xref: /linux/drivers/gpu/drm/i915/display/intel_dp.c (revision 0a91330b2af9f71ceeeed483f92774182b58f6d9)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34 
35 #include <asm/byteorder.h>
36 
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
44 
45 #include "i915_debugfs.h"
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_atomic.h"
49 #include "intel_audio.h"
50 #include "intel_connector.h"
51 #include "intel_ddi.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
68 
69 #define DP_DPRX_ESI_LEN 14
70 
71 /* DP DSC throughput values used for slice count calculations KPixels/s */
72 #define DP_DSC_PEAK_PIXEL_RATE			2720000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
75 
76 /* DP DSC FEC Overhead factor = 1/(0.972261) */
77 #define DP_DSC_FEC_OVERHEAD_FACTOR		972261
78 
79 /* Compliance test status bits  */
80 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
81 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
84 
85 struct dp_link_dpll {
86 	int clock;
87 	struct dpll dpll;
88 };
89 
90 static const struct dp_link_dpll g4x_dpll[] = {
91 	{ 162000,
92 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93 	{ 270000,
94 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
95 };
96 
97 static const struct dp_link_dpll pch_dpll[] = {
98 	{ 162000,
99 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100 	{ 270000,
101 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
102 };
103 
104 static const struct dp_link_dpll vlv_dpll[] = {
105 	{ 162000,
106 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107 	{ 270000,
108 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
109 };
110 
111 /*
112  * CHV supports eDP 1.4 that have  more link rates.
113  * Below only provides the fixed rate but exclude variable rate.
114  */
115 static const struct dp_link_dpll chv_dpll[] = {
116 	/*
117 	 * CHV requires to program fractional division for m2.
118 	 * m2 is stored in fixed point format using formula below
119 	 * (m2_int << 22) | m2_fraction
120 	 */
121 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
122 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
124 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
125 };
126 
127 /* Constants for DP DSC configurations */
128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
129 
130 /* With Single pipe configuration, HW is capable of supporting maximum
131  * of 4 slices per line.
132  */
133 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
134 
135 /**
136  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137  * @intel_dp: DP struct
138  *
139  * If a CPU or PCH DP output is attached to an eDP panel, this function
140  * will return true, and false otherwise.
141  */
142 bool intel_dp_is_edp(struct intel_dp *intel_dp)
143 {
144 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145 
146 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 }
148 
149 static struct intel_dp *intel_attached_dp(struct intel_connector *connector)
150 {
151 	return enc_to_intel_dp(intel_attached_encoder(connector));
152 }
153 
154 static void intel_dp_link_down(struct intel_encoder *encoder,
155 			       const struct intel_crtc_state *old_crtc_state);
156 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
157 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
158 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
159 					   const struct intel_crtc_state *crtc_state);
160 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
161 				      enum pipe pipe);
162 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
163 
164 /* update sink rates from dpcd */
165 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
166 {
167 	static const int dp_rates[] = {
168 		162000, 270000, 540000, 810000
169 	};
170 	int i, max_rate;
171 
172 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
173 
174 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
175 		if (dp_rates[i] > max_rate)
176 			break;
177 		intel_dp->sink_rates[i] = dp_rates[i];
178 	}
179 
180 	intel_dp->num_sink_rates = i;
181 }
182 
183 /* Get length of rates array potentially limited by max_rate. */
184 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
185 {
186 	int i;
187 
188 	/* Limit results by potentially reduced max rate */
189 	for (i = 0; i < len; i++) {
190 		if (rates[len - i - 1] <= max_rate)
191 			return len - i;
192 	}
193 
194 	return 0;
195 }
196 
197 /* Get length of common rates array potentially limited by max_rate. */
198 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
199 					  int max_rate)
200 {
201 	return intel_dp_rate_limit_len(intel_dp->common_rates,
202 				       intel_dp->num_common_rates, max_rate);
203 }
204 
205 /* Theoretical max between source and sink */
206 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
207 {
208 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
209 }
210 
211 /* Theoretical max between source and sink */
212 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
213 {
214 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
215 	int source_max = intel_dig_port->max_lanes;
216 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
217 	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
218 
219 	return min3(source_max, sink_max, fia_max);
220 }
221 
222 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
223 {
224 	return intel_dp->max_link_lane_count;
225 }
226 
227 int
228 intel_dp_link_required(int pixel_clock, int bpp)
229 {
230 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
231 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
232 }
233 
234 int
235 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
236 {
237 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
238 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
239 	 * is transmitted every LS_Clk per lane, there is no need to account for
240 	 * the channel encoding that is done in the PHY layer here.
241 	 */
242 
243 	return max_link_clock * max_lanes;
244 }
245 
246 static int
247 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
248 {
249 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
250 	struct intel_encoder *encoder = &intel_dig_port->base;
251 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
252 	int max_dotclk = dev_priv->max_dotclk_freq;
253 	int ds_max_dotclk;
254 
255 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
256 
257 	if (type != DP_DS_PORT_TYPE_VGA)
258 		return max_dotclk;
259 
260 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
261 						    intel_dp->downstream_ports);
262 
263 	if (ds_max_dotclk != 0)
264 		max_dotclk = min(max_dotclk, ds_max_dotclk);
265 
266 	return max_dotclk;
267 }
268 
269 static int cnl_max_source_rate(struct intel_dp *intel_dp)
270 {
271 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
272 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
273 	enum port port = dig_port->base.port;
274 
275 	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
276 
277 	/* Low voltage SKUs are limited to max of 5.4G */
278 	if (voltage == VOLTAGE_INFO_0_85V)
279 		return 540000;
280 
281 	/* For this SKU 8.1G is supported in all ports */
282 	if (IS_CNL_WITH_PORT_F(dev_priv))
283 		return 810000;
284 
285 	/* For other SKUs, max rate on ports A and D is 5.4G */
286 	if (port == PORT_A || port == PORT_D)
287 		return 540000;
288 
289 	return 810000;
290 }
291 
292 static int icl_max_source_rate(struct intel_dp *intel_dp)
293 {
294 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
295 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
296 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
297 
298 	if (intel_phy_is_combo(dev_priv, phy) &&
299 	    !IS_ELKHARTLAKE(dev_priv) &&
300 	    !intel_dp_is_edp(intel_dp))
301 		return 540000;
302 
303 	return 810000;
304 }
305 
306 static void
307 intel_dp_set_source_rates(struct intel_dp *intel_dp)
308 {
309 	/* The values must be in increasing order */
310 	static const int cnl_rates[] = {
311 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
312 	};
313 	static const int bxt_rates[] = {
314 		162000, 216000, 243000, 270000, 324000, 432000, 540000
315 	};
316 	static const int skl_rates[] = {
317 		162000, 216000, 270000, 324000, 432000, 540000
318 	};
319 	static const int hsw_rates[] = {
320 		162000, 270000, 540000
321 	};
322 	static const int g4x_rates[] = {
323 		162000, 270000
324 	};
325 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
326 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
327 	const struct ddi_vbt_port_info *info =
328 		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
329 	const int *source_rates;
330 	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
331 
332 	/* This should only be done once */
333 	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
334 
335 	if (INTEL_GEN(dev_priv) >= 10) {
336 		source_rates = cnl_rates;
337 		size = ARRAY_SIZE(cnl_rates);
338 		if (IS_GEN(dev_priv, 10))
339 			max_rate = cnl_max_source_rate(intel_dp);
340 		else
341 			max_rate = icl_max_source_rate(intel_dp);
342 	} else if (IS_GEN9_LP(dev_priv)) {
343 		source_rates = bxt_rates;
344 		size = ARRAY_SIZE(bxt_rates);
345 	} else if (IS_GEN9_BC(dev_priv)) {
346 		source_rates = skl_rates;
347 		size = ARRAY_SIZE(skl_rates);
348 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
349 		   IS_BROADWELL(dev_priv)) {
350 		source_rates = hsw_rates;
351 		size = ARRAY_SIZE(hsw_rates);
352 	} else {
353 		source_rates = g4x_rates;
354 		size = ARRAY_SIZE(g4x_rates);
355 	}
356 
357 	if (max_rate && vbt_max_rate)
358 		max_rate = min(max_rate, vbt_max_rate);
359 	else if (vbt_max_rate)
360 		max_rate = vbt_max_rate;
361 
362 	if (max_rate)
363 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
364 
365 	intel_dp->source_rates = source_rates;
366 	intel_dp->num_source_rates = size;
367 }
368 
369 static int intersect_rates(const int *source_rates, int source_len,
370 			   const int *sink_rates, int sink_len,
371 			   int *common_rates)
372 {
373 	int i = 0, j = 0, k = 0;
374 
375 	while (i < source_len && j < sink_len) {
376 		if (source_rates[i] == sink_rates[j]) {
377 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
378 				return k;
379 			common_rates[k] = source_rates[i];
380 			++k;
381 			++i;
382 			++j;
383 		} else if (source_rates[i] < sink_rates[j]) {
384 			++i;
385 		} else {
386 			++j;
387 		}
388 	}
389 	return k;
390 }
391 
392 /* return index of rate in rates array, or -1 if not found */
393 static int intel_dp_rate_index(const int *rates, int len, int rate)
394 {
395 	int i;
396 
397 	for (i = 0; i < len; i++)
398 		if (rate == rates[i])
399 			return i;
400 
401 	return -1;
402 }
403 
404 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
405 {
406 	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
407 
408 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
409 						     intel_dp->num_source_rates,
410 						     intel_dp->sink_rates,
411 						     intel_dp->num_sink_rates,
412 						     intel_dp->common_rates);
413 
414 	/* Paranoia, there should always be something in common. */
415 	if (WARN_ON(intel_dp->num_common_rates == 0)) {
416 		intel_dp->common_rates[0] = 162000;
417 		intel_dp->num_common_rates = 1;
418 	}
419 }
420 
421 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
422 				       u8 lane_count)
423 {
424 	/*
425 	 * FIXME: we need to synchronize the current link parameters with
426 	 * hardware readout. Currently fast link training doesn't work on
427 	 * boot-up.
428 	 */
429 	if (link_rate == 0 ||
430 	    link_rate > intel_dp->max_link_rate)
431 		return false;
432 
433 	if (lane_count == 0 ||
434 	    lane_count > intel_dp_max_lane_count(intel_dp))
435 		return false;
436 
437 	return true;
438 }
439 
440 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
441 						     int link_rate,
442 						     u8 lane_count)
443 {
444 	const struct drm_display_mode *fixed_mode =
445 		intel_dp->attached_connector->panel.fixed_mode;
446 	int mode_rate, max_rate;
447 
448 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
449 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
450 	if (mode_rate > max_rate)
451 		return false;
452 
453 	return true;
454 }
455 
456 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
457 					    int link_rate, u8 lane_count)
458 {
459 	int index;
460 
461 	index = intel_dp_rate_index(intel_dp->common_rates,
462 				    intel_dp->num_common_rates,
463 				    link_rate);
464 	if (index > 0) {
465 		if (intel_dp_is_edp(intel_dp) &&
466 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
467 							      intel_dp->common_rates[index - 1],
468 							      lane_count)) {
469 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
470 			return 0;
471 		}
472 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
473 		intel_dp->max_link_lane_count = lane_count;
474 	} else if (lane_count > 1) {
475 		if (intel_dp_is_edp(intel_dp) &&
476 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
477 							      intel_dp_max_common_rate(intel_dp),
478 							      lane_count >> 1)) {
479 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
480 			return 0;
481 		}
482 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
483 		intel_dp->max_link_lane_count = lane_count >> 1;
484 	} else {
485 		DRM_ERROR("Link Training Unsuccessful\n");
486 		return -1;
487 	}
488 
489 	return 0;
490 }
491 
492 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
493 {
494 	return div_u64(mul_u32_u32(mode_clock, 1000000U),
495 		       DP_DSC_FEC_OVERHEAD_FACTOR);
496 }
497 
498 static int
499 small_joiner_ram_size_bits(struct drm_i915_private *i915)
500 {
501 	if (INTEL_GEN(i915) >= 11)
502 		return 7680 * 8;
503 	else
504 		return 6144 * 8;
505 }
506 
507 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
508 				       u32 link_clock, u32 lane_count,
509 				       u32 mode_clock, u32 mode_hdisplay)
510 {
511 	u32 bits_per_pixel, max_bpp_small_joiner_ram;
512 	int i;
513 
514 	/*
515 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
516 	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
517 	 * for SST -> TimeSlotsPerMTP is 1,
518 	 * for MST -> TimeSlotsPerMTP has to be calculated
519 	 */
520 	bits_per_pixel = (link_clock * lane_count * 8) /
521 			 intel_dp_mode_to_fec_clock(mode_clock);
522 	DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);
523 
524 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
525 	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
526 		mode_hdisplay;
527 	DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);
528 
529 	/*
530 	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
531 	 * check, output bpp from small joiner RAM check)
532 	 */
533 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
534 
535 	/* Error out if the max bpp is less than smallest allowed valid bpp */
536 	if (bits_per_pixel < valid_dsc_bpp[0]) {
537 		DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
538 			      bits_per_pixel, valid_dsc_bpp[0]);
539 		return 0;
540 	}
541 
542 	/* Find the nearest match in the array of known BPPs from VESA */
543 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
544 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
545 			break;
546 	}
547 	bits_per_pixel = valid_dsc_bpp[i];
548 
549 	/*
550 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
551 	 * fractional part is 0
552 	 */
553 	return bits_per_pixel << 4;
554 }
555 
556 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
557 				       int mode_clock, int mode_hdisplay)
558 {
559 	u8 min_slice_count, i;
560 	int max_slice_width;
561 
562 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
563 		min_slice_count = DIV_ROUND_UP(mode_clock,
564 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
565 	else
566 		min_slice_count = DIV_ROUND_UP(mode_clock,
567 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
568 
569 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
570 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
571 		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
572 			      max_slice_width);
573 		return 0;
574 	}
575 	/* Also take into account max slice width */
576 	min_slice_count = min_t(u8, min_slice_count,
577 				DIV_ROUND_UP(mode_hdisplay,
578 					     max_slice_width));
579 
580 	/* Find the closest match to the valid slice count values */
581 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
582 		if (valid_dsc_slicecount[i] >
583 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
584 						    false))
585 			break;
586 		if (min_slice_count  <= valid_dsc_slicecount[i])
587 			return valid_dsc_slicecount[i];
588 	}
589 
590 	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
591 	return 0;
592 }
593 
594 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
595 				  int hdisplay)
596 {
597 	/*
598 	 * Older platforms don't like hdisplay==4096 with DP.
599 	 *
600 	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
601 	 * and frame counter increment), but we don't get vblank interrupts,
602 	 * and the pipe underruns immediately. The link also doesn't seem
603 	 * to get trained properly.
604 	 *
605 	 * On CHV the vblank interrupts don't seem to disappear but
606 	 * otherwise the symptoms are similar.
607 	 *
608 	 * TODO: confirm the behaviour on HSW+
609 	 */
610 	return hdisplay == 4096 && !HAS_DDI(dev_priv);
611 }
612 
613 static enum drm_mode_status
614 intel_dp_mode_valid(struct drm_connector *connector,
615 		    struct drm_display_mode *mode)
616 {
617 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
618 	struct intel_connector *intel_connector = to_intel_connector(connector);
619 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
620 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
621 	int target_clock = mode->clock;
622 	int max_rate, mode_rate, max_lanes, max_link_clock;
623 	int max_dotclk;
624 	u16 dsc_max_output_bpp = 0;
625 	u8 dsc_slice_count = 0;
626 
627 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
628 		return MODE_NO_DBLESCAN;
629 
630 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
631 
632 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
633 		if (mode->hdisplay > fixed_mode->hdisplay)
634 			return MODE_PANEL;
635 
636 		if (mode->vdisplay > fixed_mode->vdisplay)
637 			return MODE_PANEL;
638 
639 		target_clock = fixed_mode->clock;
640 	}
641 
642 	max_link_clock = intel_dp_max_link_rate(intel_dp);
643 	max_lanes = intel_dp_max_lane_count(intel_dp);
644 
645 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
646 	mode_rate = intel_dp_link_required(target_clock, 18);
647 
648 	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
649 		return MODE_H_ILLEGAL;
650 
651 	/*
652 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
653 	 * integer value since we support only integer values of bpp.
654 	 */
655 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
656 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
657 		if (intel_dp_is_edp(intel_dp)) {
658 			dsc_max_output_bpp =
659 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
660 			dsc_slice_count =
661 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
662 								true);
663 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
664 			dsc_max_output_bpp =
665 				intel_dp_dsc_get_output_bpp(dev_priv,
666 							    max_link_clock,
667 							    max_lanes,
668 							    target_clock,
669 							    mode->hdisplay) >> 4;
670 			dsc_slice_count =
671 				intel_dp_dsc_get_slice_count(intel_dp,
672 							     target_clock,
673 							     mode->hdisplay);
674 		}
675 	}
676 
677 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
678 	    target_clock > max_dotclk)
679 		return MODE_CLOCK_HIGH;
680 
681 	if (mode->clock < 10000)
682 		return MODE_CLOCK_LOW;
683 
684 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
685 		return MODE_H_ILLEGAL;
686 
687 	return intel_mode_valid_max_plane_size(dev_priv, mode);
688 }
689 
690 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
691 {
692 	int i;
693 	u32 v = 0;
694 
695 	if (src_bytes > 4)
696 		src_bytes = 4;
697 	for (i = 0; i < src_bytes; i++)
698 		v |= ((u32)src[i]) << ((3 - i) * 8);
699 	return v;
700 }
701 
702 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
703 {
704 	int i;
705 	if (dst_bytes > 4)
706 		dst_bytes = 4;
707 	for (i = 0; i < dst_bytes; i++)
708 		dst[i] = src >> ((3-i) * 8);
709 }
710 
711 static void
712 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
713 static void
714 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
715 					      bool force_disable_vdd);
716 static void
717 intel_dp_pps_init(struct intel_dp *intel_dp);
718 
719 static intel_wakeref_t
720 pps_lock(struct intel_dp *intel_dp)
721 {
722 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
723 	intel_wakeref_t wakeref;
724 
725 	/*
726 	 * See intel_power_sequencer_reset() why we need
727 	 * a power domain reference here.
728 	 */
729 	wakeref = intel_display_power_get(dev_priv,
730 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
731 
732 	mutex_lock(&dev_priv->pps_mutex);
733 
734 	return wakeref;
735 }
736 
737 static intel_wakeref_t
738 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
739 {
740 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
741 
742 	mutex_unlock(&dev_priv->pps_mutex);
743 	intel_display_power_put(dev_priv,
744 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
745 				wakeref);
746 	return 0;
747 }
748 
749 #define with_pps_lock(dp, wf) \
750 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
751 
752 static void
753 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
754 {
755 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
756 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757 	enum pipe pipe = intel_dp->pps_pipe;
758 	bool pll_enabled, release_cl_override = false;
759 	enum dpio_phy phy = DPIO_PHY(pipe);
760 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
761 	u32 DP;
762 
763 	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
764 		 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
765 		 pipe_name(pipe), intel_dig_port->base.base.base.id,
766 		 intel_dig_port->base.base.name))
767 		return;
768 
769 	DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
770 		      pipe_name(pipe), intel_dig_port->base.base.base.id,
771 		      intel_dig_port->base.base.name);
772 
773 	/* Preserve the BIOS-computed detected bit. This is
774 	 * supposed to be read-only.
775 	 */
776 	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
777 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
778 	DP |= DP_PORT_WIDTH(1);
779 	DP |= DP_LINK_TRAIN_PAT_1;
780 
781 	if (IS_CHERRYVIEW(dev_priv))
782 		DP |= DP_PIPE_SEL_CHV(pipe);
783 	else
784 		DP |= DP_PIPE_SEL(pipe);
785 
786 	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
787 
788 	/*
789 	 * The DPLL for the pipe must be enabled for this to work.
790 	 * So enable temporarily it if it's not already enabled.
791 	 */
792 	if (!pll_enabled) {
793 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
794 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
795 
796 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
797 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
798 			DRM_ERROR("Failed to force on pll for pipe %c!\n",
799 				  pipe_name(pipe));
800 			return;
801 		}
802 	}
803 
804 	/*
805 	 * Similar magic as in intel_dp_enable_port().
806 	 * We _must_ do this port enable + disable trick
807 	 * to make this power sequencer lock onto the port.
808 	 * Otherwise even VDD force bit won't work.
809 	 */
810 	I915_WRITE(intel_dp->output_reg, DP);
811 	POSTING_READ(intel_dp->output_reg);
812 
813 	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
814 	POSTING_READ(intel_dp->output_reg);
815 
816 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
817 	POSTING_READ(intel_dp->output_reg);
818 
819 	if (!pll_enabled) {
820 		vlv_force_pll_off(dev_priv, pipe);
821 
822 		if (release_cl_override)
823 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
824 	}
825 }
826 
827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
828 {
829 	struct intel_encoder *encoder;
830 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
831 
832 	/*
833 	 * We don't have power sequencer currently.
834 	 * Pick one that's not used by other ports.
835 	 */
836 	for_each_intel_dp(&dev_priv->drm, encoder) {
837 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
838 
839 		if (encoder->type == INTEL_OUTPUT_EDP) {
840 			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
841 				intel_dp->active_pipe != intel_dp->pps_pipe);
842 
843 			if (intel_dp->pps_pipe != INVALID_PIPE)
844 				pipes &= ~(1 << intel_dp->pps_pipe);
845 		} else {
846 			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
847 
848 			if (intel_dp->active_pipe != INVALID_PIPE)
849 				pipes &= ~(1 << intel_dp->active_pipe);
850 		}
851 	}
852 
853 	if (pipes == 0)
854 		return INVALID_PIPE;
855 
856 	return ffs(pipes) - 1;
857 }
858 
859 static enum pipe
860 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
861 {
862 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
863 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
864 	enum pipe pipe;
865 
866 	lockdep_assert_held(&dev_priv->pps_mutex);
867 
868 	/* We should never land here with regular DP ports */
869 	WARN_ON(!intel_dp_is_edp(intel_dp));
870 
871 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
872 		intel_dp->active_pipe != intel_dp->pps_pipe);
873 
874 	if (intel_dp->pps_pipe != INVALID_PIPE)
875 		return intel_dp->pps_pipe;
876 
877 	pipe = vlv_find_free_pps(dev_priv);
878 
879 	/*
880 	 * Didn't find one. This should not happen since there
881 	 * are two power sequencers and up to two eDP ports.
882 	 */
883 	if (WARN_ON(pipe == INVALID_PIPE))
884 		pipe = PIPE_A;
885 
886 	vlv_steal_power_sequencer(dev_priv, pipe);
887 	intel_dp->pps_pipe = pipe;
888 
889 	DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
890 		      pipe_name(intel_dp->pps_pipe),
891 		      intel_dig_port->base.base.base.id,
892 		      intel_dig_port->base.base.name);
893 
894 	/* init power sequencer on this pipe and port */
895 	intel_dp_init_panel_power_sequencer(intel_dp);
896 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
897 
898 	/*
899 	 * Even vdd force doesn't work until we've made
900 	 * the power sequencer lock in on the port.
901 	 */
902 	vlv_power_sequencer_kick(intel_dp);
903 
904 	return intel_dp->pps_pipe;
905 }
906 
907 static int
908 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
909 {
910 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
911 	int backlight_controller = dev_priv->vbt.backlight.controller;
912 
913 	lockdep_assert_held(&dev_priv->pps_mutex);
914 
915 	/* We should never land here with regular DP ports */
916 	WARN_ON(!intel_dp_is_edp(intel_dp));
917 
918 	if (!intel_dp->pps_reset)
919 		return backlight_controller;
920 
921 	intel_dp->pps_reset = false;
922 
923 	/*
924 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
925 	 * has been setup during connector init.
926 	 */
927 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
928 
929 	return backlight_controller;
930 }
931 
932 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
933 			       enum pipe pipe);
934 
935 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
936 			       enum pipe pipe)
937 {
938 	return I915_READ(PP_STATUS(pipe)) & PP_ON;
939 }
940 
941 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
942 				enum pipe pipe)
943 {
944 	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
945 }
946 
947 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
948 			 enum pipe pipe)
949 {
950 	return true;
951 }
952 
953 static enum pipe
954 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
955 		     enum port port,
956 		     vlv_pipe_check pipe_check)
957 {
958 	enum pipe pipe;
959 
960 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
961 		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
962 			PANEL_PORT_SELECT_MASK;
963 
964 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
965 			continue;
966 
967 		if (!pipe_check(dev_priv, pipe))
968 			continue;
969 
970 		return pipe;
971 	}
972 
973 	return INVALID_PIPE;
974 }
975 
976 static void
977 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
978 {
979 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
980 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
981 	enum port port = intel_dig_port->base.port;
982 
983 	lockdep_assert_held(&dev_priv->pps_mutex);
984 
985 	/* try to find a pipe with this port selected */
986 	/* first pick one where the panel is on */
987 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
988 						  vlv_pipe_has_pp_on);
989 	/* didn't find one? pick one where vdd is on */
990 	if (intel_dp->pps_pipe == INVALID_PIPE)
991 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
992 							  vlv_pipe_has_vdd_on);
993 	/* didn't find one? pick one with just the correct port */
994 	if (intel_dp->pps_pipe == INVALID_PIPE)
995 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
996 							  vlv_pipe_any);
997 
998 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
999 	if (intel_dp->pps_pipe == INVALID_PIPE) {
1000 		DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n",
1001 			      intel_dig_port->base.base.base.id,
1002 			      intel_dig_port->base.base.name);
1003 		return;
1004 	}
1005 
1006 	DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1007 		      intel_dig_port->base.base.base.id,
1008 		      intel_dig_port->base.base.name,
1009 		      pipe_name(intel_dp->pps_pipe));
1010 
1011 	intel_dp_init_panel_power_sequencer(intel_dp);
1012 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1013 }
1014 
1015 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1016 {
1017 	struct intel_encoder *encoder;
1018 
1019 	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
1020 		    !IS_GEN9_LP(dev_priv)))
1021 		return;
1022 
1023 	/*
1024 	 * We can't grab pps_mutex here due to deadlock with power_domain
1025 	 * mutex when power_domain functions are called while holding pps_mutex.
1026 	 * That also means that in order to use pps_pipe the code needs to
1027 	 * hold both a power domain reference and pps_mutex, and the power domain
1028 	 * reference get/put must be done while _not_ holding pps_mutex.
1029 	 * pps_{lock,unlock}() do these steps in the correct order, so one
1030 	 * should use them always.
