id,
7675 		     intel_encoder->base.name))
7676 		return false;
7677 
7678 	intel_dp_set_source_rates(intel_dp);
7679 
7680 	intel_dp->reset_link_params = true;
7681 	intel_dp->pps_pipe = INVALID_PIPE;
7682 	intel_dp->active_pipe = INVALID_PIPE;
7683 
7684 	/* Preserve the current hw state. */
7685 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7686 	intel_dp->attached_connector = intel_connector;
7687 
7688 	if (intel_dp_is_port_edp(dev_priv, port)) {
7689 		/*
7690 		 * Currently we don't support eDP on TypeC ports, although in
7691 		 * theory it could work on TypeC legacy ports.
7692 		 */
7693 		drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
7694 		type = DRM_MODE_CONNECTOR_eDP;
7695 	} else {
7696 		type = DRM_MODE_CONNECTOR_DisplayPort;
7697 	}
7698 
7699 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7700 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7701 
7702 	/*
7703 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7704 	 * for DP the encoder type can be set by the caller to
7705 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7706 	 */
7707 	if (type == DRM_MODE_CONNECTOR_eDP)
7708 		intel_encoder->type = INTEL_OUTPUT_EDP;
7709 
7710 	/* eDP only on port B and/or C on vlv/chv */
7711 	if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
7712 			      IS_CHERRYVIEW(dev_priv)) &&
7713 			intel_dp_is_edp(intel_dp) &&
7714 			port != PORT_B && port != PORT_C))
7715 		return false;
7716 
7717 	drm_dbg_kms(&dev_priv->drm,
7718 		    "Adding %s connector on [ENCODER:%d:%s]\n",
7719 		    type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7720 		    intel_encoder->base.base.id, intel_encoder->base.name);
7721 
7722 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7723 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7724 
7725 	if (!HAS_GMCH(dev_priv))
7726 		connector->interlace_allowed = true;
7727 	connector->doublescan_allowed = 0;
7728 
7729 	if (INTEL_GEN(dev_priv) >= 11)
7730 		connector->ycbcr_420_allowed = true;
7731 
7732 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7733 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
7734 
7735 	intel_dp_aux_init(intel_dp);
7736 
7737 	intel_connector_attach_encoder(intel_connector, intel_encoder);
7738 
7739 	if (HAS_DDI(dev_priv))
7740 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7741 	else
7742 		intel_connector->get_hw_state = intel_connector_get_hw_state;
7743 
7744 	/* init MST on ports that can support it */
7745 	intel_dp_mst_encoder_init(intel_dig_port,
7746 				  intel_connector->base.base.id);
7747 
7748 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7749 		intel_dp_aux_fini(intel_dp);
7750 		intel_dp_mst_encoder_cleanup(intel_dig_port);
7751 		goto fail;
7752 	}
7753 
7754 	intel_dp_add_properties(intel_dp, connector);
7755 
7756 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7757 		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7758 		if (ret)
7759 			drm_dbg_kms(&dev_priv->drm,
7760 				    "HDCP init failed, skipping.\n");
7761 	}
7762 
7763 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7764 	 * 0xd.  Failure to do so will result in spurious interrupts being
7765 	 * generated on the port when a cable is not attached.
