1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <linux/i2c.h> 28 #include <linux/input.h> 29 #include <linux/intel-iommu.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/dma-resv.h> 33 #include <linux/slab.h> 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_atomic_uapi.h> 38 #include <drm/drm_damage_helper.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_fourcc.h> 42 #include <drm/drm_plane_helper.h> 43 #include <drm/drm_probe_helper.h> 44 #include <drm/drm_rect.h> 45 46 #include "display/intel_crt.h" 47 #include "display/intel_ddi.h" 48 #include "display/intel_dp.h" 49 #include "display/intel_dp_mst.h" 50 #include "display/intel_dpll_mgr.h" 51 #include "display/intel_dsi.h" 52 #include "display/intel_dvo.h" 53 #include "display/intel_gmbus.h" 54 #include "display/intel_hdmi.h" 55 #include "display/intel_lvds.h" 56 #include "display/intel_sdvo.h" 57 #include "display/intel_tv.h" 58 #include "display/intel_vdsc.h" 59 60 #include "gt/intel_rps.h" 61 62 #include "i915_drv.h" 63 #include "i915_trace.h" 64 #include "intel_acpi.h" 65 #include "intel_atomic.h" 66 #include "intel_atomic_plane.h" 67 #include "intel_bw.h" 68 #include "intel_cdclk.h" 69 #include "intel_color.h" 70 #include "intel_csr.h" 71 #include "intel_display_types.h" 72 #include "intel_dp_link_training.h" 73 #include "intel_fbc.h" 74 #include "intel_fbdev.h" 75 #include "intel_fifo_underrun.h" 76 #include "intel_frontbuffer.h" 77 #include "intel_hdcp.h" 78 #include "intel_hotplug.h" 79 #include "intel_overlay.h" 80 #include "intel_pipe_crc.h" 81 #include "intel_pm.h" 82 #include "intel_psr.h" 83 #include "intel_quirks.h" 84 #include "intel_sideband.h" 85 #include "intel_sprite.h" 86 #include "intel_tc.h" 87 #include "intel_vga.h" 88 89 /* Primary plane formats for gen <= 3 */ 90 static const u32 i8xx_primary_formats[] = { 91 DRM_FORMAT_C8, 92 DRM_FORMAT_XRGB1555, 93 DRM_FORMAT_RGB565, 94 DRM_FORMAT_XRGB8888, 95 }; 96 97 /* Primary plane formats for ivb (no fp16 due to hw issue) */ 98 static const u32 ivb_primary_formats[] = { 99 DRM_FORMAT_C8, 100 DRM_FORMAT_RGB565, 101 DRM_FORMAT_XRGB8888, 102 DRM_FORMAT_XBGR8888, 103 DRM_FORMAT_XRGB2101010, 104 DRM_FORMAT_XBGR2101010, 105 }; 106 107 /* Primary plane formats for gen >= 4, except ivb */ 108 static const u32 i965_primary_formats[] = { 109 DRM_FORMAT_C8, 110 DRM_FORMAT_RGB565, 111 DRM_FORMAT_XRGB8888, 112 DRM_FORMAT_XBGR8888, 113 DRM_FORMAT_XRGB2101010, 114 DRM_FORMAT_XBGR2101010, 115 DRM_FORMAT_XBGR16161616F, 116 }; 117 118 /* Primary plane formats for vlv/chv */ 119 static const u32 vlv_primary_formats[] = { 120 DRM_FORMAT_C8, 121 DRM_FORMAT_RGB565, 122 DRM_FORMAT_XRGB8888, 123 DRM_FORMAT_XBGR8888, 124 DRM_FORMAT_ARGB8888, 125 DRM_FORMAT_ABGR8888, 126 DRM_FORMAT_XRGB2101010, 127 DRM_FORMAT_XBGR2101010, 128 DRM_FORMAT_ARGB2101010, 129 DRM_FORMAT_ABGR2101010, 130 DRM_FORMAT_XBGR16161616F, 131 }; 132 133 static const u64 i9xx_format_modifiers[] = { 134 I915_FORMAT_MOD_X_TILED, 135 DRM_FORMAT_MOD_LINEAR, 136 DRM_FORMAT_MOD_INVALID 137 }; 138 139 /* Cursor formats */ 140 static const u32 intel_cursor_formats[] = { 141 DRM_FORMAT_ARGB8888, 142 }; 143 144 static const u64 cursor_format_modifiers[] = { 145 DRM_FORMAT_MOD_LINEAR, 146 DRM_FORMAT_MOD_INVALID 147 }; 148 149 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 150 struct intel_crtc_state *pipe_config); 151 static void ilk_pch_clock_get(struct intel_crtc *crtc, 152 struct intel_crtc_state *pipe_config); 153 154 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 155 struct drm_i915_gem_object *obj, 156 struct drm_mode_fb_cmd2 *mode_cmd); 157 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state); 158 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 159 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 160 const struct intel_link_m_n *m_n, 161 const struct intel_link_m_n *m2_n2); 162 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 163 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 164 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 165 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 166 static void vlv_prepare_pll(struct intel_crtc *crtc, 167 const struct intel_crtc_state *pipe_config); 168 static void chv_prepare_pll(struct intel_crtc *crtc, 169 const struct intel_crtc_state *pipe_config); 170 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state); 171 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 172 static void intel_modeset_setup_hw_state(struct drm_device *dev, 173 struct drm_modeset_acquire_ctx *ctx); 174 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc); 175 176 struct intel_limit { 177 struct { 178 int min, max; 179 } dot, vco, n, m, m1, m2, p, p1; 180 181 struct { 182 int dot_limit; 183 int p2_slow, p2_fast; 184 } p2; 185 }; 186 187 /* returns HPLL frequency in kHz */ 188 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 189 { 190 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 191 192 /* Obtain SKU information */ 193 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 194 CCK_FUSE_HPLL_FREQ_MASK; 195 196 return vco_freq[hpll_freq] * 1000; 197 } 198 199 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 200 const char *name, u32 reg, int ref_freq) 201 { 202 u32 val; 203 int divider; 204 205 val = vlv_cck_read(dev_priv, reg); 206 divider = val & CCK_FREQUENCY_VALUES; 207 208 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 209 (divider << CCK_FREQUENCY_STATUS_SHIFT), 210 "%s change in progress\n", name); 211 212 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 213 } 214 215 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 216 const char *name, u32 reg) 217 { 218 int hpll; 219 220 vlv_cck_get(dev_priv); 221 222 if (dev_priv->hpll_freq == 0) 223 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 224 225 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 226 227 vlv_cck_put(dev_priv); 228 229 return hpll; 230 } 231 232 static void intel_update_czclk(struct drm_i915_private *dev_priv) 233 { 234 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 235 return; 236 237 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 238 CCK_CZ_CLOCK_CONTROL); 239 240 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 241 dev_priv->czclk_freq); 242 } 243 244 /* units of 100MHz */ 245 static u32 intel_fdi_link_freq(struct drm_i915_private *dev_priv, 246 const struct intel_crtc_state *pipe_config) 247 { 248 if (HAS_DDI(dev_priv)) 249 return pipe_config->port_clock; /* SPLL */ 250 else 251 return dev_priv->fdi_pll_freq; 252 } 253 254 static const struct intel_limit intel_limits_i8xx_dac = { 255 .dot = { .min = 25000, .max = 350000 }, 256 .vco = { .min = 908000, .max = 1512000 }, 257 .n = { .min = 2, .max = 16 }, 258 .m = { .min = 96, .max = 140 }, 259 .m1 = { .min = 18, .max = 26 }, 260 .m2 = { .min = 6, .max = 16 }, 261 .p = { .min = 4, .max = 128 }, 262 .p1 = { .min = 2, .max = 33 }, 263 .p2 = { .dot_limit = 165000, 264 .p2_slow = 4, .p2_fast = 2 }, 265 }; 266 267 static const struct intel_limit intel_limits_i8xx_dvo = { 268 .dot = { .min = 25000, .max = 350000 }, 269 .vco = { .min = 908000, .max = 1512000 }, 270 .n = { .min = 2, .max = 16 }, 271 .m = { .min = 96, .max = 140 }, 272 .m1 = { .min = 18, .max = 26 }, 273 .m2 = { .min = 6, .max = 16 }, 274 .p = { .min = 4, .max = 128 }, 275 .p1 = { .min = 2, .max = 33 }, 276 .p2 = { .dot_limit = 165000, 277 .p2_slow = 4, .p2_fast = 4 }, 278 }; 279 280 static const struct intel_limit intel_limits_i8xx_lvds = { 281 .dot = { .min = 25000, .max = 350000 }, 282 .vco = { .min = 908000, .max = 1512000 }, 283 .n = { .min = 2, .max = 16 }, 284 .m = { .min = 96, .max = 140 }, 285 .m1 = { .min = 18, .max = 26 }, 286 .m2 = { .min = 6, .max = 16 }, 287 .p = { .min = 4, .max = 128 }, 288 .p1 = { .min = 1, .max = 6 }, 289 .p2 = { .dot_limit = 165000, 290 .p2_slow = 14, .p2_fast = 7 }, 291 }; 292 293 static const struct intel_limit intel_limits_i9xx_sdvo = { 294 .dot = { .min = 20000, .max = 400000 }, 295 .vco = { .min = 1400000, .max = 2800000 }, 296 .n = { .min = 1, .max = 6 }, 297 .m = { .min = 70, .max = 120 }, 298 .m1 = { .min = 8, .max = 18 }, 299 .m2 = { .min = 3, .max = 7 }, 300 .p = { .min = 5, .max = 80 }, 301 .p1 = { .min = 1, .max = 8 }, 302 .p2 = { .dot_limit = 200000, 303 .p2_slow = 10, .p2_fast = 5 }, 304 }; 305 306 static const struct intel_limit intel_limits_i9xx_lvds = { 307 .dot = { .min = 20000, .max = 400000 }, 308 .vco = { .min = 1400000, .max = 2800000 }, 309 .n = { .min = 1, .max = 6 }, 310 .m = { .min = 70, .max = 120 }, 311 .m1 = { .min = 8, .max = 18 }, 312 .m2 = { .min = 3, .max = 7 }, 313 .p = { .min = 7, .max = 98 }, 314 .p1 = { .min = 1, .max = 8 }, 315 .p2 = { .dot_limit = 112000, 316 .p2_slow = 14, .p2_fast = 7 }, 317 }; 318 319 320 static const struct intel_limit intel_limits_g4x_sdvo = { 321 .dot = { .min = 25000, .max = 270000 }, 322 .vco = { .min = 1750000, .max = 3500000}, 323 .n = { .min = 1, .max = 4 }, 324 .m = { .min = 104, .max = 138 }, 325 .m1 = { .min = 17, .max = 23 }, 326 .m2 = { .min = 5, .max = 11 }, 327 .p = { .min = 10, .max = 30 }, 328 .p1 = { .min = 1, .max = 3}, 329 .p2 = { .dot_limit = 270000, 330 .p2_slow = 10, 331 .p2_fast = 10 332 }, 333 }; 334 335 static const struct intel_limit intel_limits_g4x_hdmi = { 336 .dot = { .min = 22000, .max = 400000 }, 337 .vco = { .min = 1750000, .max = 3500000}, 338 .n = { .min = 1, .max = 4 }, 339 .m = { .min = 104, .max = 138 }, 340 .m1 = { .min = 16, .max = 23 }, 341 .m2 = { .min = 5, .max = 11 }, 342 .p = { .min = 5, .max = 80 }, 343 .p1 = { .min = 1, .max = 8}, 344 .p2 = { .dot_limit = 165000, 345 .p2_slow = 10, .p2_fast = 5 }, 346 }; 347 348 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 349 .dot = { .min = 20000, .max = 115000 }, 350 .vco = { .min = 1750000, .max = 3500000 }, 351 .n = { .min = 1, .max = 3 }, 352 .m = { .min = 104, .max = 138 }, 353 .m1 = { .min = 17, .max = 23 }, 354 .m2 = { .min = 5, .max = 11 }, 355 .p = { .min = 28, .max = 112 }, 356 .p1 = { .min = 2, .max = 8 }, 357 .p2 = { .dot_limit = 0, 358 .p2_slow = 14, .p2_fast = 14 359 }, 360 }; 361 362 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 363 .dot = { .min = 80000, .max = 224000 }, 364 .vco = { .min = 1750000, .max = 3500000 }, 365 .n = { .min = 1, .max = 3 }, 366 .m = { .min = 104, .max = 138 }, 367 .m1 = { .min = 17, .max = 23 }, 368 .m2 = { .min = 5, .max = 11 }, 369 .p = { .min = 14, .max = 42 }, 370 .p1 = { .min = 2, .max = 6 }, 371 .p2 = { .dot_limit = 0, 372 .p2_slow = 7, .p2_fast = 7 373 }, 374 }; 375 376 static const struct intel_limit pnv_limits_sdvo = { 377 .dot = { .min = 20000, .max = 400000}, 378 .vco = { .min = 1700000, .max = 3500000 }, 379 /* Pineview's Ncounter is a ring counter */ 380 .n = { .min = 3, .max = 6 }, 381 .m = { .min = 2, .max = 256 }, 382 /* Pineview only has one combined m divider, which we treat as m2. */ 383 .m1 = { .min = 0, .max = 0 }, 384 .m2 = { .min = 0, .max = 254 }, 385 .p = { .min = 5, .max = 80 }, 386 .p1 = { .min = 1, .max = 8 }, 387 .p2 = { .dot_limit = 200000, 388 .p2_slow = 10, .p2_fast = 5 }, 389 }; 390 391 static const struct intel_limit pnv_limits_lvds = { 392 .dot = { .min = 20000, .max = 400000 }, 393 .vco = { .min = 1700000, .max = 3500000 }, 394 .n = { .min = 3, .max = 6 }, 395 .m = { .min = 2, .max = 256 }, 396 .m1 = { .min = 0, .max = 0 }, 397 .m2 = { .min = 0, .max = 254 }, 398 .p = { .min = 7, .max = 112 }, 399 .p1 = { .min = 1, .max = 8 }, 400 .p2 = { .dot_limit = 112000, 401 .p2_slow = 14, .p2_fast = 14 }, 402 }; 403 404 /* Ironlake / Sandybridge 405 * 406 * We calculate clock using (register_value + 2) for N/M1/M2, so here 407 * the range value for them is (actual_value - 2). 408 */ 409 static const struct intel_limit ilk_limits_dac = { 410 .dot = { .min = 25000, .max = 350000 }, 411 .vco = { .min = 1760000, .max = 3510000 }, 412 .n = { .min = 1, .max = 5 }, 413 .m = { .min = 79, .max = 127 }, 414 .m1 = { .min = 12, .max = 22 }, 415 .m2 = { .min = 5, .max = 9 }, 416 .p = { .min = 5, .max = 80 }, 417 .p1 = { .min = 1, .max = 8 }, 418 .p2 = { .dot_limit = 225000, 419 .p2_slow = 10, .p2_fast = 5 }, 420 }; 421 422 static const struct intel_limit ilk_limits_single_lvds = { 423 .dot = { .min = 25000, .max = 350000 }, 424 .vco = { .min = 1760000, .max = 3510000 }, 425 .n = { .min = 1, .max = 3 }, 426 .m = { .min = 79, .max = 118 }, 427 .m1 = { .min = 12, .max = 22 }, 428 .m2 = { .min = 5, .max = 9 }, 429 .p = { .min = 28, .max = 112 }, 430 .p1 = { .min = 2, .max = 8 }, 431 .p2 = { .dot_limit = 225000, 432 .p2_slow = 14, .p2_fast = 14 }, 433 }; 434 435 static const struct intel_limit ilk_limits_dual_lvds = { 436 .dot = { .min = 25000, .max = 350000 }, 437 .vco = { .min = 1760000, .max = 3510000 }, 438 .n = { .min = 1, .max = 3 }, 439 .m = { .min = 79, .max = 127 }, 440 .m1 = { .min = 12, .max = 22 }, 441 .m2 = { .min = 5, .max = 9 }, 442 .p = { .min = 14, .max = 56 }, 443 .p1 = { .min = 2, .max = 8 }, 444 .p2 = { .dot_limit = 225000, 445 .p2_slow = 7, .p2_fast = 7 }, 446 }; 447 448 /* LVDS 100mhz refclk limits. */ 449 static const struct intel_limit ilk_limits_single_lvds_100m = { 450 .dot = { .min = 25000, .max = 350000 }, 451 .vco = { .min = 1760000, .max = 3510000 }, 452 .n = { .min = 1, .max = 2 }, 453 .m = { .min = 79, .max = 126 }, 454 .m1 = { .min = 12, .max = 22 }, 455 .m2 = { .min = 5, .max = 9 }, 456 .p = { .min = 28, .max = 112 }, 457 .p1 = { .min = 2, .max = 8 }, 458 .p2 = { .dot_limit = 225000, 459 .p2_slow = 14, .p2_fast = 14 }, 460 }; 461 462 static const struct intel_limit ilk_limits_dual_lvds_100m = { 463 .dot = { .min = 25000, .max = 350000 }, 464 .vco = { .min = 1760000, .max = 3510000 }, 465 .n = { .min = 1, .max = 3 }, 466 .m = { .min = 79, .max = 126 }, 467 .m1 = { .min = 12, .max = 22 }, 468 .m2 = { .min = 5, .max = 9 }, 469 .p = { .min = 14, .max = 42 }, 470 .p1 = { .min = 2, .max = 6 }, 471 .p2 = { .dot_limit = 225000, 472 .p2_slow = 7, .p2_fast = 7 }, 473 }; 474 475 static const struct intel_limit intel_limits_vlv = { 476 /* 477 * These are the data rate limits (measured in fast clocks) 478 * since those are the strictest limits we have. The fast 479 * clock and actual rate limits are more relaxed, so checking 480 * them would make no difference. 481 */ 482 .dot = { .min = 25000 * 5, .max = 270000 * 5 }, 483 .vco = { .min = 4000000, .max = 6000000 }, 484 .n = { .min = 1, .max = 7 }, 485 .m1 = { .min = 2, .max = 3 }, 486 .m2 = { .min = 11, .max = 156 }, 487 .p1 = { .min = 2, .max = 3 }, 488 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 489 }; 490 491 static const struct intel_limit intel_limits_chv = { 492 /* 493 * These are the data rate limits (measured in fast clocks) 494 * since those are the strictest limits we have. The fast 495 * clock and actual rate limits are more relaxed, so checking 496 * them would make no difference. 497 */ 498 .dot = { .min = 25000 * 5, .max = 540000 * 5}, 499 .vco = { .min = 4800000, .max = 6480000 }, 500 .n = { .min = 1, .max = 1 }, 501 .m1 = { .min = 2, .max = 2 }, 502 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 503 .p1 = { .min = 2, .max = 4 }, 504 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 505 }; 506 507 static const struct intel_limit intel_limits_bxt = { 508 /* FIXME: find real dot limits */ 509 .dot = { .min = 0, .max = INT_MAX }, 510 .vco = { .min = 4800000, .max = 6700000 }, 511 .n = { .min = 1, .max = 1 }, 512 .m1 = { .min = 2, .max = 2 }, 513 /* FIXME: find real m2 limits */ 514 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 515 .p1 = { .min = 2, .max = 4 }, 516 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 517 }; 518 519 /* WA Display #0827: Gen9:all */ 520 static void 521 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 522 { 523 if (enable) 524 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 525 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 526 else 527 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 528 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 529 } 530 531 /* Wa_2006604312:icl,ehl */ 532 static void 533 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 534 bool enable) 535 { 536 if (enable) 537 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 538 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 539 else 540 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 541 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 542 } 543 544 static bool 545 needs_modeset(const struct intel_crtc_state *state) 546 { 547 return drm_atomic_crtc_needs_modeset(&state->uapi); 548 } 549 550 static bool 551 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 552 { 553 return crtc_state->master_transcoder != INVALID_TRANSCODER; 554 } 555 556 static bool 557 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 558 { 559 return crtc_state->sync_mode_slaves_mask != 0; 560 } 561 562 bool 563 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 564 { 565 return is_trans_port_sync_master(crtc_state) || 566 is_trans_port_sync_slave(crtc_state); 567 } 568 569 /* 570 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 571 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 572 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 573 * The helpers' return value is the rate of the clock that is fed to the 574 * display engine's pipe which can be the above fast dot clock rate or a 575 * divided-down version of it. 576 */ 577 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 578 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 579 { 580 clock->m = clock->m2 + 2; 581 clock->p = clock->p1 * clock->p2; 582 if (WARN_ON(clock->n == 0 || clock->p == 0)) 583 return 0; 584 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 585 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 586 587 return clock->dot; 588 } 589 590 static u32 i9xx_dpll_compute_m(struct dpll *dpll) 591 { 592 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 593 } 594 595 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 596 { 597 clock->m = i9xx_dpll_compute_m(clock); 598 clock->p = clock->p1 * clock->p2; 599 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) 600 return 0; 601 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 602 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 603 604 return clock->dot; 605 } 606 607 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 608 { 609 clock->m = clock->m1 * clock->m2; 610 clock->p = clock->p1 * clock->p2; 611 if (WARN_ON(clock->n == 0 || clock->p == 0)) 612 return 0; 613 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 614 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 615 616 return clock->dot / 5; 617 } 618 619 int chv_calc_dpll_params(int refclk, struct dpll *clock) 620 { 621 clock->m = clock->m1 * clock->m2; 622 clock->p = clock->p1 * clock->p2; 623 if (WARN_ON(clock->n == 0 || clock->p == 0)) 624 return 0; 625 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), 626 clock->n << 22); 627 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 628 629 return clock->dot / 5; 630 } 631 632 /* 633 * Returns whether the given set of divisors are valid for a given refclk with 634 * the given connectors. 635 */ 636 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv, 637 const struct intel_limit *limit, 638 const struct dpll *clock) 639 { 640 if (clock->n < limit->n.min || limit->n.max < clock->n) 641 return false; 642 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 643 return false; 644 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 645 return false; 646 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 647 return false; 648 649 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) && 650 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv)) 651 if (clock->m1 <= clock->m2) 652 return false; 653 654 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 655 !IS_GEN9_LP(dev_priv)) { 656 if (clock->p < limit->p.min || limit->p.max < clock->p) 657 return false; 658 if (clock->m < limit->m.min || limit->m.max < clock->m) 659 return false; 660 } 661 662 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 663 return false; 664 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 665 * connector, etc., rather than just a single range. 666 */ 667 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 668 return false; 669 670 return true; 671 } 672 673 static int 674 i9xx_select_p2_div(const struct intel_limit *limit, 675 const struct intel_crtc_state *crtc_state, 676 int target) 677 { 678 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 679 680 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 681 /* 682 * For LVDS just rely on its current settings for dual-channel. 683 * We haven't figured out how to reliably set up different 684 * single/dual channel state, if we even can. 685 */ 686 if (intel_is_dual_link_lvds(dev_priv)) 687 return limit->p2.p2_fast; 688 else 689 return limit->p2.p2_slow; 690 } else { 691 if (target < limit->p2.dot_limit) 692 return limit->p2.p2_slow; 693 else 694 return limit->p2.p2_fast; 695 } 696 } 697 698 /* 699 * Returns a set of divisors for the desired target clock with the given 700 * refclk, or FALSE. The returned values represent the clock equation: 701 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 702 * 703 * Target and reference clocks are specified in kHz. 704 * 705 * If match_clock is provided, then best_clock P divider must match the P 706 * divider from @match_clock used for LVDS downclocking. 707 */ 708 static bool 709 i9xx_find_best_dpll(const struct intel_limit *limit, 710 struct intel_crtc_state *crtc_state, 711 int target, int refclk, struct dpll *match_clock, 712 struct dpll *best_clock) 713 { 714 struct drm_device *dev = crtc_state->uapi.crtc->dev; 715 struct dpll clock; 716 int err = target; 717 718 memset(best_clock, 0, sizeof(*best_clock)); 719 720 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 721 722 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 723 clock.m1++) { 724 for (clock.m2 = limit->m2.min; 725 clock.m2 <= limit->m2.max; clock.m2++) { 726 if (clock.m2 >= clock.m1) 727 break; 728 for (clock.n = limit->n.min; 729 clock.n <= limit->n.max; clock.n++) { 730 for (clock.p1 = limit->p1.min; 731 clock.p1 <= limit->p1.max; clock.p1++) { 732 int this_err; 733 734 i9xx_calc_dpll_params(refclk, &clock); 735 if (!intel_pll_is_valid(to_i915(dev), 736 limit, 737 &clock)) 738 continue; 739 if (match_clock && 740 clock.p != match_clock->p) 741 continue; 742 743 this_err = abs(clock.dot - target); 744 if (this_err < err) { 745 *best_clock = clock; 746 err = this_err; 747 } 748 } 749 } 750 } 751 } 752 753 return (err != target); 754 } 755 756 /* 757 * Returns a set of divisors for the desired target clock with the given 758 * refclk, or FALSE. The returned values represent the clock equation: 759 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 760 * 761 * Target and reference clocks are specified in kHz. 762 * 763 * If match_clock is provided, then best_clock P divider must match the P 764 * divider from @match_clock used for LVDS downclocking. 765 */ 766 static bool 767 pnv_find_best_dpll(const struct intel_limit *limit, 768 struct intel_crtc_state *crtc_state, 769 int target, int refclk, struct dpll *match_clock, 770 struct dpll *best_clock) 771 { 772 struct drm_device *dev = crtc_state->uapi.crtc->dev; 773 struct dpll clock; 774 int err = target; 775 776 memset(best_clock, 0, sizeof(*best_clock)); 777 778 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 779 780 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 781 clock.m1++) { 782 for (clock.m2 = limit->m2.min; 783 clock.m2 <= limit->m2.max; clock.m2++) { 784 for (clock.n = limit->n.min; 785 clock.n <= limit->n.max; clock.n++) { 786 for (clock.p1 = limit->p1.min; 787 clock.p1 <= limit->p1.max; clock.p1++) { 788 int this_err; 789 790 pnv_calc_dpll_params(refclk, &clock); 791 if (!intel_pll_is_valid(to_i915(dev), 792 limit, 793 &clock)) 794 continue; 795 if (match_clock && 796 clock.p != match_clock->p) 797 continue; 798 799 this_err = abs(clock.dot - target); 800 if (this_err < err) { 801 *best_clock = clock; 802 err = this_err; 803 } 804 } 805 } 806 } 807 } 808 809 return (err != target); 810 } 811 812 /* 813 * Returns a set of divisors for the desired target clock with the given 814 * refclk, or FALSE. The returned values represent the clock equation: 815 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 816 * 817 * Target and reference clocks are specified in kHz. 818 * 819 * If match_clock is provided, then best_clock P divider must match the P 820 * divider from @match_clock used for LVDS downclocking. 821 */ 822 static bool 823 g4x_find_best_dpll(const struct intel_limit *limit, 824 struct intel_crtc_state *crtc_state, 825 int target, int refclk, struct dpll *match_clock, 826 struct dpll *best_clock) 827 { 828 struct drm_device *dev = crtc_state->uapi.crtc->dev; 829 struct dpll clock; 830 int max_n; 831 bool found = false; 832 /* approximately equals target * 0.00585 */ 833 int err_most = (target >> 8) + (target >> 9); 834 835 memset(best_clock, 0, sizeof(*best_clock)); 836 837 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 838 839 max_n = limit->n.max; 840 /* based on hardware requirement, prefer smaller n to precision */ 841 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 842 /* based on hardware requirement, prefere larger m1,m2 */ 843 for (clock.m1 = limit->m1.max; 844 clock.m1 >= limit->m1.min; clock.m1--) { 845 for (clock.m2 = limit->m2.max; 846 clock.m2 >= limit->m2.min; clock.m2--) { 847 for (clock.p1 = limit->p1.max; 848 clock.p1 >= limit->p1.min; clock.p1--) { 849 int this_err; 850 851 i9xx_calc_dpll_params(refclk, &clock); 852 if (!intel_pll_is_valid(to_i915(dev), 853 limit, 854 &clock)) 855 continue; 856 857 this_err = abs(clock.dot - target); 858 if (this_err < err_most) { 859 *best_clock = clock; 860 err_most = this_err; 861 max_n = clock.n; 862 found = true; 863 } 864 } 865 } 866 } 867 } 868 return found; 869 } 870 871 /* 872 * Check if the calculated PLL configuration is more optimal compared to the 873 * best configuration and error found so far. Return the calculated error. 874 */ 875 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, 876 const struct dpll *calculated_clock, 877 const struct dpll *best_clock, 878 unsigned int best_error_ppm, 879 unsigned int *error_ppm) 880 { 881 /* 882 * For CHV ignore the error and consider only the P value. 883 * Prefer a bigger P value based on HW requirements. 884 */ 885 if (IS_CHERRYVIEW(to_i915(dev))) { 886 *error_ppm = 0; 887 888 return calculated_clock->p > best_clock->p; 889 } 890 891 if (drm_WARN_ON_ONCE(dev, !target_freq)) 892 return false; 893 894 *error_ppm = div_u64(1000000ULL * 895 abs(target_freq - calculated_clock->dot), 896 target_freq); 897 /* 898 * Prefer a better P value over a better (smaller) error if the error 899 * is small. Ensure this preference for future configurations too by 900 * setting the error to 0. 901 */ 902 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 903 *error_ppm = 0; 904 905 return true; 906 } 907 908 return *error_ppm + 10 < best_error_ppm; 909 } 910 911 /* 912 * Returns a set of divisors for the desired target clock with the given 913 * refclk, or FALSE. The returned values represent the clock equation: 914 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 915 */ 916 static bool 917 vlv_find_best_dpll(const struct intel_limit *limit, 918 struct intel_crtc_state *crtc_state, 919 int target, int refclk, struct dpll *match_clock, 920 struct dpll *best_clock) 921 { 922 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 923 struct drm_device *dev = crtc->base.dev; 924 struct dpll clock; 925 unsigned int bestppm = 1000000; 926 /* min update 19.2 MHz */ 927 int max_n = min(limit->n.max, refclk / 19200); 928 bool found = false; 929 930 target *= 5; /* fast clock */ 931 932 memset(best_clock, 0, sizeof(*best_clock)); 933 934 /* based on hardware requirement, prefer smaller n to precision */ 935 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 936 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 937 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 938 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 939 clock.p = clock.p1 * clock.p2; 940 /* based on hardware requirement, prefer bigger m1,m2 values */ 941 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 942 unsigned int ppm; 943 944 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 945 refclk * clock.m1); 946 947 vlv_calc_dpll_params(refclk, &clock); 948 949 if (!intel_pll_is_valid(to_i915(dev), 950 limit, 951 &clock)) 952 continue; 953 954 if (!vlv_PLL_is_optimal(dev, target, 955 &clock, 956 best_clock, 957 bestppm, &ppm)) 958 continue; 959 960 *best_clock = clock; 961 bestppm = ppm; 962 found = true; 963 } 964 } 965 } 966 } 967 968 return found; 969 } 970 971 /* 972 * Returns a set of divisors for the desired target clock with the given 973 * refclk, or FALSE. The returned values represent the clock equation: 974 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 975 */ 976 static bool 977 chv_find_best_dpll(const struct intel_limit *limit, 978 struct intel_crtc_state *crtc_state, 979 int target, int refclk, struct dpll *match_clock, 980 struct dpll *best_clock) 981 { 982 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 983 struct drm_device *dev = crtc->base.dev; 984 unsigned int best_error_ppm; 985 struct dpll clock; 986 u64 m2; 987 int found = false; 988 989 memset(best_clock, 0, sizeof(*best_clock)); 990 best_error_ppm = 1000000; 991 992 /* 993 * Based on hardware doc, the n always set to 1, and m1 always 994 * set to 2. If requires to support 200Mhz refclk, we need to 995 * revisit this because n may not 1 anymore. 996 */ 997 clock.n = 1, clock.m1 = 2; 998 target *= 5; /* fast clock */ 999 1000 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 1001 for (clock.p2 = limit->p2.p2_fast; 1002 clock.p2 >= limit->p2.p2_slow; 1003 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 1004 unsigned int error_ppm; 1005 1006 clock.p = clock.p1 * clock.p2; 1007 1008 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 1009 refclk * clock.m1); 1010 1011 if (m2 > INT_MAX/clock.m1) 1012 continue; 1013 1014 clock.m2 = m2; 1015 1016 chv_calc_dpll_params(refclk, &clock); 1017 1018 if (!intel_pll_is_valid(to_i915(dev), limit, &clock)) 1019 continue; 1020 1021 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, 1022 best_error_ppm, &error_ppm)) 1023 continue; 1024 1025 *best_clock = clock; 1026 best_error_ppm = error_ppm; 1027 found = true; 1028 } 1029 } 1030 1031 return found; 1032 } 1033 1034 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 1035 struct dpll *best_clock) 1036 { 1037 int refclk = 100000; 1038 const struct intel_limit *limit = &intel_limits_bxt; 1039 1040 return chv_find_best_dpll(limit, crtc_state, 1041 crtc_state->port_clock, refclk, 1042 NULL, best_clock); 1043 } 1044 1045 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 1046 enum pipe pipe) 1047 { 1048 i915_reg_t reg = PIPEDSL(pipe); 1049 u32 line1, line2; 1050 u32 line_mask; 1051 1052 if (IS_GEN(dev_priv, 2)) 1053 line_mask = DSL_LINEMASK_GEN2; 1054 else 1055 line_mask = DSL_LINEMASK_GEN3; 1056 1057 line1 = intel_de_read(dev_priv, reg) & line_mask; 1058 msleep(5); 1059 line2 = intel_de_read(dev_priv, reg) & line_mask; 1060 1061 return line1 != line2; 1062 } 1063 1064 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 1065 { 1066 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1067 enum pipe pipe = crtc->pipe; 1068 1069 /* Wait for the display line to settle/start moving */ 1070 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 1071 drm_err(&dev_priv->drm, 1072 "pipe %c scanline %s wait timed out\n", 1073 pipe_name(pipe), onoff(state)); 1074 } 1075 1076 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 1077 { 1078 wait_for_pipe_scanline_moving(crtc, false); 1079 } 1080 1081 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 1082 { 1083 wait_for_pipe_scanline_moving(crtc, true); 1084 } 1085 1086 static void 1087 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 1088 { 1089 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1090 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1091 1092 if (INTEL_GEN(dev_priv) >= 4) { 1093 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1094 i915_reg_t reg = PIPECONF(cpu_transcoder); 1095 1096 /* Wait for the Pipe State to go off */ 1097 if (intel_de_wait_for_clear(dev_priv, reg, 1098 I965_PIPECONF_ACTIVE, 100)) 1099 drm_WARN(&dev_priv->drm, 1, 1100 "pipe_off wait timed out\n"); 1101 } else { 1102 intel_wait_for_pipe_scanline_stopped(crtc); 1103 } 1104 } 1105 1106 /* Only for pre-ILK configs */ 1107 void assert_pll(struct drm_i915_private *dev_priv, 1108 enum pipe pipe, bool state) 1109 { 1110 u32 val; 1111 bool cur_state; 1112 1113 val = intel_de_read(dev_priv, DPLL(pipe)); 1114 cur_state = !!(val & DPLL_VCO_ENABLE); 1115 I915_STATE_WARN(cur_state != state, 1116 "PLL state assertion failure (expected %s, current %s)\n", 1117 onoff(state), onoff(cur_state)); 1118 } 1119 1120 /* XXX: the dsi pll is shared between MIPI DSI ports */ 1121 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 1122 { 1123 u32 val; 1124 bool cur_state; 1125 1126 vlv_cck_get(dev_priv); 1127 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 1128 vlv_cck_put(dev_priv); 1129 1130 cur_state = val & DSI_PLL_VCO_EN; 1131 I915_STATE_WARN(cur_state != state, 1132 "DSI PLL state assertion failure (expected %s, current %s)\n", 1133 onoff(state), onoff(cur_state)); 1134 } 1135 1136 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 1137 enum pipe pipe, bool state) 1138 { 1139 bool cur_state; 1140 1141 if (HAS_DDI(dev_priv)) { 1142 /* 1143 * DDI does not have a specific FDI_TX register. 1144 * 1145 * FDI is never fed from EDP transcoder 1146 * so pipe->transcoder cast is fine here. 1147 */ 1148 enum transcoder cpu_transcoder = (enum transcoder)pipe; 1149 u32 val = intel_de_read(dev_priv, 1150 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 1151 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 1152 } else { 1153 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 1154 cur_state = !!(val & FDI_TX_ENABLE); 1155 } 1156 I915_STATE_WARN(cur_state != state, 1157 "FDI TX state assertion failure (expected %s, current %s)\n", 1158 onoff(state), onoff(cur_state)); 1159 } 1160 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 1161 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 1162 1163 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 1164 enum pipe pipe, bool state) 1165 { 1166 u32 val; 1167 bool cur_state; 1168 1169 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 1170 cur_state = !!(val & FDI_RX_ENABLE); 1171 I915_STATE_WARN(cur_state != state, 1172 "FDI RX state assertion failure (expected %s, current %s)\n", 1173 onoff(state), onoff(cur_state)); 1174 } 1175 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 1176 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 1177 1178 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 1179 enum pipe pipe) 1180 { 1181 u32 val; 1182 1183 /* ILK FDI PLL is always enabled */ 1184 if (IS_GEN(dev_priv, 5)) 1185 return; 1186 1187 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 1188 if (HAS_DDI(dev_priv)) 1189 return; 1190 1191 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 1192 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 1193 } 1194 1195 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 1196 enum pipe pipe, bool state) 1197 { 1198 u32 val; 1199 bool cur_state; 1200 1201 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 1202 cur_state = !!(val & FDI_RX_PLL_ENABLE); 1203 I915_STATE_WARN(cur_state != state, 1204 "FDI RX PLL assertion failure (expected %s, current %s)\n", 1205 onoff(state), onoff(cur_state)); 1206 } 1207 1208 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 1209 { 1210 i915_reg_t pp_reg; 1211 u32 val; 1212 enum pipe panel_pipe = INVALID_PIPE; 1213 bool locked = true; 1214 1215 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 1216 return; 1217 1218 if (HAS_PCH_SPLIT(dev_priv)) { 1219 u32 port_sel; 1220 1221 pp_reg = PP_CONTROL(0); 1222 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1223 1224 switch (port_sel) { 1225 case PANEL_PORT_SELECT_LVDS: 1226 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 1227 break; 1228 case PANEL_PORT_SELECT_DPA: 1229 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 1230 break; 1231 case PANEL_PORT_SELECT_DPC: 1232 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 1233 break; 1234 case PANEL_PORT_SELECT_DPD: 1235 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 1236 break; 1237 default: 1238 MISSING_CASE(port_sel); 1239 break; 1240 } 1241 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1242 /* presumably write lock depends on pipe, not port select */ 1243 pp_reg = PP_CONTROL(pipe); 1244 panel_pipe = pipe; 1245 } else { 1246 u32 port_sel; 1247 1248 pp_reg = PP_CONTROL(0); 1249 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1250 1251 drm_WARN_ON(&dev_priv->drm, 1252 port_sel != PANEL_PORT_SELECT_LVDS); 1253 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 1254 } 1255 1256 val = intel_de_read(dev_priv, pp_reg); 1257 if (!(val & PANEL_POWER_ON) || 1258 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 1259 locked = false; 1260 1261 I915_STATE_WARN(panel_pipe == pipe && locked, 1262 "panel assertion failure, pipe %c regs locked\n", 1263 pipe_name(pipe)); 1264 } 1265 1266 void assert_pipe(struct drm_i915_private *dev_priv, 1267 enum transcoder cpu_transcoder, bool state) 1268 { 1269 bool cur_state; 1270 enum intel_display_power_domain power_domain; 1271 intel_wakeref_t wakeref; 1272 1273 /* we keep both pipes enabled on 830 */ 1274 if (IS_I830(dev_priv)) 1275 state = true; 1276 1277 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 1278 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 1279 if (wakeref) { 1280 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 1281 cur_state = !!(val & PIPECONF_ENABLE); 1282 1283 intel_display_power_put(dev_priv, power_domain, wakeref); 1284 } else { 1285 cur_state = false; 1286 } 1287 1288 I915_STATE_WARN(cur_state != state, 1289 "transcoder %s assertion failure (expected %s, current %s)\n", 1290 transcoder_name(cpu_transcoder), 1291 onoff(state), onoff(cur_state)); 1292 } 1293 1294 static void assert_plane(struct intel_plane *plane, bool state) 1295 { 1296 enum pipe pipe; 1297 bool cur_state; 1298 1299 cur_state = plane->get_hw_state(plane, &pipe); 1300 1301 I915_STATE_WARN(cur_state != state, 1302 "%s assertion failure (expected %s, current %s)\n", 1303 plane->base.name, onoff(state), onoff(cur_state)); 1304 } 1305 1306 #define assert_plane_enabled(p) assert_plane(p, true) 1307 #define assert_plane_disabled(p) assert_plane(p, false) 1308 1309 static void assert_planes_disabled(struct intel_crtc *crtc) 1310 { 1311 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1312 struct intel_plane *plane; 1313 1314 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 1315 assert_plane_disabled(plane); 1316 } 1317 1318 static void assert_vblank_disabled(struct drm_crtc *crtc) 1319 { 1320 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) 1321 drm_crtc_vblank_put(crtc); 1322 } 1323 1324 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 1325 enum pipe pipe) 1326 { 1327 u32 val; 1328 bool enabled; 1329 1330 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 1331 enabled = !!(val & TRANS_ENABLE); 1332 I915_STATE_WARN(enabled, 1333 "transcoder assertion failed, should be off on pipe %c but is still active\n", 1334 pipe_name(pipe)); 1335 } 1336 1337 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 1338 enum pipe pipe, enum port port, 1339 i915_reg_t dp_reg) 1340 { 1341 enum pipe port_pipe; 1342 bool state; 1343 1344 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 1345 1346 I915_STATE_WARN(state && port_pipe == pipe, 1347 "PCH DP %c enabled on transcoder %c, should be disabled\n", 1348 port_name(port), pipe_name(pipe)); 1349 1350 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1351 "IBX PCH DP %c still using transcoder B\n", 1352 port_name(port)); 1353 } 1354 1355 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 1356 enum pipe pipe, enum port port, 1357 i915_reg_t hdmi_reg) 1358 { 1359 enum pipe port_pipe; 1360 bool state; 1361 1362 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 1363 1364 I915_STATE_WARN(state && port_pipe == pipe, 1365 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 1366 port_name(port), pipe_name(pipe)); 1367 1368 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1369 "IBX PCH HDMI %c still using transcoder B\n", 1370 port_name(port)); 1371 } 1372 1373 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 1374 enum pipe pipe) 1375 { 1376 enum pipe port_pipe; 1377 1378 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 1379 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 1380 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 1381 1382 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 1383 port_pipe == pipe, 1384 "PCH VGA enabled on transcoder %c, should be disabled\n", 1385 pipe_name(pipe)); 1386 1387 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 1388 port_pipe == pipe, 1389 "PCH LVDS enabled on transcoder %c, should be disabled\n", 1390 pipe_name(pipe)); 1391 1392 /* PCH SDVOB multiplex with HDMIB */ 1393 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 1394 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 1395 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 1396 } 1397 1398 static void _vlv_enable_pll(struct intel_crtc *crtc, 1399 const struct intel_crtc_state *pipe_config) 1400 { 1401 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1402 enum pipe pipe = crtc->pipe; 1403 1404 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1405 intel_de_posting_read(dev_priv, DPLL(pipe)); 1406 udelay(150); 1407 1408 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1409 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe); 1410 } 1411 1412 static void vlv_enable_pll(struct intel_crtc *crtc, 1413 const struct intel_crtc_state *pipe_config) 1414 { 1415 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1416 enum pipe pipe = crtc->pipe; 1417 1418 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1419 1420 /* PLL is protected by panel, make sure we can write it */ 1421 assert_panel_unlocked(dev_priv, pipe); 1422 1423 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1424 _vlv_enable_pll(crtc, pipe_config); 1425 1426 intel_de_write(dev_priv, DPLL_MD(pipe), 1427 pipe_config->dpll_hw_state.dpll_md); 1428 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 1429 } 1430 1431 1432 static void _chv_enable_pll(struct intel_crtc *crtc, 1433 const struct intel_crtc_state *pipe_config) 1434 { 1435 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1436 enum pipe pipe = crtc->pipe; 1437 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1438 u32 tmp; 1439 1440 vlv_dpio_get(dev_priv); 1441 1442 /* Enable back the 10bit clock to display controller */ 1443 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1444 tmp |= DPIO_DCLKP_EN; 1445 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); 1446 1447 vlv_dpio_put(dev_priv); 1448 1449 /* 1450 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 1451 */ 1452 udelay(1); 1453 1454 /* Enable PLL */ 1455 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1456 1457 /* Check PLL is locked */ 1458 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1459 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe); 1460 } 1461 1462 static void chv_enable_pll(struct intel_crtc *crtc, 1463 const struct intel_crtc_state *pipe_config) 1464 { 1465 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1466 enum pipe pipe = crtc->pipe; 1467 1468 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1469 1470 /* PLL is protected by panel, make sure we can write it */ 1471 assert_panel_unlocked(dev_priv, pipe); 1472 1473 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1474 _chv_enable_pll(crtc, pipe_config); 1475 1476 if (pipe != PIPE_A) { 1477 /* 1478 * WaPixelRepeatModeFixForC0:chv 1479 * 1480 * DPLLCMD is AWOL. Use chicken bits to propagate 1481 * the value from DPLLBMD to either pipe B or C. 1482 */ 1483 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 1484 intel_de_write(dev_priv, DPLL_MD(PIPE_B), 1485 pipe_config->dpll_hw_state.dpll_md); 1486 intel_de_write(dev_priv, CBR4_VLV, 0); 1487 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; 1488 1489 /* 1490 * DPLLB VGA mode also seems to cause problems. 1491 * We should always have it disabled. 1492 */ 1493 drm_WARN_ON(&dev_priv->drm, 1494 (intel_de_read(dev_priv, DPLL(PIPE_B)) & 1495 DPLL_VGA_MODE_DIS) == 0); 1496 } else { 1497 intel_de_write(dev_priv, DPLL_MD(pipe), 1498 pipe_config->dpll_hw_state.dpll_md); 1499 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 1500 } 1501 } 1502 1503 static bool i9xx_has_pps(struct drm_i915_private *dev_priv) 1504 { 1505 if (IS_I830(dev_priv)) 1506 return false; 1507 1508 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 1509 } 1510 1511 static void i9xx_enable_pll(struct intel_crtc *crtc, 1512 const struct intel_crtc_state *crtc_state) 1513 { 1514 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1515 i915_reg_t reg = DPLL(crtc->pipe); 1516 u32 dpll = crtc_state->dpll_hw_state.dpll; 1517 int i; 1518 1519 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 1520 1521 /* PLL is protected by panel, make sure we can write it */ 1522 if (i9xx_has_pps(dev_priv)) 1523 assert_panel_unlocked(dev_priv, crtc->pipe); 1524 1525 /* 1526 * Apparently we need to have VGA mode enabled prior to changing 1527 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1528 * dividers, even though the register value does change. 1529 */ 1530 intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS); 1531 intel_de_write(dev_priv, reg, dpll); 1532 1533 /* Wait for the clocks to stabilize. */ 1534 intel_de_posting_read(dev_priv, reg); 1535 udelay(150); 1536 1537 if (INTEL_GEN(dev_priv) >= 4) { 1538 intel_de_write(dev_priv, DPLL_MD(crtc->pipe), 1539 crtc_state->dpll_hw_state.dpll_md); 1540 } else { 1541 /* The pixel multiplier can only be updated once the 1542 * DPLL is enabled and the clocks are stable. 1543 * 1544 * So write it again. 1545 */ 1546 intel_de_write(dev_priv, reg, dpll); 1547 } 1548 1549 /* We do this three times for luck */ 1550 for (i = 0; i < 3; i++) { 1551 intel_de_write(dev_priv, reg, dpll); 1552 intel_de_posting_read(dev_priv, reg); 1553 udelay(150); /* wait for warmup */ 1554 } 1555 } 1556 1557 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 1558 { 1559 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1560 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1561 enum pipe pipe = crtc->pipe; 1562 1563 /* Don't disable pipe or pipe PLLs if needed */ 1564 if (IS_I830(dev_priv)) 1565 return; 1566 1567 /* Make sure the pipe isn't still relying on us */ 1568 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 1569 1570 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 1571 intel_de_posting_read(dev_priv, DPLL(pipe)); 1572 } 1573 1574 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1575 { 1576 u32 val; 1577 1578 /* Make sure the pipe isn't still relying on us */ 1579 assert_pipe_disabled(dev_priv, (enum transcoder)pipe); 1580 1581 val = DPLL_INTEGRATED_REF_CLK_VLV | 1582 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1583 if (pipe != PIPE_A) 1584 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1585 1586 intel_de_write(dev_priv, DPLL(pipe), val); 1587 intel_de_posting_read(dev_priv, DPLL(pipe)); 1588 } 1589 1590 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1591 { 1592 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1593 u32 val; 1594 1595 /* Make sure the pipe isn't still relying on us */ 1596 assert_pipe_disabled(dev_priv, (enum transcoder)pipe); 1597 1598 val = DPLL_SSC_REF_CLK_CHV | 1599 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1600 if (pipe != PIPE_A) 1601 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1602 1603 intel_de_write(dev_priv, DPLL(pipe), val); 1604 intel_de_posting_read(dev_priv, DPLL(pipe)); 1605 1606 vlv_dpio_get(dev_priv); 1607 1608 /* Disable 10bit clock to display controller */ 1609 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1610 val &= ~DPIO_DCLKP_EN; 1611 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); 1612 1613 vlv_dpio_put(dev_priv); 1614 } 1615 1616 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 1617 struct intel_digital_port *dig_port, 1618 unsigned int expected_mask) 1619 { 1620 u32 port_mask; 1621 i915_reg_t dpll_reg; 1622 1623 switch (dig_port->base.port) { 1624 case PORT_B: 1625 port_mask = DPLL_PORTB_READY_MASK; 1626 dpll_reg = DPLL(0); 1627 break; 1628 case PORT_C: 1629 port_mask = DPLL_PORTC_READY_MASK; 1630 dpll_reg = DPLL(0); 1631 expected_mask <<= 4; 1632 break; 1633 case PORT_D: 1634 port_mask = DPLL_PORTD_READY_MASK; 1635 dpll_reg = DPIO_PHY_STATUS; 1636 break; 1637 default: 1638 BUG(); 1639 } 1640 1641 if (intel_de_wait_for_register(dev_priv, dpll_reg, 1642 port_mask, expected_mask, 1000)) 1643 drm_WARN(&dev_priv->drm, 1, 1644 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 1645 dig_port->base.base.base.id, dig_port->base.base.name, 1646 intel_de_read(dev_priv, dpll_reg) & port_mask, 1647 expected_mask); 1648 } 1649 1650 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 1651 { 1652 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1653 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1654 enum pipe pipe = crtc->pipe; 1655 i915_reg_t reg; 1656 u32 val, pipeconf_val; 1657 1658 /* Make sure PCH DPLL is enabled */ 1659 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 1660 1661 /* FDI must be feeding us bits for PCH ports */ 1662 assert_fdi_tx_enabled(dev_priv, pipe); 1663 assert_fdi_rx_enabled(dev_priv, pipe); 1664 1665 if (HAS_PCH_CPT(dev_priv)) { 1666 reg = TRANS_CHICKEN2(pipe); 1667 val = intel_de_read(dev_priv, reg); 1668 /* 1669 * Workaround: Set the timing override bit 1670 * before enabling the pch transcoder. 1671 */ 1672 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1673 /* Configure frame start delay to match the CPU */ 1674 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 1675 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 1676 intel_de_write(dev_priv, reg, val); 1677 } 1678 1679 reg = PCH_TRANSCONF(pipe); 1680 val = intel_de_read(dev_priv, reg); 1681 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 1682 1683 if (HAS_PCH_IBX(dev_priv)) { 1684 /* Configure frame start delay to match the CPU */ 1685 val &= ~TRANS_FRAME_START_DELAY_MASK; 1686 val |= TRANS_FRAME_START_DELAY(0); 1687 1688 /* 1689 * Make the BPC in transcoder be consistent with 1690 * that in pipeconf reg. For HDMI we must use 8bpc 1691 * here for both 8bpc and 12bpc. 1692 */ 1693 val &= ~PIPECONF_BPC_MASK; 1694 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1695 val |= PIPECONF_8BPC; 1696 else 1697 val |= pipeconf_val & PIPECONF_BPC_MASK; 1698 } 1699 1700 val &= ~TRANS_INTERLACE_MASK; 1701 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 1702 if (HAS_PCH_IBX(dev_priv) && 1703 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 1704 val |= TRANS_LEGACY_INTERLACED_ILK; 1705 else 1706 val |= TRANS_INTERLACED; 1707 } else { 1708 val |= TRANS_PROGRESSIVE; 1709 } 1710 1711 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 1712 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 1713 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 1714 pipe_name(pipe)); 1715 } 1716 1717 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 1718 enum transcoder cpu_transcoder) 1719 { 1720 u32 val, pipeconf_val; 1721 1722 /* FDI must be feeding us bits for PCH ports */ 1723 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 1724 assert_fdi_rx_enabled(dev_priv, PIPE_A); 1725 1726 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 1727 /* Workaround: set timing override bit. */ 1728 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1729 /* Configure frame start delay to match the CPU */ 1730 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 1731 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 1732 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 1733 1734 val = TRANS_ENABLE; 1735 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 1736 1737 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 1738 PIPECONF_INTERLACED_ILK) 1739 val |= TRANS_INTERLACED; 1740 else 1741 val |= TRANS_PROGRESSIVE; 1742 1743 intel_de_write(dev_priv, LPT_TRANSCONF, val); 1744 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 1745 TRANS_STATE_ENABLE, 100)) 1746 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 1747 } 1748 1749 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 1750 enum pipe pipe) 1751 { 1752 i915_reg_t reg; 1753 u32 val; 1754 1755 /* FDI relies on the transcoder */ 1756 assert_fdi_tx_disabled(dev_priv, pipe); 1757 assert_fdi_rx_disabled(dev_priv, pipe); 1758 1759 /* Ports must be off as well */ 1760 assert_pch_ports_disabled(dev_priv, pipe); 1761 1762 reg = PCH_TRANSCONF(pipe); 1763 val = intel_de_read(dev_priv, reg); 1764 val &= ~TRANS_ENABLE; 1765 intel_de_write(dev_priv, reg, val); 1766 /* wait for PCH transcoder off, transcoder state */ 1767 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 1768 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 1769 pipe_name(pipe)); 1770 1771 if (HAS_PCH_CPT(dev_priv)) { 1772 /* Workaround: Clear the timing override chicken bit again. */ 1773 reg = TRANS_CHICKEN2(pipe); 1774 val = intel_de_read(dev_priv, reg); 1775 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1776 intel_de_write(dev_priv, reg, val); 1777 } 1778 } 1779 1780 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 1781 { 1782 u32 val; 1783 1784 val = intel_de_read(dev_priv, LPT_TRANSCONF); 1785 val &= ~TRANS_ENABLE; 1786 intel_de_write(dev_priv, LPT_TRANSCONF, val); 1787 /* wait for PCH transcoder off, transcoder state */ 1788 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 1789 TRANS_STATE_ENABLE, 50)) 1790 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 1791 1792 /* Workaround: clear timing override bit. */ 1793 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 1794 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1795 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 1796 } 1797 1798 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 1799 { 1800 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1801 1802 if (HAS_PCH_LPT(dev_priv)) 1803 return PIPE_A; 1804 else 1805 return crtc->pipe; 1806 } 1807 1808 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) 1809 { 1810 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1811 1812 /* 1813 * On i965gm the hardware frame counter reads 1814 * zero when the TV encoder is enabled :( 1815 */ 1816 if (IS_I965GM(dev_priv) && 1817 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) 1818 return 0; 1819 1820 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1821 return 0xffffffff; /* full 32 bit counter */ 1822 else if (INTEL_GEN(dev_priv) >= 3) 1823 return 0xffffff; /* only 24 bits of frame count */ 1824 else 1825 return 0; /* Gen2 doesn't have a hardware frame counter */ 1826 } 1827 1828 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) 1829 { 1830 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1831 1832 assert_vblank_disabled(&crtc->base); 1833 drm_crtc_set_max_vblank_count(&crtc->base, 1834 intel_crtc_max_vblank_count(crtc_state)); 1835 drm_crtc_vblank_on(&crtc->base); 1836 } 1837 1838 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state) 1839 { 1840 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1841 1842 drm_crtc_vblank_off(&crtc->base); 1843 assert_vblank_disabled(&crtc->base); 1844 } 1845 1846 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 1847 { 1848 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 1849 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1850 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 1851 enum pipe pipe = crtc->pipe; 1852 i915_reg_t reg; 1853 u32 val; 1854 1855 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 1856 1857 assert_planes_disabled(crtc); 1858 1859 /* 1860 * A pipe without a PLL won't actually be able to drive bits from 1861 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 1862 * need the check. 1863 */ 1864 if (HAS_GMCH(dev_priv)) { 1865 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 1866 assert_dsi_pll_enabled(dev_priv); 1867 else 1868 assert_pll_enabled(dev_priv, pipe); 1869 } else { 1870 if (new_crtc_state->has_pch_encoder) { 1871 /* if driving the PCH, we need FDI enabled */ 1872 assert_fdi_rx_pll_enabled(dev_priv, 1873 intel_crtc_pch_transcoder(crtc)); 1874 assert_fdi_tx_pll_enabled(dev_priv, 1875 (enum pipe) cpu_transcoder); 1876 } 1877 /* FIXME: assert CPU port conditions for SNB+ */ 1878 } 1879 1880 trace_intel_pipe_enable(crtc); 1881 1882 reg = PIPECONF(cpu_transcoder); 1883 val = intel_de_read(dev_priv, reg); 1884 if (val & PIPECONF_ENABLE) { 1885 /* we keep both pipes enabled on 830 */ 1886 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 1887 return; 1888 } 1889 1890 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 1891 intel_de_posting_read(dev_priv, reg); 1892 1893 /* 1894 * Until the pipe starts PIPEDSL reads will return a stale value, 1895 * which causes an apparent vblank timestamp jump when PIPEDSL 1896 * resets to its proper value. That also messes up the frame count 1897 * when it's derived from the timestamps. So let's wait for the 1898 * pipe to start properly before we call drm_crtc_vblank_on() 1899 */ 1900 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1901 intel_wait_for_pipe_scanline_moving(crtc); 1902 } 1903 1904 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1905 { 1906 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1907 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1908 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1909 enum pipe pipe = crtc->pipe; 1910 i915_reg_t reg; 1911 u32 val; 1912 1913 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 1914 1915 /* 1916 * Make sure planes won't keep trying to pump pixels to us, 1917 * or we might hang the display. 1918 */ 1919 assert_planes_disabled(crtc); 1920 1921 trace_intel_pipe_disable(crtc); 1922 1923 reg = PIPECONF(cpu_transcoder); 1924 val = intel_de_read(dev_priv, reg); 1925 if ((val & PIPECONF_ENABLE) == 0) 1926 return; 1927 1928 /* 1929 * Double wide has implications for planes 1930 * so best keep it disabled when not needed. 1931 */ 1932 if (old_crtc_state->double_wide) 1933 val &= ~PIPECONF_DOUBLE_WIDE; 1934 1935 /* Don't disable pipe or pipe PLLs if needed */ 1936 if (!IS_I830(dev_priv)) 1937 val &= ~PIPECONF_ENABLE; 1938 1939 intel_de_write(dev_priv, reg, val); 1940 if ((val & PIPECONF_ENABLE) == 0) 1941 intel_wait_for_pipe_off(old_crtc_state); 1942 } 1943 1944 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) 1945 { 1946 return IS_GEN(dev_priv, 2) ? 2048 : 4096; 1947 } 1948 1949 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane) 1950 { 1951 if (!is_ccs_modifier(fb->modifier)) 1952 return false; 1953 1954 return plane >= fb->format->num_planes / 2; 1955 } 1956 1957 static bool is_gen12_ccs_modifier(u64 modifier) 1958 { 1959 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || 1960 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; 1961 1962 } 1963 1964 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane) 1965 { 1966 return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane); 1967 } 1968 1969 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane) 1970 { 1971 if (is_ccs_modifier(fb->modifier)) 1972 return is_ccs_plane(fb, plane); 1973 1974 return plane == 1; 1975 } 1976 1977 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane) 1978 { 1979 drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) || 1980 (main_plane && main_plane >= fb->format->num_planes / 2)); 1981 1982 return fb->format->num_planes / 2 + main_plane; 1983 } 1984 1985 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane) 1986 { 1987 drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) || 1988 ccs_plane < fb->format->num_planes / 2); 1989 1990 return ccs_plane - fb->format->num_planes / 2; 1991 } 1992 1993 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */ 1994 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane) 1995 { 1996 if (is_ccs_modifier(fb->modifier)) 1997 return main_to_ccs_plane(fb, main_plane); 1998 1999 return 1; 2000 } 2001 2002 bool 2003 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 2004 uint64_t modifier) 2005 { 2006 return info->is_yuv && 2007 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 2008 } 2009 2010 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb, 2011 int color_plane) 2012 { 2013 return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) && 2014 color_plane == 1; 2015 } 2016 2017 static unsigned int 2018 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 2019 { 2020 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2021 unsigned int cpp = fb->format->cpp[color_plane]; 2022 2023 switch (fb->modifier) { 2024 case DRM_FORMAT_MOD_LINEAR: 2025 return intel_tile_size(dev_priv); 2026 case I915_FORMAT_MOD_X_TILED: 2027 if (IS_GEN(dev_priv, 2)) 2028 return 128; 2029 else 2030 return 512; 2031 case I915_FORMAT_MOD_Y_TILED_CCS: 2032 if (is_ccs_plane(fb, color_plane)) 2033 return 128; 2034 fallthrough; 2035 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2036 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2037 if (is_ccs_plane(fb, color_plane)) 2038 return 64; 2039 fallthrough; 2040 case I915_FORMAT_MOD_Y_TILED: 2041 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv)) 2042 return 128; 2043 else 2044 return 512; 2045 case I915_FORMAT_MOD_Yf_TILED_CCS: 2046 if (is_ccs_plane(fb, color_plane)) 2047 return 128; 2048 fallthrough; 2049 case I915_FORMAT_MOD_Yf_TILED: 2050 switch (cpp) { 2051 case 1: 2052 return 64; 2053 case 2: 2054 case 4: 2055 return 128; 2056 case 8: 2057 case 16: 2058 return 256; 2059 default: 2060 MISSING_CASE(cpp); 2061 return cpp; 2062 } 2063 break; 2064 default: 2065 MISSING_CASE(fb->modifier); 2066 return cpp; 2067 } 2068 } 2069 2070 static unsigned int 2071 intel_tile_height(const struct drm_framebuffer *fb, int color_plane) 2072 { 2073 if (is_gen12_ccs_plane(fb, color_plane)) 2074 return 1; 2075 2076 return intel_tile_size(to_i915(fb->dev)) / 2077 intel_tile_width_bytes(fb, color_plane); 2078 } 2079 2080 /* Return the tile dimensions in pixel units */ 2081 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane, 2082 unsigned int *tile_width, 2083 unsigned int *tile_height) 2084 { 2085 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane); 2086 unsigned int cpp = fb->format->cpp[color_plane]; 2087 2088 *tile_width = tile_width_bytes / cpp; 2089 *tile_height = intel_tile_height(fb, color_plane); 2090 } 2091 2092 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb, 2093 int color_plane) 2094 { 2095 unsigned int tile_width, tile_height; 2096 2097 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2098 2099 return fb->pitches[color_plane] * tile_height; 2100 } 2101 2102 unsigned int 2103 intel_fb_align_height(const struct drm_framebuffer *fb, 2104 int color_plane, unsigned int height) 2105 { 2106 unsigned int tile_height = intel_tile_height(fb, color_plane); 2107 2108 return ALIGN(height, tile_height); 2109 } 2110 2111 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 2112 { 2113 unsigned int size = 0; 2114 int i; 2115 2116 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 2117 size += rot_info->plane[i].width * rot_info->plane[i].height; 2118 2119 return size; 2120 } 2121 2122 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 2123 { 2124 unsigned int size = 0; 2125 int i; 2126 2127 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 2128 size += rem_info->plane[i].width * rem_info->plane[i].height; 2129 2130 return size; 2131 } 2132 2133 static void 2134 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, 2135 const struct drm_framebuffer *fb, 2136 unsigned int rotation) 2137 { 2138 view->type = I915_GGTT_VIEW_NORMAL; 2139 if (drm_rotation_90_or_270(rotation)) { 2140 view->type = I915_GGTT_VIEW_ROTATED; 2141 view->rotated = to_intel_framebuffer(fb)->rot_info; 2142 } 2143 } 2144 2145 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv) 2146 { 2147 if (IS_I830(dev_priv)) 2148 return 16 * 1024; 2149 else if (IS_I85X(dev_priv)) 2150 return 256; 2151 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) 2152 return 32; 2153 else 2154 return 4 * 1024; 2155 } 2156 2157 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 2158 { 2159 if (INTEL_GEN(dev_priv) >= 9) 2160 return 256 * 1024; 2161 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 2162 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2163 return 128 * 1024; 2164 else if (INTEL_GEN(dev_priv) >= 4) 2165 return 4 * 1024; 2166 else 2167 return 0; 2168 } 2169 2170 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 2171 int color_plane) 2172 { 2173 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2174 2175 /* AUX_DIST needs only 4K alignment */ 2176 if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) || 2177 is_ccs_plane(fb, color_plane)) 2178 return 4096; 2179 2180 switch (fb->modifier) { 2181 case DRM_FORMAT_MOD_LINEAR: 2182 return intel_linear_alignment(dev_priv); 2183 case I915_FORMAT_MOD_X_TILED: 2184 if (INTEL_GEN(dev_priv) >= 9) 2185 return 256 * 1024; 2186 return 0; 2187 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2188 if (is_semiplanar_uv_plane(fb, color_plane)) 2189 return intel_tile_row_size(fb, color_plane); 2190 fallthrough; 2191 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2192 return 16 * 1024; 2193 case I915_FORMAT_MOD_Y_TILED_CCS: 2194 case I915_FORMAT_MOD_Yf_TILED_CCS: 2195 case I915_FORMAT_MOD_Y_TILED: 2196 if (INTEL_GEN(dev_priv) >= 12 && 2197 is_semiplanar_uv_plane(fb, color_plane)) 2198 return intel_tile_row_size(fb, color_plane); 2199 fallthrough; 2200 case I915_FORMAT_MOD_Yf_TILED: 2201 return 1 * 1024 * 1024; 2202 default: 2203 MISSING_CASE(fb->modifier); 2204 return 0; 2205 } 2206 } 2207 2208 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 2209 { 2210 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2211 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2212 2213 return INTEL_GEN(dev_priv) < 4 || 2214 (plane->has_fbc && 2215 plane_state->view.type == I915_GGTT_VIEW_NORMAL); 2216 } 2217 2218 struct i915_vma * 2219 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 2220 const struct i915_ggtt_view *view, 2221 bool uses_fence, 2222 unsigned long *out_flags) 2223 { 2224 struct drm_device *dev = fb->dev; 2225 struct drm_i915_private *dev_priv = to_i915(dev); 2226 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2227 intel_wakeref_t wakeref; 2228 struct i915_vma *vma; 2229 unsigned int pinctl; 2230 u32 alignment; 2231 2232 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 2233 return ERR_PTR(-EINVAL); 2234 2235 alignment = intel_surf_alignment(fb, 0); 2236 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 2237 return ERR_PTR(-EINVAL); 2238 2239 /* Note that the w/a also requires 64 PTE of padding following the 2240 * bo. We currently fill all unused PTE with the shadow page and so 2241 * we should always have valid PTE following the scanout preventing 2242 * the VT-d warning. 