1031 	 */
1032 
1033 	for_each_intel_dp(&dev_priv->drm, encoder) {
1034 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1035 
1036 		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
1037 
1038 		if (encoder->type != INTEL_OUTPUT_EDP)
1039 			continue;
1040 
1041 		if (IS_GEN9_LP(dev_priv))
1042 			intel_dp->pps_reset = true;
1043 		else
1044 			intel_dp->pps_pipe = INVALID_PIPE;
1045 	}
1046 }
1047 
1048 struct pps_registers {
1049 	i915_reg_t pp_ctrl;
1050 	i915_reg_t pp_stat;
1051 	i915_reg_t pp_on;
1052 	i915_reg_t pp_off;
1053 	i915_reg_t pp_div;
1054 };
1055 
1056 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1057 				    struct pps_registers *regs)
1058 {
1059 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1060 	int pps_idx = 0;
1061 
1062 	memset(regs, 0, sizeof(*regs));
1063 
1064 	if (IS_GEN9_LP(dev_priv))
1065 		pps_idx = bxt_power_sequencer_idx(intel_dp);
1066 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1067 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1068 
1069 	regs->pp_ctrl = PP_CONTROL(pps_idx);
1070 	regs->pp_stat = PP_STATUS(pps_idx);
1071 	regs->pp_on = PP_ON_DELAYS(pps_idx);
1072 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1073 
1074 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1075 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1076 		regs->pp_div = INVALID_MMIO_REG;
1077 	else
1078 		regs->pp_div = PP_DIVISOR(pps_idx);
1079 }
1080 
1081 static i915_reg_t
1082 _pp_ctrl_reg(struct intel_dp *intel_dp)
1083 {
1084 	struct pps_registers regs;
1085 
1086 	intel_pps_get_registers(intel_dp, &regs);
1087 
1088 	return regs.pp_ctrl;
1089 }
1090 
1091 static i915_reg_t
1092 _pp_stat_reg(struct intel_dp *intel_dp)
1093 {
1094 	struct pps_registers regs;
1095 
1096 	intel_pps_get_registers(intel_dp, &regs);
1097 
1098 	return regs.pp_stat;
1099 }
1100 
1101 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1102    This function only applicable when panel PM state is not to be tracked */
1103 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1104 			      void *unused)
1105 {
1106 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1107 						 edp_notifier);
1108 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1109 	intel_wakeref_t wakeref;
1110 
1111 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1112 		return 0;
1113 
1114 	with_pps_lock(intel_dp, wakeref) {
1115 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1116 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1117 			i915_reg_t pp_ctrl_reg, pp_div_reg;
1118 			u32 pp_div;
1119 
1120 			pp_ctrl_reg = PP_CONTROL(pipe);
1121 			pp_div_reg  = PP_DIVISOR(pipe);
1122 			pp_div = I915_READ(pp_div_reg);
1123 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
1124 
1125 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1126 			I915_WRITE(pp_div_reg, pp_div | 0x1F);
1127 			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1128 			msleep(intel_dp->panel_power_cycle_delay);
1129 		}
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1136 {
1137 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1138 
1139 	lockdep_assert_held(&dev_priv->pps_mutex);
1140 
1141 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1142 	    intel_dp->pps_pipe == INVALID_PIPE)
1143 		return false;
1144 
1145 	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1146 }
1147 
1148 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1149 {
1150 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1151 
1152 	lockdep_assert_held(&dev_priv->pps_mutex);
1153 
1154 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1155 	    intel_dp->pps_pipe == INVALID_PIPE)
1156 		return false;
1157 
1158 	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1159 }
1160 
1161 static void
1162 intel_dp_check_edp(struct intel_dp *intel_dp)
1163 {
1164 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1165 
1166 	if (!intel_dp_is_edp(intel_dp))
1167 		return;
1168 
1169 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1170 		WARN(1, "eDP powered off while attempting aux channel communication.\n");
1171 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1172 			      I915_READ(_pp_stat_reg(intel_dp)),
1173 			      I915_READ(_pp_ctrl_reg(intel_dp)));
1174 	}
1175 }
1176 
1177 static u32
1178 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1179 {
1180 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1181 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1182 	const unsigned int timeout_ms = 10;
1183 	u32 status;
1184 	bool done;
1185 
1186 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1187 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1188 				  msecs_to_jiffies_timeout(timeout_ms));
1189 
1190 	/* just trace the final value */
1191 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1192 
1193 	if (!done)
1194 		DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n",
1195 			  intel_dp->aux.name, timeout_ms, status);
1196 #undef C
1197 
1198 	return status;
1199 }
1200 
1201 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1202 {
1203 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1204 
1205 	if (index)
1206 		return 0;
1207 
1208 	/*
1209 	 * The clock divider is based off the hrawclk, and would like to run at
1210 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1211 	 */
1212 	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1213 }
1214 
1215 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1216 {
1217 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1218 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1219 
1220 	if (index)
1221 		return 0;
1222 
1223 	/*
1224 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1225 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1226 	 * divide by 2000 and use that
1227 	 */
1228 	if (dig_port->aux_ch == AUX_CH_A)
1229 		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1230 	else
1231 		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1232 }
1233 
1234 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1235 {
1236 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1237 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1238 
1239 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1240 		/* Workaround for non-ULT HSW */
1241 		switch (index) {
1242 		case 0: return 63;
1243 		case 1: return 72;
1244 		default: return 0;
1245 		}
1246 	}
1247 
1248 	return ilk_get_aux_clock_divider(intel_dp, index);
1249 }
1250 
1251 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1252 {
1253 	/*
1254 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1255 	 * derive the clock from CDCLK automatically). We still implement the
1256 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1257 	 */
1258 	return index ? 0 : 1;
1259 }
1260 
1261 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1262 				int send_bytes,
1263 				u32 aux_clock_divider)
1264 {
1265 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1266 	struct drm_i915_private *dev_priv =
1267 			to_i915(intel_dig_port->base.base.dev);
1268 	u32 precharge, timeout;
1269 
1270 	if (IS_GEN(dev_priv, 6))
1271 		precharge = 3;
1272 	else
1273 		precharge = 5;
1274 
1275 	if (IS_BROADWELL(dev_priv))
1276 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1277 	else
1278 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1279 
1280 	return DP_AUX_CH_CTL_SEND_BUSY |
1281 	       DP_AUX_CH_CTL_DONE |
1282 	       DP_AUX_CH_CTL_INTERRUPT |
1283 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1284 	       timeout |
1285 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1286 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1287 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1288 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1289 }
1290 
1291 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1292 				int send_bytes,
1293 				u32 unused)
1294 {
1295 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296 	struct drm_i915_private *i915 =
1297 			to_i915(intel_dig_port->base.base.dev);
1298 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1299 	u32 ret;
1300 
1301 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1302 	      DP_AUX_CH_CTL_DONE |
1303 	      DP_AUX_CH_CTL_INTERRUPT |
1304 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1305 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1306 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1307 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1308 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1309 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1310 
1311 	if (intel_phy_is_tc(i915, phy) &&
1312 	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1313 		ret |= DP_AUX_CH_CTL_TBT_IO;
1314 
1315 	return ret;
1316 }
1317 
1318 static int
1319 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1320 		  const u8 *send, int send_bytes,
1321 		  u8 *recv, int recv_size,
1322 		  u32 aux_send_ctl_flags)
1323 {
1324 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1325 	struct drm_i915_private *i915 =
1326 			to_i915(intel_dig_port->base.base.dev);
1327 	struct intel_uncore *uncore = &i915->uncore;
1328 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329 	bool is_tc_port = intel_phy_is_tc(i915, phy);
1330 	i915_reg_t ch_ctl, ch_data[5];
1331 	u32 aux_clock_divider;
1332 	enum intel_display_power_domain aux_domain =
1333 		intel_aux_power_domain(intel_dig_port);
1334 	intel_wakeref_t aux_wakeref;
1335 	intel_wakeref_t pps_wakeref;
1336 	int i, ret, recv_bytes;
1337 	int try, clock = 0;
1338 	u32 status;
1339 	bool vdd;
1340 
1341 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1342 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1343 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1344 
1345 	if (is_tc_port)
1346 		intel_tc_port_lock(intel_dig_port);
1347 
1348 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1349 	pps_wakeref = pps_lock(intel_dp);
1350 
1351 	/*
1352 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1353 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1354 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1355 	 * ourselves.
1356 	 */
1357 	vdd = edp_panel_vdd_on(intel_dp);
1358 
1359 	/* dp aux is extremely sensitive to irq latency, hence request the
1360 	 * lowest possible wakeup latency and so prevent the cpu from going into
1361 	 * deep sleep states.
1362 	 */
1363 	pm_qos_update_request(&i915->pm_qos, 0);
1364 
1365 	intel_dp_check_edp(intel_dp);
1366 
1367 	/* Try to wait for any previous AUX channel activity */
1368 	for (try = 0; try < 3; try++) {
1369 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1370 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1371 			break;
1372 		msleep(1);
1373 	}
1374 	/* just trace the final value */
1375 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1376 
1377 	if (try == 3) {
1378 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1379 
1380 		if (status != intel_dp->aux_busy_last_status) {
1381 			WARN(1, "dp_aux_ch not started status 0x%08x\n",
1382 			     status);
1383 			intel_dp->aux_busy_last_status = status;
1384 		}
1385 
1386 		ret = -EBUSY;
1387 		goto out;
1388 	}
1389 
1390 	/* Only 5 data registers! */
1391 	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1392 		ret = -E2BIG;
1393 		goto out;
1394 	}
1395 
1396 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1397 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1398 							  send_bytes,
1399 							  aux_clock_divider);
1400 
1401 		send_ctl |= aux_send_ctl_flags;
1402 
1403 		/* Must try at least 3 times according to DP spec */
1404 		for (try = 0; try < 5; try++) {
1405 			/* Load the send data into the aux channel data registers */
1406 			for (i = 0; i < send_bytes; i += 4)
1407 				intel_uncore_write(uncore,
1408 						   ch_data[i >> 2],
1409 						   intel_dp_pack_aux(send + i,
1410 								     send_bytes - i));
1411 
1412 			/* Send the command and wait for it to complete */
1413 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1414 
1415 			status = intel_dp_aux_wait_done(intel_dp);
1416 
1417 			/* Clear done status and any errors */
1418 			intel_uncore_write(uncore,
1419 					   ch_ctl,
1420 					   status |
1421 					   DP_AUX_CH_CTL_DONE |
1422 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1423 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1424 
1425 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1426 			 *   400us delay required for errors and timeouts
1427 			 *   Timeout errors from the HW already meet this
1428 			 *   requirement so skip to next iteration
1429 			 */
1430 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1431 				continue;
1432 
1433 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1434 				usleep_range(400, 500);
1435 				continue;
1436 			}
1437 			if (status & DP_AUX_CH_CTL_DONE)
1438 				goto done;
1439 		}
1440 	}
1441 
1442 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1443 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1444 		ret = -EBUSY;
1445 		goto out;
1446 	}
1447 
1448 done:
1449 	/* Check for timeout or receive error.
1450 	 * Timeouts occur when the sink is not connected
1451 	 */
1452 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1453 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1454 		ret = -EIO;
1455 		goto out;
1456 	}
1457 
1458 	/* Timeouts occur when the device isn't connected, so they're
1459 	 * "normal" -- don't fill the kernel log with these */
1460 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1461 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1462 		ret = -ETIMEDOUT;
1463 		goto out;
1464 	}
1465 
1466 	/* Unload any bytes sent back from the other side */
1467 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1468 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1469 
1470 	/*
1471 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1472 	 * We have no idea of what happened so we return -EBUSY so
1473 	 * drm layer takes care for the necessary retries.
1474 	 */
1475 	if (recv_bytes == 0 || recv_bytes > 20) {
1476 		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1477 			      recv_bytes);
1478 		ret = -EBUSY;
1479 		goto out;
1480 	}
1481 
1482 	if (recv_bytes > recv_size)
1483 		recv_bytes = recv_size;
1484 
1485 	for (i = 0; i < recv_bytes; i += 4)
1486 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1487 				    recv + i, recv_bytes - i);
1488 
1489 	ret = recv_bytes;
1490 out:
1491 	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1492 
1493 	if (vdd)
1494 		edp_panel_vdd_off(intel_dp, false);
1495 
1496 	pps_unlock(intel_dp, pps_wakeref);
1497 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1498 
1499 	if (is_tc_port)
1500 		intel_tc_port_unlock(intel_dig_port);
1501 
1502 	return ret;
1503 }
1504 
1505 #define BARE_ADDRESS_SIZE	3
1506 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1507 
1508 static void
1509 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1510 		    const struct drm_dp_aux_msg *msg)
1511 {
1512 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1513 	txbuf[1] = (msg->address >> 8) & 0xff;
1514 	txbuf[2] = msg->address & 0xff;
1515 	txbuf[3] = msg->size - 1;
1516 }
1517 
1518 static ssize_t
1519 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1520 {
1521 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1522 	u8 txbuf[20], rxbuf[20];
1523 	size_t txsize, rxsize;
1524 	int ret;
1525 
1526 	intel_dp_aux_header(txbuf, msg);
1527 
1528 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1529 	case DP_AUX_NATIVE_WRITE:
1530 	case DP_AUX_I2C_WRITE:
1531 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1532 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1533 		rxsize = 2; /* 0 or 1 data bytes */
1534 
1535 		if (WARN_ON(txsize > 20))
1536 			return -E2BIG;
1537 
1538 		WARN_ON(!msg->buffer != !msg->size);
1539 
1540 		if (msg->buffer)
1541 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1542 
1543 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1544 					rxbuf, rxsize, 0);
1545 		if (ret > 0) {
1546 			msg->reply = rxbuf[0] >> 4;
1547 
1548 			if (ret > 1) {
1549 				/* Number of bytes written in a short write. */
1550 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1551 			} else {
1552 				/* Return payload size. */
1553 				ret = msg->size;
1554 			}
1555 		}
1556 		break;
1557 
1558 	case DP_AUX_NATIVE_READ:
1559 	case DP_AUX_I2C_READ:
1560 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1561 		rxsize = msg->size + 1;
1562 
1563 		if (WARN_ON(rxsize > 20))
1564 			return -E2BIG;
1565 
1566 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1567 					rxbuf, rxsize, 0);
1568 		if (ret > 0) {
1569 			msg->reply = rxbuf[0] >> 4;
1570 			/*
1571 			 * Assume happy day, and copy the data. The caller is
1572 			 * expected to check msg->reply before touching it.
1573 			 *
1574 			 * Return payload size.
1575 			 */
1576 			ret--;
1577 			memcpy(msg->buffer, rxbuf + 1, ret);
1578 		}
1579 		break;
1580 
1581 	default:
1582 		ret = -EINVAL;
1583 		break;
1584 	}
1585 
1586 	return ret;
1587 }
1588 
1589 
1590 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1591 {
1592 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1593 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1594 	enum aux_ch aux_ch = dig_port->aux_ch;
1595 
1596 	switch (aux_ch) {
1597 	case AUX_CH_B:
1598 	case AUX_CH_C:
1599 	case AUX_CH_D:
1600 		return DP_AUX_CH_CTL(aux_ch);
1601 	default:
1602 		MISSING_CASE(aux_ch);
1603 		return DP_AUX_CH_CTL(AUX_CH_B);
1604 	}
1605 }
1606 
1607 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1608 {
1609 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1610 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1611 	enum aux_ch aux_ch = dig_port->aux_ch;
1612 
1613 	switch (aux_ch) {
1614 	case AUX_CH_B:
1615 	case AUX_CH_C:
1616 	case AUX_CH_D:
1617 		return DP_AUX_CH_DATA(aux_ch, index);
1618 	default:
1619 		MISSING_CASE(aux_ch);
1620 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1621 	}
1622 }
1623 
1624 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1625 {
1626 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1627 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1628 	enum aux_ch aux_ch = dig_port->aux_ch;
1629 
1630 	switch (aux_ch) {
1631 	case AUX_CH_A:
1632 		return DP_AUX_CH_CTL(aux_ch);
1633 	case AUX_CH_B:
1634 	case AUX_CH_C:
1635 	case AUX_CH_D:
1636 		return PCH_DP_AUX_CH_CTL(aux_ch);
1637 	default:
1638 		MISSING_CASE(aux_ch);
1639 		return DP_AUX_CH_CTL(AUX_CH_A);
1640 	}
1641 }
1642 
1643 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1644 {
1645 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647 	enum aux_ch aux_ch = dig_port->aux_ch;
1648 
1649 	switch (aux_ch) {
1650 	case AUX_CH_A:
1651 		return DP_AUX_CH_DATA(aux_ch, index);
1652 	case AUX_CH_B:
1653 	case AUX_CH_C:
1654 	case AUX_CH_D:
1655 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1656 	default:
1657 		MISSING_CASE(aux_ch);
1658 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1659 	}
1660 }
1661 
1662 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1663 {
1664 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1665 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1666 	enum aux_ch aux_ch = dig_port->aux_ch;
1667 
1668 	switch (aux_ch) {
1669 	case AUX_CH_A:
1670 	case AUX_CH_B:
1671 	case AUX_CH_C:
1672 	case AUX_CH_D:
1673 	case AUX_CH_E:
1674 	case AUX_CH_F:
1675 	case AUX_CH_G:
1676 		return DP_AUX_CH_CTL(aux_ch);
1677 	default:
1678 		MISSING_CASE(aux_ch);
1679 		return DP_AUX_CH_CTL(AUX_CH_A);
1680 	}
1681 }
1682 
1683 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1684 {
1685 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1686 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1687 	enum aux_ch aux_ch = dig_port->aux_ch;
1688 
1689 	switch (aux_ch) {
1690 	case AUX_CH_A:
1691 	case AUX_CH_B:
1692 	case AUX_CH_C:
1693 	case AUX_CH_D:
1694 	case AUX_CH_E:
1695 	case AUX_CH_F:
1696 	case AUX_CH_G:
1697 		return DP_AUX_CH_DATA(aux_ch, index);
1698 	default:
1699 		MISSING_CASE(aux_ch);
1700 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1701 	}
1702 }
1703 
1704 static void
1705 intel_dp_aux_fini(struct intel_dp *intel_dp)
1706 {
1707 	kfree(intel_dp->aux.name);
1708 }
1709 
1710 static void
1711 intel_dp_aux_init(struct intel_dp *intel_dp)
1712 {
1713 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1714 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1715 	struct intel_encoder *encoder = &dig_port->base;
1716 
1717 	if (INTEL_GEN(dev_priv) >= 9) {
1718 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1719 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1720 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1721 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1722 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1723 	} else {
1724 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1725 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1726 	}
1727 
1728 	if (INTEL_GEN(dev_priv) >= 9)
1729 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1730 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1731 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1732 	else if (HAS_PCH_SPLIT(dev_priv))
1733 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1734 	else
1735 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1736 
1737 	if (INTEL_GEN(dev_priv) >= 9)
1738 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1739 	else
1740 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1741 
1742 	drm_dp_aux_init(&intel_dp->aux);
1743 
1744 	/* Failure to allocate our preferred name is not critical */
1745 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1746 				       port_name(encoder->port));
1747 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1748 }
1749 
1750 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1751 {
1752 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1753 
1754 	return max_rate >= 540000;
1755 }
1756 
1757 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1758 {
1759 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1760 
1761 	return max_rate >= 810000;
1762 }
1763 
1764 static void
1765 intel_dp_set_clock(struct intel_encoder *encoder,
1766 		   struct intel_crtc_state *pipe_config)
1767 {
1768 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1769 	const struct dp_link_dpll *divisor = NULL;
1770 	int i, count = 0;
1771 
1772 	if (IS_G4X(dev_priv)) {
1773 		divisor = g4x_dpll;
1774 		count = ARRAY_SIZE(g4x_dpll);
1775 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1776 		divisor = pch_dpll;
1777 		count = ARRAY_SIZE(pch_dpll);
1778 	} else if (IS_CHERRYVIEW(dev_priv)) {
1779 		divisor = chv_dpll;
1780 		count = ARRAY_SIZE(chv_dpll);
1781 	} else if (IS_VALLEYVIEW(dev_priv)) {
1782 		divisor = vlv_dpll;
1783 		count = ARRAY_SIZE(vlv_dpll);
1784 	}
1785 
1786 	if (divisor && count) {
1787 		for (i = 0; i < count; i++) {
1788 			if (pipe_config->port_clock == divisor[i].clock) {
1789 				pipe_config->dpll = divisor[i].dpll;
1790 				pipe_config->clock_set = true;
1791 				break;
1792 			}
1793 		}
1794 	}
1795 }
1796 
1797 static void snprintf_int_array(char *str, size_t len,
1798 			       const int *array, int nelem)
1799 {
1800 	int i;
1801 
1802 	str[0] = '\0';
1803 
1804 	for (i = 0; i < nelem; i++) {
1805 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1806 		if (r >= len)
1807 			return;
1808 		str += r;
1809 		len -= r;
1810 	}
1811 }
1812 
1813 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1814 {
1815 	char str[128]; /* FIXME: too big for stack? */
1816 
1817 	if (!drm_debug_enabled(DRM_UT_KMS))
1818 		return;
1819 
1820 	snprintf_int_array(str, sizeof(str),
1821 			   intel_dp->source_rates, intel_dp->num_source_rates);
1822 	DRM_DEBUG_KMS("source rates: %s\n", str);
1823 
1824 	snprintf_int_array(str, sizeof(str),
1825 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1826 	DRM_DEBUG_KMS("sink rates: %s\n", str);
1827 
1828 	snprintf_int_array(str, sizeof(str),
1829 			   intel_dp->common_rates, intel_dp->num_common_rates);
1830 	DRM_DEBUG_KMS("common rates: %s\n", str);
1831 }
1832 
1833 int
1834 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1835 {
1836 	int len;
1837 
1838 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1839 	if (WARN_ON(len <= 0))
1840 		return 162000;
1841 
1842 	return intel_dp->common_rates[len - 1];
1843 }
1844 
1845 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1846 {
1847 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1848 				    intel_dp->num_sink_rates, rate);
1849 
1850 	if (WARN_ON(i < 0))
1851 		i = 0;
1852 
1853 	return i;
1854 }
1855 
1856 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1857 			   u8 *link_bw, u8 *rate_select)
1858 {
1859 	/* eDP 1.4 rate select method. */
1860 	if (intel_dp->use_rate_select) {
1861 		*link_bw = 0;
1862 		*rate_select =
1863 			intel_dp_rate_select(intel_dp, port_clock);
1864 	} else {
1865 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1866 		*rate_select = 0;
1867 	}
1868 }
1869 
1870 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1871 					 const struct intel_crtc_state *pipe_config)
1872 {
1873 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1874 
1875 	/* On TGL, FEC is supported on all Pipes */
1876 	if (INTEL_GEN(dev_priv) >= 12)
1877 		return true;
1878 
1879 	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1880 		return true;
1881 
1882 	return false;
1883 }
1884 
1885 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1886 				  const struct intel_crtc_state *pipe_config)
1887 {
1888 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1889 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
1890 }
1891 
1892 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1893 				  const struct intel_crtc_state *crtc_state)
1894 {
1895 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1896 
1897 	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1898 		return false;
1899 
1900 	return intel_dsc_source_support(encoder, crtc_state) &&
1901 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1902 }
1903 
1904 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1905 				struct intel_crtc_state *pipe_config)
1906 {
1907 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1908 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1909 	int bpp, bpc;
1910 
1911 	bpp = pipe_config->pipe_bpp;
1912 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1913 
1914 	if (bpc > 0)
1915 		bpp = min(bpp, 3*bpc);
1916 
1917 	if (intel_dp_is_edp(intel_dp)) {
1918 		/* Get bpp from vbt only for panels that dont have bpp in edid */
1919 		if (intel_connector->base.display_info.bpc == 0 &&
1920 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1921 			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1922 				      dev_priv->vbt.edp.bpp);
1923 			bpp = dev_priv->vbt.edp.bpp;
1924 		}
1925 	}
1926 
1927 	return bpp;
1928 }
1929 
1930 /* Adjust link config limits based on compliance test requests. */
1931 void
1932 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1933 				  struct intel_crtc_state *pipe_config,
1934 				  struct link_config_limits *limits)
1935 {
1936 	/* For DP Compliance we override the computed bpp for the pipe */
1937 	if (intel_dp->compliance.test_data.bpc != 0) {
1938 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
1939 
1940 		limits->min_bpp = limits->max_bpp = bpp;
1941 		pipe_config->dither_force_disable = bpp == 6 * 3;
1942 
1943 		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1944 	}
1945 
1946 	/* Use values requested by Compliance Test Request */
1947 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1948 		int index;
1949 
1950 		/* Validate the compliance test data since max values
1951 		 * might have changed due to link train fallback.
1952 		 */
1953 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1954 					       intel_dp->compliance.test_lane_count)) {
1955 			index = intel_dp_rate_index(intel_dp->common_rates,
1956 						    intel_dp->num_common_rates,
1957 						    intel_dp->compliance.test_link_rate);
1958 			if (index >= 0)
1959 				limits->min_clock = limits->max_clock = index;
1960 			limits->min_lane_count = limits->max_lane_count =
1961 				intel_dp->compliance.test_lane_count;
1962 		}
1963 	}
1964 }
1965 
1966 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1967 {
1968 	/*
1969 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1970 	 * format of the number of bytes per pixel will be half the number
1971 	 * of bytes of RGB pixel.
1972 	 */
1973 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1974 		bpp /= 2;
1975 
1976 	return bpp;
1977 }
1978 
1979 /* Optimize link config in order: max bpp, min clock, min lanes */
1980 static int
1981 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1982 				  struct intel_crtc_state *pipe_config,
1983 				  const struct link_config_limits *limits)
1984 {
1985 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
1986 	int bpp, clock, lane_count;
1987 	int mode_rate, link_clock, link_avail;
1988 
1989 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1990 		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
1991 
1992 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1993 						   output_bpp);
1994 
1995 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1996 			for (lane_count = limits->min_lane_count;
1997 			     lane_count <= limits->max_lane_count;
1998 			     lane_count <<= 1) {
1999 				link_clock = intel_dp->common_rates[clock];
2000 				link_avail = intel_dp_max_data_rate(link_clock,
2001 								    lane_count);
2002 
2003 				if (mode_rate <= link_avail) {
2004 					pipe_config->lane_count = lane_count;
2005 					pipe_config->pipe_bpp = bpp;
2006 					pipe_config->port_clock = link_clock;
2007 
2008 					return 0;
2009 				}
2010 			}
2011 		}
2012 	}
2013 
2014 	return -EINVAL;
2015 }
2016 
2017 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2018 {
2019 	int i, num_bpc;
2020 	u8 dsc_bpc[3] = {0};
2021 
2022 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2023 						       dsc_bpc);
2024 	for (i = 0; i < num_bpc; i++) {
2025 		if (dsc_max_bpc >= dsc_bpc[i])
2026 			return dsc_bpc[i] * 3;
2027 	}
2028 
2029 	return 0;
2030 }
2031 
2032 #define DSC_SUPPORTED_VERSION_MIN		1
2033 
2034 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2035 				       struct intel_crtc_state *crtc_state)
2036 {
2037 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2038 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2039 	u8 line_buf_depth;
2040 	int ret;
2041 
2042 	ret = intel_dsc_compute_params(encoder, crtc_state);
2043 	if (ret)
2044 		return ret;
2045 
2046 	/*
2047 	 * Slice Height of 8 works for all currently available panels. So start
2048 	 * with that if pic_height is an integral multiple of 8. Eventually add
2049 	 * logic to try multiple slice heights.