7766 	 */
7767 	if (IS_G45(dev_priv)) {
7768 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
7769 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
7770 			       (temp & ~0xf) | 0xd);
7771 	}
7772 
7773 	return true;
7774 
7775 fail:
7776 	drm_connector_cleanup(connector);
7777 
7778 	return false;
7779 }
7780 
7781 bool intel_dp_init(struct drm_i915_private *dev_priv,
7782 		   i915_reg_t output_reg,
7783 		   enum port port)
7784 {
7785 	struct intel_digital_port *intel_dig_port;
7786 	struct intel_encoder *intel_encoder;
7787 	struct drm_encoder *encoder;
7788 	struct intel_connector *intel_connector;
7789 
7790 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7791 	if (!intel_dig_port)
7792 		return false;
7793 
7794 	intel_connector = intel_connector_alloc();
7795 	if (!intel_connector)
7796 		goto err_connector_alloc;
7797 
7798 	intel_encoder = &intel_dig_port->base;
7799 	encoder = &intel_encoder->base;
7800 
7801 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7802 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7803 			     "DP %c", port_name(port)))
7804 		goto err_encoder_init;
7805 
7806 	intel_encoder->hotplug = intel_dp_hotplug;
7807 	intel_encoder->compute_config = intel_dp_compute_config;
7808 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7809 	intel_encoder->get_config = intel_dp_get_config;
7810 	intel_encoder->update_pipe = intel_panel_update_backlight;
7811 	intel_encoder->suspend = intel_dp_encoder_suspend;
7812 	if (IS_CHERRYVIEW(dev_priv)) {
7813 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7814 		intel_encoder->pre_enable = chv_pre_enable_dp;
7815 		intel_encoder->enable = vlv_enable_dp;
7816 		intel_encoder->disable = vlv_disable_dp;
7817 		intel_encoder->post_disable = chv_post_disable_dp;
7818 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7819 	} else if (IS_VALLEYVIEW(dev_priv)) {
7820 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7821 		intel_encoder->pre_enable = vlv_pre_enable_dp;
7822 		intel_encoder->enable = vlv_enable_dp;
7823 		intel_encoder->disable = vlv_disable_dp;
7824 		intel_encoder->post_disable = vlv_post_disable_dp;
7825 	} else {
7826 		intel_encoder->pre_enable = g4x_pre_enable_dp;
7827 		intel_encoder->enable = g4x_enable_dp;
7828 		intel_encoder->disable = g4x_disable_dp;
7829 		intel_encoder->post_disable = g4x_post_disable_dp;
7830 	}
7831 
7832 	intel_dig_port->dp.output_reg = output_reg;
7833 	intel_dig_port->max_lanes = 4;
7834 
7835 	intel_encoder->type = INTEL_OUTPUT_DP;
7836 	intel_encoder->power_domain = intel_port_to_power_domain(port);
7837 	if (IS_CHERRYVIEW(dev_priv)) {
7838 		if (port == PORT_D)
7839 			intel_encoder->pipe_mask = BIT(PIPE_C);
7840 		else
7841 			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7842 	} else {
7843 		intel_encoder->pipe_mask = ~0;
7844 	}
7845 	intel_encoder->cloneable = 0;
7846 	intel_encoder->port = port;
7847 
7848 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7849 
7850 	if (port != PORT_A)
7851 		intel_infoframe_init(intel_dig_port);
7852 
7853 	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7854 	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7855 		goto err_init_connector;
7856 
7857 	return true;
7858 
7859 err_init_connector:
7860 	drm_encoder_cleanup(encoder);
7861 err_encoder_init:
7862 	kfree(intel_connector);
7863 err_connector_alloc:
7864 	kfree(intel_dig_port);
7865 	return false;
7866 }
7867 
7868 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7869 {
7870 	struct intel_encoder *encoder;
7871 
7872 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7873 		struct intel_dp *intel_dp;
7874 
7875 		if (encoder->type != INTEL_OUTPUT_DDI)
7876 			continue;
7877 
7878 		intel_dp = enc_to_intel_dp(encoder);
7879 
7880 		if (!intel_dp->can_mst)
7881 			continue;
7882 
7883 		if (intel_dp->is_mst)
7884 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7885 	}
7886 }
7887 
7888 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7889 {
7890 	struct intel_encoder *encoder;
7891 
7892 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7893 		struct intel_dp *intel_dp;
7894 		int ret;
7895 
7896 		if (encoder->type != INTEL_OUTPUT_DDI)
7897 			continue;
7898 
7899 		intel_dp = enc_to_intel_dp(encoder);
7900 
7901 		if (!intel_dp->can_mst)
7902 			continue;
7903 
7904 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
7905 						     true);
7906 		if (ret) {
7907 			intel_dp->is_mst = false;
7908 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7909 							false);
7910 		}
7911 	}
7912 }
7913