2243 */ 2244 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 2245 alignment = 256 * 1024; 2246 2247 /* 2248 * Global gtt pte registers are special registers which actually forward 2249 * writes to a chunk of system memory. Which means that there is no risk 2250 * that the register values disappear as soon as we call 2251 * intel_runtime_pm_put(), so it is correct to wrap only the 2252 * pin/unpin/fence and not more. 2253 */ 2254 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 2255 2256 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 2257 2258 /* 2259 * Valleyview is definitely limited to scanning out the first 2260 * 512MiB. Lets presume this behaviour was inherited from the 2261 * g4x display engine and that all earlier gen are similarly 2262 * limited. Testing suggests that it is a little more 2263 * complicated than this. For example, Cherryview appears quite 2264 * happy to scanout from anywhere within its global aperture. 2265 */ 2266 pinctl = 0; 2267 if (HAS_GMCH(dev_priv)) 2268 pinctl |= PIN_MAPPABLE; 2269 2270 vma = i915_gem_object_pin_to_display_plane(obj, 2271 alignment, view, pinctl); 2272 if (IS_ERR(vma)) 2273 goto err; 2274 2275 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 2276 int ret; 2277 2278 /* 2279 * Install a fence for tiled scan-out. Pre-i965 always needs a 2280 * fence, whereas 965+ only requires a fence if using 2281 * framebuffer compression. For simplicity, we always, when 2282 * possible, install a fence as the cost is not that onerous. 2283 * 2284 * If we fail to fence the tiled scanout, then either the 2285 * modeset will reject the change (which is highly unlikely as 2286 * the affected systems, all but one, do not have unmappable 2287 * space) or we will not be able to enable full powersaving 2288 * techniques (also likely not to apply due to various limits 2289 * FBC and the like impose on the size of the buffer, which 2290 * presumably we violated anyway with this unmappable buffer). 2291 * Anyway, it is presumably better to stumble onwards with 2292 * something and try to run the system in a "less than optimal" 2293 * mode that matches the user configuration. 2294 */ 2295 ret = i915_vma_pin_fence(vma); 2296 if (ret != 0 && INTEL_GEN(dev_priv) < 4) { 2297 i915_gem_object_unpin_from_display_plane(vma); 2298 vma = ERR_PTR(ret); 2299 goto err; 2300 } 2301 2302 if (ret == 0 && vma->fence) 2303 *out_flags |= PLANE_HAS_FENCE; 2304 } 2305 2306 i915_vma_get(vma); 2307 err: 2308 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 2309 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 2310 return vma; 2311 } 2312 2313 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 2314 { 2315 i915_gem_object_lock(vma->obj, NULL); 2316 if (flags & PLANE_HAS_FENCE) 2317 i915_vma_unpin_fence(vma); 2318 i915_gem_object_unpin_from_display_plane(vma); 2319 i915_gem_object_unlock(vma->obj); 2320 2321 i915_vma_put(vma); 2322 } 2323 2324 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane, 2325 unsigned int rotation) 2326 { 2327 if (drm_rotation_90_or_270(rotation)) 2328 return to_intel_framebuffer(fb)->rotated[color_plane].pitch; 2329 else 2330 return fb->pitches[color_plane]; 2331 } 2332 2333 /* 2334 * Convert the x/y offsets into a linear offset. 2335 * Only valid with 0/180 degree rotation, which is fine since linear 2336 * offset is only used with linear buffers on pre-hsw and tiled buffers 2337 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 2338 */ 2339 u32 intel_fb_xy_to_linear(int x, int y, 2340 const struct intel_plane_state *state, 2341 int color_plane) 2342 { 2343 const struct drm_framebuffer *fb = state->hw.fb; 2344 unsigned int cpp = fb->format->cpp[color_plane]; 2345 unsigned int pitch = state->color_plane[color_plane].stride; 2346 2347 return y * pitch + x * cpp; 2348 } 2349 2350 /* 2351 * Add the x/y offsets derived from fb->offsets[] to the user 2352 * specified plane src x/y offsets. The resulting x/y offsets 2353 * specify the start of scanout from the beginning of the gtt mapping. 2354 */ 2355 void intel_add_fb_offsets(int *x, int *y, 2356 const struct intel_plane_state *state, 2357 int color_plane) 2358 2359 { 2360 *x += state->color_plane[color_plane].x; 2361 *y += state->color_plane[color_plane].y; 2362 } 2363 2364 static u32 intel_adjust_tile_offset(int *x, int *y, 2365 unsigned int tile_width, 2366 unsigned int tile_height, 2367 unsigned int tile_size, 2368 unsigned int pitch_tiles, 2369 u32 old_offset, 2370 u32 new_offset) 2371 { 2372 unsigned int pitch_pixels = pitch_tiles * tile_width; 2373 unsigned int tiles; 2374 2375 WARN_ON(old_offset & (tile_size - 1)); 2376 WARN_ON(new_offset & (tile_size - 1)); 2377 WARN_ON(new_offset > old_offset); 2378 2379 tiles = (old_offset - new_offset) / tile_size; 2380 2381 *y += tiles / pitch_tiles * tile_height; 2382 *x += tiles % pitch_tiles * tile_width; 2383 2384 /* minimize x in case it got needlessly big */ 2385 *y += *x / pitch_pixels * tile_height; 2386 *x %= pitch_pixels; 2387 2388 return new_offset; 2389 } 2390 2391 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane) 2392 { 2393 return fb->modifier == DRM_FORMAT_MOD_LINEAR || 2394 is_gen12_ccs_plane(fb, color_plane); 2395 } 2396 2397 static u32 intel_adjust_aligned_offset(int *x, int *y, 2398 const struct drm_framebuffer *fb, 2399 int color_plane, 2400 unsigned int rotation, 2401 unsigned int pitch, 2402 u32 old_offset, u32 new_offset) 2403 { 2404 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2405 unsigned int cpp = fb->format->cpp[color_plane]; 2406 2407 drm_WARN_ON(&dev_priv->drm, new_offset > old_offset); 2408 2409 if (!is_surface_linear(fb, color_plane)) { 2410 unsigned int tile_size, tile_width, tile_height; 2411 unsigned int pitch_tiles; 2412 2413 tile_size = intel_tile_size(dev_priv); 2414 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2415 2416 if (drm_rotation_90_or_270(rotation)) { 2417 pitch_tiles = pitch / tile_height; 2418 swap(tile_width, tile_height); 2419 } else { 2420 pitch_tiles = pitch / (tile_width * cpp); 2421 } 2422 2423 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2424 tile_size, pitch_tiles, 2425 old_offset, new_offset); 2426 } else { 2427 old_offset += *y * pitch + *x * cpp; 2428 2429 *y = (old_offset - new_offset) / pitch; 2430 *x = ((old_offset - new_offset) - *y * pitch) / cpp; 2431 } 2432 2433 return new_offset; 2434 } 2435 2436 /* 2437 * Adjust the tile offset by moving the difference into 2438 * the x/y offsets. 2439 */ 2440 static u32 intel_plane_adjust_aligned_offset(int *x, int *y, 2441 const struct intel_plane_state *state, 2442 int color_plane, 2443 u32 old_offset, u32 new_offset) 2444 { 2445 return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane, 2446 state->hw.rotation, 2447 state->color_plane[color_plane].stride, 2448 old_offset, new_offset); 2449 } 2450 2451 /* 2452 * Computes the aligned offset to the base tile and adjusts 2453 * x, y. bytes per pixel is assumed to be a power-of-two. 2454 * 2455 * In the 90/270 rotated case, x and y are assumed 2456 * to be already rotated to match the rotated GTT view, and 2457 * pitch is the tile_height aligned framebuffer height. 2458 * 2459 * This function is used when computing the derived information 2460 * under intel_framebuffer, so using any of that information 2461 * here is not allowed. Anything under drm_framebuffer can be 2462 * used. This is why the user has to pass in the pitch since it 2463 * is specified in the rotated orientation. 2464 */ 2465 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv, 2466 int *x, int *y, 2467 const struct drm_framebuffer *fb, 2468 int color_plane, 2469 unsigned int pitch, 2470 unsigned int rotation, 2471 u32 alignment) 2472 { 2473 unsigned int cpp = fb->format->cpp[color_plane]; 2474 u32 offset, offset_aligned; 2475 2476 if (!is_surface_linear(fb, color_plane)) { 2477 unsigned int tile_size, tile_width, tile_height; 2478 unsigned int tile_rows, tiles, pitch_tiles; 2479 2480 tile_size = intel_tile_size(dev_priv); 2481 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2482 2483 if (drm_rotation_90_or_270(rotation)) { 2484 pitch_tiles = pitch / tile_height; 2485 swap(tile_width, tile_height); 2486 } else { 2487 pitch_tiles = pitch / (tile_width * cpp); 2488 } 2489 2490 tile_rows = *y / tile_height; 2491 *y %= tile_height; 2492 2493 tiles = *x / tile_width; 2494 *x %= tile_width; 2495 2496 offset = (tile_rows * pitch_tiles + tiles) * tile_size; 2497 2498 offset_aligned = offset; 2499 if (alignment) 2500 offset_aligned = rounddown(offset_aligned, alignment); 2501 2502 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2503 tile_size, pitch_tiles, 2504 offset, offset_aligned); 2505 } else { 2506 offset = *y * pitch + *x * cpp; 2507 offset_aligned = offset; 2508 if (alignment) { 2509 offset_aligned = rounddown(offset_aligned, alignment); 2510 *y = (offset % alignment) / pitch; 2511 *x = ((offset % alignment) - *y * pitch) / cpp; 2512 } else { 2513 *y = *x = 0; 2514 } 2515 } 2516 2517 return offset_aligned; 2518 } 2519 2520 static u32 intel_plane_compute_aligned_offset(int *x, int *y, 2521 const struct intel_plane_state *state, 2522 int color_plane) 2523 { 2524 struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane); 2525 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 2526 const struct drm_framebuffer *fb = state->hw.fb; 2527 unsigned int rotation = state->hw.rotation; 2528 int pitch = state->color_plane[color_plane].stride; 2529 u32 alignment; 2530 2531 if (intel_plane->id == PLANE_CURSOR) 2532 alignment = intel_cursor_alignment(dev_priv); 2533 else 2534 alignment = intel_surf_alignment(fb, color_plane); 2535 2536 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane, 2537 pitch, rotation, alignment); 2538 } 2539 2540 /* Convert the fb->offset[] into x/y offsets */ 2541 static int intel_fb_offset_to_xy(int *x, int *y, 2542 const struct drm_framebuffer *fb, 2543 int color_plane) 2544 { 2545 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2546 unsigned int height; 2547 u32 alignment; 2548 2549 if (INTEL_GEN(dev_priv) >= 12 && 2550 is_semiplanar_uv_plane(fb, color_plane)) 2551 alignment = intel_tile_row_size(fb, color_plane); 2552 else if (fb->modifier != DRM_FORMAT_MOD_LINEAR) 2553 alignment = intel_tile_size(dev_priv); 2554 else 2555 alignment = 0; 2556 2557 if (alignment != 0 && fb->offsets[color_plane] % alignment) { 2558 drm_dbg_kms(&dev_priv->drm, 2559 "Misaligned offset 0x%08x for color plane %d\n", 2560 fb->offsets[color_plane], color_plane); 2561 return -EINVAL; 2562 } 2563 2564 height = drm_framebuffer_plane_height(fb->height, fb, color_plane); 2565 height = ALIGN(height, intel_tile_height(fb, color_plane)); 2566 2567 /* Catch potential overflows early */ 2568 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]), 2569 fb->offsets[color_plane])) { 2570 drm_dbg_kms(&dev_priv->drm, 2571 "Bad offset 0x%08x or pitch %d for color plane %d\n", 2572 fb->offsets[color_plane], fb->pitches[color_plane], 2573 color_plane); 2574 return -ERANGE; 2575 } 2576 2577 *x = 0; 2578 *y = 0; 2579 2580 intel_adjust_aligned_offset(x, y, 2581 fb, color_plane, DRM_MODE_ROTATE_0, 2582 fb->pitches[color_plane], 2583 fb->offsets[color_plane], 0); 2584 2585 return 0; 2586 } 2587 2588 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 2589 { 2590 switch (fb_modifier) { 2591 case I915_FORMAT_MOD_X_TILED: 2592 return I915_TILING_X; 2593 case I915_FORMAT_MOD_Y_TILED: 2594 case I915_FORMAT_MOD_Y_TILED_CCS: 2595 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2596 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2597 return I915_TILING_Y; 2598 default: 2599 return I915_TILING_NONE; 2600 } 2601 } 2602 2603 /* 2604 * From the Sky Lake PRM: 2605 * "The Color Control Surface (CCS) contains the compression status of 2606 * the cache-line pairs. The compression state of the cache-line pair 2607 * is specified by 2 bits in the CCS. Each CCS cache-line represents 2608 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 2609 * cache-line-pairs. CCS is always Y tiled." 2610 * 2611 * Since cache line pairs refers to horizontally adjacent cache lines, 2612 * each cache line in the CCS corresponds to an area of 32x16 cache 2613 * lines on the main surface. Since each pixel is 4 bytes, this gives 2614 * us a ratio of one byte in the CCS for each 8x16 pixels in the 2615 * main surface. 2616 */ 2617 static const struct drm_format_info skl_ccs_formats[] = { 2618 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2619 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2620 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2621 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2622 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2623 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2624 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2625 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2626 }; 2627 2628 /* 2629 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 2630 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 2631 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 2632 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 2633 * the main surface. 2634 */ 2635 static const struct drm_format_info gen12_ccs_formats[] = { 2636 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2637 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2638 .hsub = 1, .vsub = 1, }, 2639 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2640 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2641 .hsub = 1, .vsub = 1, }, 2642 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2643 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2644 .hsub = 1, .vsub = 1, .has_alpha = true }, 2645 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2646 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2647 .hsub = 1, .vsub = 1, .has_alpha = true }, 2648 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 2649 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2650 .hsub = 2, .vsub = 1, .is_yuv = true }, 2651 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 2652 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2653 .hsub = 2, .vsub = 1, .is_yuv = true }, 2654 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 2655 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2656 .hsub = 2, .vsub = 1, .is_yuv = true }, 2657 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 2658 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2659 .hsub = 2, .vsub = 1, .is_yuv = true }, 2660 { .format = DRM_FORMAT_NV12, .num_planes = 4, 2661 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 2662 .hsub = 2, .vsub = 2, .is_yuv = true }, 2663 { .format = DRM_FORMAT_P010, .num_planes = 4, 2664 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2665 .hsub = 2, .vsub = 2, .is_yuv = true }, 2666 { .format = DRM_FORMAT_P012, .num_planes = 4, 2667 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2668 .hsub = 2, .vsub = 2, .is_yuv = true }, 2669 { .format = DRM_FORMAT_P016, .num_planes = 4, 2670 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2671 .hsub = 2, .vsub = 2, .is_yuv = true }, 2672 }; 2673 2674 static const struct drm_format_info * 2675 lookup_format_info(const struct drm_format_info formats[], 2676 int num_formats, u32 format) 2677 { 2678 int i; 2679 2680 for (i = 0; i < num_formats; i++) { 2681 if (formats[i].format == format) 2682 return &formats[i]; 2683 } 2684 2685 return NULL; 2686 } 2687 2688 static const struct drm_format_info * 2689 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 2690 { 2691 switch (cmd->modifier[0]) { 2692 case I915_FORMAT_MOD_Y_TILED_CCS: 2693 case I915_FORMAT_MOD_Yf_TILED_CCS: 2694 return lookup_format_info(skl_ccs_formats, 2695 ARRAY_SIZE(skl_ccs_formats), 2696 cmd->pixel_format); 2697 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2698 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2699 return lookup_format_info(gen12_ccs_formats, 2700 ARRAY_SIZE(gen12_ccs_formats), 2701 cmd->pixel_format); 2702 default: 2703 return NULL; 2704 } 2705 } 2706 2707 bool is_ccs_modifier(u64 modifier) 2708 { 2709 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || 2710 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS || 2711 modifier == I915_FORMAT_MOD_Y_TILED_CCS || 2712 modifier == I915_FORMAT_MOD_Yf_TILED_CCS; 2713 } 2714 2715 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 2716 { 2717 return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)], 2718 512) * 64; 2719 } 2720 2721 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 2722 u32 pixel_format, u64 modifier) 2723 { 2724 struct intel_crtc *crtc; 2725 struct intel_plane *plane; 2726 2727 /* 2728 * We assume the primary plane for pipe A has 2729 * the highest stride limits of them all, 2730 * if in case pipe A is disabled, use the first pipe from pipe_mask. 2731 */ 2732 crtc = intel_get_first_crtc(dev_priv); 2733 if (!crtc) 2734 return 0; 2735 2736 plane = to_intel_plane(crtc->base.primary); 2737 2738 return plane->max_stride(plane, pixel_format, modifier, 2739 DRM_MODE_ROTATE_0); 2740 } 2741 2742 static 2743 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 2744 u32 pixel_format, u64 modifier) 2745 { 2746 /* 2747 * Arbitrary limit for gen4+ chosen to match the 2748 * render engine max stride. 2749 * 2750 * The new CCS hash mode makes remapping impossible 2751 */ 2752 if (!is_ccs_modifier(modifier)) { 2753 if (INTEL_GEN(dev_priv) >= 7) 2754 return 256*1024; 2755 else if (INTEL_GEN(dev_priv) >= 4) 2756 return 128*1024; 2757 } 2758 2759 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 2760 } 2761 2762 static u32 2763 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 2764 { 2765 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2766 u32 tile_width; 2767 2768 if (is_surface_linear(fb, color_plane)) { 2769 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 2770 fb->format->format, 2771 fb->modifier); 2772 2773 /* 2774 * To make remapping with linear generally feasible 2775 * we need the stride to be page aligned. 2776 */ 2777 if (fb->pitches[color_plane] > max_stride && 2778 !is_ccs_modifier(fb->modifier)) 2779 return intel_tile_size(dev_priv); 2780 else 2781 return 64; 2782 } 2783 2784 tile_width = intel_tile_width_bytes(fb, color_plane); 2785 if (is_ccs_modifier(fb->modifier)) { 2786 /* 2787 * Display WA #0531: skl,bxt,kbl,glk 2788 * 2789 * Render decompression and plane width > 3840 2790 * combined with horizontal panning requires the 2791 * plane stride to be a multiple of 4. We'll just 2792 * require the entire fb to accommodate that to avoid 2793 * potential runtime errors at plane configuration time. 2794 */ 2795 if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840) 2796 tile_width *= 4; 2797 /* 2798 * The main surface pitch must be padded to a multiple of four 2799 * tile widths. 2800 */ 2801 else if (INTEL_GEN(dev_priv) >= 12) 2802 tile_width *= 4; 2803 } 2804 return tile_width; 2805 } 2806 2807 bool intel_plane_can_remap(const struct intel_plane_state *plane_state) 2808 { 2809 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2810 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2811 const struct drm_framebuffer *fb = plane_state->hw.fb; 2812 int i; 2813 2814 /* We don't want to deal with remapping with cursors */ 2815 if (plane->id == PLANE_CURSOR) 2816 return false; 2817 2818 /* 2819 * The display engine limits already match/exceed the 2820 * render engine limits, so not much point in remapping. 2821 * Would also need to deal with the fence POT alignment 2822 * and gen2 2KiB GTT tile size. 2823 */ 2824 if (INTEL_GEN(dev_priv) < 4) 2825 return false; 2826 2827 /* 2828 * The new CCS hash mode isn't compatible with remapping as 2829 * the virtual address of the pages affects the compressed data. 2830 */ 2831 if (is_ccs_modifier(fb->modifier)) 2832 return false; 2833 2834 /* Linear needs a page aligned stride for remapping */ 2835 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { 2836 unsigned int alignment = intel_tile_size(dev_priv) - 1; 2837 2838 for (i = 0; i < fb->format->num_planes; i++) { 2839 if (fb->pitches[i] & alignment) 2840 return false; 2841 } 2842 } 2843 2844 return true; 2845 } 2846 2847 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state) 2848 { 2849 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2850 const struct drm_framebuffer *fb = plane_state->hw.fb; 2851 unsigned int rotation = plane_state->hw.rotation; 2852 u32 stride, max_stride; 2853 2854 /* 2855 * No remapping for invisible planes since we don't have 2856 * an actual source viewport to remap. 2857 */ 2858 if (!plane_state->uapi.visible) 2859 return false; 2860 2861 if (!intel_plane_can_remap(plane_state)) 2862 return false; 2863 2864 /* 2865 * FIXME: aux plane limits on gen9+ are 2866 * unclear in Bspec, for now no checking. 2867 */ 2868 stride = intel_fb_pitch(fb, 0, rotation); 2869 max_stride = plane->max_stride(plane, fb->format->format, 2870 fb->modifier, rotation); 2871 2872 return stride > max_stride; 2873 } 2874 2875 static void 2876 intel_fb_plane_get_subsampling(int *hsub, int *vsub, 2877 const struct drm_framebuffer *fb, 2878 int color_plane) 2879 { 2880 int main_plane; 2881 2882 if (color_plane == 0) { 2883 *hsub = 1; 2884 *vsub = 1; 2885 2886 return; 2887 } 2888 2889 /* 2890 * TODO: Deduct the subsampling from the char block for all CCS 2891 * formats and planes. 2892 */ 2893 if (!is_gen12_ccs_plane(fb, color_plane)) { 2894 *hsub = fb->format->hsub; 2895 *vsub = fb->format->vsub; 2896 2897 return; 2898 } 2899 2900 main_plane = ccs_to_main_plane(fb, color_plane); 2901 *hsub = drm_format_info_block_width(fb->format, color_plane) / 2902 drm_format_info_block_width(fb->format, main_plane); 2903 2904 /* 2905 * The min stride check in the core framebuffer_check() function 2906 * assumes that format->hsub applies to every plane except for the 2907 * first plane. That's incorrect for the CCS AUX plane of the first 2908 * plane, but for the above check to pass we must define the block 2909 * width with that subsampling applied to it. Adjust the width here 2910 * accordingly, so we can calculate the actual subsampling factor. 2911 */ 2912 if (main_plane == 0) 2913 *hsub *= fb->format->hsub; 2914 2915 *vsub = 32; 2916 } 2917 static int 2918 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y) 2919 { 2920 struct drm_i915_private *i915 = to_i915(fb->dev); 2921 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2922 int main_plane; 2923 int hsub, vsub; 2924 int tile_width, tile_height; 2925 int ccs_x, ccs_y; 2926 int main_x, main_y; 2927 2928 if (!is_ccs_plane(fb, ccs_plane)) 2929 return 0; 2930 2931 intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height); 2932 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 2933 2934 tile_width *= hsub; 2935 tile_height *= vsub; 2936 2937 ccs_x = (x * hsub) % tile_width; 2938 ccs_y = (y * vsub) % tile_height; 2939 2940 main_plane = ccs_to_main_plane(fb, ccs_plane); 2941 main_x = intel_fb->normal[main_plane].x % tile_width; 2942 main_y = intel_fb->normal[main_plane].y % tile_height; 2943 2944 /* 2945 * CCS doesn't have its own x/y offset register, so the intra CCS tile 2946 * x/y offsets must match between CCS and the main surface. 2947 */ 2948 if (main_x != ccs_x || main_y != ccs_y) { 2949 drm_dbg_kms(&i915->drm, 2950 "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n", 2951 main_x, main_y, 2952 ccs_x, ccs_y, 2953 intel_fb->normal[main_plane].x, 2954 intel_fb->normal[main_plane].y, 2955 x, y); 2956 return -EINVAL; 2957 } 2958 2959 return 0; 2960 } 2961 2962 static void 2963 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane) 2964 { 2965 int main_plane = is_ccs_plane(fb, color_plane) ? 2966 ccs_to_main_plane(fb, color_plane) : 0; 2967 int main_hsub, main_vsub; 2968 int hsub, vsub; 2969 2970 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane); 2971 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane); 2972 *w = fb->width / main_hsub / hsub; 2973 *h = fb->height / main_vsub / vsub; 2974 } 2975 2976 /* 2977 * Setup the rotated view for an FB plane and return the size the GTT mapping 2978 * requires for this view. 2979 */ 2980 static u32 2981 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info, 2982 u32 gtt_offset_rotated, int x, int y, 2983 unsigned int width, unsigned int height, 2984 unsigned int tile_size, 2985 unsigned int tile_width, unsigned int tile_height, 2986 struct drm_framebuffer *fb) 2987 { 2988 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2989 struct intel_rotation_info *rot_info = &intel_fb->rot_info; 2990 unsigned int pitch_tiles; 2991 struct drm_rect r; 2992 2993 /* Y or Yf modifiers required for 90/270 rotation */ 2994 if (fb->modifier != I915_FORMAT_MOD_Y_TILED && 2995 fb->modifier != I915_FORMAT_MOD_Yf_TILED) 2996 return 0; 2997 2998 if (drm_WARN_ON(fb->dev, plane >= ARRAY_SIZE(rot_info->plane))) 2999 return 0; 3000 3001 rot_info->plane[plane] = *plane_info; 3002 3003 intel_fb->rotated[plane].pitch = plane_info->height * tile_height; 3004 3005 /* rotate the x/y offsets to match the GTT view */ 3006 drm_rect_init(&r, x, y, width, height); 3007 drm_rect_rotate(&r, 3008 plane_info->width * tile_width, 3009 plane_info->height * tile_height, 3010 DRM_MODE_ROTATE_270); 3011 x = r.x1; 3012 y = r.y1; 3013 3014 /* rotate the tile dimensions to match the GTT view */ 3015 pitch_tiles = intel_fb->rotated[plane].pitch / tile_height; 3016 swap(tile_width, tile_height); 3017 3018 /* 3019 * We only keep the x/y offsets, so push all of the 3020 * gtt offset into the x/y offsets. 3021 */ 3022 intel_adjust_tile_offset(&x, &y, 3023 tile_width, tile_height, 3024 tile_size, pitch_tiles, 3025 gtt_offset_rotated * tile_size, 0); 3026 3027 /* 3028 * First pixel of the framebuffer from 3029 * the start of the rotated gtt mapping. 3030 */ 3031 intel_fb->rotated[plane].x = x; 3032 intel_fb->rotated[plane].y = y; 3033 3034 return plane_info->width * plane_info->height; 3035 } 3036 3037 static int 3038 intel_fill_fb_info(struct drm_i915_private *dev_priv, 3039 struct drm_framebuffer *fb) 3040 { 3041 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 3042 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 3043 u32 gtt_offset_rotated = 0; 3044 unsigned int max_size = 0; 3045 int i, num_planes = fb->format->num_planes; 3046 unsigned int tile_size = intel_tile_size(dev_priv); 3047 3048 for (i = 0; i < num_planes; i++) { 3049 unsigned int width, height; 3050 unsigned int cpp, size; 3051 u32 offset; 3052 int x, y; 3053 int ret; 3054 3055 cpp = fb->format->cpp[i]; 3056 intel_fb_plane_dims(&width, &height, fb, i); 3057 3058 ret = intel_fb_offset_to_xy(&x, &y, fb, i); 3059 if (ret) { 3060 drm_dbg_kms(&dev_priv->drm, 3061 "bad fb plane %d offset: 0x%x\n", 3062 i, fb->offsets[i]); 3063 return ret; 3064 } 3065 3066 ret = intel_fb_check_ccs_xy(fb, i, x, y); 3067 if (ret) 3068 return ret; 3069 3070 /* 3071 * The fence (if used) is aligned to the start of the object 3072 * so having the framebuffer wrap around across the edge of the 3073 * fenced region doesn't really work. We have no API to configure 3074 * the fence start offset within the object (nor could we probably 3075 * on gen2/3). So it's just easier if we just require that the 3076 * fb layout agrees with the fence layout. We already check that the 3077 * fb stride matches the fence stride elsewhere. 3078 */ 3079 if (i == 0 && i915_gem_object_is_tiled(obj) && 3080 (x + width) * cpp > fb->pitches[i]) { 3081 drm_dbg_kms(&dev_priv->drm, 3082 "bad fb plane %d offset: 0x%x\n", 3083 i, fb->offsets[i]); 3084 return -EINVAL; 3085 } 3086 3087 /* 3088 * First pixel of the framebuffer from 3089 * the start of the normal gtt mapping. 3090 */ 3091 intel_fb->normal[i].x = x; 3092 intel_fb->normal[i].y = y; 3093 3094 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, 3095 fb->pitches[i], 3096 DRM_MODE_ROTATE_0, 3097 tile_size); 3098 offset /= tile_size; 3099 3100 if (!is_surface_linear(fb, i)) { 3101 struct intel_remapped_plane_info plane_info; 3102 unsigned int tile_width, tile_height; 3103 3104 intel_tile_dims(fb, i, &tile_width, &tile_height); 3105 3106 plane_info.offset = offset; 3107 plane_info.stride = DIV_ROUND_UP(fb->pitches[i], 3108 tile_width * cpp); 3109 plane_info.width = DIV_ROUND_UP(x + width, tile_width); 3110 plane_info.height = DIV_ROUND_UP(y + height, 3111 tile_height); 3112 3113 /* how many tiles does this plane need */ 3114 size = plane_info.stride * plane_info.height; 3115 /* 3116 * If the plane isn't horizontally tile aligned, 3117 * we need one more tile. 3118 */ 3119 if (x != 0) 3120 size++; 3121 3122 gtt_offset_rotated += 3123 setup_fb_rotation(i, &plane_info, 3124 gtt_offset_rotated, 3125 x, y, width, height, 3126 tile_size, 3127 tile_width, tile_height, 3128 fb); 3129 } else { 3130 size = DIV_ROUND_UP((y + height) * fb->pitches[i] + 3131 x * cpp, tile_size); 3132 } 3133 3134 /* how many tiles in total needed in the bo */ 3135 max_size = max(max_size, offset + size); 3136 } 3137 3138 if (mul_u32_u32(max_size, tile_size) > obj->base.size) { 3139 drm_dbg_kms(&dev_priv->drm, 3140 "fb too big for bo (need %llu bytes, have %zu bytes)\n", 3141 mul_u32_u32(max_size, tile_size), obj->base.size); 3142 return -EINVAL; 3143 } 3144 3145 return 0; 3146 } 3147 3148 static void 3149 intel_plane_remap_gtt(struct intel_plane_state *plane_state) 3150 { 3151 struct drm_i915_private *dev_priv = 3152 to_i915(plane_state->uapi.plane->dev); 3153 struct drm_framebuffer *fb = plane_state->hw.fb; 3154 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 3155 struct intel_rotation_info *info = &plane_state->view.rotated; 3156 unsigned int rotation = plane_state->hw.rotation; 3157 int i, num_planes = fb->format->num_planes; 3158 unsigned int tile_size = intel_tile_size(dev_priv); 3159 unsigned int src_x, src_y; 3160 unsigned int src_w, src_h; 3161 u32 gtt_offset = 0; 3162 3163 memset(&plane_state->view, 0, sizeof(plane_state->view)); 3164 plane_state->view.type = drm_rotation_90_or_270(rotation) ? 3165 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED; 3166 3167 src_x = plane_state->uapi.src.x1 >> 16; 3168 src_y = plane_state->uapi.src.y1 >> 16; 3169 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 3170 src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 3171 3172 drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier)); 3173 3174 /* Make src coordinates relative to the viewport */ 3175 drm_rect_translate(&plane_state->uapi.src, 3176 -(src_x << 16), -(src_y << 16)); 3177 3178 /* Rotate src coordinates to match rotated GTT view */ 3179 if (drm_rotation_90_or_270(rotation)) 3180 drm_rect_rotate(&plane_state->uapi.src, 3181 src_w << 16, src_h << 16, 3182 DRM_MODE_ROTATE_270); 3183 3184 for (i = 0; i < num_planes; i++) { 3185 unsigned int hsub = i ? fb->format->hsub : 1; 3186 unsigned int vsub = i ? fb->format->vsub : 1; 3187 unsigned int cpp = fb->format->cpp[i]; 3188 unsigned int tile_width, tile_height; 3189 unsigned int width, height; 3190 unsigned int pitch_tiles; 3191 unsigned int x, y; 3192 u32 offset; 3193 3194 intel_tile_dims(fb, i, &tile_width, &tile_height); 3195 3196 x = src_x / hsub; 3197 y = src_y / vsub; 3198 width = src_w / hsub; 3199 height = src_h / vsub; 3200 3201 /* 3202 * First pixel of the src viewport from the 3203 * start of the normal gtt mapping. 3204 */ 3205 x += intel_fb->normal[i].x; 3206 y += intel_fb->normal[i].y; 3207 3208 offset = intel_compute_aligned_offset(dev_priv, &x, &y, 3209 fb, i, fb->pitches[i], 3210 DRM_MODE_ROTATE_0, tile_size); 3211 offset /= tile_size; 3212 3213 drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane)); 3214 info->plane[i].offset = offset; 3215 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], 3216 tile_width * cpp); 3217 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); 3218 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); 3219 3220 if (drm_rotation_90_or_270(rotation)) { 3221 struct drm_rect r; 3222 3223 /* rotate the x/y offsets to match the GTT view */ 3224 drm_rect_init(&r, x, y, width, height); 3225 drm_rect_rotate(&r, 3226 info->plane[i].width * tile_width, 3227 info->plane[i].height * tile_height, 3228 DRM_MODE_ROTATE_270); 3229 x = r.x1; 3230 y = r.y1; 3231 3232 pitch_tiles = info->plane[i].height; 3233 plane_state->color_plane[i].stride = pitch_tiles * tile_height; 3234 3235 /* rotate the tile dimensions to match the GTT view */ 3236 swap(tile_width, tile_height); 3237 } else { 3238 pitch_tiles = info->plane[i].width; 3239 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp; 3240 } 3241 3242 /* 3243 * We only keep the x/y offsets, so push all of the 3244 * gtt offset into the x/y offsets. 3245 */ 3246 intel_adjust_tile_offset(&x, &y, 3247 tile_width, tile_height, 3248 tile_size, pitch_tiles, 3249 gtt_offset * tile_size, 0); 3250 3251 gtt_offset += info->plane[i].width * info->plane[i].height; 3252 3253 plane_state->color_plane[i].offset = 0; 3254 plane_state->color_plane[i].x = x; 3255 plane_state->color_plane[i].y = y; 3256 } 3257 } 3258 3259 static int 3260 intel_plane_compute_gtt(struct intel_plane_state *plane_state) 3261 { 3262 const struct intel_framebuffer *fb = 3263 to_intel_framebuffer(plane_state->hw.fb); 3264 unsigned int rotation = plane_state->hw.rotation; 3265 int i, num_planes; 3266 3267 if (!fb) 3268 return 0; 3269 3270 num_planes = fb->base.format->num_planes; 3271 3272 if (intel_plane_needs_remap(plane_state)) { 3273 intel_plane_remap_gtt(plane_state); 3274 3275 /* 3276 * Sometimes even remapping can't overcome 3277 * the stride limitations :( Can happen with 3278 * big plane sizes and suitably misaligned 3279 * offsets. 3280 */ 3281 return intel_plane_check_stride(plane_state); 3282 } 3283 3284 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation); 3285 3286 for (i = 0; i < num_planes; i++) { 3287 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation); 3288 plane_state->color_plane[i].offset = 0; 3289 3290 if (drm_rotation_90_or_270(rotation)) { 3291 plane_state->color_plane[i].x = fb->rotated[i].x; 3292 plane_state->color_plane[i].y = fb->rotated[i].y; 3293 } else { 3294 plane_state->color_plane[i].x = fb->normal[i].x; 3295 plane_state->color_plane[i].y = fb->normal[i].y; 3296 } 3297 } 3298 3299 /* Rotate src coordinates to match rotated GTT view */ 3300 if (drm_rotation_90_or_270(rotation)) 3301 drm_rect_rotate(&plane_state->uapi.src, 3302 fb->base.width << 16, fb->base.height << 16, 3303 DRM_MODE_ROTATE_270); 3304 3305 return intel_plane_check_stride(plane_state); 3306 } 3307 3308 static int i9xx_format_to_fourcc(int format) 3309 { 3310 switch (format) { 3311 case DISPPLANE_8BPP: 3312 return DRM_FORMAT_C8; 3313 case DISPPLANE_BGRA555: 3314 return DRM_FORMAT_ARGB1555; 3315 case DISPPLANE_BGRX555: 3316 return DRM_FORMAT_XRGB1555; 3317 case DISPPLANE_BGRX565: 3318 return DRM_FORMAT_RGB565; 3319 default: 3320 case DISPPLANE_BGRX888: 3321 return DRM_FORMAT_XRGB8888; 3322 case DISPPLANE_RGBX888: 3323 return DRM_FORMAT_XBGR8888; 3324 case DISPPLANE_BGRA888: 3325 return DRM_FORMAT_ARGB8888; 3326 case DISPPLANE_RGBA888: 3327 return DRM_FORMAT_ABGR8888; 3328 case DISPPLANE_BGRX101010: 3329 return DRM_FORMAT_XRGB2101010; 3330 case DISPPLANE_RGBX101010: 3331 return DRM_FORMAT_XBGR2101010; 3332 case DISPPLANE_BGRA101010: 3333 return DRM_FORMAT_ARGB2101010; 3334 case DISPPLANE_RGBA101010: 3335 return DRM_FORMAT_ABGR2101010; 3336 case DISPPLANE_RGBX161616: 3337 return DRM_FORMAT_XBGR16161616F; 3338 } 3339 } 3340 3341 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) 3342 { 3343 switch (format) { 3344 case PLANE_CTL_FORMAT_RGB_565: 3345 return DRM_FORMAT_RGB565; 3346 case PLANE_CTL_FORMAT_NV12: 3347 return DRM_FORMAT_NV12; 3348 case PLANE_CTL_FORMAT_XYUV: 3349 return DRM_FORMAT_XYUV8888; 3350 case PLANE_CTL_FORMAT_P010: 3351 return DRM_FORMAT_P010; 3352 case PLANE_CTL_FORMAT_P012: 3353 return DRM_FORMAT_P012; 3354 case PLANE_CTL_FORMAT_P016: 3355 return DRM_FORMAT_P016; 3356 case PLANE_CTL_FORMAT_Y210: 3357 return DRM_FORMAT_Y210; 3358 case PLANE_CTL_FORMAT_Y212: 3359 return DRM_FORMAT_Y212; 3360 case PLANE_CTL_FORMAT_Y216: 3361 return DRM_FORMAT_Y216; 3362 case PLANE_CTL_FORMAT_Y410: 3363 return DRM_FORMAT_XVYU2101010; 3364 case PLANE_CTL_FORMAT_Y412: 3365 return DRM_FORMAT_XVYU12_16161616; 3366 case PLANE_CTL_FORMAT_Y416: 3367 return DRM_FORMAT_XVYU16161616; 3368 default: 3369 case PLANE_CTL_FORMAT_XRGB_8888: 3370 if (rgb_order) { 3371 if (alpha) 3372 return DRM_FORMAT_ABGR8888; 3373 else 3374 return DRM_FORMAT_XBGR8888; 3375 } else { 3376 if (alpha) 3377 return DRM_FORMAT_ARGB8888; 3378 else 3379 return DRM_FORMAT_XRGB8888; 3380 } 3381 case PLANE_CTL_FORMAT_XRGB_2101010: 3382 if (rgb_order) { 3383 if (alpha) 3384 return DRM_FORMAT_ABGR2101010; 3385 else 3386 return DRM_FORMAT_XBGR2101010; 3387 } else { 3388 if (alpha) 3389 return DRM_FORMAT_ARGB2101010; 3390 else 3391 return DRM_FORMAT_XRGB2101010; 3392 } 3393 case PLANE_CTL_FORMAT_XRGB_16161616F: 3394 if (rgb_order) { 3395 if (alpha) 3396 return DRM_FORMAT_ABGR16161616F; 3397 else 3398 return DRM_FORMAT_XBGR16161616F; 3399 } else { 3400 if (alpha) 3401 return DRM_FORMAT_ARGB16161616F; 3402 else 3403 return DRM_FORMAT_XRGB16161616F; 3404 } 3405 } 3406 } 3407 3408 static struct i915_vma * 3409 initial_plane_vma(struct drm_i915_private *i915, 3410 struct intel_initial_plane_config *plane_config) 3411 { 3412 struct drm_i915_gem_object *obj; 3413 struct i915_vma *vma; 3414 u32 base, size; 3415 3416 if (plane_config->size == 0) 3417 return NULL; 3418 3419 base = round_down(plane_config->base, 3420 I915_GTT_MIN_ALIGNMENT); 3421 size = round_up(plane_config->base + plane_config->size, 3422 I915_GTT_MIN_ALIGNMENT); 3423 size -= base; 3424 3425 /* 3426 * If the FB is too big, just don't use it since fbdev is not very 3427 * important and we should probably use that space with FBC or other 3428 * features. 3429 */ 3430 if (size * 2 > i915->stolen_usable_size) 3431 return NULL; 3432 3433 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 3434 if (IS_ERR(obj)) 3435 return NULL; 3436 3437 switch (plane_config->tiling) { 3438 case I915_TILING_NONE: 3439 break; 3440 case I915_TILING_X: 3441 case I915_TILING_Y: 3442 obj->tiling_and_stride = 3443 plane_config->fb->base.pitches[0] | 3444 plane_config->tiling; 3445 break; 3446 default: 3447 MISSING_CASE(plane_config->tiling); 3448 goto err_obj; 3449 } 3450 3451 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 3452 if (IS_ERR(vma)) 3453 goto err_obj; 3454 3455 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 3456 goto err_obj; 3457 3458 if (i915_gem_object_is_tiled(obj) && 3459 !i915_vma_is_map_and_fenceable(vma)) 3460 goto err_obj; 3461 3462 return vma; 3463 3464 err_obj: 3465 i915_gem_object_put(obj); 3466 return NULL; 3467 } 3468 3469 static bool 3470 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 3471 struct intel_initial_plane_config *plane_config) 3472 { 3473 struct drm_device *dev = crtc->base.dev; 3474 struct drm_i915_private *dev_priv = to_i915(dev); 3475 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 3476 struct drm_framebuffer *fb = &plane_config->fb->base; 3477 struct i915_vma *vma; 3478 3479 switch (fb->modifier) { 3480 case DRM_FORMAT_MOD_LINEAR: 3481 case I915_FORMAT_MOD_X_TILED: 3482 case I915_FORMAT_MOD_Y_TILED: 3483 break; 3484 default: 3485 drm_dbg(&dev_priv->drm, 3486 "Unsupported modifier for initial FB: 0x%llx\n", 3487 fb->modifier); 3488 return false; 3489 } 3490 3491 vma = initial_plane_vma(dev_priv, plane_config); 3492 if (!vma) 3493 return false; 3494 3495 mode_cmd.pixel_format = fb->format->format; 3496 mode_cmd.width = fb->width; 3497 mode_cmd.height = fb->height; 3498 mode_cmd.pitches[0] = fb->pitches[0]; 3499 mode_cmd.modifier[0] = fb->modifier; 3500 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 3501 3502 if (intel_framebuffer_init(to_intel_framebuffer(fb), 3503 vma->obj, &mode_cmd)) { 3504 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 3505 goto err_vma; 3506 } 3507 3508 plane_config->vma = vma; 3509 return true; 3510 3511 err_vma: 3512 i915_vma_put(vma); 3513 return false; 3514 } 3515 3516 static void 3517 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 3518 struct intel_plane_state *plane_state, 3519 bool visible) 3520 { 3521 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 3522 3523 plane_state->uapi.visible = visible; 3524 3525 if (visible) 3526 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 3527 else 3528 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 3529 } 3530 3531 static void fixup_active_planes(struct intel_crtc_state *crtc_state) 3532 { 3533 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 3534 struct drm_plane *plane; 3535 3536 /* 3537 * Active_planes aliases if multiple "primary" or cursor planes 3538 * have been used on the same (or wrong) pipe. plane_mask uses 3539 * unique ids, hence we can use that to reconstruct active_planes. 3540 */ 3541 crtc_state->active_planes = 0; 3542 3543 drm_for_each_plane_mask(plane, &dev_priv->drm, 3544 crtc_state->uapi.plane_mask) 3545 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 3546 } 3547 3548 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 3549 struct intel_plane *plane) 3550 { 3551 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3552 struct intel_crtc_state *crtc_state = 3553 to_intel_crtc_state(crtc->base.state); 3554 struct intel_plane_state *plane_state = 3555 to_intel_plane_state(plane->base.state); 3556 3557 drm_dbg_kms(&dev_priv->drm, 3558 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 3559 plane->base.base.id, plane->base.name, 3560 crtc->base.base.id, crtc->base.name); 3561 3562 intel_set_plane_visible(crtc_state, plane_state, false); 3563 fixup_active_planes(crtc_state); 3564 crtc_state->data_rate[plane->id] = 0; 3565 crtc_state->min_cdclk[plane->id] = 0; 3566 3567 if (plane->id == PLANE_PRIMARY) 3568 hsw_disable_ips(crtc_state); 3569 3570 /* 3571 * Vblank time updates from the shadow to live plane control register 3572 * are blocked if the memory self-refresh mode is active at that 3573 * moment. So to make sure the plane gets truly disabled, disable 3574 * first the self-refresh mode. The self-refresh enable bit in turn 3575 * will be checked/applied by the HW only at the next frame start 3576 * event which is after the vblank start event, so we need to have a 3577 * wait-for-vblank between disabling the plane and the pipe. 3578 */ 3579 if (HAS_GMCH(dev_priv) && 3580 intel_set_memory_cxsr(dev_priv, false)) 3581 intel_wait_for_vblank(dev_priv, crtc->pipe); 3582 3583 /* 3584 * Gen2 reports pipe underruns whenever all planes are disabled. 3585 * So disable underrun reporting before all the planes get disabled. 3586 */ 3587 if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes) 3588 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 3589 3590 intel_disable_plane(plane, crtc_state); 3591 } 3592 3593 static struct intel_frontbuffer * 3594 to_intel_frontbuffer(struct drm_framebuffer *fb) 3595 { 3596 return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL; 3597 } 3598 3599 static void 3600 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 3601 struct intel_initial_plane_config *plane_config) 3602 { 3603 struct drm_device *dev = intel_crtc->base.dev; 3604 struct drm_i915_private *dev_priv = to_i915(dev); 3605 struct drm_crtc *c; 3606 struct drm_plane *primary = intel_crtc->base.primary; 3607 struct drm_plane_state *plane_state = primary->state; 3608 struct intel_plane *intel_plane = to_intel_plane(primary); 3609 struct intel_plane_state *intel_state = 3610 to_intel_plane_state(plane_state); 3611 struct drm_framebuffer *fb; 3612 struct i915_vma *vma; 3613 3614 if (!plane_config->fb) 3615 return; 3616 3617 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 3618 fb = &plane_config->fb->base; 3619 vma = plane_config->vma; 3620 goto valid_fb; 3621 } 3622 3623 /* 3624 * Failed to alloc the obj, check to see if we should share 3625 * an fb with another CRTC instead 3626 */ 3627 for_each_crtc(dev, c) { 3628 struct intel_plane_state *state; 3629 3630 if (c == &intel_crtc->base) 3631 continue; 3632 3633 if (!to_intel_crtc(c)->active) 3634 continue; 3635 3636 state = to_intel_plane_state(c->primary->state); 3637 if (!state->vma) 3638 continue; 3639 3640 if (intel_plane_ggtt_offset(state) == plane_config->base) { 3641 fb = state->hw.fb; 3642 vma = state->vma; 3643 goto valid_fb; 3644 } 3645 } 3646 3647 /* 3648 * We've failed to reconstruct the BIOS FB. Current display state 3649 * indicates that the primary plane is visible, but has a NULL FB, 3650 * which will lead to problems later if we don't fix it up. The 3651 * simplest solution is to just disable the primary plane now and 3652 * pretend the BIOS never had it enabled. 3653 */ 3654 intel_plane_disable_noatomic(intel_crtc, intel_plane); 3655 3656 return; 3657 3658 valid_fb: 3659 intel_state->hw.rotation = plane_config->rotation; 3660 intel_fill_fb_ggtt_view(&intel_state->view, fb, 3661 intel_state->hw.rotation); 3662 intel_state->color_plane[0].stride = 3663 intel_fb_pitch(fb, 0, intel_state->hw.rotation); 3664 3665 __i915_vma_pin(vma); 3666 intel_state->vma = i915_vma_get(vma); 3667 if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0) 3668 if (vma->fence) 3669 intel_state->flags |= PLANE_HAS_FENCE; 3670 3671 plane_state->src_x = 0; 3672 plane_state->src_y = 0; 3673 plane_state->src_w = fb->width << 16; 3674 plane_state->src_h = fb->height << 16; 3675 3676 plane_state->crtc_x = 0; 3677 plane_state->crtc_y = 0; 3678 plane_state->crtc_w = fb->width; 3679 plane_state->crtc_h = fb->height; 3680 3681 intel_state->uapi.src = drm_plane_state_src(plane_state); 3682 intel_state->uapi.dst = drm_plane_state_dest(plane_state); 3683 3684 if (plane_config->tiling) 3685 dev_priv->preserve_bios_swizzle = true; 3686 3687 plane_state->fb = fb; 3688 drm_framebuffer_get(fb); 3689 3690 plane_state->crtc = &intel_crtc->base; 3691 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state); 3692 3693 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 3694 3695 atomic_or(to_intel_plane(primary)->frontbuffer_bit, 3696 &to_intel_frontbuffer(fb)->bits); 3697 } 3698 3699 static int skl_max_plane_width(const struct drm_framebuffer *fb, 3700 int color_plane, 3701 unsigned int rotation) 3702 { 3703 int cpp = fb->format->cpp[color_plane]; 3704 3705 switch (fb->modifier) { 3706 case DRM_FORMAT_MOD_LINEAR: 3707 case I915_FORMAT_MOD_X_TILED: 3708 /* 3709 * Validated limit is 4k, but has 5k should 3710 * work apart from the following features: 3711 * - Ytile (already limited to 4k) 3712 * - FP16 (already limited to 4k) 3713 * - render compression (already limited to 4k) 3714 * - KVMR sprite and cursor (don't care) 3715 * - horizontal panning (TODO verify this) 3716 * - pipe and plane scaling (TODO verify this) 3717 */ 3718 if (cpp == 8) 3719 return 4096; 3720 else 3721 return 5120; 3722 case I915_FORMAT_MOD_Y_TILED_CCS: 3723 case I915_FORMAT_MOD_Yf_TILED_CCS: 3724 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 3725 /* FIXME AUX plane? */ 3726 case I915_FORMAT_MOD_Y_TILED: 3727 case I915_FORMAT_MOD_Yf_TILED: 3728 if (cpp == 8) 3729 return 2048; 3730 else 3731 return 4096; 3732 default: 3733 MISSING_CASE(fb->modifier); 3734 return 2048; 3735 } 3736 } 3737 3738 static int glk_max_plane_width(const struct drm_framebuffer *fb, 3739 int color_plane, 3740 unsigned int rotation) 3741 { 3742 int cpp = fb->format->cpp[color_plane]; 3743 3744 switch (fb->modifier) { 3745 case DRM_FORMAT_MOD_LINEAR: 3746 case I915_FORMAT_MOD_X_TILED: 3747 if (cpp == 8) 3748 return 4096; 3749 else 3750 return 5120; 3751 case I915_FORMAT_MOD_Y_TILED_CCS: 3752 case I915_FORMAT_MOD_Yf_TILED_CCS: 3753 /* FIXME AUX plane? */ 3754 case I915_FORMAT_MOD_Y_TILED: 3755 case I915_FORMAT_MOD_Yf_TILED: 3756 if (cpp == 8) 3757 return 2048; 3758 else 3759 return 5120; 3760 default: 3761 MISSING_CASE(fb->modifier); 3762 return 2048; 3763 } 3764 } 3765 3766 static int icl_min_plane_width(const struct drm_framebuffer *fb) 3767 { 3768 /* Wa_14011264657, Wa_14011050563: gen11+ */ 3769 switch (fb->format->format) { 3770 case DRM_FORMAT_C8: 3771 return 18; 3772 case DRM_FORMAT_RGB565: 3773 return 10; 3774 case DRM_FORMAT_XRGB8888: 3775 case DRM_FORMAT_XBGR8888: 3776 case DRM_FORMAT_ARGB8888: 3777 case DRM_FORMAT_ABGR8888: 3778 case DRM_FORMAT_XRGB2101010: 3779 case DRM_FORMAT_XBGR2101010: 3780 case DRM_FORMAT_ARGB2101010: 3781 case DRM_FORMAT_ABGR2101010: 3782 case DRM_FORMAT_XVYU2101010: 3783 case DRM_FORMAT_Y212: 3784 case DRM_FORMAT_Y216: 3785 return 6; 3786 case DRM_FORMAT_NV12: 3787 return 20; 3788 case DRM_FORMAT_P010: 3789 case DRM_FORMAT_P012: 3790 case DRM_FORMAT_P016: 3791 return 12; 3792 case DRM_FORMAT_XRGB16161616F: 3793 case DRM_FORMAT_XBGR16161616F: 3794 case DRM_FORMAT_ARGB16161616F: 3795 case DRM_FORMAT_ABGR16161616F: 3796 case DRM_FORMAT_XVYU12_16161616: 3797 case DRM_FORMAT_XVYU16161616: 3798 return 4; 3799 default: 3800 return 1; 3801 } 3802 } 3803 3804 static int icl_max_plane_width(const struct drm_framebuffer *fb, 3805 int color_plane, 3806 unsigned int rotation) 3807 { 3808 return 5120; 3809 } 3810 3811 static int skl_max_plane_height(void) 3812 { 3813 return 4096; 3814 } 3815 3816 static int icl_max_plane_height(void) 3817 { 3818 return 4320; 3819 } 3820 3821 static bool 3822 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state, 3823 int main_x, int main_y, u32 main_offset, 3824 int ccs_plane) 3825 { 3826 const struct drm_framebuffer *fb = plane_state->hw.fb; 3827 int aux_x = plane_state->color_plane[ccs_plane].x; 3828 int aux_y = plane_state->color_plane[ccs_plane].y; 3829 u32 aux_offset = plane_state->color_plane[ccs_plane].offset; 3830 u32 alignment = intel_surf_alignment(fb, ccs_plane); 3831 int hsub; 3832 int vsub; 3833 3834 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 3835 while (aux_offset >= main_offset && aux_y <= main_y) { 3836 int x, y; 3837 3838 if (aux_x == main_x && aux_y == main_y) 3839 break; 3840 3841 if (aux_offset == 0) 3842 break; 3843 3844 x = aux_x / hsub; 3845 y = aux_y / vsub; 3846 aux_offset = intel_plane_adjust_aligned_offset(&x, &y, 3847 plane_state, 3848 ccs_plane, 3849 aux_offset, 3850 aux_offset - 3851 alignment); 3852 aux_x = x * hsub + aux_x % hsub; 3853 aux_y = y * vsub + aux_y % vsub; 3854 } 3855 3856 if (aux_x != main_x || aux_y != main_y) 3857 return false; 3858 3859 plane_state->color_plane[ccs_plane].offset = aux_offset; 3860 plane_state->color_plane[ccs_plane].x = aux_x; 3861 plane_state->color_plane[ccs_plane].y = aux_y; 3862 3863 return true; 3864 } 3865 3866 unsigned int 3867 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) 3868 { 3869 int x = 0, y = 0; 3870 3871 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3872 plane_state->color_plane[0].offset, 0); 3873 3874 return y; 3875 } 3876 3877 static int skl_check_main_surface(struct intel_plane_state *plane_state) 3878 { 3879 struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev); 3880 const struct drm_framebuffer *fb = plane_state->hw.fb; 3881 unsigned int rotation = plane_state->hw.rotation; 3882 int x = plane_state->uapi.src.x1 >> 16; 3883 int y = plane_state->uapi.src.y1 >> 16; 3884 int w = drm_rect_width(&plane_state->uapi.src) >> 16; 3885 int h = drm_rect_height(&plane_state->uapi.src) >> 16; 3886 int max_width, min_width, max_height; 3887 u32 alignment, offset; 3888 int aux_plane = intel_main_to_aux_plane(fb, 0); 3889 u32 aux_offset = plane_state->color_plane[aux_plane].offset; 3890 3891 if (INTEL_GEN(dev_priv) >= 11) { 3892 max_width = icl_max_plane_width(fb, 0, rotation); 3893 min_width = icl_min_plane_width(fb); 3894 } else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { 3895 max_width = glk_max_plane_width(fb, 0, rotation); 3896 min_width = 1; 3897 } else { 3898 max_width = skl_max_plane_width(fb, 0, rotation); 3899 min_width = 1; 3900 } 3901 3902 if (INTEL_GEN(dev_priv) >= 11) 3903 max_height = icl_max_plane_height(); 3904 else 3905 max_height = skl_max_plane_height(); 3906 3907 if (w > max_width || w < min_width || h > max_height) { 3908 drm_dbg_kms(&dev_priv->drm, 3909 "requested Y/RGB source size %dx%d outside limits (min: %dx1 max: %dx%d)\n", 3910 w, h, min_width, max_width, max_height); 3911 return -EINVAL; 3912 } 3913 3914 intel_add_fb_offsets(&x, &y, plane_state, 0); 3915 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0); 3916 alignment = intel_surf_alignment(fb, 0); 3917 if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment))) 3918 return -EINVAL; 3919 3920 /* 3921 * AUX surface offset is specified as the distance from the 3922 * main surface offset, and it must be non-negative. Make 3923 * sure that is what we will get. 3924 */ 3925 if (offset > aux_offset) 3926 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3927 offset, aux_offset & ~(alignment - 1)); 3928 3929 /* 3930 * When using an X-tiled surface, the plane blows up 3931 * if the x offset + width exceed the stride. 3932 * 3933 * TODO: linear and Y-tiled seem fine, Yf untested, 3934 */ 3935 if (fb->modifier == I915_FORMAT_MOD_X_TILED) { 3936 int cpp = fb->format->cpp[0]; 3937 3938 while ((x + w) * cpp > plane_state->color_plane[0].stride) { 3939 if (offset == 0) { 3940 drm_dbg_kms(&dev_priv->drm, 3941 "Unable to find suitable display surface offset due to X-tiling\n"); 3942 return -EINVAL; 3943 } 3944 3945 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3946 offset, offset - alignment); 3947 } 3948 } 3949 3950 /* 3951 * CCS AUX surface doesn't have its own x/y offsets, we must make sure 3952 * they match with the main surface x/y offsets. 3953 */ 3954 if (is_ccs_modifier(fb->modifier)) { 3955 while (!skl_check_main_ccs_coordinates(plane_state, x, y, 3956 offset, aux_plane)) { 3957 if (offset == 0) 3958 break; 3959 3960 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3961 offset, offset - alignment); 3962 } 3963 3964 if (x != plane_state->color_plane[aux_plane].x || 3965 y != plane_state->color_plane[aux_plane].y) { 3966 drm_dbg_kms(&dev_priv->drm, 3967 "Unable to find suitable display surface offset due to CCS\n"); 3968 return -EINVAL; 3969 } 3970 } 3971 3972 plane_state->color_plane[0].offset = offset; 3973 plane_state->color_plane[0].x = x; 3974 plane_state->color_plane[0].y = y; 3975 3976 /* 3977 * Put the final coordinates back so that the src 3978 * coordinate checks will see the right values. 3979 */ 3980 drm_rect_translate_to(&plane_state->uapi.src, 3981 x << 16, y << 16); 3982 3983 return 0; 3984 } 3985 3986 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state) 3987 { 3988 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 3989 const struct drm_framebuffer *fb = plane_state->hw.fb; 3990 unsigned int rotation = plane_state->hw.rotation; 3991 int uv_plane = 1; 3992 int max_width = skl_max_plane_width(fb, uv_plane, rotation); 3993 int max_height = 4096; 3994 int x = plane_state->uapi.src.x1 >> 17; 3995 int y = plane_state->uapi.src.y1 >> 17; 3996 int w = drm_rect_width(&plane_state->uapi.src) >> 17; 3997 int h = drm_rect_height(&plane_state->uapi.src) >> 17; 3998 u32 offset; 3999 4000 intel_add_fb_offsets(&x, &y, plane_state, uv_plane); 4001 offset = intel_plane_compute_aligned_offset(&x, &y, 4002 plane_state, uv_plane); 4003 4004 /* FIXME not quite sure how/if these apply to the chroma plane */ 4005 if (w > max_width || h > max_height) { 4006 drm_dbg_kms(&i915->drm, 4007 "CbCr source size %dx%d too big (limit %dx%d)\n", 4008 w, h, max_width, max_height); 4009 return -EINVAL; 4010 } 4011 4012 if (is_ccs_modifier(fb->modifier)) { 4013 int ccs_plane = main_to_ccs_plane(fb, uv_plane); 4014 int aux_offset = plane_state->color_plane[ccs_plane].offset; 4015 int alignment = intel_surf_alignment(fb, uv_plane); 4016 4017 if (offset > aux_offset) 4018 offset = intel_plane_adjust_aligned_offset(&x, &y, 4019 plane_state, 4020 uv_plane, 4021 offset, 4022 aux_offset & ~(alignment - 1)); 4023 4024 while (!skl_check_main_ccs_coordinates(plane_state, x, y, 4025 offset, ccs_plane)) { 4026 if (offset == 0) 4027 break; 4028 4029 offset = intel_plane_adjust_aligned_offset(&x, &y, 4030 plane_state, 4031 uv_plane, 4032 offset, offset - alignment); 4033 } 4034 4035 if (x != plane_state->color_plane[ccs_plane].x || 4036 y != plane_state->color_plane[ccs_plane].y) { 4037 drm_dbg_kms(&i915->drm, 4038 "Unable to find suitable display surface offset due to CCS\n"); 4039 return -EINVAL; 4040 } 4041 } 4042 4043 plane_state->color_plane[uv_plane].offset = offset; 4044 plane_state->color_plane[uv_plane].x = x; 4045 plane_state->color_plane[uv_plane].y = y; 4046 4047 return 0; 4048 } 4049 4050 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state) 4051 { 4052 const struct drm_framebuffer *fb = plane_state->hw.fb; 4053 int src_x = plane_state->uapi.src.x1 >> 16; 4054 int src_y = plane_state->uapi.src.y1 >> 16; 4055 u32 offset; 4056 int ccs_plane; 4057 4058 for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) { 4059 int main_hsub, main_vsub; 4060 int hsub, vsub; 4061 int x, y; 4062 4063 if (!is_ccs_plane(fb, ccs_plane)) 4064 continue; 4065 4066 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, 4067 ccs_to_main_plane(fb, ccs_plane)); 4068 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 4069 4070 hsub *= main_hsub; 4071 vsub *= main_vsub; 4072 x = src_x / hsub; 4073 y = src_y / vsub; 4074 4075 intel_add_fb_offsets(&x, &y, plane_state, ccs_plane); 4076 4077 offset = intel_plane_compute_aligned_offset(&x, &y, 4078 plane_state, 4079 ccs_plane); 4080 4081 plane_state->color_plane[ccs_plane].offset = offset; 4082 plane_state->color_plane[ccs_plane].x = (x * hsub + 4083 src_x % hsub) / 4084 main_hsub; 4085 plane_state->color_plane[ccs_plane].y = (y * vsub + 4086 src_y % vsub) / 4087 main_vsub; 4088 } 4089 4090 return 0; 4091 } 4092 4093 int skl_check_plane_surface(struct intel_plane_state *plane_state) 4094 { 4095 const struct drm_framebuffer *fb = plane_state->hw.fb; 4096 int ret; 4097 bool needs_aux = false; 4098 4099 ret = intel_plane_compute_gtt(plane_state); 4100 if (ret) 4101 return ret; 4102 4103 if (!plane_state->uapi.visible) 4104 return 0; 4105 4106 /* 4107 * Handle the AUX surface first since the main surface setup depends on 4108 * it. 4109 */ 4110 if (is_ccs_modifier(fb->modifier)) { 4111 needs_aux = true; 4112 ret = skl_check_ccs_aux_surface(plane_state); 4113 if (ret) 4114 return ret; 4115 } 4116 4117 if (intel_format_info_is_yuv_semiplanar(fb->format, 4118 fb->modifier)) { 4119 needs_aux = true; 4120 ret = skl_check_nv12_aux_surface(plane_state); 4121 if (ret) 4122 return ret; 4123 } 4124 4125 if (!needs_aux) { 4126 int i; 4127 4128 for (i = 1; i < fb->format->num_planes; i++) { 4129 plane_state->color_plane[i].offset = ~0xfff; 4130 plane_state->color_plane[i].x = 0; 4131 plane_state->color_plane[i].y = 0; 4132 } 4133 } 4134 4135 ret = skl_check_main_surface(plane_state); 4136 if (ret) 4137 return ret; 4138 4139 return 0; 4140 } 4141 4142 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state, 4143 const struct intel_plane_state *plane_state, 4144 unsigned int *num, unsigned int *den) 4145 { 4146 const struct drm_framebuffer *fb = plane_state->hw.fb; 4147 unsigned int cpp = fb->format->cpp[0]; 4148 4149 /* 4150 * g4x bspec says 64bpp pixel rate can't exceed 80% 4151 * of cdclk when the sprite plane is enabled on the 4152 * same pipe. ilk/snb bspec says 64bpp pixel rate is 4153 * never allowed to exceed 80% of cdclk. Let's just go 4154 * with the ilk/snb limit always. 4155 */ 4156 if (cpp == 8) { 4157 *num = 10; 4158 *den = 8; 4159 } else { 4160 *num = 1; 4161 *den = 1; 4162 } 4163 } 4164 4165 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state, 4166 const struct intel_plane_state *plane_state) 4167 { 4168 unsigned int pixel_rate; 4169 unsigned int num, den; 4170 4171 /* 4172 * Note that crtc_state->pixel_rate accounts for both 4173 * horizontal and vertical panel fitter downscaling factors. 4174 * Pre-HSW bspec tells us to only consider the horizontal 4175 * downscaling factor here. We ignore that and just consider 4176 * both for simplicity. 4177 */ 4178 pixel_rate = crtc_state->pixel_rate; 4179 4180 i9xx_plane_ratio(crtc_state, plane_state, &num, &den); 4181 4182 /* two pixels per clock with double wide pipe */ 4183 if (crtc_state->double_wide) 4184 den *= 2; 4185 4186 return DIV_ROUND_UP(pixel_rate * num, den); 4187 } 4188 4189 unsigned int 4190 i9xx_plane_max_stride(struct intel_plane *plane, 4191 u32 pixel_format, u64 modifier, 4192 unsigned int rotation) 4193 { 4194 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4195 4196 if (!HAS_GMCH(dev_priv)) { 4197 return 32*1024; 4198 } else if (INTEL_GEN(dev_priv) >= 4) { 4199 if (modifier == I915_FORMAT_MOD_X_TILED) 4200 return 16*1024; 4201 else 4202 return 32*1024; 4203 } else if (INTEL_GEN(dev_priv) >= 3) { 4204 if (modifier == I915_FORMAT_MOD_X_TILED) 4205 return 8*1024; 4206 else 4207 return 16*1024; 4208 } else { 4209 if (plane->i9xx_plane == PLANE_C) 4210 return 4*1024; 4211 else 4212 return 8*1024; 4213 } 4214 } 4215 4216 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4217 { 4218 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4219 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4220 u32 dspcntr = 0; 4221 4222 if (crtc_state->gamma_enable) 4223 dspcntr |= DISPPLANE_GAMMA_ENABLE; 4224 4225 if (crtc_state->csc_enable) 4226 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; 4227 4228 if (INTEL_GEN(dev_priv) < 5) 4229 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe); 4230 4231 return dspcntr; 4232 } 4233 4234 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state, 4235 const struct intel_plane_state *plane_state) 4236 { 4237 struct drm_i915_private *dev_priv = 4238 to_i915(plane_state->uapi.plane->dev); 4239 const struct drm_framebuffer *fb = plane_state->hw.fb; 4240 unsigned int rotation = plane_state->hw.rotation; 4241 u32 dspcntr; 4242 4243 dspcntr = DISPLAY_PLANE_ENABLE; 4244 4245 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) || 4246 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 4247 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; 4248 4249 switch (fb->format->format) { 4250 case DRM_FORMAT_C8: 4251 dspcntr |= DISPPLANE_8BPP; 4252 break; 4253 case DRM_FORMAT_XRGB1555: 4254 dspcntr |= DISPPLANE_BGRX555; 4255 break; 4256 case DRM_FORMAT_ARGB1555: 4257 dspcntr |= DISPPLANE_BGRA555; 4258 break; 4259 case DRM_FORMAT_RGB565: 4260 dspcntr |= DISPPLANE_BGRX565; 4261 break; 4262 case DRM_FORMAT_XRGB8888: 4263 dspcntr |= DISPPLANE_BGRX888; 4264 break; 4265 case DRM_FORMAT_XBGR8888: 4266 dspcntr |= DISPPLANE_RGBX888; 4267 break; 4268 case DRM_FORMAT_ARGB8888: 4269 dspcntr |= DISPPLANE_BGRA888; 4270 break; 4271 case DRM_FORMAT_ABGR8888: 4272 dspcntr |= DISPPLANE_RGBA888; 4273 break; 4274 case DRM_FORMAT_XRGB2101010: 4275 dspcntr |= DISPPLANE_BGRX101010; 4276 break; 4277 case DRM_FORMAT_XBGR2101010: 4278 dspcntr |= DISPPLANE_RGBX101010; 4279 break; 4280 case DRM_FORMAT_ARGB2101010: 4281 dspcntr |= DISPPLANE_BGRA101010; 4282 break; 4283 case DRM_FORMAT_ABGR2101010: 4284 dspcntr |= DISPPLANE_RGBA101010; 4285 break; 4286 case DRM_FORMAT_XBGR16161616F: 4287 dspcntr |= DISPPLANE_RGBX161616; 4288 break; 4289 default: 4290 MISSING_CASE(fb->format->format); 4291 return 0; 4292 } 4293 4294 if (INTEL_GEN(dev_priv) >= 4 && 4295 fb->modifier == I915_FORMAT_MOD_X_TILED) 4296 dspcntr |= DISPPLANE_TILED; 4297 4298 if (rotation & DRM_MODE_ROTATE_180) 4299 dspcntr |= DISPPLANE_ROTATE_180; 4300 4301 if (rotation & DRM_MODE_REFLECT_X) 4302 dspcntr |= DISPPLANE_MIRROR; 4303 4304 return dspcntr; 4305 } 4306 4307 int i9xx_check_plane_surface(struct intel_plane_state *plane_state) 4308 { 4309 struct drm_i915_private *dev_priv = 4310 to_i915(plane_state->uapi.plane->dev); 4311 const struct drm_framebuffer *fb = plane_state->hw.fb; 4312 int src_x, src_y, src_w; 4313 u32 offset; 4314 int ret; 4315 4316 ret = intel_plane_compute_gtt(plane_state); 4317 if (ret) 4318 return ret; 4319 4320 if (!plane_state->uapi.visible) 4321 return 0; 4322 4323 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 4324 src_x = plane_state->uapi.src.x1 >> 16; 4325 src_y = plane_state->uapi.src.y1 >> 16; 4326 4327 /* Undocumented hardware limit on i965/g4x/vlv/chv */ 4328 if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048) 4329 return -EINVAL; 4330 4331 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 4332 4333 if (INTEL_GEN(dev_priv) >= 4) 4334 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 4335 plane_state, 0); 4336 else 4337 offset = 0; 4338 4339 /* 4340 * Put the final coordinates back so that the src 4341 * coordinate checks will see the right values. 