2050 	 */
2051 	if (vdsc_cfg->pic_height % 8 == 0)
2052 		vdsc_cfg->slice_height = 8;
2053 	else if (vdsc_cfg->pic_height % 4 == 0)
2054 		vdsc_cfg->slice_height = 4;
2055 	else
2056 		vdsc_cfg->slice_height = 2;
2057 
2058 	vdsc_cfg->dsc_version_major =
2059 		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2060 		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2061 	vdsc_cfg->dsc_version_minor =
2062 		min(DSC_SUPPORTED_VERSION_MIN,
2063 		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2064 		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2065 
2066 	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2067 		DP_DSC_RGB;
2068 
2069 	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2070 	if (!line_buf_depth) {
2071 		DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n");
2072 		return -EINVAL;
2073 	}
2074 
2075 	if (vdsc_cfg->dsc_version_minor == 2)
2076 		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2077 			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2078 	else
2079 		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2080 			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2081 
2082 	vdsc_cfg->block_pred_enable =
2083 		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2084 		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2085 
2086 	return drm_dsc_compute_rc_parameters(vdsc_cfg);
2087 }
2088 
2089 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2090 				       struct intel_crtc_state *pipe_config,
2091 				       struct drm_connector_state *conn_state,
2092 				       struct link_config_limits *limits)
2093 {
2094 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2095 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2096 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2097 	u8 dsc_max_bpc;
2098 	int pipe_bpp;
2099 	int ret;
2100 
2101 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2102 		intel_dp_supports_fec(intel_dp, pipe_config);
2103 
2104 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2105 		return -EINVAL;
2106 
2107 	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2108 	if (INTEL_GEN(dev_priv) >= 12)
2109 		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2110 	else
2111 		dsc_max_bpc = min_t(u8, 10,
2112 				    conn_state->max_requested_bpc);
2113 
2114 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2115 
2116 	/* Min Input BPC for ICL+ is 8 */
2117 	if (pipe_bpp < 8 * 3) {
2118 		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2119 		return -EINVAL;
2120 	}
2121 
2122 	/*
2123 	 * For now enable DSC for max bpp, max link rate, max lane count.
2124 	 * Optimize this later for the minimum possible link rate/lane count
2125 	 * with DSC enabled for the requested mode.
2126 	 */
2127 	pipe_config->pipe_bpp = pipe_bpp;
2128 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2129 	pipe_config->lane_count = limits->max_lane_count;
2130 
2131 	if (intel_dp_is_edp(intel_dp)) {
2132 		pipe_config->dsc.compressed_bpp =
2133 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2134 			      pipe_config->pipe_bpp);
2135 		pipe_config->dsc.slice_count =
2136 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2137 							true);
2138 	} else {
2139 		u16 dsc_max_output_bpp;
2140 		u8 dsc_dp_slice_count;
2141 
2142 		dsc_max_output_bpp =
2143 			intel_dp_dsc_get_output_bpp(dev_priv,
2144 						    pipe_config->port_clock,
2145 						    pipe_config->lane_count,
2146 						    adjusted_mode->crtc_clock,
2147 						    adjusted_mode->crtc_hdisplay);
2148 		dsc_dp_slice_count =
2149 			intel_dp_dsc_get_slice_count(intel_dp,
2150 						     adjusted_mode->crtc_clock,
2151 						     adjusted_mode->crtc_hdisplay);
2152 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2153 			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2154 			return -EINVAL;
2155 		}
2156 		pipe_config->dsc.compressed_bpp = min_t(u16,
2157 							       dsc_max_output_bpp >> 4,
2158 							       pipe_config->pipe_bpp);
2159 		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2160 	}
2161 	/*
2162 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2163 	 * is greater than the maximum Cdclock and if slice count is even
2164 	 * then we need to use 2 VDSC instances.
2165 	 */
2166 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2167 		if (pipe_config->dsc.slice_count > 1) {
2168 			pipe_config->dsc.dsc_split = true;
2169 		} else {
2170 			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2171 			return -EINVAL;
2172 		}
2173 	}
2174 
2175 	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2176 	if (ret < 0) {
2177 		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2178 			      "Compressed BPP = %d\n",
2179 			      pipe_config->pipe_bpp,
2180 			      pipe_config->dsc.compressed_bpp);
2181 		return ret;
2182 	}
2183 
2184 	pipe_config->dsc.compression_enable = true;
2185 	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2186 		      "Compressed Bpp = %d Slice Count = %d\n",
2187 		      pipe_config->pipe_bpp,
2188 		      pipe_config->dsc.compressed_bpp,
2189 		      pipe_config->dsc.slice_count);
2190 
2191 	return 0;
2192 }
2193 
2194 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2195 {
2196 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2197 		return 6 * 3;
2198 	else
2199 		return 8 * 3;
2200 }
2201 
2202 static int
2203 intel_dp_compute_link_config(struct intel_encoder *encoder,
2204 			     struct intel_crtc_state *pipe_config,
2205 			     struct drm_connector_state *conn_state)
2206 {
2207 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2208 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2209 	struct link_config_limits limits;
2210 	int common_len;
2211 	int ret;
2212 
2213 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2214 						    intel_dp->max_link_rate);
2215 
2216 	/* No common link rates between source and sink */
2217 	WARN_ON(common_len <= 0);
2218 
2219 	limits.min_clock = 0;
2220 	limits.max_clock = common_len - 1;
2221 
2222 	limits.min_lane_count = 1;
2223 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2224 
2225 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2226 	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2227 
2228 	if (intel_dp_is_edp(intel_dp)) {
2229 		/*
2230 		 * Use the maximum clock and number of lanes the eDP panel
2231 		 * advertizes being capable of. The panels are generally
2232 		 * designed to support only a single clock and lane
2233 		 * configuration, and typically these values correspond to the
2234 		 * native resolution of the panel.
2235 		 */
2236 		limits.min_lane_count = limits.max_lane_count;
2237 		limits.min_clock = limits.max_clock;
2238 	}
2239 
2240 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2241 
2242 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
2243 		      "max rate %d max bpp %d pixel clock %iKHz\n",
2244 		      limits.max_lane_count,
2245 		      intel_dp->common_rates[limits.max_clock],
2246 		      limits.max_bpp, adjusted_mode->crtc_clock);
2247 
2248 	/*
2249 	 * Optimize for slow and wide. This is the place to add alternative
2250 	 * optimization policy.
2251 	 */
2252 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2253 
2254 	/* enable compression if the mode doesn't fit available BW */
2255 	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2256 	if (ret || intel_dp->force_dsc_en) {
2257 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2258 						  conn_state, &limits);
2259 		if (ret < 0)
2260 			return ret;
2261 	}
2262 
2263 	if (pipe_config->dsc.compression_enable) {
2264 		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2265 			      pipe_config->lane_count, pipe_config->port_clock,
2266 			      pipe_config->pipe_bpp,
2267 			      pipe_config->dsc.compressed_bpp);
2268 
2269 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2270 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2271 						     pipe_config->dsc.compressed_bpp),
2272 			      intel_dp_max_data_rate(pipe_config->port_clock,
2273 						     pipe_config->lane_count));
2274 	} else {
2275 		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2276 			      pipe_config->lane_count, pipe_config->port_clock,
2277 			      pipe_config->pipe_bpp);
2278 
2279 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2280 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2281 						     pipe_config->pipe_bpp),
2282 			      intel_dp_max_data_rate(pipe_config->port_clock,
2283 						     pipe_config->lane_count));
2284 	}
2285 	return 0;
2286 }
2287 
2288 static int
2289 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2290 			 struct drm_connector *connector,
2291 			 struct intel_crtc_state *crtc_state)
2292 {
2293 	const struct drm_display_info *info = &connector->display_info;
2294 	const struct drm_display_mode *adjusted_mode =
2295 		&crtc_state->hw.adjusted_mode;
2296 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2297 	int ret;
2298 
2299 	if (!drm_mode_is_420_only(info, adjusted_mode) ||
2300 	    !intel_dp_get_colorimetry_status(intel_dp) ||
2301 	    !connector->ycbcr_420_allowed)
2302 		return 0;
2303 
2304 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2305 
2306 	/* YCBCR 420 output conversion needs a scaler */
2307 	ret = skl_update_scaler_crtc(crtc_state);
2308 	if (ret) {
2309 		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2310 		return ret;
2311 	}
2312 
2313 	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2314 
2315 	return 0;
2316 }
2317 
2318 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2319 				  const struct drm_connector_state *conn_state)
2320 {
2321 	const struct intel_digital_connector_state *intel_conn_state =
2322 		to_intel_digital_connector_state(conn_state);
2323 	const struct drm_display_mode *adjusted_mode =
2324 		&crtc_state->hw.adjusted_mode;
2325 
2326 	/*
2327 	 * Our YCbCr output is always limited range.
2328 	 * crtc_state->limited_color_range only applies to RGB,
2329 	 * and it must never be set for YCbCr or we risk setting
2330 	 * some conflicting bits in PIPECONF which will mess up
2331 	 * the colors on the monitor.
2332 	 */
2333 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2334 		return false;
2335 
2336 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2337 		/*
2338 		 * See:
2339 		 * CEA-861-E - 5.1 Default Encoding Parameters
2340 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2341 		 */
2342 		return crtc_state->pipe_bpp != 18 &&
2343 			drm_default_rgb_quant_range(adjusted_mode) ==
2344 			HDMI_QUANTIZATION_RANGE_LIMITED;
2345 	} else {
2346 		return intel_conn_state->broadcast_rgb ==
2347 			INTEL_BROADCAST_RGB_LIMITED;
2348 	}
2349 }
2350 
2351 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2352 				    enum port port)
2353 {
2354 	if (IS_G4X(dev_priv))
2355 		return false;
2356 	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2357 		return false;
2358 
2359 	return true;
2360 }
2361 
2362 int
2363 intel_dp_compute_config(struct intel_encoder *encoder,
2364 			struct intel_crtc_state *pipe_config,
2365 			struct drm_connector_state *conn_state)
2366 {
2367 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2368 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2369 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2370 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2371 	enum port port = encoder->port;
2372 	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2373 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2374 	struct intel_digital_connector_state *intel_conn_state =
2375 		to_intel_digital_connector_state(conn_state);
2376 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2377 					   DP_DPCD_QUIRK_CONSTANT_N);
2378 	int ret = 0, output_bpp;
2379 
2380 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2381 		pipe_config->has_pch_encoder = true;
2382 
2383 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2384 
2385 	if (lspcon->active)
2386 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2387 	else
2388 		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2389 					       pipe_config);
2390 
2391 	if (ret)
2392 		return ret;
2393 
2394 	pipe_config->has_drrs = false;
2395 	if (!intel_dp_port_has_audio(dev_priv, port))
2396 		pipe_config->has_audio = false;
2397 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2398 		pipe_config->has_audio = intel_dp->has_audio;
2399 	else
2400 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2401 
2402 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2403 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2404 				       adjusted_mode);
2405 
2406 		if (INTEL_GEN(dev_priv) >= 9) {
2407 			ret = skl_update_scaler_crtc(pipe_config);
2408 			if (ret)
2409 				return ret;
2410 		}
2411 
2412 		if (HAS_GMCH(dev_priv))
2413 			intel_gmch_panel_fitting(intel_crtc, pipe_config,
2414 						 conn_state->scaling_mode);
2415 		else
2416 			intel_pch_panel_fitting(intel_crtc, pipe_config,
2417 						conn_state->scaling_mode);
2418 	}
2419 
2420 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2421 		return -EINVAL;
2422 
2423 	if (HAS_GMCH(dev_priv) &&
2424 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2425 		return -EINVAL;
2426 
2427 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2428 		return -EINVAL;
2429 
2430 	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2431 		return -EINVAL;
2432 
2433 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2434 	if (ret < 0)
2435 		return ret;
2436 
2437 	pipe_config->limited_color_range =
2438 		intel_dp_limited_color_range(pipe_config, conn_state);
2439 
2440 	if (pipe_config->dsc.compression_enable)
2441 		output_bpp = pipe_config->dsc.compressed_bpp;
2442 	else
2443 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2444 
2445 	intel_link_compute_m_n(output_bpp,
2446 			       pipe_config->lane_count,
2447 			       adjusted_mode->crtc_clock,
2448 			       pipe_config->port_clock,
2449 			       &pipe_config->dp_m_n,
2450 			       constant_n, pipe_config->fec_enable);
2451 
2452 	if (intel_connector->panel.downclock_mode != NULL &&
2453 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2454 			pipe_config->has_drrs = true;
2455 			intel_link_compute_m_n(output_bpp,
2456 					       pipe_config->lane_count,
2457 					       intel_connector->panel.downclock_mode->clock,
2458 					       pipe_config->port_clock,
2459 					       &pipe_config->dp_m2_n2,
2460 					       constant_n, pipe_config->fec_enable);
2461 	}
2462 
2463 	if (!HAS_DDI(dev_priv))
2464 		intel_dp_set_clock(encoder, pipe_config);
2465 
2466 	intel_psr_compute_config(intel_dp, pipe_config);
2467 
2468 	return 0;
2469 }
2470 
2471 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2472 			      int link_rate, u8 lane_count,
2473 			      bool link_mst)
2474 {
2475 	intel_dp->link_trained = false;
2476 	intel_dp->link_rate = link_rate;
2477 	intel_dp->lane_count = lane_count;
2478 	intel_dp->link_mst = link_mst;
2479 }
2480 
2481 static void intel_dp_prepare(struct intel_encoder *encoder,
2482 			     const struct intel_crtc_state *pipe_config)
2483 {
2484 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2485 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2486 	enum port port = encoder->port;
2487 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2488 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2489 
2490 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2491 				 pipe_config->lane_count,
2492 				 intel_crtc_has_type(pipe_config,
2493 						     INTEL_OUTPUT_DP_MST));
2494 
2495 	intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
2496 	intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
2497 
2498 	/*
2499 	 * There are four kinds of DP registers:
2500 	 *
2501 	 * 	IBX PCH
2502 	 * 	SNB CPU
2503 	 *	IVB CPU
2504 	 * 	CPT PCH
2505 	 *
2506 	 * IBX PCH and CPU are the same for almost everything,
2507 	 * except that the CPU DP PLL is configured in this
2508 	 * register
2509 	 *
2510 	 * CPT PCH is quite different, having many bits moved
2511 	 * to the TRANS_DP_CTL register instead. That
2512 	 * configuration happens (oddly) in ilk_pch_enable
2513 	 */
2514 
2515 	/* Preserve the BIOS-computed detected bit. This is
2516 	 * supposed to be read-only.
2517 	 */
2518 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2519 
2520 	/* Handle DP bits in common between all three register formats */
2521 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2522 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2523 
2524 	/* Split out the IBX/CPU vs CPT settings */
2525 
2526 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2527 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2528 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2529 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2530 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2531 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2532 
2533 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2534 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2535 
2536 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2537 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2538 		u32 trans_dp;
2539 
2540 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2541 
2542 		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2543 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2544 			trans_dp |= TRANS_DP_ENH_FRAMING;
2545 		else
2546 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2547 		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2548 	} else {
2549 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2550 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2551 
2552 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2553 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2554 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2555 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2556 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2557 
2558 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2559 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2560 
2561 		if (IS_CHERRYVIEW(dev_priv))
2562 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2563 		else
2564 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2565 	}
2566 }
2567 
2568 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2569 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2570 
2571 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2572 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2573 
2574 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2575 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2576 
2577 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2578 
2579 static void wait_panel_status(struct intel_dp *intel_dp,
2580 				       u32 mask,
2581 				       u32 value)
2582 {
2583 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2584 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2585 
2586 	lockdep_assert_held(&dev_priv->pps_mutex);
2587 
2588 	intel_pps_verify_state(intel_dp);
2589 
2590 	pp_stat_reg = _pp_stat_reg(intel_dp);
2591 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2592 
2593 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2594 			mask, value,
2595 			I915_READ(pp_stat_reg),
2596 			I915_READ(pp_ctrl_reg));
2597 
2598 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2599 				       mask, value, 5000))
2600 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2601 				I915_READ(pp_stat_reg),
2602 				I915_READ(pp_ctrl_reg));
2603 
2604 	DRM_DEBUG_KMS("Wait complete\n");
2605 }
2606 
2607 static void wait_panel_on(struct intel_dp *intel_dp)
2608 {
2609 	DRM_DEBUG_KMS("Wait for panel power on\n");
2610 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2611 }
2612 
2613 static void wait_panel_off(struct intel_dp *intel_dp)
2614 {
2615 	DRM_DEBUG_KMS("Wait for panel power off time\n");
2616 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2617 }
2618 
2619 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2620 {
2621 	ktime_t panel_power_on_time;
2622 	s64 panel_power_off_duration;
2623 
2624 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2625 
2626 	/* take the difference of currrent time and panel power off time
2627 	 * and then make panel wait for t11_t12 if needed. */
2628 	panel_power_on_time = ktime_get_boottime();
2629 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2630 
2631 	/* When we disable the VDD override bit last we have to do the manual
2632 	 * wait. */
2633 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2634 		wait_remaining_ms_from_jiffies(jiffies,
2635 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2636 
2637 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2638 }
2639 
2640 static void wait_backlight_on(struct intel_dp *intel_dp)
2641 {
2642 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2643 				       intel_dp->backlight_on_delay);
2644 }
2645 
2646 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2647 {
2648 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2649 				       intel_dp->backlight_off_delay);
2650 }
2651 
2652 /* Read the current pp_control value, unlocking the register if it
2653  * is locked
2654  */
2655 
2656 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2657 {
2658 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2659 	u32 control;
2660 
2661 	lockdep_assert_held(&dev_priv->pps_mutex);
2662 
2663 	control = I915_READ(_pp_ctrl_reg(intel_dp));
2664 	if (WARN_ON(!HAS_DDI(dev_priv) &&
2665 		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2666 		control &= ~PANEL_UNLOCK_MASK;
2667 		control |= PANEL_UNLOCK_REGS;
2668 	}
2669 	return control;
2670 }
2671 
2672 /*
2673  * Must be paired with edp_panel_vdd_off().
2674  * Must hold pps_mutex around the whole on/off sequence.
2675  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2676  */
2677 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2678 {
2679 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2680 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2681 	u32 pp;
2682 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2683 	bool need_to_disable = !intel_dp->want_panel_vdd;
2684 
2685 	lockdep_assert_held(&dev_priv->pps_mutex);
2686 
2687 	if (!intel_dp_is_edp(intel_dp))
2688 		return false;
2689 
2690 	cancel_delayed_work(&intel_dp->panel_vdd_work);
2691 	intel_dp->want_panel_vdd = true;
2692 
2693 	if (edp_have_panel_vdd(intel_dp))
2694 		return need_to_disable;
2695 
2696 	intel_display_power_get(dev_priv,
2697 				intel_aux_power_domain(intel_dig_port));
2698 
2699 	DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n",
2700 		      intel_dig_port->base.base.base.id,
2701 		      intel_dig_port->base.base.name);
2702 
2703 	if (!edp_have_panel_power(intel_dp))
2704 		wait_panel_power_cycle(intel_dp);
2705 
2706 	pp = ilk_get_pp_control(intel_dp);
2707 	pp |= EDP_FORCE_VDD;
2708 
2709 	pp_stat_reg = _pp_stat_reg(intel_dp);
2710 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2711 
2712 	I915_WRITE(pp_ctrl_reg, pp);
2713 	POSTING_READ(pp_ctrl_reg);
2714 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2715 			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2716 	/*
2717 	 * If the panel wasn't on, delay before accessing aux channel
2718 	 */
2719 	if (!edp_have_panel_power(intel_dp)) {
2720 		DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n",
2721 			      intel_dig_port->base.base.base.id,
2722 			      intel_dig_port->base.base.name);
2723 		msleep(intel_dp->panel_power_up_delay);
2724 	}
2725 
2726 	return need_to_disable;
2727 }
2728 
2729 /*
2730  * Must be paired with intel_edp_panel_vdd_off() or
2731  * intel_edp_panel_off().
2732  * Nested calls to these functions are not allowed since
2733  * we drop the lock. Caller must use some higher level
2734  * locking to prevent nested calls from other threads.
2735  */
2736 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2737 {
2738 	intel_wakeref_t wakeref;
2739 	bool vdd;
2740 
2741 	if (!intel_dp_is_edp(intel_dp))
2742 		return;
2743 
2744 	vdd = false;
2745 	with_pps_lock(intel_dp, wakeref)
2746 		vdd = edp_panel_vdd_on(intel_dp);
2747 	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2748 			dp_to_dig_port(intel_dp)->base.base.base.id,
2749 			dp_to_dig_port(intel_dp)->base.base.name);
2750 }
2751 
2752 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2753 {
2754 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2755 	struct intel_digital_port *intel_dig_port =
2756 		dp_to_dig_port(intel_dp);
2757 	u32 pp;
2758 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2759 
2760 	lockdep_assert_held(&dev_priv->pps_mutex);
2761 
2762 	WARN_ON(intel_dp->want_panel_vdd);
2763 
2764 	if (!edp_have_panel_vdd(intel_dp))
2765 		return;
2766 
2767 	DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n",
2768 		      intel_dig_port->base.base.base.id,
2769 		      intel_dig_port->base.base.name);
2770 
2771 	pp = ilk_get_pp_control(intel_dp);
2772 	pp &= ~EDP_FORCE_VDD;
2773 
2774 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2775 	pp_stat_reg = _pp_stat_reg(intel_dp);
2776 
2777 	I915_WRITE(pp_ctrl_reg, pp);
2778 	POSTING_READ(pp_ctrl_reg);
2779 
2780 	/* Make sure sequencer is idle before allowing subsequent activity */
2781 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2782 	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2783 
2784 	if ((pp & PANEL_POWER_ON) == 0)
2785 		intel_dp->panel_power_off_time = ktime_get_boottime();
2786 
2787 	intel_display_power_put_unchecked(dev_priv,
2788 					  intel_aux_power_domain(intel_dig_port));
2789 }
2790 
2791 static void edp_panel_vdd_work(struct work_struct *__work)
2792 {
2793 	struct intel_dp *intel_dp =
2794 		container_of(to_delayed_work(__work),
2795 			     struct intel_dp, panel_vdd_work);
2796 	intel_wakeref_t wakeref;
2797 
2798 	with_pps_lock(intel_dp, wakeref) {
2799 		if (!intel_dp->want_panel_vdd)
2800 			edp_panel_vdd_off_sync(intel_dp);
2801 	}
2802 }
2803 
2804 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2805 {
2806 	unsigned long delay;
2807 
2808 	/*
2809 	 * Queue the timer to fire a long time from now (relative to the power
2810 	 * down delay) to keep the panel power up across a sequence of
2811 	 * operations.
2812 	 */
2813 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2814 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2815 }
2816 
2817 /*
2818  * Must be paired with edp_panel_vdd_on().
2819  * Must hold pps_mutex around the whole on/off sequence.
2820  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2821  */
2822 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2823 {
2824 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2825 
2826 	lockdep_assert_held(&dev_priv->pps_mutex);
2827 
2828 	if (!intel_dp_is_edp(intel_dp))
2829 		return;
2830 
2831 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2832 			dp_to_dig_port(intel_dp)->base.base.base.id,
2833 			dp_to_dig_port(intel_dp)->base.base.name);
2834 
2835 	intel_dp->want_panel_vdd = false;
2836 
2837 	if (sync)
2838 		edp_panel_vdd_off_sync(intel_dp);
2839 	else
2840 		edp_panel_vdd_schedule_off(intel_dp);
2841 }
2842 
2843 static void edp_panel_on(struct intel_dp *intel_dp)
2844 {
2845 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2846 	u32 pp;
2847 	i915_reg_t pp_ctrl_reg;
2848 
2849 	lockdep_assert_held(&dev_priv->pps_mutex);
2850 
2851 	if (!intel_dp_is_edp(intel_dp))
2852 		return;
2853 
2854 	DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n",
2855 		      dp_to_dig_port(intel_dp)->base.base.base.id,
2856 		      dp_to_dig_port(intel_dp)->base.base.name);
2857 
2858 	if (WARN(edp_have_panel_power(intel_dp),
2859 		 "[ENCODER:%d:%s] panel power already on\n",
2860 		 dp_to_dig_port(intel_dp)->base.base.base.id,
2861 		 dp_to_dig_port(intel_dp)->base.base.name))
2862 		return;
2863 
2864 	wait_panel_power_cycle(intel_dp);
2865 
2866 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2867 	pp = ilk_get_pp_control(intel_dp);
2868 	if (IS_GEN(dev_priv, 5)) {
2869 		/* ILK workaround: disable reset around power sequence */
2870 		pp &= ~PANEL_POWER_RESET;
2871 		I915_WRITE(pp_ctrl_reg, pp);
2872 		POSTING_READ(pp_ctrl_reg);
2873 	}
2874 
2875 	pp |= PANEL_POWER_ON;
2876 	if (!IS_GEN(dev_priv, 5))
2877 		pp |= PANEL_POWER_RESET;
2878 
2879 	I915_WRITE(pp_ctrl_reg, pp);
2880 	POSTING_READ(pp_ctrl_reg);
2881 
2882 	wait_panel_on(intel_dp);
2883 	intel_dp->last_power_on = jiffies;
2884 
2885 	if (IS_GEN(dev_priv, 5)) {
2886 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2887 		I915_WRITE(pp_ctrl_reg, pp);
2888 		POSTING_READ(pp_ctrl_reg);
2889 	}
2890 }
2891 
2892 void intel_edp_panel_on(struct intel_dp *intel_dp)
2893 {
2894 	intel_wakeref_t wakeref;
2895 
2896 	if (!intel_dp_is_edp(intel_dp))
2897 		return;
2898 
2899 	with_pps_lock(intel_dp, wakeref)
2900 		edp_panel_on(intel_dp);
2901 }
2902 
2903 
2904 static void edp_panel_off(struct intel_dp *intel_dp)
2905 {
2906 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2907 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2908 	u32 pp;
2909 	i915_reg_t pp_ctrl_reg;
2910 
2911 	lockdep_assert_held(&dev_priv->pps_mutex);
2912 
2913 	if (!intel_dp_is_edp(intel_dp))
2914 		return;
2915 
2916 	DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n",
2917 		      dig_port->base.base.base.id, dig_port->base.base.name);
2918 
2919 	WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2920 	     dig_port->base.base.base.id, dig_port->base.base.name);
2921 
2922 	pp = ilk_get_pp_control(intel_dp);
2923 	/* We need to switch off panel power _and_ force vdd, for otherwise some
2924 	 * panels get very unhappy and cease to work. */
2925 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2926 		EDP_BLC_ENABLE);
2927 
2928 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2929 
2930 	intel_dp->want_panel_vdd = false;
2931 
2932 	I915_WRITE(pp_ctrl_reg, pp);
2933 	POSTING_READ(pp_ctrl_reg);
2934 
2935 	wait_panel_off(intel_dp);
2936 	intel_dp->panel_power_off_time = ktime_get_boottime();
2937 
2938 	/* We got a reference when we enabled the VDD. */
2939 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2940 }
2941 
2942 void intel_edp_panel_off(struct intel_dp *intel_dp)
2943 {
2944 	intel_wakeref_t wakeref;
2945 
2946 	if (!intel_dp_is_edp(intel_dp))
2947 		return;
2948 
2949 	with_pps_lock(intel_dp, wakeref)
2950 		edp_panel_off(intel_dp);
2951 }
2952 
2953 /* Enable backlight in the panel power control. */
2954 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2955 {
2956 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2957 	intel_wakeref_t wakeref;
2958 
2959 	/*
2960 	 * If we enable the backlight right away following a panel power
2961 	 * on, we may see slight flicker as the panel syncs with the eDP
2962 	 * link.  So delay a bit to make sure the image is solid before
2963 	 * allowing it to appear.