4342 */ 4343 drm_rect_translate_to(&plane_state->uapi.src, 4344 src_x << 16, src_y << 16); 4345 4346 /* HSW/BDW do this automagically in hardware */ 4347 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) { 4348 unsigned int rotation = plane_state->hw.rotation; 4349 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 4350 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 4351 4352 if (rotation & DRM_MODE_ROTATE_180) { 4353 src_x += src_w - 1; 4354 src_y += src_h - 1; 4355 } else if (rotation & DRM_MODE_REFLECT_X) { 4356 src_x += src_w - 1; 4357 } 4358 } 4359 4360 plane_state->color_plane[0].offset = offset; 4361 plane_state->color_plane[0].x = src_x; 4362 plane_state->color_plane[0].y = src_y; 4363 4364 return 0; 4365 } 4366 4367 static bool i9xx_plane_has_windowing(struct intel_plane *plane) 4368 { 4369 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4370 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4371 4372 if (IS_CHERRYVIEW(dev_priv)) 4373 return i9xx_plane == PLANE_B; 4374 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 4375 return false; 4376 else if (IS_GEN(dev_priv, 4)) 4377 return i9xx_plane == PLANE_C; 4378 else 4379 return i9xx_plane == PLANE_B || 4380 i9xx_plane == PLANE_C; 4381 } 4382 4383 static int 4384 i9xx_plane_check(struct intel_crtc_state *crtc_state, 4385 struct intel_plane_state *plane_state) 4386 { 4387 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 4388 int ret; 4389 4390 ret = chv_plane_check_rotation(plane_state); 4391 if (ret) 4392 return ret; 4393 4394 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi, 4395 &crtc_state->uapi, 4396 DRM_PLANE_HELPER_NO_SCALING, 4397 DRM_PLANE_HELPER_NO_SCALING, 4398 i9xx_plane_has_windowing(plane), 4399 true); 4400 if (ret) 4401 return ret; 4402 4403 ret = i9xx_check_plane_surface(plane_state); 4404 if (ret) 4405 return ret; 4406 4407 if (!plane_state->uapi.visible) 4408 return 0; 4409 4410 ret = intel_plane_check_src_coordinates(plane_state); 4411 if (ret) 4412 return ret; 4413 4414 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state); 4415 4416 return 0; 4417 } 4418 4419 static void i9xx_update_plane(struct intel_plane *plane, 4420 const struct intel_crtc_state *crtc_state, 4421 const struct intel_plane_state *plane_state) 4422 { 4423 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4424 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4425 u32 linear_offset; 4426 int x = plane_state->color_plane[0].x; 4427 int y = plane_state->color_plane[0].y; 4428 int crtc_x = plane_state->uapi.dst.x1; 4429 int crtc_y = plane_state->uapi.dst.y1; 4430 int crtc_w = drm_rect_width(&plane_state->uapi.dst); 4431 int crtc_h = drm_rect_height(&plane_state->uapi.dst); 4432 unsigned long irqflags; 4433 u32 dspaddr_offset; 4434 u32 dspcntr; 4435 4436 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state); 4437 4438 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0); 4439 4440 if (INTEL_GEN(dev_priv) >= 4) 4441 dspaddr_offset = plane_state->color_plane[0].offset; 4442 else 4443 dspaddr_offset = linear_offset; 4444 4445 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4446 4447 intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane), 4448 plane_state->color_plane[0].stride); 4449 4450 if (INTEL_GEN(dev_priv) < 4) { 4451 /* 4452 * PLANE_A doesn't actually have a full window 4453 * generator but let's assume we still need to 4454 * program whatever is there. 4455 */ 4456 intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane), 4457 (crtc_y << 16) | crtc_x); 4458 intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane), 4459 ((crtc_h - 1) << 16) | (crtc_w - 1)); 4460 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) { 4461 intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane), 4462 (crtc_y << 16) | crtc_x); 4463 intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane), 4464 ((crtc_h - 1) << 16) | (crtc_w - 1)); 4465 intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0); 4466 } 4467 4468 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 4469 intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane), 4470 (y << 16) | x); 4471 } else if (INTEL_GEN(dev_priv) >= 4) { 4472 intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane), 4473 linear_offset); 4474 intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane), 4475 (y << 16) | x); 4476 } 4477 4478 /* 4479 * The control register self-arms if the plane was previously 4480 * disabled. Try to make the plane enable atomic by writing 4481 * the control register just before the surface register. 4482 */ 4483 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr); 4484 if (INTEL_GEN(dev_priv) >= 4) 4485 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 4486 intel_plane_ggtt_offset(plane_state) + dspaddr_offset); 4487 else 4488 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 4489 intel_plane_ggtt_offset(plane_state) + dspaddr_offset); 4490 4491 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4492 } 4493 4494 static void i9xx_disable_plane(struct intel_plane *plane, 4495 const struct intel_crtc_state *crtc_state) 4496 { 4497 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4498 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4499 unsigned long irqflags; 4500 u32 dspcntr; 4501 4502 /* 4503 * DSPCNTR pipe gamma enable on g4x+ and pipe csc 4504 * enable on ilk+ affect the pipe bottom color as 4505 * well, so we must configure them even if the plane 4506 * is disabled. 4507 * 4508 * On pre-g4x there is no way to gamma correct the 4509 * pipe bottom color but we'll keep on doing this 4510 * anyway so that the crtc state readout works correctly. 4511 */ 4512 dspcntr = i9xx_plane_ctl_crtc(crtc_state); 4513 4514 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4515 4516 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr); 4517 if (INTEL_GEN(dev_priv) >= 4) 4518 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0); 4519 else 4520 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0); 4521 4522 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4523 } 4524 4525 static bool i9xx_plane_get_hw_state(struct intel_plane *plane, 4526 enum pipe *pipe) 4527 { 4528 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4529 enum intel_display_power_domain power_domain; 4530 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4531 intel_wakeref_t wakeref; 4532 bool ret; 4533 u32 val; 4534 4535 /* 4536 * Not 100% correct for planes that can move between pipes, 4537 * but that's only the case for gen2-4 which don't have any 4538 * display power wells. 4539 */ 4540 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 4541 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 4542 if (!wakeref) 4543 return false; 4544 4545 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 4546 4547 ret = val & DISPLAY_PLANE_ENABLE; 4548 4549 if (INTEL_GEN(dev_priv) >= 5) 4550 *pipe = plane->pipe; 4551 else 4552 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> 4553 DISPPLANE_SEL_PIPE_SHIFT; 4554 4555 intel_display_power_put(dev_priv, power_domain, wakeref); 4556 4557 return ret; 4558 } 4559 4560 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) 4561 { 4562 struct drm_device *dev = intel_crtc->base.dev; 4563 struct drm_i915_private *dev_priv = to_i915(dev); 4564 unsigned long irqflags; 4565 4566 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4567 4568 intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0); 4569 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); 4570 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); 4571 4572 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4573 } 4574 4575 /* 4576 * This function detaches (aka. unbinds) unused scalers in hardware 4577 */ 4578 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state) 4579 { 4580 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 4581 const struct intel_crtc_scaler_state *scaler_state = 4582 &crtc_state->scaler_state; 4583 int i; 4584 4585 /* loop through and disable scalers that aren't in use */ 4586 for (i = 0; i < intel_crtc->num_scalers; i++) { 4587 if (!scaler_state->scalers[i].in_use) 4588 skl_detach_scaler(intel_crtc, i); 4589 } 4590 } 4591 4592 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb, 4593 int color_plane, unsigned int rotation) 4594 { 4595 /* 4596 * The stride is either expressed as a multiple of 64 bytes chunks for 4597 * linear buffers or in number of tiles for tiled buffers. 4598 */ 4599 if (is_surface_linear(fb, color_plane)) 4600 return 64; 4601 else if (drm_rotation_90_or_270(rotation)) 4602 return intel_tile_height(fb, color_plane); 4603 else 4604 return intel_tile_width_bytes(fb, color_plane); 4605 } 4606 4607 u32 skl_plane_stride(const struct intel_plane_state *plane_state, 4608 int color_plane) 4609 { 4610 const struct drm_framebuffer *fb = plane_state->hw.fb; 4611 unsigned int rotation = plane_state->hw.rotation; 4612 u32 stride = plane_state->color_plane[color_plane].stride; 4613 4614 if (color_plane >= fb->format->num_planes) 4615 return 0; 4616 4617 return stride / skl_plane_stride_mult(fb, color_plane, rotation); 4618 } 4619 4620 static u32 skl_plane_ctl_format(u32 pixel_format) 4621 { 4622 switch (pixel_format) { 4623 case DRM_FORMAT_C8: 4624 return PLANE_CTL_FORMAT_INDEXED; 4625 case DRM_FORMAT_RGB565: 4626 return PLANE_CTL_FORMAT_RGB_565; 4627 case DRM_FORMAT_XBGR8888: 4628 case DRM_FORMAT_ABGR8888: 4629 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; 4630 case DRM_FORMAT_XRGB8888: 4631 case DRM_FORMAT_ARGB8888: 4632 return PLANE_CTL_FORMAT_XRGB_8888; 4633 case DRM_FORMAT_XBGR2101010: 4634 case DRM_FORMAT_ABGR2101010: 4635 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX; 4636 case DRM_FORMAT_XRGB2101010: 4637 case DRM_FORMAT_ARGB2101010: 4638 return PLANE_CTL_FORMAT_XRGB_2101010; 4639 case DRM_FORMAT_XBGR16161616F: 4640 case DRM_FORMAT_ABGR16161616F: 4641 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX; 4642 case DRM_FORMAT_XRGB16161616F: 4643 case DRM_FORMAT_ARGB16161616F: 4644 return PLANE_CTL_FORMAT_XRGB_16161616F; 4645 case DRM_FORMAT_XYUV8888: 4646 return PLANE_CTL_FORMAT_XYUV; 4647 case DRM_FORMAT_YUYV: 4648 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; 4649 case DRM_FORMAT_YVYU: 4650 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; 4651 case DRM_FORMAT_UYVY: 4652 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; 4653 case DRM_FORMAT_VYUY: 4654 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; 4655 case DRM_FORMAT_NV12: 4656 return PLANE_CTL_FORMAT_NV12; 4657 case DRM_FORMAT_P010: 4658 return PLANE_CTL_FORMAT_P010; 4659 case DRM_FORMAT_P012: 4660 return PLANE_CTL_FORMAT_P012; 4661 case DRM_FORMAT_P016: 4662 return PLANE_CTL_FORMAT_P016; 4663 case DRM_FORMAT_Y210: 4664 return PLANE_CTL_FORMAT_Y210; 4665 case DRM_FORMAT_Y212: 4666 return PLANE_CTL_FORMAT_Y212; 4667 case DRM_FORMAT_Y216: 4668 return PLANE_CTL_FORMAT_Y216; 4669 case DRM_FORMAT_XVYU2101010: 4670 return PLANE_CTL_FORMAT_Y410; 4671 case DRM_FORMAT_XVYU12_16161616: 4672 return PLANE_CTL_FORMAT_Y412; 4673 case DRM_FORMAT_XVYU16161616: 4674 return PLANE_CTL_FORMAT_Y416; 4675 default: 4676 MISSING_CASE(pixel_format); 4677 } 4678 4679 return 0; 4680 } 4681 4682 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state) 4683 { 4684 if (!plane_state->hw.fb->format->has_alpha) 4685 return PLANE_CTL_ALPHA_DISABLE; 4686 4687 switch (plane_state->hw.pixel_blend_mode) { 4688 case DRM_MODE_BLEND_PIXEL_NONE: 4689 return PLANE_CTL_ALPHA_DISABLE; 4690 case DRM_MODE_BLEND_PREMULTI: 4691 return PLANE_CTL_ALPHA_SW_PREMULTIPLY; 4692 case DRM_MODE_BLEND_COVERAGE: 4693 return PLANE_CTL_ALPHA_HW_PREMULTIPLY; 4694 default: 4695 MISSING_CASE(plane_state->hw.pixel_blend_mode); 4696 return PLANE_CTL_ALPHA_DISABLE; 4697 } 4698 } 4699 4700 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state) 4701 { 4702 if (!plane_state->hw.fb->format->has_alpha) 4703 return PLANE_COLOR_ALPHA_DISABLE; 4704 4705 switch (plane_state->hw.pixel_blend_mode) { 4706 case DRM_MODE_BLEND_PIXEL_NONE: 4707 return PLANE_COLOR_ALPHA_DISABLE; 4708 case DRM_MODE_BLEND_PREMULTI: 4709 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY; 4710 case DRM_MODE_BLEND_COVERAGE: 4711 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY; 4712 default: 4713 MISSING_CASE(plane_state->hw.pixel_blend_mode); 4714 return PLANE_COLOR_ALPHA_DISABLE; 4715 } 4716 } 4717 4718 static u32 skl_plane_ctl_tiling(u64 fb_modifier) 4719 { 4720 switch (fb_modifier) { 4721 case DRM_FORMAT_MOD_LINEAR: 4722 break; 4723 case I915_FORMAT_MOD_X_TILED: 4724 return PLANE_CTL_TILED_X; 4725 case I915_FORMAT_MOD_Y_TILED: 4726 return PLANE_CTL_TILED_Y; 4727 case I915_FORMAT_MOD_Y_TILED_CCS: 4728 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4729 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 4730 return PLANE_CTL_TILED_Y | 4731 PLANE_CTL_RENDER_DECOMPRESSION_ENABLE | 4732 PLANE_CTL_CLEAR_COLOR_DISABLE; 4733 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 4734 return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE; 4735 case I915_FORMAT_MOD_Yf_TILED: 4736 return PLANE_CTL_TILED_YF; 4737 case I915_FORMAT_MOD_Yf_TILED_CCS: 4738 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4739 default: 4740 MISSING_CASE(fb_modifier); 4741 } 4742 4743 return 0; 4744 } 4745 4746 static u32 skl_plane_ctl_rotate(unsigned int rotate) 4747 { 4748 switch (rotate) { 4749 case DRM_MODE_ROTATE_0: 4750 break; 4751 /* 4752 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 4753 * while i915 HW rotation is clockwise, thats why this swapping. 4754 */ 4755 case DRM_MODE_ROTATE_90: 4756 return PLANE_CTL_ROTATE_270; 4757 case DRM_MODE_ROTATE_180: 4758 return PLANE_CTL_ROTATE_180; 4759 case DRM_MODE_ROTATE_270: 4760 return PLANE_CTL_ROTATE_90; 4761 default: 4762 MISSING_CASE(rotate); 4763 } 4764 4765 return 0; 4766 } 4767 4768 static u32 cnl_plane_ctl_flip(unsigned int reflect) 4769 { 4770 switch (reflect) { 4771 case 0: 4772 break; 4773 case DRM_MODE_REFLECT_X: 4774 return PLANE_CTL_FLIP_HORIZONTAL; 4775 case DRM_MODE_REFLECT_Y: 4776 default: 4777 MISSING_CASE(reflect); 4778 } 4779 4780 return 0; 4781 } 4782 4783 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4784 { 4785 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4786 u32 plane_ctl = 0; 4787 4788 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4789 return plane_ctl; 4790 4791 if (crtc_state->gamma_enable) 4792 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE; 4793 4794 if (crtc_state->csc_enable) 4795 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE; 4796 4797 return plane_ctl; 4798 } 4799 4800 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state, 4801 const struct intel_plane_state *plane_state) 4802 { 4803 struct drm_i915_private *dev_priv = 4804 to_i915(plane_state->uapi.plane->dev); 4805 const struct drm_framebuffer *fb = plane_state->hw.fb; 4806 unsigned int rotation = plane_state->hw.rotation; 4807 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey; 4808 u32 plane_ctl; 4809 4810 plane_ctl = PLANE_CTL_ENABLE; 4811 4812 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) { 4813 plane_ctl |= skl_plane_ctl_alpha(plane_state); 4814 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; 4815 4816 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709) 4817 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709; 4818 4819 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4820 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE; 4821 } 4822 4823 plane_ctl |= skl_plane_ctl_format(fb->format->format); 4824 plane_ctl |= skl_plane_ctl_tiling(fb->modifier); 4825 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK); 4826 4827 if (INTEL_GEN(dev_priv) >= 10) 4828 plane_ctl |= cnl_plane_ctl_flip(rotation & 4829 DRM_MODE_REFLECT_MASK); 4830 4831 if (key->flags & I915_SET_COLORKEY_DESTINATION) 4832 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION; 4833 else if (key->flags & I915_SET_COLORKEY_SOURCE) 4834 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE; 4835 4836 return plane_ctl; 4837 } 4838 4839 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state) 4840 { 4841 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4842 u32 plane_color_ctl = 0; 4843 4844 if (INTEL_GEN(dev_priv) >= 11) 4845 return plane_color_ctl; 4846 4847 if (crtc_state->gamma_enable) 4848 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE; 4849 4850 if (crtc_state->csc_enable) 4851 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE; 4852 4853 return plane_color_ctl; 4854 } 4855 4856 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state, 4857 const struct intel_plane_state *plane_state) 4858 { 4859 struct drm_i915_private *dev_priv = 4860 to_i915(plane_state->uapi.plane->dev); 4861 const struct drm_framebuffer *fb = plane_state->hw.fb; 4862 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 4863 u32 plane_color_ctl = 0; 4864 4865 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE; 4866 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state); 4867 4868 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) { 4869 switch (plane_state->hw.color_encoding) { 4870 case DRM_COLOR_YCBCR_BT709: 4871 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709; 4872 break; 4873 case DRM_COLOR_YCBCR_BT2020: 4874 plane_color_ctl |= 4875 PLANE_COLOR_CSC_MODE_YUV2020_TO_RGB2020; 4876 break; 4877 default: 4878 plane_color_ctl |= 4879 PLANE_COLOR_CSC_MODE_YUV601_TO_RGB601; 4880 } 4881 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4882 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE; 4883 } else if (fb->format->is_yuv) { 4884 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE; 4885 } 4886 4887 return plane_color_ctl; 4888 } 4889 4890 static int 4891 __intel_display_resume(struct drm_device *dev, 4892 struct drm_atomic_state *state, 4893 struct drm_modeset_acquire_ctx *ctx) 4894 { 4895 struct drm_crtc_state *crtc_state; 4896 struct drm_crtc *crtc; 4897 int i, ret; 4898 4899 intel_modeset_setup_hw_state(dev, ctx); 4900 intel_vga_redisable(to_i915(dev)); 4901 4902 if (!state) 4903 return 0; 4904 4905 /* 4906 * We've duplicated the state, pointers to the old state are invalid. 4907 * 4908 * Don't attempt to use the old state until we commit the duplicated state. 4909 */ 4910 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 4911 /* 4912 * Force recalculation even if we restore 4913 * current state. With fast modeset this may not result 4914 * in a modeset when the state is compatible. 4915 */ 4916 crtc_state->mode_changed = true; 4917 } 4918 4919 /* ignore any reset values/BIOS leftovers in the WM registers */ 4920 if (!HAS_GMCH(to_i915(dev))) 4921 to_intel_atomic_state(state)->skip_intermediate_wm = true; 4922 4923 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 4924 4925 drm_WARN_ON(dev, ret == -EDEADLK); 4926 return ret; 4927 } 4928 4929 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 4930 { 4931 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 4932 intel_has_gpu_reset(&dev_priv->gt)); 4933 } 4934 4935 void intel_prepare_reset(struct drm_i915_private *dev_priv) 4936 { 4937 struct drm_device *dev = &dev_priv->drm; 4938 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4939 struct drm_atomic_state *state; 4940 int ret; 4941 4942 /* reset doesn't touch the display */ 4943 if (!dev_priv->params.force_reset_modeset_test && 4944 !gpu_reset_clobbers_display(dev_priv)) 4945 return; 4946 4947 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 4948 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4949 smp_mb__after_atomic(); 4950 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 4951 4952 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 4953 drm_dbg_kms(&dev_priv->drm, 4954 "Modeset potentially stuck, unbreaking through wedging\n"); 4955 intel_gt_set_wedged(&dev_priv->gt); 4956 } 4957 4958 /* 4959 * Need mode_config.mutex so that we don't 4960 * trample ongoing ->detect() and whatnot. 4961 */ 4962 mutex_lock(&dev->mode_config.mutex); 4963 drm_modeset_acquire_init(ctx, 0); 4964 while (1) { 4965 ret = drm_modeset_lock_all_ctx(dev, ctx); 4966 if (ret != -EDEADLK) 4967 break; 4968 4969 drm_modeset_backoff(ctx); 4970 } 4971 /* 4972 * Disabling the crtcs gracefully seems nicer. Also the 4973 * g33 docs say we should at least disable all the planes. 4974 */ 4975 state = drm_atomic_helper_duplicate_state(dev, ctx); 4976 if (IS_ERR(state)) { 4977 ret = PTR_ERR(state); 4978 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 4979 ret); 4980 return; 4981 } 4982 4983 ret = drm_atomic_helper_disable_all(dev, ctx); 4984 if (ret) { 4985 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4986 ret); 4987 drm_atomic_state_put(state); 4988 return; 4989 } 4990 4991 dev_priv->modeset_restore_state = state; 4992 state->acquire_ctx = ctx; 4993 } 4994 4995 void intel_finish_reset(struct drm_i915_private *dev_priv) 4996 { 4997 struct drm_device *dev = &dev_priv->drm; 4998 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4999 struct drm_atomic_state *state; 5000 int ret; 5001 5002 /* reset doesn't touch the display */ 5003 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 5004 return; 5005 5006 state = fetch_and_zero(&dev_priv->modeset_restore_state); 5007 if (!state) 5008 goto unlock; 5009 5010 /* reset doesn't touch the display */ 5011 if (!gpu_reset_clobbers_display(dev_priv)) { 5012 /* for testing only restore the display */ 5013 ret = __intel_display_resume(dev, state, ctx); 5014 if (ret) 5015 drm_err(&dev_priv->drm, 5016 "Restoring old state failed with %i\n", ret); 5017 } else { 5018 /* 5019 * The display has been reset as well, 5020 * so need a full re-initialization. 5021 */ 5022 intel_pps_unlock_regs_wa(dev_priv); 5023 intel_modeset_init_hw(dev_priv); 5024 intel_init_clock_gating(dev_priv); 5025 5026 spin_lock_irq(&dev_priv->irq_lock); 5027 if (dev_priv->display.hpd_irq_setup) 5028 dev_priv->display.hpd_irq_setup(dev_priv); 5029 spin_unlock_irq(&dev_priv->irq_lock); 5030 5031 ret = __intel_display_resume(dev, state, ctx); 5032 if (ret) 5033 drm_err(&dev_priv->drm, 5034 "Restoring old state failed with %i\n", ret); 5035 5036 intel_hpd_init(dev_priv); 5037 } 5038 5039 drm_atomic_state_put(state); 5040 unlock: 5041 drm_modeset_drop_locks(ctx); 5042 drm_modeset_acquire_fini(ctx); 5043 mutex_unlock(&dev->mode_config.mutex); 5044 5045 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 5046 } 5047 5048 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 5049 { 5050 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5051 enum pipe pipe = crtc->pipe; 5052 u32 tmp; 5053 5054 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 5055 5056 /* 5057 * Display WA #1153: icl 5058 * enable hardware to bypass the alpha math 5059 * and rounding for per-pixel values 00 and 0xff 5060 */ 5061 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 5062 /* 5063 * Display WA # 1605353570: icl 5064 * Set the pixel rounding bit to 1 for allowing 5065 * passthrough of Frame buffer pixels unmodified 5066 * across pipe 5067 */ 5068 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 5069 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 5070 } 5071 5072 static void intel_fdi_normal_train(struct intel_crtc *crtc) 5073 { 5074 struct drm_device *dev = crtc->base.dev; 5075 struct drm_i915_private *dev_priv = to_i915(dev); 5076 enum pipe pipe = crtc->pipe; 5077 i915_reg_t reg; 5078 u32 temp; 5079 5080 /* enable normal train */ 5081 reg = FDI_TX_CTL(pipe); 5082 temp = intel_de_read(dev_priv, reg); 5083 if (IS_IVYBRIDGE(dev_priv)) { 5084 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 5085 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; 5086 } else { 5087 temp &= ~FDI_LINK_TRAIN_NONE; 5088 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; 5089 } 5090 intel_de_write(dev_priv, reg, temp); 5091 5092 reg = FDI_RX_CTL(pipe); 5093 temp = intel_de_read(dev_priv, reg); 5094 if (HAS_PCH_CPT(dev_priv)) { 5095 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5096 temp |= FDI_LINK_TRAIN_NORMAL_CPT; 5097 } else { 5098 temp &= ~FDI_LINK_TRAIN_NONE; 5099 temp |= FDI_LINK_TRAIN_NONE; 5100 } 5101 intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); 5102 5103 /* wait one idle pattern time */ 5104 intel_de_posting_read(dev_priv, reg); 5105 udelay(1000); 5106 5107 /* IVB wants error correction enabled */ 5108 if (IS_IVYBRIDGE(dev_priv)) 5109 intel_de_write(dev_priv, reg, 5110 intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE); 5111 } 5112 5113 /* The FDI link training functions for ILK/Ibexpeak. */ 5114 static void ilk_fdi_link_train(struct intel_crtc *crtc, 5115 const struct intel_crtc_state *crtc_state) 5116 { 5117 struct drm_device *dev = crtc->base.dev; 5118 struct drm_i915_private *dev_priv = to_i915(dev); 5119 enum pipe pipe = crtc->pipe; 5120 i915_reg_t reg; 5121 u32 temp, tries; 5122 5123 /* FDI needs bits from pipe first */ 5124 assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder); 5125 5126 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5127 for train result */ 5128 reg = FDI_RX_IMR(pipe); 5129 temp = intel_de_read(dev_priv, reg); 5130 temp &= ~FDI_RX_SYMBOL_LOCK; 5131 temp &= ~FDI_RX_BIT_LOCK; 5132 intel_de_write(dev_priv, reg, temp); 5133 intel_de_read(dev_priv, reg); 5134 udelay(150); 5135 5136 /* enable CPU FDI TX and PCH FDI RX */ 5137 reg = FDI_TX_CTL(pipe); 5138 temp = intel_de_read(dev_priv, reg); 5139 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5140 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5141 temp &= ~FDI_LINK_TRAIN_NONE; 5142 temp |= FDI_LINK_TRAIN_PATTERN_1; 5143 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5144 5145 reg = FDI_RX_CTL(pipe); 5146 temp = intel_de_read(dev_priv, reg); 5147 temp &= ~FDI_LINK_TRAIN_NONE; 5148 temp |= FDI_LINK_TRAIN_PATTERN_1; 5149 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5150 5151 intel_de_posting_read(dev_priv, reg); 5152 udelay(150); 5153 5154 /* Ironlake workaround, enable clock pointer after FDI enable*/ 5155 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5156 FDI_RX_PHASE_SYNC_POINTER_OVR); 5157 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5158 FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN); 5159 5160 reg = FDI_RX_IIR(pipe); 5161 for (tries = 0; tries < 5; tries++) { 5162 temp = intel_de_read(dev_priv, reg); 5163 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5164 5165 if ((temp & FDI_RX_BIT_LOCK)) { 5166 drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n"); 5167 intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK); 5168 break; 5169 } 5170 } 5171 if (tries == 5) 5172 drm_err(&dev_priv->drm, "FDI train 1 fail!\n"); 5173 5174 /* Train 2 */ 5175 reg = FDI_TX_CTL(pipe); 5176 temp = intel_de_read(dev_priv, reg); 5177 temp &= ~FDI_LINK_TRAIN_NONE; 5178 temp |= FDI_LINK_TRAIN_PATTERN_2; 5179 intel_de_write(dev_priv, reg, temp); 5180 5181 reg = FDI_RX_CTL(pipe); 5182 temp = intel_de_read(dev_priv, reg); 5183 temp &= ~FDI_LINK_TRAIN_NONE; 5184 temp |= FDI_LINK_TRAIN_PATTERN_2; 5185 intel_de_write(dev_priv, reg, temp); 5186 5187 intel_de_posting_read(dev_priv, reg); 5188 udelay(150); 5189 5190 reg = FDI_RX_IIR(pipe); 5191 for (tries = 0; tries < 5; tries++) { 5192 temp = intel_de_read(dev_priv, reg); 5193 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5194 5195 if (temp & FDI_RX_SYMBOL_LOCK) { 5196 intel_de_write(dev_priv, reg, 5197 temp | FDI_RX_SYMBOL_LOCK); 5198 drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n"); 5199 break; 5200 } 5201 } 5202 if (tries == 5) 5203 drm_err(&dev_priv->drm, "FDI train 2 fail!\n"); 5204 5205 drm_dbg_kms(&dev_priv->drm, "FDI train done\n"); 5206 5207 } 5208 5209 static const int snb_b_fdi_train_param[] = { 5210 FDI_LINK_TRAIN_400MV_0DB_SNB_B, 5211 FDI_LINK_TRAIN_400MV_6DB_SNB_B, 5212 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, 5213 FDI_LINK_TRAIN_800MV_0DB_SNB_B, 5214 }; 5215 5216 /* The FDI link training functions for SNB/Cougarpoint. */ 5217 static void gen6_fdi_link_train(struct intel_crtc *crtc, 5218 const struct intel_crtc_state *crtc_state) 5219 { 5220 struct drm_device *dev = crtc->base.dev; 5221 struct drm_i915_private *dev_priv = to_i915(dev); 5222 enum pipe pipe = crtc->pipe; 5223 i915_reg_t reg; 5224 u32 temp, i, retry; 5225 5226 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5227 for train result */ 5228 reg = FDI_RX_IMR(pipe); 5229 temp = intel_de_read(dev_priv, reg); 5230 temp &= ~FDI_RX_SYMBOL_LOCK; 5231 temp &= ~FDI_RX_BIT_LOCK; 5232 intel_de_write(dev_priv, reg, temp); 5233 5234 intel_de_posting_read(dev_priv, reg); 5235 udelay(150); 5236 5237 /* enable CPU FDI TX and PCH FDI RX */ 5238 reg = FDI_TX_CTL(pipe); 5239 temp = intel_de_read(dev_priv, reg); 5240 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5241 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5242 temp &= ~FDI_LINK_TRAIN_NONE; 5243 temp |= FDI_LINK_TRAIN_PATTERN_1; 5244 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5245 /* SNB-B */ 5246 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 5247 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5248 5249 intel_de_write(dev_priv, FDI_RX_MISC(pipe), 5250 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 5251 5252 reg = FDI_RX_CTL(pipe); 5253 temp = intel_de_read(dev_priv, reg); 5254 if (HAS_PCH_CPT(dev_priv)) { 5255 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5256 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5257 } else { 5258 temp &= ~FDI_LINK_TRAIN_NONE; 5259 temp |= FDI_LINK_TRAIN_PATTERN_1; 5260 } 5261 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5262 5263 intel_de_posting_read(dev_priv, reg); 5264 udelay(150); 5265 5266 for (i = 0; i < 4; i++) { 5267 reg = FDI_TX_CTL(pipe); 5268 temp = intel_de_read(dev_priv, reg); 5269 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5270 temp |= snb_b_fdi_train_param[i]; 5271 intel_de_write(dev_priv, reg, temp); 5272 5273 intel_de_posting_read(dev_priv, reg); 5274 udelay(500); 5275 5276 for (retry = 0; retry < 5; retry++) { 5277 reg = FDI_RX_IIR(pipe); 5278 temp = intel_de_read(dev_priv, reg); 5279 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5280 if (temp & FDI_RX_BIT_LOCK) { 5281 intel_de_write(dev_priv, reg, 5282 temp | FDI_RX_BIT_LOCK); 5283 drm_dbg_kms(&dev_priv->drm, 5284 "FDI train 1 done.\n"); 5285 break; 5286 } 5287 udelay(50); 5288 } 5289 if (retry < 5) 5290 break; 5291 } 5292 if (i == 4) 5293 drm_err(&dev_priv->drm, "FDI train 1 fail!\n"); 5294 5295 /* Train 2 */ 5296 reg = FDI_TX_CTL(pipe); 5297 temp = intel_de_read(dev_priv, reg); 5298 temp &= ~FDI_LINK_TRAIN_NONE; 5299 temp |= FDI_LINK_TRAIN_PATTERN_2; 5300 if (IS_GEN(dev_priv, 6)) { 5301 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5302 /* SNB-B */ 5303 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 5304 } 5305 intel_de_write(dev_priv, reg, temp); 5306 5307 reg = FDI_RX_CTL(pipe); 5308 temp = intel_de_read(dev_priv, reg); 5309 if (HAS_PCH_CPT(dev_priv)) { 5310 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5311 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 5312 } else { 5313 temp &= ~FDI_LINK_TRAIN_NONE; 5314 temp |= FDI_LINK_TRAIN_PATTERN_2; 5315 } 5316 intel_de_write(dev_priv, reg, temp); 5317 5318 intel_de_posting_read(dev_priv, reg); 5319 udelay(150); 5320 5321 for (i = 0; i < 4; i++) { 5322 reg = FDI_TX_CTL(pipe); 5323 temp = intel_de_read(dev_priv, reg); 5324 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5325 temp |= snb_b_fdi_train_param[i]; 5326 intel_de_write(dev_priv, reg, temp); 5327 5328 intel_de_posting_read(dev_priv, reg); 5329 udelay(500); 5330 5331 for (retry = 0; retry < 5; retry++) { 5332 reg = FDI_RX_IIR(pipe); 5333 temp = intel_de_read(dev_priv, reg); 5334 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5335 if (temp & FDI_RX_SYMBOL_LOCK) { 5336 intel_de_write(dev_priv, reg, 5337 temp | FDI_RX_SYMBOL_LOCK); 5338 drm_dbg_kms(&dev_priv->drm, 5339 "FDI train 2 done.\n"); 5340 break; 5341 } 5342 udelay(50); 5343 } 5344 if (retry < 5) 5345 break; 5346 } 5347 if (i == 4) 5348 drm_err(&dev_priv->drm, "FDI train 2 fail!\n"); 5349 5350 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n"); 5351 } 5352 5353 /* Manual link training for Ivy Bridge A0 parts */ 5354 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc, 5355 const struct intel_crtc_state *crtc_state) 5356 { 5357 struct drm_device *dev = crtc->base.dev; 5358 struct drm_i915_private *dev_priv = to_i915(dev); 5359 enum pipe pipe = crtc->pipe; 5360 i915_reg_t reg; 5361 u32 temp, i, j; 5362 5363 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5364 for train result */ 5365 reg = FDI_RX_IMR(pipe); 5366 temp = intel_de_read(dev_priv, reg); 5367 temp &= ~FDI_RX_SYMBOL_LOCK; 5368 temp &= ~FDI_RX_BIT_LOCK; 5369 intel_de_write(dev_priv, reg, temp); 5370 5371 intel_de_posting_read(dev_priv, reg); 5372 udelay(150); 5373 5374 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n", 5375 intel_de_read(dev_priv, FDI_RX_IIR(pipe))); 5376 5377 /* Try each vswing and preemphasis setting twice before moving on */ 5378 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { 5379 /* disable first in case we need to retry */ 5380 reg = FDI_TX_CTL(pipe); 5381 temp = intel_de_read(dev_priv, reg); 5382 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); 5383 temp &= ~FDI_TX_ENABLE; 5384 intel_de_write(dev_priv, reg, temp); 5385 5386 reg = FDI_RX_CTL(pipe); 5387 temp = intel_de_read(dev_priv, reg); 5388 temp &= ~FDI_LINK_TRAIN_AUTO; 5389 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5390 temp &= ~FDI_RX_ENABLE; 5391 intel_de_write(dev_priv, reg, temp); 5392 5393 /* enable CPU FDI TX and PCH FDI RX */ 5394 reg = FDI_TX_CTL(pipe); 5395 temp = intel_de_read(dev_priv, reg); 5396 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5397 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5398 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; 5399 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5400 temp |= snb_b_fdi_train_param[j/2]; 5401 temp |= FDI_COMPOSITE_SYNC; 5402 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5403 5404 intel_de_write(dev_priv, FDI_RX_MISC(pipe), 5405 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 5406 5407 reg = FDI_RX_CTL(pipe); 5408 temp = intel_de_read(dev_priv, reg); 5409 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5410 temp |= FDI_COMPOSITE_SYNC; 5411 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5412 5413 intel_de_posting_read(dev_priv, reg); 5414 udelay(1); /* should be 0.5us */ 5415 5416 for (i = 0; i < 4; i++) { 5417 reg = FDI_RX_IIR(pipe); 5418 temp = intel_de_read(dev_priv, reg); 5419 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5420 5421 if (temp & FDI_RX_BIT_LOCK || 5422 (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) { 5423 intel_de_write(dev_priv, reg, 5424 temp | FDI_RX_BIT_LOCK); 5425 drm_dbg_kms(&dev_priv->drm, 5426 "FDI train 1 done, level %i.\n", 5427 i); 5428 break; 5429 } 5430 udelay(1); /* should be 0.5us */ 5431 } 5432 if (i == 4) { 5433 drm_dbg_kms(&dev_priv->drm, 5434 "FDI train 1 fail on vswing %d\n", j / 2); 5435 continue; 5436 } 5437 5438 /* Train 2 */ 5439 reg = FDI_TX_CTL(pipe); 5440 temp = intel_de_read(dev_priv, reg); 5441 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 5442 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; 5443 intel_de_write(dev_priv, reg, temp); 5444 5445 reg = FDI_RX_CTL(pipe); 5446 temp = intel_de_read(dev_priv, reg); 5447 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5448 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 5449 intel_de_write(dev_priv, reg, temp); 5450 5451 intel_de_posting_read(dev_priv, reg); 5452 udelay(2); /* should be 1.5us */ 5453 5454 for (i = 0; i < 4; i++) { 5455 reg = FDI_RX_IIR(pipe); 5456 temp = intel_de_read(dev_priv, reg); 5457 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5458 5459 if (temp & FDI_RX_SYMBOL_LOCK || 5460 (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) { 5461 intel_de_write(dev_priv, reg, 5462 temp | FDI_RX_SYMBOL_LOCK); 5463 drm_dbg_kms(&dev_priv->drm, 5464 "FDI train 2 done, level %i.\n", 5465 i); 5466 goto train_done; 5467 } 5468 udelay(2); /* should be 1.5us */ 5469 } 5470 if (i == 4) 5471 drm_dbg_kms(&dev_priv->drm, 5472 "FDI train 2 fail on vswing %d\n", j / 2); 5473 } 5474 5475 train_done: 5476 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n"); 5477 } 5478 5479 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state) 5480 { 5481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 5482 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 5483 enum pipe pipe = intel_crtc->pipe; 5484 i915_reg_t reg; 5485 u32 temp; 5486 5487 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ 5488 reg = FDI_RX_CTL(pipe); 5489 temp = intel_de_read(dev_priv, reg); 5490 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); 5491 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5492 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5493 intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE); 5494 5495 intel_de_posting_read(dev_priv, reg); 5496 udelay(200); 5497 5498 /* Switch from Rawclk to PCDclk */ 5499 temp = intel_de_read(dev_priv, reg); 5500 intel_de_write(dev_priv, reg, temp | FDI_PCDCLK); 5501 5502 intel_de_posting_read(dev_priv, reg); 5503 udelay(200); 5504 5505 /* Enable CPU FDI TX PLL, always on for Ironlake */ 5506 reg = FDI_TX_CTL(pipe); 5507 temp = intel_de_read(dev_priv, reg); 5508 if ((temp & FDI_TX_PLL_ENABLE) == 0) { 5509 intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE); 5510 5511 intel_de_posting_read(dev_priv, reg); 5512 udelay(100); 5513 } 5514 } 5515 5516 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc) 5517 { 5518 struct drm_device *dev = intel_crtc->base.dev; 5519 struct drm_i915_private *dev_priv = to_i915(dev); 5520 enum pipe pipe = intel_crtc->pipe; 5521 i915_reg_t reg; 5522 u32 temp; 5523 5524 /* Switch from PCDclk to Rawclk */ 5525 reg = FDI_RX_CTL(pipe); 5526 temp = intel_de_read(dev_priv, reg); 5527 intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK); 5528 5529 /* Disable CPU FDI TX PLL */ 5530 reg = FDI_TX_CTL(pipe); 5531 temp = intel_de_read(dev_priv, reg); 5532 intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE); 5533 5534 intel_de_posting_read(dev_priv, reg); 5535 udelay(100); 5536 5537 reg = FDI_RX_CTL(pipe); 5538 temp = intel_de_read(dev_priv, reg); 5539 intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE); 5540 5541 /* Wait for the clocks to turn off. */ 5542 intel_de_posting_read(dev_priv, reg); 5543 udelay(100); 5544 } 5545 5546 static void ilk_fdi_disable(struct intel_crtc *crtc) 5547 { 5548 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5549 enum pipe pipe = crtc->pipe; 5550 i915_reg_t reg; 5551 u32 temp; 5552 5553 /* disable CPU FDI tx and PCH FDI rx */ 5554 reg = FDI_TX_CTL(pipe); 5555 temp = intel_de_read(dev_priv, reg); 5556 intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE); 5557 intel_de_posting_read(dev_priv, reg); 5558 5559 reg = FDI_RX_CTL(pipe); 5560 temp = intel_de_read(dev_priv, reg); 5561 temp &= ~(0x7 << 16); 5562 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5563 intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE); 5564 5565 intel_de_posting_read(dev_priv, reg); 5566 udelay(100); 5567 5568 /* Ironlake workaround, disable clock pointer after downing FDI */ 5569 if (HAS_PCH_IBX(dev_priv)) 5570 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5571 FDI_RX_PHASE_SYNC_POINTER_OVR); 5572 5573 /* still set train pattern 1 */ 5574 reg = FDI_TX_CTL(pipe); 5575 temp = intel_de_read(dev_priv, reg); 5576 temp &= ~FDI_LINK_TRAIN_NONE; 5577 temp |= FDI_LINK_TRAIN_PATTERN_1; 5578 intel_de_write(dev_priv, reg, temp); 5579 5580 reg = FDI_RX_CTL(pipe); 5581 temp = intel_de_read(dev_priv, reg); 5582 if (HAS_PCH_CPT(dev_priv)) { 5583 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5584 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5585 } else { 5586 temp &= ~FDI_LINK_TRAIN_NONE; 5587 temp |= FDI_LINK_TRAIN_PATTERN_1; 5588 } 5589 /* BPC in FDI rx is consistent with that in PIPECONF */ 5590 temp &= ~(0x07 << 16); 5591 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5592 intel_de_write(dev_priv, reg, temp); 5593 5594 intel_de_posting_read(dev_priv, reg); 5595 udelay(100); 5596 } 5597 5598 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 5599 { 5600 struct drm_crtc *crtc; 5601 bool cleanup_done; 5602 5603 drm_for_each_crtc(crtc, &dev_priv->drm) { 5604 struct drm_crtc_commit *commit; 5605 spin_lock(&crtc->commit_lock); 5606 commit = list_first_entry_or_null(&crtc->commit_list, 5607 struct drm_crtc_commit, commit_entry); 5608 cleanup_done = commit ? 5609 try_wait_for_completion(&commit->cleanup_done) : true; 5610 spin_unlock(&crtc->commit_lock); 5611 5612 if (cleanup_done) 5613 continue; 5614 5615 drm_crtc_wait_one_vblank(crtc); 5616 5617 return true; 5618 } 5619 5620 return false; 5621 } 5622 5623 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 5624 { 5625 u32 temp; 5626 5627 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 5628 5629 mutex_lock(&dev_priv->sb_lock); 5630 5631 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5632 temp |= SBI_SSCCTL_DISABLE; 5633 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5634 5635 mutex_unlock(&dev_priv->sb_lock); 5636 } 5637 5638 /* Program iCLKIP clock to the desired frequency */ 5639 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 5640 { 5641 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5642 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5643 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 5644 u32 divsel, phaseinc, auxdiv, phasedir = 0; 5645 u32 temp; 5646 5647 lpt_disable_iclkip(dev_priv); 5648 5649 /* The iCLK virtual clock root frequency is in MHz, 5650 * but the adjusted_mode->crtc_clock in in KHz. To get the 5651 * divisors, it is necessary to divide one by another, so we 5652 * convert the virtual clock precision to KHz here for higher 5653 * precision. 5654 */ 5655 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 5656 u32 iclk_virtual_root_freq = 172800 * 1000; 5657 u32 iclk_pi_range = 64; 5658 u32 desired_divisor; 5659 5660 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5661 clock << auxdiv); 5662 divsel = (desired_divisor / iclk_pi_range) - 2; 5663 phaseinc = desired_divisor % iclk_pi_range; 5664 5665 /* 5666 * Near 20MHz is a corner case which is 5667 * out of range for the 7-bit divisor 5668 */ 5669 if (divsel <= 0x7f) 5670 break; 5671 } 5672 5673 /* This should not happen with any sane values */ 5674 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 5675 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 5676 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 5677 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 5678 5679 drm_dbg_kms(&dev_priv->drm, 5680 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 5681 clock, auxdiv, divsel, phasedir, phaseinc); 5682 5683 mutex_lock(&dev_priv->sb_lock); 5684 5685 /* Program SSCDIVINTPHASE6 */ 5686 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5687 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 5688 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 5689 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 5690 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 5691 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 5692 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 5693 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 5694 5695 /* Program SSCAUXDIV */ 5696 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5697 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 5698 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 5699 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 5700 5701 /* Enable modulator and associated divider */ 5702 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5703 temp &= ~SBI_SSCCTL_DISABLE; 5704 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5705 5706 mutex_unlock(&dev_priv->sb_lock); 5707 5708 /* Wait for initialization time */ 5709 udelay(24); 5710 5711 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 5712 } 5713 5714 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 5715 { 5716 u32 divsel, phaseinc, auxdiv; 5717 u32 iclk_virtual_root_freq = 172800 * 1000; 5718 u32 iclk_pi_range = 64; 5719 u32 desired_divisor; 5720 u32 temp; 5721 5722 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 5723 return 0; 5724 5725 mutex_lock(&dev_priv->sb_lock); 5726 5727 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5728 if (temp & SBI_SSCCTL_DISABLE) { 5729 mutex_unlock(&dev_priv->sb_lock); 5730 return 0; 5731 } 5732 5733 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5734 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 5735 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 5736 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 5737 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 5738 5739 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5740 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 5741 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 5742 5743 mutex_unlock(&dev_priv->sb_lock); 5744 5745 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 5746 5747 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5748 desired_divisor << auxdiv); 5749 } 5750 5751 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 5752 enum pipe pch_transcoder) 5753 { 5754 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5755 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5756 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5757 5758 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 5759 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 5760 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 5761 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 5762 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 5763 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 5764 5765 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 5766 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 5767 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 5768 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 5769 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 5770 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 5771 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 5772 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 5773 } 5774 5775 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 5776 { 5777 u32 temp; 5778 5779 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 5780 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 5781 return; 5782 5783 drm_WARN_ON(&dev_priv->drm, 5784 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 5785 FDI_RX_ENABLE); 5786 drm_WARN_ON(&dev_priv->drm, 5787 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 5788 FDI_RX_ENABLE); 5789 5790 temp &= ~FDI_BC_BIFURCATION_SELECT; 5791 if (enable) 5792 temp |= FDI_BC_BIFURCATION_SELECT; 5793 5794 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 5795 enable ? "en" : "dis"); 5796 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 5797 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 5798 } 5799 5800 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 5801 { 5802 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5803 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5804 5805 switch (crtc->pipe) { 5806 case PIPE_A: 5807 break; 5808 case PIPE_B: 5809 if (crtc_state->fdi_lanes > 2) 5810 cpt_set_fdi_bc_bifurcation(dev_priv, false); 5811 else 5812 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5813 5814 break; 5815 case PIPE_C: 5816 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5817 5818 break; 5819 default: 5820 BUG(); 5821 } 5822 } 5823 5824 /* 5825 * Finds the encoder associated with the given CRTC. This can only be 5826 * used when we know that the CRTC isn't feeding multiple encoders! 5827 */ 5828 static struct intel_encoder * 5829 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 5830 const struct intel_crtc_state *crtc_state) 5831 { 5832 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5833 const struct drm_connector_state *connector_state; 5834 const struct drm_connector *connector; 5835 struct intel_encoder *encoder = NULL; 5836 int num_encoders = 0; 5837 int i; 5838 5839 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 5840 if (connector_state->crtc != &crtc->base) 5841 continue; 5842 5843 encoder = to_intel_encoder(connector_state->best_encoder); 5844 num_encoders++; 5845 } 5846 5847 drm_WARN(encoder->base.dev, num_encoders != 1, 5848 "%d encoders for pipe %c\n", 5849 num_encoders, pipe_name(crtc->pipe)); 5850 5851 return encoder; 5852 } 5853 5854 /* 5855 * Enable PCH resources required for PCH ports: 5856 * - PCH PLLs 5857 * - FDI training & RX/TX 5858 * - update transcoder timings 5859 * - DP transcoding bits 5860 * - transcoder 5861 */ 5862 static void ilk_pch_enable(const struct intel_atomic_state *state, 5863 const struct intel_crtc_state *crtc_state) 5864 { 5865 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5866 struct drm_device *dev = crtc->base.dev; 5867 struct drm_i915_private *dev_priv = to_i915(dev); 5868 enum pipe pipe = crtc->pipe; 5869 u32 temp; 5870 5871 assert_pch_transcoder_disabled(dev_priv, pipe); 5872 5873 if (IS_IVYBRIDGE(dev_priv)) 5874 ivb_update_fdi_bc_bifurcation(crtc_state); 5875 5876 /* Write the TU size bits before fdi link training, so that error 5877 * detection works. */ 5878 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 5879 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 5880 5881 /* For PCH output, training FDI link */ 5882 dev_priv->display.fdi_link_train(crtc, crtc_state); 5883 5884 /* We need to program the right clock selection before writing the pixel 5885 * mutliplier into the DPLL. */ 5886 if (HAS_PCH_CPT(dev_priv)) { 5887 u32 sel; 5888 5889 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 5890 temp |= TRANS_DPLL_ENABLE(pipe); 5891 sel = TRANS_DPLLB_SEL(pipe); 5892 if (crtc_state->shared_dpll == 5893 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 5894 temp |= sel; 5895 else 5896 temp &= ~sel; 5897 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 5898 } 5899 5900 /* XXX: pch pll's can be enabled any time before we enable the PCH 5901 * transcoder, and we actually should do this to not upset any PCH 5902 * transcoder that already use the clock when we share it. 5903 * 5904 * Note that enable_shared_dpll tries to do the right thing, but 5905 * get_shared_dpll unconditionally resets the pll - we need that to have 5906 * the right LVDS enable sequence. */ 5907 intel_enable_shared_dpll(crtc_state); 5908 5909 /* set transcoder timing, panel must allow it */ 5910 assert_panel_unlocked(dev_priv, pipe); 5911 ilk_pch_transcoder_set_timings(crtc_state, pipe); 5912 5913 intel_fdi_normal_train(crtc); 5914 5915 /* For PCH DP, enable TRANS_DP_CTL */ 5916 if (HAS_PCH_CPT(dev_priv) && 5917 intel_crtc_has_dp_encoder(crtc_state)) { 5918 const struct drm_display_mode *adjusted_mode = 5919 &crtc_state->hw.adjusted_mode; 5920 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 5921 i915_reg_t reg = TRANS_DP_CTL(pipe); 5922 enum port port; 5923 5924 temp = intel_de_read(dev_priv, reg); 5925 temp &= ~(TRANS_DP_PORT_SEL_MASK | 5926 TRANS_DP_SYNC_MASK | 5927 TRANS_DP_BPC_MASK); 5928 temp |= TRANS_DP_OUTPUT_ENABLE; 5929 temp |= bpc << 9; /* same format but at 11:9 */ 5930 5931 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 5932 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 5933 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 5934 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 5935 5936 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 5937 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 5938 temp |= TRANS_DP_PORT_SEL(port); 5939 5940 intel_de_write(dev_priv, reg, temp); 5941 } 5942 5943 ilk_enable_pch_transcoder(crtc_state); 5944 } 5945 5946 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 5947 { 5948 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5949 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5950 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5951 5952 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 5953 5954 lpt_program_iclkip(crtc_state); 5955 5956 /* Set transcoder timing. */ 5957 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 5958 5959 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 5960 } 5961 5962 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 5963 enum pipe pipe) 5964 { 5965 i915_reg_t dslreg = PIPEDSL(pipe); 5966 u32 temp; 5967 5968 temp = intel_de_read(dev_priv, dslreg); 5969 udelay(500); 5970 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 5971 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 5972 drm_err(&dev_priv->drm, 5973 "mode set failed: pipe %c stuck\n", 5974 pipe_name(pipe)); 5975 } 5976 } 5977 5978 /* 5979 * The hardware phase 0.0 refers to the center of the pixel. 5980 * We want to start from the top/left edge which is phase 5981 * -0.5. That matches how the hardware calculates the scaling 5982 * factors (from top-left of the first pixel to bottom-right 5983 * of the last pixel, as opposed to the pixel centers). 5984 * 5985 * For 4:2:0 subsampled chroma planes we obviously have to 5986 * adjust that so that the chroma sample position lands in 5987 * the right spot. 5988 * 5989 * Note that for packed YCbCr 4:2:2 formats there is no way to 5990 * control chroma siting. The hardware simply replicates the 5991 * chroma samples for both of the luma samples, and thus we don't 5992 * actually get the expected MPEG2 chroma siting convention :( 5993 * The same behaviour is observed on pre-SKL platforms as well. 5994 * 5995 * Theory behind the formula (note that we ignore sub-pixel 5996 * source coordinates): 5997 * s = source sample position 5998 * d = destination sample position 5999 * 6000 * Downscaling 4:1: 6001 * -0.5 6002 * | 0.0 6003 * | | 1.5 (initial phase) 6004 * | | | 6005 * v v v 6006 * | s | s | s | s | 6007 * | d | 6008 * 6009 * Upscaling 1:4: 6010 * -0.5 6011 * | -0.375 (initial phase) 6012 * | | 0.0 6013 * | | | 6014 * v v v 6015 * | s | 6016 * | d | d | d | d | 6017 */ 6018 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited) 6019 { 6020 int phase = -0x8000; 6021 u16 trip = 0; 6022 6023 if (chroma_cosited) 6024 phase += (sub - 1) * 0x8000 / sub; 6025 6026 phase += scale / (2 * sub); 6027 6028 /* 6029 * Hardware initial phase limited to [-0.5:1.5]. 6030 * Since the max hardware scale factor is 3.0, we 6031 * should never actually excdeed 1.0 here. 6032 */ 6033 WARN_ON(phase < -0x8000 || phase > 0x18000); 6034 6035 if (phase < 0) 6036 phase = 0x10000 + phase; 6037 else 6038 trip = PS_PHASE_TRIP; 6039 6040 return ((phase >> 2) & PS_PHASE_MASK) | trip; 6041 } 6042 6043 #define SKL_MIN_SRC_W 8 6044 #define SKL_MAX_SRC_W 4096 6045 #define SKL_MIN_SRC_H 8 6046 #define SKL_MAX_SRC_H 4096 6047 #define SKL_MIN_DST_W 8 6048 #define SKL_MAX_DST_W 4096 6049 #define SKL_MIN_DST_H 8 6050 #define SKL_MAX_DST_H 4096 6051 #define ICL_MAX_SRC_W 5120 6052 #define ICL_MAX_SRC_H 4096 6053 #define ICL_MAX_DST_W 5120 6054 #define ICL_MAX_DST_H 4096 6055 #define SKL_MIN_YUV_420_SRC_W 16 6056 #define SKL_MIN_YUV_420_SRC_H 16 6057 6058 static int 6059 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, 6060 unsigned int scaler_user, int *scaler_id, 6061 int src_w, int src_h, int dst_w, int dst_h, 6062 const struct drm_format_info *format, 6063 u64 modifier, bool need_scaler) 6064 { 6065 struct intel_crtc_scaler_state *scaler_state = 6066 &crtc_state->scaler_state; 6067 struct intel_crtc *intel_crtc = 6068 to_intel_crtc(crtc_state->uapi.crtc); 6069 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 6070 const struct drm_display_mode *adjusted_mode = 6071 &crtc_state->hw.adjusted_mode; 6072 6073 /* 6074 * Src coordinates are already rotated by 270 degrees for 6075 * the 90/270 degree plane rotation cases (to match the 6076 * GTT mapping), hence no need to account for rotation here. 6077 */ 6078 if (src_w != dst_w || src_h != dst_h) 6079 need_scaler = true; 6080 6081 /* 6082 * Scaling/fitting not supported in IF-ID mode in GEN9+ 6083 * TODO: Interlace fetch mode doesn't support YUV420 planar formats. 6084 * Once NV12 is enabled, handle it here while allocating scaler 6085 * for NV12. 6086 */ 6087 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable && 6088 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 6089 drm_dbg_kms(&dev_priv->drm, 6090 "Pipe/Plane scaling not supported with IF-ID mode\n"); 6091 return -EINVAL; 6092 } 6093 6094 /* 6095 * if plane is being disabled or scaler is no more required or force detach 6096 * - free scaler binded to this plane/crtc 6097 * - in order to do this, update crtc->scaler_usage 6098 * 6099 * Here scaler state in crtc_state is set free so that 6100 * scaler can be assigned to other user. Actual register 6101 * update to free the scaler is done in plane/panel-fit programming. 6102 * For this purpose crtc/plane_state->scaler_id isn't reset here. 6103 */ 6104 if (force_detach || !need_scaler) { 6105 if (*scaler_id >= 0) { 6106 scaler_state->scaler_users &= ~(1 << scaler_user); 6107 scaler_state->scalers[*scaler_id].in_use = 0; 6108 6109 drm_dbg_kms(&dev_priv->drm, 6110 "scaler_user index %u.%u: " 6111 "Staged freeing scaler id %d scaler_users = 0x%x\n", 6112 intel_crtc->pipe, scaler_user, *scaler_id, 6113 scaler_state->scaler_users); 6114 *scaler_id = -1; 6115 } 6116 return 0; 6117 } 6118 6119 if (format && intel_format_info_is_yuv_semiplanar(format, modifier) && 6120 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) { 6121 drm_dbg_kms(&dev_priv->drm, 6122 "Planar YUV: src dimensions not met\n"); 6123 return -EINVAL; 6124 } 6125 6126 /* range checks */ 6127 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || 6128 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || 6129 (INTEL_GEN(dev_priv) >= 11 && 6130 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H || 6131 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) || 6132 (INTEL_GEN(dev_priv) < 11 && 6133 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || 6134 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) { 6135 drm_dbg_kms(&dev_priv->drm, 6136 "scaler_user index %u.%u: src %ux%u dst %ux%u " 6137 "size is out of scaler range\n", 6138 intel_crtc->pipe, scaler_user, src_w, src_h, 6139 dst_w, dst_h); 6140 return -EINVAL; 6141 } 6142 6143 /* mark this plane as a scaler user in crtc_state */ 6144 scaler_state->scaler_users |= (1 << scaler_user); 6145 drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: " 6146 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", 6147 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, 6148 scaler_state->scaler_users); 6149 6150 return 0; 6151 } 6152 6153 static int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state) 6154 { 6155 const struct drm_display_mode *adjusted_mode = 6156 &crtc_state->hw.adjusted_mode; 6157 int width, height; 6158 6159 if (crtc_state->pch_pfit.enabled) { 6160 width = drm_rect_width(&crtc_state->pch_pfit.dst); 6161 height = drm_rect_height(&crtc_state->pch_pfit.dst); 6162 } else { 6163 width = adjusted_mode->crtc_hdisplay; 6164 height = adjusted_mode->crtc_vdisplay; 6165 } 6166 6167 return skl_update_scaler(crtc_state, !crtc_state->hw.active, 6168 SKL_CRTC_INDEX, 6169 &crtc_state->scaler_state.scaler_id, 6170 crtc_state->pipe_src_w, crtc_state->pipe_src_h, 6171 width, height, NULL, 0, 6172 crtc_state->pch_pfit.enabled); 6173 } 6174 6175 /** 6176 * skl_update_scaler_plane - Stages update to scaler state for a given plane. 6177 * @crtc_state: crtc's scaler state 6178 * @plane_state: atomic plane state to update 6179 * 6180 * Return 6181 * 0 - scaler_usage updated successfully 6182 * error - requested scaling cannot be supported or other error condition 6183 */ 6184 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, 6185 struct intel_plane_state *plane_state) 6186 { 6187 struct intel_plane *intel_plane = 6188 to_intel_plane(plane_state->uapi.plane); 6189 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 6190 struct drm_framebuffer *fb = plane_state->hw.fb; 6191 int ret; 6192 bool force_detach = !fb || !plane_state->uapi.visible; 6193 bool need_scaler = false; 6194 6195 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */ 6196 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) && 6197 fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier)) 6198 need_scaler = true; 6199 6200 ret = skl_update_scaler(crtc_state, force_detach, 6201 drm_plane_index(&intel_plane->base), 6202 &plane_state->scaler_id, 6203 drm_rect_width(&plane_state->uapi.src) >> 16, 6204 drm_rect_height(&plane_state->uapi.src) >> 16, 6205 drm_rect_width(&plane_state->uapi.dst), 6206 drm_rect_height(&plane_state->uapi.dst), 6207 fb ? fb->format : NULL, 6208 fb ? fb->modifier : 0, 6209 need_scaler); 6210 6211 if (ret || plane_state->scaler_id < 0) 6212 return ret; 6213 6214 /* check colorkey */ 6215 if (plane_state->ckey.flags) { 6216 drm_dbg_kms(&dev_priv->drm, 6217 "[PLANE:%d:%s] scaling with color key not allowed", 6218 intel_plane->base.base.id, 6219 intel_plane->base.name); 6220 return -EINVAL; 6221 } 6222 6223 /* Check src format */ 6224 switch (fb->format->format) { 6225 case DRM_FORMAT_RGB565: 6226 case DRM_FORMAT_XBGR8888: 6227 case DRM_FORMAT_XRGB8888: 6228 case DRM_FORMAT_ABGR8888: 6229 case DRM_FORMAT_ARGB8888: 6230 case DRM_FORMAT_XRGB2101010: 6231 case DRM_FORMAT_XBGR2101010: 6232 case DRM_FORMAT_ARGB2101010: 6233 case DRM_FORMAT_ABGR2101010: 6234 case DRM_FORMAT_YUYV: 6235 case DRM_FORMAT_YVYU: 6236 case DRM_FORMAT_UYVY: 6237 case DRM_FORMAT_VYUY: 6238 case DRM_FORMAT_NV12: 6239 case DRM_FORMAT_XYUV8888: 6240 case DRM_FORMAT_P010: 6241 case DRM_FORMAT_P012: 6242 case DRM_FORMAT_P016: 6243 case DRM_FORMAT_Y210: 6244 case DRM_FORMAT_Y212: 6245 case DRM_FORMAT_Y216: 6246 case DRM_FORMAT_XVYU2101010: 6247 case DRM_FORMAT_XVYU12_16161616: 6248 case DRM_FORMAT_XVYU16161616: 6249 break; 6250 case DRM_FORMAT_XBGR16161616F: 6251 case DRM_FORMAT_ABGR16161616F: 6252 case DRM_FORMAT_XRGB16161616F: 6253 case DRM_FORMAT_ARGB16161616F: 6254 if (INTEL_GEN(dev_priv) >= 11) 6255 break; 6256 fallthrough; 6257 default: 6258 drm_dbg_kms(&dev_priv->drm, 6259 "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n", 6260 intel_plane->base.base.id, intel_plane->base.name, 6261 fb->base.id, fb->format->format); 6262 return -EINVAL; 6263 } 6264 6265 return 0; 6266 } 6267 6268 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state) 6269 { 6270 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 6271 int i; 6272 6273 for (i = 0; i < crtc->num_scalers; i++) 6274 skl_detach_scaler(crtc, i); 6275 } 6276 6277 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state) 6278 { 6279 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6280 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6281 const struct intel_crtc_scaler_state *scaler_state = 6282 &crtc_state->scaler_state; 6283 struct drm_rect src = { 6284 .x2 = crtc_state->pipe_src_w << 16, 6285 .y2 = crtc_state->pipe_src_h << 16, 6286 }; 6287 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 6288 u16 uv_rgb_hphase, uv_rgb_vphase; 6289 enum pipe pipe = crtc->pipe; 6290 int width = drm_rect_width(dst); 6291 int height = drm_rect_height(dst); 6292 int x = dst->x1; 6293 int y = dst->y1; 6294 int hscale, vscale; 6295 unsigned long irqflags; 6296 int id; 6297 6298 if (!crtc_state->pch_pfit.enabled) 6299 return; 6300 6301 if (drm_WARN_ON(&dev_priv->drm, 6302 crtc_state->scaler_state.scaler_id < 0)) 6303 return; 6304 6305 hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX); 6306 vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX); 6307 6308 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false); 6309 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false); 6310 6311 id = scaler_state->scaler_id; 6312 6313 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 6314 6315 intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), PS_SCALER_EN | 6316 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode); 6317 intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id), 6318 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase)); 6319 intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id), 6320 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase)); 6321 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id), 6322 x << 16 | y); 6323 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id), 6324 width << 16 | height); 6325 6326 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 6327 } 6328 6329 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 6330 { 6331 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6332 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6333 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 6334 enum pipe pipe = crtc->pipe; 6335 int width = drm_rect_width(dst); 6336 int height = drm_rect_height(dst); 6337 int x = dst->x1; 6338 int y = dst->y1; 6339 6340 if (!crtc_state->pch_pfit.enabled) 6341 return; 6342 6343 /* Force use of hard-coded filter coefficients 6344 * as some pre-programmed values are broken, 6345 * e.g. x201. 6346 */ 6347 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 6348 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 6349 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 6350 else 6351 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 6352 PF_FILTER_MED_3x3); 6353 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y); 6354 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); 6355 } 6356 6357 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 6358 { 6359 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6360 struct drm_device *dev = crtc->base.dev; 6361 struct drm_i915_private *dev_priv = to_i915(dev); 6362 6363 if (!crtc_state->ips_enabled) 6364 return; 6365 6366 /* 6367 * We can only enable IPS after we enable a plane and wait for a vblank 6368 * This function is called from post_plane_update, which is run after 6369 * a vblank wait. 6370 */ 6371 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 6372 6373 if (IS_BROADWELL(dev_priv)) { 6374 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 6375 IPS_ENABLE | IPS_PCODE_CONTROL)); 6376 /* Quoting Art Runyan: "its not safe to expect any particular 6377 * value in IPS_CTL bit 31 after enabling IPS through the 6378 * mailbox." Moreover, the mailbox may return a bogus state, 6379 * so we need to just enable it and continue on. 6380 */ 6381 } else { 6382 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 6383 /* The bit only becomes 1 in the next vblank, so this wait here 6384 * is essentially intel_wait_for_vblank. If we don't have this 6385 * and don't wait for vblanks until the end of crtc_enable, then 6386 * the HW state readout code will complain that the expected 6387 * IPS_CTL value is not the one we read. */ 6388 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 6389 drm_err(&dev_priv->drm, 6390 "Timed out waiting for IPS enable\n"); 6391 } 6392 } 6393 6394 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 6395 { 6396 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6397 struct drm_device *dev = crtc->base.dev; 6398 struct drm_i915_private *dev_priv = to_i915(dev); 6399 6400 if (!crtc_state->ips_enabled) 6401 return; 6402 6403 if (IS_BROADWELL(dev_priv)) { 6404 drm_WARN_ON(dev, 6405 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 6406 /* 6407 * Wait for PCODE to finish disabling IPS. The BSpec specified 6408 * 42ms timeout value leads to occasional timeouts so use 100ms 6409 * instead. 6410 */ 6411 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 6412 drm_err(&dev_priv->drm, 6413 "Timed out waiting for IPS disable\n"); 6414 } else { 6415 intel_de_write(dev_priv, IPS_CTL, 0); 6416 intel_de_posting_read(dev_priv, IPS_CTL); 6417 } 6418 6419 /* We need to wait for a vblank before we can disable the plane. */ 6420 intel_wait_for_vblank(dev_priv, crtc->pipe); 6421 } 6422 6423 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 6424 { 6425 if (intel_crtc->overlay) 6426 (void) intel_overlay_switch_off(intel_crtc->overlay); 6427 6428 /* Let userspace switch the overlay on again. In most cases userspace 6429 * has to recompute where to put it anyway. 