2964 	 */
2965 	wait_backlight_on(intel_dp);
2966 
2967 	with_pps_lock(intel_dp, wakeref) {
2968 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2969 		u32 pp;
2970 
2971 		pp = ilk_get_pp_control(intel_dp);
2972 		pp |= EDP_BLC_ENABLE;
2973 
2974 		I915_WRITE(pp_ctrl_reg, pp);
2975 		POSTING_READ(pp_ctrl_reg);
2976 	}
2977 }
2978 
2979 /* Enable backlight PWM and backlight PP control. */
2980 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2981 			    const struct drm_connector_state *conn_state)
2982 {
2983 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
2984 
2985 	if (!intel_dp_is_edp(intel_dp))
2986 		return;
2987 
2988 	DRM_DEBUG_KMS("\n");
2989 
2990 	intel_panel_enable_backlight(crtc_state, conn_state);
2991 	_intel_edp_backlight_on(intel_dp);
2992 }
2993 
2994 /* Disable backlight in the panel power control. */
2995 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2996 {
2997 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2998 	intel_wakeref_t wakeref;
2999 
3000 	if (!intel_dp_is_edp(intel_dp))
3001 		return;
3002 
3003 	with_pps_lock(intel_dp, wakeref) {
3004 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3005 		u32 pp;
3006 
3007 		pp = ilk_get_pp_control(intel_dp);
3008 		pp &= ~EDP_BLC_ENABLE;
3009 
3010 		I915_WRITE(pp_ctrl_reg, pp);
3011 		POSTING_READ(pp_ctrl_reg);
3012 	}
3013 
3014 	intel_dp->last_backlight_off = jiffies;
3015 	edp_wait_backlight_off(intel_dp);
3016 }
3017 
3018 /* Disable backlight PP control and backlight PWM. */
3019 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3020 {
3021 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3022 
3023 	if (!intel_dp_is_edp(intel_dp))
3024 		return;
3025 
3026 	DRM_DEBUG_KMS("\n");
3027 
3028 	_intel_edp_backlight_off(intel_dp);
3029 	intel_panel_disable_backlight(old_conn_state);
3030 }
3031 
3032 /*
3033  * Hook for controlling the panel power control backlight through the bl_power
3034  * sysfs attribute. Take care to handle multiple calls.
3035  */
3036 static void intel_edp_backlight_power(struct intel_connector *connector,
3037 				      bool enable)
3038 {
3039 	struct intel_dp *intel_dp = intel_attached_dp(connector);
3040 	intel_wakeref_t wakeref;
3041 	bool is_enabled;
3042 
3043 	is_enabled = false;
3044 	with_pps_lock(intel_dp, wakeref)
3045 		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3046 	if (is_enabled == enable)
3047 		return;
3048 
3049 	DRM_DEBUG_KMS("panel power control backlight %s\n",
3050 		      enable ? "enable" : "disable");
3051 
3052 	if (enable)
3053 		_intel_edp_backlight_on(intel_dp);
3054 	else
3055 		_intel_edp_backlight_off(intel_dp);
3056 }
3057 
3058 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3059 {
3060 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3061 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3062 	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
3063 
3064 	I915_STATE_WARN(cur_state != state,
3065 			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3066 			dig_port->base.base.base.id, dig_port->base.base.name,
3067 			onoff(state), onoff(cur_state));
3068 }
3069 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3070 
3071 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3072 {
3073 	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
3074 
3075 	I915_STATE_WARN(cur_state != state,
3076 			"eDP PLL state assertion failure (expected %s, current %s)\n",
3077 			onoff(state), onoff(cur_state));
3078 }
3079 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3080 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3081 
3082 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3083 			   const struct intel_crtc_state *pipe_config)
3084 {
3085 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3086 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3087 
3088 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3089 	assert_dp_port_disabled(intel_dp);
3090 	assert_edp_pll_disabled(dev_priv);
3091 
3092 	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
3093 		      pipe_config->port_clock);
3094 
3095 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3096 
3097 	if (pipe_config->port_clock == 162000)
3098 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3099 	else
3100 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3101 
3102 	I915_WRITE(DP_A, intel_dp->DP);
3103 	POSTING_READ(DP_A);
3104 	udelay(500);
3105 
3106 	/*
3107 	 * [DevILK] Work around required when enabling DP PLL
3108 	 * while a pipe is enabled going to FDI:
3109 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3110 	 * 2. Program DP PLL enable
3111 	 */
3112 	if (IS_GEN(dev_priv, 5))
3113 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3114 
3115 	intel_dp->DP |= DP_PLL_ENABLE;
3116 
3117 	I915_WRITE(DP_A, intel_dp->DP);
3118 	POSTING_READ(DP_A);
3119 	udelay(200);
3120 }
3121 
3122 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3123 			    const struct intel_crtc_state *old_crtc_state)
3124 {
3125 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3126 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3127 
3128 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3129 	assert_dp_port_disabled(intel_dp);
3130 	assert_edp_pll_enabled(dev_priv);
3131 
3132 	DRM_DEBUG_KMS("disabling eDP PLL\n");
3133 
3134 	intel_dp->DP &= ~DP_PLL_ENABLE;
3135 
3136 	I915_WRITE(DP_A, intel_dp->DP);
3137 	POSTING_READ(DP_A);
3138 	udelay(200);
3139 }
3140 
3141 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3142 {
3143 	/*
3144 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3145 	 * be capable of signalling downstream hpd with a long pulse.
3146 	 * Whether or not that means D3 is safe to use is not clear,
3147 	 * but let's assume so until proven otherwise.
3148 	 *
3149 	 * FIXME should really check all downstream ports...
3150 	 */
3151 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3152 		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
3153 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3154 }
3155 
3156 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3157 					   const struct intel_crtc_state *crtc_state,
3158 					   bool enable)
3159 {
3160 	int ret;
3161 
3162 	if (!crtc_state->dsc.compression_enable)
3163 		return;
3164 
3165 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3166 				 enable ? DP_DECOMPRESSION_EN : 0);
3167 	if (ret < 0)
3168 		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3169 			      enable ? "enable" : "disable");
3170 }
3171 
3172 /* If the sink supports it, try to set the power state appropriately */
3173 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3174 {
3175 	int ret, i;
3176 
3177 	/* Should have a valid DPCD by this point */
3178 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3179 		return;
3180 
3181 	if (mode != DRM_MODE_DPMS_ON) {
3182 		if (downstream_hpd_needs_d0(intel_dp))
3183 			return;
3184 
3185 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3186 					 DP_SET_POWER_D3);
3187 	} else {
3188 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3189 
3190 		/*
3191 		 * When turning on, we need to retry for 1ms to give the sink
3192 		 * time to wake up.
3193 		 */
3194 		for (i = 0; i < 3; i++) {
3195 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3196 						 DP_SET_POWER_D0);
3197 			if (ret == 1)
3198 				break;
3199 			msleep(1);
3200 		}
3201 
3202 		if (ret == 1 && lspcon->active)
3203 			lspcon_wait_pcon_mode(lspcon);
3204 	}
3205 
3206 	if (ret != 1)
3207 		DRM_DEBUG_KMS("failed to %s sink power state\n",
3208 			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3209 }
3210 
3211 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3212 				 enum port port, enum pipe *pipe)
3213 {
3214 	enum pipe p;
3215 
3216 	for_each_pipe(dev_priv, p) {
3217 		u32 val = I915_READ(TRANS_DP_CTL(p));
3218 
3219 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3220 			*pipe = p;
3221 			return true;
3222 		}
3223 	}
3224 
3225 	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
3226 
3227 	/* must initialize pipe to something for the asserts */
3228 	*pipe = PIPE_A;
3229 
3230 	return false;
3231 }
3232 
3233 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3234 			   i915_reg_t dp_reg, enum port port,
3235 			   enum pipe *pipe)
3236 {
3237 	bool ret;
3238 	u32 val;
3239 
3240 	val = I915_READ(dp_reg);
3241 
3242 	ret = val & DP_PORT_EN;
3243 
3244 	/* asserts want to know the pipe even if the port is disabled */
3245 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3246 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3247 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3248 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3249 	else if (IS_CHERRYVIEW(dev_priv))
3250 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3251 	else
3252 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3253 
3254 	return ret;
3255 }
3256 
3257 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3258 				  enum pipe *pipe)
3259 {
3260 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3261 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3262 	intel_wakeref_t wakeref;
3263 	bool ret;
3264 
3265 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3266 						     encoder->power_domain);
3267 	if (!wakeref)
3268 		return false;
3269 
3270 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3271 				    encoder->port, pipe);
3272 
3273 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3274 
3275 	return ret;
3276 }
3277 
3278 static void intel_dp_get_config(struct intel_encoder *encoder,
3279 				struct intel_crtc_state *pipe_config)
3280 {
3281 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3282 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3283 	u32 tmp, flags = 0;
3284 	enum port port = encoder->port;
3285 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3286 
3287 	if (encoder->type == INTEL_OUTPUT_EDP)
3288 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3289 	else
3290 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3291 
3292 	tmp = I915_READ(intel_dp->output_reg);
3293 
3294 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3295 
3296 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3297 		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3298 
3299 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3300 			flags |= DRM_MODE_FLAG_PHSYNC;
3301 		else
3302 			flags |= DRM_MODE_FLAG_NHSYNC;
3303 
3304 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3305 			flags |= DRM_MODE_FLAG_PVSYNC;
3306 		else
3307 			flags |= DRM_MODE_FLAG_NVSYNC;
3308 	} else {
3309 		if (tmp & DP_SYNC_HS_HIGH)
3310 			flags |= DRM_MODE_FLAG_PHSYNC;
3311 		else
3312 			flags |= DRM_MODE_FLAG_NHSYNC;
3313 
3314 		if (tmp & DP_SYNC_VS_HIGH)
3315 			flags |= DRM_MODE_FLAG_PVSYNC;
3316 		else
3317 			flags |= DRM_MODE_FLAG_NVSYNC;
3318 	}
3319 
3320 	pipe_config->hw.adjusted_mode.flags |= flags;
3321 
3322 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3323 		pipe_config->limited_color_range = true;
3324 
3325 	pipe_config->lane_count =
3326 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3327 
3328 	intel_dp_get_m_n(crtc, pipe_config);
3329 
3330 	if (port == PORT_A) {
3331 		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3332 			pipe_config->port_clock = 162000;
3333 		else
3334 			pipe_config->port_clock = 270000;
3335 	}
3336 
3337 	pipe_config->hw.adjusted_mode.crtc_clock =
3338 		intel_dotclock_calculate(pipe_config->port_clock,
3339 					 &pipe_config->dp_m_n);
3340 
3341 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3342 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3343 		/*
3344 		 * This is a big fat ugly hack.
3345 		 *
3346 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3347 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3348 		 * unknown we fail to light up. Yet the same BIOS boots up with
3349 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3350 		 * max, not what it tells us to use.
3351 		 *
3352 		 * Note: This will still be broken if the eDP panel is not lit
3353 		 * up by the BIOS, and thus we can't get the mode at module
3354 		 * load.
3355 		 */
3356 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3357 			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3358 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3359 	}
3360 }
3361 
3362 static void intel_disable_dp(struct intel_encoder *encoder,
3363 			     const struct intel_crtc_state *old_crtc_state,
3364 			     const struct drm_connector_state *old_conn_state)
3365 {
3366 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3367 
3368 	intel_dp->link_trained = false;
3369 
3370 	if (old_crtc_state->has_audio)
3371 		intel_audio_codec_disable(encoder,
3372 					  old_crtc_state, old_conn_state);
3373 
3374 	/* Make sure the panel is off before trying to change the mode. But also
3375 	 * ensure that we have vdd while we switch off the panel. */
3376 	intel_edp_panel_vdd_on(intel_dp);
3377 	intel_edp_backlight_off(old_conn_state);
3378 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3379 	intel_edp_panel_off(intel_dp);
3380 }
3381 
3382 static void g4x_disable_dp(struct intel_encoder *encoder,
3383 			   const struct intel_crtc_state *old_crtc_state,
3384 			   const struct drm_connector_state *old_conn_state)
3385 {
3386 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3387 }
3388 
3389 static void vlv_disable_dp(struct intel_encoder *encoder,
3390 			   const struct intel_crtc_state *old_crtc_state,
3391 			   const struct drm_connector_state *old_conn_state)
3392 {
3393 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3394 }
3395 
3396 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3397 				const struct intel_crtc_state *old_crtc_state,
3398 				const struct drm_connector_state *old_conn_state)
3399 {
3400 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3401 	enum port port = encoder->port;
3402 
3403 	/*
3404 	 * Bspec does not list a specific disable sequence for g4x DP.
3405 	 * Follow the ilk+ sequence (disable pipe before the port) for
3406 	 * g4x DP as it does not suffer from underruns like the normal
3407 	 * g4x modeset sequence (disable pipe after the port).
3408 	 */
3409 	intel_dp_link_down(encoder, old_crtc_state);
3410 
3411 	/* Only ilk+ has port A */
3412 	if (port == PORT_A)
3413 		ilk_edp_pll_off(intel_dp, old_crtc_state);
3414 }
3415 
3416 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3417 				const struct intel_crtc_state *old_crtc_state,
3418 				const struct drm_connector_state *old_conn_state)
3419 {
3420 	intel_dp_link_down(encoder, old_crtc_state);
3421 }
3422 
3423 static void chv_post_disable_dp(struct intel_encoder *encoder,
3424 				const struct intel_crtc_state *old_crtc_state,
3425 				const struct drm_connector_state *old_conn_state)
3426 {
3427 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3428 
3429 	intel_dp_link_down(encoder, old_crtc_state);
3430 
3431 	vlv_dpio_get(dev_priv);
3432 
3433 	/* Assert data lane reset */
3434 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3435 
3436 	vlv_dpio_put(dev_priv);
3437 }
3438 
3439 static void
3440 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3441 			 u32 *DP,
3442 			 u8 dp_train_pat)
3443 {
3444 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3445 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3446 	enum port port = intel_dig_port->base.port;
3447 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3448 
3449 	if (dp_train_pat & train_pat_mask)
3450 		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3451 			      dp_train_pat & train_pat_mask);
3452 
3453 	if (HAS_DDI(dev_priv)) {
3454 		u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl);
3455 
3456 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3457 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3458 		else
3459 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3460 
3461 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3462 		switch (dp_train_pat & train_pat_mask) {
3463 		case DP_TRAINING_PATTERN_DISABLE:
3464 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3465 
3466 			break;
3467 		case DP_TRAINING_PATTERN_1:
3468 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3469 			break;
3470 		case DP_TRAINING_PATTERN_2:
3471 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3472 			break;
3473 		case DP_TRAINING_PATTERN_3:
3474 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3475 			break;
3476 		case DP_TRAINING_PATTERN_4:
3477 			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3478 			break;
3479 		}
3480 		I915_WRITE(intel_dp->regs.dp_tp_ctl, temp);
3481 
3482 	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3483 		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3484 		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3485 
3486 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3487 		case DP_TRAINING_PATTERN_DISABLE:
3488 			*DP |= DP_LINK_TRAIN_OFF_CPT;
3489 			break;
3490 		case DP_TRAINING_PATTERN_1:
3491 			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3492 			break;
3493 		case DP_TRAINING_PATTERN_2:
3494 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3495 			break;
3496 		case DP_TRAINING_PATTERN_3:
3497 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3498 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3499 			break;
3500 		}
3501 
3502 	} else {
3503 		*DP &= ~DP_LINK_TRAIN_MASK;
3504 
3505 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3506 		case DP_TRAINING_PATTERN_DISABLE:
3507 			*DP |= DP_LINK_TRAIN_OFF;
3508 			break;
3509 		case DP_TRAINING_PATTERN_1:
3510 			*DP |= DP_LINK_TRAIN_PAT_1;
3511 			break;
3512 		case DP_TRAINING_PATTERN_2:
3513 			*DP |= DP_LINK_TRAIN_PAT_2;
3514 			break;
3515 		case DP_TRAINING_PATTERN_3:
3516 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3517 			*DP |= DP_LINK_TRAIN_PAT_2;
3518 			break;
3519 		}
3520 	}
3521 }
3522 
3523 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3524 				 const struct intel_crtc_state *old_crtc_state)
3525 {
3526 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3527 
3528 	/* enable with pattern 1 (as per spec) */
3529 
3530 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3531 
3532 	/*
3533 	 * Magic for VLV/CHV. We _must_ first set up the register
3534 	 * without actually enabling the port, and then do another
3535 	 * write to enable the port. Otherwise link training will
3536 	 * fail when the power sequencer is freshly used for this port.
3537 	 */
3538 	intel_dp->DP |= DP_PORT_EN;
3539 	if (old_crtc_state->has_audio)
3540 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3541 
3542 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3543 	POSTING_READ(intel_dp->output_reg);
3544 }
3545 
3546 static void intel_enable_dp(struct intel_encoder *encoder,
3547 			    const struct intel_crtc_state *pipe_config,
3548 			    const struct drm_connector_state *conn_state)
3549 {
3550 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3551 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3552 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3553 	u32 dp_reg = I915_READ(intel_dp->output_reg);
3554 	enum pipe pipe = crtc->pipe;
3555 	intel_wakeref_t wakeref;
3556 
3557 	if (WARN_ON(dp_reg & DP_PORT_EN))
3558 		return;
3559 
3560 	with_pps_lock(intel_dp, wakeref) {
3561 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3562 			vlv_init_panel_power_sequencer(encoder, pipe_config);
3563 
3564 		intel_dp_enable_port(intel_dp, pipe_config);
3565 
3566 		edp_panel_vdd_on(intel_dp);
3567 		edp_panel_on(intel_dp);
3568 		edp_panel_vdd_off(intel_dp, true);
3569 	}
3570 
3571 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3572 		unsigned int lane_mask = 0x0;
3573 
3574 		if (IS_CHERRYVIEW(dev_priv))
3575 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3576 
3577 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3578 				    lane_mask);
3579 	}
3580 
3581 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3582 	intel_dp_start_link_train(intel_dp);
3583 	intel_dp_stop_link_train(intel_dp);
3584 
3585 	if (pipe_config->has_audio) {
3586 		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3587 				 pipe_name(pipe));
3588 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3589 	}
3590 }
3591 
3592 static void g4x_enable_dp(struct intel_encoder *encoder,
3593 			  const struct intel_crtc_state *pipe_config,
3594 			  const struct drm_connector_state *conn_state)
3595 {
3596 	intel_enable_dp(encoder, pipe_config, conn_state);
3597 	intel_edp_backlight_on(pipe_config, conn_state);
3598 }
3599 
3600 static void vlv_enable_dp(struct intel_encoder *encoder,
3601 			  const struct intel_crtc_state *pipe_config,
3602 			  const struct drm_connector_state *conn_state)
3603 {
3604 	intel_edp_backlight_on(pipe_config, conn_state);
3605 }
3606 
3607 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3608 			      const struct intel_crtc_state *pipe_config,
3609 			      const struct drm_connector_state *conn_state)
3610 {
3611 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3612 	enum port port = encoder->port;
3613 
3614 	intel_dp_prepare(encoder, pipe_config);
3615 
3616 	/* Only ilk+ has port A */
3617 	if (port == PORT_A)
3618 		ilk_edp_pll_on(intel_dp, pipe_config);
3619 }
3620 
3621 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3622 {
3623 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3624 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3625 	enum pipe pipe = intel_dp->pps_pipe;
3626 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3627 
3628 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3629 
3630 	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3631 		return;
3632 
3633 	edp_panel_vdd_off_sync(intel_dp);
3634 
3635 	/*
3636 	 * VLV seems to get confused when multiple power sequencers
3637 	 * have the same port selected (even if only one has power/vdd
3638 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
3639 	 * CHV on the other hand doesn't seem to mind having the same port
3640 	 * selected in multiple power sequencers, but let's clear the
3641 	 * port select always when logically disconnecting a power sequencer
3642 	 * from a port.
3643 	 */
3644 	DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3645 		      pipe_name(pipe), intel_dig_port->base.base.base.id,
3646 		      intel_dig_port->base.base.name);
3647 	I915_WRITE(pp_on_reg, 0);
3648 	POSTING_READ(pp_on_reg);
3649 
3650 	intel_dp->pps_pipe = INVALID_PIPE;
3651 }
3652 
3653 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3654 				      enum pipe pipe)
3655 {
3656 	struct intel_encoder *encoder;
3657 
3658 	lockdep_assert_held(&dev_priv->pps_mutex);
3659 
3660 	for_each_intel_dp(&dev_priv->drm, encoder) {
3661 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3662 
3663 		WARN(intel_dp->active_pipe == pipe,
3664 		     "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3665 		     pipe_name(pipe), encoder->base.base.id,
3666 		     encoder->base.name);
3667 
3668 		if (intel_dp->pps_pipe != pipe)
3669 			continue;
3670 
3671 		DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3672 			      pipe_name(pipe), encoder->base.base.id,
3673 			      encoder->base.name);
3674 
3675 		/* make sure vdd is off before we steal it */
3676 		vlv_detach_power_sequencer(intel_dp);
3677 	}
3678 }
3679 
3680 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3681 					   const struct intel_crtc_state *crtc_state)
3682 {
3683 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3684 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3685 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3686 
3687 	lockdep_assert_held(&dev_priv->pps_mutex);
3688 
3689 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3690 
3691 	if (intel_dp->pps_pipe != INVALID_PIPE &&
3692 	    intel_dp->pps_pipe != crtc->pipe) {
3693 		/*
3694 		 * If another power sequencer was being used on this
3695 		 * port previously make sure to turn off vdd there while
3696 		 * we still have control of it.
3697 		 */
3698 		vlv_detach_power_sequencer(intel_dp);
3699 	}
3700 
3701 	/*
3702 	 * We may be stealing the power
3703 	 * sequencer from another port.
3704 	 */
3705 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3706 
3707 	intel_dp->active_pipe = crtc->pipe;
3708 
3709 	if (!intel_dp_is_edp(intel_dp))
3710 		return;
3711 
3712 	/* now it's all ours */
3713 	intel_dp->pps_pipe = crtc->pipe;
3714 
3715 	DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3716 		      pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3717 		      encoder->base.name);
3718 
3719 	/* init power sequencer on this pipe and port */
3720 	intel_dp_init_panel_power_sequencer(intel_dp);
3721 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3722 }
3723 
3724 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3725 			      const struct intel_crtc_state *pipe_config,
3726 			      const struct drm_connector_state *conn_state)
3727 {
3728 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3729 
3730 	intel_enable_dp(encoder, pipe_config, conn_state);
3731 }
3732 
3733 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3734 				  const struct intel_crtc_state *pipe_config,
3735 				  const struct drm_connector_state *conn_state)
3736 {
3737 	intel_dp_prepare(encoder, pipe_config);
3738 
3739 	vlv_phy_pre_pll_enable(encoder, pipe_config);
3740 }
3741 
3742 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3743 			      const struct intel_crtc_state *pipe_config,
3744 			      const struct drm_connector_state *conn_state)
3745 {
3746 	chv_phy_pre_encoder_enable(encoder, pipe_config);
3747 
3748 	intel_enable_dp(encoder, pipe_config, conn_state);
3749 
3750 	/* Second common lane will stay alive on its own now */
3751 	chv_phy_release_cl2_override(encoder);
3752 }
3753 
3754 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3755 				  const struct intel_crtc_state *pipe_config,
3756 				  const struct drm_connector_state *conn_state)
3757 {
3758 	intel_dp_prepare(encoder, pipe_config);
3759 
3760 	chv_phy_pre_pll_enable(encoder, pipe_config);
3761 }
3762 
3763 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3764 				    const struct intel_crtc_state *old_crtc_state,
3765 				    const struct drm_connector_state *old_conn_state)
3766 {
3767 	chv_phy_post_pll_disable(encoder, old_crtc_state);
3768 }
3769 
3770 /*
3771  * Fetch AUX CH registers 0x202 - 0x207 which contain
3772  * link status information
3773  */
3774 bool
3775 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3776 {
3777 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3778 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3779 }
3780 
3781 /* These are source-specific values. */
3782 u8
3783 intel_dp_voltage_max(struct intel_dp *intel_dp)
3784 {
3785 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3786 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3787 	enum port port = encoder->port;
3788 
3789 	if (HAS_DDI(dev_priv))
3790 		return intel_ddi_dp_voltage_max(encoder);
3791 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3792 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3793 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3794 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3795 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3796 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3797 	else
3798 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3799 }
3800 
3801 u8
3802 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3803 {
3804 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3805 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3806 	enum port port = encoder->port;
3807 
3808 	if (HAS_DDI(dev_priv)) {
3809 		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3810 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3811 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3812 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3813 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3814 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3815 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3816 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3817 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3818 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3819 		default:
3820 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3821 		}
3822 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3823 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3824 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3825 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3826 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3827 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3828 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3829 		default:
3830 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3831 		}
3832 	} else {
3833 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3834 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3835 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3836 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3837 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3838 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3839 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3840 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3841 		default:
3842 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3843 		}
3844 	}
3845 }
3846 
3847 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3848 {
3849 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3850 	unsigned long demph_reg_value, preemph_reg_value,
3851 		uniqtranscale_reg_value;
3852 	u8 train_set = intel_dp->train_set[0];
3853 
3854 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3855 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3856 		preemph_reg_value = 0x0004000;
3857 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3858 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3859 			demph_reg_value = 0x2B405555;
3860 			uniqtranscale_reg_value = 0x552AB83A;
3861 			break;
3862 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3863 			demph_reg_value = 0x2B404040;
3864 			uniqtranscale_reg_value = 0x5548B83A;
3865 			break;
3866 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3867 			demph_reg_value = 0x2B245555;
3868 			uniqtranscale_reg_value = 0x5560B83A;
3869 			break;
3870 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3871 			demph_reg_value = 0x2B405555;
3872 			uniqtranscale_reg_value = 0x5598DA3A;
3873 			break;
3874 		default:
3875 			return 0;
3876 		}
3877 		break;
3878 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3879 		preemph_reg_value = 0x0002000;
3880 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3881 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3882 			demph_reg_value = 0x2B404040;
3883 			uniqtranscale_reg_value = 0x5552B83A;
3884 			break;
3885 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3886 			demph_reg_value = 0x2B404848;
3887 			uniqtranscale_reg_value = 0x5580B83A;
3888 			break;
3889 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3890 			demph_reg_value = 0x2B404040;
3891 			uniqtranscale_reg_value = 0x55ADDA3A;
3892 			break;
3893 		default:
3894 			return 0;
3895 		}
3896 		break;
3897 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3898 		preemph_reg_value = 0x0000000;
3899 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3900 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3901 			demph_reg_value = 0x2B305555;
3902 			uniqtranscale_reg_value = 0x5570B83A;
3903 			break;
3904 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3905 			demph_reg_value = 0x2B2B4040;
3906 			uniqtranscale_reg_value = 0x55ADDA3A;
3907 			break;
3908 		default:
3909 			return 0;
3910 		}
3911 		break;
3912 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3913 		preemph_reg_value = 0x0006000;
3914 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3915 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3916 			demph_reg_value = 0x1B405555;
3917 			uniqtranscale_reg_value = 0x55ADDA3A;
3918 			break;
3919 		default:
3920 			return 0;
3921 		}
3922 		break;
3923 	default:
3924 		return 0;
3925 	}
3926 
3927 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3928 				 uniqtranscale_reg_value, 0);
3929 
3930 	return 0;
3931 }
3932 
3933 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3934 {
3935 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3936 	u32 deemph_reg_value, margin_reg_value;
3937 	bool uniq_trans_scale = false;
3938 	u8 train_set = intel_dp->train_set[0];
3939 
3940 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3941 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3942 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3943 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3944 			deemph_reg_value = 128;
3945 			margin_reg_value = 52;
3946 			break;
3947 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3948 			deemph_reg_value = 128;
3949 			margin_reg_value = 77;
3950 			break;
3951 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3952 			deemph_reg_value = 128;
3953 			margin_reg_value = 102;
3954 			break;
3955 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3956 			deemph_reg_value = 128;
3957 			margin_reg_value = 154;
3958 			uniq_trans_scale = true;
3959 			break;
3960 		default:
3961 			return 0;
3962 		}
3963 		break;
3964 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3965 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3966 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3967 			deemph_reg_value = 85;
3968 			margin_reg_value = 78;
3969 			break;
3970 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3971 			deemph_reg_value = 85;
3972 			margin_reg_value = 116;
3973 			break;
3974 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3975 			deemph_reg_value = 85;
3976 			margin_reg_value = 154;
3977 			break;
3978 		default:
3979 			return 0;
3980 		}
3981 		break;
3982 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3983 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3984 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3985 			deemph_reg_value = 64;
3986 			margin_reg_value = 104;
3987 			break;
3988 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3989 			deemph_reg_value = 64;
3990 			margin_reg_value = 154;
3991 			break;
3992 		default:
3993 			return 0;
3994 		}
3995 		break;
3996 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3997 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3998 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3999 			deemph_reg_value = 43;
4000 			margin_reg_value = 154;
4001 			break;
4002 		default:
4003 			return 0;
4004 		}
4005 		break;
4006 	default:
4007 		return 0;
4008 	}
4009 
4010 	chv_set_phy_signal_level(encoder, deemph_reg_value,
4011 				 margin_reg_value, uniq_trans_scale);
4012 
4013 	return 0;
4014 }
4015 
4016 static u32
4017 g4x_signal_levels(u8 train_set)
4018 {
4019 	u32 signal_levels = 0;
4020 
4021 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4022 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4023 	default:
4024 		signal_levels |= DP_VOLTAGE_0_4;
4025 		break;
4026 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4027 		signal_levels |= DP_VOLTAGE_0_6;
4028 		break;
4029 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4030 		signal_levels |= DP_VOLTAGE_0_8;
4031 		break;
4032 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4033 		signal_levels |= DP_VOLTAGE_1_2;
4034 		break;
4035 	}
4036 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4037 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4038 	default:
4039 		signal_levels |= DP_PRE_EMPHASIS_0;
4040 		break;
4041 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4042 		signal_levels |= DP_PRE_EMPHASIS_3_5;
4043 		break;
4044 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4045 		signal_levels |= DP_PRE_EMPHASIS_6;
4046 		break;
4047 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4048 		signal_levels |= DP_PRE_EMPHASIS_9_5;
4049 		break;
4050 	}
4051 	return signal_levels;
4052 }
4053 
4054 /* SNB CPU eDP voltage swing and pre-emphasis control */
4055 static u32
4056 snb_cpu_edp_signal_levels(u8 train_set)
4057 {
4058 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4059 					 DP_TRAIN_PRE_EMPHASIS_MASK);
4060 	switch (signal_levels) {
4061 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4062 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4063 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4064 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4065 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4066 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4067 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4068 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4069 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4070 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4071 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4072 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4073 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4074 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4075 	default:
4076 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4077 			      "0x%x\n", signal_levels);
4078 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4079 	}
4080 }
4081 
4082 /* IVB CPU eDP voltage swing and pre-emphasis control */
4083 static u32
4084 ivb_cpu_edp_signal_levels(u8 train_set)
4085 {
4086 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4087 					 DP_TRAIN_PRE_EMPHASIS_MASK);
4088 	switch (signal_levels) {
4089 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4090 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4091 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4092 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4093 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4094 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
4095 
4096 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4097 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4098 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4099 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4100 
4101 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4102 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4103 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4104 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4105 
4106 	default:
4107 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4108 			      "0x%x\n", signal_levels);
4109 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
4110 	}
4111 }
4112 
4113 void
4114 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4115 {
4116 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4117 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4118 	enum port port = intel_dig_port->base.port;
4119 	u32 signal_levels, mask = 0;
4120 	u8 train_set = intel_dp->train_set[0];
4121 
4122 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4123 		signal_levels = bxt_signal_levels(intel_dp);
4124 	} else if (HAS_DDI(dev_priv)) {
4125 		signal_levels = ddi_signal_levels(intel_dp);
4126 		mask = DDI_BUF_EMP_MASK;
4127 	} else if (IS_CHERRYVIEW(dev_priv)) {
4128 		signal_levels = chv_signal_levels(intel_dp);
4129 	} else if (IS_VALLEYVIEW(dev_priv)) {
4130 		signal_levels = vlv_signal_levels(intel_dp);
4131 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4132 		signal_levels = ivb_cpu_edp_signal_levels(train_set);
4133 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4134 	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4135 		signal_levels = snb_cpu_edp_signal_levels(train_set);
4136 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4137 	} else {
4138 		signal_levels = g4x_signal_levels(train_set);
4139 		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4140 	}
4141 
4142 	if (mask)
4143 		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
4144 
4145 	DRM_DEBUG_KMS("Using vswing level %d\n",
4146 		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
4147 	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
4148 		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4149 			DP_TRAIN_PRE_EMPHASIS_SHIFT);
4150 
4151 	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4152 
4153 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4154 	POSTING_READ(intel_dp->output_reg);
4155 }
4156 
4157 void
4158 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4159 				       u8 dp_train_pat)
4160 {
4161 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4162 	struct drm_i915_private *dev_priv =
4163 		to_i915(intel_dig_port->base.base.dev);
4164 
4165 	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4166 
4167 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4168 	POSTING_READ(intel_dp->output_reg);
4169 }
4170 
4171 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4172 {
4173 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4174 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4175 	enum port port = intel_dig_port->base.port;
4176 	u32 val;
4177 
4178 	if (!HAS_DDI(dev_priv))
4179 		return;
4180 
4181 	val = I915_READ(intel_dp->regs.dp_tp_ctl);
4182 	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4183 	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4184 	I915_WRITE(intel_dp->regs.dp_tp_ctl, val);
4185 
4186 	/*
4187 	 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4188 	 * reason we need to set idle transmission mode is to work around a HW
4189 	 * issue where we enable the pipe while not in idle link-training mode.
4190 	 * In this case there is requirement to wait for a minimum number of
4191 	 * idle patterns to be sent.
4192 	 */
4193 	if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4194 		return;
4195 
4196 	if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4197 				  DP_TP_STATUS_IDLE_DONE, 1))
4198 		DRM_ERROR("Timed out waiting for DP idle patterns\n");
4199 }
4200 
4201 static void
4202 intel_dp_link_down(struct intel_encoder *encoder,
4203 		   const struct intel_crtc_state *old_crtc_state)
4204 {
4205 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4206 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4207 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4208 	enum port port = encoder->port;
4209 	u32 DP = intel_dp->DP;
4210 
4211 	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4212 		return;
4213 
4214 	DRM_DEBUG_KMS("\n");
4215 
4216 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4217 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4218 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4219 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4220 	} else {
4221 		DP &= ~DP_LINK_TRAIN_MASK;
4222 		DP |= DP_LINK_TRAIN_PAT_IDLE;
4223 	}
4224 	I915_WRITE(intel_dp->output_reg, DP);
4225 	POSTING_READ(intel_dp->output_reg);
4226 
4227 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4228 	I915_WRITE(intel_dp->output_reg, DP);
4229 	POSTING_READ(intel_dp->output_reg);
4230 
4231 	/*
4232 	 * HW workaround for IBX, we need to move the port
4233 	 * to transcoder A after disabling it to allow the
4234 	 * matching HDMI port to be enabled on transcoder A.
4235 	 */
4236 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4237 		/*
4238 		 * We get CPU/PCH FIFO underruns on the other pipe when
4239 		 * doing the workaround. Sweep them under the rug.
4240 		 */
4241 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4242 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4243 
4244 		/* always enable with pattern 1 (as per spec) */
4245 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4246 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4247 			DP_LINK_TRAIN_PAT_1;
4248 		I915_WRITE(intel_dp->output_reg, DP);
4249 		POSTING_READ(intel_dp->output_reg);
4250 
4251 		DP &= ~DP_PORT_EN;
4252 		I915_WRITE(intel_dp->output_reg, DP);
4253 		POSTING_READ(intel_dp->output_reg);
4254 
4255 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4256 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4257 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4258 	}
4259 
4260 	msleep(intel_dp->panel_power_down_delay);
4261 
4262 	intel_dp->DP = DP;
4263 
4264 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4265 		intel_wakeref_t wakeref;
4266 
4267 		with_pps_lock(intel_dp, wakeref)
4268 			intel_dp->active_pipe = INVALID_PIPE;
4269 	}
4270 }
4271 
4272 static void
4273 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4274 {
4275 	u8 dpcd_ext[6];
4276 
4277 	/*
4278 	 * Prior to DP1.3 the bit represented by
4279 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4280 	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4281 	 * the true capability of the panel. The only way to check is to
4282 	 * then compare 0000h and 2200h.
4283 	 */
4284 	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4285 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4286 		return;
4287 
4288 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4289 			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4290 		DRM_ERROR("DPCD failed read at extended capabilities\n");
4291 		return;
4292 	}
4293 
4294 	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4295 		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4296 		return;
4297 	}
4298 
4299 	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4300 		return;
4301 
4302 	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4303 		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4304 
4305 	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4306 }
4307 
4308 bool
4309 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4310 {
4311 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4312 			     sizeof(intel_dp->dpcd)) < 0)
4313 		return false; /* aux transfer failed */
4314 
4315 	intel_dp_extended_receiver_capabilities(intel_dp);
4316 
4317 	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4318 
4319 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
4320 }
4321 
4322 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4323 {
4324 	u8 dprx = 0;
4325 
4326 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4327 			      &dprx) != 1)
4328 		return false;
4329 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4330 }
4331 
4332 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4333 {
4334 	/*
4335 	 * Clear the cached register set to avoid using stale values
4336 	 * for the sinks that do not support DSC.
4337 	 */
4338 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4339 
4340 	/* Clear fec_capable to avoid using stale values */
4341 	intel_dp->fec_capable = 0;
4342 
4343 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4344 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4345 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4346 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4347 				     intel_dp->dsc_dpcd,
4348 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4349 			DRM_ERROR("Failed to read DPCD register 0x%x\n",
4350 				  DP_DSC_SUPPORT);
4351 
4352 		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4353 			      (int)sizeof(intel_dp->dsc_dpcd),
4354 			      intel_dp->dsc_dpcd);
4355 
4356 		/* FEC is supported only on DP 1.4 */
4357 		if (!intel_dp_is_edp(intel_dp) &&
4358 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4359 				      &intel_dp->fec_capable) < 0)
4360 			DRM_ERROR("Failed to read FEC DPCD register\n");
4361 
4362 		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4363 	}
4364 }
4365 
4366 static bool
4367 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4368 {
4369 	struct drm_i915_private *dev_priv =
4370 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4371 
4372 	/* this function is meant to be called only once */
4373 	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4374 
4375 	if (!intel_dp_read_dpcd(intel_dp))
4376 		return false;
4377 
4378 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4379 			 drm_dp_is_branch(intel_dp->dpcd));
4380 
4381 	/*
4382 	 * Read the eDP display control registers.
4383 	 *
4384 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4385 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4386 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4387 	 * method). The display control registers should read zero if they're
4388 	 * not supported anyway.
4389 	 */
4390 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4391 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4392 			     sizeof(intel_dp->edp_dpcd))
4393 		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4394 			      intel_dp->edp_dpcd);
4395 
4396 	/*
4397 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4398 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4399 	 */
4400 	intel_psr_init_dpcd(intel_dp);
4401 
4402 	/* Read the eDP 1.4+ supported link rates. */
4403 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4404 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4405 		int i;
4406 
4407 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4408 				sink_rates, sizeof(sink_rates));
4409 
4410 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4411 			int val = le16_to_cpu(sink_rates[i]);
4412 
4413 			if (val == 0)
4414 				break;
4415 
4416 			/* Value read multiplied by 200kHz gives the per-lane
4417 			 * link rate in kHz. The source rates are, however,
4418 			 * stored in terms of LS_Clk kHz. The full conversion
4419 			 * back to symbols is
4420 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4421 			 */
4422 			intel_dp->sink_rates[i] = (val * 200) / 10;
4423 		}
4424 		intel_dp->num_sink_rates = i;
4425 	}
4426 
4427 	/*
4428 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4429 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4430 	 */
4431 	if (intel_dp->num_sink_rates)
4432 		intel_dp->use_rate_select = true;
4433 	else
4434 		intel_dp_set_sink_rates(intel_dp);
4435 
4436 	intel_dp_set_common_rates(intel_dp);
4437 
4438 	/* Read the eDP DSC DPCD registers */
4439 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4440 		intel_dp_get_dsc_sink_cap(intel_dp);
4441 
4442 	return true;
4443 }
4444 
4445 
4446 static bool
4447 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4448 {
4449 	if (!intel_dp_read_dpcd(intel_dp))
4450 		return false;
4451 
4452 	/*
4453 	 * Don't clobber cached eDP rates. Also skip re-reading
4454 	 * the OUI/ID since we know it won't change.
4455 	 */
4456 	if (!intel_dp_is_edp(intel_dp)) {
4457 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4458 				 drm_dp_is_branch(intel_dp->dpcd));
4459 
4460 		intel_dp_set_sink_rates(intel_dp);
4461 		intel_dp_set_common_rates(intel_dp);
4462 	}
4463 
4464 	/*
4465 	 * Some eDP panels do not set a valid value for sink count, that is why
4466 	 * it don't care about read it here and in intel_edp_init_dpcd().
4467 	 */
4468 	if (!intel_dp_is_edp(intel_dp) &&
4469 	    !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4470 		u8 count;
4471 		ssize_t r;
4472 
4473 		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4474 		if (r < 1)
4475 			return false;
4476 
4477 		/*
4478 		 * Sink count can change between short pulse hpd hence
4479 		 * a member variable in intel_dp will track any changes
4480 		 * between short pulse interrupts.
4481 		 */
4482 		intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4483 
4484 		/*
4485 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4486 		 * a dongle is present but no display. Unless we require to know
4487 		 * if a dongle is present or not, we don't need to update
4488 		 * downstream port information. So, an early return here saves
4489 		 * time from performing other operations which are not required.
4490 		 */
4491 		if (!intel_dp->sink_count)
4492 			return false;
4493 	}
4494 
4495 	if (!drm_dp_is_branch(intel_dp->dpcd))
4496 		return true; /* native DP sink */
4497 
4498 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4499 		return true; /* no per-port downstream info */
4500 
4501 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4502 			     intel_dp->downstream_ports,
4503 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4504 		return false; /* downstream port status fetch failed */
4505 
4506 	return true;
4507 }
4508 
4509 static bool
4510 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4511 {
4512 	u8 mstm_cap;
4513 
4514 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4515 		return false;
4516 
4517 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4518 		return false;
4519 
4520 	return mstm_cap & DP_MST_CAP;
4521 }
4522 
4523 static bool
4524 intel_dp_can_mst(struct intel_dp *intel_dp)
4525 {
4526 	return i915_modparams.enable_dp_mst &&
4527 		intel_dp->can_mst &&
4528 		intel_dp_sink_can_mst(intel_dp);
4529 }
4530 
4531 static void
4532 intel_dp_configure_mst(struct intel_dp *intel_dp)
4533 {
4534 	struct intel_encoder *encoder =
4535 		&dp_to_dig_port(intel_dp)->base;
4536 	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4537 
4538 	DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4539 		      encoder->base.base.id, encoder->base.name,
4540 		      yesno(intel_dp->can_mst), yesno(sink_can_mst),
4541 		      yesno(i915_modparams.enable_dp_mst));
4542 
4543 	if (!intel_dp->can_mst)
4544 		return;
4545 
4546 	intel_dp->is_mst = sink_can_mst &&
4547 		i915_modparams.enable_dp_mst;
4548 
4549 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4550 					intel_dp->is_mst);
4551 }
4552 
4553 static bool
4554 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4555 {
4556 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4557 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4558 		DP_DPRX_ESI_LEN;
4559 }
4560 
4561 bool
4562 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4563 		       const struct drm_connector_state *conn_state)
4564 {
4565 	/*
4566 	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4567 	 * of Color Encoding Format and Content Color Gamut], in order to
4568 	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4569 	 */
4570 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4571 		return true;
4572 
4573 	switch (conn_state->colorspace) {
4574 	case DRM_MODE_COLORIMETRY_SYCC_601:
4575 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4576 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4577 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4578 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4579 		return true;
4580 	default:
4581 		break;
4582 	}
4583 
4584 	return false;
4585 }
4586 
4587 static void
4588 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
4589 		       const struct intel_crtc_state *crtc_state,
4590 		       const struct drm_connector_state *conn_state)
4591 {
4592 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4593 	struct dp_sdp vsc_sdp = {};
4594 
4595 	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4596 	vsc_sdp.sdp_header.HB0 = 0;
4597 	vsc_sdp.sdp_header.HB1 = 0x7;
4598 
4599 	/*
4600 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4601 	 * Colorimetry Format indication.
4602 	 */
4603 	vsc_sdp.sdp_header.HB2 = 0x5;
4604 
4605 	/*
4606 	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4607 	 * Colorimetry Format indication (HB2 = 05h).
4608 	 */
4609 	vsc_sdp.sdp_header.HB3 = 0x13;
4610 
4611 	/* DP 1.4a spec, Table 2-120 */
4612 	switch (crtc_state->output_format) {
4613 	case INTEL_OUTPUT_FORMAT_YCBCR444:
4614 		vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
4615 		break;
4616 	case INTEL_OUTPUT_FORMAT_YCBCR420:
4617 		vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
4618 		break;
4619 	case INTEL_OUTPUT_FORMAT_RGB:
4620 	default:
4621 		/* RGB: DB16[7:4] = 0h */
4622 		break;
4623 	}
4624 
4625 	switch (conn_state->colorspace) {
4626 	case DRM_MODE_COLORIMETRY_BT709_YCC:
4627 		vsc_sdp.db[16] |= 0x1;
4628 		break;
4629 	case DRM_MODE_COLORIMETRY_XVYCC_601:
4630 		vsc_sdp.db[16] |= 0x2;
4631 		break;
4632 	case DRM_MODE_COLORIMETRY_XVYCC_709:
4633 		vsc_sdp.db[16] |= 0x3;
4634 		break;
4635 	case DRM_MODE_COLORIMETRY_SYCC_601:
4636 		vsc_sdp.db[16] |= 0x4;
4637 		break;
4638 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4639 		vsc_sdp.db[16] |= 0x5;
4640 		break;
4641 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4642 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4643 		vsc_sdp.db[16] |= 0x6;
4644 		break;
4645 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4646 		vsc_sdp.db[16] |= 0x7;
4647 		break;
4648 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
4649 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
4650 		vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
4651 		break;
4652 	default:
4653 		/* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
4654 
4655 		/* RGB->YCBCR color conversion uses the BT.709 color space. */
4656 		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4657 			vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4658 		break;
4659 	}
4660 
4661 	/*
4662 	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4663 	 * the following Component Bit Depth values are defined:
4664 	 * 001b = 8bpc.
4665 	 * 010b = 10bpc.
4666 	 * 011b = 12bpc.
4667 	 * 100b = 16bpc.
4668 	 */
4669 	switch (crtc_state->pipe_bpp) {
4670 	case 24: /* 8bpc */
4671 		vsc_sdp.db[17] = 0x1;
4672 		break;
4673 	case 30: /* 10bpc */
4674 		vsc_sdp.db[17] = 0x2;
4675 		break;
4676 	case 36: /* 12bpc */
4677 		vsc_sdp.db[17] = 0x3;
4678 		break;
4679 	case 48: /* 16bpc */
4680 		vsc_sdp.db[17] = 0x4;
4681 		break;
4682 	default:
4683 		MISSING_CASE(crtc_state->pipe_bpp);
4684 		break;
4685 	}
4686 
4687 	/*
4688 	 * Dynamic Range (Bit 7)
4689 	 * 0 = VESA range, 1 = CTA range.
4690 	 * all YCbCr are always limited range
4691 	 */
4692 	vsc_sdp.db[17] |= 0x80;
4693 
4694 	/*
4695 	 * Content Type (Bits 2:0)
4696 	 * 000b = Not defined.
4697 	 * 001b = Graphics.
4698 	 * 010b = Photo.
4699 	 * 011b = Video.
4700 	 * 100b = Game
4701 	 * All other values are RESERVED.
4702 	 * Note: See CTA-861-G for the definition and expected
4703 	 * processing by a stream sink for the above contect types.
4704 	 */
4705 	vsc_sdp.db[18] = 0;
4706 
4707 	intel_dig_port->write_infoframe(&intel_dig_port->base,
4708 			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4709 }
4710 
4711 static void
4712 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
4713 					  const struct intel_crtc_state *crtc_state,
4714 					  const struct drm_connector_state *conn_state)
4715 {
4716 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4717 	struct dp_sdp infoframe_sdp = {};
4718 	struct hdmi_drm_infoframe drm_infoframe = {};
4719 	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4720 	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4721 	ssize_t len;
4722 	int ret;
4723 
4724 	ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
4725 	if (ret) {
4726 		DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
4727 		return;
4728 	}
4729 
4730 	len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
4731 	if (len < 0) {
4732 		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4733 		return;
4734 	}
4735 
4736 	if (len != infoframe_size) {
4737 		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4738 		return;
4739 	}
4740 
4741 	/*
4742 	 * Set up the infoframe sdp packet for HDR static metadata.
4743 	 * Prepare VSC Header for SU as per DP 1.4a spec,
4744 	 * Table 2-100 and Table 2-101
4745 	 */
4746 
4747 	/* Packet ID, 00h for non-Audio INFOFRAME */
4748 	infoframe_sdp.sdp_header.HB0 = 0;
4749 	/*
4750 	 * Packet Type 80h + Non-audio INFOFRAME Type value
4751 	 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
4752 	 */
4753 	infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
4754 	/*
4755 	 * Least Significant Eight Bits of (Data Byte Count – 1)
4756 	 * infoframe_size - 1,
4757 	 */
4758 	infoframe_sdp.sdp_header.HB2 = 0x1D;
4759 	/* INFOFRAME SDP Version Number */
4760 	infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
4761 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
4762 	infoframe_sdp.db[0] = drm_infoframe.version;
4763 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4764 	infoframe_sdp.db[1] = drm_infoframe.length;
4765 	/*
4766 	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4767 	 * HDMI_INFOFRAME_HEADER_SIZE
4768 	 */
4769 	BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4770 	memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4771 	       HDMI_DRM_INFOFRAME_SIZE);
4772 
4773 	/*
4774 	 * Size of DP infoframe sdp packet for HDR static metadata is consist of
4775 	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4776 	 * - Two Data Blocks: 2 bytes
4777 	 *    CTA Header Byte2 (INFOFRAME Version Number)
4778 	 *    CTA Header Byte3 (Length of INFOFRAME)
4779 	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4780 	 *
4781 	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4782 	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4783 	 * will pad rest of the size.