6430 */ 6431 } 6432 6433 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 6434 const struct intel_crtc_state *new_crtc_state) 6435 { 6436 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6437 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6438 6439 if (!old_crtc_state->ips_enabled) 6440 return false; 6441 6442 if (needs_modeset(new_crtc_state)) 6443 return true; 6444 6445 /* 6446 * Workaround : Do not read or write the pipe palette/gamma data while 6447 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 6448 * 6449 * Disable IPS before we program the LUT. 6450 */ 6451 if (IS_HASWELL(dev_priv) && 6452 (new_crtc_state->uapi.color_mgmt_changed || 6453 new_crtc_state->update_pipe) && 6454 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 6455 return true; 6456 6457 return !new_crtc_state->ips_enabled; 6458 } 6459 6460 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 6461 const struct intel_crtc_state *new_crtc_state) 6462 { 6463 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6464 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6465 6466 if (!new_crtc_state->ips_enabled) 6467 return false; 6468 6469 if (needs_modeset(new_crtc_state)) 6470 return true; 6471 6472 /* 6473 * Workaround : Do not read or write the pipe palette/gamma data while 6474 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 6475 * 6476 * Re-enable IPS after the LUT has been programmed. 6477 */ 6478 if (IS_HASWELL(dev_priv) && 6479 (new_crtc_state->uapi.color_mgmt_changed || 6480 new_crtc_state->update_pipe) && 6481 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 6482 return true; 6483 6484 /* 6485 * We can't read out IPS on broadwell, assume the worst and 6486 * forcibly enable IPS on the first fastset. 6487 */ 6488 if (new_crtc_state->update_pipe && old_crtc_state->inherited) 6489 return true; 6490 6491 return !old_crtc_state->ips_enabled; 6492 } 6493 6494 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 6495 { 6496 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 6497 6498 if (!crtc_state->nv12_planes) 6499 return false; 6500 6501 /* WA Display #0827: Gen9:all */ 6502 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) 6503 return true; 6504 6505 return false; 6506 } 6507 6508 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 6509 { 6510 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 6511 6512 /* Wa_2006604312:icl,ehl */ 6513 if (crtc_state->scaler_state.scaler_users > 0 && IS_GEN(dev_priv, 11)) 6514 return true; 6515 6516 return false; 6517 } 6518 6519 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 6520 const struct intel_crtc_state *new_crtc_state) 6521 { 6522 return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) && 6523 new_crtc_state->active_planes; 6524 } 6525 6526 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 6527 const struct intel_crtc_state *new_crtc_state) 6528 { 6529 return old_crtc_state->active_planes && 6530 (!new_crtc_state->active_planes || needs_modeset(new_crtc_state)); 6531 } 6532 6533 static void intel_post_plane_update(struct intel_atomic_state *state, 6534 struct intel_crtc *crtc) 6535 { 6536 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6537 const struct intel_crtc_state *old_crtc_state = 6538 intel_atomic_get_old_crtc_state(state, crtc); 6539 const struct intel_crtc_state *new_crtc_state = 6540 intel_atomic_get_new_crtc_state(state, crtc); 6541 enum pipe pipe = crtc->pipe; 6542 6543 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 6544 6545 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 6546 intel_update_watermarks(crtc); 6547 6548 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 6549 hsw_enable_ips(new_crtc_state); 6550 6551 intel_fbc_post_update(state, crtc); 6552 6553 if (needs_nv12_wa(old_crtc_state) && 6554 !needs_nv12_wa(new_crtc_state)) 6555 skl_wa_827(dev_priv, pipe, false); 6556 6557 if (needs_scalerclk_wa(old_crtc_state) && 6558 !needs_scalerclk_wa(new_crtc_state)) 6559 icl_wa_scalerclkgating(dev_priv, pipe, false); 6560 } 6561 6562 static void intel_pre_plane_update(struct intel_atomic_state *state, 6563 struct intel_crtc *crtc) 6564 { 6565 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6566 const struct intel_crtc_state *old_crtc_state = 6567 intel_atomic_get_old_crtc_state(state, crtc); 6568 const struct intel_crtc_state *new_crtc_state = 6569 intel_atomic_get_new_crtc_state(state, crtc); 6570 enum pipe pipe = crtc->pipe; 6571 6572 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 6573 hsw_disable_ips(old_crtc_state); 6574 6575 if (intel_fbc_pre_update(state, crtc)) 6576 intel_wait_for_vblank(dev_priv, pipe); 6577 6578 /* Display WA 827 */ 6579 if (!needs_nv12_wa(old_crtc_state) && 6580 needs_nv12_wa(new_crtc_state)) 6581 skl_wa_827(dev_priv, pipe, true); 6582 6583 /* Wa_2006604312:icl,ehl */ 6584 if (!needs_scalerclk_wa(old_crtc_state) && 6585 needs_scalerclk_wa(new_crtc_state)) 6586 icl_wa_scalerclkgating(dev_priv, pipe, true); 6587 6588 /* 6589 * Vblank time updates from the shadow to live plane control register 6590 * are blocked if the memory self-refresh mode is active at that 6591 * moment. So to make sure the plane gets truly disabled, disable 6592 * first the self-refresh mode. The self-refresh enable bit in turn 6593 * will be checked/applied by the HW only at the next frame start 6594 * event which is after the vblank start event, so we need to have a 6595 * wait-for-vblank between disabling the plane and the pipe. 6596 */ 6597 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 6598 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 6599 intel_wait_for_vblank(dev_priv, pipe); 6600 6601 /* 6602 * IVB workaround: must disable low power watermarks for at least 6603 * one frame before enabling scaling. LP watermarks can be re-enabled 6604 * when scaling is disabled. 6605 * 6606 * WaCxSRDisabledForSpriteScaling:ivb 6607 */ 6608 if (old_crtc_state->hw.active && 6609 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 6610 intel_wait_for_vblank(dev_priv, pipe); 6611 6612 /* 6613 * If we're doing a modeset we don't need to do any 6614 * pre-vblank watermark programming here. 6615 */ 6616 if (!needs_modeset(new_crtc_state)) { 6617 /* 6618 * For platforms that support atomic watermarks, program the 6619 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 6620 * will be the intermediate values that are safe for both pre- and 6621 * post- vblank; when vblank happens, the 'active' values will be set 6622 * to the final 'target' values and we'll do this again to get the 6623 * optimal watermarks. For gen9+ platforms, the values we program here 6624 * will be the final target values which will get automatically latched 6625 * at vblank time; no further programming will be necessary. 6626 * 6627 * If a platform hasn't been transitioned to atomic watermarks yet, 6628 * we'll continue to update watermarks the old way, if flags tell 6629 * us to. 6630 */ 6631 if (dev_priv->display.initial_watermarks) 6632 dev_priv->display.initial_watermarks(state, crtc); 6633 else if (new_crtc_state->update_wm_pre) 6634 intel_update_watermarks(crtc); 6635 } 6636 6637 /* 6638 * Gen2 reports pipe underruns whenever all planes are disabled. 6639 * So disable underrun reporting before all the planes get disabled. 6640 * 6641 * We do this after .initial_watermarks() so that we have a 6642 * chance of catching underruns with the intermediate watermarks 6643 * vs. the old plane configuration. 6644 */ 6645 if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state)) 6646 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6647 } 6648 6649 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 6650 struct intel_crtc *crtc) 6651 { 6652 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6653 const struct intel_crtc_state *new_crtc_state = 6654 intel_atomic_get_new_crtc_state(state, crtc); 6655 unsigned int update_mask = new_crtc_state->update_planes; 6656 const struct intel_plane_state *old_plane_state; 6657 struct intel_plane *plane; 6658 unsigned fb_bits = 0; 6659 int i; 6660 6661 intel_crtc_dpms_overlay_disable(crtc); 6662 6663 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 6664 if (crtc->pipe != plane->pipe || 6665 !(update_mask & BIT(plane->id))) 6666 continue; 6667 6668 intel_disable_plane(plane, new_crtc_state); 6669 6670 if (old_plane_state->uapi.visible) 6671 fb_bits |= plane->frontbuffer_bit; 6672 } 6673 6674 intel_frontbuffer_flip(dev_priv, fb_bits); 6675 } 6676 6677 /* 6678 * intel_connector_primary_encoder - get the primary encoder for a connector 6679 * @connector: connector for which to return the encoder 6680 * 6681 * Returns the primary encoder for a connector. There is a 1:1 mapping from 6682 * all connectors to their encoder, except for DP-MST connectors which have 6683 * both a virtual and a primary encoder. These DP-MST primary encoders can be 6684 * pointed to by as many DP-MST connectors as there are pipes. 6685 */ 6686 static struct intel_encoder * 6687 intel_connector_primary_encoder(struct intel_connector *connector) 6688 { 6689 struct intel_encoder *encoder; 6690 6691 if (connector->mst_port) 6692 return &dp_to_dig_port(connector->mst_port)->base; 6693 6694 encoder = intel_attached_encoder(connector); 6695 drm_WARN_ON(connector->base.dev, !encoder); 6696 6697 return encoder; 6698 } 6699 6700 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 6701 { 6702 struct drm_connector_state *new_conn_state; 6703 struct drm_connector *connector; 6704 int i; 6705 6706 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 6707 i) { 6708 struct intel_connector *intel_connector; 6709 struct intel_encoder *encoder; 6710 struct intel_crtc *crtc; 6711 6712 if (!intel_connector_needs_modeset(state, connector)) 6713 continue; 6714 6715 intel_connector = to_intel_connector(connector); 6716 encoder = intel_connector_primary_encoder(intel_connector); 6717 if (!encoder->update_prepare) 6718 continue; 6719 6720 crtc = new_conn_state->crtc ? 6721 to_intel_crtc(new_conn_state->crtc) : NULL; 6722 encoder->update_prepare(state, encoder, crtc); 6723 } 6724 } 6725 6726 static void intel_encoders_update_complete(struct intel_atomic_state *state) 6727 { 6728 struct drm_connector_state *new_conn_state; 6729 struct drm_connector *connector; 6730 int i; 6731 6732 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 6733 i) { 6734 struct intel_connector *intel_connector; 6735 struct intel_encoder *encoder; 6736 struct intel_crtc *crtc; 6737 6738 if (!intel_connector_needs_modeset(state, connector)) 6739 continue; 6740 6741 intel_connector = to_intel_connector(connector); 6742 encoder = intel_connector_primary_encoder(intel_connector); 6743 if (!encoder->update_complete) 6744 continue; 6745 6746 crtc = new_conn_state->crtc ? 6747 to_intel_crtc(new_conn_state->crtc) : NULL; 6748 encoder->update_complete(state, encoder, crtc); 6749 } 6750 } 6751 6752 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 6753 struct intel_crtc *crtc) 6754 { 6755 const struct intel_crtc_state *crtc_state = 6756 intel_atomic_get_new_crtc_state(state, crtc); 6757 const struct drm_connector_state *conn_state; 6758 struct drm_connector *conn; 6759 int i; 6760 6761 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6762 struct intel_encoder *encoder = 6763 to_intel_encoder(conn_state->best_encoder); 6764 6765 if (conn_state->crtc != &crtc->base) 6766 continue; 6767 6768 if (encoder->pre_pll_enable) 6769 encoder->pre_pll_enable(state, encoder, 6770 crtc_state, conn_state); 6771 } 6772 } 6773 6774 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 6775 struct intel_crtc *crtc) 6776 { 6777 const struct intel_crtc_state *crtc_state = 6778 intel_atomic_get_new_crtc_state(state, crtc); 6779 const struct drm_connector_state *conn_state; 6780 struct drm_connector *conn; 6781 int i; 6782 6783 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6784 struct intel_encoder *encoder = 6785 to_intel_encoder(conn_state->best_encoder); 6786 6787 if (conn_state->crtc != &crtc->base) 6788 continue; 6789 6790 if (encoder->pre_enable) 6791 encoder->pre_enable(state, encoder, 6792 crtc_state, conn_state); 6793 } 6794 } 6795 6796 static void intel_encoders_enable(struct intel_atomic_state *state, 6797 struct intel_crtc *crtc) 6798 { 6799 const struct intel_crtc_state *crtc_state = 6800 intel_atomic_get_new_crtc_state(state, crtc); 6801 const struct drm_connector_state *conn_state; 6802 struct drm_connector *conn; 6803 int i; 6804 6805 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6806 struct intel_encoder *encoder = 6807 to_intel_encoder(conn_state->best_encoder); 6808 6809 if (conn_state->crtc != &crtc->base) 6810 continue; 6811 6812 if (encoder->enable) 6813 encoder->enable(state, encoder, 6814 crtc_state, conn_state); 6815 intel_opregion_notify_encoder(encoder, true); 6816 } 6817 } 6818 6819 static void intel_encoders_disable(struct intel_atomic_state *state, 6820 struct intel_crtc *crtc) 6821 { 6822 const struct intel_crtc_state *old_crtc_state = 6823 intel_atomic_get_old_crtc_state(state, crtc); 6824 const struct drm_connector_state *old_conn_state; 6825 struct drm_connector *conn; 6826 int i; 6827 6828 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6829 struct intel_encoder *encoder = 6830 to_intel_encoder(old_conn_state->best_encoder); 6831 6832 if (old_conn_state->crtc != &crtc->base) 6833 continue; 6834 6835 intel_opregion_notify_encoder(encoder, false); 6836 if (encoder->disable) 6837 encoder->disable(state, encoder, 6838 old_crtc_state, old_conn_state); 6839 } 6840 } 6841 6842 static void intel_encoders_post_disable(struct intel_atomic_state *state, 6843 struct intel_crtc *crtc) 6844 { 6845 const struct intel_crtc_state *old_crtc_state = 6846 intel_atomic_get_old_crtc_state(state, crtc); 6847 const struct drm_connector_state *old_conn_state; 6848 struct drm_connector *conn; 6849 int i; 6850 6851 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6852 struct intel_encoder *encoder = 6853 to_intel_encoder(old_conn_state->best_encoder); 6854 6855 if (old_conn_state->crtc != &crtc->base) 6856 continue; 6857 6858 if (encoder->post_disable) 6859 encoder->post_disable(state, encoder, 6860 old_crtc_state, old_conn_state); 6861 } 6862 } 6863 6864 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 6865 struct intel_crtc *crtc) 6866 { 6867 const struct intel_crtc_state *old_crtc_state = 6868 intel_atomic_get_old_crtc_state(state, crtc); 6869 const struct drm_connector_state *old_conn_state; 6870 struct drm_connector *conn; 6871 int i; 6872 6873 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6874 struct intel_encoder *encoder = 6875 to_intel_encoder(old_conn_state->best_encoder); 6876 6877 if (old_conn_state->crtc != &crtc->base) 6878 continue; 6879 6880 if (encoder->post_pll_disable) 6881 encoder->post_pll_disable(state, encoder, 6882 old_crtc_state, old_conn_state); 6883 } 6884 } 6885 6886 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 6887 struct intel_crtc *crtc) 6888 { 6889 const struct intel_crtc_state *crtc_state = 6890 intel_atomic_get_new_crtc_state(state, crtc); 6891 const struct drm_connector_state *conn_state; 6892 struct drm_connector *conn; 6893 int i; 6894 6895 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6896 struct intel_encoder *encoder = 6897 to_intel_encoder(conn_state->best_encoder); 6898 6899 if (conn_state->crtc != &crtc->base) 6900 continue; 6901 6902 if (encoder->update_pipe) 6903 encoder->update_pipe(state, encoder, 6904 crtc_state, conn_state); 6905 } 6906 } 6907 6908 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 6909 { 6910 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6911 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 6912 6913 plane->disable_plane(plane, crtc_state); 6914 } 6915 6916 static void ilk_crtc_enable(struct intel_atomic_state *state, 6917 struct intel_crtc *crtc) 6918 { 6919 const struct intel_crtc_state *new_crtc_state = 6920 intel_atomic_get_new_crtc_state(state, crtc); 6921 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6922 enum pipe pipe = crtc->pipe; 6923 6924 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 6925 return; 6926 6927 /* 6928 * Sometimes spurious CPU pipe underruns happen during FDI 6929 * training, at least with VGA+HDMI cloning. Suppress them. 6930 * 6931 * On ILK we get an occasional spurious CPU pipe underruns 6932 * between eDP port A enable and vdd enable. Also PCH port 6933 * enable seems to result in the occasional CPU pipe underrun. 6934 * 6935 * Spurious PCH underruns also occur during PCH enabling. 6936 */ 6937 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6938 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 6939 6940 if (new_crtc_state->has_pch_encoder) 6941 intel_prepare_shared_dpll(new_crtc_state); 6942 6943 if (intel_crtc_has_dp_encoder(new_crtc_state)) 6944 intel_dp_set_m_n(new_crtc_state, M1_N1); 6945 6946 intel_set_pipe_timings(new_crtc_state); 6947 intel_set_pipe_src_size(new_crtc_state); 6948 6949 if (new_crtc_state->has_pch_encoder) 6950 intel_cpu_transcoder_set_m_n(new_crtc_state, 6951 &new_crtc_state->fdi_m_n, NULL); 6952 6953 ilk_set_pipeconf(new_crtc_state); 6954 6955 crtc->active = true; 6956 6957 intel_encoders_pre_enable(state, crtc); 6958 6959 if (new_crtc_state->has_pch_encoder) { 6960 /* Note: FDI PLL enabling _must_ be done before we enable the 6961 * cpu pipes, hence this is separate from all the other fdi/pch 6962 * enabling. */ 6963 ilk_fdi_pll_enable(new_crtc_state); 6964 } else { 6965 assert_fdi_tx_disabled(dev_priv, pipe); 6966 assert_fdi_rx_disabled(dev_priv, pipe); 6967 } 6968 6969 ilk_pfit_enable(new_crtc_state); 6970 6971 /* 6972 * On ILK+ LUT must be loaded before the pipe is running but with 6973 * clocks enabled 6974 */ 6975 intel_color_load_luts(new_crtc_state); 6976 intel_color_commit(new_crtc_state); 6977 /* update DSPCNTR to configure gamma for pipe bottom color */ 6978 intel_disable_primary_plane(new_crtc_state); 6979 6980 if (dev_priv->display.initial_watermarks) 6981 dev_priv->display.initial_watermarks(state, crtc); 6982 intel_enable_pipe(new_crtc_state); 6983 6984 if (new_crtc_state->has_pch_encoder) 6985 ilk_pch_enable(state, new_crtc_state); 6986 6987 intel_crtc_vblank_on(new_crtc_state); 6988 6989 intel_encoders_enable(state, crtc); 6990 6991 if (HAS_PCH_CPT(dev_priv)) 6992 cpt_verify_modeset(dev_priv, pipe); 6993 6994 /* 6995 * Must wait for vblank to avoid spurious PCH FIFO underruns. 6996 * And a second vblank wait is needed at least on ILK with 6997 * some interlaced HDMI modes. Let's do the double wait always 6998 * in case there are more corner cases we don't know about. 6999 */ 7000 if (new_crtc_state->has_pch_encoder) { 7001 intel_wait_for_vblank(dev_priv, pipe); 7002 intel_wait_for_vblank(dev_priv, pipe); 7003 } 7004 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7005 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 7006 } 7007 7008 /* IPS only exists on ULT machines and is tied to pipe A. */ 7009 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 7010 { 7011 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 7012 } 7013 7014 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 7015 enum pipe pipe, bool apply) 7016 { 7017 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 7018 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 7019 7020 if (apply) 7021 val |= mask; 7022 else 7023 val &= ~mask; 7024 7025 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 7026 } 7027 7028 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 7029 { 7030 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7031 enum pipe pipe = crtc->pipe; 7032 u32 val; 7033 7034 val = MBUS_DBOX_A_CREDIT(2); 7035 7036 if (INTEL_GEN(dev_priv) >= 12) { 7037 val |= MBUS_DBOX_BW_CREDIT(2); 7038 val |= MBUS_DBOX_B_CREDIT(12); 7039 } else { 7040 val |= MBUS_DBOX_BW_CREDIT(1); 7041 val |= MBUS_DBOX_B_CREDIT(8); 7042 } 7043 7044 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 7045 } 7046 7047 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 7048 { 7049 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7050 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7051 7052 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 7053 HSW_LINETIME(crtc_state->linetime) | 7054 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 7055 } 7056 7057 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 7058 { 7059 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7060 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7061 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 7062 u32 val; 7063 7064 val = intel_de_read(dev_priv, reg); 7065 val &= ~HSW_FRAME_START_DELAY_MASK; 7066 val |= HSW_FRAME_START_DELAY(0); 7067 intel_de_write(dev_priv, reg, val); 7068 } 7069 7070 static void hsw_crtc_enable(struct intel_atomic_state *state, 7071 struct intel_crtc *crtc) 7072 { 7073 const struct intel_crtc_state *new_crtc_state = 7074 intel_atomic_get_new_crtc_state(state, crtc); 7075 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7076 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 7077 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 7078 bool psl_clkgate_wa; 7079 7080 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7081 return; 7082 7083 intel_encoders_pre_pll_enable(state, crtc); 7084 7085 if (new_crtc_state->shared_dpll) 7086 intel_enable_shared_dpll(new_crtc_state); 7087 7088 intel_encoders_pre_enable(state, crtc); 7089 7090 if (!transcoder_is_dsi(cpu_transcoder)) 7091 intel_set_pipe_timings(new_crtc_state); 7092 7093 intel_set_pipe_src_size(new_crtc_state); 7094 7095 if (cpu_transcoder != TRANSCODER_EDP && 7096 !transcoder_is_dsi(cpu_transcoder)) 7097 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 7098 new_crtc_state->pixel_multiplier - 1); 7099 7100 if (new_crtc_state->has_pch_encoder) 7101 intel_cpu_transcoder_set_m_n(new_crtc_state, 7102 &new_crtc_state->fdi_m_n, NULL); 7103 7104 if (!transcoder_is_dsi(cpu_transcoder)) { 7105 hsw_set_frame_start_delay(new_crtc_state); 7106 hsw_set_pipeconf(new_crtc_state); 7107 } 7108 7109 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 7110 bdw_set_pipemisc(new_crtc_state); 7111 7112 crtc->active = true; 7113 7114 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 7115 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) && 7116 new_crtc_state->pch_pfit.enabled; 7117 if (psl_clkgate_wa) 7118 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 7119 7120 if (INTEL_GEN(dev_priv) >= 9) 7121 skl_pfit_enable(new_crtc_state); 7122 else 7123 ilk_pfit_enable(new_crtc_state); 7124 7125 /* 7126 * On ILK+ LUT must be loaded before the pipe is running but with 7127 * clocks enabled 7128 */ 7129 intel_color_load_luts(new_crtc_state); 7130 intel_color_commit(new_crtc_state); 7131 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 7132 if (INTEL_GEN(dev_priv) < 9) 7133 intel_disable_primary_plane(new_crtc_state); 7134 7135 hsw_set_linetime_wm(new_crtc_state); 7136 7137 if (INTEL_GEN(dev_priv) >= 11) 7138 icl_set_pipe_chicken(crtc); 7139 7140 if (dev_priv->display.initial_watermarks) 7141 dev_priv->display.initial_watermarks(state, crtc); 7142 7143 if (INTEL_GEN(dev_priv) >= 11) 7144 icl_pipe_mbus_enable(crtc); 7145 7146 intel_encoders_enable(state, crtc); 7147 7148 if (psl_clkgate_wa) { 7149 intel_wait_for_vblank(dev_priv, pipe); 7150 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 7151 } 7152 7153 /* If we change the relative order between pipe/planes enabling, we need 7154 * to change the workaround. */ 7155 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 7156 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 7157 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 7158 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 7159 } 7160 } 7161 7162 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7163 { 7164 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 7165 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7166 enum pipe pipe = crtc->pipe; 7167 7168 /* To avoid upsetting the power well on haswell only disable the pfit if 7169 * it's in use. The hw state code will make sure we get this right. */ 7170 if (!old_crtc_state->pch_pfit.enabled) 7171 return; 7172 7173 intel_de_write(dev_priv, PF_CTL(pipe), 0); 7174 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 7175 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 7176 } 7177 7178 static void ilk_crtc_disable(struct intel_atomic_state *state, 7179 struct intel_crtc *crtc) 7180 { 7181 const struct intel_crtc_state *old_crtc_state = 7182 intel_atomic_get_old_crtc_state(state, crtc); 7183 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7184 enum pipe pipe = crtc->pipe; 7185 7186 /* 7187 * Sometimes spurious CPU pipe underruns happen when the 7188 * pipe is already disabled, but FDI RX/TX is still enabled. 7189 * Happens at least with VGA+HDMI cloning. Suppress them. 7190 */ 7191 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7192 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 7193 7194 intel_encoders_disable(state, crtc); 7195 7196 intel_crtc_vblank_off(old_crtc_state); 7197 7198 intel_disable_pipe(old_crtc_state); 7199 7200 ilk_pfit_disable(old_crtc_state); 7201 7202 if (old_crtc_state->has_pch_encoder) 7203 ilk_fdi_disable(crtc); 7204 7205 intel_encoders_post_disable(state, crtc); 7206 7207 if (old_crtc_state->has_pch_encoder) { 7208 ilk_disable_pch_transcoder(dev_priv, pipe); 7209 7210 if (HAS_PCH_CPT(dev_priv)) { 7211 i915_reg_t reg; 7212 u32 temp; 7213 7214 /* disable TRANS_DP_CTL */ 7215 reg = TRANS_DP_CTL(pipe); 7216 temp = intel_de_read(dev_priv, reg); 7217 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 7218 TRANS_DP_PORT_SEL_MASK); 7219 temp |= TRANS_DP_PORT_SEL_NONE; 7220 intel_de_write(dev_priv, reg, temp); 7221 7222 /* disable DPLL_SEL */ 7223 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 7224 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 7225 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 7226 } 7227 7228 ilk_fdi_pll_disable(crtc); 7229 } 7230 7231 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7232 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 7233 } 7234 7235 static void hsw_crtc_disable(struct intel_atomic_state *state, 7236 struct intel_crtc *crtc) 7237 { 7238 /* 7239 * FIXME collapse everything to one hook. 7240 * Need care with mst->ddi interactions. 7241 */ 7242 intel_encoders_disable(state, crtc); 7243 intel_encoders_post_disable(state, crtc); 7244 } 7245 7246 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 7247 { 7248 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7249 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7250 7251 if (!crtc_state->gmch_pfit.control) 7252 return; 7253 7254 /* 7255 * The panel fitter should only be adjusted whilst the pipe is disabled, 7256 * according to register description and PRM. 7257 */ 7258 drm_WARN_ON(&dev_priv->drm, 7259 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 7260 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 7261 7262 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 7263 crtc_state->gmch_pfit.pgm_ratios); 7264 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 7265 7266 /* Border color in case we don't scale up to the full screen. Black by 7267 * default, change to something else for debugging. */ 7268 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 7269 } 7270 7271 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 7272 { 7273 if (phy == PHY_NONE) 7274 return false; 7275 else if (IS_ROCKETLAKE(dev_priv)) 7276 return phy <= PHY_D; 7277 else if (IS_ELKHARTLAKE(dev_priv)) 7278 return phy <= PHY_C; 7279 else if (INTEL_GEN(dev_priv) >= 11) 7280 return phy <= PHY_B; 7281 else 7282 return false; 7283 } 7284 7285 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 7286 { 7287 if (IS_ROCKETLAKE(dev_priv)) 7288 return false; 7289 else if (INTEL_GEN(dev_priv) >= 12) 7290 return phy >= PHY_D && phy <= PHY_I; 7291 else if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv)) 7292 return phy >= PHY_C && phy <= PHY_F; 7293 else 7294 return false; 7295 } 7296 7297 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 7298 { 7299 if (IS_ROCKETLAKE(i915) && port >= PORT_D) 7300 return (enum phy)port - 1; 7301 else if (IS_ELKHARTLAKE(i915) && port == PORT_D) 7302 return PHY_A; 7303 7304 return (enum phy)port; 7305 } 7306 7307 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 7308 { 7309 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 7310 return PORT_TC_NONE; 7311 7312 if (INTEL_GEN(dev_priv) >= 12) 7313 return port - PORT_D; 7314 7315 return port - PORT_C; 7316 } 7317 7318 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 7319 { 7320 switch (port) { 7321 case PORT_A: 7322 return POWER_DOMAIN_PORT_DDI_A_LANES; 7323 case PORT_B: 7324 return POWER_DOMAIN_PORT_DDI_B_LANES; 7325 case PORT_C: 7326 return POWER_DOMAIN_PORT_DDI_C_LANES; 7327 case PORT_D: 7328 return POWER_DOMAIN_PORT_DDI_D_LANES; 7329 case PORT_E: 7330 return POWER_DOMAIN_PORT_DDI_E_LANES; 7331 case PORT_F: 7332 return POWER_DOMAIN_PORT_DDI_F_LANES; 7333 case PORT_G: 7334 return POWER_DOMAIN_PORT_DDI_G_LANES; 7335 case PORT_H: 7336 return POWER_DOMAIN_PORT_DDI_H_LANES; 7337 case PORT_I: 7338 return POWER_DOMAIN_PORT_DDI_I_LANES; 7339 default: 7340 MISSING_CASE(port); 7341 return POWER_DOMAIN_PORT_OTHER; 7342 } 7343 } 7344 7345 enum intel_display_power_domain 7346 intel_aux_power_domain(struct intel_digital_port *dig_port) 7347 { 7348 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 7349 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 7350 7351 if (intel_phy_is_tc(dev_priv, phy) && 7352 dig_port->tc_mode == TC_PORT_TBT_ALT) { 7353 switch (dig_port->aux_ch) { 7354 case AUX_CH_C: 7355 return POWER_DOMAIN_AUX_C_TBT; 7356 case AUX_CH_D: 7357 return POWER_DOMAIN_AUX_D_TBT; 7358 case AUX_CH_E: 7359 return POWER_DOMAIN_AUX_E_TBT; 7360 case AUX_CH_F: 7361 return POWER_DOMAIN_AUX_F_TBT; 7362 case AUX_CH_G: 7363 return POWER_DOMAIN_AUX_G_TBT; 7364 case AUX_CH_H: 7365 return POWER_DOMAIN_AUX_H_TBT; 7366 case AUX_CH_I: 7367 return POWER_DOMAIN_AUX_I_TBT; 7368 default: 7369 MISSING_CASE(dig_port->aux_ch); 7370 return POWER_DOMAIN_AUX_C_TBT; 7371 } 7372 } 7373 7374 return intel_legacy_aux_to_power_domain(dig_port->aux_ch); 7375 } 7376 7377 /* 7378 * Converts aux_ch to power_domain without caring about TBT ports for that use 7379 * intel_aux_power_domain() 7380 */ 7381 enum intel_display_power_domain 7382 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch) 7383 { 7384 switch (aux_ch) { 7385 case AUX_CH_A: 7386 return POWER_DOMAIN_AUX_A; 7387 case AUX_CH_B: 7388 return POWER_DOMAIN_AUX_B; 7389 case AUX_CH_C: 7390 return POWER_DOMAIN_AUX_C; 7391 case AUX_CH_D: 7392 return POWER_DOMAIN_AUX_D; 7393 case AUX_CH_E: 7394 return POWER_DOMAIN_AUX_E; 7395 case AUX_CH_F: 7396 return POWER_DOMAIN_AUX_F; 7397 case AUX_CH_G: 7398 return POWER_DOMAIN_AUX_G; 7399 case AUX_CH_H: 7400 return POWER_DOMAIN_AUX_H; 7401 case AUX_CH_I: 7402 return POWER_DOMAIN_AUX_I; 7403 default: 7404 MISSING_CASE(aux_ch); 7405 return POWER_DOMAIN_AUX_A; 7406 } 7407 } 7408 7409 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 7410 { 7411 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7412 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7413 struct drm_encoder *encoder; 7414 enum pipe pipe = crtc->pipe; 7415 u64 mask; 7416 enum transcoder transcoder = crtc_state->cpu_transcoder; 7417 7418 if (!crtc_state->hw.active) 7419 return 0; 7420 7421 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 7422 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 7423 if (crtc_state->pch_pfit.enabled || 7424 crtc_state->pch_pfit.force_thru) 7425 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 7426 7427 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 7428 crtc_state->uapi.encoder_mask) { 7429 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7430 7431 mask |= BIT_ULL(intel_encoder->power_domain); 7432 } 7433 7434 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 7435 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 7436 7437 if (crtc_state->shared_dpll) 7438 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 7439 7440 return mask; 7441 } 7442 7443 static u64 7444 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 7445 { 7446 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7447 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7448 enum intel_display_power_domain domain; 7449 u64 domains, new_domains, old_domains; 7450 7451 old_domains = crtc->enabled_power_domains; 7452 crtc->enabled_power_domains = new_domains = 7453 get_crtc_power_domains(crtc_state); 7454 7455 domains = new_domains & ~old_domains; 7456 7457 for_each_power_domain(domain, domains) 7458 intel_display_power_get(dev_priv, domain); 7459 7460 return old_domains & ~new_domains; 7461 } 7462 7463 static void modeset_put_power_domains(struct drm_i915_private *dev_priv, 7464 u64 domains) 7465 { 7466 enum intel_display_power_domain domain; 7467 7468 for_each_power_domain(domain, domains) 7469 intel_display_power_put_unchecked(dev_priv, domain); 7470 } 7471 7472 static void valleyview_crtc_enable(struct intel_atomic_state *state, 7473 struct intel_crtc *crtc) 7474 { 7475 const struct intel_crtc_state *new_crtc_state = 7476 intel_atomic_get_new_crtc_state(state, crtc); 7477 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7478 enum pipe pipe = crtc->pipe; 7479 7480 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7481 return; 7482 7483 if (intel_crtc_has_dp_encoder(new_crtc_state)) 7484 intel_dp_set_m_n(new_crtc_state, M1_N1); 7485 7486 intel_set_pipe_timings(new_crtc_state); 7487 intel_set_pipe_src_size(new_crtc_state); 7488 7489 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 7490 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 7491 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 7492 } 7493 7494 i9xx_set_pipeconf(new_crtc_state); 7495 7496 crtc->active = true; 7497 7498 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7499 7500 intel_encoders_pre_pll_enable(state, crtc); 7501 7502 if (IS_CHERRYVIEW(dev_priv)) { 7503 chv_prepare_pll(crtc, new_crtc_state); 7504 chv_enable_pll(crtc, new_crtc_state); 7505 } else { 7506 vlv_prepare_pll(crtc, new_crtc_state); 7507 vlv_enable_pll(crtc, new_crtc_state); 7508 } 7509 7510 intel_encoders_pre_enable(state, crtc); 7511 7512 i9xx_pfit_enable(new_crtc_state); 7513 7514 intel_color_load_luts(new_crtc_state); 7515 intel_color_commit(new_crtc_state); 7516 /* update DSPCNTR to configure gamma for pipe bottom color */ 7517 intel_disable_primary_plane(new_crtc_state); 7518 7519 dev_priv->display.initial_watermarks(state, crtc); 7520 intel_enable_pipe(new_crtc_state); 7521 7522 intel_crtc_vblank_on(new_crtc_state); 7523 7524 intel_encoders_enable(state, crtc); 7525 } 7526 7527 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 7528 { 7529 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7530 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7531 7532 intel_de_write(dev_priv, FP0(crtc->pipe), 7533 crtc_state->dpll_hw_state.fp0); 7534 intel_de_write(dev_priv, FP1(crtc->pipe), 7535 crtc_state->dpll_hw_state.fp1); 7536 } 7537 7538 static void i9xx_crtc_enable(struct intel_atomic_state *state, 7539 struct intel_crtc *crtc) 7540 { 7541 const struct intel_crtc_state *new_crtc_state = 7542 intel_atomic_get_new_crtc_state(state, crtc); 7543 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7544 enum pipe pipe = crtc->pipe; 7545 7546 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7547 return; 7548 7549 i9xx_set_pll_dividers(new_crtc_state); 7550 7551 if (intel_crtc_has_dp_encoder(new_crtc_state)) 7552 intel_dp_set_m_n(new_crtc_state, M1_N1); 7553 7554 intel_set_pipe_timings(new_crtc_state); 7555 intel_set_pipe_src_size(new_crtc_state); 7556 7557 i9xx_set_pipeconf(new_crtc_state); 7558 7559 crtc->active = true; 7560 7561 if (!IS_GEN(dev_priv, 2)) 7562 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7563 7564 intel_encoders_pre_enable(state, crtc); 7565 7566 i9xx_enable_pll(crtc, new_crtc_state); 7567 7568 i9xx_pfit_enable(new_crtc_state); 7569 7570 intel_color_load_luts(new_crtc_state); 7571 intel_color_commit(new_crtc_state); 7572 /* update DSPCNTR to configure gamma for pipe bottom color */ 7573 intel_disable_primary_plane(new_crtc_state); 7574 7575 if (dev_priv->display.initial_watermarks) 7576 dev_priv->display.initial_watermarks(state, crtc); 7577 else 7578 intel_update_watermarks(crtc); 7579 intel_enable_pipe(new_crtc_state); 7580 7581 intel_crtc_vblank_on(new_crtc_state); 7582 7583 intel_encoders_enable(state, crtc); 7584 7585 /* prevents spurious underruns */ 7586 if (IS_GEN(dev_priv, 2)) 7587 intel_wait_for_vblank(dev_priv, pipe); 7588 } 7589 7590 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7591 { 7592 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 7593 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7594 7595 if (!old_crtc_state->gmch_pfit.control) 7596 return; 7597 7598 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 7599 7600 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 7601 intel_de_read(dev_priv, PFIT_CONTROL)); 7602 intel_de_write(dev_priv, PFIT_CONTROL, 0); 7603 } 7604 7605 static void i9xx_crtc_disable(struct intel_atomic_state *state, 7606 struct intel_crtc *crtc) 7607 { 7608 struct intel_crtc_state *old_crtc_state = 7609 intel_atomic_get_old_crtc_state(state, crtc); 7610 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7611 enum pipe pipe = crtc->pipe; 7612 7613 /* 7614 * On gen2 planes are double buffered but the pipe isn't, so we must 7615 * wait for planes to fully turn off before disabling the pipe. 7616 */ 7617 if (IS_GEN(dev_priv, 2)) 7618 intel_wait_for_vblank(dev_priv, pipe); 7619 7620 intel_encoders_disable(state, crtc); 7621 7622 intel_crtc_vblank_off(old_crtc_state); 7623 7624 intel_disable_pipe(old_crtc_state); 7625 7626 i9xx_pfit_disable(old_crtc_state); 7627 7628 intel_encoders_post_disable(state, crtc); 7629 7630 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 7631 if (IS_CHERRYVIEW(dev_priv)) 7632 chv_disable_pll(dev_priv, pipe); 7633 else if (IS_VALLEYVIEW(dev_priv)) 7634 vlv_disable_pll(dev_priv, pipe); 7635 else 7636 i9xx_disable_pll(old_crtc_state); 7637 } 7638 7639 intel_encoders_post_pll_disable(state, crtc); 7640 7641 if (!IS_GEN(dev_priv, 2)) 7642 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7643 7644 if (!dev_priv->display.initial_watermarks) 7645 intel_update_watermarks(crtc); 7646 7647 /* clock the pipe down to 640x480@60 to potentially save power */ 7648 if (IS_I830(dev_priv)) 7649 i830_enable_pipe(dev_priv, pipe); 7650 } 7651 7652 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 7653 struct drm_modeset_acquire_ctx *ctx) 7654 { 7655 struct intel_encoder *encoder; 7656 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7657 struct intel_bw_state *bw_state = 7658 to_intel_bw_state(dev_priv->bw_obj.state); 7659 struct intel_cdclk_state *cdclk_state = 7660 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 7661 struct intel_dbuf_state *dbuf_state = 7662 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 7663 struct intel_crtc_state *crtc_state = 7664 to_intel_crtc_state(crtc->base.state); 7665 enum intel_display_power_domain domain; 7666 struct intel_plane *plane; 7667 struct drm_atomic_state *state; 7668 struct intel_crtc_state *temp_crtc_state; 7669 enum pipe pipe = crtc->pipe; 7670 u64 domains; 7671 int ret; 7672 7673 if (!crtc_state->hw.active) 7674 return; 7675 7676 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 7677 const struct intel_plane_state *plane_state = 7678 to_intel_plane_state(plane->base.state); 7679 7680 if (plane_state->uapi.visible) 7681 intel_plane_disable_noatomic(crtc, plane); 7682 } 7683 7684 state = drm_atomic_state_alloc(&dev_priv->drm); 7685 if (!state) { 7686 drm_dbg_kms(&dev_priv->drm, 7687 "failed to disable [CRTC:%d:%s], out of memory", 7688 crtc->base.base.id, crtc->base.name); 7689 return; 7690 } 7691 7692 state->acquire_ctx = ctx; 7693 7694 /* Everything's already locked, -EDEADLK can't happen. */ 7695 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 7696 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 7697 7698 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 7699 7700 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 7701 7702 drm_atomic_state_put(state); 7703 7704 drm_dbg_kms(&dev_priv->drm, 7705 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 7706 crtc->base.base.id, crtc->base.name); 7707 7708 crtc->active = false; 7709 crtc->base.enabled = false; 7710 7711 drm_WARN_ON(&dev_priv->drm, 7712 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 7713 crtc_state->uapi.active = false; 7714 crtc_state->uapi.connector_mask = 0; 7715 crtc_state->uapi.encoder_mask = 0; 7716 intel_crtc_free_hw_state(crtc_state); 7717 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 7718 7719 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 7720 encoder->base.crtc = NULL; 7721 7722 intel_fbc_disable(crtc); 7723 intel_update_watermarks(crtc); 7724 intel_disable_shared_dpll(crtc_state); 7725 7726 domains = crtc->enabled_power_domains; 7727 for_each_power_domain(domain, domains) 7728 intel_display_power_put_unchecked(dev_priv, domain); 7729 crtc->enabled_power_domains = 0; 7730 7731 dev_priv->active_pipes &= ~BIT(pipe); 7732 cdclk_state->min_cdclk[pipe] = 0; 7733 cdclk_state->min_voltage_level[pipe] = 0; 7734 cdclk_state->active_pipes &= ~BIT(pipe); 7735 7736 dbuf_state->active_pipes &= ~BIT(pipe); 7737 7738 bw_state->data_rate[pipe] = 0; 7739 bw_state->num_active_planes[pipe] = 0; 7740 } 7741 7742 /* 7743 * turn all crtc's off, but do not adjust state 7744 * This has to be paired with a call to intel_modeset_setup_hw_state. 7745 */ 7746 int intel_display_suspend(struct drm_device *dev) 7747 { 7748 struct drm_i915_private *dev_priv = to_i915(dev); 7749 struct drm_atomic_state *state; 7750 int ret; 7751 7752 state = drm_atomic_helper_suspend(dev); 7753 ret = PTR_ERR_OR_ZERO(state); 7754 if (ret) 7755 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 7756 ret); 7757 else 7758 dev_priv->modeset_restore_state = state; 7759 return ret; 7760 } 7761 7762 void intel_encoder_destroy(struct drm_encoder *encoder) 7763 { 7764 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7765 7766 drm_encoder_cleanup(encoder); 7767 kfree(intel_encoder); 7768 } 7769 7770 /* Cross check the actual hw state with our own modeset state tracking (and it's 7771 * internal consistency). */ 7772 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 7773 struct drm_connector_state *conn_state) 7774 { 7775 struct intel_connector *connector = to_intel_connector(conn_state->connector); 7776 struct drm_i915_private *i915 = to_i915(connector->base.dev); 7777 7778 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 7779 connector->base.base.id, connector->base.name); 7780 7781 if (connector->get_hw_state(connector)) { 7782 struct intel_encoder *encoder = intel_attached_encoder(connector); 7783 7784 I915_STATE_WARN(!crtc_state, 7785 "connector enabled without attached crtc\n"); 7786 7787 if (!crtc_state) 7788 return; 7789 7790 I915_STATE_WARN(!crtc_state->hw.active, 7791 "connector is active, but attached crtc isn't\n"); 7792 7793 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 7794 return; 7795 7796 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 7797 "atomic encoder doesn't match attached encoder\n"); 7798 7799 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 7800 "attached encoder crtc differs from connector crtc\n"); 7801 } else { 7802 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 7803 "attached crtc is active, but connector isn't\n"); 7804 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 7805 "best encoder set without crtc!\n"); 7806 } 7807 } 7808 7809 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state) 7810 { 7811 if (crtc_state->hw.enable && crtc_state->has_pch_encoder) 7812 return crtc_state->fdi_lanes; 7813 7814 return 0; 7815 } 7816 7817 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, 7818 struct intel_crtc_state *pipe_config) 7819 { 7820 struct drm_i915_private *dev_priv = to_i915(dev); 7821 struct drm_atomic_state *state = pipe_config->uapi.state; 7822 struct intel_crtc *other_crtc; 7823 struct intel_crtc_state *other_crtc_state; 7824 7825 drm_dbg_kms(&dev_priv->drm, 7826 "checking fdi config on pipe %c, lanes %i\n", 7827 pipe_name(pipe), pipe_config->fdi_lanes); 7828 if (pipe_config->fdi_lanes > 4) { 7829 drm_dbg_kms(&dev_priv->drm, 7830 "invalid fdi lane config on pipe %c: %i lanes\n", 7831 pipe_name(pipe), pipe_config->fdi_lanes); 7832 return -EINVAL; 7833 } 7834 7835 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 7836 if (pipe_config->fdi_lanes > 2) { 7837 drm_dbg_kms(&dev_priv->drm, 7838 "only 2 lanes on haswell, required: %i lanes\n", 7839 pipe_config->fdi_lanes); 7840 return -EINVAL; 7841 } else { 7842 return 0; 7843 } 7844 } 7845 7846 if (INTEL_NUM_PIPES(dev_priv) == 2) 7847 return 0; 7848 7849 /* Ivybridge 3 pipe is really complicated */ 7850 switch (pipe) { 7851 case PIPE_A: 7852 return 0; 7853 case PIPE_B: 7854 if (pipe_config->fdi_lanes <= 2) 7855 return 0; 7856 7857 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C); 7858 other_crtc_state = 7859 intel_atomic_get_crtc_state(state, other_crtc); 7860 if (IS_ERR(other_crtc_state)) 7861 return PTR_ERR(other_crtc_state); 7862 7863 if (pipe_required_fdi_lanes(other_crtc_state) > 0) { 7864 drm_dbg_kms(&dev_priv->drm, 7865 "invalid shared fdi lane config on pipe %c: %i lanes\n", 7866 pipe_name(pipe), pipe_config->fdi_lanes); 7867 return -EINVAL; 7868 } 7869 return 0; 7870 case PIPE_C: 7871 if (pipe_config->fdi_lanes > 2) { 7872 drm_dbg_kms(&dev_priv->drm, 7873 "only 2 lanes on pipe %c: required %i lanes\n", 7874 pipe_name(pipe), pipe_config->fdi_lanes); 7875 return -EINVAL; 7876 } 7877 7878 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B); 7879 other_crtc_state = 7880 intel_atomic_get_crtc_state(state, other_crtc); 7881 if (IS_ERR(other_crtc_state)) 7882 return PTR_ERR(other_crtc_state); 7883 7884 if (pipe_required_fdi_lanes(other_crtc_state) > 2) { 7885 drm_dbg_kms(&dev_priv->drm, 7886 "fdi link B uses too many lanes to enable link C\n"); 7887 return -EINVAL; 7888 } 7889 return 0; 7890 default: 7891 BUG(); 7892 } 7893 } 7894 7895 #define RETRY 1 7896 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc, 7897 struct intel_crtc_state *pipe_config) 7898 { 7899 struct drm_device *dev = intel_crtc->base.dev; 7900 struct drm_i915_private *i915 = to_i915(dev); 7901 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 7902 int lane, link_bw, fdi_dotclock, ret; 7903 bool needs_recompute = false; 7904 7905 retry: 7906 /* FDI is a binary signal running at ~2.7GHz, encoding 7907 * each output octet as 10 bits. The actual frequency 7908 * is stored as a divider into a 100MHz clock, and the 7909 * mode pixel clock is stored in units of 1KHz. 7910 * Hence the bw of each lane in terms of the mode signal 7911 * is: 7912 */ 7913 link_bw = intel_fdi_link_freq(i915, pipe_config); 7914 7915 fdi_dotclock = adjusted_mode->crtc_clock; 7916 7917 lane = ilk_get_lanes_required(fdi_dotclock, link_bw, 7918 pipe_config->pipe_bpp); 7919 7920 pipe_config->fdi_lanes = lane; 7921 7922 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, 7923 link_bw, &pipe_config->fdi_m_n, false, false); 7924 7925 ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config); 7926 if (ret == -EDEADLK) 7927 return ret; 7928 7929 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) { 7930 pipe_config->pipe_bpp -= 2*3; 7931 drm_dbg_kms(&i915->drm, 7932 "fdi link bw constraint, reducing pipe bpp to %i\n", 7933 pipe_config->pipe_bpp); 7934 needs_recompute = true; 7935 pipe_config->bw_constrained = true; 7936 7937 goto retry; 7938 } 7939 7940 if (needs_recompute) 7941 return RETRY; 7942 7943 return ret; 7944 } 7945 7946 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 7947 { 7948 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7949 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7950 7951 /* IPS only exists on ULT machines and is tied to pipe A. */ 7952 if (!hsw_crtc_supports_ips(crtc)) 7953 return false; 7954 7955 if (!dev_priv->params.enable_ips) 7956 return false; 7957 7958 if (crtc_state->pipe_bpp > 24) 7959 return false; 7960 7961 /* 7962 * We compare against max which means we must take 7963 * the increased cdclk requirement into account when 7964 * calculating the new cdclk. 7965 * 7966 * Should measure whether using a lower cdclk w/o IPS 7967 */ 7968 if (IS_BROADWELL(dev_priv) && 7969 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 7970 return false; 7971 7972 return true; 7973 } 7974 7975 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 7976 { 7977 struct drm_i915_private *dev_priv = 7978 to_i915(crtc_state->uapi.crtc->dev); 7979 struct intel_atomic_state *state = 7980 to_intel_atomic_state(crtc_state->uapi.state); 7981 7982 crtc_state->ips_enabled = false; 7983 7984 if (!hsw_crtc_state_ips_capable(crtc_state)) 7985 return 0; 7986 7987 /* 7988 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 7989 * enabled and disabled dynamically based on package C states, 7990 * user space can't make reliable use of the CRCs, so let's just 7991 * completely disable it. 7992 */ 7993 if (crtc_state->crc_enabled) 7994 return 0; 7995 7996 /* IPS should be fine as long as at least one plane is enabled. */ 7997 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 7998 return 0; 7999 8000 if (IS_BROADWELL(dev_priv)) { 8001 const struct intel_cdclk_state *cdclk_state; 8002 8003 cdclk_state = intel_atomic_get_cdclk_state(state); 8004 if (IS_ERR(cdclk_state)) 8005 return PTR_ERR(cdclk_state); 8006 8007 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 8008 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 8009 return 0; 8010 } 8011 8012 crtc_state->ips_enabled = true; 8013 8014 return 0; 8015 } 8016 8017 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 8018 { 8019 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8020 8021 /* GDG double wide on either pipe, otherwise pipe A only */ 8022 return INTEL_GEN(dev_priv) < 4 && 8023 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 8024 } 8025 8026 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) 8027 { 8028 u32 pixel_rate = crtc_state->hw.adjusted_mode.crtc_clock; 8029 unsigned int pipe_w, pipe_h, pfit_w, pfit_h; 8030 8031 /* 8032 * We only use IF-ID interlacing. If we ever use 8033 * PF-ID we'll need to adjust the pixel_rate here. 8034 */ 8035 8036 if (!crtc_state->pch_pfit.enabled) 8037 return pixel_rate; 8038 8039 pipe_w = crtc_state->pipe_src_w; 8040 pipe_h = crtc_state->pipe_src_h; 8041 8042 pfit_w = drm_rect_width(&crtc_state->pch_pfit.dst); 8043 pfit_h = drm_rect_height(&crtc_state->pch_pfit.dst); 8044 8045 if (pipe_w < pfit_w) 8046 pipe_w = pfit_w; 8047 if (pipe_h < pfit_h) 8048 pipe_h = pfit_h; 8049 8050 if (drm_WARN_ON(crtc_state->uapi.crtc->dev, 8051 !pfit_w || !pfit_h)) 8052 return pixel_rate; 8053 8054 return div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h), 8055 pfit_w * pfit_h); 8056 } 8057 8058 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 8059 { 8060 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 8061 8062 if (HAS_GMCH(dev_priv)) 8063 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 8064 crtc_state->pixel_rate = 8065 crtc_state->hw.adjusted_mode.crtc_clock; 8066 else 8067 crtc_state->pixel_rate = 8068 ilk_pipe_pixel_rate(crtc_state); 8069 } 8070 8071 static int intel_crtc_compute_config(struct intel_crtc *crtc, 8072 struct intel_crtc_state *pipe_config) 8073 { 8074 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8075 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 8076 int clock_limit = dev_priv->max_dotclk_freq; 8077 8078 if (INTEL_GEN(dev_priv) < 4) { 8079 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 8080 8081 /* 8082 * Enable double wide mode when the dot clock 8083 * is > 90% of the (display) core speed. 8084 */ 8085 if (intel_crtc_supports_double_wide(crtc) && 8086 adjusted_mode->crtc_clock > clock_limit) { 8087 clock_limit = dev_priv->max_dotclk_freq; 8088 pipe_config->double_wide = true; 8089 } 8090 } 8091 8092 if (adjusted_mode->crtc_clock > clock_limit) { 8093 drm_dbg_kms(&dev_priv->drm, 8094 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 8095 adjusted_mode->crtc_clock, clock_limit, 8096 yesno(pipe_config->double_wide)); 8097 return -EINVAL; 8098 } 8099 8100 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 8101 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) && 8102 pipe_config->hw.ctm) { 8103 /* 8104 * There is only one pipe CSC unit per pipe, and we need that 8105 * for output conversion from RGB->YCBCR. So if CTM is already 8106 * applied we can't support YCBCR420 output. 8107 */ 8108 drm_dbg_kms(&dev_priv->drm, 8109 "YCBCR420 and CTM together are not possible\n"); 8110 return -EINVAL; 8111 } 8112 8113 /* 8114 * Pipe horizontal size must be even in: 8115 * - DVO ganged mode 8116 * - LVDS dual channel mode 8117 * - Double wide pipe 8118 */ 8119 if (pipe_config->pipe_src_w & 1) { 8120 if (pipe_config->double_wide) { 8121 drm_dbg_kms(&dev_priv->drm, 8122 "Odd pipe source width not supported with double wide pipe\n"); 8123 return -EINVAL; 8124 } 8125 8126 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 8127 intel_is_dual_link_lvds(dev_priv)) { 8128 drm_dbg_kms(&dev_priv->drm, 8129 "Odd pipe source width not supported with dual link LVDS\n"); 8130 return -EINVAL; 8131 } 8132 } 8133 8134 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 8135 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 8136 */ 8137 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) && 8138 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay) 8139 return -EINVAL; 8140 8141 intel_crtc_compute_pixel_rate(pipe_config); 8142 8143 if (pipe_config->has_pch_encoder) 8144 return ilk_fdi_compute_config(crtc, pipe_config); 8145 8146 return 0; 8147 } 8148 8149 static void 8150 intel_reduce_m_n_ratio(u32 *num, u32 *den) 8151 { 8152 while (*num > DATA_LINK_M_N_MASK || 8153 *den > DATA_LINK_M_N_MASK) { 8154 *num >>= 1; 8155 *den >>= 1; 8156 } 8157 } 8158 8159 static void compute_m_n(unsigned int m, unsigned int n, 8160 u32 *ret_m, u32 *ret_n, 8161 bool constant_n) 8162 { 8163 /* 8164 * Several DP dongles in particular seem to be fussy about 8165 * too large link M/N values. Give N value as 0x8000 that 8166 * should be acceptable by specific devices. 0x8000 is the 8167 * specified fixed N value for asynchronous clock mode, 8168 * which the devices expect also in synchronous clock mode. 8169 */ 8170 if (constant_n) 8171 *ret_n = DP_LINK_CONSTANT_N_VALUE; 8172 else 8173 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 8174 8175 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 8176 intel_reduce_m_n_ratio(ret_m, ret_n); 8177 } 8178 8179 void 8180 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 8181 int pixel_clock, int link_clock, 8182 struct intel_link_m_n *m_n, 8183 bool constant_n, bool fec_enable) 8184 { 8185 u32 data_clock = bits_per_pixel * pixel_clock; 8186 8187 if (fec_enable) 8188 data_clock = intel_dp_mode_to_fec_clock(data_clock); 8189 8190 m_n->tu = 64; 8191 compute_m_n(data_clock, 8192 link_clock * nlanes * 8, 8193 &m_n->gmch_m, &m_n->gmch_n, 8194 constant_n); 8195 8196 compute_m_n(pixel_clock, link_clock, 8197 &m_n->link_m, &m_n->link_n, 8198 constant_n); 8199 } 8200 8201 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 8202 { 8203 /* 8204 * There may be no VBT; and if the BIOS enabled SSC we can 8205 * just keep using it to avoid unnecessary flicker. Whereas if the 8206 * BIOS isn't using it, don't assume it will work even if the VBT 8207 * indicates as much. 8208 */ 8209 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 8210 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 8211 PCH_DREF_CONTROL) & 8212 DREF_SSC1_ENABLE; 8213 8214 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 8215 drm_dbg_kms(&dev_priv->drm, 8216 "SSC %s by BIOS, overriding VBT which says %s\n", 8217 enableddisabled(bios_lvds_use_ssc), 8218 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 8219 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 8220 } 8221 } 8222 } 8223 8224 static bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) 8225 { 8226 if (dev_priv->params.panel_use_ssc >= 0) 8227 return dev_priv->params.panel_use_ssc != 0; 8228 return dev_priv->vbt.lvds_use_ssc 8229 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); 8230 } 8231 8232 static u32 pnv_dpll_compute_fp(struct dpll *dpll) 8233 { 8234 return (1 << dpll->n) << 16 | dpll->m2; 8235 } 8236 8237 static u32 i9xx_dpll_compute_fp(struct dpll *dpll) 8238 { 8239 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 8240 } 8241 8242 static void i9xx_update_pll_dividers(struct intel_crtc *crtc, 8243 struct intel_crtc_state *crtc_state, 8244 struct dpll *reduced_clock) 8245 { 8246 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8247 u32 fp, fp2 = 0; 8248 8249 if (IS_PINEVIEW(dev_priv)) { 8250 fp = pnv_dpll_compute_fp(&crtc_state->dpll); 8251 if (reduced_clock) 8252 fp2 = pnv_dpll_compute_fp(reduced_clock); 8253 } else { 8254 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 8255 if (reduced_clock) 8256 fp2 = i9xx_dpll_compute_fp(reduced_clock); 8257 } 8258 8259 crtc_state->dpll_hw_state.fp0 = fp; 8260 8261 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8262 reduced_clock) { 8263 crtc_state->dpll_hw_state.fp1 = fp2; 8264 } else { 8265 crtc_state->dpll_hw_state.fp1 = fp; 8266 } 8267 } 8268 8269 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe 8270 pipe) 8271 { 8272 u32 reg_val; 8273 8274 /* 8275 * PLLB opamp always calibrates to max value of 0x3f, force enable it 8276 * and set it to a reasonable value instead. 8277 */ 8278 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 8279 reg_val &= 0xffffff00; 8280 reg_val |= 0x00000030; 8281 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 8282 8283 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 8284 reg_val &= 0x00ffffff; 8285 reg_val |= 0x8c000000; 8286 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 8287 8288 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 8289 reg_val &= 0xffffff00; 8290 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 8291 8292 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 8293 reg_val &= 0x00ffffff; 8294 reg_val |= 0xb0000000; 8295 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 8296 } 8297 8298 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 8299 const struct intel_link_m_n *m_n) 8300 { 8301 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8302 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8303 enum pipe pipe = crtc->pipe; 8304 8305 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 8306 TU_SIZE(m_n->tu) | m_n->gmch_m); 8307 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 8308 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 8309 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 8310 } 8311 8312 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 8313 enum transcoder transcoder) 8314 { 8315 if (IS_HASWELL(dev_priv)) 8316 return transcoder == TRANSCODER_EDP; 8317 8318 /* 8319 * Strictly speaking some registers are available before 8320 * gen7, but we only support DRRS on gen7+ 8321 */ 8322 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv); 8323 } 8324 8325 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 8326 const struct intel_link_m_n *m_n, 8327 const struct intel_link_m_n *m2_n2) 8328 { 8329 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8330 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8331 enum pipe pipe = crtc->pipe; 8332 enum transcoder transcoder = crtc_state->cpu_transcoder; 8333 8334 if (INTEL_GEN(dev_priv) >= 5) { 8335 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 8336 TU_SIZE(m_n->tu) | m_n->gmch_m); 8337 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 8338 m_n->gmch_n); 8339 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 8340 m_n->link_m); 8341 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 8342 m_n->link_n); 8343 /* 8344 * M2_N2 registers are set only if DRRS is supported 8345 * (to make sure the registers are not unnecessarily accessed). 8346 */ 8347 if (m2_n2 && crtc_state->has_drrs && 8348 transcoder_has_m2_n2(dev_priv, transcoder)) { 8349 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 8350 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 8351 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 8352 m2_n2->gmch_n); 8353 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 8354 m2_n2->link_m); 8355 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 8356 m2_n2->link_n); 8357 } 8358 } else { 8359 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 8360 TU_SIZE(m_n->tu) | m_n->gmch_m); 8361 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 8362 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 8363 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 8364 } 8365 } 8366 8367 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 8368 { 8369 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 8370 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 8371 8372 if (m_n == M1_N1) { 8373 dp_m_n = &crtc_state->dp_m_n; 8374 dp_m2_n2 = &crtc_state->dp_m2_n2; 8375 } else if (m_n == M2_N2) { 8376 8377 /* 8378 * M2_N2 registers are not supported. Hence m2_n2 divider value 8379 * needs to be programmed into M1_N1. 8380 */ 8381 dp_m_n = &crtc_state->dp_m2_n2; 8382 } else { 8383 drm_err(&i915->drm, "Unsupported divider value\n"); 8384 return; 8385 } 8386 8387 if (crtc_state->has_pch_encoder) 8388 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 8389 else 8390 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 8391 } 8392 8393 static void vlv_compute_dpll(struct intel_crtc *crtc, 8394 struct intel_crtc_state *pipe_config) 8395 { 8396 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | 8397 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 8398 if (crtc->pipe != PIPE_A) 8399 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 8400 8401 /* DPLL not used with DSI, but still need the rest set up */ 8402 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 8403 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | 8404 DPLL_EXT_BUFFER_ENABLE_VLV; 8405 8406 pipe_config->dpll_hw_state.dpll_md = 8407 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8408 } 8409 8410 static void chv_compute_dpll(struct intel_crtc *crtc, 8411 struct intel_crtc_state *pipe_config) 8412 { 8413 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | 8414 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 8415 if (crtc->pipe != PIPE_A) 8416 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 8417 8418 /* DPLL not used with DSI, but still need the rest set up */ 8419 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 8420 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; 8421 8422 pipe_config->dpll_hw_state.dpll_md = 8423 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8424 } 8425 8426 static void vlv_prepare_pll(struct intel_crtc *crtc, 8427 const struct intel_crtc_state *pipe_config) 8428 { 8429 struct drm_device *dev = crtc->base.dev; 8430 struct drm_i915_private *dev_priv = to_i915(dev); 8431 enum pipe pipe = crtc->pipe; 8432 u32 mdiv; 8433 u32 bestn, bestm1, bestm2, bestp1, bestp2; 8434 u32 coreclk, reg_val; 8435 8436 /* Enable Refclk */ 8437 intel_de_write(dev_priv, DPLL(pipe), 8438 pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 8439 8440 /* No need to actually set up the DPLL with DSI */ 8441 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8442 return; 8443 8444 vlv_dpio_get(dev_priv); 8445 8446 bestn = pipe_config->dpll.n; 8447 bestm1 = pipe_config->dpll.m1; 8448 bestm2 = pipe_config->dpll.m2; 8449 bestp1 = pipe_config->dpll.p1; 8450 bestp2 = pipe_config->dpll.p2; 8451 8452 /* See eDP HDMI DPIO driver vbios notes doc */ 8453 8454 /* PLL B needs special handling */ 8455 if (pipe == PIPE_B) 8456 vlv_pllb_recal_opamp(dev_priv, pipe); 8457 8458 /* Set up Tx target for periodic Rcomp update */ 8459 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); 8460 8461 /* Disable target IRef on PLL */ 8462 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); 8463 reg_val &= 0x00ffffff; 8464 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); 8465 8466 /* Disable fast lock */ 8467 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); 8468 8469 /* Set idtafcrecal before PLL is enabled */ 8470 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); 8471 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); 8472 mdiv |= ((bestn << DPIO_N_SHIFT)); 8473 mdiv |= (1 << DPIO_K_SHIFT); 8474 8475 /* 8476 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 8477 * but we don't support that). 8478 * Note: don't use the DAC post divider as it seems unstable. 8479 */ 8480 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); 8481 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 8482 8483 mdiv |= DPIO_ENABLE_CALIBRATION; 8484 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 8485 8486 /* Set HBR and RBR LPF coefficients */ 8487 if (pipe_config->port_clock == 162000 || 8488 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) || 8489 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) 8490 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 8491 0x009f0003); 8492 else 8493 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 8494 0x00d0000f); 8495 8496 if (intel_crtc_has_dp_encoder(pipe_config)) { 8497 /* Use SSC source */ 8498 if (pipe == PIPE_A) 8499 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8500 0x0df40000); 8501 else 8502 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8503 0x0df70000); 8504 } else { /* HDMI or VGA */ 8505 /* Use bend source */ 8506 if (pipe == PIPE_A) 8507 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8508 0x0df70000); 8509 else 8510 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8511 0x0df40000); 8512 } 8513 8514 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); 8515 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 8516 if (intel_crtc_has_dp_encoder(pipe_config)) 8517 coreclk |= 0x01000000; 8518 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); 8519 8520 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); 8521 8522 vlv_dpio_put(dev_priv); 8523 } 8524 8525 static void chv_prepare_pll(struct intel_crtc *crtc, 8526 const struct intel_crtc_state *pipe_config) 8527 { 8528 struct drm_device *dev = crtc->base.dev; 8529 struct drm_i915_private *dev_priv = to_i915(dev); 8530 enum pipe pipe = crtc->pipe; 8531 enum dpio_channel port = vlv_pipe_to_channel(pipe); 8532 u32 loopfilter, tribuf_calcntr; 8533 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; 8534 u32 dpio_val; 8535 int vco; 8536 8537 /* Enable Refclk and SSC */ 8538 intel_de_write(dev_priv, DPLL(pipe), 8539 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); 8540 8541 /* No need to actually set up the DPLL with DSI */ 8542 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8543 return; 8544 8545 bestn = pipe_config->dpll.n; 8546 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; 8547 bestm1 = pipe_config->dpll.m1; 8548 bestm2 = pipe_config->dpll.m2 >> 22; 8549 bestp1 = pipe_config->dpll.p1; 8550 bestp2 = pipe_config->dpll.p2; 8551 vco = pipe_config->dpll.vco; 8552 dpio_val = 0; 8553 loopfilter = 0; 8554 8555 vlv_dpio_get(dev_priv); 8556 8557 /* p1 and p2 divider */ 8558 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 8559 5 << DPIO_CHV_S1_DIV_SHIFT | 8560 bestp1 << DPIO_CHV_P1_DIV_SHIFT | 8561 bestp2 << DPIO_CHV_P2_DIV_SHIFT | 8562 1 << DPIO_CHV_K_DIV_SHIFT); 8563 8564 /* Feedback post-divider - m2 */ 8565 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); 8566 8567 /* Feedback refclk divider - n and m1 */ 8568 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), 8569 DPIO_CHV_M1_DIV_BY_2 | 8570 1 << DPIO_CHV_N_DIV_SHIFT); 8571 8572 /* M2 fraction division */ 8573 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); 8574 8575 /* M2 fraction division enable */ 8576 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 8577 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 8578 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); 8579 if (bestm2_frac) 8580 dpio_val |= DPIO_CHV_FRAC_DIV_EN; 8581 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); 8582 8583 /* Program digital lock detect threshold */ 8584 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); 8585 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 8586 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 8587 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); 8588 if (!bestm2_frac) 8589 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 8590 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); 8591 8592 /* Loop filter */ 8593 if (vco == 5400000) { 8594 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); 8595 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); 8596 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); 8597 tribuf_calcntr = 0x9; 8598 } else if (vco <= 6200000) { 8599 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); 8600 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); 8601 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8602 tribuf_calcntr = 0x9; 8603 } else if (vco <= 6480000) { 8604 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8605 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8606 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8607 tribuf_calcntr = 0x8; 8608 } else { 8609 /* Not supported. Apply the same limits as in the max case */ 8610 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8611 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8612 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8613 tribuf_calcntr = 0; 8614 } 8615 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); 8616 8617 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); 8618 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 8619 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); 8620 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); 8621 8622 /* AFC Recal */ 8623 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), 8624 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | 8625 DPIO_AFC_RECAL); 8626 8627 vlv_dpio_put(dev_priv); 8628 } 8629 8630 /** 8631 * vlv_force_pll_on - forcibly enable just the PLL 8632 * @dev_priv: i915 private structure 8633 * @pipe: pipe PLL to enable 8634 * @dpll: PLL configuration 8635 * 8636 * Enable the PLL for @pipe using the supplied @dpll config. To be used 8637 * in cases where we need the PLL enabled even when @pipe is not going to 8638 * be enabled. 8639 */ 8640 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, 8641 const struct dpll *dpll) 8642 { 8643 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 8644 struct intel_crtc_state *pipe_config; 8645 8646 pipe_config = intel_crtc_state_alloc(crtc); 8647 if (!pipe_config) 8648 return -ENOMEM; 8649 8650 pipe_config->cpu_transcoder = (enum transcoder)pipe; 8651 pipe_config->pixel_multiplier = 1; 8652 pipe_config->dpll = *dpll; 8653 8654 if (IS_CHERRYVIEW(dev_priv)) { 8655 chv_compute_dpll(crtc, pipe_config); 8656 chv_prepare_pll(crtc, pipe_config); 8657 chv_enable_pll(crtc, pipe_config); 8658 } else { 8659 vlv_compute_dpll(crtc, pipe_config); 8660 vlv_prepare_pll(crtc, pipe_config); 8661 vlv_enable_pll(crtc, pipe_config); 8662 } 8663 8664 kfree(pipe_config); 8665 8666 return 0; 8667 } 8668 8669 /** 8670 * vlv_force_pll_off - forcibly disable just the PLL 8671 * @dev_priv: i915 private structure 8672 * @pipe: pipe PLL to disable 8673 * 8674 * Disable the PLL for @pipe. To be used in cases where we need 8675 * the PLL enabled even when @pipe is not going to be enabled. 8676 */ 8677 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) 8678 { 8679 if (IS_CHERRYVIEW(dev_priv)) 8680 chv_disable_pll(dev_priv, pipe); 8681 else 8682 vlv_disable_pll(dev_priv, pipe); 8683 } 8684 8685 static void i9xx_compute_dpll(struct intel_crtc *crtc, 8686 struct intel_crtc_state *crtc_state, 8687 struct dpll *reduced_clock) 8688 { 8689 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8690 u32 dpll; 8691 struct dpll *clock = &crtc_state->dpll; 8692 8693 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8694 8695 dpll = DPLL_VGA_MODE_DIS; 8696 8697 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 8698 dpll |= DPLLB_MODE_LVDS; 8699 else 8700 dpll |= DPLLB_MODE_DAC_SERIAL; 8701 8702 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 8703 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 8704 dpll |= (crtc_state->pixel_multiplier - 1) 8705 << SDVO_MULTIPLIER_SHIFT_HIRES; 8706 } 8707 8708 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 8709 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 8710 dpll |= DPLL_SDVO_HIGH_SPEED; 8711 8712 if (intel_crtc_has_dp_encoder(crtc_state)) 8713 dpll |= DPLL_SDVO_HIGH_SPEED; 8714 8715 /* compute bitmask from p1 value */ 8716 if (IS_PINEVIEW(dev_priv)) 8717 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 8718 else { 8719 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8720 if (IS_G4X(dev_priv) && reduced_clock) 8721 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 8722 } 8723 switch (clock->p2) { 8724 case 5: 8725 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 8726 break; 8727 case 7: 8728 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 8729 break; 8730 case 10: 8731 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 8732 break; 8733 case 14: 8734 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 8735 break; 8736 } 8737 if (INTEL_GEN(dev_priv) >= 4) 8738 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 8739 8740 if (crtc_state->sdvo_tv_clock) 8741 dpll |= PLL_REF_INPUT_TVCLKINBC; 8742 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8743 intel_panel_use_ssc(dev_priv)) 8744 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8745 else 8746 dpll |= PLL_REF_INPUT_DREFCLK; 8747 8748 dpll |= DPLL_VCO_ENABLE; 8749 crtc_state->dpll_hw_state.dpll = dpll; 8750 8751 if (INTEL_GEN(dev_priv) >= 4) { 8752 u32 dpll_md = (crtc_state->pixel_multiplier - 1) 8753 << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8754 crtc_state->dpll_hw_state.dpll_md = dpll_md; 8755 } 8756 } 8757 8758 static void i8xx_compute_dpll(struct intel_crtc *crtc, 8759 struct intel_crtc_state *crtc_state, 8760 struct dpll *reduced_clock) 8761 { 8762 struct drm_device *dev = crtc->base.dev; 8763 struct drm_i915_private *dev_priv = to_i915(dev); 8764 u32 dpll; 8765 struct dpll *clock = &crtc_state->dpll; 8766 8767 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8768 8769 dpll = DPLL_VGA_MODE_DIS; 8770 8771 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8772 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8773 } else { 8774 if (clock->p1 == 2) 8775 dpll |= PLL_P1_DIVIDE_BY_TWO; 8776 else 8777 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8778 if (clock->p2 == 4) 8779 dpll |= PLL_P2_DIVIDE_BY_4; 8780 } 8781 8782 /* 8783 * Bspec: 8784 * "[Almador Errata}: For the correct operation of the muxed DVO pins 8785 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 8786 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 8787 * Enable) must be set to “1” in both the DPLL A Control Register 8788 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 8789 * 8790 * For simplicity We simply keep both bits always enabled in 8791 * both DPLLS. The spec says we should disable the DVO 2X clock 8792 * when not needed, but this seems to work fine in practice. 8793 */ 8794 if (IS_I830(dev_priv) || 8795 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 8796 dpll |= DPLL_DVO_2X_MODE; 8797 8798 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8799 intel_panel_use_ssc(dev_priv)) 8800 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8801 else 8802 dpll |= PLL_REF_INPUT_DREFCLK; 8803 8804 dpll |= DPLL_VCO_ENABLE; 8805 crtc_state->dpll_hw_state.dpll = dpll; 8806 } 8807 8808 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state) 8809 { 8810 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8811 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8812 enum pipe pipe = crtc->pipe; 8813 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8814 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 8815 u32 crtc_vtotal, crtc_vblank_end; 8816 int vsyncshift = 0; 8817 8818 /* We need to be careful not to changed the adjusted mode, for otherwise 8819 * the hw state checker will get angry at the mismatch. */ 8820 crtc_vtotal = adjusted_mode->crtc_vtotal; 8821 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 8822 8823 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 8824 /* the chip adds 2 halflines automatically */ 8825 crtc_vtotal -= 1; 8826 crtc_vblank_end -= 1; 8827 8828 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8829 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 8830 else 8831 vsyncshift = adjusted_mode->crtc_hsync_start - 8832 adjusted_mode->crtc_htotal / 2; 8833 if (vsyncshift < 0) 8834 vsyncshift += adjusted_mode->crtc_htotal; 8835 } 8836 8837 if (INTEL_GEN(dev_priv) > 3) 8838 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 8839 vsyncshift); 8840 8841 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 8842 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 8843 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 8844 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 8845 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 8846 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 8847 8848 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 8849 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 8850 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 8851 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 8852 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 8853 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 8854 8855 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 8856 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 8857 * documented on the DDI_FUNC_CTL register description, EDP Input Select 8858 * bits. */ 8859 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 8860 (pipe == PIPE_B || pipe == PIPE_C)) 8861 intel_de_write(dev_priv, VTOTAL(pipe), 8862 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 8863 8864 } 8865 8866 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 8867 { 8868 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8869 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8870 enum pipe pipe = crtc->pipe; 8871 8872 /* pipesrc controls the size that is scaled from, which should 8873 * always be the user's requested size. 8874 */ 8875 intel_de_write(dev_priv, PIPESRC(pipe), 8876 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 8877 } 8878 8879 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 8880 { 8881 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 8882 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8883 8884 if (IS_GEN(dev_priv, 2)) 8885 return false; 8886 8887 if (INTEL_GEN(dev_priv) >= 9 || 8888 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 8889 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 8890 else 8891 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 8892 } 8893 8894 static void intel_get_pipe_timings(struct intel_crtc *crtc, 8895 struct intel_crtc_state *pipe_config) 8896 { 8897 struct drm_device *dev = crtc->base.dev; 8898 struct drm_i915_private *dev_priv = to_i915(dev); 8899 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 8900 u32 tmp; 8901 8902 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 8903 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 8904 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 8905 8906 if (!transcoder_is_dsi(cpu_transcoder)) { 8907 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 8908 pipe_config->hw.adjusted_mode.crtc_hblank_start = 8909 (tmp & 0xffff) + 1; 8910 pipe_config->hw.adjusted_mode.crtc_hblank_end = 8911 ((tmp >> 16) & 0xffff) + 1; 8912 } 8913 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 8914 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 8915 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 8916 8917 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 8918 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 8919 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 8920 8921 if (!transcoder_is_dsi(cpu_transcoder)) { 8922 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 8923 pipe_config->hw.adjusted_mode.crtc_vblank_start = 8924 (tmp & 0xffff) + 1; 8925 pipe_config->hw.adjusted_mode.crtc_vblank_end = 8926 ((tmp >> 16) & 0xffff) + 1; 8927 } 8928 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 8929 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 8930 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 8931 8932 if (intel_pipe_is_interlaced(pipe_config)) { 8933 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 8934 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 8935 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 8936 } 8937 } 8938 8939 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 8940 struct intel_crtc_state *pipe_config) 8941 { 8942 struct drm_device *dev = crtc->base.dev; 8943 struct drm_i915_private *dev_priv = to_i915(dev); 8944 u32 tmp; 8945 8946 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 8947 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 8948 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 8949 8950 pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h; 8951 pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w; 8952 } 8953 8954 void intel_mode_from_pipe_config(struct drm_display_mode *mode, 8955 struct intel_crtc_state *pipe_config) 8956 { 8957 mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay; 8958 mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal; 8959 mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start; 8960 mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end; 8961 8962 mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay; 8963 mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal; 8964 mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start; 8965 mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end; 8966 8967 mode->flags = pipe_config->hw.adjusted_mode.flags; 8968 mode->type = DRM_MODE_TYPE_DRIVER; 8969 8970 mode->clock = pipe_config->hw.adjusted_mode.crtc_clock; 8971 8972 drm_mode_set_name(mode); 8973 } 8974 8975 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 8976 { 8977 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8978 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8979 u32 pipeconf; 8980 8981 pipeconf = 0; 8982 8983 /* we keep both pipes enabled on 830 */ 8984 if (IS_I830(dev_priv)) 8985 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 8986 8987 if (crtc_state->double_wide) 8988 pipeconf |= PIPECONF_DOUBLE_WIDE; 8989 8990 /* only g4x and later have fancy bpc/dither controls */ 8991 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 8992 IS_CHERRYVIEW(dev_priv)) { 8993 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 8994 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 8995 pipeconf |= PIPECONF_DITHER_EN | 8996 PIPECONF_DITHER_TYPE_SP; 8997 8998 switch (crtc_state->pipe_bpp) { 8999 case 18: 9000 pipeconf |= PIPECONF_6BPC; 9001 break; 9002 case 24: 9003 pipeconf |= PIPECONF_8BPC; 9004 break; 9005 case 30: 9006 pipeconf |= PIPECONF_10BPC; 9007 break; 9008 default: 9009 /* Case prevented by intel_choose_pipe_bpp_dither. */ 9010 BUG(); 9011 } 9012 } 9013 9014 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 9015 if (INTEL_GEN(dev_priv) < 4 || 9016 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 9017 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 9018 else 9019 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 9020 } else { 9021 pipeconf |= PIPECONF_PROGRESSIVE; 9022 } 9023 9024 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 9025 crtc_state->limited_color_range) 9026 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 9027 9028 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 9029 9030 pipeconf |= PIPECONF_FRAME_START_DELAY(0); 9031 9032 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 9033 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 9034 } 9035 9036 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, 9037 struct intel_crtc_state *crtc_state) 9038 { 9039 struct drm_device *dev = crtc->base.dev; 9040 struct drm_i915_private *dev_priv = to_i915(dev); 9041 const struct intel_limit *limit; 9042 int refclk = 48000; 9043 9044 memset(&crtc_state->dpll_hw_state, 0, 9045 sizeof(crtc_state->dpll_hw_state)); 9046 9047 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9048 if (intel_panel_use_ssc(dev_priv)) { 9049 refclk = dev_priv->vbt.lvds_ssc_freq; 9050 drm_dbg_kms(&dev_priv->drm, 9051 "using SSC reference clock of %d kHz\n", 9052 refclk); 9053 } 9054 9055 limit = &intel_limits_i8xx_lvds; 9056 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 9057 limit = &intel_limits_i8xx_dvo; 9058 } else { 9059 limit = &intel_limits_i8xx_dac; 9060 } 9061 9062 if (!crtc_state->clock_set && 9063 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9064 refclk, NULL, &crtc_state->dpll)) { 9065 drm_err(&dev_priv->drm, 9066 "Couldn't find PLL settings for mode!\n"); 9067 return -EINVAL; 9068 } 9069 9070 i8xx_compute_dpll(crtc, crtc_state, NULL); 9071 9072 return 0; 9073 } 9074 9075 static int g4x_crtc_compute_clock(struct intel_crtc *crtc, 9076 struct intel_crtc_state *crtc_state) 9077 { 9078 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9079 const struct intel_limit *limit; 9080 int refclk = 96000; 9081 9082 memset(&crtc_state->dpll_hw_state, 0, 9083 sizeof(crtc_state->dpll_hw_state)); 9084 9085 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9086 if (intel_panel_use_ssc(dev_priv)) { 9087 refclk = dev_priv->vbt.lvds_ssc_freq; 9088 drm_dbg_kms(&dev_priv->drm, 9089 "using SSC reference clock of %d kHz\n", 9090 refclk); 9091 } 9092 9093 if (intel_is_dual_link_lvds(dev_priv)) 9094 limit = &intel_limits_g4x_dual_channel_lvds; 9095 else 9096 limit = &intel_limits_g4x_single_channel_lvds; 9097 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 9098 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 9099 limit = &intel_limits_g4x_hdmi; 9100 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 9101 limit = &intel_limits_g4x_sdvo; 9102 } else { 9103 /* The option is for other outputs */ 9104 limit = &intel_limits_i9xx_sdvo; 9105 } 9106 9107 if (!crtc_state->clock_set && 9108 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9109 refclk, NULL, &crtc_state->dpll)) { 9110 drm_err(&dev_priv->drm, 9111 "Couldn't find PLL settings for mode!\n"); 9112 return -EINVAL; 9113 } 9114 9115 i9xx_compute_dpll(crtc, crtc_state, NULL); 9116 9117 return 0; 9118 } 9119 9120 static int pnv_crtc_compute_clock(struct intel_crtc *crtc, 9121 struct intel_crtc_state *crtc_state) 9122 { 9123 struct drm_device *dev = crtc->base.dev; 9124 struct drm_i915_private *dev_priv = to_i915(dev); 9125 const struct intel_limit *limit; 9126 int refclk = 96000; 9127 9128 memset(&crtc_state->dpll_hw_state, 0, 9129 sizeof(crtc_state->dpll_hw_state)); 9130 9131 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9132 if (intel_panel_use_ssc(dev_priv)) { 9133 refclk = dev_priv->vbt.lvds_ssc_freq; 9134 drm_dbg_kms(&dev_priv->drm, 9135 "using SSC reference clock of %d kHz\n", 9136 refclk); 9137 } 9138 9139 limit = &pnv_limits_lvds; 9140 } else { 9141 limit = &pnv_limits_sdvo; 9142 } 9143 9144 if (!crtc_state->clock_set && 9145 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9146 refclk, NULL, &crtc_state->dpll)) { 9147 drm_err(&dev_priv->drm, 9148 "Couldn't find PLL settings for mode!\n"); 9149 return -EINVAL; 9150 } 9151 9152 i9xx_compute_dpll(crtc, crtc_state, NULL); 9153 9154 return 0; 9155 } 9156 9157 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, 9158 struct intel_crtc_state *crtc_state) 9159 { 9160 struct drm_device *dev = crtc->base.dev; 9161 struct drm_i915_private *dev_priv = to_i915(dev); 9162 const struct intel_limit *limit; 9163 int refclk = 96000; 9164 9165 memset(&crtc_state->dpll_hw_state, 0, 9166 sizeof(crtc_state->dpll_hw_state)); 9167 9168 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9169 if (intel_panel_use_ssc(dev_priv)) { 9170 refclk = dev_priv->vbt.lvds_ssc_freq; 9171 drm_dbg_kms(&dev_priv->drm, 9172 "using SSC reference clock of %d kHz\n", 9173 refclk); 9174 } 9175 9176 limit = &intel_limits_i9xx_lvds; 9177 } else { 9178 limit = &intel_limits_i9xx_sdvo; 9179 } 9180 9181 if (!crtc_state->clock_set && 9182 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9183 refclk, NULL, &crtc_state->dpll)) { 9184 drm_err(&dev_priv->drm, 9185 "Couldn't find PLL settings for mode!\n"); 9186 return -EINVAL; 9187 } 9188 9189 i9xx_compute_dpll(crtc, crtc_state, NULL); 9190 9191 return 0; 9192 } 9193 9194 static int chv_crtc_compute_clock(struct intel_crtc *crtc, 9195 struct intel_crtc_state *crtc_state) 9196 { 9197 int refclk = 100000; 9198 const struct intel_limit *limit = &intel_limits_chv; 9199 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 9200 9201 memset(&crtc_state->dpll_hw_state, 0, 9202 sizeof(crtc_state->dpll_hw_state)); 9203 9204 if (!crtc_state->clock_set && 9205 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9206 refclk, NULL, &crtc_state->dpll)) { 9207 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); 9208 return -EINVAL; 9209 } 9210 9211 chv_compute_dpll(crtc, crtc_state); 9212 9213 return 0; 9214 } 9215 9216 static int vlv_crtc_compute_clock(struct intel_crtc *crtc, 9217 struct intel_crtc_state *crtc_state) 9218 { 9219 int refclk = 100000; 9220 const struct intel_limit *limit = &intel_limits_vlv; 9221 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 9222 9223 memset(&crtc_state->dpll_hw_state, 0, 9224 sizeof(crtc_state->dpll_hw_state)); 9225 9226 if (!crtc_state->clock_set && 9227 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9228 refclk, NULL, &crtc_state->dpll)) { 9229 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); 9230 return -EINVAL; 9231 } 9232 9233 vlv_compute_dpll(crtc, crtc_state); 9234 9235 return 0; 9236 } 9237 9238 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 9239 { 9240 if (IS_I830(dev_priv)) 9241 return false; 9242 9243 return INTEL_GEN(dev_priv) >= 4 || 9244 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 9245 } 9246 9247 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) 9248 { 9249 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9250 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9251 u32 tmp; 9252 9253 if (!i9xx_has_pfit(dev_priv)) 9254 return; 9255 9256 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 9257 if (!(tmp & PFIT_ENABLE)) 9258 return; 9259 9260 /* Check whether the pfit is attached to our pipe. */ 9261 if (INTEL_GEN(dev_priv) < 4) { 9262 if (crtc->pipe != PIPE_B) 9263 return; 9264 } else { 9265 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 9266 return; 9267 } 9268 9269 crtc_state->gmch_pfit.control = tmp; 9270 crtc_state->gmch_pfit.pgm_ratios = 9271 intel_de_read(dev_priv, PFIT_PGM_RATIOS); 9272 } 9273 9274 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 9275 struct intel_crtc_state *pipe_config) 9276 { 9277 struct drm_device *dev = crtc->base.dev; 9278 struct drm_i915_private *dev_priv = to_i915(dev); 9279 enum pipe pipe = crtc->pipe; 9280 struct dpll clock; 9281 u32 mdiv; 9282 int refclk = 100000; 9283 9284 /* In case of DSI, DPLL will not be used */ 9285 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 9286 return; 9287 9288 vlv_dpio_get(dev_priv); 9289 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 9290 vlv_dpio_put(dev_priv); 9291 9292 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 9293 clock.m2 = mdiv & DPIO_M2DIV_MASK; 9294 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 9295 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 9296 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 9297 9298 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 9299 } 9300 9301 static void 9302 i9xx_get_initial_plane_config(struct intel_crtc *crtc, 9303 struct intel_initial_plane_config *plane_config) 9304 { 9305 struct drm_device *dev = crtc->base.dev; 9306 struct drm_i915_private *dev_priv = to_i915(dev); 9307 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9308 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 9309 enum pipe pipe; 9310 u32 val, base, offset; 9311 int fourcc, pixel_format; 9312 unsigned int aligned_height; 9313 struct drm_framebuffer *fb; 9314 struct intel_framebuffer *intel_fb; 9315 9316 if (!plane->get_hw_state(plane, &pipe)) 9317 return; 9318 9319 drm_WARN_ON(dev, pipe != crtc->pipe); 9320 9321 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 9322 if (!intel_fb) { 9323 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); 9324 return; 9325 } 9326 9327 fb = &intel_fb->base; 9328 9329 fb->dev = dev; 9330 9331 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 9332 9333 if (INTEL_GEN(dev_priv) >= 4) { 9334 if (val & DISPPLANE_TILED) { 9335 plane_config->tiling = I915_TILING_X; 9336 fb->modifier = I915_FORMAT_MOD_X_TILED; 9337 } 9338 9339 if (val & DISPPLANE_ROTATE_180) 9340 plane_config->rotation = DRM_MODE_ROTATE_180; 9341 } 9342 9343 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B && 9344 val & DISPPLANE_MIRROR) 9345 plane_config->rotation |= DRM_MODE_REFLECT_X; 9346 9347 pixel_format = val & DISPPLANE_PIXFORMAT_MASK; 9348 fourcc = i9xx_format_to_fourcc(pixel_format); 9349 fb->format = drm_format_info(fourcc); 9350 9351 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 9352 offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane)); 9353 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; 9354 } else if (INTEL_GEN(dev_priv) >= 4) { 9355 if (plane_config->tiling) 9356 offset = intel_de_read(dev_priv, 9357 DSPTILEOFF(i9xx_plane)); 9358 else 9359 offset = intel_de_read(dev_priv, 9360 DSPLINOFF(i9xx_plane)); 9361 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; 9362 } else { 9363 base = intel_de_read(dev_priv, DSPADDR(i9xx_plane)); 9364 } 9365 plane_config->base = base; 9366 9367 val = intel_de_read(dev_priv, PIPESRC(pipe)); 9368 fb->width = ((val >> 16) & 0xfff) + 1; 9369 fb->height = ((val >> 0) & 0xfff) + 1; 9370 9371 val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane)); 9372 fb->pitches[0] = val & 0xffffffc0; 9373 9374 aligned_height = intel_fb_align_height(fb, 0, fb->height); 9375 9376 plane_config->size = fb->pitches[0] * aligned_height; 9377 9378 drm_dbg_kms(&dev_priv->drm, 9379 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 9380 crtc->base.name, plane->base.name, fb->width, fb->height, 9381 fb->format->cpp[0] * 8, base, fb->pitches[0], 9382 plane_config->size); 9383 9384 plane_config->fb = intel_fb; 9385 } 9386 9387 static void chv_crtc_clock_get(struct intel_crtc *crtc, 9388 struct intel_crtc_state *pipe_config) 9389 { 9390 struct drm_device *dev = crtc->base.dev; 9391 struct drm_i915_private *dev_priv = to_i915(dev); 9392 enum pipe pipe = crtc->pipe; 9393 enum dpio_channel port = vlv_pipe_to_channel(pipe); 9394 struct dpll clock; 9395 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 9396 int refclk = 100000; 9397 9398 /* In case of DSI, DPLL will not be used */ 9399 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 9400 return; 9401 9402 vlv_dpio_get(dev_priv); 9403 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 9404 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 9405 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 9406 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 9407 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 9408 vlv_dpio_put(dev_priv); 9409 9410 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 9411 clock.m2 = (pll_dw0 & 0xff) << 22; 9412 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 9413 clock.m2 |= pll_dw2 & 0x3fffff; 9414 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 9415 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 9416 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 9417 9418 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 9419 } 9420 9421 static enum intel_output_format 9422 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 9423 { 9424 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9425 u32 tmp; 9426 9427 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 9428 9429 if (tmp & PIPEMISC_YUV420_ENABLE) { 9430 /* We support 4:2:0 in full blend mode only */ 9431 drm_WARN_ON(&dev_priv->drm, 9432 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 9433 9434 return INTEL_OUTPUT_FORMAT_YCBCR420; 9435 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 9436 return INTEL_OUTPUT_FORMAT_YCBCR444; 9437 } else { 9438 return INTEL_OUTPUT_FORMAT_RGB; 9439 } 9440 } 9441 9442 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 9443 { 9444 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9445 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9446 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9447 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 9448 u32 tmp; 9449 9450 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 9451 9452 if (tmp & DISPPLANE_GAMMA_ENABLE) 9453 crtc_state->gamma_enable = true; 9454 9455 if (!HAS_GMCH(dev_priv) && 9456 tmp & DISPPLANE_PIPE_CSC_ENABLE) 9457 crtc_state->csc_enable = true; 9458 } 9459 9460 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 9461 struct intel_crtc_state *pipe_config) 9462 { 9463 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9464 enum intel_display_power_domain power_domain; 9465 intel_wakeref_t wakeref; 9466 u32 tmp; 9467 bool ret; 9468 9469 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 9470 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 9471 if (!wakeref) 9472 return false; 9473 9474 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 9475 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 9476 pipe_config->shared_dpll = NULL; 9477 9478 ret = false; 9479 9480 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 9481 if (!(tmp & PIPECONF_ENABLE)) 9482 goto out; 9483 9484 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9485 IS_CHERRYVIEW(dev_priv)) { 9486 switch (tmp & PIPECONF_BPC_MASK) { 9487 case PIPECONF_6BPC: 9488 pipe_config->pipe_bpp = 18; 9489 break; 9490 case PIPECONF_8BPC: 9491 pipe_config->pipe_bpp = 24; 9492 break; 9493 case PIPECONF_10BPC: 9494 pipe_config->pipe_bpp = 30; 9495 break; 9496 default: 9497 break; 9498 } 9499 } 9500 9501 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 9502 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 9503 pipe_config->limited_color_range = true; 9504 9505 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 9506 PIPECONF_GAMMA_MODE_SHIFT; 9507 9508 if (IS_CHERRYVIEW(dev_priv)) 9509 pipe_config->cgm_mode = intel_de_read(dev_priv, 9510 CGM_PIPE_MODE(crtc->pipe)); 9511 9512 i9xx_get_pipe_color_config(pipe_config); 9513 intel_color_get_config(pipe_config); 9514 9515 if (INTEL_GEN(dev_priv) < 4) 9516 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 9517 9518 intel_get_pipe_timings(crtc, pipe_config); 9519 intel_get_pipe_src_size(crtc, pipe_config); 9520 9521 i9xx_get_pfit_config(pipe_config); 9522 9523 if (INTEL_GEN(dev_priv) >= 4) { 9524 /* No way to read it out on pipes B and C */ 9525 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 9526 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 9527 else 9528 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 9529 pipe_config->pixel_multiplier = 9530 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 9531 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 9532 pipe_config->dpll_hw_state.dpll_md = tmp; 9533 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 9534 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 9535 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 9536 pipe_config->pixel_multiplier = 9537 ((tmp & SDVO_MULTIPLIER_MASK) 9538 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 9539 } else { 9540 /* Note that on i915G/GM the pixel multiplier is in the sdvo 9541 * port and will be fixed up in the encoder->get_config 9542 * function. */ 9543 pipe_config->pixel_multiplier = 1; 9544 } 9545 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 9546 DPLL(crtc->pipe)); 9547 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 9548 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 9549 FP0(crtc->pipe)); 9550 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 9551 FP1(crtc->pipe)); 9552 } else { 9553 /* Mask out read-only status bits. */ 9554 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 9555 DPLL_PORTC_READY_MASK | 9556 DPLL_PORTB_READY_MASK); 9557 } 9558 9559 if (IS_CHERRYVIEW(dev_priv)) 9560 chv_crtc_clock_get(crtc, pipe_config); 9561 else if (IS_VALLEYVIEW(dev_priv)) 9562 vlv_crtc_clock_get(crtc, pipe_config); 9563 else 9564 i9xx_crtc_clock_get(crtc, pipe_config); 9565 9566 /* 9567 * Normally the dotclock is filled in by the encoder .get_config() 9568 * but in case the pipe is enabled w/o any ports we need a sane 9569 * default. 9570 */ 9571 pipe_config->hw.adjusted_mode.crtc_clock = 9572 pipe_config->port_clock / pipe_config->pixel_multiplier; 9573 9574 ret = true; 9575 9576 out: 9577 intel_display_power_put(dev_priv, power_domain, wakeref); 9578 9579 return ret; 9580 } 9581 9582 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 9583 { 9584 struct intel_encoder *encoder; 9585 int i; 9586 u32 val, final; 9587 bool has_lvds = false; 9588 bool has_cpu_edp = false; 9589 bool has_panel = false; 9590 bool has_ck505 = false; 9591 bool can_ssc = false; 9592 bool using_ssc_source = false; 9593 9594 /* We need to take the global config into account */ 9595 for_each_intel_encoder(&dev_priv->drm, encoder) { 9596 switch (encoder->type) { 9597 case INTEL_OUTPUT_LVDS: 9598 has_panel = true; 9599 has_lvds = true; 9600 break; 9601 case INTEL_OUTPUT_EDP: 9602 has_panel = true; 9603 if (encoder->port == PORT_A) 9604 has_cpu_edp = true; 9605 break; 9606 default: 9607 break; 9608 } 9609 } 9610 9611 if (HAS_PCH_IBX(dev_priv)) { 9612 has_ck505 = dev_priv->vbt.display_clock_mode; 9613 can_ssc = has_ck505; 9614 } else { 9615 has_ck505 = false; 9616 can_ssc = true; 9617 } 9618 9619 /* Check if any DPLLs are using the SSC source */ 9620 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 9621 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 9622 9623 if (!(temp & DPLL_VCO_ENABLE)) 9624 continue; 9625 9626 if ((temp & PLL_REF_INPUT_MASK) == 9627 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 9628 using_ssc_source = true; 9629 break; 9630 } 9631 } 9632 9633 drm_dbg_kms(&dev_priv->drm, 9634 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 9635 has_panel, has_lvds, has_ck505, using_ssc_source); 9636 9637 /* Ironlake: try to setup display ref clock before DPLL 9638 * enabling. This is only under driver's control after 9639 * PCH B stepping, previous chipset stepping should be 9640 * ignoring this setting. 9641 */ 9642 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 9643 9644 /* As we must carefully and slowly disable/enable each source in turn, 9645 * compute the final state we want first and check if we need to 9646 * make any changes at all. 9647 */ 9648 final = val; 9649 final &= ~DREF_NONSPREAD_SOURCE_MASK; 9650 if (has_ck505) 9651 final |= DREF_NONSPREAD_CK505_ENABLE; 9652 else 9653 final |= DREF_NONSPREAD_SOURCE_ENABLE; 9654 9655 final &= ~DREF_SSC_SOURCE_MASK; 9656 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9657 final &= ~DREF_SSC1_ENABLE; 9658 9659 if (has_panel) { 9660 final |= DREF_SSC_SOURCE_ENABLE; 9661 9662 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9663 final |= DREF_SSC1_ENABLE; 9664 9665 if (has_cpu_edp) { 9666 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9667 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9668 else 9669 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9670 } else 9671 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9672 } else if (using_ssc_source) { 9673 final |= DREF_SSC_SOURCE_ENABLE; 9674 final |= DREF_SSC1_ENABLE; 9675 } 9676 9677 if (final == val) 9678 return; 9679 9680 /* Always enable nonspread source */ 9681 val &= ~DREF_NONSPREAD_SOURCE_MASK; 9682 9683 if (has_ck505) 9684 val |= DREF_NONSPREAD_CK505_ENABLE; 9685 else 9686 val |= DREF_NONSPREAD_SOURCE_ENABLE; 9687 9688 if (has_panel) { 9689 val &= ~DREF_SSC_SOURCE_MASK; 9690 val |= DREF_SSC_SOURCE_ENABLE; 9691 9692 /* SSC must be turned on before enabling the CPU output */ 9693 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9694 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 9695 val |= DREF_SSC1_ENABLE; 9696 } else 9697 val &= ~DREF_SSC1_ENABLE; 9698 9699 /* Get SSC going before enabling the outputs */ 9700 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9701 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9702 udelay(200); 9703 9704 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9705 9706 /* Enable CPU source on CPU attached eDP */ 9707 if (has_cpu_edp) { 9708 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9709 drm_dbg_kms(&dev_priv->drm, 9710 "Using SSC on eDP\n"); 9711 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9712 } else 9713 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9714 } else 9715 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9716 9717 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9718 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9719 udelay(200); 9720 } else { 9721 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 9722 9723 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9724 9725 /* Turn off CPU output */ 9726 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9727 9728 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9729 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9730 udelay(200); 9731 9732 if (!using_ssc_source) { 9733 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 9734 9735 /* Turn off the SSC source */ 9736 val &= ~DREF_SSC_SOURCE_MASK; 9737 val |= DREF_SSC_SOURCE_DISABLE; 9738 9739 /* Turn off SSC1 */ 9740 val &= ~DREF_SSC1_ENABLE; 9741 9742 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9743 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9744 udelay(200); 9745 } 9746 } 9747 9748 BUG_ON(val != final); 9749 } 9750 9751 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 9752 { 9753 u32 tmp; 9754 9755 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 9756 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 9757 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 9758 9759 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 9760 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 9761 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 9762 9763 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 9764 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 9765 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 9766 9767 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 9768 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 9769 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 9770 } 9771 9772 /* WaMPhyProgramming:hsw */ 9773 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 9774 { 9775 u32 tmp; 9776 9777 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 9778 tmp &= ~(0xFF << 24); 9779 tmp |= (0x12 << 24); 9780 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 9781 9782 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 9783 tmp |= (1 << 11); 9784 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 9785 9786 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 9787 tmp |= (1 << 11); 9788 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 9789 9790 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 9791 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9792 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 9793 9794 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 9795 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9796 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 9797 9798 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 9799 tmp &= ~(7 << 13); 9800 tmp |= (5 << 13); 9801 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 9802 9803 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 9804 tmp &= ~(7 << 13); 9805 tmp |= (5 << 13); 9806 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 9807 9808 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 9809 tmp &= ~0xFF; 9810 tmp |= 0x1C; 9811 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 9812 9813 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 9814 tmp &= ~0xFF; 9815 tmp |= 0x1C; 9816 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 9817 9818 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 9819 tmp &= ~(0xFF << 16); 9820 tmp |= (0x1C << 16); 9821 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 9822 9823 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 9824 tmp &= ~(0xFF << 16); 9825 tmp |= (0x1C << 16); 9826 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 9827 9828 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 9829 tmp |= (1 << 27); 9830 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 9831 9832 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 9833 tmp |= (1 << 27); 9834 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 9835 9836 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 9837 tmp &= ~(0xF << 28); 9838 tmp |= (4 << 28); 9839 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 9840 9841 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 9842 tmp &= ~(0xF << 28); 9843 tmp |= (4 << 28); 9844 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 9845 } 9846 9847 /* Implements 3 different sequences from BSpec chapter "Display iCLK 9848 * Programming" based on the parameters passed: 9849 * - Sequence to enable CLKOUT_DP 9850 * - Sequence to enable CLKOUT_DP without spread 9851 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 9852 */ 9853 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 9854 bool with_spread, bool with_fdi) 9855 { 9856 u32 reg, tmp; 9857 9858 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 9859 "FDI requires downspread\n")) 9860 with_spread = true; 9861 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 9862 with_fdi, "LP PCH doesn't have FDI\n")) 9863 with_fdi = false; 9864 9865 mutex_lock(&dev_priv->sb_lock); 9866 9867 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9868 tmp &= ~SBI_SSCCTL_DISABLE; 9869 tmp |= SBI_SSCCTL_PATHALT; 9870 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9871 9872 udelay(24); 9873 9874 if (with_spread) { 9875 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9876 tmp &= ~SBI_SSCCTL_PATHALT; 9877 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9878 9879 if (with_fdi) { 9880 lpt_reset_fdi_mphy(dev_priv); 9881 lpt_program_fdi_mphy(dev_priv); 9882 } 9883 } 9884 9885 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9886 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9887 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9888 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9889 9890 mutex_unlock(&dev_priv->sb_lock); 9891 } 9892 9893 /* Sequence to disable CLKOUT_DP */ 9894 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 9895 { 9896 u32 reg, tmp; 9897 9898 mutex_lock(&dev_priv->sb_lock); 9899 9900 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9901 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9902 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9903 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9904 9905 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9906 if (!(tmp & SBI_SSCCTL_DISABLE)) { 9907 if (!(tmp & SBI_SSCCTL_PATHALT)) { 9908 tmp |= SBI_SSCCTL_PATHALT; 9909 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9910 udelay(32); 9911 } 9912 tmp |= SBI_SSCCTL_DISABLE; 9913 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9914 } 9915 9916 mutex_unlock(&dev_priv->sb_lock); 9917 } 9918 9919 #define BEND_IDX(steps) ((50 + (steps)) / 5) 9920 9921 static const u16 sscdivintphase[] = { 9922 [BEND_IDX( 50)] = 0x3B23, 9923 [BEND_IDX( 45)] = 0x3B23, 9924 [BEND_IDX( 40)] = 0x3C23, 9925 [BEND_IDX( 35)] = 0x3C23, 9926 [BEND_IDX( 30)] = 0x3D23, 9927 [BEND_IDX( 25)] = 0x3D23, 9928 [BEND_IDX( 20)] = 0x3E23, 9929 [BEND_IDX( 15)] = 0x3E23, 9930 [BEND_IDX( 10)] = 0x3F23, 9931 [BEND_IDX( 5)] = 0x3F23, 9932 [BEND_IDX( 0)] = 0x0025, 9933 [BEND_IDX( -5)] = 0x0025, 9934 [BEND_IDX(-10)] = 0x0125, 9935 [BEND_IDX(-15)] = 0x0125, 9936 [BEND_IDX(-20)] = 0x0225, 9937 [BEND_IDX(-25)] = 0x0225, 9938 [BEND_IDX(-30)] = 0x0325, 9939 [BEND_IDX(-35)] = 0x0325, 9940 [BEND_IDX(-40)] = 0x0425, 9941 [BEND_IDX(-45)] = 0x0425, 9942 [BEND_IDX(-50)] = 0x0525, 9943 }; 9944 9945 /* 9946 * Bend CLKOUT_DP 9947 * steps -50 to 50 inclusive, in steps of 5 9948 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 9949 * change in clock period = -(steps / 10) * 5.787 ps 9950 */ 9951 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 9952 { 9953 u32 tmp; 9954 int idx = BEND_IDX(steps); 9955 9956 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 9957 return; 9958 9959 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 9960 return; 9961 9962 mutex_lock(&dev_priv->sb_lock); 9963 9964 if (steps % 10 != 0) 9965 tmp = 0xAAAAAAAB; 9966 else 9967 tmp = 0x00000000; 9968 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 9969 9970 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 9971 tmp &= 0xffff0000; 9972 tmp |= sscdivintphase[idx]; 9973 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 9974 9975 mutex_unlock(&dev_priv->sb_lock); 9976 } 9977 9978 #undef BEND_IDX 9979 9980 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 9981 { 9982 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 9983 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 9984 9985 if ((ctl & SPLL_PLL_ENABLE) == 0) 9986 return false; 9987 9988 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 9989 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9990 return true; 9991 9992 if (IS_BROADWELL(dev_priv) && 9993 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 9994 return true; 9995 9996 return false; 9997 } 9998 9999 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 10000 enum intel_dpll_id id) 10001 { 10002 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 10003 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 10004 10005 if ((ctl & WRPLL_PLL_ENABLE) == 0) 10006 return false; 10007 10008 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 10009 return true; 10010 10011 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 10012 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 10013 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 10014 return true; 10015 10016 return false; 10017 } 10018 10019 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 10020 { 10021 struct intel_encoder *encoder; 10022 bool has_fdi = false; 10023 10024 for_each_intel_encoder(&dev_priv->drm, encoder) { 10025 switch (encoder->type) { 10026 case INTEL_OUTPUT_ANALOG: 10027 has_fdi = true; 10028 break; 10029 default: 10030 break; 10031 } 10032 } 10033 10034 /* 10035 * The BIOS may have decided to use the PCH SSC 10036 * reference so we must not disable it until the 10037 * relevant PLLs have stopped relying on it. We'll 10038 * just leave the PCH SSC reference enabled in case 10039 * any active PLL is using it. It will get disabled 10040 * after runtime suspend if we don't have FDI. 10041 * 10042 * TODO: Move the whole reference clock handling 10043 * to the modeset sequence proper so that we can 10044 * actually enable/disable/reconfigure these things 10045 * safely. To do that we need to introduce a real 10046 * clock hierarchy. That would also allow us to do 10047 * clock bending finally. 10048 */ 10049 dev_priv->pch_ssc_use = 0; 10050 10051 if (spll_uses_pch_ssc(dev_priv)) { 10052 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 10053 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 10054 } 10055 10056 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 10057 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 10058 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 10059 } 10060 10061 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 10062 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 10063 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 10064 } 10065 10066 if (dev_priv->pch_ssc_use) 10067 return; 10068 10069 if (has_fdi) { 10070 lpt_bend_clkout_dp(dev_priv, 0); 10071 lpt_enable_clkout_dp(dev_priv, true, true); 10072 } else { 10073 lpt_disable_clkout_dp(dev_priv); 10074 } 10075 } 10076 10077 /* 10078 * Initialize reference clocks when the driver loads 10079 */ 10080 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 10081 { 10082 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 10083 ilk_init_pch_refclk(dev_priv); 10084 else if (HAS_PCH_LPT(dev_priv)) 10085 lpt_init_pch_refclk(dev_priv); 10086 } 10087 10088 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 10089 { 10090 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10091 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10092 enum pipe pipe = crtc->pipe; 10093 u32 val; 10094 10095 val = 0; 10096 10097 switch (crtc_state->pipe_bpp) { 10098 case 18: 10099 val |= PIPECONF_6BPC; 10100 break; 10101 case 24: 10102 val |= PIPECONF_8BPC; 10103 break; 10104 case 30: 10105 val |= PIPECONF_10BPC; 10106 break; 10107 case 36: 10108 val |= PIPECONF_12BPC; 10109 break; 10110 default: 10111 /* Case prevented by intel_choose_pipe_bpp_dither. */ 10112 BUG(); 10113 } 10114 10115 if (crtc_state->dither) 10116 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 10117 10118 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 10119 val |= PIPECONF_INTERLACED_ILK; 10120 else 10121 val |= PIPECONF_PROGRESSIVE; 10122 10123 /* 10124 * This would end up with an odd purple hue over 10125 * the entire display. Make sure we don't do it. 10126 */ 10127 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 10128 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 10129 10130 if (crtc_state->limited_color_range && 10131 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 10132 val |= PIPECONF_COLOR_RANGE_SELECT; 10133 10134 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 10135 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 10136 10137 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 10138 10139 val |= PIPECONF_FRAME_START_DELAY(0); 10140 10141 intel_de_write(dev_priv, PIPECONF(pipe), val); 10142 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 10143 } 10144 10145 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 10146 { 10147 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10148 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10149 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 10150 u32 val = 0; 10151 10152 if (IS_HASWELL(dev_priv) && crtc_state->dither) 10153 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 10154 10155 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 10156 val |= PIPECONF_INTERLACED_ILK; 10157 else 10158 val |= PIPECONF_PROGRESSIVE; 10159 10160 if (IS_HASWELL(dev_priv) && 10161 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 10162 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 10163 10164 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 10165 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 10166 } 10167 10168 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 10169 { 10170 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10171 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10172 u32 val = 0; 10173 10174 switch (crtc_state->pipe_bpp) { 10175 case 18: 10176 val |= PIPEMISC_DITHER_6_BPC; 10177 break; 10178 case 24: 10179 val |= PIPEMISC_DITHER_8_BPC; 10180 break; 10181 case 30: 10182 val |= PIPEMISC_DITHER_10_BPC; 10183 break; 10184 case 36: 10185 val |= PIPEMISC_DITHER_12_BPC; 10186 break; 10187 default: 10188 MISSING_CASE(crtc_state->pipe_bpp); 10189 break; 10190 } 10191 10192 if (crtc_state->dither) 10193 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 10194 10195 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 10196 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 10197 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 10198 10199 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 10200 val |= PIPEMISC_YUV420_ENABLE | 10201 PIPEMISC_YUV420_MODE_FULL_BLEND; 10202 10203 if (INTEL_GEN(dev_priv) >= 11 && 10204 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 10205 BIT(PLANE_CURSOR))) == 0) 10206 val |= PIPEMISC_HDR_MODE_PRECISION; 10207 10208 if (INTEL_GEN(dev_priv) >= 12) 10209 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 10210 10211 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 10212 } 10213 10214 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 10215 { 10216 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10217 u32 tmp; 10218 10219 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 10220 10221 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 10222 case PIPEMISC_DITHER_6_BPC: 10223 return 18; 10224 case PIPEMISC_DITHER_8_BPC: 10225 return 24; 10226 case PIPEMISC_DITHER_10_BPC: 10227 return 30; 10228 case PIPEMISC_DITHER_12_BPC: 10229 return 36; 10230 default: 10231 MISSING_CASE(tmp); 10232 return 0; 10233 } 10234 } 10235 10236 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 10237 { 10238 /* 10239 * Account for spread spectrum to avoid 10240 * oversubscribing the link. Max center spread 10241 * is 2.5%; use 5% for safety's sake. 10242 */ 10243 u32 bps = target_clock * bpp * 21 / 20; 10244 return DIV_ROUND_UP(bps, link_bw * 8); 10245 } 10246 10247 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor) 10248 { 10249 return i9xx_dpll_compute_m(dpll) < factor * dpll->n; 10250 } 10251 10252 static void ilk_compute_dpll(struct intel_crtc *crtc, 10253 struct intel_crtc_state *crtc_state, 10254 struct dpll *reduced_clock) 10255 { 10256 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10257 u32 dpll, fp, fp2; 10258 int factor; 10259 10260 /* Enable autotuning of the PLL clock (if permissible) */ 10261 factor = 21; 10262 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 10263 if ((intel_panel_use_ssc(dev_priv) && 10264 dev_priv->vbt.lvds_ssc_freq == 100000) || 10265 (HAS_PCH_IBX(dev_priv) && 10266 intel_is_dual_link_lvds(dev_priv))) 10267 factor = 25; 10268 } else if (crtc_state->sdvo_tv_clock) { 10269 factor = 20; 10270 } 10271 10272 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 10273 10274 if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor)) 10275 fp |= FP_CB_TUNE; 10276 10277 if (reduced_clock) { 10278 fp2 = i9xx_dpll_compute_fp(reduced_clock); 10279 10280 if (reduced_clock->m < factor * reduced_clock->n) 10281 fp2 |= FP_CB_TUNE; 10282 } else { 10283 fp2 = fp; 10284 } 10285 10286 dpll = 0; 10287 10288 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 10289 dpll |= DPLLB_MODE_LVDS; 10290 else 10291 dpll |= DPLLB_MODE_DAC_SERIAL; 10292 10293 dpll |= (crtc_state->pixel_multiplier - 1) 10294 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 10295 10296 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 10297 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 10298 dpll |= DPLL_SDVO_HIGH_SPEED; 10299 10300 if (intel_crtc_has_dp_encoder(crtc_state)) 10301 dpll |= DPLL_SDVO_HIGH_SPEED; 10302 10303 /* 10304 * The high speed IO clock is only really required for 10305 * SDVO/HDMI/DP, but we also enable it for CRT to make it 10306 * possible to share the DPLL between CRT and HDMI. Enabling 10307 * the clock needlessly does no real harm, except use up a 10308 * bit of power potentially. 10309 * 10310 * We'll limit this to IVB with 3 pipes, since it has only two 10311 * DPLLs and so DPLL sharing is the only way to get three pipes 10312 * driving PCH ports at the same time. On SNB we could do this, 10313 * and potentially avoid enabling the second DPLL, but it's not 10314 * clear if it''s a win or loss power wise. No point in doing 10315 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 10316 */ 10317 if (INTEL_NUM_PIPES(dev_priv) == 3 && 10318 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 10319 dpll |= DPLL_SDVO_HIGH_SPEED; 10320 10321 /* compute bitmask from p1 value */ 10322 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 10323 /* also FPA1 */ 10324 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 10325 10326 switch (crtc_state->dpll.p2) { 10327 case 5: 10328 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 10329 break; 10330 case 7: 10331 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 10332 break; 10333 case 10: 10334 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 10335 break; 10336 case 14: 10337 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 10338 break; 10339 } 10340 10341 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 10342 intel_panel_use_ssc(dev_priv)) 10343 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 10344 else 10345 dpll |= PLL_REF_INPUT_DREFCLK; 10346 10347 dpll |= DPLL_VCO_ENABLE; 10348 10349 crtc_state->dpll_hw_state.dpll = dpll; 10350 crtc_state->dpll_hw_state.fp0 = fp; 10351 crtc_state->dpll_hw_state.fp1 = fp2; 10352 } 10353 10354 static int ilk_crtc_compute_clock(struct intel_crtc *crtc, 10355 struct intel_crtc_state *crtc_state) 10356 { 10357 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10358 struct intel_atomic_state *state = 10359 to_intel_atomic_state(crtc_state->uapi.state); 10360 const struct intel_limit *limit; 10361 int refclk = 120000; 10362 10363 memset(&crtc_state->dpll_hw_state, 0, 10364 sizeof(crtc_state->dpll_hw_state)); 10365 10366 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 10367 if (!crtc_state->has_pch_encoder) 10368 return 0; 10369 10370 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 10371 if (intel_panel_use_ssc(dev_priv)) { 10372 drm_dbg_kms(&dev_priv->drm, 10373 "using SSC reference clock of %d kHz\n", 10374 dev_priv->vbt.lvds_ssc_freq); 10375 refclk = dev_priv->vbt.lvds_ssc_freq; 10376 } 10377 10378 if (intel_is_dual_link_lvds(dev_priv)) { 10379 if (refclk == 100000) 10380 limit = &ilk_limits_dual_lvds_100m; 10381 else 10382 limit = &ilk_limits_dual_lvds; 10383 } else { 10384 if (refclk == 100000) 10385 limit = &ilk_limits_single_lvds_100m; 10386 else 10387 limit = &ilk_limits_single_lvds; 10388 } 10389 } else { 10390 limit = &ilk_limits_dac; 10391 } 10392 10393 if (!crtc_state->clock_set && 10394 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 10395 refclk, NULL, &crtc_state->dpll)) { 10396 drm_err(&dev_priv->drm, 10397 "Couldn't find PLL settings for mode!\n"); 10398 return -EINVAL; 10399 } 10400 10401 ilk_compute_dpll(crtc, crtc_state, NULL); 10402 10403 if (!intel_reserve_shared_dplls(state, crtc, NULL)) { 10404 drm_dbg_kms(&dev_priv->drm, 10405 "failed to find PLL for pipe %c\n", 10406 pipe_name(crtc->pipe)); 10407 return -EINVAL; 10408 } 10409 10410 return 0; 10411 } 10412 10413 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 10414 struct intel_link_m_n *m_n) 10415 { 10416 struct drm_device *dev = crtc->base.dev; 10417 struct drm_i915_private *dev_priv = to_i915(dev); 10418 enum pipe pipe = crtc->pipe; 10419 10420 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 10421 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 10422 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 10423 & ~TU_SIZE_MASK; 10424 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 10425 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 10426 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10427 } 10428 10429 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 10430 enum transcoder transcoder, 10431 struct intel_link_m_n *m_n, 10432 struct intel_link_m_n *m2_n2) 10433 { 10434 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10435 enum pipe pipe = crtc->pipe; 10436 10437 if (INTEL_GEN(dev_priv) >= 5) { 10438 m_n->link_m = intel_de_read(dev_priv, 10439 PIPE_LINK_M1(transcoder)); 10440 m_n->link_n = intel_de_read(dev_priv, 10441 PIPE_LINK_N1(transcoder)); 10442 m_n->gmch_m = intel_de_read(dev_priv, 10443 PIPE_DATA_M1(transcoder)) 10444 & ~TU_SIZE_MASK; 10445 m_n->gmch_n = intel_de_read(dev_priv, 10446 PIPE_DATA_N1(transcoder)); 10447 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 10448 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10449 10450 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 10451 m2_n2->link_m = intel_de_read(dev_priv, 10452 PIPE_LINK_M2(transcoder)); 10453 m2_n2->link_n = intel_de_read(dev_priv, 10454 PIPE_LINK_N2(transcoder)); 10455 m2_n2->gmch_m = intel_de_read(dev_priv, 10456 PIPE_DATA_M2(transcoder)) 10457 & ~TU_SIZE_MASK; 10458 m2_n2->gmch_n = intel_de_read(dev_priv, 10459 PIPE_DATA_N2(transcoder)); 10460 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 10461 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10462 } 10463 } else { 10464 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 10465 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 10466 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 10467 & ~TU_SIZE_MASK; 10468 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 10469 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 10470 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10471 } 10472 } 10473 10474 void intel_dp_get_m_n(struct intel_crtc *crtc, 10475 struct intel_crtc_state *pipe_config) 10476 { 10477 if (pipe_config->has_pch_encoder) 10478 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 10479 else 10480 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 10481 &pipe_config->dp_m_n, 10482 &pipe_config->dp_m2_n2); 10483 } 10484 10485 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 10486 struct intel_crtc_state *pipe_config) 10487 { 10488 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 10489 &pipe_config->fdi_m_n, NULL); 10490 } 10491 10492 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, 10493 u32 pos, u32 size) 10494 { 10495 drm_rect_init(&crtc_state->pch_pfit.dst, 10496 pos >> 16, pos & 0xffff, 10497 size >> 16, size & 0xffff); 10498 } 10499 10500 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) 10501 { 10502 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10503 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10504 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; 10505 int id = -1; 10506 int i; 10507 10508 /* find scaler attached to this pipe */ 10509 for (i = 0; i < crtc->num_scalers; i++) { 10510 u32 ctl, pos, size; 10511 10512 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 10513 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) 10514 continue; 10515 10516 id = i; 10517 crtc_state->pch_pfit.enabled = true; 10518 10519 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); 10520 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); 10521 10522 ilk_get_pfit_pos_size(crtc_state, pos, size); 10523 10524 scaler_state->scalers[i].in_use = true; 10525 break; 10526 } 10527 10528 scaler_state->scaler_id = id; 10529 if (id >= 0) 10530 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 10531 else 10532 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 10533 } 10534 10535 static void 10536 skl_get_initial_plane_config(struct intel_crtc *crtc, 10537 struct intel_initial_plane_config *plane_config) 10538 { 10539 struct drm_device *dev = crtc->base.dev; 10540 struct drm_i915_private *dev_priv = to_i915(dev); 10541 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 10542 enum plane_id plane_id = plane->id; 10543 enum pipe pipe; 10544 u32 val, base, offset, stride_mult, tiling, alpha; 10545 int fourcc, pixel_format; 10546 unsigned int aligned_height; 10547 struct drm_framebuffer *fb; 10548 struct intel_framebuffer *intel_fb; 10549 10550 if (!plane->get_hw_state(plane, &pipe)) 10551 return; 10552 10553 drm_WARN_ON(dev, pipe != crtc->pipe); 10554 10555 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 10556 if (!intel_fb) { 10557 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); 10558 return; 10559 } 10560 10561 fb = &intel_fb->base; 10562 10563 fb->dev = dev; 10564 10565 val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id)); 10566 10567 if (INTEL_GEN(dev_priv) >= 11) 10568 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK; 10569 else 10570 pixel_format = val & PLANE_CTL_FORMAT_MASK; 10571 10572 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { 10573 alpha = intel_de_read(dev_priv, 10574 PLANE_COLOR_CTL(pipe, plane_id)); 10575 alpha &= PLANE_COLOR_ALPHA_MASK; 10576 } else { 10577 alpha = val & PLANE_CTL_ALPHA_MASK; 10578 } 10579 10580 fourcc = skl_format_to_fourcc(pixel_format, 10581 val & PLANE_CTL_ORDER_RGBX, alpha); 10582 fb->format = drm_format_info(fourcc); 10583 10584 tiling = val & PLANE_CTL_TILED_MASK; 10585 switch (tiling) { 10586 case PLANE_CTL_TILED_LINEAR: 10587 fb->modifier = DRM_FORMAT_MOD_LINEAR; 10588 break; 10589 case PLANE_CTL_TILED_X: 10590 plane_config->tiling = I915_TILING_X; 10591 fb->modifier = I915_FORMAT_MOD_X_TILED; 10592 break; 10593 case PLANE_CTL_TILED_Y: 10594 plane_config->tiling = I915_TILING_Y; 10595 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 10596 fb->modifier = INTEL_GEN(dev_priv) >= 12 ? 