4784 	 */
4785 	intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
4786 					HDMI_PACKET_TYPE_GAMUT_METADATA,
4787 					&infoframe_sdp,
4788 					sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
4789 }
4790 
4791 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
4792 			 const struct intel_crtc_state *crtc_state,
4793 			 const struct drm_connector_state *conn_state)
4794 {
4795 	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4796 		return;
4797 
4798 	intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4799 }
4800 
4801 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
4802 				  const struct intel_crtc_state *crtc_state,
4803 				  const struct drm_connector_state *conn_state)
4804 {
4805 	if (!conn_state->hdr_output_metadata)
4806 		return;
4807 
4808 	intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
4809 						  crtc_state,
4810 						  conn_state);
4811 }
4812 
4813 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4814 {
4815 	int status = 0;
4816 	int test_link_rate;
4817 	u8 test_lane_count, test_link_bw;
4818 	/* (DP CTS 1.2)
4819 	 * 4.3.1.11
4820 	 */
4821 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4822 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4823 				   &test_lane_count);
4824 
4825 	if (status <= 0) {
4826 		DRM_DEBUG_KMS("Lane count read failed\n");
4827 		return DP_TEST_NAK;
4828 	}
4829 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4830 
4831 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4832 				   &test_link_bw);
4833 	if (status <= 0) {
4834 		DRM_DEBUG_KMS("Link Rate read failed\n");
4835 		return DP_TEST_NAK;
4836 	}
4837 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4838 
4839 	/* Validate the requested link rate and lane count */
4840 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4841 					test_lane_count))
4842 		return DP_TEST_NAK;
4843 
4844 	intel_dp->compliance.test_lane_count = test_lane_count;
4845 	intel_dp->compliance.test_link_rate = test_link_rate;
4846 
4847 	return DP_TEST_ACK;
4848 }
4849 
4850 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4851 {
4852 	u8 test_pattern;
4853 	u8 test_misc;
4854 	__be16 h_width, v_height;
4855 	int status = 0;
4856 
4857 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4858 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4859 				   &test_pattern);
4860 	if (status <= 0) {
4861 		DRM_DEBUG_KMS("Test pattern read failed\n");
4862 		return DP_TEST_NAK;
4863 	}
4864 	if (test_pattern != DP_COLOR_RAMP)
4865 		return DP_TEST_NAK;
4866 
4867 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4868 				  &h_width, 2);
4869 	if (status <= 0) {
4870 		DRM_DEBUG_KMS("H Width read failed\n");
4871 		return DP_TEST_NAK;
4872 	}
4873 
4874 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4875 				  &v_height, 2);
4876 	if (status <= 0) {
4877 		DRM_DEBUG_KMS("V Height read failed\n");
4878 		return DP_TEST_NAK;
4879 	}
4880 
4881 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4882 				   &test_misc);
4883 	if (status <= 0) {
4884 		DRM_DEBUG_KMS("TEST MISC read failed\n");
4885 		return DP_TEST_NAK;
4886 	}
4887 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4888 		return DP_TEST_NAK;
4889 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4890 		return DP_TEST_NAK;
4891 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4892 	case DP_TEST_BIT_DEPTH_6:
4893 		intel_dp->compliance.test_data.bpc = 6;
4894 		break;
4895 	case DP_TEST_BIT_DEPTH_8:
4896 		intel_dp->compliance.test_data.bpc = 8;
4897 		break;
4898 	default:
4899 		return DP_TEST_NAK;
4900 	}
4901 
4902 	intel_dp->compliance.test_data.video_pattern = test_pattern;
4903 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4904 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4905 	/* Set test active flag here so userspace doesn't interrupt things */
4906 	intel_dp->compliance.test_active = true;
4907 
4908 	return DP_TEST_ACK;
4909 }
4910 
4911 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4912 {
4913 	u8 test_result = DP_TEST_ACK;
4914 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4915 	struct drm_connector *connector = &intel_connector->base;
4916 
4917 	if (intel_connector->detect_edid == NULL ||
4918 	    connector->edid_corrupt ||
4919 	    intel_dp->aux.i2c_defer_count > 6) {
4920 		/* Check EDID read for NACKs, DEFERs and corruption
4921 		 * (DP CTS 1.2 Core r1.1)
4922 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
4923 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
4924 		 *    4.2.2.6 : EDID corruption detected
4925 		 * Use failsafe mode for all cases
4926 		 */
4927 		if (intel_dp->aux.i2c_nack_count > 0 ||
4928 			intel_dp->aux.i2c_defer_count > 0)
4929 			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4930 				      intel_dp->aux.i2c_nack_count,
4931 				      intel_dp->aux.i2c_defer_count);
4932 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4933 	} else {
4934 		struct edid *block = intel_connector->detect_edid;
4935 
4936 		/* We have to write the checksum
4937 		 * of the last block read
4938 		 */
4939 		block += intel_connector->detect_edid->extensions;
4940 
4941 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4942 				       block->checksum) <= 0)
4943 			DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4944 
4945 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4946 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4947 	}
4948 
4949 	/* Set test active flag here so userspace doesn't interrupt things */
4950 	intel_dp->compliance.test_active = true;
4951 
4952 	return test_result;
4953 }
4954 
4955 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4956 {
4957 	u8 test_result = DP_TEST_NAK;
4958 	return test_result;
4959 }
4960 
4961 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4962 {
4963 	u8 response = DP_TEST_NAK;
4964 	u8 request = 0;
4965 	int status;
4966 
4967 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4968 	if (status <= 0) {
4969 		DRM_DEBUG_KMS("Could not read test request from sink\n");
4970 		goto update_status;
4971 	}
4972 
4973 	switch (request) {
4974 	case DP_TEST_LINK_TRAINING:
4975 		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4976 		response = intel_dp_autotest_link_training(intel_dp);
4977 		break;
4978 	case DP_TEST_LINK_VIDEO_PATTERN:
4979 		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4980 		response = intel_dp_autotest_video_pattern(intel_dp);
4981 		break;
4982 	case DP_TEST_LINK_EDID_READ:
4983 		DRM_DEBUG_KMS("EDID test requested\n");
4984 		response = intel_dp_autotest_edid(intel_dp);
4985 		break;
4986 	case DP_TEST_LINK_PHY_TEST_PATTERN:
4987 		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4988 		response = intel_dp_autotest_phy_pattern(intel_dp);
4989 		break;
4990 	default:
4991 		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4992 		break;
4993 	}
4994 
4995 	if (response & DP_TEST_ACK)
4996 		intel_dp->compliance.test_type = request;
4997 
4998 update_status:
4999 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5000 	if (status <= 0)
5001 		DRM_DEBUG_KMS("Could not write test response to sink\n");
5002 }
5003 
5004 static int
5005 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5006 {
5007 	bool bret;
5008 
5009 	if (intel_dp->is_mst) {
5010 		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
5011 		int ret = 0;
5012 		int retry;
5013 		bool handled;
5014 
5015 		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5016 		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5017 go_again:
5018 		if (bret == true) {
5019 
5020 			/* check link status - esi[10] = 0x200c */
5021 			if (intel_dp->active_mst_links > 0 &&
5022 			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5023 				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
5024 				intel_dp_start_link_train(intel_dp);
5025 				intel_dp_stop_link_train(intel_dp);
5026 			}
5027 
5028 			DRM_DEBUG_KMS("got esi %3ph\n", esi);
5029 			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5030 
5031 			if (handled) {
5032 				for (retry = 0; retry < 3; retry++) {
5033 					int wret;
5034 					wret = drm_dp_dpcd_write(&intel_dp->aux,
5035 								 DP_SINK_COUNT_ESI+1,
5036 								 &esi[1], 3);
5037 					if (wret == 3) {
5038 						break;
5039 					}
5040 				}
5041 
5042 				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5043 				if (bret == true) {
5044 					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
5045 					goto go_again;
5046 				}
5047 			} else
5048 				ret = 0;
5049 
5050 			return ret;
5051 		} else {
5052 			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
5053 			intel_dp->is_mst = false;
5054 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5055 							intel_dp->is_mst);
5056 		}
5057 	}
5058 	return -EINVAL;
5059 }
5060 
5061 static bool
5062 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5063 {
5064 	u8 link_status[DP_LINK_STATUS_SIZE];
5065 
5066 	if (!intel_dp->link_trained)
5067 		return false;
5068 
5069 	/*
5070 	 * While PSR source HW is enabled, it will control main-link sending
5071 	 * frames, enabling and disabling it so trying to do a retrain will fail
5072 	 * as the link would or not be on or it could mix training patterns
5073 	 * and frame data at the same time causing retrain to fail.
5074 	 * Also when exiting PSR, HW will retrain the link anyways fixing
5075 	 * any link status error.
5076 	 */
5077 	if (intel_psr_enabled(intel_dp))
5078 		return false;
5079 
5080 	if (!intel_dp_get_link_status(intel_dp, link_status))
5081 		return false;
5082 
5083 	/*
5084 	 * Validate the cached values of intel_dp->link_rate and
5085 	 * intel_dp->lane_count before attempting to retrain.
5086 	 */
5087 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5088 					intel_dp->lane_count))
5089 		return false;
5090 
5091 	/* Retrain if Channel EQ or CR not ok */
5092 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5093 }
5094 
5095 int intel_dp_retrain_link(struct intel_encoder *encoder,
5096 			  struct drm_modeset_acquire_ctx *ctx)
5097 {
5098 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5099 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5100 	struct intel_connector *connector = intel_dp->attached_connector;
5101 	struct drm_connector_state *conn_state;
5102 	struct intel_crtc_state *crtc_state;
5103 	struct intel_crtc *crtc;
5104 	int ret;
5105 
5106 	/* FIXME handle the MST connectors as well */
5107 
5108 	if (!connector || connector->base.status != connector_status_connected)
5109 		return 0;
5110 
5111 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5112 			       ctx);
5113 	if (ret)
5114 		return ret;
5115 
5116 	conn_state = connector->base.state;
5117 
5118 	crtc = to_intel_crtc(conn_state->crtc);
5119 	if (!crtc)
5120 		return 0;
5121 
5122 	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5123 	if (ret)
5124 		return ret;
5125 
5126 	crtc_state = to_intel_crtc_state(crtc->base.state);
5127 
5128 	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
5129 
5130 	if (!crtc_state->hw.active)
5131 		return 0;
5132 
5133 	if (conn_state->commit &&
5134 	    !try_wait_for_completion(&conn_state->commit->hw_done))
5135 		return 0;
5136 
5137 	if (!intel_dp_needs_link_retrain(intel_dp))
5138 		return 0;
5139 
5140 	/* Suppress underruns caused by re-training */
5141 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5142 	if (crtc_state->has_pch_encoder)
5143 		intel_set_pch_fifo_underrun_reporting(dev_priv,
5144 						      intel_crtc_pch_transcoder(crtc), false);
5145 
5146 	intel_dp_start_link_train(intel_dp);
5147 	intel_dp_stop_link_train(intel_dp);
5148 
5149 	/* Keep underrun reporting disabled until things are stable */
5150 	intel_wait_for_vblank(dev_priv, crtc->pipe);
5151 
5152 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5153 	if (crtc_state->has_pch_encoder)
5154 		intel_set_pch_fifo_underrun_reporting(dev_priv,
5155 						      intel_crtc_pch_transcoder(crtc), true);
5156 
5157 	return 0;
5158 }
5159 
5160 /*
5161  * If display is now connected check links status,
5162  * there has been known issues of link loss triggering
5163  * long pulse.
5164  *
5165  * Some sinks (eg. ASUS PB287Q) seem to perform some
5166  * weird HPD ping pong during modesets. So we can apparently
5167  * end up with HPD going low during a modeset, and then
5168  * going back up soon after. And once that happens we must
5169  * retrain the link to get a picture. That's in case no
5170  * userspace component reacted to intermittent HPD dip.
5171  */
5172 static enum intel_hotplug_state
5173 intel_dp_hotplug(struct intel_encoder *encoder,
5174 		 struct intel_connector *connector,
5175 		 bool irq_received)
5176 {
5177 	struct drm_modeset_acquire_ctx ctx;
5178 	enum intel_hotplug_state state;
5179 	int ret;
5180 
5181 	state = intel_encoder_hotplug(encoder, connector, irq_received);
5182 
5183 	drm_modeset_acquire_init(&ctx, 0);
5184 
5185 	for (;;) {
5186 		ret = intel_dp_retrain_link(encoder, &ctx);
5187 
5188 		if (ret == -EDEADLK) {
5189 			drm_modeset_backoff(&ctx);
5190 			continue;
5191 		}
5192 
5193 		break;
5194 	}
5195 
5196 	drm_modeset_drop_locks(&ctx);
5197 	drm_modeset_acquire_fini(&ctx);
5198 	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
5199 
5200 	/*
5201 	 * Keeping it consistent with intel_ddi_hotplug() and
5202 	 * intel_hdmi_hotplug().
5203 	 */
5204 	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
5205 		state = INTEL_HOTPLUG_RETRY;
5206 
5207 	return state;
5208 }
5209 
5210 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5211 {
5212 	u8 val;
5213 
5214 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5215 		return;
5216 
5217 	if (drm_dp_dpcd_readb(&intel_dp->aux,
5218 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5219 		return;
5220 
5221 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5222 
5223 	if (val & DP_AUTOMATED_TEST_REQUEST)
5224 		intel_dp_handle_test_request(intel_dp);
5225 
5226 	if (val & DP_CP_IRQ)
5227 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5228 
5229 	if (val & DP_SINK_SPECIFIC_IRQ)
5230 		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5231 }
5232 
5233 /*
5234  * According to DP spec
5235  * 5.1.2:
5236  *  1. Read DPCD
5237  *  2. Configure link according to Receiver Capabilities
5238  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5239  *  4. Check link status on receipt of hot-plug interrupt
5240  *
5241  * intel_dp_short_pulse -  handles short pulse interrupts
5242  * when full detection is not required.
5243  * Returns %true if short pulse is handled and full detection
5244  * is NOT required and %false otherwise.
5245  */
5246 static bool
5247 intel_dp_short_pulse(struct intel_dp *intel_dp)
5248 {
5249 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5250 	u8 old_sink_count = intel_dp->sink_count;
5251 	bool ret;
5252 
5253 	/*
5254 	 * Clearing compliance test variables to allow capturing
5255 	 * of values for next automated test request.
5256 	 */
5257 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5258 
5259 	/*
5260 	 * Now read the DPCD to see if it's actually running
5261 	 * If the current value of sink count doesn't match with
5262 	 * the value that was stored earlier or dpcd read failed
5263 	 * we need to do full detection
5264 	 */
5265 	ret = intel_dp_get_dpcd(intel_dp);
5266 
5267 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
5268 		/* No need to proceed if we are going to do full detect */
5269 		return false;
5270 	}
5271 
5272 	intel_dp_check_service_irq(intel_dp);
5273 
5274 	/* Handle CEC interrupts, if any */
5275 	drm_dp_cec_irq(&intel_dp->aux);
5276 
5277 	/* defer to the hotplug work for link retraining if needed */
5278 	if (intel_dp_needs_link_retrain(intel_dp))
5279 		return false;
5280 
5281 	intel_psr_short_pulse(intel_dp);
5282 
5283 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5284 		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
5285 		/* Send a Hotplug Uevent to userspace to start modeset */
5286 		drm_kms_helper_hotplug_event(&dev_priv->drm);
5287 	}
5288 
5289 	return true;
5290 }
5291 
5292 /* XXX this is probably wrong for multiple downstream ports */
5293 static enum drm_connector_status
5294 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5295 {
5296 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5297 	u8 *dpcd = intel_dp->dpcd;
5298 	u8 type;
5299 
5300 	if (WARN_ON(intel_dp_is_edp(intel_dp)))
5301 		return connector_status_connected;
5302 
5303 	if (lspcon->active)
5304 		lspcon_resume(lspcon);
5305 
5306 	if (!intel_dp_get_dpcd(intel_dp))
5307 		return connector_status_disconnected;
5308 
5309 	/* if there's no downstream port, we're done */
5310 	if (!drm_dp_is_branch(dpcd))
5311 		return connector_status_connected;
5312 
5313 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5314 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5315 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5316 
5317 		return intel_dp->sink_count ?
5318 		connector_status_connected : connector_status_disconnected;
5319 	}
5320 
5321 	if (intel_dp_can_mst(intel_dp))
5322 		return connector_status_connected;
5323 
5324 	/* If no HPD, poke DDC gently */
5325 	if (drm_probe_ddc(&intel_dp->aux.ddc))
5326 		return connector_status_connected;
5327 
5328 	/* Well we tried, say unknown for unreliable port types */
5329 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5330 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5331 		if (type == DP_DS_PORT_TYPE_VGA ||
5332 		    type == DP_DS_PORT_TYPE_NON_EDID)
5333 			return connector_status_unknown;
5334 	} else {
5335 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5336 			DP_DWN_STRM_PORT_TYPE_MASK;
5337 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5338 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
5339 			return connector_status_unknown;
5340 	}
5341 
5342 	/* Anything else is out of spec, warn and ignore */
5343 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5344 	return connector_status_disconnected;
5345 }
5346 
5347 static enum drm_connector_status
5348 edp_detect(struct intel_dp *intel_dp)
5349 {
5350 	return connector_status_connected;
5351 }
5352 
5353 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5354 {
5355 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5356 	u32 bit;
5357 
5358 	switch (encoder->hpd_pin) {
5359 	case HPD_PORT_B:
5360 		bit = SDE_PORTB_HOTPLUG;
5361 		break;
5362 	case HPD_PORT_C:
5363 		bit = SDE_PORTC_HOTPLUG;
5364 		break;
5365 	case HPD_PORT_D:
5366 		bit = SDE_PORTD_HOTPLUG;
5367 		break;
5368 	default:
5369 		MISSING_CASE(encoder->hpd_pin);
5370 		return false;
5371 	}
5372 
5373 	return I915_READ(SDEISR) & bit;
5374 }
5375 
5376 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5377 {
5378 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5379 	u32 bit;
5380 
5381 	switch (encoder->hpd_pin) {
5382 	case HPD_PORT_B:
5383 		bit = SDE_PORTB_HOTPLUG_CPT;
5384 		break;
5385 	case HPD_PORT_C:
5386 		bit = SDE_PORTC_HOTPLUG_CPT;
5387 		break;
5388 	case HPD_PORT_D:
5389 		bit = SDE_PORTD_HOTPLUG_CPT;
5390 		break;
5391 	default:
5392 		MISSING_CASE(encoder->hpd_pin);
5393 		return false;
5394 	}
5395 
5396 	return I915_READ(SDEISR) & bit;
5397 }
5398 
5399 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5400 {
5401 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5402 	u32 bit;
5403 
5404 	switch (encoder->hpd_pin) {
5405 	case HPD_PORT_A:
5406 		bit = SDE_PORTA_HOTPLUG_SPT;
5407 		break;
5408 	case HPD_PORT_E:
5409 		bit = SDE_PORTE_HOTPLUG_SPT;
5410 		break;
5411 	default:
5412 		return cpt_digital_port_connected(encoder);
5413 	}
5414 
5415 	return I915_READ(SDEISR) & bit;
5416 }
5417 
5418 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5419 {
5420 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5421 	u32 bit;
5422 
5423 	switch (encoder->hpd_pin) {
5424 	case HPD_PORT_B:
5425 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5426 		break;
5427 	case HPD_PORT_C:
5428 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5429 		break;
5430 	case HPD_PORT_D:
5431 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5432 		break;
5433 	default:
5434 		MISSING_CASE(encoder->hpd_pin);
5435 		return false;
5436 	}
5437 
5438 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5439 }
5440 
5441 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5442 {
5443 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5444 	u32 bit;
5445 
5446 	switch (encoder->hpd_pin) {
5447 	case HPD_PORT_B:
5448 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5449 		break;
5450 	case HPD_PORT_C:
5451 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5452 		break;
5453 	case HPD_PORT_D:
5454 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5455 		break;
5456 	default:
5457 		MISSING_CASE(encoder->hpd_pin);
5458 		return false;
5459 	}
5460 
5461 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5462 }
5463 
5464 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5465 {
5466 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5467 
5468 	if (encoder->hpd_pin == HPD_PORT_A)
5469 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5470 	else
5471 		return ibx_digital_port_connected(encoder);
5472 }
5473 
5474 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5475 {
5476 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5477 
5478 	if (encoder->hpd_pin == HPD_PORT_A)
5479 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5480 	else
5481 		return cpt_digital_port_connected(encoder);
5482 }
5483 
5484 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5485 {
5486 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5487 
5488 	if (encoder->hpd_pin == HPD_PORT_A)
5489 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5490 	else
5491 		return cpt_digital_port_connected(encoder);
5492 }
5493 
5494 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5495 {
5496 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5497 
5498 	if (encoder->hpd_pin == HPD_PORT_A)
5499 		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5500 	else
5501 		return cpt_digital_port_connected(encoder);
5502 }
5503 
5504 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5505 {
5506 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5507 	u32 bit;
5508 
5509 	switch (encoder->hpd_pin) {
5510 	case HPD_PORT_A:
5511 		bit = BXT_DE_PORT_HP_DDIA;
5512 		break;
5513 	case HPD_PORT_B:
5514 		bit = BXT_DE_PORT_HP_DDIB;
5515 		break;
5516 	case HPD_PORT_C:
5517 		bit = BXT_DE_PORT_HP_DDIC;
5518 		break;
5519 	default:
5520 		MISSING_CASE(encoder->hpd_pin);
5521 		return false;
5522 	}
5523 
5524 	return I915_READ(GEN8_DE_PORT_ISR) & bit;
5525 }
5526 
5527 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
5528 				      enum phy phy)
5529 {
5530 	if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5531 		return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5532 
5533 	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5534 }
5535 
5536 static bool icp_digital_port_connected(struct intel_encoder *encoder)
5537 {
5538 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5539 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5540 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5541 
5542 	if (intel_phy_is_combo(dev_priv, phy))
5543 		return intel_combo_phy_connected(dev_priv, phy);
5544 	else if (intel_phy_is_tc(dev_priv, phy))
5545 		return intel_tc_port_connected(dig_port);
5546 	else
5547 		MISSING_CASE(encoder->hpd_pin);
5548 
5549 	return false;
5550 }
5551 
5552 /*
5553  * intel_digital_port_connected - is the specified port connected?
5554  * @encoder: intel_encoder
5555  *
5556  * In cases where there's a connector physically connected but it can't be used
5557  * by our hardware we also return false, since the rest of the driver should
5558  * pretty much treat the port as disconnected. This is relevant for type-C
5559  * (starting on ICL) where there's ownership involved.
5560  *
5561  * Return %true if port is connected, %false otherwise.
5562  */
5563 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5564 {
5565 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5566 
5567 	if (HAS_GMCH(dev_priv)) {
5568 		if (IS_GM45(dev_priv))
5569 			return gm45_digital_port_connected(encoder);
5570 		else
5571 			return g4x_digital_port_connected(encoder);
5572 	}
5573 
5574 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
5575 		return icp_digital_port_connected(encoder);
5576 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
5577 		return spt_digital_port_connected(encoder);
5578 	else if (IS_GEN9_LP(dev_priv))
5579 		return bxt_digital_port_connected(encoder);
5580 	else if (IS_GEN(dev_priv, 8))
5581 		return bdw_digital_port_connected(encoder);
5582 	else if (IS_GEN(dev_priv, 7))
5583 		return ivb_digital_port_connected(encoder);
5584 	else if (IS_GEN(dev_priv, 6))
5585 		return snb_digital_port_connected(encoder);
5586 	else if (IS_GEN(dev_priv, 5))
5587 		return ilk_digital_port_connected(encoder);
5588 
5589 	MISSING_CASE(INTEL_GEN(dev_priv));
5590 	return false;
5591 }
5592 
5593 bool intel_digital_port_connected(struct intel_encoder *encoder)
5594 {
5595 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5596 	bool is_connected = false;
5597 	intel_wakeref_t wakeref;
5598 
5599 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5600 		is_connected = __intel_digital_port_connected(encoder);
5601 
5602 	return is_connected;
5603 }
5604 
5605 static struct edid *
5606 intel_dp_get_edid(struct intel_dp *intel_dp)
5607 {
5608 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5609 
5610 	/* use cached edid if we have one */
5611 	if (intel_connector->edid) {
5612 		/* invalid edid */
5613 		if (IS_ERR(intel_connector->edid))
5614 			return NULL;
5615 
5616 		return drm_edid_duplicate(intel_connector->edid);
5617 	} else
5618 		return drm_get_edid(&intel_connector->base,
5619 				    &intel_dp->aux.ddc);
5620 }
5621 
5622 static void
5623 intel_dp_set_edid(struct intel_dp *intel_dp)
5624 {
5625 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5626 	struct edid *edid;
5627 
5628 	intel_dp_unset_edid(intel_dp);
5629 	edid = intel_dp_get_edid(intel_dp);
5630 	intel_connector->detect_edid = edid;
5631 
5632 	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5633 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5634 }
5635 
5636 static void
5637 intel_dp_unset_edid(struct intel_dp *intel_dp)
5638 {
5639 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5640 
5641 	drm_dp_cec_unset_edid(&intel_dp->aux);
5642 	kfree(intel_connector->detect_edid);
5643 	intel_connector->detect_edid = NULL;
5644 
5645 	intel_dp->has_audio = false;
5646 }
5647 
5648 static int
5649 intel_dp_detect(struct drm_connector *connector,
5650 		struct drm_modeset_acquire_ctx *ctx,
5651 		bool force)
5652 {
5653 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5654 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5655 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5656 	struct intel_encoder *encoder = &dig_port->base;
5657 	enum drm_connector_status status;
5658 
5659 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5660 		      connector->base.id, connector->name);
5661 	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5662 
5663 	/* Can't disconnect eDP */
5664 	if (intel_dp_is_edp(intel_dp))
5665 		status = edp_detect(intel_dp);
5666 	else if (intel_digital_port_connected(encoder))
5667 		status = intel_dp_detect_dpcd(intel_dp);
5668 	else
5669 		status = connector_status_disconnected;
5670 
5671 	if (status == connector_status_disconnected) {
5672 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5673 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5674 
5675 		if (intel_dp->is_mst) {
5676 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5677 				      intel_dp->is_mst,
5678 				      intel_dp->mst_mgr.mst_state);
5679 			intel_dp->is_mst = false;
5680 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5681 							intel_dp->is_mst);
5682 		}
5683 
5684 		goto out;
5685 	}
5686 
5687 	if (intel_dp->reset_link_params) {
5688 		/* Initial max link lane count */
5689 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5690 
5691 		/* Initial max link rate */
5692 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5693 
5694 		intel_dp->reset_link_params = false;
5695 	}
5696 
5697 	intel_dp_print_rates(intel_dp);
5698 
5699 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5700 	if (INTEL_GEN(dev_priv) >= 11)
5701 		intel_dp_get_dsc_sink_cap(intel_dp);
5702 
5703 	intel_dp_configure_mst(intel_dp);
5704 
5705 	if (intel_dp->is_mst) {
5706 		/*
5707 		 * If we are in MST mode then this connector
5708 		 * won't appear connected or have anything
5709 		 * with EDID on it
5710 		 */
5711 		status = connector_status_disconnected;
5712 		goto out;
5713 	}
5714 
5715 	/*
5716 	 * Some external monitors do not signal loss of link synchronization
5717 	 * with an IRQ_HPD, so force a link status check.
5718 	 */
5719 	if (!intel_dp_is_edp(intel_dp)) {
5720 		int ret;
5721 
5722 		ret = intel_dp_retrain_link(encoder, ctx);
5723 		if (ret)
5724 			return ret;
5725 	}
5726 
5727 	/*
5728 	 * Clearing NACK and defer counts to get their exact values
5729 	 * while reading EDID which are required by Compliance tests
5730 	 * 4.2.2.4 and 4.2.2.5
5731 	 */
5732 	intel_dp->aux.i2c_nack_count = 0;
5733 	intel_dp->aux.i2c_defer_count = 0;
5734 
5735 	intel_dp_set_edid(intel_dp);
5736 	if (intel_dp_is_edp(intel_dp) ||
5737 	    to_intel_connector(connector)->detect_edid)
5738 		status = connector_status_connected;
5739 
5740 	intel_dp_check_service_irq(intel_dp);
5741 
5742 out:
5743 	if (status != connector_status_connected && !intel_dp->is_mst)
5744 		intel_dp_unset_edid(intel_dp);
5745 
5746 	/*
5747 	 * Make sure the refs for power wells enabled during detect are
5748 	 * dropped to avoid a new detect cycle triggered by HPD polling.
5749 	 */
5750 	intel_display_power_flush_work(dev_priv);
5751 
5752 	return status;
5753 }
5754 
5755 static void
5756 intel_dp_force(struct drm_connector *connector)
5757 {
5758 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5759 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5760 	struct intel_encoder *intel_encoder = &dig_port->base;
5761 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5762 	enum intel_display_power_domain aux_domain =
5763 		intel_aux_power_domain(dig_port);
5764 	intel_wakeref_t wakeref;
5765 
5766 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5767 		      connector->base.id, connector->name);
5768 	intel_dp_unset_edid(intel_dp);
5769 
5770 	if (connector->status != connector_status_connected)
5771 		return;
5772 
5773 	wakeref = intel_display_power_get(dev_priv, aux_domain);
5774 
5775 	intel_dp_set_edid(intel_dp);
5776 
5777 	intel_display_power_put(dev_priv, aux_domain, wakeref);
5778 }
5779 
5780 static int intel_dp_get_modes(struct drm_connector *connector)
5781 {
5782 	struct intel_connector *intel_connector = to_intel_connector(connector);
5783 	struct edid *edid;
5784 
5785 	edid = intel_connector->detect_edid;
5786 	if (edid) {
5787 		int ret = intel_connector_update_modes(connector, edid);
5788 		if (ret)
5789 			return ret;
5790 	}
5791 
5792 	/* if eDP has no EDID, fall back to fixed mode */
5793 	if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
5794 	    intel_connector->panel.fixed_mode) {
5795 		struct drm_display_mode *mode;
5796 
5797 		mode = drm_mode_duplicate(connector->dev,
5798 					  intel_connector->panel.fixed_mode);
5799 		if (mode) {
5800 			drm_mode_probed_add(connector, mode);
5801 			return 1;
5802 		}
5803 	}
5804 
5805 	return 0;
5806 }
5807 
5808 static int
5809 intel_dp_connector_register(struct drm_connector *connector)
5810 {
5811 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5812 	int ret;
5813 
5814 	ret = intel_connector_register(connector);
5815 	if (ret)
5816 		return ret;
5817 
5818 	i915_debugfs_connector_add(connector);
5819 
5820 	DRM_DEBUG_KMS("registering %s bus for %s\n",
5821 		      intel_dp->aux.name, connector->kdev->kobj.name);
5822 
5823 	intel_dp->aux.dev = connector->kdev;
5824 	ret = drm_dp_aux_register(&intel_dp->aux);
5825 	if (!ret)
5826 		drm_dp_cec_register_connector(&intel_dp->aux, connector);
5827 	return ret;
5828 }
5829 
5830 static void
5831 intel_dp_connector_unregister(struct drm_connector *connector)
5832 {
5833 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5834 
5835 	drm_dp_cec_unregister_connector(&intel_dp->aux);
5836 	drm_dp_aux_unregister(&intel_dp->aux);
5837 	intel_connector_unregister(connector);
5838 }
5839 
5840 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5841 {
5842 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
5843 	struct intel_dp *intel_dp = &intel_dig_port->dp;
5844 
5845 	intel_dp_mst_encoder_cleanup(intel_dig_port);
5846 	if (intel_dp_is_edp(intel_dp)) {
5847 		intel_wakeref_t wakeref;
5848 
5849 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5850 		/*
5851 		 * vdd might still be enabled do to the delayed vdd off.