10597 I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS : 10598 I915_FORMAT_MOD_Y_TILED_CCS; 10599 else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE) 10600 fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; 10601 else 10602 fb->modifier = I915_FORMAT_MOD_Y_TILED; 10603 break; 10604 case PLANE_CTL_TILED_YF: 10605 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 10606 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS; 10607 else 10608 fb->modifier = I915_FORMAT_MOD_Yf_TILED; 10609 break; 10610 default: 10611 MISSING_CASE(tiling); 10612 goto error; 10613 } 10614 10615 /* 10616 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 10617 * while i915 HW rotation is clockwise, thats why this swapping. 10618 */ 10619 switch (val & PLANE_CTL_ROTATE_MASK) { 10620 case PLANE_CTL_ROTATE_0: 10621 plane_config->rotation = DRM_MODE_ROTATE_0; 10622 break; 10623 case PLANE_CTL_ROTATE_90: 10624 plane_config->rotation = DRM_MODE_ROTATE_270; 10625 break; 10626 case PLANE_CTL_ROTATE_180: 10627 plane_config->rotation = DRM_MODE_ROTATE_180; 10628 break; 10629 case PLANE_CTL_ROTATE_270: 10630 plane_config->rotation = DRM_MODE_ROTATE_90; 10631 break; 10632 } 10633 10634 if (INTEL_GEN(dev_priv) >= 10 && 10635 val & PLANE_CTL_FLIP_HORIZONTAL) 10636 plane_config->rotation |= DRM_MODE_REFLECT_X; 10637 10638 base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000; 10639 plane_config->base = base; 10640 10641 offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id)); 10642 10643 val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id)); 10644 fb->height = ((val >> 16) & 0xffff) + 1; 10645 fb->width = ((val >> 0) & 0xffff) + 1; 10646 10647 val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id)); 10648 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0); 10649 fb->pitches[0] = (val & 0x3ff) * stride_mult; 10650 10651 aligned_height = intel_fb_align_height(fb, 0, fb->height); 10652 10653 plane_config->size = fb->pitches[0] * aligned_height; 10654 10655 drm_dbg_kms(&dev_priv->drm, 10656 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 10657 crtc->base.name, plane->base.name, fb->width, fb->height, 10658 fb->format->cpp[0] * 8, base, fb->pitches[0], 10659 plane_config->size); 10660 10661 plane_config->fb = intel_fb; 10662 return; 10663 10664 error: 10665 kfree(intel_fb); 10666 } 10667 10668 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) 10669 { 10670 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10671 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10672 u32 ctl, pos, size; 10673 10674 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 10675 if ((ctl & PF_ENABLE) == 0) 10676 return; 10677 10678 crtc_state->pch_pfit.enabled = true; 10679 10680 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); 10681 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); 10682 10683 ilk_get_pfit_pos_size(crtc_state, pos, size); 10684 10685 /* 10686 * We currently do not free assignements of panel fitters on 10687 * ivb/hsw (since we don't use the higher upscaling modes which 10688 * differentiates them) so just WARN about this case for now. 10689 */ 10690 drm_WARN_ON(&dev_priv->drm, IS_GEN(dev_priv, 7) && 10691 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); 10692 } 10693 10694 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 10695 struct intel_crtc_state *pipe_config) 10696 { 10697 struct drm_device *dev = crtc->base.dev; 10698 struct drm_i915_private *dev_priv = to_i915(dev); 10699 enum intel_display_power_domain power_domain; 10700 intel_wakeref_t wakeref; 10701 u32 tmp; 10702 bool ret; 10703 10704 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 10705 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 10706 if (!wakeref) 10707 return false; 10708 10709 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10710 pipe_config->shared_dpll = NULL; 10711 10712 ret = false; 10713 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 10714 if (!(tmp & PIPECONF_ENABLE)) 10715 goto out; 10716 10717 switch (tmp & PIPECONF_BPC_MASK) { 10718 case PIPECONF_6BPC: 10719 pipe_config->pipe_bpp = 18; 10720 break; 10721 case PIPECONF_8BPC: 10722 pipe_config->pipe_bpp = 24; 10723 break; 10724 case PIPECONF_10BPC: 10725 pipe_config->pipe_bpp = 30; 10726 break; 10727 case PIPECONF_12BPC: 10728 pipe_config->pipe_bpp = 36; 10729 break; 10730 default: 10731 break; 10732 } 10733 10734 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 10735 pipe_config->limited_color_range = true; 10736 10737 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 10738 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 10739 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 10740 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 10741 break; 10742 default: 10743 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 10744 break; 10745 } 10746 10747 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 10748 PIPECONF_GAMMA_MODE_SHIFT; 10749 10750 pipe_config->csc_mode = intel_de_read(dev_priv, 10751 PIPE_CSC_MODE(crtc->pipe)); 10752 10753 i9xx_get_pipe_color_config(pipe_config); 10754 intel_color_get_config(pipe_config); 10755 10756 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 10757 struct intel_shared_dpll *pll; 10758 enum intel_dpll_id pll_id; 10759 10760 pipe_config->has_pch_encoder = true; 10761 10762 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 10763 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 10764 FDI_DP_PORT_WIDTH_SHIFT) + 1; 10765 10766 ilk_get_fdi_m_n_config(crtc, pipe_config); 10767 10768 if (HAS_PCH_IBX(dev_priv)) { 10769 /* 10770 * The pipe->pch transcoder and pch transcoder->pll 10771 * mapping is fixed. 10772 */ 10773 pll_id = (enum intel_dpll_id) crtc->pipe; 10774 } else { 10775 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 10776 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 10777 pll_id = DPLL_ID_PCH_PLL_B; 10778 else 10779 pll_id= DPLL_ID_PCH_PLL_A; 10780 } 10781 10782 pipe_config->shared_dpll = 10783 intel_get_shared_dpll_by_id(dev_priv, pll_id); 10784 pll = pipe_config->shared_dpll; 10785 10786 drm_WARN_ON(dev, !pll->info->funcs->get_hw_state(dev_priv, pll, 10787 &pipe_config->dpll_hw_state)); 10788 10789 tmp = pipe_config->dpll_hw_state.dpll; 10790 pipe_config->pixel_multiplier = 10791 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 10792 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 10793 10794 ilk_pch_clock_get(crtc, pipe_config); 10795 } else { 10796 pipe_config->pixel_multiplier = 1; 10797 } 10798 10799 intel_get_pipe_timings(crtc, pipe_config); 10800 intel_get_pipe_src_size(crtc, pipe_config); 10801 10802 ilk_get_pfit_config(pipe_config); 10803 10804 ret = true; 10805 10806 out: 10807 intel_display_power_put(dev_priv, power_domain, wakeref); 10808 10809 return ret; 10810 } 10811 10812 static int hsw_crtc_compute_clock(struct intel_crtc *crtc, 10813 struct intel_crtc_state *crtc_state) 10814 { 10815 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10816 struct intel_atomic_state *state = 10817 to_intel_atomic_state(crtc_state->uapi.state); 10818 10819 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) || 10820 INTEL_GEN(dev_priv) >= 11) { 10821 struct intel_encoder *encoder = 10822 intel_get_crtc_new_encoder(state, crtc_state); 10823 10824 if (!intel_reserve_shared_dplls(state, crtc, encoder)) { 10825 drm_dbg_kms(&dev_priv->drm, 10826 "failed to find PLL for pipe %c\n", 10827 pipe_name(crtc->pipe)); 10828 return -EINVAL; 10829 } 10830 } 10831 10832 return 0; 10833 } 10834 10835 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10836 struct intel_crtc_state *pipe_config) 10837 { 10838 enum intel_dpll_id id; 10839 u32 temp; 10840 10841 temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port); 10842 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port); 10843 10844 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2)) 10845 return; 10846 10847 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10848 } 10849 10850 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10851 struct intel_crtc_state *pipe_config) 10852 { 10853 enum phy phy = intel_port_to_phy(dev_priv, port); 10854 enum icl_port_dpll_id port_dpll_id; 10855 enum intel_dpll_id id; 10856 u32 temp; 10857 10858 if (intel_phy_is_combo(dev_priv, phy)) { 10859 u32 mask, shift; 10860 10861 if (IS_ROCKETLAKE(dev_priv)) { 10862 mask = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); 10863 shift = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); 10864 } else { 10865 mask = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); 10866 shift = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); 10867 } 10868 10869 temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & mask; 10870 id = temp >> shift; 10871 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10872 } else if (intel_phy_is_tc(dev_priv, phy)) { 10873 u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK; 10874 10875 if (clk_sel == DDI_CLK_SEL_MG) { 10876 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv, 10877 port)); 10878 port_dpll_id = ICL_PORT_DPLL_MG_PHY; 10879 } else { 10880 drm_WARN_ON(&dev_priv->drm, 10881 clk_sel < DDI_CLK_SEL_TBT_162); 10882 id = DPLL_ID_ICL_TBTPLL; 10883 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10884 } 10885 } else { 10886 drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port); 10887 return; 10888 } 10889 10890 pipe_config->icl_port_dplls[port_dpll_id].pll = 10891 intel_get_shared_dpll_by_id(dev_priv, id); 10892 10893 icl_set_active_port_dpll(pipe_config, port_dpll_id); 10894 } 10895 10896 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, 10897 enum port port, 10898 struct intel_crtc_state *pipe_config) 10899 { 10900 enum intel_dpll_id id; 10901 10902 switch (port) { 10903 case PORT_A: 10904 id = DPLL_ID_SKL_DPLL0; 10905 break; 10906 case PORT_B: 10907 id = DPLL_ID_SKL_DPLL1; 10908 break; 10909 case PORT_C: 10910 id = DPLL_ID_SKL_DPLL2; 10911 break; 10912 default: 10913 drm_err(&dev_priv->drm, "Incorrect port type\n"); 10914 return; 10915 } 10916 10917 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10918 } 10919 10920 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10921 struct intel_crtc_state *pipe_config) 10922 { 10923 enum intel_dpll_id id; 10924 u32 temp; 10925 10926 temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); 10927 id = temp >> (port * 3 + 1); 10928 10929 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3)) 10930 return; 10931 10932 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10933 } 10934 10935 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10936 struct intel_crtc_state *pipe_config) 10937 { 10938 enum intel_dpll_id id; 10939 u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port)); 10940 10941 switch (ddi_pll_sel) { 10942 case PORT_CLK_SEL_WRPLL1: 10943 id = DPLL_ID_WRPLL1; 10944 break; 10945 case PORT_CLK_SEL_WRPLL2: 10946 id = DPLL_ID_WRPLL2; 10947 break; 10948 case PORT_CLK_SEL_SPLL: 10949 id = DPLL_ID_SPLL; 10950 break; 10951 case PORT_CLK_SEL_LCPLL_810: 10952 id = DPLL_ID_LCPLL_810; 10953 break; 10954 case PORT_CLK_SEL_LCPLL_1350: 10955 id = DPLL_ID_LCPLL_1350; 10956 break; 10957 case PORT_CLK_SEL_LCPLL_2700: 10958 id = DPLL_ID_LCPLL_2700; 10959 break; 10960 default: 10961 MISSING_CASE(ddi_pll_sel); 10962 fallthrough; 10963 case PORT_CLK_SEL_NONE: 10964 return; 10965 } 10966 10967 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10968 } 10969 10970 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 10971 struct intel_crtc_state *pipe_config, 10972 u64 *power_domain_mask, 10973 intel_wakeref_t *wakerefs) 10974 { 10975 struct drm_device *dev = crtc->base.dev; 10976 struct drm_i915_private *dev_priv = to_i915(dev); 10977 enum intel_display_power_domain power_domain; 10978 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP); 10979 unsigned long enabled_panel_transcoders = 0; 10980 enum transcoder panel_transcoder; 10981 intel_wakeref_t wf; 10982 u32 tmp; 10983 10984 if (INTEL_GEN(dev_priv) >= 11) 10985 panel_transcoder_mask |= 10986 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 10987 10988 /* 10989 * The pipe->transcoder mapping is fixed with the exception of the eDP 10990 * and DSI transcoders handled below. 10991 */ 10992 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10993 10994 /* 10995 * XXX: Do intel_display_power_get_if_enabled before reading this (for 10996 * consistency and less surprising code; it's in always on power). 10997 */ 10998 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder, 10999 panel_transcoder_mask) { 11000 bool force_thru = false; 11001 enum pipe trans_pipe; 11002 11003 tmp = intel_de_read(dev_priv, 11004 TRANS_DDI_FUNC_CTL(panel_transcoder)); 11005 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 11006 continue; 11007 11008 /* 11009 * Log all enabled ones, only use the first one. 11010 * 11011 * FIXME: This won't work for two separate DSI displays. 11012 */ 11013 enabled_panel_transcoders |= BIT(panel_transcoder); 11014 if (enabled_panel_transcoders != BIT(panel_transcoder)) 11015 continue; 11016 11017 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 11018 default: 11019 drm_WARN(dev, 1, 11020 "unknown pipe linked to transcoder %s\n", 11021 transcoder_name(panel_transcoder)); 11022 fallthrough; 11023 case TRANS_DDI_EDP_INPUT_A_ONOFF: 11024 force_thru = true; 11025 fallthrough; 11026 case TRANS_DDI_EDP_INPUT_A_ON: 11027 trans_pipe = PIPE_A; 11028 break; 11029 case TRANS_DDI_EDP_INPUT_B_ONOFF: 11030 trans_pipe = PIPE_B; 11031 break; 11032 case TRANS_DDI_EDP_INPUT_C_ONOFF: 11033 trans_pipe = PIPE_C; 11034 break; 11035 case TRANS_DDI_EDP_INPUT_D_ONOFF: 11036 trans_pipe = PIPE_D; 11037 break; 11038 } 11039 11040 if (trans_pipe == crtc->pipe) { 11041 pipe_config->cpu_transcoder = panel_transcoder; 11042 pipe_config->pch_pfit.force_thru = force_thru; 11043 } 11044 } 11045 11046 /* 11047 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 11048 */ 11049 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 11050 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 11051 11052 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder); 11053 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain)); 11054 11055 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11056 if (!wf) 11057 return false; 11058 11059 wakerefs[power_domain] = wf; 11060 *power_domain_mask |= BIT_ULL(power_domain); 11061 11062 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 11063 11064 return tmp & PIPECONF_ENABLE; 11065 } 11066 11067 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 11068 struct intel_crtc_state *pipe_config, 11069 u64 *power_domain_mask, 11070 intel_wakeref_t *wakerefs) 11071 { 11072 struct drm_device *dev = crtc->base.dev; 11073 struct drm_i915_private *dev_priv = to_i915(dev); 11074 enum intel_display_power_domain power_domain; 11075 enum transcoder cpu_transcoder; 11076 intel_wakeref_t wf; 11077 enum port port; 11078 u32 tmp; 11079 11080 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 11081 if (port == PORT_A) 11082 cpu_transcoder = TRANSCODER_DSI_A; 11083 else 11084 cpu_transcoder = TRANSCODER_DSI_C; 11085 11086 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 11087 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain)); 11088 11089 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11090 if (!wf) 11091 continue; 11092 11093 wakerefs[power_domain] = wf; 11094 *power_domain_mask |= BIT_ULL(power_domain); 11095 11096 /* 11097 * The PLL needs to be enabled with a valid divider 11098 * configuration, otherwise accessing DSI registers will hang 11099 * the machine. See BSpec North Display Engine 11100 * registers/MIPI[BXT]. We can break out here early, since we 11101 * need the same DSI PLL to be enabled for both DSI ports. 11102 */ 11103 if (!bxt_dsi_pll_is_enabled(dev_priv)) 11104 break; 11105 11106 /* XXX: this works for video mode only */ 11107 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 11108 if (!(tmp & DPI_ENABLE)) 11109 continue; 11110 11111 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 11112 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 11113 continue; 11114 11115 pipe_config->cpu_transcoder = cpu_transcoder; 11116 break; 11117 } 11118 11119 return transcoder_is_dsi(pipe_config->cpu_transcoder); 11120 } 11121 11122 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 11123 struct intel_crtc_state *pipe_config) 11124 { 11125 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11126 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 11127 struct intel_shared_dpll *pll; 11128 enum port port; 11129 u32 tmp; 11130 11131 if (transcoder_is_dsi(cpu_transcoder)) { 11132 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 11133 PORT_A : PORT_B; 11134 } else { 11135 tmp = intel_de_read(dev_priv, 11136 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 11137 if (INTEL_GEN(dev_priv) >= 12) 11138 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 11139 else 11140 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 11141 } 11142 11143 if (INTEL_GEN(dev_priv) >= 11) 11144 icl_get_ddi_pll(dev_priv, port, pipe_config); 11145 else if (IS_CANNONLAKE(dev_priv)) 11146 cnl_get_ddi_pll(dev_priv, port, pipe_config); 11147 else if (IS_GEN9_BC(dev_priv)) 11148 skl_get_ddi_pll(dev_priv, port, pipe_config); 11149 else if (IS_GEN9_LP(dev_priv)) 11150 bxt_get_ddi_pll(dev_priv, port, pipe_config); 11151 else 11152 hsw_get_ddi_pll(dev_priv, port, pipe_config); 11153 11154 pll = pipe_config->shared_dpll; 11155 if (pll) { 11156 drm_WARN_ON(&dev_priv->drm, 11157 !pll->info->funcs->get_hw_state(dev_priv, pll, 11158 &pipe_config->dpll_hw_state)); 11159 } 11160 11161 /* 11162 * Haswell has only FDI/PCH transcoder A. It is which is connected to 11163 * DDI E. So just check whether this pipe is wired to DDI E and whether 11164 * the PCH transcoder is on. 11165 */ 11166 if (INTEL_GEN(dev_priv) < 9 && 11167 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 11168 pipe_config->has_pch_encoder = true; 11169 11170 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 11171 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 11172 FDI_DP_PORT_WIDTH_SHIFT) + 1; 11173 11174 ilk_get_fdi_m_n_config(crtc, pipe_config); 11175 } 11176 } 11177 11178 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 11179 struct intel_crtc_state *pipe_config) 11180 { 11181 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11182 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf; 11183 enum intel_display_power_domain power_domain; 11184 u64 power_domain_mask; 11185 bool active; 11186 u32 tmp; 11187 11188 pipe_config->master_transcoder = INVALID_TRANSCODER; 11189 11190 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 11191 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11192 if (!wf) 11193 return false; 11194 11195 wakerefs[power_domain] = wf; 11196 power_domain_mask = BIT_ULL(power_domain); 11197 11198 pipe_config->shared_dpll = NULL; 11199 11200 active = hsw_get_transcoder_state(crtc, pipe_config, 11201 &power_domain_mask, wakerefs); 11202 11203 if (IS_GEN9_LP(dev_priv) && 11204 bxt_get_dsi_transcoder_state(crtc, pipe_config, 11205 &power_domain_mask, wakerefs)) { 11206 drm_WARN_ON(&dev_priv->drm, active); 11207 active = true; 11208 } 11209 11210 if (!active) 11211 goto out; 11212 11213 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 11214 INTEL_GEN(dev_priv) >= 11) { 11215 hsw_get_ddi_port_state(crtc, pipe_config); 11216 intel_get_pipe_timings(crtc, pipe_config); 11217 } 11218 11219 intel_get_pipe_src_size(crtc, pipe_config); 11220 11221 if (IS_HASWELL(dev_priv)) { 11222 u32 tmp = intel_de_read(dev_priv, 11223 PIPECONF(pipe_config->cpu_transcoder)); 11224 11225 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 11226 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 11227 else 11228 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 11229 } else { 11230 pipe_config->output_format = 11231 bdw_get_pipemisc_output_format(crtc); 11232 11233 /* 11234 * Currently there is no interface defined to 11235 * check user preference between RGB/YCBCR444 11236 * or YCBCR420. So the only possible case for 11237 * YCBCR444 usage is driving YCBCR420 output 11238 * with LSPCON, when pipe is configured for 11239 * YCBCR444 output and LSPCON takes care of 11240 * downsampling it. 11241 */ 11242 pipe_config->lspcon_downsampling = 11243 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444; 11244 } 11245 11246 pipe_config->gamma_mode = intel_de_read(dev_priv, 11247 GAMMA_MODE(crtc->pipe)); 11248 11249 pipe_config->csc_mode = intel_de_read(dev_priv, 11250 PIPE_CSC_MODE(crtc->pipe)); 11251 11252 if (INTEL_GEN(dev_priv) >= 9) { 11253 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 11254 11255 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 11256 pipe_config->gamma_enable = true; 11257 11258 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 11259 pipe_config->csc_enable = true; 11260 } else { 11261 i9xx_get_pipe_color_config(pipe_config); 11262 } 11263 11264 intel_color_get_config(pipe_config); 11265 11266 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 11267 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 11268 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 11269 pipe_config->ips_linetime = 11270 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 11271 11272 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); 11273 drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain)); 11274 11275 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11276 if (wf) { 11277 wakerefs[power_domain] = wf; 11278 power_domain_mask |= BIT_ULL(power_domain); 11279 11280 if (INTEL_GEN(dev_priv) >= 9) 11281 skl_get_pfit_config(pipe_config); 11282 else 11283 ilk_get_pfit_config(pipe_config); 11284 } 11285 11286 if (hsw_crtc_supports_ips(crtc)) { 11287 if (IS_HASWELL(dev_priv)) 11288 pipe_config->ips_enabled = intel_de_read(dev_priv, 11289 IPS_CTL) & IPS_ENABLE; 11290 else { 11291 /* 11292 * We cannot readout IPS state on broadwell, set to 11293 * true so we can set it to a defined state on first 11294 * commit. 11295 */ 11296 pipe_config->ips_enabled = true; 11297 } 11298 } 11299 11300 if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 11301 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 11302 pipe_config->pixel_multiplier = 11303 intel_de_read(dev_priv, 11304 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 11305 } else { 11306 pipe_config->pixel_multiplier = 1; 11307 } 11308 11309 out: 11310 for_each_power_domain(power_domain, power_domain_mask) 11311 intel_display_power_put(dev_priv, 11312 power_domain, wakerefs[power_domain]); 11313 11314 return active; 11315 } 11316 11317 static u32 intel_cursor_base(const struct intel_plane_state *plane_state) 11318 { 11319 struct drm_i915_private *dev_priv = 11320 to_i915(plane_state->uapi.plane->dev); 11321 const struct drm_framebuffer *fb = plane_state->hw.fb; 11322 const struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11323 u32 base; 11324 11325 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical) 11326 base = sg_dma_address(obj->mm.pages->sgl); 11327 else 11328 base = intel_plane_ggtt_offset(plane_state); 11329 11330 return base + plane_state->color_plane[0].offset; 11331 } 11332 11333 static u32 intel_cursor_position(const struct intel_plane_state *plane_state) 11334 { 11335 int x = plane_state->uapi.dst.x1; 11336 int y = plane_state->uapi.dst.y1; 11337 u32 pos = 0; 11338 11339 if (x < 0) { 11340 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; 11341 x = -x; 11342 } 11343 pos |= x << CURSOR_X_SHIFT; 11344 11345 if (y < 0) { 11346 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; 11347 y = -y; 11348 } 11349 pos |= y << CURSOR_Y_SHIFT; 11350 11351 return pos; 11352 } 11353 11354 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state) 11355 { 11356 const struct drm_mode_config *config = 11357 &plane_state->uapi.plane->dev->mode_config; 11358 int width = drm_rect_width(&plane_state->uapi.dst); 11359 int height = drm_rect_height(&plane_state->uapi.dst); 11360 11361 return width > 0 && width <= config->cursor_width && 11362 height > 0 && height <= config->cursor_height; 11363 } 11364 11365 static int intel_cursor_check_surface(struct intel_plane_state *plane_state) 11366 { 11367 struct drm_i915_private *dev_priv = 11368 to_i915(plane_state->uapi.plane->dev); 11369 unsigned int rotation = plane_state->hw.rotation; 11370 int src_x, src_y; 11371 u32 offset; 11372 int ret; 11373 11374 ret = intel_plane_compute_gtt(plane_state); 11375 if (ret) 11376 return ret; 11377 11378 if (!plane_state->uapi.visible) 11379 return 0; 11380 11381 src_x = plane_state->uapi.src.x1 >> 16; 11382 src_y = plane_state->uapi.src.y1 >> 16; 11383 11384 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 11385 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 11386 plane_state, 0); 11387 11388 if (src_x != 0 || src_y != 0) { 11389 drm_dbg_kms(&dev_priv->drm, 11390 "Arbitrary cursor panning not supported\n"); 11391 return -EINVAL; 11392 } 11393 11394 /* 11395 * Put the final coordinates back so that the src 11396 * coordinate checks will see the right values. 11397 */ 11398 drm_rect_translate_to(&plane_state->uapi.src, 11399 src_x << 16, src_y << 16); 11400 11401 /* ILK+ do this automagically in hardware */ 11402 if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) { 11403 const struct drm_framebuffer *fb = plane_state->hw.fb; 11404 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 11405 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 11406 11407 offset += (src_h * src_w - 1) * fb->format->cpp[0]; 11408 } 11409 11410 plane_state->color_plane[0].offset = offset; 11411 plane_state->color_plane[0].x = src_x; 11412 plane_state->color_plane[0].y = src_y; 11413 11414 return 0; 11415 } 11416 11417 static int intel_check_cursor(struct intel_crtc_state *crtc_state, 11418 struct intel_plane_state *plane_state) 11419 { 11420 const struct drm_framebuffer *fb = plane_state->hw.fb; 11421 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 11422 int ret; 11423 11424 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) { 11425 drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n"); 11426 return -EINVAL; 11427 } 11428 11429 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi, 11430 &crtc_state->uapi, 11431 DRM_PLANE_HELPER_NO_SCALING, 11432 DRM_PLANE_HELPER_NO_SCALING, 11433 true, true); 11434 if (ret) 11435 return ret; 11436 11437 /* Use the unclipped src/dst rectangles, which we program to hw */ 11438 plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi); 11439 plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi); 11440 11441 ret = intel_cursor_check_surface(plane_state); 11442 if (ret) 11443 return ret; 11444 11445 if (!plane_state->uapi.visible) 11446 return 0; 11447 11448 ret = intel_plane_check_src_coordinates(plane_state); 11449 if (ret) 11450 return ret; 11451 11452 return 0; 11453 } 11454 11455 static unsigned int 11456 i845_cursor_max_stride(struct intel_plane *plane, 11457 u32 pixel_format, u64 modifier, 11458 unsigned int rotation) 11459 { 11460 return 2048; 11461 } 11462 11463 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11464 { 11465 u32 cntl = 0; 11466 11467 if (crtc_state->gamma_enable) 11468 cntl |= CURSOR_GAMMA_ENABLE; 11469 11470 return cntl; 11471 } 11472 11473 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state, 11474 const struct intel_plane_state *plane_state) 11475 { 11476 return CURSOR_ENABLE | 11477 CURSOR_FORMAT_ARGB | 11478 CURSOR_STRIDE(plane_state->color_plane[0].stride); 11479 } 11480 11481 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state) 11482 { 11483 int width = drm_rect_width(&plane_state->uapi.dst); 11484 11485 /* 11486 * 845g/865g are only limited by the width of their cursors, 11487 * the height is arbitrary up to the precision of the register. 11488 */ 11489 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64); 11490 } 11491 11492 static int i845_check_cursor(struct intel_crtc_state *crtc_state, 11493 struct intel_plane_state *plane_state) 11494 { 11495 const struct drm_framebuffer *fb = plane_state->hw.fb; 11496 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 11497 int ret; 11498 11499 ret = intel_check_cursor(crtc_state, plane_state); 11500 if (ret) 11501 return ret; 11502 11503 /* if we want to turn off the cursor ignore width and height */ 11504 if (!fb) 11505 return 0; 11506 11507 /* Check for which cursor types we support */ 11508 if (!i845_cursor_size_ok(plane_state)) { 11509 drm_dbg_kms(&i915->drm, 11510 "Cursor dimension %dx%d not supported\n", 11511 drm_rect_width(&plane_state->uapi.dst), 11512 drm_rect_height(&plane_state->uapi.dst)); 11513 return -EINVAL; 11514 } 11515 11516 drm_WARN_ON(&i915->drm, plane_state->uapi.visible && 11517 plane_state->color_plane[0].stride != fb->pitches[0]); 11518 11519 switch (fb->pitches[0]) { 11520 case 256: 11521 case 512: 11522 case 1024: 11523 case 2048: 11524 break; 11525 default: 11526 drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n", 11527 fb->pitches[0]); 11528 return -EINVAL; 11529 } 11530 11531 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state); 11532 11533 return 0; 11534 } 11535 11536 static void i845_update_cursor(struct intel_plane *plane, 11537 const struct intel_crtc_state *crtc_state, 11538 const struct intel_plane_state *plane_state) 11539 { 11540 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11541 u32 cntl = 0, base = 0, pos = 0, size = 0; 11542 unsigned long irqflags; 11543 11544 if (plane_state && plane_state->uapi.visible) { 11545 unsigned int width = drm_rect_width(&plane_state->uapi.dst); 11546 unsigned int height = drm_rect_height(&plane_state->uapi.dst); 11547 11548 cntl = plane_state->ctl | 11549 i845_cursor_ctl_crtc(crtc_state); 11550 11551 size = (height << 12) | width; 11552 11553 base = intel_cursor_base(plane_state); 11554 pos = intel_cursor_position(plane_state); 11555 } 11556 11557 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11558 11559 /* On these chipsets we can only modify the base/size/stride 11560 * whilst the cursor is disabled. 11561 */ 11562 if (plane->cursor.base != base || 11563 plane->cursor.size != size || 11564 plane->cursor.cntl != cntl) { 11565 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0); 11566 intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base); 11567 intel_de_write_fw(dev_priv, CURSIZE, size); 11568 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos); 11569 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl); 11570 11571 plane->cursor.base = base; 11572 plane->cursor.size = size; 11573 plane->cursor.cntl = cntl; 11574 } else { 11575 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos); 11576 } 11577 11578 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11579 } 11580 11581 static void i845_disable_cursor(struct intel_plane *plane, 11582 const struct intel_crtc_state *crtc_state) 11583 { 11584 i845_update_cursor(plane, crtc_state, NULL); 11585 } 11586 11587 static bool i845_cursor_get_hw_state(struct intel_plane *plane, 11588 enum pipe *pipe) 11589 { 11590 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11591 enum intel_display_power_domain power_domain; 11592 intel_wakeref_t wakeref; 11593 bool ret; 11594 11595 power_domain = POWER_DOMAIN_PIPE(PIPE_A); 11596 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11597 if (!wakeref) 11598 return false; 11599 11600 ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE; 11601 11602 *pipe = PIPE_A; 11603 11604 intel_display_power_put(dev_priv, power_domain, wakeref); 11605 11606 return ret; 11607 } 11608 11609 static unsigned int 11610 i9xx_cursor_max_stride(struct intel_plane *plane, 11611 u32 pixel_format, u64 modifier, 11612 unsigned int rotation) 11613 { 11614 return plane->base.dev->mode_config.cursor_width * 4; 11615 } 11616 11617 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11618 { 11619 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 11620 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11621 u32 cntl = 0; 11622 11623 if (INTEL_GEN(dev_priv) >= 11) 11624 return cntl; 11625 11626 if (crtc_state->gamma_enable) 11627 cntl = MCURSOR_GAMMA_ENABLE; 11628 11629 if (crtc_state->csc_enable) 11630 cntl |= MCURSOR_PIPE_CSC_ENABLE; 11631 11632 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11633 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe); 11634 11635 return cntl; 11636 } 11637 11638 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state, 11639 const struct intel_plane_state *plane_state) 11640 { 11641 struct drm_i915_private *dev_priv = 11642 to_i915(plane_state->uapi.plane->dev); 11643 u32 cntl = 0; 11644 11645 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 11646 cntl |= MCURSOR_TRICKLE_FEED_DISABLE; 11647 11648 switch (drm_rect_width(&plane_state->uapi.dst)) { 11649 case 64: 11650 cntl |= MCURSOR_MODE_64_ARGB_AX; 11651 break; 11652 case 128: 11653 cntl |= MCURSOR_MODE_128_ARGB_AX; 11654 break; 11655 case 256: 11656 cntl |= MCURSOR_MODE_256_ARGB_AX; 11657 break; 11658 default: 11659 MISSING_CASE(drm_rect_width(&plane_state->uapi.dst)); 11660 return 0; 11661 } 11662 11663 if (plane_state->hw.rotation & DRM_MODE_ROTATE_180) 11664 cntl |= MCURSOR_ROTATE_180; 11665 11666 return cntl; 11667 } 11668 11669 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state) 11670 { 11671 struct drm_i915_private *dev_priv = 11672 to_i915(plane_state->uapi.plane->dev); 11673 int width = drm_rect_width(&plane_state->uapi.dst); 11674 int height = drm_rect_height(&plane_state->uapi.dst); 11675 11676 if (!intel_cursor_size_ok(plane_state)) 11677 return false; 11678 11679 /* Cursor width is limited to a few power-of-two sizes */ 11680 switch (width) { 11681 case 256: 11682 case 128: 11683 case 64: 11684 break; 11685 default: 11686 return false; 11687 } 11688 11689 /* 11690 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor 11691 * height from 8 lines up to the cursor width, when the 11692 * cursor is not rotated. Everything else requires square 11693 * cursors. 11694 */ 11695 if (HAS_CUR_FBC(dev_priv) && 11696 plane_state->hw.rotation & DRM_MODE_ROTATE_0) { 11697 if (height < 8 || height > width) 11698 return false; 11699 } else { 11700 if (height != width) 11701 return false; 11702 } 11703 11704 return true; 11705 } 11706 11707 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state, 11708 struct intel_plane_state *plane_state) 11709 { 11710 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 11711 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11712 const struct drm_framebuffer *fb = plane_state->hw.fb; 11713 enum pipe pipe = plane->pipe; 11714 int ret; 11715 11716 ret = intel_check_cursor(crtc_state, plane_state); 11717 if (ret) 11718 return ret; 11719 11720 /* if we want to turn off the cursor ignore width and height */ 11721 if (!fb) 11722 return 0; 11723 11724 /* Check for which cursor types we support */ 11725 if (!i9xx_cursor_size_ok(plane_state)) { 11726 drm_dbg(&dev_priv->drm, 11727 "Cursor dimension %dx%d not supported\n", 11728 drm_rect_width(&plane_state->uapi.dst), 11729 drm_rect_height(&plane_state->uapi.dst)); 11730 return -EINVAL; 11731 } 11732 11733 drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible && 11734 plane_state->color_plane[0].stride != fb->pitches[0]); 11735 11736 if (fb->pitches[0] != 11737 drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) { 11738 drm_dbg_kms(&dev_priv->drm, 11739 "Invalid cursor stride (%u) (cursor width %d)\n", 11740 fb->pitches[0], 11741 drm_rect_width(&plane_state->uapi.dst)); 11742 return -EINVAL; 11743 } 11744 11745 /* 11746 * There's something wrong with the cursor on CHV pipe C. 11747 * If it straddles the left edge of the screen then 11748 * moving it away from the edge or disabling it often 11749 * results in a pipe underrun, and often that can lead to 11750 * dead pipe (constant underrun reported, and it scans 11751 * out just a solid color). To recover from that, the 11752 * display power well must be turned off and on again. 11753 * Refuse the put the cursor into that compromised position. 11754 */ 11755 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C && 11756 plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) { 11757 drm_dbg_kms(&dev_priv->drm, 11758 "CHV cursor C not allowed to straddle the left screen edge\n"); 11759 return -EINVAL; 11760 } 11761 11762 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state); 11763 11764 return 0; 11765 } 11766 11767 static void i9xx_update_cursor(struct intel_plane *plane, 11768 const struct intel_crtc_state *crtc_state, 11769 const struct intel_plane_state *plane_state) 11770 { 11771 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11772 enum pipe pipe = plane->pipe; 11773 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0; 11774 unsigned long irqflags; 11775 11776 if (plane_state && plane_state->uapi.visible) { 11777 unsigned width = drm_rect_width(&plane_state->uapi.dst); 11778 unsigned height = drm_rect_height(&plane_state->uapi.dst); 11779 11780 cntl = plane_state->ctl | 11781 i9xx_cursor_ctl_crtc(crtc_state); 11782 11783 if (width != height) 11784 fbc_ctl = CUR_FBC_CTL_EN | (height - 1); 11785 11786 base = intel_cursor_base(plane_state); 11787 pos = intel_cursor_position(plane_state); 11788 } 11789 11790 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11791 11792 /* 11793 * On some platforms writing CURCNTR first will also 11794 * cause CURPOS to be armed by the CURBASE write. 11795 * Without the CURCNTR write the CURPOS write would 11796 * arm itself. Thus we always update CURCNTR before 11797 * CURPOS. 11798 * 11799 * On other platforms CURPOS always requires the 11800 * CURBASE write to arm the update. Additonally 11801 * a write to any of the cursor register will cancel 11802 * an already armed cursor update. Thus leaving out 11803 * the CURBASE write after CURPOS could lead to a 11804 * cursor that doesn't appear to move, or even change 11805 * shape. Thus we always write CURBASE. 11806 * 11807 * The other registers are armed by by the CURBASE write 11808 * except when the plane is getting enabled at which time 11809 * the CURCNTR write arms the update. 11810 */ 11811 11812 if (INTEL_GEN(dev_priv) >= 9) 11813 skl_write_cursor_wm(plane, crtc_state); 11814 11815 if (plane->cursor.base != base || 11816 plane->cursor.size != fbc_ctl || 11817 plane->cursor.cntl != cntl) { 11818 if (HAS_CUR_FBC(dev_priv)) 11819 intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe), 11820 fbc_ctl); 11821 intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl); 11822 intel_de_write_fw(dev_priv, CURPOS(pipe), pos); 11823 intel_de_write_fw(dev_priv, CURBASE(pipe), base); 11824 11825 plane->cursor.base = base; 11826 plane->cursor.size = fbc_ctl; 11827 plane->cursor.cntl = cntl; 11828 } else { 11829 intel_de_write_fw(dev_priv, CURPOS(pipe), pos); 11830 intel_de_write_fw(dev_priv, CURBASE(pipe), base); 11831 } 11832 11833 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11834 } 11835 11836 static void i9xx_disable_cursor(struct intel_plane *plane, 11837 const struct intel_crtc_state *crtc_state) 11838 { 11839 i9xx_update_cursor(plane, crtc_state, NULL); 11840 } 11841 11842 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane, 11843 enum pipe *pipe) 11844 { 11845 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11846 enum intel_display_power_domain power_domain; 11847 intel_wakeref_t wakeref; 11848 bool ret; 11849 u32 val; 11850 11851 /* 11852 * Not 100% correct for planes that can move between pipes, 11853 * but that's only the case for gen2-3 which don't have any 11854 * display power wells. 11855 */ 11856 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 11857 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11858 if (!wakeref) 11859 return false; 11860 11861 val = intel_de_read(dev_priv, CURCNTR(plane->pipe)); 11862 11863 ret = val & MCURSOR_MODE; 11864 11865 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 11866 *pipe = plane->pipe; 11867 else 11868 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >> 11869 MCURSOR_PIPE_SELECT_SHIFT; 11870 11871 intel_display_power_put(dev_priv, power_domain, wakeref); 11872 11873 return ret; 11874 } 11875 11876 /* VESA 640x480x72Hz mode to set on the pipe */ 11877 static const struct drm_display_mode load_detect_mode = { 11878 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 11879 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 11880 }; 11881 11882 struct drm_framebuffer * 11883 intel_framebuffer_create(struct drm_i915_gem_object *obj, 11884 struct drm_mode_fb_cmd2 *mode_cmd) 11885 { 11886 struct intel_framebuffer *intel_fb; 11887 int ret; 11888 11889 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 11890 if (!intel_fb) 11891 return ERR_PTR(-ENOMEM); 11892 11893 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 11894 if (ret) 11895 goto err; 11896 11897 return &intel_fb->base; 11898 11899 err: 11900 kfree(intel_fb); 11901 return ERR_PTR(ret); 11902 } 11903 11904 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 11905 struct drm_crtc *crtc) 11906 { 11907 struct drm_plane *plane; 11908 struct drm_plane_state *plane_state; 11909 int ret, i; 11910 11911 ret = drm_atomic_add_affected_planes(state, crtc); 11912 if (ret) 11913 return ret; 11914 11915 for_each_new_plane_in_state(state, plane, plane_state, i) { 11916 if (plane_state->crtc != crtc) 11917 continue; 11918 11919 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 11920 if (ret) 11921 return ret; 11922 11923 drm_atomic_set_fb_for_plane(plane_state, NULL); 11924 } 11925 11926 return 0; 11927 } 11928 11929 int intel_get_load_detect_pipe(struct drm_connector *connector, 11930 struct intel_load_detect_pipe *old, 11931 struct drm_modeset_acquire_ctx *ctx) 11932 { 11933 struct intel_crtc *intel_crtc; 11934 struct intel_encoder *intel_encoder = 11935 intel_attached_encoder(to_intel_connector(connector)); 11936 struct drm_crtc *possible_crtc; 11937 struct drm_encoder *encoder = &intel_encoder->base; 11938 struct drm_crtc *crtc = NULL; 11939 struct drm_device *dev = encoder->dev; 11940 struct drm_i915_private *dev_priv = to_i915(dev); 11941 struct drm_mode_config *config = &dev->mode_config; 11942 struct drm_atomic_state *state = NULL, *restore_state = NULL; 11943 struct drm_connector_state *connector_state; 11944 struct intel_crtc_state *crtc_state; 11945 int ret, i = -1; 11946 11947 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 11948 connector->base.id, connector->name, 11949 encoder->base.id, encoder->name); 11950 11951 old->restore_state = NULL; 11952 11953 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 11954 11955 /* 11956 * Algorithm gets a little messy: 11957 * 11958 * - if the connector already has an assigned crtc, use it (but make 11959 * sure it's on first) 11960 * 11961 * - try to find the first unused crtc that can drive this connector, 11962 * and use that if we find one 11963 */ 11964 11965 /* See if we already have a CRTC for this connector */ 11966 if (connector->state->crtc) { 11967 crtc = connector->state->crtc; 11968 11969 ret = drm_modeset_lock(&crtc->mutex, ctx); 11970 if (ret) 11971 goto fail; 11972 11973 /* Make sure the crtc and connector are running */ 11974 goto found; 11975 } 11976 11977 /* Find an unused one (if possible) */ 11978 for_each_crtc(dev, possible_crtc) { 11979 i++; 11980 if (!(encoder->possible_crtcs & (1 << i))) 11981 continue; 11982 11983 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 11984 if (ret) 11985 goto fail; 11986 11987 if (possible_crtc->state->enable) { 11988 drm_modeset_unlock(&possible_crtc->mutex); 11989 continue; 11990 } 11991 11992 crtc = possible_crtc; 11993 break; 11994 } 11995 11996 /* 11997 * If we didn't find an unused CRTC, don't use any. 11998 */ 11999 if (!crtc) { 12000 drm_dbg_kms(&dev_priv->drm, 12001 "no pipe available for load-detect\n"); 12002 ret = -ENODEV; 12003 goto fail; 12004 } 12005 12006 found: 12007 intel_crtc = to_intel_crtc(crtc); 12008 12009 state = drm_atomic_state_alloc(dev); 12010 restore_state = drm_atomic_state_alloc(dev); 12011 if (!state || !restore_state) { 12012 ret = -ENOMEM; 12013 goto fail; 12014 } 12015 12016 state->acquire_ctx = ctx; 12017 restore_state->acquire_ctx = ctx; 12018 12019 connector_state = drm_atomic_get_connector_state(state, connector); 12020 if (IS_ERR(connector_state)) { 12021 ret = PTR_ERR(connector_state); 12022 goto fail; 12023 } 12024 12025 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 12026 if (ret) 12027 goto fail; 12028 12029 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 12030 if (IS_ERR(crtc_state)) { 12031 ret = PTR_ERR(crtc_state); 12032 goto fail; 12033 } 12034 12035 crtc_state->uapi.active = true; 12036 12037 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 12038 &load_detect_mode); 12039 if (ret) 12040 goto fail; 12041 12042 ret = intel_modeset_disable_planes(state, crtc); 12043 if (ret) 12044 goto fail; 12045 12046 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 12047 if (!ret) 12048 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 12049 if (!ret) 12050 ret = drm_atomic_add_affected_planes(restore_state, crtc); 12051 if (ret) { 12052 drm_dbg_kms(&dev_priv->drm, 12053 "Failed to create a copy of old state to restore: %i\n", 12054 ret); 12055 goto fail; 12056 } 12057 12058 ret = drm_atomic_commit(state); 12059 if (ret) { 12060 drm_dbg_kms(&dev_priv->drm, 12061 "failed to set mode on load-detect pipe\n"); 12062 goto fail; 12063 } 12064 12065 old->restore_state = restore_state; 12066 drm_atomic_state_put(state); 12067 12068 /* let the connector get through one full cycle before testing */ 12069 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 12070 return true; 12071 12072 fail: 12073 if (state) { 12074 drm_atomic_state_put(state); 12075 state = NULL; 12076 } 12077 if (restore_state) { 12078 drm_atomic_state_put(restore_state); 12079 restore_state = NULL; 12080 } 12081 12082 if (ret == -EDEADLK) 12083 return ret; 12084 12085 return false; 12086 } 12087 12088 void intel_release_load_detect_pipe(struct drm_connector *connector, 12089 struct intel_load_detect_pipe *old, 12090 struct drm_modeset_acquire_ctx *ctx) 12091 { 12092 struct intel_encoder *intel_encoder = 12093 intel_attached_encoder(to_intel_connector(connector)); 12094 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 12095 struct drm_encoder *encoder = &intel_encoder->base; 12096 struct drm_atomic_state *state = old->restore_state; 12097 int ret; 12098 12099 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 12100 connector->base.id, connector->name, 12101 encoder->base.id, encoder->name); 12102 12103 if (!state) 12104 return; 12105 12106 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 12107 if (ret) 12108 drm_dbg_kms(&i915->drm, 12109 "Couldn't release load detect pipe: %i\n", ret); 12110 drm_atomic_state_put(state); 12111 } 12112 12113 static int i9xx_pll_refclk(struct drm_device *dev, 12114 const struct intel_crtc_state *pipe_config) 12115 { 12116 struct drm_i915_private *dev_priv = to_i915(dev); 12117 u32 dpll = pipe_config->dpll_hw_state.dpll; 12118 12119 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 12120 return dev_priv->vbt.lvds_ssc_freq; 12121 else if (HAS_PCH_SPLIT(dev_priv)) 12122 return 120000; 12123 else if (!IS_GEN(dev_priv, 2)) 12124 return 96000; 12125 else 12126 return 48000; 12127 } 12128 12129 /* Returns the clock of the currently programmed mode of the given pipe. */ 12130 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 12131 struct intel_crtc_state *pipe_config) 12132 { 12133 struct drm_device *dev = crtc->base.dev; 12134 struct drm_i915_private *dev_priv = to_i915(dev); 12135 enum pipe pipe = crtc->pipe; 12136 u32 dpll = pipe_config->dpll_hw_state.dpll; 12137 u32 fp; 12138 struct dpll clock; 12139 int port_clock; 12140 int refclk = i9xx_pll_refclk(dev, pipe_config); 12141 12142 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 12143 fp = pipe_config->dpll_hw_state.fp0; 12144 else 12145 fp = pipe_config->dpll_hw_state.fp1; 12146 12147 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 12148 if (IS_PINEVIEW(dev_priv)) { 12149 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 12150 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 12151 } else { 12152 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 12153 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 12154 } 12155 12156 if (!IS_GEN(dev_priv, 2)) { 12157 if (IS_PINEVIEW(dev_priv)) 12158 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 12159 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 12160 else 12161 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 12162 DPLL_FPA01_P1_POST_DIV_SHIFT); 12163 12164 switch (dpll & DPLL_MODE_MASK) { 12165 case DPLLB_MODE_DAC_SERIAL: 12166 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 12167 5 : 10; 12168 break; 12169 case DPLLB_MODE_LVDS: 12170 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 12171 7 : 14; 12172 break; 12173 default: 12174 drm_dbg_kms(&dev_priv->drm, 12175 "Unknown DPLL mode %08x in programmed " 12176 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 12177 return; 12178 } 12179 12180 if (IS_PINEVIEW(dev_priv)) 12181 port_clock = pnv_calc_dpll_params(refclk, &clock); 12182 else 12183 port_clock = i9xx_calc_dpll_params(refclk, &clock); 12184 } else { 12185 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 12186 LVDS); 12187 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 12188 12189 if (is_lvds) { 12190 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 12191 DPLL_FPA01_P1_POST_DIV_SHIFT); 12192 12193 if (lvds & LVDS_CLKB_POWER_UP) 12194 clock.p2 = 7; 12195 else 12196 clock.p2 = 14; 12197 } else { 12198 if (dpll & PLL_P1_DIVIDE_BY_TWO) 12199 clock.p1 = 2; 12200 else { 12201 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 12202 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 12203 } 12204 if (dpll & PLL_P2_DIVIDE_BY_4) 12205 clock.p2 = 4; 12206 else 12207 clock.p2 = 2; 12208 } 12209 12210 port_clock = i9xx_calc_dpll_params(refclk, &clock); 12211 } 12212 12213 /* 12214 * This value includes pixel_multiplier. We will use 12215 * port_clock to compute adjusted_mode.crtc_clock in the 12216 * encoder's get_config() function. 12217 */ 12218 pipe_config->port_clock = port_clock; 12219 } 12220 12221 int intel_dotclock_calculate(int link_freq, 12222 const struct intel_link_m_n *m_n) 12223 { 12224 /* 12225 * The calculation for the data clock is: 12226 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 12227 * But we want to avoid losing precison if possible, so: 12228 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 12229 * 12230 * and the link clock is simpler: 12231 * link_clock = (m * link_clock) / n 12232 */ 12233 12234 if (!m_n->link_n) 12235 return 0; 12236 12237 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 12238 } 12239 12240 static void ilk_pch_clock_get(struct intel_crtc *crtc, 12241 struct intel_crtc_state *pipe_config) 12242 { 12243 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12244 12245 /* read out port_clock from the DPLL */ 12246 i9xx_crtc_clock_get(crtc, pipe_config); 12247 12248 /* 12249 * In case there is an active pipe without active ports, 12250 * we may need some idea for the dotclock anyway. 12251 * Calculate one based on the FDI configuration. 12252 */ 12253 pipe_config->hw.adjusted_mode.crtc_clock = 12254 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 12255 &pipe_config->fdi_m_n); 12256 } 12257 12258 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state, 12259 struct intel_crtc *crtc) 12260 { 12261 memset(crtc_state, 0, sizeof(*crtc_state)); 12262 12263 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base); 12264 12265 crtc_state->cpu_transcoder = INVALID_TRANSCODER; 12266 crtc_state->master_transcoder = INVALID_TRANSCODER; 12267 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 12268 crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID; 12269 crtc_state->scaler_state.scaler_id = -1; 12270 crtc_state->mst_master_transcoder = INVALID_TRANSCODER; 12271 } 12272 12273 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc) 12274 { 12275 struct intel_crtc_state *crtc_state; 12276 12277 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL); 12278 12279 if (crtc_state) 12280 intel_crtc_state_reset(crtc_state, crtc); 12281 12282 return crtc_state; 12283 } 12284 12285 /* Returns the currently programmed mode of the given encoder. */ 12286 struct drm_display_mode * 12287 intel_encoder_current_mode(struct intel_encoder *encoder) 12288 { 12289 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 12290 struct intel_crtc_state *crtc_state; 12291 struct drm_display_mode *mode; 12292 struct intel_crtc *crtc; 12293 enum pipe pipe; 12294 12295 if (!encoder->get_hw_state(encoder, &pipe)) 12296 return NULL; 12297 12298 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12299 12300 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 12301 if (!mode) 12302 return NULL; 12303 12304 crtc_state = intel_crtc_state_alloc(crtc); 12305 if (!crtc_state) { 12306 kfree(mode); 12307 return NULL; 12308 } 12309 12310 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) { 12311 kfree(crtc_state); 12312 kfree(mode); 12313 return NULL; 12314 } 12315 12316 encoder->get_config(encoder, crtc_state); 12317 12318 intel_mode_from_pipe_config(mode, crtc_state); 12319 12320 kfree(crtc_state); 12321 12322 return mode; 12323 } 12324 12325 static void intel_crtc_destroy(struct drm_crtc *crtc) 12326 { 12327 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 12328 12329 drm_crtc_cleanup(crtc); 12330 kfree(intel_crtc); 12331 } 12332 12333 /** 12334 * intel_wm_need_update - Check whether watermarks need updating 12335 * @cur: current plane state 12336 * @new: new plane state 12337 * 12338 * Check current plane state versus the new one to determine whether 12339 * watermarks need to be recalculated. 12340 * 12341 * Returns true or false. 12342 */ 12343 static bool intel_wm_need_update(const struct intel_plane_state *cur, 12344 struct intel_plane_state *new) 12345 { 12346 /* Update watermarks on tiling or size changes. */ 12347 if (new->uapi.visible != cur->uapi.visible) 12348 return true; 12349 12350 if (!cur->hw.fb || !new->hw.fb) 12351 return false; 12352 12353 if (cur->hw.fb->modifier != new->hw.fb->modifier || 12354 cur->hw.rotation != new->hw.rotation || 12355 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 12356 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 12357 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 12358 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 12359 return true; 12360 12361 return false; 12362 } 12363 12364 static bool needs_scaling(const struct intel_plane_state *state) 12365 { 12366 int src_w = drm_rect_width(&state->uapi.src) >> 16; 12367 int src_h = drm_rect_height(&state->uapi.src) >> 16; 12368 int dst_w = drm_rect_width(&state->uapi.dst); 12369 int dst_h = drm_rect_height(&state->uapi.dst); 12370 12371 return (src_w != dst_w || src_h != dst_h); 12372 } 12373 12374 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 12375 struct intel_crtc_state *crtc_state, 12376 const struct intel_plane_state *old_plane_state, 12377 struct intel_plane_state *plane_state) 12378 { 12379 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12380 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 12381 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12382 bool mode_changed = needs_modeset(crtc_state); 12383 bool was_crtc_enabled = old_crtc_state->hw.active; 12384 bool is_crtc_enabled = crtc_state->hw.active; 12385 bool turn_off, turn_on, visible, was_visible; 12386 int ret; 12387 12388 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 12389 ret = skl_update_scaler_plane(crtc_state, plane_state); 12390 if (ret) 12391 return ret; 12392 } 12393 12394 was_visible = old_plane_state->uapi.visible; 12395 visible = plane_state->uapi.visible; 12396 12397 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 12398 was_visible = false; 12399 12400 /* 12401 * Visibility is calculated as if the crtc was on, but 12402 * after scaler setup everything depends on it being off 12403 * when the crtc isn't active. 12404 * 12405 * FIXME this is wrong for watermarks. Watermarks should also 12406 * be computed as if the pipe would be active. Perhaps move 12407 * per-plane wm computation to the .check_plane() hook, and 12408 * only combine the results from all planes in the current place? 12409 */ 12410 if (!is_crtc_enabled) { 12411 intel_plane_set_invisible(crtc_state, plane_state); 12412 visible = false; 12413 } 12414 12415 if (!was_visible && !visible) 12416 return 0; 12417 12418 turn_off = was_visible && (!visible || mode_changed); 12419 turn_on = visible && (!was_visible || mode_changed); 12420 12421 drm_dbg_atomic(&dev_priv->drm, 12422 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 12423 crtc->base.base.id, crtc->base.name, 12424 plane->base.base.id, plane->base.name, 12425 was_visible, visible, 12426 turn_off, turn_on, mode_changed); 12427 12428 if (turn_on) { 12429 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 12430 crtc_state->update_wm_pre = true; 12431 12432 /* must disable cxsr around plane enable/disable */ 12433 if (plane->id != PLANE_CURSOR) 12434 crtc_state->disable_cxsr = true; 12435 } else if (turn_off) { 12436 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 12437 crtc_state->update_wm_post = true; 12438 12439 /* must disable cxsr around plane enable/disable */ 12440 if (plane->id != PLANE_CURSOR) 12441 crtc_state->disable_cxsr = true; 12442 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 12443 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) { 12444 /* FIXME bollocks */ 12445 crtc_state->update_wm_pre = true; 12446 crtc_state->update_wm_post = true; 12447 } 12448 } 12449 12450 if (visible || was_visible) 12451 crtc_state->fb_bits |= plane->frontbuffer_bit; 12452 12453 /* 12454 * ILK/SNB DVSACNTR/Sprite Enable 12455 * IVB SPR_CTL/Sprite Enable 12456 * "When in Self Refresh Big FIFO mode, a write to enable the 12457 * plane will be internally buffered and delayed while Big FIFO 12458 * mode is exiting." 12459 * 12460 * Which means that enabling the sprite can take an extra frame 12461 * when we start in big FIFO mode (LP1+). Thus we need to drop 12462 * down to LP0 and wait for vblank in order to make sure the 12463 * sprite gets enabled on the next vblank after the register write. 12464 * Doing otherwise would risk enabling the sprite one frame after 12465 * we've already signalled flip completion. We can resume LP1+ 12466 * once the sprite has been enabled. 12467 * 12468 * 12469 * WaCxSRDisabledForSpriteScaling:ivb 12470 * IVB SPR_SCALE/Scaling Enable 12471 * "Low Power watermarks must be disabled for at least one 12472 * frame before enabling sprite scaling, and kept disabled 12473 * until sprite scaling is disabled." 12474 * 12475 * ILK/SNB DVSASCALE/Scaling Enable 12476 * "When in Self Refresh Big FIFO mode, scaling enable will be 12477 * masked off while Big FIFO mode is exiting." 12478 * 12479 * Despite the w/a only being listed for IVB we assume that 12480 * the ILK/SNB note has similar ramifications, hence we apply 12481 * the w/a on all three platforms. 12482 * 12483 * With experimental results seems this is needed also for primary 12484 * plane, not only sprite plane. 12485 */ 12486 if (plane->id != PLANE_CURSOR && 12487 (IS_GEN_RANGE(dev_priv, 5, 6) || 12488 IS_IVYBRIDGE(dev_priv)) && 12489 (turn_on || (!needs_scaling(old_plane_state) && 12490 needs_scaling(plane_state)))) 12491 crtc_state->disable_lp_wm = true; 12492 12493 return 0; 12494 } 12495 12496 static bool encoders_cloneable(const struct intel_encoder *a, 12497 const struct intel_encoder *b) 12498 { 12499 /* masks could be asymmetric, so check both ways */ 12500 return a == b || (a->cloneable & (1 << b->type) && 12501 b->cloneable & (1 << a->type)); 12502 } 12503 12504 static bool check_single_encoder_cloning(struct drm_atomic_state *state, 12505 struct intel_crtc *crtc, 12506 struct intel_encoder *encoder) 12507 { 12508 struct intel_encoder *source_encoder; 12509 struct drm_connector *connector; 12510 struct drm_connector_state *connector_state; 12511 int i; 12512 12513 for_each_new_connector_in_state(state, connector, connector_state, i) { 12514 if (connector_state->crtc != &crtc->base) 12515 continue; 12516 12517 source_encoder = 12518 to_intel_encoder(connector_state->best_encoder); 12519 if (!encoders_cloneable(encoder, source_encoder)) 12520 return false; 12521 } 12522 12523 return true; 12524 } 12525 12526 static int icl_add_linked_planes(struct intel_atomic_state *state) 12527 { 12528 struct intel_plane *plane, *linked; 12529 struct intel_plane_state *plane_state, *linked_plane_state; 12530 int i; 12531 12532 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12533 linked = plane_state->planar_linked_plane; 12534 12535 if (!linked) 12536 continue; 12537 12538 linked_plane_state = intel_atomic_get_plane_state(state, linked); 12539 if (IS_ERR(linked_plane_state)) 12540 return PTR_ERR(linked_plane_state); 12541 12542 drm_WARN_ON(state->base.dev, 12543 linked_plane_state->planar_linked_plane != plane); 12544 drm_WARN_ON(state->base.dev, 12545 linked_plane_state->planar_slave == plane_state->planar_slave); 12546 } 12547 12548 return 0; 12549 } 12550 12551 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 12552 { 12553 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12554 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12555 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 12556 struct intel_plane *plane, *linked; 12557 struct intel_plane_state *plane_state; 12558 int i; 12559 12560 if (INTEL_GEN(dev_priv) < 11) 12561 return 0; 12562 12563 /* 12564 * Destroy all old plane links and make the slave plane invisible 12565 * in the crtc_state->active_planes mask. 12566 */ 12567 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12568 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 12569 continue; 12570 12571 plane_state->planar_linked_plane = NULL; 12572 if (plane_state->planar_slave && !plane_state->uapi.visible) { 12573 crtc_state->active_planes &= ~BIT(plane->id); 12574 crtc_state->update_planes |= BIT(plane->id); 12575 } 12576 12577 plane_state->planar_slave = false; 12578 } 12579 12580 if (!crtc_state->nv12_planes) 12581 return 0; 12582 12583 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12584 struct intel_plane_state *linked_state = NULL; 12585 12586 if (plane->pipe != crtc->pipe || 12587 !(crtc_state->nv12_planes & BIT(plane->id))) 12588 continue; 12589 12590 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 12591 if (!icl_is_nv12_y_plane(dev_priv, linked->id)) 12592 continue; 12593 12594 if (crtc_state->active_planes & BIT(linked->id)) 12595 continue; 12596 12597 linked_state = intel_atomic_get_plane_state(state, linked); 12598 if (IS_ERR(linked_state)) 12599 return PTR_ERR(linked_state); 12600 12601 break; 12602 } 12603 12604 if (!linked_state) { 12605 drm_dbg_kms(&dev_priv->drm, 12606 "Need %d free Y planes for planar YUV\n", 12607 hweight8(crtc_state->nv12_planes)); 12608 12609 return -EINVAL; 12610 } 12611 12612 plane_state->planar_linked_plane = linked; 12613 12614 linked_state->planar_slave = true; 12615 linked_state->planar_linked_plane = plane; 12616 crtc_state->active_planes |= BIT(linked->id); 12617 crtc_state->update_planes |= BIT(linked->id); 12618 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 12619 linked->base.name, plane->base.name); 12620 12621 /* Copy parameters to slave plane */ 12622 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 12623 linked_state->color_ctl = plane_state->color_ctl; 12624 linked_state->view = plane_state->view; 12625 memcpy(linked_state->color_plane, plane_state->color_plane, 12626 sizeof(linked_state->color_plane)); 12627 12628 intel_plane_copy_uapi_to_hw_state(linked_state, plane_state); 12629 linked_state->uapi.src = plane_state->uapi.src; 12630 linked_state->uapi.dst = plane_state->uapi.dst; 12631 12632 if (icl_is_hdr_plane(dev_priv, plane->id)) { 12633 if (linked->id == PLANE_SPRITE5) 12634 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 12635 else if (linked->id == PLANE_SPRITE4) 12636 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 12637 else if (linked->id == PLANE_SPRITE3) 12638 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL; 12639 else if (linked->id == PLANE_SPRITE2) 12640 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL; 12641 else 12642 MISSING_CASE(linked->id); 12643 } 12644 } 12645 12646 return 0; 12647 } 12648 12649 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 12650 { 12651 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 12652 struct intel_atomic_state *state = 12653 to_intel_atomic_state(new_crtc_state->uapi.state); 12654 const struct intel_crtc_state *old_crtc_state = 12655 intel_atomic_get_old_crtc_state(state, crtc); 12656 12657 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 12658 } 12659 12660 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 12661 { 12662 const struct drm_display_mode *adjusted_mode = 12663 &crtc_state->hw.adjusted_mode; 12664 int linetime_wm; 12665 12666 if (!crtc_state->hw.enable) 12667 return 0; 12668 12669 linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, 12670 adjusted_mode->crtc_clock); 12671 12672 return min(linetime_wm, 0x1ff); 12673 } 12674 12675 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 12676 const struct intel_cdclk_state *cdclk_state) 12677 { 12678 const struct drm_display_mode *adjusted_mode = 12679 &crtc_state->hw.adjusted_mode; 12680 int linetime_wm; 12681 12682 if (!crtc_state->hw.enable) 12683 return 0; 12684 12685 linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, 12686 cdclk_state->logical.cdclk); 12687 12688 return min(linetime_wm, 0x1ff); 12689 } 12690 12691 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 12692 { 12693 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12694 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12695 const struct drm_display_mode *adjusted_mode = 12696 &crtc_state->hw.adjusted_mode; 12697 int linetime_wm; 12698 12699 if (!crtc_state->hw.enable) 12700 return 0; 12701 12702 linetime_wm = DIV_ROUND_UP(adjusted_mode->crtc_htotal * 1000 * 8, 12703 crtc_state->pixel_rate); 12704 12705 /* Display WA #1135: BXT:ALL GLK:ALL */ 12706 if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled) 12707 linetime_wm /= 2; 12708 12709 return min(linetime_wm, 0x1ff); 12710 } 12711 12712 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 12713 struct intel_crtc *crtc) 12714 { 12715 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12716 struct intel_crtc_state *crtc_state = 12717 intel_atomic_get_new_crtc_state(state, crtc); 12718 const struct intel_cdclk_state *cdclk_state; 12719 12720 if (INTEL_GEN(dev_priv) >= 9) 12721 crtc_state->linetime = skl_linetime_wm(crtc_state); 12722 else 12723 crtc_state->linetime = hsw_linetime_wm(crtc_state); 12724 12725 if (!hsw_crtc_supports_ips(crtc)) 12726 return 0; 12727 12728 cdclk_state = intel_atomic_get_cdclk_state(state); 12729 if (IS_ERR(cdclk_state)) 12730 return PTR_ERR(cdclk_state); 12731 12732 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 12733 cdclk_state); 12734 12735 return 0; 12736 } 12737 12738 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 12739 struct intel_crtc *crtc) 12740 { 12741 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12742 struct intel_crtc_state *crtc_state = 12743 intel_atomic_get_new_crtc_state(state, crtc); 12744 bool mode_changed = needs_modeset(crtc_state); 12745 int ret; 12746 12747 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) && 12748 mode_changed && !crtc_state->hw.active) 12749 crtc_state->update_wm_post = true; 12750 12751 if (mode_changed && crtc_state->hw.enable && 12752 dev_priv->display.crtc_compute_clock && 12753 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 12754 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 12755 if (ret) 12756 return ret; 12757 } 12758 12759 /* 12760 * May need to update pipe gamma enable bits 12761 * when C8 planes are getting enabled/disabled. 12762 */ 12763 if (c8_planes_changed(crtc_state)) 12764 crtc_state->uapi.color_mgmt_changed = true; 12765 12766 if (mode_changed || crtc_state->update_pipe || 12767 crtc_state->uapi.color_mgmt_changed) { 12768 ret = intel_color_check(crtc_state); 12769 if (ret) 12770 return ret; 12771 } 12772 12773 if (dev_priv->display.compute_pipe_wm) { 12774 ret = dev_priv->display.compute_pipe_wm(crtc_state); 12775 if (ret) { 12776 drm_dbg_kms(&dev_priv->drm, 12777 "Target pipe watermarks are invalid\n"); 12778 return ret; 12779 } 12780 } 12781 12782 if (dev_priv->display.compute_intermediate_wm) { 12783 if (drm_WARN_ON(&dev_priv->drm, 12784 !dev_priv->display.compute_pipe_wm)) 12785 return 0; 12786 12787 /* 12788 * Calculate 'intermediate' watermarks that satisfy both the 12789 * old state and the new state. We can program these 12790 * immediately. 12791 */ 12792 ret = dev_priv->display.compute_intermediate_wm(crtc_state); 12793 if (ret) { 12794 drm_dbg_kms(&dev_priv->drm, 12795 "No valid intermediate pipe watermarks are possible\n"); 12796 return ret; 12797 } 12798 } 12799 12800 if (INTEL_GEN(dev_priv) >= 9) { 12801 if (mode_changed || crtc_state->update_pipe) { 12802 ret = skl_update_scaler_crtc(crtc_state); 12803 if (ret) 12804 return ret; 12805 } 12806 12807 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 12808 if (ret) 12809 return ret; 12810 } 12811 12812 if (HAS_IPS(dev_priv)) { 12813 ret = hsw_compute_ips_config(crtc_state); 12814 if (ret) 12815 return ret; 12816 } 12817 12818 if (INTEL_GEN(dev_priv) >= 9 || 12819 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12820 ret = hsw_compute_linetime_wm(state, crtc); 12821 if (ret) 12822 return ret; 12823 12824 } 12825 12826 if (!mode_changed) 12827 intel_psr2_sel_fetch_update(state, crtc); 12828 12829 return 0; 12830 } 12831 12832 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 12833 { 12834 struct intel_connector *connector; 12835 struct drm_connector_list_iter conn_iter; 12836 12837 drm_connector_list_iter_begin(dev, &conn_iter); 12838 for_each_intel_connector_iter(connector, &conn_iter) { 12839 if (connector->base.state->crtc) 12840 drm_connector_put(&connector->base); 12841 12842 if (connector->base.encoder) { 12843 connector->base.state->best_encoder = 12844 connector->base.encoder; 12845 connector->base.state->crtc = 12846 connector->base.encoder->crtc; 12847 12848 drm_connector_get(&connector->base); 12849 } else { 12850 connector->base.state->best_encoder = NULL; 12851 connector->base.state->crtc = NULL; 12852 } 12853 } 12854 drm_connector_list_iter_end(&conn_iter); 12855 } 12856 12857 static int 12858 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 12859 struct intel_crtc_state *pipe_config) 12860 { 12861 struct drm_connector *connector = conn_state->connector; 12862 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 12863 const struct drm_display_info *info = &connector->display_info; 12864 int bpp; 12865 12866 switch (conn_state->max_bpc) { 12867 case 6 ... 7: 12868 bpp = 6 * 3; 12869 break; 12870 case 8 ... 9: 12871 bpp = 8 * 3; 12872 break; 12873 case 10 ... 11: 12874 bpp = 10 * 3; 12875 break; 12876 case 12: 12877 bpp = 12 * 3; 12878 break; 12879 default: 12880 return -EINVAL; 12881 } 12882 12883 if (bpp < pipe_config->pipe_bpp) { 12884 drm_dbg_kms(&i915->drm, 12885 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 12886 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 12887 connector->base.id, connector->name, 12888 bpp, 3 * info->bpc, 12889 3 * conn_state->max_requested_bpc, 12890 pipe_config->pipe_bpp); 12891 12892 pipe_config->pipe_bpp = bpp; 12893 } 12894 12895 return 0; 12896 } 12897 12898 static int 12899 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 12900 struct intel_crtc_state *pipe_config) 12901 { 12902 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12903 struct drm_atomic_state *state = pipe_config->uapi.state; 12904 struct drm_connector *connector; 12905 struct drm_connector_state *connector_state; 12906 int bpp, i; 12907 12908 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 12909 IS_CHERRYVIEW(dev_priv))) 12910 bpp = 10*3; 12911 else if (INTEL_GEN(dev_priv) >= 5) 12912 bpp = 12*3; 12913 else 12914 bpp = 8*3; 12915 12916 pipe_config->pipe_bpp = bpp; 12917 12918 /* Clamp display bpp to connector max bpp */ 12919 for_each_new_connector_in_state(state, connector, connector_state, i) { 12920 int ret; 12921 12922 if (connector_state->crtc != &crtc->base) 12923 continue; 12924 12925 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 12926 if (ret) 12927 return ret; 12928 } 12929 12930 return 0; 12931 } 12932 12933 static void intel_dump_crtc_timings(struct drm_i915_private *i915, 12934 const struct drm_display_mode *mode) 12935 { 12936 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, " 12937 "type: 0x%x flags: 0x%x\n", 12938 mode->crtc_clock, 12939 mode->crtc_hdisplay, mode->crtc_hsync_start, 12940 mode->crtc_hsync_end, mode->crtc_htotal, 12941 mode->crtc_vdisplay, mode->crtc_vsync_start, 12942 mode->crtc_vsync_end, mode->crtc_vtotal, 12943 mode->type, mode->flags); 12944 } 12945 12946 static void 12947 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 12948 const char *id, unsigned int lane_count, 12949 const struct intel_link_m_n *m_n) 12950 { 12951 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 12952 12953 drm_dbg_kms(&i915->drm, 12954 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 12955 id, lane_count, 12956 m_n->gmch_m, m_n->gmch_n, 12957 m_n->link_m, m_n->link_n, m_n->tu); 12958 } 12959 12960 static void 12961 intel_dump_infoframe(struct drm_i915_private *dev_priv, 12962 const union hdmi_infoframe *frame) 12963 { 12964 if (!drm_debug_enabled(DRM_UT_KMS)) 12965 return; 12966 12967 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 12968 } 12969 12970 static void 12971 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv, 12972 const struct drm_dp_vsc_sdp *vsc) 12973 { 12974 if (!drm_debug_enabled(DRM_UT_KMS)) 12975 return; 12976 12977 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc); 12978 } 12979 12980 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 12981 12982 static const char * const output_type_str[] = { 12983 OUTPUT_TYPE(UNUSED), 12984 OUTPUT_TYPE(ANALOG), 12985 OUTPUT_TYPE(DVO), 12986 OUTPUT_TYPE(SDVO), 12987 OUTPUT_TYPE(LVDS), 12988 OUTPUT_TYPE(TVOUT), 12989 OUTPUT_TYPE(HDMI), 12990 OUTPUT_TYPE(DP), 12991 OUTPUT_TYPE(EDP), 12992 OUTPUT_TYPE(DSI), 12993 OUTPUT_TYPE(DDI), 12994 OUTPUT_TYPE(DP_MST), 12995 }; 12996 12997 #undef OUTPUT_TYPE 12998 12999 static void snprintf_output_types(char *buf, size_t len, 13000 unsigned int output_types) 13001 { 13002 char *str = buf; 13003 int i; 13004 13005 str[0] = '\0'; 13006 13007 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 13008 int r; 13009 13010 if ((output_types & BIT(i)) == 0) 13011 continue; 13012 13013 r = snprintf(str, len, "%s%s", 13014 str != buf ? "," : "", output_type_str[i]); 13015 if (r >= len) 13016 break; 13017 str += r; 13018 len -= r; 13019 13020 output_types &= ~BIT(i); 13021 } 13022 13023 WARN_ON_ONCE(output_types != 0); 13024 } 13025 13026 static const char * const output_format_str[] = { 13027 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid", 13028 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 13029 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 13030 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 13031 }; 13032 13033 static const char *output_formats(enum intel_output_format format) 13034 { 13035 if (format >= ARRAY_SIZE(output_format_str)) 13036 format = INTEL_OUTPUT_FORMAT_INVALID; 13037 return output_format_str[format]; 13038 } 13039 13040 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 13041 { 13042 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 13043 struct drm_i915_private *i915 = to_i915(plane->base.dev); 13044 const struct drm_framebuffer *fb = plane_state->hw.fb; 13045 struct drm_format_name_buf format_name; 13046 13047 if (!fb) { 13048 drm_dbg_kms(&i915->drm, 13049 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 13050 plane->base.base.id, plane->base.name, 13051 yesno(plane_state->uapi.visible)); 13052 return; 13053 } 13054 13055 drm_dbg_kms(&i915->drm, 13056 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n", 13057 plane->base.base.id, plane->base.name, 13058 fb->base.id, fb->width, fb->height, 13059 drm_get_format_name(fb->format->format, &format_name), 13060 yesno(plane_state->uapi.visible)); 13061 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 13062 plane_state->hw.rotation, plane_state->scaler_id); 13063 if (plane_state->uapi.visible) 13064 drm_dbg_kms(&i915->drm, 13065 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 13066 DRM_RECT_FP_ARG(&plane_state->uapi.src), 13067 DRM_RECT_ARG(&plane_state->uapi.dst)); 13068 } 13069 13070 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 13071 struct intel_atomic_state *state, 13072 const char *context) 13073 { 13074 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 13075 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13076 const struct intel_plane_state *plane_state; 13077 struct intel_plane *plane; 13078 char buf[64]; 13079 int i; 13080 13081 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 13082 crtc->base.base.id, crtc->base.name, 13083 yesno(pipe_config->hw.enable), context); 13084 13085 if (!pipe_config->hw.enable) 13086 goto dump_planes; 13087 13088 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 13089 drm_dbg_kms(&dev_priv->drm, 13090 "active: %s, output_types: %s (0x%x), output format: %s\n", 13091 yesno(pipe_config->hw.active), 13092 buf, pipe_config->output_types, 13093 output_formats(pipe_config->output_format)); 13094 13095 drm_dbg_kms(&dev_priv->drm, 13096 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 13097 transcoder_name(pipe_config->cpu_transcoder), 13098 pipe_config->pipe_bpp, pipe_config->dither); 13099 13100 drm_dbg_kms(&dev_priv->drm, 13101 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n", 13102 transcoder_name(pipe_config->master_transcoder), 13103 pipe_config->sync_mode_slaves_mask); 13104 13105 if (pipe_config->has_pch_encoder) 13106 intel_dump_m_n_config(pipe_config, "fdi", 13107 pipe_config->fdi_lanes, 13108 &pipe_config->fdi_m_n); 13109 13110 if (intel_crtc_has_dp_encoder(pipe_config)) { 13111 intel_dump_m_n_config(pipe_config, "dp m_n", 13112 pipe_config->lane_count, &pipe_config->dp_m_n); 13113 if (pipe_config->has_drrs) 13114 intel_dump_m_n_config(pipe_config, "dp m2_n2", 13115 pipe_config->lane_count, 13116 &pipe_config->dp_m2_n2); 13117 } 13118 13119 drm_dbg_kms(&dev_priv->drm, 13120 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 13121 pipe_config->has_audio, pipe_config->has_infoframe, 13122 pipe_config->infoframes.enable); 13123 13124 if (pipe_config->infoframes.enable & 13125 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 13126 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 13127 pipe_config->infoframes.gcp); 13128 if (pipe_config->infoframes.enable & 13129 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 13130 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 13131 if (pipe_config->infoframes.enable & 13132 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 13133 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 13134 if (pipe_config->infoframes.enable & 13135 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 13136 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 13137 if (pipe_config->infoframes.enable & 13138 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) 13139 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 13140 if (pipe_config->infoframes.enable & 13141 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) 13142 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 13143 if (pipe_config->infoframes.enable & 13144 intel_hdmi_infoframe_enable(DP_SDP_VSC)) 13145 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc); 13146 13147 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 13148 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 13149 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 13150 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 13151 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode); 13152 drm_dbg_kms(&dev_priv->drm, 13153 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 13154 pipe_config->port_clock, 13155 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 13156 pipe_config->pixel_rate); 13157 13158 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 13159 pipe_config->linetime, pipe_config->ips_linetime); 13160 13161 if (INTEL_GEN(dev_priv) >= 9) 13162 drm_dbg_kms(&dev_priv->drm, 13163 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 13164 crtc->num_scalers, 13165 pipe_config->scaler_state.scaler_users, 13166 pipe_config->scaler_state.scaler_id); 13167 13168 if (HAS_GMCH(dev_priv)) 13169 drm_dbg_kms(&dev_priv->drm, 13170 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 13171 pipe_config->gmch_pfit.control, 13172 pipe_config->gmch_pfit.pgm_ratios, 13173 pipe_config->gmch_pfit.lvds_border_bits); 13174 else 13175 drm_dbg_kms(&dev_priv->drm, 13176 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n", 13177 DRM_RECT_ARG(&pipe_config->pch_pfit.dst), 13178 enableddisabled(pipe_config->pch_pfit.enabled), 13179 yesno(pipe_config->pch_pfit.force_thru)); 13180 13181 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 13182 pipe_config->ips_enabled, pipe_config->double_wide); 13183 13184 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 13185 13186 if (IS_CHERRYVIEW(dev_priv)) 13187 drm_dbg_kms(&dev_priv->drm, 13188 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 13189 pipe_config->cgm_mode, pipe_config->gamma_mode, 13190 pipe_config->gamma_enable, pipe_config->csc_enable); 13191 else 13192 drm_dbg_kms(&dev_priv->drm, 13193 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 13194 pipe_config->csc_mode, pipe_config->gamma_mode, 13195 pipe_config->gamma_enable, pipe_config->csc_enable); 13196 13197 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 13198 transcoder_name(pipe_config->mst_master_transcoder)); 13199 13200 dump_planes: 13201 if (!state) 13202 return; 13203 13204 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 13205 if (plane->pipe == crtc->pipe) 13206 intel_dump_plane_state(plane_state); 13207 } 13208 } 13209 13210 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 13211 { 13212 struct drm_device *dev = state->base.dev; 13213 struct drm_connector *connector; 13214 struct drm_connector_list_iter conn_iter; 13215 unsigned int used_ports = 0; 13216 unsigned int used_mst_ports = 0; 13217 bool ret = true; 13218 13219 /* 13220 * We're going to peek into connector->state, 13221 * hence connection_mutex must be held. 13222 */ 13223 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 13224 13225 /* 13226 * Walk the connector list instead of the encoder 13227 * list to detect the problem on ddi platforms 13228 * where there's just one encoder per digital port. 13229 */ 13230 drm_connector_list_iter_begin(dev, &conn_iter); 13231 drm_for_each_connector_iter(connector, &conn_iter) { 13232 struct drm_connector_state *connector_state; 13233 struct intel_encoder *encoder; 13234 13235 connector_state = 13236 drm_atomic_get_new_connector_state(&state->base, 13237 connector); 13238 if (!connector_state) 13239 connector_state = connector->state; 13240 13241 if (!connector_state->best_encoder) 13242 continue; 13243 13244 encoder = to_intel_encoder(connector_state->best_encoder); 13245 13246 drm_WARN_ON(dev, !connector_state->crtc); 13247 13248 switch (encoder->type) { 13249 case INTEL_OUTPUT_DDI: 13250 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 13251 break; 13252 fallthrough; 13253 case INTEL_OUTPUT_DP: 13254 case INTEL_OUTPUT_HDMI: 13255 case INTEL_OUTPUT_EDP: 13256 /* the same port mustn't appear more than once */ 13257 if (used_ports & BIT(encoder->port)) 13258 ret = false; 13259 13260 used_ports |= BIT(encoder->port); 13261 break; 13262 case INTEL_OUTPUT_DP_MST: 13263 used_mst_ports |= 13264 1 << encoder->port; 13265 break; 13266 default: 13267 break; 13268 } 13269 } 13270 drm_connector_list_iter_end(&conn_iter); 13271 13272 /* can't mix MST and SST/HDMI on the same port */ 13273 if (used_ports & used_mst_ports) 13274 return false; 13275 13276 return ret; 13277 } 13278 13279 static void 13280 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state) 13281 { 13282 intel_crtc_copy_color_blobs(crtc_state); 13283 } 13284 13285 static void 13286 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state) 13287 { 13288 crtc_state->hw.enable = crtc_state->uapi.enable; 13289 crtc_state->hw.active = crtc_state->uapi.active; 13290 crtc_state->hw.mode = crtc_state->uapi.mode; 13291 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 13292 intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state); 13293 } 13294 13295 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 13296 { 13297 crtc_state->uapi.enable = crtc_state->hw.enable; 13298 crtc_state->uapi.active = crtc_state->hw.active; 13299 drm_WARN_ON(crtc_state->uapi.crtc->dev, 13300 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 13301 13302 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 13303 13304 /* copy color blobs to uapi */ 13305 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 13306 crtc_state->hw.degamma_lut); 13307 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 13308 crtc_state->hw.gamma_lut); 13309 drm_property_replace_blob(&crtc_state->uapi.ctm, 13310 crtc_state->hw.ctm); 13311 } 13312 13313 static int 13314 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state) 13315 { 13316 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 13317 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13318 struct intel_crtc_state *saved_state; 13319 13320 saved_state = intel_crtc_state_alloc(crtc); 13321 if (!saved_state) 13322 return -ENOMEM; 13323 13324 /* free the old crtc_state->hw members */ 13325 intel_crtc_free_hw_state(crtc_state); 13326 13327 /* FIXME: before the switch to atomic started, a new pipe_config was 13328 * kzalloc'd. Code that depends on any field being zero should be 13329 * fixed, so that the crtc_state can be safely duplicated. For now, 13330 * only fields that are know to not cause problems are preserved. */ 13331 13332 saved_state->uapi = crtc_state->uapi; 13333 saved_state->scaler_state = crtc_state->scaler_state; 13334 saved_state->shared_dpll = crtc_state->shared_dpll; 13335 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 13336 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 13337 sizeof(saved_state->icl_port_dplls)); 13338 saved_state->crc_enabled = crtc_state->crc_enabled; 13339 if (IS_G4X(dev_priv) || 13340 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13341 saved_state->wm = crtc_state->wm; 13342 13343 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 13344 kfree(saved_state); 13345 13346 intel_crtc_copy_uapi_to_hw_state(crtc_state); 13347 13348 return 0; 13349 } 13350 13351 static int 13352 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config) 13353 { 13354 struct drm_crtc *crtc = pipe_config->uapi.crtc; 13355 struct drm_atomic_state *state = pipe_config->uapi.state; 13356 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 13357 struct drm_connector *connector; 13358 struct drm_connector_state *connector_state; 13359 int base_bpp, ret, i; 13360 bool retry = true; 13361 13362 pipe_config->cpu_transcoder = 13363 (enum transcoder) to_intel_crtc(crtc)->pipe; 13364 13365 /* 13366 * Sanitize sync polarity flags based on requested ones. If neither 13367 * positive or negative polarity is requested, treat this as meaning 13368 * negative polarity. 13369 */ 13370 if (!(pipe_config->hw.adjusted_mode.flags & 13371 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 13372 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 13373 13374 if (!(pipe_config->hw.adjusted_mode.flags & 13375 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 13376 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 13377 13378 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 13379 pipe_config); 13380 if (ret) 13381 return ret; 13382 13383 base_bpp = pipe_config->pipe_bpp; 13384 13385 /* 13386 * Determine the real pipe dimensions. Note that stereo modes can 13387 * increase the actual pipe size due to the frame doubling and 13388 * insertion of additional space for blanks between the frame. This 13389 * is stored in the crtc timings. We use the requested mode to do this 13390 * computation to clearly distinguish it from the adjusted mode, which 13391 * can be changed by the connectors in the below retry loop. 13392 */ 13393 drm_mode_get_hv_timing(&pipe_config->hw.mode, 13394 &pipe_config->pipe_src_w, 13395 &pipe_config->pipe_src_h); 13396 13397 for_each_new_connector_in_state(state, connector, connector_state, i) { 13398 struct intel_encoder *encoder = 13399 to_intel_encoder(connector_state->best_encoder); 13400 13401 if (connector_state->crtc != crtc) 13402 continue; 13403 13404 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 13405 drm_dbg_kms(&i915->drm, 13406 "rejecting invalid cloning configuration\n"); 13407 return -EINVAL; 13408 } 13409 13410 /* 13411 * Determine output_types before calling the .compute_config() 13412 * hooks so that the hooks can use this information safely. 13413 */ 13414 if (encoder->compute_output_type) 13415 pipe_config->output_types |= 13416 BIT(encoder->compute_output_type(encoder, pipe_config, 13417 connector_state)); 13418 else 13419 pipe_config->output_types |= BIT(encoder->type); 13420 } 13421 13422 encoder_retry: 13423 /* Ensure the port clock defaults are reset when retrying. */ 13424 pipe_config->port_clock = 0; 13425 pipe_config->pixel_multiplier = 1; 13426 13427 /* Fill in default crtc timings, allow encoders to overwrite them. */ 13428 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 13429 CRTC_STEREO_DOUBLE); 13430 13431 /* Pass our mode to the connectors and the CRTC to give them a chance to 13432 * adjust it according to limitations or connector properties, and also 13433 * a chance to reject the mode entirely. 13434 */ 13435 for_each_new_connector_in_state(state, connector, connector_state, i) { 13436 struct intel_encoder *encoder = 13437 to_intel_encoder(connector_state->best_encoder); 13438 13439 if (connector_state->crtc != crtc) 13440 continue; 13441 13442 ret = encoder->compute_config(encoder, pipe_config, 13443 connector_state); 13444 if (ret < 0) { 13445 if (ret != -EDEADLK) 13446 drm_dbg_kms(&i915->drm, 13447 "Encoder config failure: %d\n", 13448 ret); 13449 return ret; 13450 } 13451 } 13452 13453 /* Set default port clock if not overwritten by the encoder. Needs to be 13454 * done afterwards in case the encoder adjusts the mode. */ 13455 if (!pipe_config->port_clock) 13456 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 13457 * pipe_config->pixel_multiplier; 13458 13459 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 13460 if (ret == -EDEADLK) 13461 return ret; 13462 if (ret < 0) { 13463 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 13464 return ret; 13465 } 13466 13467 if (ret == RETRY) { 13468 if (drm_WARN(&i915->drm, !retry, 13469 "loop in pipe configuration computation\n")) 13470 return -EINVAL; 13471 13472 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 13473 retry = false; 13474 goto encoder_retry; 13475 } 13476 13477 /* Dithering seems to not pass-through bits correctly when it should, so 13478 * only enable it on 6bpc panels and when its not a compliance 13479 * test requesting 6bpc video pattern. 13480 */ 13481 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 13482 !pipe_config->dither_force_disable; 13483 drm_dbg_kms(&i915->drm, 13484 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 13485 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 13486 13487 return 0; 13488 } 13489 13490 static int 13491 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 13492 { 13493 struct intel_atomic_state *state = 13494 to_intel_atomic_state(crtc_state->uapi.state); 13495 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 13496 struct drm_connector_state *conn_state; 13497 struct drm_connector *connector; 13498 int i; 13499 13500 for_each_new_connector_in_state(&state->base, connector, 13501 conn_state, i) { 13502 struct intel_encoder *encoder = 13503 to_intel_encoder(conn_state->best_encoder); 13504 int ret; 13505 13506 if (conn_state->crtc != &crtc->base || 13507 !encoder->compute_config_late) 13508 continue; 13509 13510 ret = encoder->compute_config_late(encoder, crtc_state, 13511 conn_state); 13512 if (ret) 13513 return ret; 13514 } 13515 13516 return 0; 13517 } 13518 13519 bool intel_fuzzy_clock_check(int clock1, int clock2) 13520 { 13521 int diff; 13522 13523 if (clock1 == clock2) 13524 return true; 13525 13526 if (!clock1 || !clock2) 13527 return false; 13528 13529 diff = abs(clock1 - clock2); 13530 13531 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 13532 return true; 13533 13534 return false; 13535 } 13536 13537 static bool 13538 intel_compare_m_n(unsigned int m, unsigned int n, 13539 unsigned int m2, unsigned int n2, 13540 bool exact) 13541 { 13542 if (m == m2 && n == n2) 13543 return true; 13544 13545 if (exact || !m || !n || !m2 || !n2) 13546 return false; 13547 13548 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 13549 13550 if (n > n2) { 13551 while (n > n2) { 13552 m2 <<= 1; 13553 n2 <<= 1; 13554 } 13555 } else if (n < n2) { 13556 while (n < n2) { 13557 m <<= 1; 13558 n <<= 1; 13559 } 13560 } 13561 13562 if (n != n2) 13563 return false; 13564 13565 return intel_fuzzy_clock_check(m, m2); 13566 } 13567 13568 static bool 13569 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 13570 const struct intel_link_m_n *m2_n2, 13571 bool exact) 13572 { 13573 return m_n->tu == m2_n2->tu && 13574 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 13575 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 13576 intel_compare_m_n(m_n->link_m, m_n->link_n, 13577 m2_n2->link_m, m2_n2->link_n, exact); 13578 } 13579 13580 static bool 13581 intel_compare_infoframe(const union hdmi_infoframe *a, 13582 const union hdmi_infoframe *b) 13583 { 13584 return memcmp(a, b, sizeof(*a)) == 0; 13585 } 13586 13587 static bool 13588 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, 13589 const struct drm_dp_vsc_sdp *b) 13590 { 13591 return memcmp(a, b, sizeof(*a)) == 0; 13592 } 13593 13594 static void 13595 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 13596 bool fastset, const char *name, 13597 const union hdmi_infoframe *a, 13598 const union hdmi_infoframe *b) 13599 { 13600 if (fastset) { 13601 if (!drm_debug_enabled(DRM_UT_KMS)) 13602 return; 13603 13604 drm_dbg_kms(&dev_priv->drm, 13605 "fastset mismatch in %s infoframe\n", name); 13606 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 13607 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 13608 drm_dbg_kms(&dev_priv->drm, "found:\n"); 13609 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 13610 } else { 13611 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 13612 drm_err(&dev_priv->drm, "expected:\n"); 13613 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 13614 drm_err(&dev_priv->drm, "found:\n"); 13615 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 13616 } 13617 } 13618 13619 static void 13620 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, 13621 bool fastset, const char *name, 13622 const struct drm_dp_vsc_sdp *a, 13623 const struct drm_dp_vsc_sdp *b) 13624 { 13625 if (fastset) { 13626 if (!drm_debug_enabled(DRM_UT_KMS)) 13627 return; 13628 13629 drm_dbg_kms(&dev_priv->drm, 13630 "fastset mismatch in %s dp sdp\n", name); 13631 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 13632 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); 13633 drm_dbg_kms(&dev_priv->drm, "found:\n"); 13634 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); 13635 } else { 13636 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); 13637 drm_err(&dev_priv->drm, "expected:\n"); 13638 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); 13639 drm_err(&dev_priv->drm, "found:\n"); 13640 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); 13641 } 13642 } 13643 13644 static void __printf(4, 5) 13645 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 13646 const char *name, const char *format, ...) 13647 { 13648 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 13649 struct va_format vaf; 13650 va_list args; 13651 13652 va_start(args, format); 13653 vaf.fmt = format; 13654 vaf.va = &args; 13655 13656 if (fastset) 13657 drm_dbg_kms(&i915->drm, 13658 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 13659 crtc->base.base.id, crtc->base.name, name, &vaf); 13660 else 13661 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 13662 crtc->base.base.id, crtc->base.name, name, &vaf); 13663 13664 va_end(args); 13665 } 13666 13667 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 13668 { 13669 if (dev_priv->params.fastboot != -1) 13670 return dev_priv->params.fastboot; 13671 13672 /* Enable fastboot by default on Skylake and newer */ 13673 if (INTEL_GEN(dev_priv) >= 9) 13674 return true; 13675 13676 /* Enable fastboot by default on VLV and CHV */ 13677 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13678 return true; 13679 13680 /* Disabled by default on all others */ 13681 return false; 13682 } 13683 13684 static bool 13685 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 13686 const struct intel_crtc_state *pipe_config, 13687 bool fastset) 13688 { 13689 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 13690 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 13691 bool ret = true; 13692 u32 bp_gamma = 0; 13693 bool fixup_inherited = fastset && 13694 current_config->inherited && !pipe_config->inherited; 13695 13696 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 13697 drm_dbg_kms(&dev_priv->drm, 13698 "initial modeset and fastboot not set\n"); 13699 ret = false; 13700 } 13701 13702 #define PIPE_CONF_CHECK_X(name) do { \ 13703 if (current_config->name != pipe_config->name) { \ 13704 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13705 "(expected 0x%08x, found 0x%08x)", \ 13706 current_config->name, \ 13707 pipe_config->name); \ 13708 ret = false; \ 13709 } \ 13710 } while (0) 13711 13712 #define PIPE_CONF_CHECK_I(name) do { \ 13713 if (current_config->name != pipe_config->name) { \ 13714 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13715 "(expected %i, found %i)", \ 13716 current_config->name, \ 13717 pipe_config->name); \ 13718 ret = false; \ 13719 } \ 13720 } while (0) 13721 13722 #define PIPE_CONF_CHECK_BOOL(name) do { \ 13723 if (current_config->name != pipe_config->name) { \ 13724 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13725 "(expected %s, found %s)", \ 13726 yesno(current_config->name), \ 13727 yesno(pipe_config->name)); \ 13728 ret = false; \ 13729 } \ 13730 } while (0) 13731 13732 /* 13733 * Checks state where we only read out the enabling, but not the entire 13734 * state itself (like full infoframes or ELD for audio). These states 13735 * require a full modeset on bootup to fix up. 13736 */ 13737 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 13738 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 13739 PIPE_CONF_CHECK_BOOL(name); \ 13740 } else { \ 13741 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13742 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 13743 yesno(current_config->name), \ 13744 yesno(pipe_config->name)); \ 13745 ret = false; \ 13746 } \ 13747 } while (0) 13748 13749 #define PIPE_CONF_CHECK_P(name) do { \ 13750 if (current_config->name != pipe_config->name) { \ 13751 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13752 "(expected %p, found %p)", \ 13753 current_config->name, \ 13754 pipe_config->name); \ 13755 ret = false; \ 13756 } \ 13757 } while (0) 13758 13759 #define PIPE_CONF_CHECK_M_N(name) do { \ 13760 if (!intel_compare_link_m_n(¤t_config->name, \ 13761 &pipe_config->name,\ 13762 !fastset)) { \ 13763 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13764 "(expected tu %i gmch %i/%i link %i/%i, " \ 13765 "found tu %i, gmch %i/%i link %i/%i)", \ 13766 current_config->name.tu, \ 13767 current_config->name.gmch_m, \ 13768 current_config->name.gmch_n, \ 13769 current_config->name.link_m, \ 13770 current_config->name.link_n, \ 13771 pipe_config->name.tu, \ 13772 pipe_config->name.gmch_m, \ 13773 pipe_config->name.gmch_n, \ 13774 pipe_config->name.link_m, \ 13775 pipe_config->name.link_n); \ 13776 ret = false; \ 13777 } \ 13778 } while (0) 13779 13780 /* This is required for BDW+ where there is only one set of registers for 13781 * switching between high and low RR. 13782 * This macro can be used whenever a comparison has to be made between one 13783 * hw state and multiple sw state variables. 13784 */ 13785 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 13786 if (!intel_compare_link_m_n(¤t_config->name, \ 13787 &pipe_config->name, !fastset) && \ 13788 !intel_compare_link_m_n(¤t_config->alt_name, \ 13789 &pipe_config->name, !fastset)) { \ 13790 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13791 "(expected tu %i gmch %i/%i link %i/%i, " \ 13792 "or tu %i gmch %i/%i link %i/%i, " \ 13793 "found tu %i, gmch %i/%i link %i/%i)", \ 13794 current_config->name.tu, \ 13795 current_config->name.gmch_m, \ 13796 current_config->name.gmch_n, \ 13797 current_config->name.link_m, \ 13798 current_config->name.link_n, \ 13799 current_config->alt_name.tu, \ 13800 current_config->alt_name.gmch_m, \ 13801 current_config->alt_name.gmch_n, \ 13802 current_config->alt_name.link_m, \ 13803 current_config->alt_name.link_n, \ 13804 pipe_config->name.tu, \ 13805 pipe_config->name.gmch_m, \ 13806 pipe_config->name.gmch_n, \ 13807 pipe_config->name.link_m, \ 13808 pipe_config->name.link_n); \ 13809 ret = false; \ 13810 } \ 13811 } while (0) 13812 13813 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 13814 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 13815 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13816 "(%x) (expected %i, found %i)", \ 13817 (mask), \ 13818 current_config->name & (mask), \ 13819 pipe_config->name & (mask)); \ 13820 ret = false; \ 13821 } \ 13822 } while (0) 13823 13824 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 13825 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 13826 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13827 "(expected %i, found %i)", \ 13828 current_config->name, \ 13829 pipe_config->name); \ 13830 ret = false; \ 13831 } \ 13832 } while (0) 13833 13834 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 13835 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 13836 &pipe_config->infoframes.name)) { \ 13837 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 13838 ¤t_config->infoframes.name, \ 13839 &pipe_config->infoframes.name); \ 13840 ret = false; \ 13841 } \ 13842 } while (0) 13843 13844 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ 13845 if (!current_config->has_psr && !pipe_config->has_psr && \ 13846 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ 13847 &pipe_config->infoframes.name)) { \ 13848 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ 13849 ¤t_config->infoframes.name, \ 13850 &pipe_config->infoframes.name); \ 13851 ret = false; \ 13852 } \ 13853 } while (0) 13854 13855 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 13856 if (current_config->name1 != pipe_config->name1) { \ 13857 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 13858 "(expected %i, found %i, won't compare lut values)", \ 13859 current_config->name1, \ 13860 pipe_config->name1); \ 13861 ret = false;\ 13862 } else { \ 13863 if (!intel_color_lut_equal(current_config->name2, \ 13864 pipe_config->name2, pipe_config->name1, \ 13865 bit_precision)) { \ 13866 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 13867 "hw_state doesn't match sw_state"); \ 13868 ret = false; \ 13869 } \ 13870 } \ 13871 } while (0) 13872 13873 #define PIPE_CONF_QUIRK(quirk) \ 13874 ((current_config->quirks | pipe_config->quirks) & (quirk)) 13875 13876 PIPE_CONF_CHECK_I(cpu_transcoder); 13877 13878 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 13879 PIPE_CONF_CHECK_I(fdi_lanes); 13880 PIPE_CONF_CHECK_M_N(fdi_m_n); 13881 13882 PIPE_CONF_CHECK_I(lane_count); 13883 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 13884 13885 if (INTEL_GEN(dev_priv) < 8) { 13886 PIPE_CONF_CHECK_M_N(dp_m_n); 13887 13888 if (current_config->has_drrs) 13889 PIPE_CONF_CHECK_M_N(dp_m2_n2); 13890 } else 13891 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 13892 13893 PIPE_CONF_CHECK_X(output_types); 13894 13895 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 13896 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 13897 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 13898 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 13899 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 13900 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 13901 13902 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 13903 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 13904 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 13905 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 13906 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 13907 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 13908 13909 PIPE_CONF_CHECK_I(pixel_multiplier); 13910 PIPE_CONF_CHECK_I(output_format); 13911 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 13912 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 13913 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13914 PIPE_CONF_CHECK_BOOL(limited_color_range); 13915 13916 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 13917 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 13918 PIPE_CONF_CHECK_BOOL(has_infoframe); 13919 PIPE_CONF_CHECK_BOOL(fec_enable); 13920 13921 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 13922 13923 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13924 DRM_MODE_FLAG_INTERLACE); 13925 13926 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 13927 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13928 DRM_MODE_FLAG_PHSYNC); 13929 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13930 DRM_MODE_FLAG_NHSYNC); 13931 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13932 DRM_MODE_FLAG_PVSYNC); 13933 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13934 DRM_MODE_FLAG_NVSYNC); 13935 } 13936 13937 PIPE_CONF_CHECK_X(gmch_pfit.control); 13938 /* pfit ratios are autocomputed by the hw on gen4+ */ 13939 if (INTEL_GEN(dev_priv) < 4) 13940 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 13941 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 13942 13943 /* 13944 * Changing the EDP transcoder input mux 13945 * (A_ONOFF vs. A_ON) requires a full modeset. 13946 */ 13947 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 13948 13949 if (!fastset) { 13950 PIPE_CONF_CHECK_I(pipe_src_w); 13951 PIPE_CONF_CHECK_I(pipe_src_h); 13952 13953 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 13954 if (current_config->pch_pfit.enabled) { 13955 PIPE_CONF_CHECK_I(pch_pfit.dst.x1); 13956 PIPE_CONF_CHECK_I(pch_pfit.dst.y1); 13957 PIPE_CONF_CHECK_I(pch_pfit.dst.x2); 13958 PIPE_CONF_CHECK_I(pch_pfit.dst.y2); 13959 } 13960 13961 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 13962 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 13963 13964 PIPE_CONF_CHECK_X(gamma_mode); 13965 if (IS_CHERRYVIEW(dev_priv)) 13966 PIPE_CONF_CHECK_X(cgm_mode); 13967 else 13968 PIPE_CONF_CHECK_X(csc_mode); 13969 PIPE_CONF_CHECK_BOOL(gamma_enable); 13970 PIPE_CONF_CHECK_BOOL(csc_enable); 13971 13972 PIPE_CONF_CHECK_I(linetime); 13973 PIPE_CONF_CHECK_I(ips_linetime); 13974 13975 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 13976 if (bp_gamma) 13977 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 13978 } 13979 13980 PIPE_CONF_CHECK_BOOL(double_wide); 13981 13982 PIPE_CONF_CHECK_P(shared_dpll); 13983 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 13984 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 13985 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 13986 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 13987 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 13988 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 13989 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 13990 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 13991 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 13992 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 13993 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 13994 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 13995 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 13996 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 13997 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 13998 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 13999 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 14000 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 14001 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 14002 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 14003 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 14004 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 14005 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 14006 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 14007 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 14008 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 14009 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 14010 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 14011 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 14012 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 14013 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 14014 14015 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 14016 PIPE_CONF_CHECK_X(dsi_pll.div); 14017 14018 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) 14019 PIPE_CONF_CHECK_I(pipe_bpp); 14020 14021 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 14022 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 14023 14024 PIPE_CONF_CHECK_I(min_voltage_level); 14025 14026 PIPE_CONF_CHECK_X(infoframes.enable); 14027 PIPE_CONF_CHECK_X(infoframes.gcp); 14028 PIPE_CONF_CHECK_INFOFRAME(avi); 14029 PIPE_CONF_CHECK_INFOFRAME(spd); 14030 PIPE_CONF_CHECK_INFOFRAME(hdmi); 14031 PIPE_CONF_CHECK_INFOFRAME(drm); 14032 PIPE_CONF_CHECK_DP_VSC_SDP(vsc); 14033 14034 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 14035 PIPE_CONF_CHECK_I(master_transcoder); 14036 14037 PIPE_CONF_CHECK_I(dsc.compression_enable); 14038 PIPE_CONF_CHECK_I(dsc.dsc_split); 14039 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 14040 14041 PIPE_CONF_CHECK_I(mst_master_transcoder); 14042 14043 #undef PIPE_CONF_CHECK_X 14044 #undef PIPE_CONF_CHECK_I 14045 #undef PIPE_CONF_CHECK_BOOL 14046 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 14047 #undef PIPE_CONF_CHECK_P 14048 #undef PIPE_CONF_CHECK_FLAGS 14049 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 14050 #undef PIPE_CONF_CHECK_COLOR_LUT 14051 #undef PIPE_CONF_QUIRK 14052 14053 return ret; 14054 } 14055 14056 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 14057 const struct intel_crtc_state *pipe_config) 14058 { 14059 if (pipe_config->has_pch_encoder) { 14060 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 14061 &pipe_config->fdi_m_n); 14062 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 14063 14064 /* 14065 * FDI already provided one idea for the dotclock. 14066 * Yell if the encoder disagrees. 14067 */ 14068 drm_WARN(&dev_priv->drm, 14069 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 14070 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 14071 fdi_dotclock, dotclock); 14072 } 14073 } 14074 14075 static void verify_wm_state(struct intel_crtc *crtc, 14076 struct intel_crtc_state *new_crtc_state) 14077 { 14078 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14079 struct skl_hw_state { 14080 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 14081 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 14082 struct skl_pipe_wm wm; 14083 } *hw; 14084 struct skl_pipe_wm *sw_wm; 14085 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 14086 u8 hw_enabled_slices; 14087 const enum pipe pipe = crtc->pipe; 14088 int plane, level, max_level = ilk_wm_max_level(dev_priv); 14089 14090 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active) 14091 return; 14092 14093 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 14094 if (!hw) 14095 return; 14096 14097 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 14098 sw_wm = &new_crtc_state->wm.skl.optimal; 14099 14100 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 14101 14102 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 14103 14104 if (INTEL_GEN(dev_priv) >= 11 && 14105 hw_enabled_slices != dev_priv->dbuf.enabled_slices) 14106 drm_err(&dev_priv->drm, 14107 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 14108 dev_priv->dbuf.enabled_slices, 14109 hw_enabled_slices); 14110 14111 /* planes */ 14112 for_each_universal_plane(dev_priv, pipe, plane) { 14113 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 14114 14115 hw_plane_wm = &hw->wm.planes[plane]; 14116 sw_plane_wm = &sw_wm->planes[plane]; 14117 14118 /* Watermarks */ 14119 for (level = 0; level <= max_level; level++) { 14120 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 14121 &sw_plane_wm->wm[level]) || 14122 (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level], 14123 &sw_plane_wm->sagv_wm0))) 14124 continue; 14125 14126 drm_err(&dev_priv->drm, 14127 "mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14128 pipe_name(pipe), plane + 1, level, 14129 sw_plane_wm->wm[level].plane_en, 14130 sw_plane_wm->wm[level].plane_res_b, 14131 sw_plane_wm->wm[level].plane_res_l, 14132 hw_plane_wm->wm[level].plane_en, 14133 hw_plane_wm->wm[level].plane_res_b, 14134 hw_plane_wm->wm[level].plane_res_l); 14135 } 14136 14137 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 14138 &sw_plane_wm->trans_wm)) { 14139 drm_err(&dev_priv->drm, 14140 "mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14141 pipe_name(pipe), plane + 1, 14142 sw_plane_wm->trans_wm.plane_en, 14143 sw_plane_wm->trans_wm.plane_res_b, 14144 sw_plane_wm->trans_wm.plane_res_l, 14145 hw_plane_wm->trans_wm.plane_en, 14146 hw_plane_wm->trans_wm.plane_res_b, 14147 hw_plane_wm->trans_wm.plane_res_l); 14148 } 14149 14150 /* DDB */ 14151 hw_ddb_entry = &hw->ddb_y[plane]; 14152 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane]; 14153 14154 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 14155 drm_err(&dev_priv->drm, 14156 "mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n", 14157 pipe_name(pipe), plane + 1, 14158 sw_ddb_entry->start, sw_ddb_entry->end, 14159 hw_ddb_entry->start, hw_ddb_entry->end); 14160 } 14161 } 14162 14163 /* 14164 * cursor 14165 * If the cursor plane isn't active, we may not have updated it's ddb 14166 * allocation. In that case since the ddb allocation will be updated 14167 * once the plane becomes visible, we can skip this check 14168 */ 14169 if (1) { 14170 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 14171 14172 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR]; 14173 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR]; 14174 14175 /* Watermarks */ 14176 for (level = 0; level <= max_level; level++) { 14177 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 14178 &sw_plane_wm->wm[level]) || 14179 (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level], 14180 &sw_plane_wm->sagv_wm0))) 14181 continue; 14182 14183 drm_err(&dev_priv->drm, 14184 "mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14185 pipe_name(pipe), level, 14186 sw_plane_wm->wm[level].plane_en, 14187 sw_plane_wm->wm[level].plane_res_b, 14188 sw_plane_wm->wm[level].plane_res_l, 14189 hw_plane_wm->wm[level].plane_en, 14190 hw_plane_wm->wm[level].plane_res_b, 14191 hw_plane_wm->wm[level].plane_res_l); 14192 } 14193 14194 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 14195 &sw_plane_wm->trans_wm)) { 14196 drm_err(&dev_priv->drm, 14197 "mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14198 pipe_name(pipe), 14199 sw_plane_wm->trans_wm.plane_en, 14200 sw_plane_wm->trans_wm.plane_res_b, 14201 sw_plane_wm->trans_wm.plane_res_l, 14202 hw_plane_wm->trans_wm.plane_en, 14203 hw_plane_wm->trans_wm.plane_res_b, 14204 hw_plane_wm->trans_wm.plane_res_l); 14205 } 14206 14207 /* DDB */ 14208 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR]; 14209 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR]; 14210 14211 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 14212 drm_err(&dev_priv->drm, 14213 "mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n", 14214 pipe_name(pipe), 14215 sw_ddb_entry->start, sw_ddb_entry->end, 14216 hw_ddb_entry->start, hw_ddb_entry->end); 14217 } 14218 } 14219 14220 kfree(hw); 14221 } 14222 14223 static void 14224 verify_connector_state(struct intel_atomic_state *state, 14225 struct intel_crtc *crtc) 14226 { 14227 struct drm_connector *connector; 14228 struct drm_connector_state *new_conn_state; 14229 int i; 14230 14231 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 14232 struct drm_encoder *encoder = connector->encoder; 14233 struct intel_crtc_state *crtc_state = NULL; 14234 14235 if (new_conn_state->crtc != &crtc->base) 14236 continue; 14237 14238 if (crtc) 14239 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 14240 14241 intel_connector_verify_state(crtc_state, new_conn_state); 14242 14243 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 14244 "connector's atomic encoder doesn't match legacy encoder\n"); 14245 } 14246 } 14247 14248 static void 14249 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 14250 { 14251 struct intel_encoder *encoder; 14252 struct drm_connector *connector; 14253 struct drm_connector_state *old_conn_state, *new_conn_state; 14254 int i; 14255 14256 for_each_intel_encoder(&dev_priv->drm, encoder) { 14257 bool enabled = false, found = false; 14258 enum pipe pipe; 14259 14260 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 14261 encoder->base.base.id, 14262 encoder->base.name); 14263 14264 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 14265 new_conn_state, i) { 14266 if (old_conn_state->best_encoder == &encoder->base) 14267 found = true; 14268 14269 if (new_conn_state->best_encoder != &encoder->base) 14270 continue; 14271 found = enabled = true; 14272 14273 I915_STATE_WARN(new_conn_state->crtc != 14274 encoder->base.crtc, 14275 "connector's crtc doesn't match encoder crtc\n"); 14276 } 14277 14278 if (!found) 14279 continue; 14280 14281 I915_STATE_WARN(!!encoder->base.crtc != enabled, 14282 "encoder's enabled state mismatch " 14283 "(expected %i, found %i)\n", 14284 !!encoder->base.crtc, enabled); 14285 14286 if (!encoder->base.crtc) { 14287 bool active; 14288 14289 active = encoder->get_hw_state(encoder, &pipe); 14290 I915_STATE_WARN(active, 14291 "encoder detached but still enabled on pipe %c.\n", 14292 pipe_name(pipe)); 14293 } 14294 } 14295 } 14296 14297 static void 14298 verify_crtc_state(struct intel_crtc *crtc, 14299 struct intel_crtc_state *old_crtc_state, 14300 struct intel_crtc_state *new_crtc_state) 14301 { 14302 struct drm_device *dev = crtc->base.dev; 14303 struct drm_i915_private *dev_priv = to_i915(dev); 14304 struct intel_encoder *encoder; 14305 struct intel_crtc_state *pipe_config = old_crtc_state; 14306 struct drm_atomic_state *state = old_crtc_state->uapi.state; 14307 14308 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 14309 intel_crtc_free_hw_state(old_crtc_state); 14310 intel_crtc_state_reset(old_crtc_state, crtc); 14311 old_crtc_state->uapi.state = state; 14312 14313 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 14314 crtc->base.name); 14315 14316 pipe_config->hw.enable = new_crtc_state->hw.enable; 14317 14318 pipe_config->hw.active = 14319 dev_priv->display.get_pipe_config(crtc, pipe_config); 14320 14321 /* we keep both pipes enabled on 830 */ 14322 if (IS_I830(dev_priv) && pipe_config->hw.active) 14323 pipe_config->hw.active = new_crtc_state->hw.active; 14324 14325 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active, 14326 "crtc active state doesn't match with hw state " 14327 "(expected %i, found %i)\n", 14328 new_crtc_state->hw.active, pipe_config->hw.active); 14329 14330 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 14331 "transitional active state does not match atomic hw state " 14332 "(expected %i, found %i)\n", 14333 new_crtc_state->hw.active, crtc->active); 14334 14335 for_each_encoder_on_crtc(dev, &crtc->base, encoder) { 14336 enum pipe pipe; 14337 bool active; 14338 14339 active = encoder->get_hw_state(encoder, &pipe); 14340 I915_STATE_WARN(active != new_crtc_state->hw.active, 14341 "[ENCODER:%i] active %i with crtc active %i\n", 14342 encoder->base.base.id, active, 14343 new_crtc_state->hw.active); 14344 14345 I915_STATE_WARN(active && crtc->pipe != pipe, 14346 "Encoder connected to wrong pipe %c\n", 14347 pipe_name(pipe)); 14348 14349 if (active) 14350 encoder->get_config(encoder, pipe_config); 14351 } 14352 14353 intel_crtc_compute_pixel_rate(pipe_config); 14354 14355 if (!new_crtc_state->hw.active) 14356 return; 14357 14358 intel_pipe_config_sanity_check(dev_priv, pipe_config); 14359 14360 if (!intel_pipe_config_compare(new_crtc_state, 14361 pipe_config, false)) { 14362 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 14363 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 14364 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 14365 } 14366 } 14367 14368 static void 14369 intel_verify_planes(struct intel_atomic_state *state) 14370 { 14371 struct intel_plane *plane; 14372 const struct intel_plane_state *plane_state; 14373 int i; 14374 14375 for_each_new_intel_plane_in_state(state, plane, 14376 plane_state, i) 14377 assert_plane(plane, plane_state->planar_slave || 14378 plane_state->uapi.visible); 14379 } 14380 14381 static void 14382 verify_single_dpll_state(struct drm_i915_private *dev_priv, 14383 struct intel_shared_dpll *pll, 14384 struct intel_crtc *crtc, 14385 struct intel_crtc_state *new_crtc_state) 14386 { 14387 struct intel_dpll_hw_state dpll_hw_state; 14388 unsigned int crtc_mask; 14389 bool active; 14390 14391 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 14392 14393 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 14394 14395 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state); 14396 14397 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 14398 I915_STATE_WARN(!pll->on && pll->active_mask, 14399 "pll in active use but not on in sw tracking\n"); 14400 I915_STATE_WARN(pll->on && !pll->active_mask, 14401 "pll is on but not used by any active crtc\n"); 14402 I915_STATE_WARN(pll->on != active, 14403 "pll on state mismatch (expected %i, found %i)\n", 14404 pll->on, active); 14405 } 14406 14407 if (!crtc) { 14408 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask, 14409 "more active pll users than references: %x vs %x\n", 14410 pll->active_mask, pll->state.crtc_mask); 14411 14412 return; 14413 } 14414 14415 crtc_mask = drm_crtc_mask(&crtc->base); 14416 14417 if (new_crtc_state->hw.active) 14418 I915_STATE_WARN(!(pll->active_mask & crtc_mask), 14419 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", 14420 pipe_name(crtc->pipe), pll->active_mask); 14421 else 14422 I915_STATE_WARN(pll->active_mask & crtc_mask, 14423 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", 14424 pipe_name(crtc->pipe), pll->active_mask); 14425 14426 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask), 14427 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", 14428 crtc_mask, pll->state.crtc_mask); 14429 14430 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 14431 &dpll_hw_state, 14432 sizeof(dpll_hw_state)), 14433 "pll hw state mismatch\n"); 14434 } 14435 14436 static void 14437 verify_shared_dpll_state(struct intel_crtc *crtc, 14438 struct intel_crtc_state *old_crtc_state, 14439 struct intel_crtc_state *new_crtc_state) 14440 { 14441 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14442 14443 if (new_crtc_state->shared_dpll) 14444 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 14445 14446 if (old_crtc_state->shared_dpll && 14447 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 14448 unsigned int crtc_mask = drm_crtc_mask(&crtc->base); 14449 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 14450 14451 I915_STATE_WARN(pll->active_mask & crtc_mask, 14452 "pll active mismatch (didn't expect pipe %c in active mask)\n", 14453 pipe_name(crtc->pipe)); 14454 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask, 14455 "pll enabled crtcs mismatch (found %x in enabled mask)\n", 14456 pipe_name(crtc->pipe)); 14457 } 14458 } 14459 14460 static void 14461 intel_modeset_verify_crtc(struct intel_crtc *crtc, 14462 struct intel_atomic_state *state, 14463 struct intel_crtc_state *old_crtc_state, 14464 struct intel_crtc_state *new_crtc_state) 14465 { 14466 if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 14467 return; 14468 14469 verify_wm_state(crtc, new_crtc_state); 14470 verify_connector_state(state, crtc); 14471 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 14472 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 14473 } 14474 14475 static void 14476 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 14477 { 14478 int i; 14479 14480 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 14481 verify_single_dpll_state(dev_priv, 14482 &dev_priv->dpll.shared_dplls[i], 14483 NULL, NULL); 14484 } 14485 14486 static void 14487 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 14488 struct intel_atomic_state *state) 14489 { 14490 verify_encoder_state(dev_priv, state); 14491 verify_connector_state(state, NULL); 14492 verify_disabled_dpll_state(dev_priv); 14493 } 14494 14495 static void 14496 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 14497 { 14498 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 14499 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14500 const struct drm_display_mode *adjusted_mode = 14501 &crtc_state->hw.adjusted_mode; 14502 14503 drm_calc_timestamping_constants(&crtc->base, adjusted_mode); 14504 14505 crtc->mode_flags = crtc_state->mode_flags; 14506 14507 /* 14508 * The scanline counter increments at the leading edge of hsync. 14509 * 14510 * On most platforms it starts counting from vtotal-1 on the 14511 * first active line. That means the scanline counter value is 14512 * always one less than what we would expect. Ie. just after 14513 * start of vblank, which also occurs at start of hsync (on the 14514 * last active line), the scanline counter will read vblank_start-1. 14515 * 14516 * On gen2 the scanline counter starts counting from 1 instead 14517 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 14518 * to keep the value positive), instead of adding one. 14519 * 14520 * On HSW+ the behaviour of the scanline counter depends on the output 14521 * type. For DP ports it behaves like most other platforms, but on HDMI 14522 * there's an extra 1 line difference. So we need to add two instead of 14523 * one to the value. 14524 * 14525 * On VLV/CHV DSI the scanline counter would appear to increment 14526 * approx. 1/3 of a scanline before start of vblank. Unfortunately 14527 * that means we can't tell whether we're in vblank or not while 14528 * we're on that particular line. We must still set scanline_offset 14529 * to 1 so that the vblank timestamps come out correct when we query 14530 * the scanline counter from within the vblank interrupt handler. 14531 * However if queried just before the start of vblank we'll get an 14532 * answer that's slightly in the future. 14533 */ 14534 if (IS_GEN(dev_priv, 2)) { 14535 int vtotal; 14536 14537 vtotal = adjusted_mode->crtc_vtotal; 14538 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 14539 vtotal /= 2; 14540 14541 crtc->scanline_offset = vtotal - 1; 14542 } else if (HAS_DDI(dev_priv) && 14543 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 14544 crtc->scanline_offset = 2; 14545 } else { 14546 crtc->scanline_offset = 1; 14547 } 14548 } 14549 14550 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 14551 { 14552 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14553 struct intel_crtc_state *new_crtc_state; 14554 struct intel_crtc *crtc; 14555 int i; 14556 14557 if (!dev_priv->display.crtc_compute_clock) 14558 return; 14559 14560 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14561 if (!needs_modeset(new_crtc_state)) 14562 continue; 14563 14564 intel_release_shared_dplls(state, crtc); 14565 } 14566 } 14567 14568 /* 14569 * This implements the workaround described in the "notes" section of the mode 14570 * set sequence documentation. When going from no pipes or single pipe to 14571 * multiple pipes, and planes are enabled after the pipe, we need to wait at 14572 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 14573 */ 14574 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 14575 { 14576 struct intel_crtc_state *crtc_state; 14577 struct intel_crtc *crtc; 14578 struct intel_crtc_state *first_crtc_state = NULL; 14579 struct intel_crtc_state *other_crtc_state = NULL; 14580 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 14581 int i; 14582 14583 /* look at all crtc's that are going to be enabled in during modeset */ 14584 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14585 if (!crtc_state->hw.active || 14586 !needs_modeset(crtc_state)) 14587 continue; 14588 14589 if (first_crtc_state) { 14590 other_crtc_state = crtc_state; 14591 break; 14592 } else { 14593 first_crtc_state = crtc_state; 14594 first_pipe = crtc->pipe; 14595 } 14596 } 14597 14598 /* No workaround needed? */ 14599 if (!first_crtc_state) 14600 return 0; 14601 14602 /* w/a possibly needed, check how many crtc's are already enabled. */ 14603 for_each_intel_crtc(state->base.dev, crtc) { 14604 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 14605 if (IS_ERR(crtc_state)) 14606 return PTR_ERR(crtc_state); 14607 14608 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 14609 14610 if (!crtc_state->hw.active || 14611 needs_modeset(crtc_state)) 14612 continue; 14613 14614 /* 2 or more enabled crtcs means no need for w/a */ 14615 if (enabled_pipe != INVALID_PIPE) 14616 return 0; 14617 14618 enabled_pipe = crtc->pipe; 14619 } 14620 14621 if (enabled_pipe != INVALID_PIPE) 14622 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 14623 else if (other_crtc_state) 14624 other_crtc_state->hsw_workaround_pipe = first_pipe; 14625 14626 return 0; 14627 } 14628 14629 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 14630 u8 active_pipes) 14631 { 14632 const struct intel_crtc_state *crtc_state; 14633 struct intel_crtc *crtc; 14634 int i; 14635 14636 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14637 if (crtc_state->hw.active) 14638 active_pipes |= BIT(crtc->pipe); 14639 else 14640 active_pipes &= ~BIT(crtc->pipe); 14641 } 14642 14643 return active_pipes; 14644 } 14645 14646 static int intel_modeset_checks(struct intel_atomic_state *state) 14647 { 14648 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14649 14650 state->modeset = true; 14651 14652 if (IS_HASWELL(dev_priv)) 14653 return hsw_mode_set_planes_workaround(state); 14654 14655 return 0; 14656 } 14657 14658 /* 14659 * Handle calculation of various watermark data at the end of the atomic check 14660 * phase. The code here should be run after the per-crtc and per-plane 'check' 14661 * handlers to ensure that all derived state has been updated. 14662 */ 14663 static int calc_watermark_data(struct intel_atomic_state *state) 14664 { 14665 struct drm_device *dev = state->base.dev; 14666 struct drm_i915_private *dev_priv = to_i915(dev); 14667 14668 /* Is there platform-specific watermark information to calculate? */ 14669 if (dev_priv->display.compute_global_watermarks) 14670 return dev_priv->display.compute_global_watermarks(state); 14671 14672 return 0; 14673 } 14674 14675 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 14676 struct intel_crtc_state *new_crtc_state) 14677 { 14678 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 14679 return; 14680 14681 new_crtc_state->uapi.mode_changed = false; 14682 new_crtc_state->update_pipe = true; 14683 } 14684 14685 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 14686 struct intel_crtc_state *new_crtc_state) 14687 { 14688 /* 14689 * If we're not doing the full modeset we want to 14690 * keep the current M/N values as they may be 14691 * sufficiently different to the computed values 14692 * to cause problems. 