5852 		 * Make sure vdd is actually turned off here.
5853 		 */
5854 		with_pps_lock(intel_dp, wakeref)
5855 			edp_panel_vdd_off_sync(intel_dp);
5856 
5857 		if (intel_dp->edp_notifier.notifier_call) {
5858 			unregister_reboot_notifier(&intel_dp->edp_notifier);
5859 			intel_dp->edp_notifier.notifier_call = NULL;
5860 		}
5861 	}
5862 
5863 	intel_dp_aux_fini(intel_dp);
5864 }
5865 
5866 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5867 {
5868 	intel_dp_encoder_flush_work(encoder);
5869 
5870 	drm_encoder_cleanup(encoder);
5871 	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
5872 }
5873 
5874 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5875 {
5876 	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
5877 	intel_wakeref_t wakeref;
5878 
5879 	if (!intel_dp_is_edp(intel_dp))
5880 		return;
5881 
5882 	/*
5883 	 * vdd might still be enabled do to the delayed vdd off.
5884 	 * Make sure vdd is actually turned off here.
5885 	 */
5886 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5887 	with_pps_lock(intel_dp, wakeref)
5888 		edp_panel_vdd_off_sync(intel_dp);
5889 }
5890 
5891 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5892 {
5893 	long ret;
5894 
5895 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5896 	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5897 					       msecs_to_jiffies(timeout));
5898 
5899 	if (!ret)
5900 		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5901 }
5902 
5903 static
5904 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5905 				u8 *an)
5906 {
5907 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
5908 	static const struct drm_dp_aux_msg msg = {
5909 		.request = DP_AUX_NATIVE_WRITE,
5910 		.address = DP_AUX_HDCP_AKSV,
5911 		.size = DRM_HDCP_KSV_LEN,
5912 	};
5913 	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5914 	ssize_t dpcd_ret;
5915 	int ret;
5916 
5917 	/* Output An first, that's easy */
5918 	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5919 				     an, DRM_HDCP_AN_LEN);
5920 	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5921 		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5922 			      dpcd_ret);
5923 		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5924 	}
5925 
5926 	/*
5927 	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5928 	 * order to get it on the wire, we need to create the AUX header as if
5929 	 * we were writing the data, and then tickle the hardware to output the
5930 	 * data once the header is sent out.
5931 	 */
5932 	intel_dp_aux_header(txbuf, &msg);
5933 
5934 	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5935 				rxbuf, sizeof(rxbuf),
5936 				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5937 	if (ret < 0) {
5938 		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5939 		return ret;
5940 	} else if (ret == 0) {
5941 		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5942 		return -EIO;
5943 	}
5944 
5945 	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5946 	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5947 		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5948 			      reply);
5949 		return -EIO;
5950 	}
5951 	return 0;
5952 }
5953 
5954 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5955 				   u8 *bksv)
5956 {
5957 	ssize_t ret;
5958 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5959 			       DRM_HDCP_KSV_LEN);
5960 	if (ret != DRM_HDCP_KSV_LEN) {
5961 		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5962 		return ret >= 0 ? -EIO : ret;
5963 	}
5964 	return 0;
5965 }
5966 
5967 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5968 				      u8 *bstatus)
5969 {
5970 	ssize_t ret;
5971 	/*
5972 	 * For some reason the HDMI and DP HDCP specs call this register
5973 	 * definition by different names. In the HDMI spec, it's called BSTATUS,
5974 	 * but in DP it's called BINFO.
5975 	 */
5976 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5977 			       bstatus, DRM_HDCP_BSTATUS_LEN);
5978 	if (ret != DRM_HDCP_BSTATUS_LEN) {
5979 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5980 		return ret >= 0 ? -EIO : ret;
5981 	}
5982 	return 0;
5983 }
5984 
5985 static
5986 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5987 			     u8 *bcaps)
5988 {
5989 	ssize_t ret;
5990 
5991 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5992 			       bcaps, 1);
5993 	if (ret != 1) {
5994 		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5995 		return ret >= 0 ? -EIO : ret;
5996 	}
5997 
5998 	return 0;
5999 }
6000 
6001 static
6002 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6003 				   bool *repeater_present)
6004 {
6005 	ssize_t ret;
6006 	u8 bcaps;
6007 
6008 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6009 	if (ret)
6010 		return ret;
6011 
6012 	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6013 	return 0;
6014 }
6015 
6016 static
6017 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6018 				u8 *ri_prime)
6019 {
6020 	ssize_t ret;
6021 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6022 			       ri_prime, DRM_HDCP_RI_LEN);
6023 	if (ret != DRM_HDCP_RI_LEN) {
6024 		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
6025 		return ret >= 0 ? -EIO : ret;
6026 	}
6027 	return 0;
6028 }
6029 
6030 static
6031 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6032 				 bool *ksv_ready)
6033 {
6034 	ssize_t ret;
6035 	u8 bstatus;
6036 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6037 			       &bstatus, 1);
6038 	if (ret != 1) {
6039 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6040 		return ret >= 0 ? -EIO : ret;
6041 	}
6042 	*ksv_ready = bstatus & DP_BSTATUS_READY;
6043 	return 0;
6044 }
6045 
6046 static
6047 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6048 				int num_downstream, u8 *ksv_fifo)
6049 {
6050 	ssize_t ret;
6051 	int i;
6052 
6053 	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6054 	for (i = 0; i < num_downstream; i += 3) {
6055 		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6056 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6057 				       DP_AUX_HDCP_KSV_FIFO,
6058 				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
6059 				       len);
6060 		if (ret != len) {
6061 			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
6062 				      i, ret);
6063 			return ret >= 0 ? -EIO : ret;
6064 		}
6065 	}
6066 	return 0;
6067 }
6068 
6069 static
6070 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6071 				    int i, u32 *part)
6072 {
6073 	ssize_t ret;
6074 
6075 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6076 		return -EINVAL;
6077 
6078 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6079 			       DP_AUX_HDCP_V_PRIME(i), part,
6080 			       DRM_HDCP_V_PRIME_PART_LEN);
6081 	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6082 		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6083 		return ret >= 0 ? -EIO : ret;
6084 	}
6085 	return 0;
6086 }
6087 
6088 static
6089 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6090 				    bool enable)
6091 {
6092 	/* Not used for single stream DisplayPort setups */
6093 	return 0;
6094 }
6095 
6096 static
6097 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6098 {
6099 	ssize_t ret;
6100 	u8 bstatus;
6101 
6102 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6103 			       &bstatus, 1);
6104 	if (ret != 1) {
6105 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6106 		return false;
6107 	}
6108 
6109 	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6110 }
6111 
6112 static
6113 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6114 			  bool *hdcp_capable)
6115 {
6116 	ssize_t ret;
6117 	u8 bcaps;
6118 
6119 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6120 	if (ret)
6121 		return ret;
6122 
6123 	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6124 	return 0;
6125 }
6126 
6127 struct hdcp2_dp_errata_stream_type {
6128 	u8	msg_id;
6129 	u8	stream_type;
6130 } __packed;
6131 
6132 struct hdcp2_dp_msg_data {
6133 	u8 msg_id;
6134 	u32 offset;
6135 	bool msg_detectable;
6136 	u32 timeout;
6137 	u32 timeout2; /* Added for non_paired situation */
6138 };
6139 
6140 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6141 	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6142 	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6143 	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6144 	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6145 	  false, 0, 0 },
6146 	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6147 	  false, 0, 0 },
6148 	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6149 	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6150 	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6151 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
6152 	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6153 	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6154 	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6155 	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6156 	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6157 	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6158 	  0, 0 },
6159 	{ HDCP_2_2_REP_SEND_RECVID_LIST,
6160 	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6161 	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6162 	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6163 	  0, 0 },
6164 	{ HDCP_2_2_REP_STREAM_MANAGE,
6165 	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6166 	  0, 0 },
6167 	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6168 	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6169 /* local define to shovel this through the write_2_2 interface */
6170 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6171 	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6172 	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6173 	  0, 0 },
6174 };
6175 
6176 static inline
6177 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6178 				  u8 *rx_status)
6179 {
6180 	ssize_t ret;
6181 
6182 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6183 			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6184 			       HDCP_2_2_DP_RXSTATUS_LEN);
6185 	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6186 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6187 		return ret >= 0 ? -EIO : ret;
6188 	}
6189 
6190 	return 0;
6191 }
6192 
6193 static
6194 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6195 				  u8 msg_id, bool *msg_ready)
6196 {
6197 	u8 rx_status;
6198 	int ret;
6199 
6200 	*msg_ready = false;
6201 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6202 	if (ret < 0)
6203 		return ret;
6204 
6205 	switch (msg_id) {
6206 	case HDCP_2_2_AKE_SEND_HPRIME:
6207 		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6208 			*msg_ready = true;
6209 		break;
6210 	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6211 		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6212 			*msg_ready = true;
6213 		break;
6214 	case HDCP_2_2_REP_SEND_RECVID_LIST:
6215 		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6216 			*msg_ready = true;
6217 		break;
6218 	default:
6219 		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6220 		return -EINVAL;
6221 	}
6222 
6223 	return 0;
6224 }
6225 
6226 static ssize_t
6227 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6228 			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6229 {
6230 	struct intel_dp *dp = &intel_dig_port->dp;
6231 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6232 	u8 msg_id = hdcp2_msg_data->msg_id;
6233 	int ret, timeout;
6234 	bool msg_ready = false;
6235 
6236 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6237 		timeout = hdcp2_msg_data->timeout2;
6238 	else
6239 		timeout = hdcp2_msg_data->timeout;
6240 
6241 	/*
6242 	 * There is no way to detect the CERT, LPRIME and STREAM_READY
6243 	 * availability. So Wait for timeout and read the msg.
6244 	 */
6245 	if (!hdcp2_msg_data->msg_detectable) {
6246 		mdelay(timeout);
6247 		ret = 0;
6248 	} else {
6249 		/*
6250 		 * As we want to check the msg availability at timeout, Ignoring
6251 		 * the timeout at wait for CP_IRQ.
6252 		 */
6253 		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6254 		ret = hdcp2_detect_msg_availability(intel_dig_port,
6255 						    msg_id, &msg_ready);
6256 		if (!msg_ready)
6257 			ret = -ETIMEDOUT;
6258 	}
6259 
6260 	if (ret)
6261 		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6262 			      hdcp2_msg_data->msg_id, ret, timeout);
6263 
6264 	return ret;
6265 }
6266 
6267 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6268 {
6269 	int i;
6270 
6271 	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6272 		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6273 			return &hdcp2_dp_msg_data[i];
6274 
6275 	return NULL;
6276 }
6277 
6278 static
6279 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6280 			     void *buf, size_t size)
6281 {
6282 	struct intel_dp *dp = &intel_dig_port->dp;
6283 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6284 	unsigned int offset;
6285 	u8 *byte = buf;
6286 	ssize_t ret, bytes_to_write, len;
6287 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6288 
6289 	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6290 	if (!hdcp2_msg_data)
6291 		return -EINVAL;
6292 
6293 	offset = hdcp2_msg_data->offset;
6294 
6295 	/* No msg_id in DP HDCP2.2 msgs */
6296 	bytes_to_write = size - 1;
6297 	byte++;
6298 
6299 	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6300 
6301 	while (bytes_to_write) {
6302 		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6303 				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6304 
6305 		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6306 					offset, (void *)byte, len);
6307 		if (ret < 0)
6308 			return ret;
6309 
6310 		bytes_to_write -= ret;
6311 		byte += ret;
6312 		offset += ret;
6313 	}
6314 
6315 	return size;
6316 }
6317 
6318 static
6319 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6320 {
6321 	u8 rx_info[HDCP_2_2_RXINFO_LEN];
6322 	u32 dev_cnt;
6323 	ssize_t ret;
6324 
6325 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6326 			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
6327 			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6328 	if (ret != HDCP_2_2_RXINFO_LEN)
6329 		return ret >= 0 ? -EIO : ret;
6330 
6331 	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6332 		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6333 
6334 	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6335 		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6336 
6337 	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6338 		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6339 		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6340 
6341 	return ret;
6342 }
6343 
6344 static
6345 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6346 			    u8 msg_id, void *buf, size_t size)
6347 {
6348 	unsigned int offset;
6349 	u8 *byte = buf;
6350 	ssize_t ret, bytes_to_recv, len;
6351 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6352 
6353 	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6354 	if (!hdcp2_msg_data)
6355 		return -EINVAL;
6356 	offset = hdcp2_msg_data->offset;
6357 
6358 	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6359 	if (ret < 0)
6360 		return ret;
6361 
6362 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6363 		ret = get_receiver_id_list_size(intel_dig_port);
6364 		if (ret < 0)
6365 			return ret;
6366 
6367 		size = ret;
6368 	}
6369 	bytes_to_recv = size - 1;
6370 
6371 	/* DP adaptation msgs has no msg_id */
6372 	byte++;
6373 
6374 	while (bytes_to_recv) {
6375 		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6376 		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6377 
6378 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6379 				       (void *)byte, len);
6380 		if (ret < 0) {
6381 			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6382 			return ret;
6383 		}
6384 
6385 		bytes_to_recv -= ret;
6386 		byte += ret;
6387 		offset += ret;
6388 	}
6389 	byte = buf;
6390 	*byte = msg_id;
6391 
6392 	return size;
6393 }
6394 
6395 static
6396 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6397 				      bool is_repeater, u8 content_type)
6398 {
6399 	struct hdcp2_dp_errata_stream_type stream_type_msg;
6400 
6401 	if (is_repeater)
6402 		return 0;
6403 
6404 	/*
6405 	 * Errata for DP: As Stream type is used for encryption, Receiver
6406 	 * should be communicated with stream type for the decryption of the
6407 	 * content.
6408 	 * Repeater will be communicated with stream type as a part of it's
6409 	 * auth later in time.
6410 	 */
6411 	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6412 	stream_type_msg.stream_type = content_type;
6413 
6414 	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6415 					sizeof(stream_type_msg));
6416 }
6417 
6418 static
6419 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6420 {
6421 	u8 rx_status;
6422 	int ret;
6423 
6424 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6425 	if (ret)
6426 		return ret;
6427 
6428 	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6429 		ret = HDCP_REAUTH_REQUEST;
6430 	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6431 		ret = HDCP_LINK_INTEGRITY_FAILURE;
6432 	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6433 		ret = HDCP_TOPOLOGY_CHANGE;
6434 
6435 	return ret;
6436 }
6437 
6438 static
6439 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6440 			   bool *capable)
6441 {
6442 	u8 rx_caps[3];
6443 	int ret;
6444 
6445 	*capable = false;
6446 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6447 			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6448 			       rx_caps, HDCP_2_2_RXCAPS_LEN);
6449 	if (ret != HDCP_2_2_RXCAPS_LEN)
6450 		return ret >= 0 ? -EIO : ret;
6451 
6452 	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6453 	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6454 		*capable = true;
6455 
6456 	return 0;
6457 }
6458 
6459 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6460 	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
6461 	.read_bksv = intel_dp_hdcp_read_bksv,
6462 	.read_bstatus = intel_dp_hdcp_read_bstatus,
6463 	.repeater_present = intel_dp_hdcp_repeater_present,
6464 	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
6465 	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6466 	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6467 	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6468 	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
6469 	.check_link = intel_dp_hdcp_check_link,
6470 	.hdcp_capable = intel_dp_hdcp_capable,
6471 	.write_2_2_msg = intel_dp_hdcp2_write_msg,
6472 	.read_2_2_msg = intel_dp_hdcp2_read_msg,
6473 	.config_stream_type = intel_dp_hdcp2_config_stream_type,
6474 	.check_2_2_link = intel_dp_hdcp2_check_link,
6475 	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
6476 	.protocol = HDCP_PROTOCOL_DP,
6477 };
6478 
6479 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6480 {
6481 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6482 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6483 
6484 	lockdep_assert_held(&dev_priv->pps_mutex);
6485 
6486 	if (!edp_have_panel_vdd(intel_dp))
6487 		return;
6488 
6489 	/*
6490 	 * The VDD bit needs a power domain reference, so if the bit is
6491 	 * already enabled when we boot or resume, grab this reference and
6492 	 * schedule a vdd off, so we don't hold on to the reference
6493 	 * indefinitely.
6494 	 */
6495 	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6496 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6497 
6498 	edp_panel_vdd_schedule_off(intel_dp);
6499 }
6500 
6501 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6502 {
6503 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6504 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6505 	enum pipe pipe;
6506 
6507 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6508 				  encoder->port, &pipe))
6509 		return pipe;
6510 
6511 	return INVALID_PIPE;
6512 }
6513 
6514 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6515 {
6516 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6517 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6518 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6519 	intel_wakeref_t wakeref;
6520 
6521 	if (!HAS_DDI(dev_priv))
6522 		intel_dp->DP = I915_READ(intel_dp->output_reg);
6523 
6524 	if (lspcon->active)
6525 		lspcon_resume(lspcon);
6526 
6527 	intel_dp->reset_link_params = true;
6528 
6529 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6530 	    !intel_dp_is_edp(intel_dp))
6531 		return;
6532 
6533 	with_pps_lock(intel_dp, wakeref) {
6534 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6535 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6536 
6537 		if (intel_dp_is_edp(intel_dp)) {
6538 			/*
6539 			 * Reinit the power sequencer, in case BIOS did
6540 			 * something nasty with it.
6541 			 */
6542 			intel_dp_pps_init(intel_dp);
6543 			intel_edp_panel_vdd_sanitize(intel_dp);
6544 		}
6545 	}
6546 }
6547 
6548 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6549 	.force = intel_dp_force,
6550 	.fill_modes = drm_helper_probe_single_connector_modes,
6551 	.atomic_get_property = intel_digital_connector_atomic_get_property,
6552 	.atomic_set_property = intel_digital_connector_atomic_set_property,
6553 	.late_register = intel_dp_connector_register,
6554 	.early_unregister = intel_dp_connector_unregister,
6555 	.destroy = intel_connector_destroy,
6556 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6557 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6558 };
6559 
6560 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6561 	.detect_ctx = intel_dp_detect,
6562 	.get_modes = intel_dp_get_modes,
6563 	.mode_valid = intel_dp_mode_valid,
6564 	.atomic_check = intel_digital_connector_atomic_check,
6565 };
6566 
6567 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6568 	.reset = intel_dp_encoder_reset,
6569 	.destroy = intel_dp_encoder_destroy,
6570 };
6571 
6572 enum irqreturn
6573 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6574 {
6575 	struct intel_dp *intel_dp = &intel_dig_port->dp;
6576 
6577 	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6578 		/*
6579 		 * vdd off can generate a long pulse on eDP which
6580 		 * would require vdd on to handle it, and thus we
6581 		 * would end up in an endless cycle of
6582 		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6583 		 */
6584 		DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6585 			      intel_dig_port->base.base.base.id,
6586 			      intel_dig_port->base.base.name);
6587 		return IRQ_HANDLED;
6588 	}
6589 
6590 	DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6591 		      intel_dig_port->base.base.base.id,
6592 		      intel_dig_port->base.base.name,
6593 		      long_hpd ? "long" : "short");
6594 
6595 	if (long_hpd) {
6596 		intel_dp->reset_link_params = true;
6597 		return IRQ_NONE;
6598 	}
6599 
6600 	if (intel_dp->is_mst) {
6601 		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6602 			/*
6603 			 * If we were in MST mode, and device is not
6604 			 * there, get out of MST mode
6605 			 */
6606 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6607 				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6608 			intel_dp->is_mst = false;
6609 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6610 							intel_dp->is_mst);
6611 
6612 			return IRQ_NONE;
6613 		}
6614 	}
6615 
6616 	if (!intel_dp->is_mst) {
6617 		bool handled;
6618 
6619 		handled = intel_dp_short_pulse(intel_dp);
6620 
6621 		if (!handled)
6622 			return IRQ_NONE;
6623 	}
6624 
6625 	return IRQ_HANDLED;
6626 }
6627 
6628 /* check the VBT to see whether the eDP is on another port */
6629 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6630 {
6631 	/*
6632 	 * eDP not supported on g4x. so bail out early just
6633 	 * for a bit extra safety in case the VBT is bonkers.
6634 	 */
6635 	if (INTEL_GEN(dev_priv) < 5)
6636 		return false;
6637 
6638 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6639 		return true;
6640 
6641 	return intel_bios_is_port_edp(dev_priv, port);
6642 }
6643 
6644 static void
6645 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6646 {
6647 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6648 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6649 
6650 	if (!IS_G4X(dev_priv) && port != PORT_A)
6651 		intel_attach_force_audio_property(connector);
6652 
6653 	intel_attach_broadcast_rgb_property(connector);
6654 	if (HAS_GMCH(dev_priv))
6655 		drm_connector_attach_max_bpc_property(connector, 6, 10);
6656 	else if (INTEL_GEN(dev_priv) >= 5)
6657 		drm_connector_attach_max_bpc_property(connector, 6, 12);
6658 
6659 	intel_attach_colorspace_property(connector);
6660 
6661 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6662 		drm_object_attach_property(&connector->base,
6663 					   connector->dev->mode_config.hdr_output_metadata_property,
6664 					   0);
6665 
6666 	if (intel_dp_is_edp(intel_dp)) {
6667 		u32 allowed_scalers;
6668 
6669 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6670 		if (!HAS_GMCH(dev_priv))
6671 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6672 
6673 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6674 
6675 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6676 
6677 	}
6678 }
6679 
6680 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6681 {
6682 	intel_dp->panel_power_off_time = ktime_get_boottime();
6683 	intel_dp->last_power_on = jiffies;
6684 	intel_dp->last_backlight_off = jiffies;
6685 }
6686 
6687 static void
6688 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6689 {
6690 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6691 	u32 pp_on, pp_off, pp_ctl;
6692 	struct pps_registers regs;
6693 
6694 	intel_pps_get_registers(intel_dp, &regs);
6695 
6696 	pp_ctl = ilk_get_pp_control(intel_dp);
6697 
6698 	/* Ensure PPS is unlocked */
6699 	if (!HAS_DDI(dev_priv))
6700 		I915_WRITE(regs.pp_ctrl, pp_ctl);
6701 
6702 	pp_on = I915_READ(regs.pp_on);
6703 	pp_off = I915_READ(regs.pp_off);
6704 
6705 	/* Pull timing values out of registers */
6706 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6707 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6708 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6709 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6710 
6711 	if (i915_mmio_reg_valid(regs.pp_div)) {
6712 		u32 pp_div;
6713 
6714 		pp_div = I915_READ(regs.pp_div);
6715 
6716 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6717 	} else {
6718 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6719 	}
6720 }
6721 
6722 static void
6723 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6724 {
6725 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6726 		      state_name,
6727 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6728 }
6729 
6730 static void
6731 intel_pps_verify_state(struct intel_dp *intel_dp)
6732 {
6733 	struct edp_power_seq hw;
6734 	struct edp_power_seq *sw = &intel_dp->pps_delays;
6735 
6736 	intel_pps_readout_hw_state(intel_dp, &hw);
6737 
6738 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6739 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6740 		DRM_ERROR("PPS state mismatch\n");
6741 		intel_pps_dump_state("sw", sw);
6742 		intel_pps_dump_state("hw", &hw);
6743 	}
6744 }
6745 
6746 static void
6747 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6748 {
6749 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6750 	struct edp_power_seq cur, vbt, spec,
6751 		*final = &intel_dp->pps_delays;
6752 
6753 	lockdep_assert_held(&dev_priv->pps_mutex);
6754 
6755 	/* already initialized? */
6756 	if (final->t11_t12 != 0)
6757 		return;
6758 
6759 	intel_pps_readout_hw_state(intel_dp, &cur);
6760 
6761 	intel_pps_dump_state("cur", &cur);
6762 
6763 	vbt = dev_priv->vbt.edp.pps;
6764 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6765 	 * of 500ms appears to be too short. Ocassionally the panel
6766 	 * just fails to power back on. Increasing the delay to 800ms
6767 	 * seems sufficient to avoid this problem.
6768 	 */
6769 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6770 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6771 		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6772 			      vbt.t11_t12);
6773 	}
6774 	/* T11_T12 delay is special and actually in units of 100ms, but zero
6775 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6776 	 * table multiplies it with 1000 to make it in units of 100usec,
6777 	 * too. */
6778 	vbt.t11_t12 += 100 * 10;
6779 
6780 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6781 	 * our hw here, which are all in 100usec. */
6782 	spec.t1_t3 = 210 * 10;
6783 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6784 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6785 	spec.t10 = 500 * 10;
6786 	/* This one is special and actually in units of 100ms, but zero
6787 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6788 	 * table multiplies it with 1000 to make it in units of 100usec,
6789 	 * too. */
6790 	spec.t11_t12 = (510 + 100) * 10;
6791 
6792 	intel_pps_dump_state("vbt", &vbt);
6793 
6794 	/* Use the max of the register settings and vbt. If both are
6795 	 * unset, fall back to the spec limits. */
6796 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6797 				       spec.field : \
6798 				       max(cur.field, vbt.field))
6799 	assign_final(t1_t3);
6800 	assign_final(t8);
6801 	assign_final(t9);
6802 	assign_final(t10);
6803 	assign_final(t11_t12);
6804 #undef assign_final
6805 
6806 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6807 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
6808 	intel_dp->backlight_on_delay = get_delay(t8);
6809 	intel_dp->backlight_off_delay = get_delay(t9);
6810 	intel_dp->panel_power_down_delay = get_delay(t10);
6811 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6812 #undef get_delay
6813 
6814 	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6815 		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6816 		      intel_dp->panel_power_cycle_delay);
6817 
6818 	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6819 		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6820 
6821 	/*
6822 	 * We override the HW backlight delays to 1 because we do manual waits
6823 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
6824 	 * don't do this, we'll end up waiting for the backlight off delay
6825 	 * twice: once when we do the manual sleep, and once when we disable
6826 	 * the panel and wait for the PP_STATUS bit to become zero.
6827 	 */
6828 	final->t8 = 1;
6829 	final->t9 = 1;
6830 
6831 	/*
6832 	 * HW has only a 100msec granularity for t11_t12 so round it up
6833 	 * accordingly.
6834 	 */
6835 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6836 }
6837 
6838 static void
6839 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6840 					      bool force_disable_vdd)
6841 {
6842 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6843 	u32 pp_on, pp_off, port_sel = 0;
6844 	int div = dev_priv->rawclk_freq / 1000;
6845 	struct pps_registers regs;
6846 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6847 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6848 
6849 	lockdep_assert_held(&dev_priv->pps_mutex);
6850 
6851 	intel_pps_get_registers(intel_dp, &regs);
6852 
6853 	/*
6854 	 * On some VLV machines the BIOS can leave the VDD
6855 	 * enabled even on power sequencers which aren't
6856 	 * hooked up to any port. This would mess up the
6857 	 * power domain tracking the first time we pick
6858 	 * one of these power sequencers for use since
6859 	 * edp_panel_vdd_on() would notice that the VDD was
6860 	 * already on and therefore wouldn't grab the power
6861 	 * domain reference. Disable VDD first to avoid this.
6862 	 * This also avoids spuriously turning the VDD on as
6863 	 * soon as the new power sequencer gets initialized.
6864 	 */
6865 	if (force_disable_vdd) {
6866 		u32 pp = ilk_get_pp_control(intel_dp);
6867 
6868 		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6869 
6870 		if (pp & EDP_FORCE_VDD)
6871 			DRM_DEBUG_KMS("VDD already on, disabling first\n");
6872 
6873 		pp &= ~EDP_FORCE_VDD;
6874 
6875 		I915_WRITE(regs.pp_ctrl, pp);
6876 	}
6877 
6878 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6879 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6880 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6881 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6882 
6883 	/* Haswell doesn't have any port selection bits for the panel
6884 	 * power sequencer any more. */
6885 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6886 		port_sel = PANEL_PORT_SELECT_VLV(port);
6887 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6888 		switch (port) {
6889 		case PORT_A:
6890 			port_sel = PANEL_PORT_SELECT_DPA;
6891 			break;
6892 		case PORT_C:
6893 			port_sel = PANEL_PORT_SELECT_DPC;
6894 			break;
6895 		case PORT_D:
6896 			port_sel = PANEL_PORT_SELECT_DPD;
6897 			break;
6898 		default:
6899 			MISSING_CASE(port);
6900 			break;
6901 		}
6902 	}
6903 
6904 	pp_on |= port_sel;
6905 
6906 	I915_WRITE(regs.pp_on, pp_on);
6907 	I915_WRITE(regs.pp_off, pp_off);
6908 
6909 	/*
6910 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
6911 	 */
6912 	if (i915_mmio_reg_valid(regs.pp_div)) {
6913 		I915_WRITE(regs.pp_div,
6914 			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6915 			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6916 	} else {
6917 		u32 pp_ctl;
6918 
6919 		pp_ctl = I915_READ(regs.pp_ctrl);
6920 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6921 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6922 		I915_WRITE(regs.pp_ctrl, pp_ctl);
6923 	}
6924 
6925 	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6926 		      I915_READ(regs.pp_on),
6927 		      I915_READ(regs.pp_off),
6928 		      i915_mmio_reg_valid(regs.pp_div) ?
6929 		      I915_READ(regs.pp_div) :
6930 		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6931 }
6932 
6933 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6934 {
6935 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6936 
6937 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6938 		vlv_initial_power_sequencer_setup(intel_dp);
6939 	} else {
6940 		intel_dp_init_panel_power_sequencer(intel_dp);
6941 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6942 	}
6943 }
6944 
6945 /**
6946  * intel_dp_set_drrs_state - program registers for RR switch to take effect
6947  * @dev_priv: i915 device
6948  * @crtc_state: a pointer to the active intel_crtc_state
6949  * @refresh_rate: RR to be programmed
6950  *
6951  * This function gets called when refresh rate (RR) has to be changed from
6952  * one frequency to another. Switches can be between high and low RR
6953  * supported by the panel or to any other RR based on media playback (in
6954  * this case, RR value needs to be passed from user space).
6955  *
6956  * The caller of this function needs to take a lock on dev_priv->drrs.
6957  */
6958 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6959 				    const struct intel_crtc_state *crtc_state,
6960 				    int refresh_rate)
6961 {
6962 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6963 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
6964 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6965 
6966 	if (refresh_rate <= 0) {
6967 		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6968 		return;
6969 	}
6970 
6971 	if (intel_dp == NULL) {
6972 		DRM_DEBUG_KMS("DRRS not supported.\n");
6973 		return;
6974 	}
6975 
6976 	if (!intel_crtc) {
6977 		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6978 		return;
6979 	}
6980 
6981 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6982 		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6983 		return;
6984 	}
6985 
6986 	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6987 			refresh_rate)
6988 		index = DRRS_LOW_RR;
6989 
6990 	if (index == dev_priv->drrs.refresh_rate_type) {
6991 		DRM_DEBUG_KMS(
6992 			"DRRS requested for previously set RR...ignoring\n");
6993 		return;
6994 	}
6995 
6996 	if (!crtc_state->hw.active) {
6997 		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6998 		return;
6999 	}
7000 
7001 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7002 		switch (index) {
7003 		case DRRS_HIGH_RR:
7004 			intel_dp_set_m_n(crtc_state, M1_N1);
7005 			break;
7006 		case DRRS_LOW_RR:
7007 			intel_dp_set_m_n(crtc_state, M2_N2);
7008 			break;
7009 		case DRRS_MAX_RR:
7010 		default:
7011 			DRM_ERROR("Unsupported refreshrate type\n");
7012 		}
7013 	} else if (INTEL_GEN(dev_priv) > 6) {
7014 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7015 		u32 val;
7016 
7017 		val = I915_READ(reg);
7018 		if (index > DRRS_HIGH_RR) {
7019 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7020 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7021 			else
7022 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7023 		} else {
7024 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7025 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7026 			else
7027 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7028 		}
7029 		I915_WRITE(reg, val);
7030 	}
7031 
7032 	dev_priv->drrs.refresh_rate_type = index;
7033 
7034 	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
7035 }
7036 
7037 /**
7038  * intel_edp_drrs_enable - init drrs struct if supported
7039  * @intel_dp: DP struct
7040  * @crtc_state: A pointer to the active crtc state.
7041  *
7042  * Initializes frontbuffer_bits and drrs.dp
7043  */
7044 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7045 			   const struct intel_crtc_state *crtc_state)
7046 {
7047 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7048 
7049 	if (!crtc_state->has_drrs) {
7050 		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
7051 		return;
7052 	}
7053 
7054 	if (dev_priv->psr.enabled) {
7055 		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
7056 		return;
7057 	}
7058 
7059 	mutex_lock(&dev_priv->drrs.mutex);
7060 	if (dev_priv->drrs.dp) {
7061 		DRM_DEBUG_KMS("DRRS already enabled\n");
7062 		goto unlock;
7063 	}
7064 
7065 	dev_priv->drrs.busy_frontbuffer_bits = 0;
7066 
7067 	dev_priv->drrs.dp = intel_dp;
7068 
7069 unlock:
7070 	mutex_unlock(&dev_priv->drrs.mutex);
7071 }
7072 
7073 /**
7074  * intel_edp_drrs_disable - Disable DRRS
7075  * @intel_dp: DP struct
7076  * @old_crtc_state: Pointer to old crtc_state.
7077  *
7078  */
7079 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7080 			    const struct intel_crtc_state *old_crtc_state)
7081 {
7082 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7083 
7084 	if (!old_crtc_state->has_drrs)
7085 		return;
7086 
7087 	mutex_lock(&dev_priv->drrs.mutex);
7088 	if (!dev_priv->drrs.dp) {
7089 		mutex_unlock(&dev_priv->drrs.mutex);
7090 		return;
7091 	}
7092 
7093 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7094 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7095 			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7096 
7097 	dev_priv->drrs.dp = NULL;
7098 	mutex_unlock(&dev_priv->drrs.mutex);
7099 
7100 	cancel_delayed_work_sync(&dev_priv->drrs.work);
7101 }
7102 
7103 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7104 {
7105 	struct drm_i915_private *dev_priv =
7106 		container_of(work, typeof(*dev_priv), drrs.work.work);
7107 	struct intel_dp *intel_dp;
7108 
7109 	mutex_lock(&dev_priv->drrs.mutex);
7110 
7111 	intel_dp = dev_priv->drrs.dp;
7112 
7113 	if (!intel_dp)
7114 		goto unlock;
7115 
7116 	/*
7117 	 * The delayed work can race with an invalidate hence we need to
7118 	 * recheck.
7119 	 */
7120 
7121 	if (dev_priv->drrs.busy_frontbuffer_bits)
7122 		goto unlock;
7123 
7124 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7125 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7126 
7127 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7128 			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7129 	}
7130 
7131 unlock:
7132 	mutex_unlock(&dev_priv->drrs.mutex);
7133 }
7134 
7135 /**
7136  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7137  * @dev_priv: i915 device
7138  * @frontbuffer_bits: frontbuffer plane tracking bits
7139  *
7140  * This function gets called everytime rendering on the given planes start.
7141  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7142  *
7143  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7144  */
7145 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7146 			       unsigned int frontbuffer_bits)
7147 {
7148 	struct drm_crtc *crtc;
7149 	enum pipe pipe;
7150 
7151 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7152 		return;
7153 
7154 	cancel_delayed_work(&dev_priv->drrs.work);
7155 
7156 	mutex_lock(&dev_priv->drrs.mutex);
7157 	if (!dev_priv->drrs.dp) {
7158 		mutex_unlock(&dev_priv->drrs.mutex);
7159 		return;
7160 	}
7161 
7162 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7163 	pipe = to_intel_crtc(crtc)->pipe;
7164 
7165 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7166 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7167 
7168 	/* invalidate means busy screen hence upclock */
7169 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7170 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7171 			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7172 
7173 	mutex_unlock(&dev_priv->drrs.mutex);
7174 }
7175 
7176 /**
7177  * intel_edp_drrs_flush - Restart Idleness DRRS
7178  * @dev_priv: i915 device
7179  * @frontbuffer_bits: frontbuffer plane tracking bits
7180  *
7181  * This function gets called every time rendering on the given planes has
7182  * completed or flip on a crtc is completed. So DRRS should be upclocked
7183  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7184  * if no other planes are dirty.
7185  *
7186  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7187  */
7188 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7189 			  unsigned int frontbuffer_bits)
7190 {
7191 	struct drm_crtc *crtc;
7192 	enum pipe pipe;
7193 
7194 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7195 		return;
7196 
7197 	cancel_delayed_work(&dev_priv->drrs.work);
7198 
7199 	mutex_lock(&dev_priv->drrs.mutex);
7200 	if (!dev_priv->drrs.dp) {
7201 		mutex_unlock(&dev_priv->drrs.mutex);
7202 		return;
7203 	}
7204 
7205 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7206 	pipe = to_intel_crtc(crtc)->pipe;
7207 
7208 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7209 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7210 
7211 	/* flush means busy screen hence upclock */
7212 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7213 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7214 				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7215 
7216 	/*
7217 	 * flush also means no more activity hence schedule downclock, if all
7218 	 * other fbs are quiescent too
7219 	 */
7220 	if (!dev_priv->drrs.busy_frontbuffer_bits)
7221 		schedule_delayed_work(&dev_priv->drrs.work,
7222 				msecs_to_jiffies(1000));
7223 	mutex_unlock(&dev_priv->drrs.mutex);
7224 }
7225 
7226 /**
7227  * DOC: Display Refresh Rate Switching (DRRS)
7228  *
7229  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7230  * which enables swtching between low and high refresh rates,
7231  * dynamically, based on the usage scenario. This feature is applicable
7232  * for internal panels.
7233  *
7234  * Indication that the panel supports DRRS is given by the panel EDID, which
7235  * would list multiple refresh rates for one resolution.
7236  *
7237  * DRRS is of 2 types - static and seamless.
7238  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7239  * (may appear as a blink on screen) and is used in dock-undock scenario.
7240  * Seamless DRRS involves changing RR without any visual effect to the user
7241  * and can be used during normal system usage. This is done by programming
7242  * certain registers.
7243  *
7244  * Support for static/seamless DRRS may be indicated in the VBT based on
7245  * inputs from the panel spec.
7246  *
7247  * DRRS saves power by switching to low RR based on usage scenarios.
7248  *
7249  * The implementation is based on frontbuffer tracking implementation.  When
7250  * there is a disturbance on the screen triggered by user activity or a periodic
7251  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7252  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7253  * made.
7254  *
7255  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7256  * and intel_edp_drrs_flush() are called.
7257  *
7258  * DRRS can be further extended to support other internal panels and also
7259  * the scenario of video playback wherein RR is set based on the rate
7260  * requested by userspace.
7261  */
7262 
7263 /**
7264  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7265  * @connector: eDP connector
7266  * @fixed_mode: preferred mode of panel
7267  *
7268  * This function is  called only once at driver load to initialize basic
7269  * DRRS stuff.
7270  *
7271  * Returns:
7272  * Downclock mode if panel supports it, else return NULL.
7273  * DRRS support is determined by the presence of downclock mode (apart
7274  * from VBT setting).
7275  */
7276 static struct drm_display_mode *
7277 intel_dp_drrs_init(struct intel_connector *connector,
7278 		   struct drm_display_mode *fixed_mode)
7279 {
7280 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7281 	struct drm_display_mode *downclock_mode = NULL;
7282 
7283 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7284 	mutex_init(&dev_priv->drrs.mutex);
7285 
7286 	if (INTEL_GEN(dev_priv) <= 6) {
7287 		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
7288 		return NULL;
7289 	}
7290 
7291 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7292 		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7293 		return NULL;
7294 	}
7295 
7296 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7297 	if (!downclock_mode) {
7298 		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7299 		return NULL;
7300 	}
7301 
7302 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7303 
7304 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7305 	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7306 	return downclock_mode;
7307 }
7308 
7309 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7310 				     struct intel_connector *intel_connector)
7311 {
7312 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7313 	struct drm_device *dev = &dev_priv->drm;
7314 	struct drm_connector *connector = &intel_connector->base;
7315 	struct drm_display_mode *fixed_mode = NULL;
7316 	struct drm_display_mode *downclock_mode = NULL;
7317 	bool has_dpcd;
7318 	enum pipe pipe = INVALID_PIPE;
7319 	intel_wakeref_t wakeref;
7320 	struct edid *edid;
7321 
7322 	if (!intel_dp_is_edp(intel_dp))
7323 		return true;
7324 
7325 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7326 
7327 	/*
7328 	 * On IBX/CPT we may get here with LVDS already registered. Since the
7329 	 * driver uses the only internal power sequencer available for both
7330 	 * eDP and LVDS bail out early in this case to prevent interfering
7331 	 * with an already powered-on LVDS power sequencer.
7332 	 */
7333 	if (intel_get_lvds_encoder(dev_priv)) {
7334 		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7335 		DRM_INFO("LVDS was detected, not registering eDP\n");
7336 
7337 		return false;
7338 	}
7339 
7340 	with_pps_lock(intel_dp, wakeref) {
7341 		intel_dp_init_panel_power_timestamps(intel_dp);
7342 		intel_dp_pps_init(intel_dp);
7343 		intel_edp_panel_vdd_sanitize(intel_dp);
7344 	}
7345 
7346 	/* Cache DPCD and EDID for edp. */
7347 	has_dpcd = intel_edp_init_dpcd(intel_dp);
7348 
7349 	if (!has_dpcd) {
7350 		/* if this fails, presume the device is a ghost */
7351 		DRM_INFO("failed to retrieve link info, disabling eDP\n");
7352 		goto out_vdd_off;
7353 	}
7354 
7355 	mutex_lock(&dev->mode_config.mutex);
7356 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7357 	if (edid) {
7358 		if (drm_add_edid_modes(connector, edid)) {
7359 			drm_connector_update_edid_property(connector,
7360 								edid);
7361 		} else {
7362 			kfree(edid);
7363 			edid = ERR_PTR(-EINVAL);
7364 		}
7365 	} else {
7366 		edid = ERR_PTR(-ENOENT);
7367 	}
7368 	intel_connector->edid = edid;
7369 
7370 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7371 	if (fixed_mode)
7372 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7373 
7374 	/* fallback to VBT if available for eDP */
7375 	if (!fixed_mode)
7376 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7377 	mutex_unlock(&dev->mode_config.mutex);
7378 
7379 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7380 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7381 		register_reboot_notifier(&intel_dp->edp_notifier);
7382 
7383 		/*
7384 		 * Figure out the current pipe for the initial backlight setup.
7385 		 * If the current pipe isn't valid, try the PPS pipe, and if that
7386 		 * fails just assume pipe A.
7387 		 */
7388 		pipe = vlv_active_pipe(intel_dp);
7389 
7390 		if (pipe != PIPE_A && pipe != PIPE_B)
7391 			pipe = intel_dp->pps_pipe;
7392 
7393 		if (pipe != PIPE_A && pipe != PIPE_B)
7394 			pipe = PIPE_A;
7395 
7396 		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7397 			      pipe_name(pipe));
7398 	}
7399 
7400 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7401 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7402 	intel_panel_setup_backlight(connector, pipe);
7403 
7404 	if (fixed_mode)
7405 		drm_connector_init_panel_orientation_property(
7406 			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7407 
7408 	return true;
7409 
7410 out_vdd_off:
7411 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7412 	/*
7413 	 * vdd might still be enabled do to the delayed vdd off.
7414 	 * Make sure vdd is actually turned off here.
7415 	 */
7416 	with_pps_lock(intel_dp, wakeref)
7417 		edp_panel_vdd_off_sync(intel_dp);
7418 
7419 	return false;
7420 }
7421 
7422 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7423 {
7424 	struct intel_connector *intel_connector;
7425 	struct drm_connector *connector;
7426 
7427 	intel_connector = container_of(work, typeof(*intel_connector),
7428 				       modeset_retry_work);
7429 	connector = &intel_connector->base;
7430 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7431 		      connector->name);
7432 
7433 	/* Grab the locks before changing connector property*/
7434 	mutex_lock(&connector->dev->mode_config.mutex);
7435 	/* Set connector link status to BAD and send a Uevent to notify
7436 	 * userspace to do a modeset.
7437 	 */
7438 	drm_connector_set_link_status_property(connector,
7439 					       DRM_MODE_LINK_STATUS_BAD);
7440 	mutex_unlock(&connector->dev->mode_config.mutex);
7441 	/* Send Hotplug uevent so userspace can reprobe */
7442 	drm_kms_helper_hotplug_event(connector->dev);
7443 }
7444 
7445 bool
7446 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7447 			struct intel_connector *intel_connector)
7448 {
7449 	struct drm_connector *connector = &intel_connector->base;
7450 	struct intel_dp *intel_dp = &intel_dig_port->dp;
7451 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
7452 	struct drm_device *dev = intel_encoder->base.dev;
7453 	struct drm_i915_private *dev_priv = to_i915(dev);
7454 	enum port port = intel_encoder->port;
7455 	enum phy phy = intel_port_to_phy(dev_priv, port);
7456 	int type;
7457 
7458 	/* Initialize the work for modeset in case of link train failure */
7459 	INIT_WORK(&intel_connector->modeset_retry_work,
7460 		  intel_dp_modeset_retry_work_fn);
7461 
7462 	if (WARN(intel_dig_port->max_lanes < 1,
7463 		 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7464 		 intel_dig_port->max_lanes, intel_encoder->base.base.id,
7465 		 intel_encoder->base.name))
7466 		return false;
7467 
7468 	intel_dp_set_source_rates(intel_dp);
7469 
7470 	intel_dp->reset_link_params = true;
7471 	intel_dp->pps_pipe = INVALID_PIPE;
7472 	intel_dp->active_pipe = INVALID_PIPE;
7473 
7474 	/* Preserve the current hw state. */
7475 	intel_dp->DP = I915_READ(intel_dp->output_reg);
7476 	intel_dp->attached_connector = intel_connector;
7477 
7478 	if (intel_dp_is_port_edp(dev_priv, port)) {
7479 		/*
7480 		 * Currently we don't support eDP on TypeC ports, although in
7481 		 * theory it could work on TypeC legacy ports.
7482 		 */
7483 		WARN_ON(intel_phy_is_tc(dev_priv, phy));
7484 		type = DRM_MODE_CONNECTOR_eDP;
7485 	} else {
7486 		type = DRM_MODE_CONNECTOR_DisplayPort;
7487 	}
7488 
7489 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7490 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7491 
7492 	/*
7493 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7494 	 * for DP the encoder type can be set by the caller to
7495 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7496 	 */
7497 	if (type == DRM_MODE_CONNECTOR_eDP)
7498 		intel_encoder->type = INTEL_OUTPUT_EDP;
7499 
7500 	/* eDP only on port B and/or C on vlv/chv */
7501 	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7502 		    intel_dp_is_edp(intel_dp) &&
7503 		    port != PORT_B && port != PORT_C))
7504 		return false;
7505 
7506 	DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n",
7507 		      type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7508 		      intel_encoder->base.base.id, intel_encoder->base.name);
7509 
7510 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7511 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7512 
7513 	if (!HAS_GMCH(dev_priv))
7514 		connector->interlace_allowed = true;
7515 	connector->doublescan_allowed = 0;
7516 
7517 	if (INTEL_GEN(dev_priv) >= 11)
7518 		connector->ycbcr_420_allowed = true;
7519 
7520 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7521 
7522 	intel_dp_aux_init(intel_dp);
7523 
7524 	intel_connector_attach_encoder(intel_connector, intel_encoder);
7525 
7526 	if (HAS_DDI(dev_priv))
7527 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7528 	else
7529 		intel_connector->get_hw_state = intel_connector_get_hw_state;
7530 
7531 	/* init MST on ports that can support it */
7532 	intel_dp_mst_encoder_init(intel_dig_port,
7533 				  intel_connector->base.base.id);
7534 
7535 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7536 		intel_dp_aux_fini(intel_dp);
7537 		intel_dp_mst_encoder_cleanup(intel_dig_port);
7538 		goto fail;
7539 	}
7540 
7541 	intel_dp_add_properties(intel_dp, connector);
7542 
7543 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7544 		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7545 		if (ret)
7546 			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7547 	}
7548 
7549 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7550 	 * 0xd.  Failure to do so will result in spurious interrupts being
7551 	 * generated on the port when a cable is not attached.
7552 	 */
7553 	if (IS_G45(dev_priv)) {
7554 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7555 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7556 	}
7557 
7558 	return true;
7559 
7560 fail:
7561 	drm_connector_cleanup(connector);
7562 
7563 	return false;
7564 }
7565 
7566 bool intel_dp_init(struct drm_i915_private *dev_priv,
7567 		   i915_reg_t output_reg,
7568 		   enum port port)
7569 {
7570 	struct intel_digital_port *intel_dig_port;
7571 	struct intel_encoder *intel_encoder;
7572 	struct drm_encoder *encoder;
7573 	struct intel_connector *intel_connector;
7574 
7575 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7576 	if (!intel_dig_port)
7577 		return false;
7578 
7579 	intel_connector = intel_connector_alloc();
7580 	if (!intel_connector)
7581 		goto err_connector_alloc;
7582 
7583 	intel_encoder = &intel_dig_port->base;
7584 	encoder = &intel_encoder->base;
7585 
7586 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7587 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7588 			     "DP %c", port_name(port)))
7589 		goto err_encoder_init;
7590 
7591 	intel_encoder->hotplug = intel_dp_hotplug;
7592 	intel_encoder->compute_config = intel_dp_compute_config;
7593 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7594 	intel_encoder->get_config = intel_dp_get_config;
7595 	intel_encoder->update_pipe = intel_panel_update_backlight;
7596 	intel_encoder->suspend = intel_dp_encoder_suspend;
7597 	if (IS_CHERRYVIEW(dev_priv)) {
7598 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7599 		intel_encoder->pre_enable = chv_pre_enable_dp;
7600 		intel_encoder->enable = vlv_enable_dp;
7601 		intel_encoder->disable = vlv_disable_dp;
7602 		intel_encoder->post_disable = chv_post_disable_dp;
7603 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7604 	} else if (IS_VALLEYVIEW(dev_priv)) {
7605 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7606 		intel_encoder->pre_enable = vlv_pre_enable_dp;
7607 		intel_encoder->enable = vlv_enable_dp;
7608 		intel_encoder->disable = vlv_disable_dp;
7609 		intel_encoder->post_disable = vlv_post_disable_dp;
7610 	} else {
7611 		intel_encoder->pre_enable = g4x_pre_enable_dp;
7612 		intel_encoder->enable = g4x_enable_dp;
7613 		intel_encoder->disable = g4x_disable_dp;
7614 		intel_encoder->post_disable = g4x_post_disable_dp;
7615 	}
7616 
7617 	intel_dig_port->dp.output_reg = output_reg;
7618 	intel_dig_port->max_lanes = 4;
7619 
7620 	intel_encoder->type = INTEL_OUTPUT_DP;
7621 	intel_encoder->power_domain = intel_port_to_power_domain(port);
7622 	if (IS_CHERRYVIEW(dev_priv)) {
7623 		if (port == PORT_D)
7624 			intel_encoder->pipe_mask = BIT(PIPE_C);
7625 		else
7626 			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7627 	} else {
7628 		intel_encoder->pipe_mask = ~0;
7629 	}
7630 	intel_encoder->cloneable = 0;
7631 	intel_encoder->port = port;
7632 
7633 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7634 
7635 	if (port != PORT_A)
7636 		intel_infoframe_init(intel_dig_port);
7637 
7638 	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7639 	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7640 		goto err_init_connector;
7641 
7642 	return true;
7643 
7644 err_init_connector:
7645 	drm_encoder_cleanup(encoder);
7646 err_encoder_init:
7647 	kfree(intel_connector);
7648 err_connector_alloc:
7649 	kfree(intel_dig_port);
7650 	return false;
7651 }
7652 
7653 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7654 {
7655 	struct intel_encoder *encoder;
7656 
7657 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7658 		struct intel_dp *intel_dp;
7659 
7660 		if (encoder->type != INTEL_OUTPUT_DDI)
7661 			continue;
7662 
7663 		intel_dp = enc_to_intel_dp(encoder);
7664 
7665 		if (!intel_dp->can_mst)
7666 			continue;
7667 
7668 		if (intel_dp->is_mst)
7669 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7670 	}
7671 }
7672 
7673 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7674 {
7675 	struct intel_encoder *encoder;
7676 
7677 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7678 		struct intel_dp *intel_dp;
7679 		int ret;
7680 
7681 		if (encoder->type != INTEL_OUTPUT_DDI)
7682 			continue;
7683 
7684 		intel_dp = enc_to_intel_dp(encoder);
7685 
7686 		if (!intel_dp->can_mst)
7687 			continue;
7688 
7689 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
7690 						     true);
7691 		if (ret) {
7692 			intel_dp->is_mst = false;
7693 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7694 							false);
7695 		}
7696 	}
7697 }
7698