14693 * 14694 * FIXME: should really copy more fuzzy state here 14695 */ 14696 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 14697 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 14698 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 14699 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 14700 } 14701 14702 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 14703 struct intel_crtc *crtc, 14704 u8 plane_ids_mask) 14705 { 14706 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14707 struct intel_plane *plane; 14708 14709 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 14710 struct intel_plane_state *plane_state; 14711 14712 if ((plane_ids_mask & BIT(plane->id)) == 0) 14713 continue; 14714 14715 plane_state = intel_atomic_get_plane_state(state, plane); 14716 if (IS_ERR(plane_state)) 14717 return PTR_ERR(plane_state); 14718 } 14719 14720 return 0; 14721 } 14722 14723 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 14724 { 14725 /* See {hsw,vlv,ivb}_plane_ratio() */ 14726 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 14727 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 14728 IS_IVYBRIDGE(dev_priv) || (INTEL_GEN(dev_priv) >= 11); 14729 } 14730 14731 static int intel_atomic_check_planes(struct intel_atomic_state *state) 14732 { 14733 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14734 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14735 struct intel_plane_state *plane_state; 14736 struct intel_plane *plane; 14737 struct intel_crtc *crtc; 14738 int i, ret; 14739 14740 ret = icl_add_linked_planes(state); 14741 if (ret) 14742 return ret; 14743 14744 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 14745 ret = intel_plane_atomic_check(state, plane); 14746 if (ret) { 14747 drm_dbg_atomic(&dev_priv->drm, 14748 "[PLANE:%d:%s] atomic driver check failed\n", 14749 plane->base.base.id, plane->base.name); 14750 return ret; 14751 } 14752 } 14753 14754 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14755 new_crtc_state, i) { 14756 u8 old_active_planes, new_active_planes; 14757 14758 ret = icl_check_nv12_planes(new_crtc_state); 14759 if (ret) 14760 return ret; 14761 14762 /* 14763 * On some platforms the number of active planes affects 14764 * the planes' minimum cdclk calculation. Add such planes 14765 * to the state before we compute the minimum cdclk. 14766 */ 14767 if (!active_planes_affects_min_cdclk(dev_priv)) 14768 continue; 14769 14770 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 14771 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 14772 14773 /* 14774 * Not only the number of planes, but if the plane configuration had 14775 * changed might already mean we need to recompute min CDCLK, 14776 * because different planes might consume different amount of Dbuf bandwidth 14777 * according to formula: Bw per plane = Pixel rate * bpp * pipe/plane scale factor 14778 */ 14779 if (old_active_planes == new_active_planes) 14780 continue; 14781 14782 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 14783 if (ret) 14784 return ret; 14785 } 14786 14787 return 0; 14788 } 14789 14790 static int intel_atomic_check_cdclk(struct intel_atomic_state *state, 14791 bool *need_cdclk_calc) 14792 { 14793 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14794 const struct intel_cdclk_state *old_cdclk_state; 14795 const struct intel_cdclk_state *new_cdclk_state; 14796 struct intel_plane_state *plane_state; 14797 struct intel_bw_state *new_bw_state; 14798 struct intel_plane *plane; 14799 int min_cdclk = 0; 14800 enum pipe pipe; 14801 int ret; 14802 int i; 14803 /* 14804 * active_planes bitmask has been updated, and potentially 14805 * affected planes are part of the state. We can now 14806 * compute the minimum cdclk for each plane. 14807 */ 14808 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 14809 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 14810 if (ret) 14811 return ret; 14812 } 14813 14814 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 14815 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 14816 14817 if (new_cdclk_state && 14818 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 14819 *need_cdclk_calc = true; 14820 14821 ret = dev_priv->display.bw_calc_min_cdclk(state); 14822 if (ret) 14823 return ret; 14824 14825 new_bw_state = intel_atomic_get_new_bw_state(state); 14826 14827 if (!new_cdclk_state || !new_bw_state) 14828 return 0; 14829 14830 for_each_pipe(dev_priv, pipe) { 14831 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk); 14832 14833 /* 14834 * Currently do this change only if we need to increase 14835 */ 14836 if (new_bw_state->min_cdclk > min_cdclk) 14837 *need_cdclk_calc = true; 14838 } 14839 14840 return 0; 14841 } 14842 14843 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 14844 { 14845 struct intel_crtc_state *crtc_state; 14846 struct intel_crtc *crtc; 14847 int i; 14848 14849 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14850 int ret = intel_crtc_atomic_check(state, crtc); 14851 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 14852 if (ret) { 14853 drm_dbg_atomic(&i915->drm, 14854 "[CRTC:%d:%s] atomic driver check failed\n", 14855 crtc->base.base.id, crtc->base.name); 14856 return ret; 14857 } 14858 } 14859 14860 return 0; 14861 } 14862 14863 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 14864 u8 transcoders) 14865 { 14866 const struct intel_crtc_state *new_crtc_state; 14867 struct intel_crtc *crtc; 14868 int i; 14869 14870 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14871 if (new_crtc_state->hw.enable && 14872 transcoders & BIT(new_crtc_state->cpu_transcoder) && 14873 needs_modeset(new_crtc_state)) 14874 return true; 14875 } 14876 14877 return false; 14878 } 14879 14880 /** 14881 * intel_atomic_check - validate state object 14882 * @dev: drm device 14883 * @_state: state to validate 14884 */ 14885 static int intel_atomic_check(struct drm_device *dev, 14886 struct drm_atomic_state *_state) 14887 { 14888 struct drm_i915_private *dev_priv = to_i915(dev); 14889 struct intel_atomic_state *state = to_intel_atomic_state(_state); 14890 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14891 struct intel_crtc *crtc; 14892 int ret, i; 14893 bool any_ms = false; 14894 14895 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14896 new_crtc_state, i) { 14897 if (new_crtc_state->inherited != old_crtc_state->inherited) 14898 new_crtc_state->uapi.mode_changed = true; 14899 } 14900 14901 ret = drm_atomic_helper_check_modeset(dev, &state->base); 14902 if (ret) 14903 goto fail; 14904 14905 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14906 new_crtc_state, i) { 14907 if (!needs_modeset(new_crtc_state)) { 14908 /* Light copy */ 14909 intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state); 14910 14911 continue; 14912 } 14913 14914 ret = intel_crtc_prepare_cleared_state(new_crtc_state); 14915 if (ret) 14916 goto fail; 14917 14918 if (!new_crtc_state->hw.enable) 14919 continue; 14920 14921 ret = intel_modeset_pipe_config(new_crtc_state); 14922 if (ret) 14923 goto fail; 14924 } 14925 14926 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14927 new_crtc_state, i) { 14928 if (!needs_modeset(new_crtc_state)) 14929 continue; 14930 14931 ret = intel_modeset_pipe_config_late(new_crtc_state); 14932 if (ret) 14933 goto fail; 14934 14935 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 14936 } 14937 14938 /** 14939 * Check if fastset is allowed by external dependencies like other 14940 * pipes and transcoders. 14941 * 14942 * Right now it only forces a fullmodeset when the MST master 14943 * transcoder did not changed but the pipe of the master transcoder 14944 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 14945 * in case of port synced crtcs, if one of the synced crtcs 14946 * needs a full modeset, all other synced crtcs should be 14947 * forced a full modeset. 14948 */ 14949 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14950 if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state)) 14951 continue; 14952 14953 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 14954 enum transcoder master = new_crtc_state->mst_master_transcoder; 14955 14956 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 14957 new_crtc_state->uapi.mode_changed = true; 14958 new_crtc_state->update_pipe = false; 14959 } 14960 } 14961 14962 if (is_trans_port_sync_mode(new_crtc_state)) { 14963 u8 trans = new_crtc_state->sync_mode_slaves_mask; 14964 14965 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 14966 trans |= BIT(new_crtc_state->master_transcoder); 14967 14968 if (intel_cpu_transcoders_need_modeset(state, trans)) { 14969 new_crtc_state->uapi.mode_changed = true; 14970 new_crtc_state->update_pipe = false; 14971 } 14972 } 14973 } 14974 14975 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14976 new_crtc_state, i) { 14977 if (needs_modeset(new_crtc_state)) { 14978 any_ms = true; 14979 continue; 14980 } 14981 14982 if (!new_crtc_state->update_pipe) 14983 continue; 14984 14985 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 14986 } 14987 14988 if (any_ms && !check_digital_port_conflicts(state)) { 14989 drm_dbg_kms(&dev_priv->drm, 14990 "rejecting conflicting digital port configuration\n"); 14991 ret = -EINVAL; 14992 goto fail; 14993 } 14994 14995 ret = drm_dp_mst_atomic_check(&state->base); 14996 if (ret) 14997 goto fail; 14998 14999 ret = intel_atomic_check_planes(state); 15000 if (ret) 15001 goto fail; 15002 15003 /* 15004 * distrust_bios_wm will force a full dbuf recomputation 15005 * but the hardware state will only get updated accordingly 15006 * if state->modeset==true. Hence distrust_bios_wm==true && 15007 * state->modeset==false is an invalid combination which 15008 * would cause the hardware and software dbuf state to get 15009 * out of sync. We must prevent that. 15010 * 15011 * FIXME clean up this mess and introduce better 15012 * state tracking for dbuf. 15013 */ 15014 if (dev_priv->wm.distrust_bios_wm) 15015 any_ms = true; 15016 15017 intel_fbc_choose_crtc(dev_priv, state); 15018 ret = calc_watermark_data(state); 15019 if (ret) 15020 goto fail; 15021 15022 ret = intel_bw_atomic_check(state); 15023 if (ret) 15024 goto fail; 15025 15026 ret = intel_atomic_check_cdclk(state, &any_ms); 15027 if (ret) 15028 goto fail; 15029 15030 if (any_ms) { 15031 ret = intel_modeset_checks(state); 15032 if (ret) 15033 goto fail; 15034 15035 ret = intel_modeset_calc_cdclk(state); 15036 if (ret) 15037 return ret; 15038 15039 intel_modeset_clear_plls(state); 15040 } 15041 15042 ret = intel_atomic_check_crtcs(state); 15043 if (ret) 15044 goto fail; 15045 15046 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15047 new_crtc_state, i) { 15048 if (!needs_modeset(new_crtc_state) && 15049 !new_crtc_state->update_pipe) 15050 continue; 15051 15052 intel_dump_pipe_config(new_crtc_state, state, 15053 needs_modeset(new_crtc_state) ? 15054 "[modeset]" : "[fastset]"); 15055 } 15056 15057 return 0; 15058 15059 fail: 15060 if (ret == -EDEADLK) 15061 return ret; 15062 15063 /* 15064 * FIXME would probably be nice to know which crtc specifically 15065 * caused the failure, in cases where we can pinpoint it. 15066 */ 15067 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15068 new_crtc_state, i) 15069 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 15070 15071 return ret; 15072 } 15073 15074 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 15075 { 15076 struct intel_crtc_state *crtc_state; 15077 struct intel_crtc *crtc; 15078 int i, ret; 15079 15080 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); 15081 if (ret < 0) 15082 return ret; 15083 15084 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 15085 bool mode_changed = needs_modeset(crtc_state); 15086 15087 if (mode_changed || crtc_state->update_pipe || 15088 crtc_state->uapi.color_mgmt_changed) { 15089 intel_dsb_prepare(crtc_state); 15090 } 15091 } 15092 15093 return 0; 15094 } 15095 15096 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) 15097 { 15098 struct drm_device *dev = crtc->base.dev; 15099 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; 15100 15101 if (!vblank->max_vblank_count) 15102 return (u32)drm_crtc_accurate_vblank_count(&crtc->base); 15103 15104 return crtc->base.funcs->get_vblank_counter(&crtc->base); 15105 } 15106 15107 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 15108 struct intel_crtc_state *crtc_state) 15109 { 15110 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 15111 15112 if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes) 15113 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 15114 15115 if (crtc_state->has_pch_encoder) { 15116 enum pipe pch_transcoder = 15117 intel_crtc_pch_transcoder(crtc); 15118 15119 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 15120 } 15121 } 15122 15123 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 15124 const struct intel_crtc_state *new_crtc_state) 15125 { 15126 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 15127 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 15128 15129 /* 15130 * Update pipe size and adjust fitter if needed: the reason for this is 15131 * that in compute_mode_changes we check the native mode (not the pfit 15132 * mode) to see if we can flip rather than do a full mode set. In the 15133 * fastboot case, we'll flip, but if we don't update the pipesrc and 15134 * pfit state, we'll end up with a big fb scanned out into the wrong 15135 * sized surface. 15136 */ 15137 intel_set_pipe_src_size(new_crtc_state); 15138 15139 /* on skylake this is done by detaching scalers */ 15140 if (INTEL_GEN(dev_priv) >= 9) { 15141 skl_detach_scalers(new_crtc_state); 15142 15143 if (new_crtc_state->pch_pfit.enabled) 15144 skl_pfit_enable(new_crtc_state); 15145 } else if (HAS_PCH_SPLIT(dev_priv)) { 15146 if (new_crtc_state->pch_pfit.enabled) 15147 ilk_pfit_enable(new_crtc_state); 15148 else if (old_crtc_state->pch_pfit.enabled) 15149 ilk_pfit_disable(old_crtc_state); 15150 } 15151 15152 /* 15153 * The register is supposedly single buffered so perhaps 15154 * not 100% correct to do this here. But SKL+ calculate 15155 * this based on the adjust pixel rate so pfit changes do 15156 * affect it and so it must be updated for fastsets. 15157 * HSW/BDW only really need this here for fastboot, after 15158 * that the value should not change without a full modeset. 15159 */ 15160 if (INTEL_GEN(dev_priv) >= 9 || 15161 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 15162 hsw_set_linetime_wm(new_crtc_state); 15163 15164 if (INTEL_GEN(dev_priv) >= 11) 15165 icl_set_pipe_chicken(crtc); 15166 } 15167 15168 static void commit_pipe_config(struct intel_atomic_state *state, 15169 struct intel_crtc *crtc) 15170 { 15171 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15172 const struct intel_crtc_state *old_crtc_state = 15173 intel_atomic_get_old_crtc_state(state, crtc); 15174 const struct intel_crtc_state *new_crtc_state = 15175 intel_atomic_get_new_crtc_state(state, crtc); 15176 bool modeset = needs_modeset(new_crtc_state); 15177 15178 /* 15179 * During modesets pipe configuration was programmed as the 15180 * CRTC was enabled. 15181 */ 15182 if (!modeset) { 15183 if (new_crtc_state->uapi.color_mgmt_changed || 15184 new_crtc_state->update_pipe) 15185 intel_color_commit(new_crtc_state); 15186 15187 if (INTEL_GEN(dev_priv) >= 9) 15188 skl_detach_scalers(new_crtc_state); 15189 15190 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 15191 bdw_set_pipemisc(new_crtc_state); 15192 15193 if (new_crtc_state->update_pipe) 15194 intel_pipe_fastset(old_crtc_state, new_crtc_state); 15195 15196 intel_psr2_program_trans_man_trk_ctl(new_crtc_state); 15197 } 15198 15199 if (dev_priv->display.atomic_update_watermarks) 15200 dev_priv->display.atomic_update_watermarks(state, crtc); 15201 } 15202 15203 static void intel_enable_crtc(struct intel_atomic_state *state, 15204 struct intel_crtc *crtc) 15205 { 15206 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15207 const struct intel_crtc_state *new_crtc_state = 15208 intel_atomic_get_new_crtc_state(state, crtc); 15209 15210 if (!needs_modeset(new_crtc_state)) 15211 return; 15212 15213 intel_crtc_update_active_timings(new_crtc_state); 15214 15215 dev_priv->display.crtc_enable(state, crtc); 15216 15217 /* vblanks work again, re-enable pipe CRC. */ 15218 intel_crtc_enable_pipe_crc(crtc); 15219 } 15220 15221 static void intel_update_crtc(struct intel_atomic_state *state, 15222 struct intel_crtc *crtc) 15223 { 15224 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15225 const struct intel_crtc_state *old_crtc_state = 15226 intel_atomic_get_old_crtc_state(state, crtc); 15227 struct intel_crtc_state *new_crtc_state = 15228 intel_atomic_get_new_crtc_state(state, crtc); 15229 bool modeset = needs_modeset(new_crtc_state); 15230 15231 if (!modeset) { 15232 if (new_crtc_state->preload_luts && 15233 (new_crtc_state->uapi.color_mgmt_changed || 15234 new_crtc_state->update_pipe)) 15235 intel_color_load_luts(new_crtc_state); 15236 15237 intel_pre_plane_update(state, crtc); 15238 15239 if (new_crtc_state->update_pipe) 15240 intel_encoders_update_pipe(state, crtc); 15241 } 15242 15243 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 15244 intel_fbc_disable(crtc); 15245 else 15246 intel_fbc_enable(state, crtc); 15247 15248 /* Perform vblank evasion around commit operation */ 15249 intel_pipe_update_start(new_crtc_state); 15250 15251 commit_pipe_config(state, crtc); 15252 15253 if (INTEL_GEN(dev_priv) >= 9) 15254 skl_update_planes_on_crtc(state, crtc); 15255 else 15256 i9xx_update_planes_on_crtc(state, crtc); 15257 15258 intel_pipe_update_end(new_crtc_state); 15259 15260 /* 15261 * We usually enable FIFO underrun interrupts as part of the 15262 * CRTC enable sequence during modesets. But when we inherit a 15263 * valid pipe configuration from the BIOS we need to take care 15264 * of enabling them on the CRTC's first fastset. 15265 */ 15266 if (new_crtc_state->update_pipe && !modeset && 15267 old_crtc_state->inherited) 15268 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 15269 } 15270 15271 15272 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 15273 struct intel_crtc_state *old_crtc_state, 15274 struct intel_crtc_state *new_crtc_state, 15275 struct intel_crtc *crtc) 15276 { 15277 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15278 15279 intel_crtc_disable_planes(state, crtc); 15280 15281 /* 15282 * We need to disable pipe CRC before disabling the pipe, 15283 * or we race against vblank off. 15284 */ 15285 intel_crtc_disable_pipe_crc(crtc); 15286 15287 dev_priv->display.crtc_disable(state, crtc); 15288 crtc->active = false; 15289 intel_fbc_disable(crtc); 15290 intel_disable_shared_dpll(old_crtc_state); 15291 15292 /* FIXME unify this for all platforms */ 15293 if (!new_crtc_state->hw.active && 15294 !HAS_GMCH(dev_priv) && 15295 dev_priv->display.initial_watermarks) 15296 dev_priv->display.initial_watermarks(state, crtc); 15297 } 15298 15299 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 15300 { 15301 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 15302 struct intel_crtc *crtc; 15303 u32 handled = 0; 15304 int i; 15305 15306 /* Only disable port sync and MST slaves */ 15307 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15308 new_crtc_state, i) { 15309 if (!needs_modeset(new_crtc_state)) 15310 continue; 15311 15312 if (!old_crtc_state->hw.active) 15313 continue; 15314 15315 /* In case of Transcoder port Sync master slave CRTCs can be 15316 * assigned in any order and we need to make sure that 15317 * slave CRTCs are disabled first and then master CRTC since 15318 * Slave vblanks are masked till Master Vblanks. 15319 */ 15320 if (!is_trans_port_sync_slave(old_crtc_state) && 15321 !intel_dp_mst_is_slave_trans(old_crtc_state)) 15322 continue; 15323 15324 intel_pre_plane_update(state, crtc); 15325 intel_old_crtc_state_disables(state, old_crtc_state, 15326 new_crtc_state, crtc); 15327 handled |= BIT(crtc->pipe); 15328 } 15329 15330 /* Disable everything else left on */ 15331 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15332 new_crtc_state, i) { 15333 if (!needs_modeset(new_crtc_state) || 15334 (handled & BIT(crtc->pipe))) 15335 continue; 15336 15337 intel_pre_plane_update(state, crtc); 15338 if (old_crtc_state->hw.active) 15339 intel_old_crtc_state_disables(state, old_crtc_state, 15340 new_crtc_state, crtc); 15341 } 15342 } 15343 15344 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 15345 { 15346 struct intel_crtc_state *new_crtc_state; 15347 struct intel_crtc *crtc; 15348 int i; 15349 15350 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15351 if (!new_crtc_state->hw.active) 15352 continue; 15353 15354 intel_enable_crtc(state, crtc); 15355 intel_update_crtc(state, crtc); 15356 } 15357 } 15358 15359 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 15360 { 15361 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15362 struct intel_crtc *crtc; 15363 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 15364 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 15365 u8 update_pipes = 0, modeset_pipes = 0; 15366 int i; 15367 15368 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15369 enum pipe pipe = crtc->pipe; 15370 15371 if (!new_crtc_state->hw.active) 15372 continue; 15373 15374 /* ignore allocations for crtc's that have been turned off. */ 15375 if (!needs_modeset(new_crtc_state)) { 15376 entries[pipe] = old_crtc_state->wm.skl.ddb; 15377 update_pipes |= BIT(pipe); 15378 } else { 15379 modeset_pipes |= BIT(pipe); 15380 } 15381 } 15382 15383 /* 15384 * Whenever the number of active pipes changes, we need to make sure we 15385 * update the pipes in the right order so that their ddb allocations 15386 * never overlap with each other between CRTC updates. Otherwise we'll 15387 * cause pipe underruns and other bad stuff. 15388 * 15389 * So first lets enable all pipes that do not need a fullmodeset as 15390 * those don't have any external dependency. 15391 */ 15392 while (update_pipes) { 15393 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15394 new_crtc_state, i) { 15395 enum pipe pipe = crtc->pipe; 15396 15397 if ((update_pipes & BIT(pipe)) == 0) 15398 continue; 15399 15400 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15401 entries, I915_MAX_PIPES, pipe)) 15402 continue; 15403 15404 entries[pipe] = new_crtc_state->wm.skl.ddb; 15405 update_pipes &= ~BIT(pipe); 15406 15407 intel_update_crtc(state, crtc); 15408 15409 /* 15410 * If this is an already active pipe, it's DDB changed, 15411 * and this isn't the last pipe that needs updating 15412 * then we need to wait for a vblank to pass for the 15413 * new ddb allocation to take effect. 15414 */ 15415 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 15416 &old_crtc_state->wm.skl.ddb) && 15417 (update_pipes | modeset_pipes)) 15418 intel_wait_for_vblank(dev_priv, pipe); 15419 } 15420 } 15421 15422 update_pipes = modeset_pipes; 15423 15424 /* 15425 * Enable all pipes that needs a modeset and do not depends on other 15426 * pipes 15427 */ 15428 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15429 enum pipe pipe = crtc->pipe; 15430 15431 if ((modeset_pipes & BIT(pipe)) == 0) 15432 continue; 15433 15434 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 15435 is_trans_port_sync_master(new_crtc_state)) 15436 continue; 15437 15438 modeset_pipes &= ~BIT(pipe); 15439 15440 intel_enable_crtc(state, crtc); 15441 } 15442 15443 /* 15444 * Then we enable all remaining pipes that depend on other 15445 * pipes: MST slaves and port sync masters. 15446 */ 15447 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15448 enum pipe pipe = crtc->pipe; 15449 15450 if ((modeset_pipes & BIT(pipe)) == 0) 15451 continue; 15452 15453 modeset_pipes &= ~BIT(pipe); 15454 15455 intel_enable_crtc(state, crtc); 15456 } 15457 15458 /* 15459 * Finally we do the plane updates/etc. for all pipes that got enabled. 15460 */ 15461 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15462 enum pipe pipe = crtc->pipe; 15463 15464 if ((update_pipes & BIT(pipe)) == 0) 15465 continue; 15466 15467 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15468 entries, I915_MAX_PIPES, pipe)); 15469 15470 entries[pipe] = new_crtc_state->wm.skl.ddb; 15471 update_pipes &= ~BIT(pipe); 15472 15473 intel_update_crtc(state, crtc); 15474 } 15475 15476 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 15477 drm_WARN_ON(&dev_priv->drm, update_pipes); 15478 } 15479 15480 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 15481 { 15482 struct intel_atomic_state *state, *next; 15483 struct llist_node *freed; 15484 15485 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 15486 llist_for_each_entry_safe(state, next, freed, freed) 15487 drm_atomic_state_put(&state->base); 15488 } 15489 15490 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 15491 { 15492 struct drm_i915_private *dev_priv = 15493 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 15494 15495 intel_atomic_helper_free_state(dev_priv); 15496 } 15497 15498 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 15499 { 15500 struct wait_queue_entry wait_fence, wait_reset; 15501 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 15502 15503 init_wait_entry(&wait_fence, 0); 15504 init_wait_entry(&wait_reset, 0); 15505 for (;;) { 15506 prepare_to_wait(&intel_state->commit_ready.wait, 15507 &wait_fence, TASK_UNINTERRUPTIBLE); 15508 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 15509 I915_RESET_MODESET), 15510 &wait_reset, TASK_UNINTERRUPTIBLE); 15511 15512 15513 if (i915_sw_fence_done(&intel_state->commit_ready) || 15514 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 15515 break; 15516 15517 schedule(); 15518 } 15519 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 15520 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 15521 I915_RESET_MODESET), 15522 &wait_reset); 15523 } 15524 15525 static void intel_cleanup_dsbs(struct intel_atomic_state *state) 15526 { 15527 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 15528 struct intel_crtc *crtc; 15529 int i; 15530 15531 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15532 new_crtc_state, i) 15533 intel_dsb_cleanup(old_crtc_state); 15534 } 15535 15536 static void intel_atomic_cleanup_work(struct work_struct *work) 15537 { 15538 struct intel_atomic_state *state = 15539 container_of(work, struct intel_atomic_state, base.commit_work); 15540 struct drm_i915_private *i915 = to_i915(state->base.dev); 15541 15542 intel_cleanup_dsbs(state); 15543 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); 15544 drm_atomic_helper_commit_cleanup_done(&state->base); 15545 drm_atomic_state_put(&state->base); 15546 15547 intel_atomic_helper_free_state(i915); 15548 } 15549 15550 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 15551 { 15552 struct drm_device *dev = state->base.dev; 15553 struct drm_i915_private *dev_priv = to_i915(dev); 15554 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 15555 struct intel_crtc *crtc; 15556 u64 put_domains[I915_MAX_PIPES] = {}; 15557 intel_wakeref_t wakeref = 0; 15558 int i; 15559 15560 intel_atomic_commit_fence_wait(state); 15561 15562 drm_atomic_helper_wait_for_dependencies(&state->base); 15563 15564 if (state->modeset) 15565 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 15566 15567 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15568 new_crtc_state, i) { 15569 if (needs_modeset(new_crtc_state) || 15570 new_crtc_state->update_pipe) { 15571 15572 put_domains[crtc->pipe] = 15573 modeset_get_crtc_power_domains(new_crtc_state); 15574 } 15575 } 15576 15577 intel_commit_modeset_disables(state); 15578 15579 /* FIXME: Eventually get rid of our crtc->config pointer */ 15580 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15581 crtc->config = new_crtc_state; 15582 15583 if (state->modeset) { 15584 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 15585 15586 intel_set_cdclk_pre_plane_update(state); 15587 15588 intel_modeset_verify_disabled(dev_priv, state); 15589 } 15590 15591 intel_sagv_pre_plane_update(state); 15592 15593 /* Complete the events for pipes that have now been disabled */ 15594 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15595 bool modeset = needs_modeset(new_crtc_state); 15596 15597 /* Complete events for now disable pipes here. */ 15598 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 15599 spin_lock_irq(&dev->event_lock); 15600 drm_crtc_send_vblank_event(&crtc->base, 15601 new_crtc_state->uapi.event); 15602 spin_unlock_irq(&dev->event_lock); 15603 15604 new_crtc_state->uapi.event = NULL; 15605 } 15606 } 15607 15608 if (state->modeset) 15609 intel_encoders_update_prepare(state); 15610 15611 intel_dbuf_pre_plane_update(state); 15612 15613 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 15614 dev_priv->display.commit_modeset_enables(state); 15615 15616 if (state->modeset) { 15617 intel_encoders_update_complete(state); 15618 15619 intel_set_cdclk_post_plane_update(state); 15620 } 15621 15622 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 15623 * already, but still need the state for the delayed optimization. To 15624 * fix this: 15625 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 15626 * - schedule that vblank worker _before_ calling hw_done 15627 * - at the start of commit_tail, cancel it _synchrously 15628 * - switch over to the vblank wait helper in the core after that since 15629 * we don't need out special handling any more. 15630 */ 15631 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 15632 15633 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15634 if (new_crtc_state->hw.active && 15635 !needs_modeset(new_crtc_state) && 15636 !new_crtc_state->preload_luts && 15637 (new_crtc_state->uapi.color_mgmt_changed || 15638 new_crtc_state->update_pipe)) 15639 intel_color_load_luts(new_crtc_state); 15640 } 15641 15642 /* 15643 * Now that the vblank has passed, we can go ahead and program the 15644 * optimal watermarks on platforms that need two-step watermark 15645 * programming. 15646 * 15647 * TODO: Move this (and other cleanup) to an async worker eventually. 15648 */ 15649 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15650 new_crtc_state, i) { 15651 /* 15652 * Gen2 reports pipe underruns whenever all planes are disabled. 15653 * So re-enable underrun reporting after some planes get enabled. 15654 * 15655 * We do this before .optimize_watermarks() so that we have a 15656 * chance of catching underruns with the intermediate watermarks 15657 * vs. the new plane configuration. 15658 */ 15659 if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state)) 15660 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 15661 15662 if (dev_priv->display.optimize_watermarks) 15663 dev_priv->display.optimize_watermarks(state, crtc); 15664 } 15665 15666 intel_dbuf_post_plane_update(state); 15667 15668 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15669 intel_post_plane_update(state, crtc); 15670 15671 if (put_domains[i]) 15672 modeset_put_power_domains(dev_priv, put_domains[i]); 15673 15674 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 15675 15676 /* 15677 * DSB cleanup is done in cleanup_work aligning with framebuffer 15678 * cleanup. So copy and reset the dsb structure to sync with 15679 * commit_done and later do dsb cleanup in cleanup_work. 15680 */ 15681 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); 15682 } 15683 15684 /* Underruns don't always raise interrupts, so check manually */ 15685 intel_check_cpu_fifo_underruns(dev_priv); 15686 intel_check_pch_fifo_underruns(dev_priv); 15687 15688 if (state->modeset) 15689 intel_verify_planes(state); 15690 15691 intel_sagv_post_plane_update(state); 15692 15693 drm_atomic_helper_commit_hw_done(&state->base); 15694 15695 if (state->modeset) { 15696 /* As one of the primary mmio accessors, KMS has a high 15697 * likelihood of triggering bugs in unclaimed access. After we 15698 * finish modesetting, see if an error has been flagged, and if 15699 * so enable debugging for the next modeset - and hope we catch 15700 * the culprit. 15701 */ 15702 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 15703 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 15704 } 15705 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15706 15707 /* 15708 * Defer the cleanup of the old state to a separate worker to not 15709 * impede the current task (userspace for blocking modesets) that 15710 * are executed inline. For out-of-line asynchronous modesets/flips, 15711 * deferring to a new worker seems overkill, but we would place a 15712 * schedule point (cond_resched()) here anyway to keep latencies 15713 * down. 15714 */ 15715 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 15716 queue_work(system_highpri_wq, &state->base.commit_work); 15717 } 15718 15719 static void intel_atomic_commit_work(struct work_struct *work) 15720 { 15721 struct intel_atomic_state *state = 15722 container_of(work, struct intel_atomic_state, base.commit_work); 15723 15724 intel_atomic_commit_tail(state); 15725 } 15726 15727 static int __i915_sw_fence_call 15728 intel_atomic_commit_ready(struct i915_sw_fence *fence, 15729 enum i915_sw_fence_notify notify) 15730 { 15731 struct intel_atomic_state *state = 15732 container_of(fence, struct intel_atomic_state, commit_ready); 15733 15734 switch (notify) { 15735 case FENCE_COMPLETE: 15736 /* we do blocking waits in the worker, nothing to do here */ 15737 break; 15738 case FENCE_FREE: 15739 { 15740 struct intel_atomic_helper *helper = 15741 &to_i915(state->base.dev)->atomic_helper; 15742 15743 if (llist_add(&state->freed, &helper->free_list)) 15744 schedule_work(&helper->free_work); 15745 break; 15746 } 15747 } 15748 15749 return NOTIFY_DONE; 15750 } 15751 15752 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 15753 { 15754 struct intel_plane_state *old_plane_state, *new_plane_state; 15755 struct intel_plane *plane; 15756 int i; 15757 15758 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 15759 new_plane_state, i) 15760 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 15761 to_intel_frontbuffer(new_plane_state->hw.fb), 15762 plane->frontbuffer_bit); 15763 } 15764 15765 static int intel_atomic_commit(struct drm_device *dev, 15766 struct drm_atomic_state *_state, 15767 bool nonblock) 15768 { 15769 struct intel_atomic_state *state = to_intel_atomic_state(_state); 15770 struct drm_i915_private *dev_priv = to_i915(dev); 15771 int ret = 0; 15772 15773 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 15774 15775 drm_atomic_state_get(&state->base); 15776 i915_sw_fence_init(&state->commit_ready, 15777 intel_atomic_commit_ready); 15778 15779 /* 15780 * The intel_legacy_cursor_update() fast path takes care 15781 * of avoiding the vblank waits for simple cursor 15782 * movement and flips. For cursor on/off and size changes, 15783 * we want to perform the vblank waits so that watermark 15784 * updates happen during the correct frames. Gen9+ have 15785 * double buffered watermarks and so shouldn't need this. 15786 * 15787 * Unset state->legacy_cursor_update before the call to 15788 * drm_atomic_helper_setup_commit() because otherwise 15789 * drm_atomic_helper_wait_for_flip_done() is a noop and 15790 * we get FIFO underruns because we didn't wait 15791 * for vblank. 15792 * 15793 * FIXME doing watermarks and fb cleanup from a vblank worker 15794 * (assuming we had any) would solve these problems. 15795 */ 15796 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) { 15797 struct intel_crtc_state *new_crtc_state; 15798 struct intel_crtc *crtc; 15799 int i; 15800 15801 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15802 if (new_crtc_state->wm.need_postvbl_update || 15803 new_crtc_state->update_wm_post) 15804 state->base.legacy_cursor_update = false; 15805 } 15806 15807 ret = intel_atomic_prepare_commit(state); 15808 if (ret) { 15809 drm_dbg_atomic(&dev_priv->drm, 15810 "Preparing state failed with %i\n", ret); 15811 i915_sw_fence_commit(&state->commit_ready); 15812 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15813 return ret; 15814 } 15815 15816 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 15817 if (!ret) 15818 ret = drm_atomic_helper_swap_state(&state->base, true); 15819 if (!ret) 15820 intel_atomic_swap_global_state(state); 15821 15822 if (ret) { 15823 struct intel_crtc_state *new_crtc_state; 15824 struct intel_crtc *crtc; 15825 int i; 15826 15827 i915_sw_fence_commit(&state->commit_ready); 15828 15829 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15830 intel_dsb_cleanup(new_crtc_state); 15831 15832 drm_atomic_helper_cleanup_planes(dev, &state->base); 15833 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15834 return ret; 15835 } 15836 dev_priv->wm.distrust_bios_wm = false; 15837 intel_shared_dpll_swap_state(state); 15838 intel_atomic_track_fbs(state); 15839 15840 drm_atomic_state_get(&state->base); 15841 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 15842 15843 i915_sw_fence_commit(&state->commit_ready); 15844 if (nonblock && state->modeset) { 15845 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 15846 } else if (nonblock) { 15847 queue_work(dev_priv->flip_wq, &state->base.commit_work); 15848 } else { 15849 if (state->modeset) 15850 flush_workqueue(dev_priv->modeset_wq); 15851 intel_atomic_commit_tail(state); 15852 } 15853 15854 return 0; 15855 } 15856 15857 struct wait_rps_boost { 15858 struct wait_queue_entry wait; 15859 15860 struct drm_crtc *crtc; 15861 struct i915_request *request; 15862 }; 15863 15864 static int do_rps_boost(struct wait_queue_entry *_wait, 15865 unsigned mode, int sync, void *key) 15866 { 15867 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 15868 struct i915_request *rq = wait->request; 15869 15870 /* 15871 * If we missed the vblank, but the request is already running it 15872 * is reasonable to assume that it will complete before the next 15873 * vblank without our intervention, so leave RPS alone. 15874 */ 15875 if (!i915_request_started(rq)) 15876 intel_rps_boost(rq); 15877 i915_request_put(rq); 15878 15879 drm_crtc_vblank_put(wait->crtc); 15880 15881 list_del(&wait->wait.entry); 15882 kfree(wait); 15883 return 1; 15884 } 15885 15886 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 15887 struct dma_fence *fence) 15888 { 15889 struct wait_rps_boost *wait; 15890 15891 if (!dma_fence_is_i915(fence)) 15892 return; 15893 15894 if (INTEL_GEN(to_i915(crtc->dev)) < 6) 15895 return; 15896 15897 if (drm_crtc_vblank_get(crtc)) 15898 return; 15899 15900 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 15901 if (!wait) { 15902 drm_crtc_vblank_put(crtc); 15903 return; 15904 } 15905 15906 wait->request = to_request(dma_fence_get(fence)); 15907 wait->crtc = crtc; 15908 15909 wait->wait.func = do_rps_boost; 15910 wait->wait.flags = 0; 15911 15912 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 15913 } 15914 15915 static int intel_plane_pin_fb(struct intel_plane_state *plane_state) 15916 { 15917 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 15918 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 15919 struct drm_framebuffer *fb = plane_state->hw.fb; 15920 struct i915_vma *vma; 15921 15922 if (plane->id == PLANE_CURSOR && 15923 INTEL_INFO(dev_priv)->display.cursor_needs_physical) { 15924 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 15925 const int align = intel_cursor_alignment(dev_priv); 15926 int err; 15927 15928 err = i915_gem_object_attach_phys(obj, align); 15929 if (err) 15930 return err; 15931 } 15932 15933 vma = intel_pin_and_fence_fb_obj(fb, 15934 &plane_state->view, 15935 intel_plane_uses_fence(plane_state), 15936 &plane_state->flags); 15937 if (IS_ERR(vma)) 15938 return PTR_ERR(vma); 15939 15940 plane_state->vma = vma; 15941 15942 return 0; 15943 } 15944 15945 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 15946 { 15947 struct i915_vma *vma; 15948 15949 vma = fetch_and_zero(&old_plane_state->vma); 15950 if (vma) 15951 intel_unpin_fb_vma(vma, old_plane_state->flags); 15952 } 15953 15954 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj) 15955 { 15956 struct i915_sched_attr attr = { 15957 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY), 15958 }; 15959 15960 i915_gem_object_wait_priority(obj, 0, &attr); 15961 } 15962 15963 /** 15964 * intel_prepare_plane_fb - Prepare fb for usage on plane 15965 * @_plane: drm plane to prepare for 15966 * @_new_plane_state: the plane state being prepared 15967 * 15968 * Prepares a framebuffer for usage on a display plane. Generally this 15969 * involves pinning the underlying object and updating the frontbuffer tracking 15970 * bits. Some older platforms need special physical address handling for 15971 * cursor planes. 15972 * 15973 * Returns 0 on success, negative error code on failure. 15974 */ 15975 int 15976 intel_prepare_plane_fb(struct drm_plane *_plane, 15977 struct drm_plane_state *_new_plane_state) 15978 { 15979 struct intel_plane *plane = to_intel_plane(_plane); 15980 struct intel_plane_state *new_plane_state = 15981 to_intel_plane_state(_new_plane_state); 15982 struct intel_atomic_state *state = 15983 to_intel_atomic_state(new_plane_state->uapi.state); 15984 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 15985 const struct intel_plane_state *old_plane_state = 15986 intel_atomic_get_old_plane_state(state, plane); 15987 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 15988 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 15989 int ret; 15990 15991 if (old_obj) { 15992 const struct intel_crtc_state *crtc_state = 15993 intel_atomic_get_new_crtc_state(state, 15994 to_intel_crtc(old_plane_state->hw.crtc)); 15995 15996 /* Big Hammer, we also need to ensure that any pending 15997 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 15998 * current scanout is retired before unpinning the old 15999 * framebuffer. Note that we rely on userspace rendering 16000 * into the buffer attached to the pipe they are waiting 16001 * on. If not, userspace generates a GPU hang with IPEHR 16002 * point to the MI_WAIT_FOR_EVENT. 16003 * 16004 * This should only fail upon a hung GPU, in which case we 16005 * can safely continue. 16006 */ 16007 if (needs_modeset(crtc_state)) { 16008 ret = i915_sw_fence_await_reservation(&state->commit_ready, 16009 old_obj->base.resv, NULL, 16010 false, 0, 16011 GFP_KERNEL); 16012 if (ret < 0) 16013 return ret; 16014 } 16015 } 16016 16017 if (new_plane_state->uapi.fence) { /* explicit fencing */ 16018 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 16019 new_plane_state->uapi.fence, 16020 i915_fence_timeout(dev_priv), 16021 GFP_KERNEL); 16022 if (ret < 0) 16023 return ret; 16024 } 16025 16026 if (!obj) 16027 return 0; 16028 16029 ret = i915_gem_object_pin_pages(obj); 16030 if (ret) 16031 return ret; 16032 16033 ret = intel_plane_pin_fb(new_plane_state); 16034 16035 i915_gem_object_unpin_pages(obj); 16036 if (ret) 16037 return ret; 16038 16039 fb_obj_bump_render_priority(obj); 16040 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 16041 16042 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 16043 struct dma_fence *fence; 16044 16045 ret = i915_sw_fence_await_reservation(&state->commit_ready, 16046 obj->base.resv, NULL, 16047 false, 16048 i915_fence_timeout(dev_priv), 16049 GFP_KERNEL); 16050 if (ret < 0) 16051 goto unpin_fb; 16052 16053 fence = dma_resv_get_excl_rcu(obj->base.resv); 16054 if (fence) { 16055 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 16056 fence); 16057 dma_fence_put(fence); 16058 } 16059 } else { 16060 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 16061 new_plane_state->uapi.fence); 16062 } 16063 16064 /* 16065 * We declare pageflips to be interactive and so merit a small bias 16066 * towards upclocking to deliver the frame on time. By only changing 16067 * the RPS thresholds to sample more regularly and aim for higher 16068 * clocks we can hopefully deliver low power workloads (like kodi) 16069 * that are not quite steady state without resorting to forcing 16070 * maximum clocks following a vblank miss (see do_rps_boost()). 16071 */ 16072 if (!state->rps_interactive) { 16073 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 16074 state->rps_interactive = true; 16075 } 16076 16077 return 0; 16078 16079 unpin_fb: 16080 intel_plane_unpin_fb(new_plane_state); 16081 16082 return ret; 16083 } 16084 16085 /** 16086 * intel_cleanup_plane_fb - Cleans up an fb after plane use 16087 * @plane: drm plane to clean up for 16088 * @_old_plane_state: the state from the previous modeset 16089 * 16090 * Cleans up a framebuffer that has just been removed from a plane. 16091 */ 16092 void 16093 intel_cleanup_plane_fb(struct drm_plane *plane, 16094 struct drm_plane_state *_old_plane_state) 16095 { 16096 struct intel_plane_state *old_plane_state = 16097 to_intel_plane_state(_old_plane_state); 16098 struct intel_atomic_state *state = 16099 to_intel_atomic_state(old_plane_state->uapi.state); 16100 struct drm_i915_private *dev_priv = to_i915(plane->dev); 16101 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 16102 16103 if (!obj) 16104 return; 16105 16106 if (state->rps_interactive) { 16107 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 16108 state->rps_interactive = false; 16109 } 16110 16111 /* Should only be called after a successful intel_prepare_plane_fb()! */ 16112 intel_plane_unpin_fb(old_plane_state); 16113 } 16114 16115 /** 16116 * intel_plane_destroy - destroy a plane 16117 * @plane: plane to destroy 16118 * 16119 * Common destruction function for all types of planes (primary, cursor, 16120 * sprite). 16121 */ 16122 void intel_plane_destroy(struct drm_plane *plane) 16123 { 16124 drm_plane_cleanup(plane); 16125 kfree(to_intel_plane(plane)); 16126 } 16127 16128 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane, 16129 u32 format, u64 modifier) 16130 { 16131 switch (modifier) { 16132 case DRM_FORMAT_MOD_LINEAR: 16133 case I915_FORMAT_MOD_X_TILED: 16134 break; 16135 default: 16136 return false; 16137 } 16138 16139 switch (format) { 16140 case DRM_FORMAT_C8: 16141 case DRM_FORMAT_RGB565: 16142 case DRM_FORMAT_XRGB1555: 16143 case DRM_FORMAT_XRGB8888: 16144 return modifier == DRM_FORMAT_MOD_LINEAR || 16145 modifier == I915_FORMAT_MOD_X_TILED; 16146 default: 16147 return false; 16148 } 16149 } 16150 16151 static bool i965_plane_format_mod_supported(struct drm_plane *_plane, 16152 u32 format, u64 modifier) 16153 { 16154 switch (modifier) { 16155 case DRM_FORMAT_MOD_LINEAR: 16156 case I915_FORMAT_MOD_X_TILED: 16157 break; 16158 default: 16159 return false; 16160 } 16161 16162 switch (format) { 16163 case DRM_FORMAT_C8: 16164 case DRM_FORMAT_RGB565: 16165 case DRM_FORMAT_XRGB8888: 16166 case DRM_FORMAT_XBGR8888: 16167 case DRM_FORMAT_ARGB8888: 16168 case DRM_FORMAT_ABGR8888: 16169 case DRM_FORMAT_XRGB2101010: 16170 case DRM_FORMAT_XBGR2101010: 16171 case DRM_FORMAT_ARGB2101010: 16172 case DRM_FORMAT_ABGR2101010: 16173 case DRM_FORMAT_XBGR16161616F: 16174 return modifier == DRM_FORMAT_MOD_LINEAR || 16175 modifier == I915_FORMAT_MOD_X_TILED; 16176 default: 16177 return false; 16178 } 16179 } 16180 16181 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane, 16182 u32 format, u64 modifier) 16183 { 16184 return modifier == DRM_FORMAT_MOD_LINEAR && 16185 format == DRM_FORMAT_ARGB8888; 16186 } 16187 16188 static const struct drm_plane_funcs i965_plane_funcs = { 16189 .update_plane = drm_atomic_helper_update_plane, 16190 .disable_plane = drm_atomic_helper_disable_plane, 16191 .destroy = intel_plane_destroy, 16192 .atomic_duplicate_state = intel_plane_duplicate_state, 16193 .atomic_destroy_state = intel_plane_destroy_state, 16194 .format_mod_supported = i965_plane_format_mod_supported, 16195 }; 16196 16197 static const struct drm_plane_funcs i8xx_plane_funcs = { 16198 .update_plane = drm_atomic_helper_update_plane, 16199 .disable_plane = drm_atomic_helper_disable_plane, 16200 .destroy = intel_plane_destroy, 16201 .atomic_duplicate_state = intel_plane_duplicate_state, 16202 .atomic_destroy_state = intel_plane_destroy_state, 16203 .format_mod_supported = i8xx_plane_format_mod_supported, 16204 }; 16205 16206 static int 16207 intel_legacy_cursor_update(struct drm_plane *_plane, 16208 struct drm_crtc *_crtc, 16209 struct drm_framebuffer *fb, 16210 int crtc_x, int crtc_y, 16211 unsigned int crtc_w, unsigned int crtc_h, 16212 u32 src_x, u32 src_y, 16213 u32 src_w, u32 src_h, 16214 struct drm_modeset_acquire_ctx *ctx) 16215 { 16216 struct intel_plane *plane = to_intel_plane(_plane); 16217 struct intel_crtc *crtc = to_intel_crtc(_crtc); 16218 struct intel_plane_state *old_plane_state = 16219 to_intel_plane_state(plane->base.state); 16220 struct intel_plane_state *new_plane_state; 16221 struct intel_crtc_state *crtc_state = 16222 to_intel_crtc_state(crtc->base.state); 16223 struct intel_crtc_state *new_crtc_state; 16224 int ret; 16225 16226 /* 16227 * When crtc is inactive or there is a modeset pending, 16228 * wait for it to complete in the slowpath 16229 */ 16230 if (!crtc_state->hw.active || needs_modeset(crtc_state) || 16231 crtc_state->update_pipe) 16232 goto slow; 16233 16234 /* 16235 * Don't do an async update if there is an outstanding commit modifying 16236 * the plane. This prevents our async update's changes from getting 16237 * overridden by a previous synchronous update's state. 16238 */ 16239 if (old_plane_state->uapi.commit && 16240 !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done)) 16241 goto slow; 16242 16243 /* 16244 * If any parameters change that may affect watermarks, 16245 * take the slowpath. Only changing fb or position should be 16246 * in the fastpath. 16247 */ 16248 if (old_plane_state->uapi.crtc != &crtc->base || 16249 old_plane_state->uapi.src_w != src_w || 16250 old_plane_state->uapi.src_h != src_h || 16251 old_plane_state->uapi.crtc_w != crtc_w || 16252 old_plane_state->uapi.crtc_h != crtc_h || 16253 !old_plane_state->uapi.fb != !fb) 16254 goto slow; 16255 16256 new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base)); 16257 if (!new_plane_state) 16258 return -ENOMEM; 16259 16260 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base)); 16261 if (!new_crtc_state) { 16262 ret = -ENOMEM; 16263 goto out_free; 16264 } 16265 16266 drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb); 16267 16268 new_plane_state->uapi.src_x = src_x; 16269 new_plane_state->uapi.src_y = src_y; 16270 new_plane_state->uapi.src_w = src_w; 16271 new_plane_state->uapi.src_h = src_h; 16272 new_plane_state->uapi.crtc_x = crtc_x; 16273 new_plane_state->uapi.crtc_y = crtc_y; 16274 new_plane_state->uapi.crtc_w = crtc_w; 16275 new_plane_state->uapi.crtc_h = crtc_h; 16276 16277 intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state); 16278 16279 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state, 16280 old_plane_state, new_plane_state); 16281 if (ret) 16282 goto out_free; 16283 16284 ret = intel_plane_pin_fb(new_plane_state); 16285 if (ret) 16286 goto out_free; 16287 16288 intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb), 16289 ORIGIN_FLIP); 16290 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 16291 to_intel_frontbuffer(new_plane_state->hw.fb), 16292 plane->frontbuffer_bit); 16293 16294 /* Swap plane state */ 16295 plane->base.state = &new_plane_state->uapi; 16296 16297 /* 16298 * We cannot swap crtc_state as it may be in use by an atomic commit or 16299 * page flip that's running simultaneously. If we swap crtc_state and 16300 * destroy the old state, we will cause a use-after-free there. 16301 * 16302 * Only update active_planes, which is needed for our internal 16303 * bookkeeping. Either value will do the right thing when updating 16304 * planes atomically. If the cursor was part of the atomic update then 16305 * we would have taken the slowpath. 16306 */ 16307 crtc_state->active_planes = new_crtc_state->active_planes; 16308 16309 if (new_plane_state->uapi.visible) 16310 intel_update_plane(plane, crtc_state, new_plane_state); 16311 else 16312 intel_disable_plane(plane, crtc_state); 16313 16314 intel_plane_unpin_fb(old_plane_state); 16315 16316 out_free: 16317 if (new_crtc_state) 16318 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi); 16319 if (ret) 16320 intel_plane_destroy_state(&plane->base, &new_plane_state->uapi); 16321 else 16322 intel_plane_destroy_state(&plane->base, &old_plane_state->uapi); 16323 return ret; 16324 16325 slow: 16326 return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb, 16327 crtc_x, crtc_y, crtc_w, crtc_h, 16328 src_x, src_y, src_w, src_h, ctx); 16329 } 16330 16331 static const struct drm_plane_funcs intel_cursor_plane_funcs = { 16332 .update_plane = intel_legacy_cursor_update, 16333 .disable_plane = drm_atomic_helper_disable_plane, 16334 .destroy = intel_plane_destroy, 16335 .atomic_duplicate_state = intel_plane_duplicate_state, 16336 .atomic_destroy_state = intel_plane_destroy_state, 16337 .format_mod_supported = intel_cursor_format_mod_supported, 16338 }; 16339 16340 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv, 16341 enum i9xx_plane_id i9xx_plane) 16342 { 16343 if (!HAS_FBC(dev_priv)) 16344 return false; 16345 16346 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 16347 return i9xx_plane == PLANE_A; /* tied to pipe A */ 16348 else if (IS_IVYBRIDGE(dev_priv)) 16349 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B || 16350 i9xx_plane == PLANE_C; 16351 else if (INTEL_GEN(dev_priv) >= 4) 16352 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B; 16353 else 16354 return i9xx_plane == PLANE_A; 16355 } 16356 16357 static struct intel_plane * 16358 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe) 16359 { 16360 struct intel_plane *plane; 16361 const struct drm_plane_funcs *plane_funcs; 16362 unsigned int supported_rotations; 16363 const u32 *formats; 16364 int num_formats; 16365 int ret, zpos; 16366 16367 if (INTEL_GEN(dev_priv) >= 9) 16368 return skl_universal_plane_create(dev_priv, pipe, 16369 PLANE_PRIMARY); 16370 16371 plane = intel_plane_alloc(); 16372 if (IS_ERR(plane)) 16373 return plane; 16374 16375 plane->pipe = pipe; 16376 /* 16377 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS 16378 * port is hooked to pipe B. Hence we want plane A feeding pipe B. 16379 */ 16380 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4 && 16381 INTEL_NUM_PIPES(dev_priv) == 2) 16382 plane->i9xx_plane = (enum i9xx_plane_id) !pipe; 16383 else 16384 plane->i9xx_plane = (enum i9xx_plane_id) pipe; 16385 plane->id = PLANE_PRIMARY; 16386 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id); 16387 16388 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane); 16389 if (plane->has_fbc) { 16390 struct intel_fbc *fbc = &dev_priv->fbc; 16391 16392 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit; 16393 } 16394 16395 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 16396 formats = vlv_primary_formats; 16397 num_formats = ARRAY_SIZE(vlv_primary_formats); 16398 } else if (INTEL_GEN(dev_priv) >= 4) { 16399 /* 16400 * WaFP16GammaEnabling:ivb 16401 * "Workaround : When using the 64-bit format, the plane 16402 * output on each color channel has one quarter amplitude. 16403 * It can be brought up to full amplitude by using pipe 16404 * gamma correction or pipe color space conversion to 16405 * multiply the plane output by four." 16406 * 16407 * There is no dedicated plane gamma for the primary plane, 16408 * and using the pipe gamma/csc could conflict with other 16409 * planes, so we choose not to expose fp16 on IVB primary 16410 * planes. HSW primary planes no longer have this problem. 16411 */ 16412 if (IS_IVYBRIDGE(dev_priv)) { 16413 formats = ivb_primary_formats; 16414 num_formats = ARRAY_SIZE(ivb_primary_formats); 16415 } else { 16416 formats = i965_primary_formats; 16417 num_formats = ARRAY_SIZE(i965_primary_formats); 16418 } 16419 } else { 16420 formats = i8xx_primary_formats; 16421 num_formats = ARRAY_SIZE(i8xx_primary_formats); 16422 } 16423 16424 if (INTEL_GEN(dev_priv) >= 4) 16425 plane_funcs = &i965_plane_funcs; 16426 else 16427 plane_funcs = &i8xx_plane_funcs; 16428 16429 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16430 plane->min_cdclk = vlv_plane_min_cdclk; 16431 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 16432 plane->min_cdclk = hsw_plane_min_cdclk; 16433 else if (IS_IVYBRIDGE(dev_priv)) 16434 plane->min_cdclk = ivb_plane_min_cdclk; 16435 else 16436 plane->min_cdclk = i9xx_plane_min_cdclk; 16437 16438 plane->max_stride = i9xx_plane_max_stride; 16439 plane->update_plane = i9xx_update_plane; 16440 plane->disable_plane = i9xx_disable_plane; 16441 plane->get_hw_state = i9xx_plane_get_hw_state; 16442 plane->check_plane = i9xx_plane_check; 16443 16444 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 16445 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 16446 0, plane_funcs, 16447 formats, num_formats, 16448 i9xx_format_modifiers, 16449 DRM_PLANE_TYPE_PRIMARY, 16450 "primary %c", pipe_name(pipe)); 16451 else 16452 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 16453 0, plane_funcs, 16454 formats, num_formats, 16455 i9xx_format_modifiers, 16456 DRM_PLANE_TYPE_PRIMARY, 16457 "plane %c", 16458 plane_name(plane->i9xx_plane)); 16459 if (ret) 16460 goto fail; 16461 16462 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 16463 supported_rotations = 16464 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 | 16465 DRM_MODE_REFLECT_X; 16466 } else if (INTEL_GEN(dev_priv) >= 4) { 16467 supported_rotations = 16468 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180; 16469 } else { 16470 supported_rotations = DRM_MODE_ROTATE_0; 16471 } 16472 16473 if (INTEL_GEN(dev_priv) >= 4) 16474 drm_plane_create_rotation_property(&plane->base, 16475 DRM_MODE_ROTATE_0, 16476 supported_rotations); 16477 16478 zpos = 0; 16479 drm_plane_create_zpos_immutable_property(&plane->base, zpos); 16480 16481 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs); 16482 16483 return plane; 16484 16485 fail: 16486 intel_plane_free(plane); 16487 16488 return ERR_PTR(ret); 16489 } 16490 16491 static struct intel_plane * 16492 intel_cursor_plane_create(struct drm_i915_private *dev_priv, 16493 enum pipe pipe) 16494 { 16495 struct intel_plane *cursor; 16496 int ret, zpos; 16497 16498 cursor = intel_plane_alloc(); 16499 if (IS_ERR(cursor)) 16500 return cursor; 16501 16502 cursor->pipe = pipe; 16503 cursor->i9xx_plane = (enum i9xx_plane_id) pipe; 16504 cursor->id = PLANE_CURSOR; 16505 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id); 16506 16507 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) { 16508 cursor->max_stride = i845_cursor_max_stride; 16509 cursor->update_plane = i845_update_cursor; 16510 cursor->disable_plane = i845_disable_cursor; 16511 cursor->get_hw_state = i845_cursor_get_hw_state; 16512 cursor->check_plane = i845_check_cursor; 16513 } else { 16514 cursor->max_stride = i9xx_cursor_max_stride; 16515 cursor->update_plane = i9xx_update_cursor; 16516 cursor->disable_plane = i9xx_disable_cursor; 16517 cursor->get_hw_state = i9xx_cursor_get_hw_state; 16518 cursor->check_plane = i9xx_check_cursor; 16519 } 16520 16521 cursor->cursor.base = ~0; 16522 cursor->cursor.cntl = ~0; 16523 16524 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv)) 16525 cursor->cursor.size = ~0; 16526 16527 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base, 16528 0, &intel_cursor_plane_funcs, 16529 intel_cursor_formats, 16530 ARRAY_SIZE(intel_cursor_formats), 16531 cursor_format_modifiers, 16532 DRM_PLANE_TYPE_CURSOR, 16533 "cursor %c", pipe_name(pipe)); 16534 if (ret) 16535 goto fail; 16536 16537 if (INTEL_GEN(dev_priv) >= 4) 16538 drm_plane_create_rotation_property(&cursor->base, 16539 DRM_MODE_ROTATE_0, 16540 DRM_MODE_ROTATE_0 | 16541 DRM_MODE_ROTATE_180); 16542 16543 zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1; 16544 drm_plane_create_zpos_immutable_property(&cursor->base, zpos); 16545 16546 if (INTEL_GEN(dev_priv) >= 12) 16547 drm_plane_enable_fb_damage_clips(&cursor->base); 16548 16549 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs); 16550 16551 return cursor; 16552 16553 fail: 16554 intel_plane_free(cursor); 16555 16556 return ERR_PTR(ret); 16557 } 16558 16559 #define INTEL_CRTC_FUNCS \ 16560 .gamma_set = drm_atomic_helper_legacy_gamma_set, \ 16561 .set_config = drm_atomic_helper_set_config, \ 16562 .destroy = intel_crtc_destroy, \ 16563 .page_flip = drm_atomic_helper_page_flip, \ 16564 .atomic_duplicate_state = intel_crtc_duplicate_state, \ 16565 .atomic_destroy_state = intel_crtc_destroy_state, \ 16566 .set_crc_source = intel_crtc_set_crc_source, \ 16567 .verify_crc_source = intel_crtc_verify_crc_source, \ 16568 .get_crc_sources = intel_crtc_get_crc_sources 16569 16570 static const struct drm_crtc_funcs bdw_crtc_funcs = { 16571 INTEL_CRTC_FUNCS, 16572 16573 .get_vblank_counter = g4x_get_vblank_counter, 16574 .enable_vblank = bdw_enable_vblank, 16575 .disable_vblank = bdw_disable_vblank, 16576 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16577 }; 16578 16579 static const struct drm_crtc_funcs ilk_crtc_funcs = { 16580 INTEL_CRTC_FUNCS, 16581 16582 .get_vblank_counter = g4x_get_vblank_counter, 16583 .enable_vblank = ilk_enable_vblank, 16584 .disable_vblank = ilk_disable_vblank, 16585 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16586 }; 16587 16588 static const struct drm_crtc_funcs g4x_crtc_funcs = { 16589 INTEL_CRTC_FUNCS, 16590 16591 .get_vblank_counter = g4x_get_vblank_counter, 16592 .enable_vblank = i965_enable_vblank, 16593 .disable_vblank = i965_disable_vblank, 16594 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16595 }; 16596 16597 static const struct drm_crtc_funcs i965_crtc_funcs = { 16598 INTEL_CRTC_FUNCS, 16599 16600 .get_vblank_counter = i915_get_vblank_counter, 16601 .enable_vblank = i965_enable_vblank, 16602 .disable_vblank = i965_disable_vblank, 16603 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16604 }; 16605 16606 static const struct drm_crtc_funcs i915gm_crtc_funcs = { 16607 INTEL_CRTC_FUNCS, 16608 16609 .get_vblank_counter = i915_get_vblank_counter, 16610 .enable_vblank = i915gm_enable_vblank, 16611 .disable_vblank = i915gm_disable_vblank, 16612 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16613 }; 16614 16615 static const struct drm_crtc_funcs i915_crtc_funcs = { 16616 INTEL_CRTC_FUNCS, 16617 16618 .get_vblank_counter = i915_get_vblank_counter, 16619 .enable_vblank = i8xx_enable_vblank, 16620 .disable_vblank = i8xx_disable_vblank, 16621 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16622 }; 16623 16624 static const struct drm_crtc_funcs i8xx_crtc_funcs = { 16625 INTEL_CRTC_FUNCS, 16626 16627 /* no hw vblank counter */ 16628 .enable_vblank = i8xx_enable_vblank, 16629 .disable_vblank = i8xx_disable_vblank, 16630 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16631 }; 16632 16633 static struct intel_crtc *intel_crtc_alloc(void) 16634 { 16635 struct intel_crtc_state *crtc_state; 16636 struct intel_crtc *crtc; 16637 16638 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL); 16639 if (!crtc) 16640 return ERR_PTR(-ENOMEM); 16641 16642 crtc_state = intel_crtc_state_alloc(crtc); 16643 if (!crtc_state) { 16644 kfree(crtc); 16645 return ERR_PTR(-ENOMEM); 16646 } 16647 16648 crtc->base.state = &crtc_state->uapi; 16649 crtc->config = crtc_state; 16650 16651 return crtc; 16652 } 16653 16654 static void intel_crtc_free(struct intel_crtc *crtc) 16655 { 16656 intel_crtc_destroy_state(&crtc->base, crtc->base.state); 16657 kfree(crtc); 16658 } 16659 16660 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 16661 { 16662 struct intel_plane *plane; 16663 16664 for_each_intel_plane(&dev_priv->drm, plane) { 16665 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 16666 plane->pipe); 16667 16668 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 16669 } 16670 } 16671 16672 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) 16673 { 16674 struct intel_plane *primary, *cursor; 16675 const struct drm_crtc_funcs *funcs; 16676 struct intel_crtc *crtc; 16677 int sprite, ret; 16678 16679 crtc = intel_crtc_alloc(); 16680 if (IS_ERR(crtc)) 16681 return PTR_ERR(crtc); 16682 16683 crtc->pipe = pipe; 16684 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe]; 16685 16686 primary = intel_primary_plane_create(dev_priv, pipe); 16687 if (IS_ERR(primary)) { 16688 ret = PTR_ERR(primary); 16689 goto fail; 16690 } 16691 crtc->plane_ids_mask |= BIT(primary->id); 16692 16693 for_each_sprite(dev_priv, pipe, sprite) { 16694 struct intel_plane *plane; 16695 16696 plane = intel_sprite_plane_create(dev_priv, pipe, sprite); 16697 if (IS_ERR(plane)) { 16698 ret = PTR_ERR(plane); 16699 goto fail; 16700 } 16701 crtc->plane_ids_mask |= BIT(plane->id); 16702 } 16703 16704 cursor = intel_cursor_plane_create(dev_priv, pipe); 16705 if (IS_ERR(cursor)) { 16706 ret = PTR_ERR(cursor); 16707 goto fail; 16708 } 16709 crtc->plane_ids_mask |= BIT(cursor->id); 16710 16711 if (HAS_GMCH(dev_priv)) { 16712 if (IS_CHERRYVIEW(dev_priv) || 16713 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) 16714 funcs = &g4x_crtc_funcs; 16715 else if (IS_GEN(dev_priv, 4)) 16716 funcs = &i965_crtc_funcs; 16717 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv)) 16718 funcs = &i915gm_crtc_funcs; 16719 else if (IS_GEN(dev_priv, 3)) 16720 funcs = &i915_crtc_funcs; 16721 else 16722 funcs = &i8xx_crtc_funcs; 16723 } else { 16724 if (INTEL_GEN(dev_priv) >= 8) 16725 funcs = &bdw_crtc_funcs; 16726 else 16727 funcs = &ilk_crtc_funcs; 16728 } 16729 16730 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base, 16731 &primary->base, &cursor->base, 16732 funcs, "pipe %c", pipe_name(pipe)); 16733 if (ret) 16734 goto fail; 16735 16736 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) || 16737 dev_priv->pipe_to_crtc_mapping[pipe] != NULL); 16738 dev_priv->pipe_to_crtc_mapping[pipe] = crtc; 16739 16740 if (INTEL_GEN(dev_priv) < 9) { 16741 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane; 16742 16743 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 16744 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL); 16745 dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc; 16746 } 16747 16748 intel_color_init(crtc); 16749 16750 intel_crtc_crc_init(crtc); 16751 16752 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe); 16753 16754 return 0; 16755 16756 fail: 16757 intel_crtc_free(crtc); 16758 16759 return ret; 16760 } 16761 16762 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 16763 struct drm_file *file) 16764 { 16765 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 16766 struct drm_crtc *drmmode_crtc; 16767 struct intel_crtc *crtc; 16768 16769 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 16770 if (!drmmode_crtc) 16771 return -ENOENT; 16772 16773 crtc = to_intel_crtc(drmmode_crtc); 16774 pipe_from_crtc_id->pipe = crtc->pipe; 16775 16776 return 0; 16777 } 16778 16779 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 16780 { 16781 struct drm_device *dev = encoder->base.dev; 16782 struct intel_encoder *source_encoder; 16783 u32 possible_clones = 0; 16784 16785 for_each_intel_encoder(dev, source_encoder) { 16786 if (encoders_cloneable(encoder, source_encoder)) 16787 possible_clones |= drm_encoder_mask(&source_encoder->base); 16788 } 16789 16790 return possible_clones; 16791 } 16792 16793 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 16794 { 16795 struct drm_device *dev = encoder->base.dev; 16796 struct intel_crtc *crtc; 16797 u32 possible_crtcs = 0; 16798 16799 for_each_intel_crtc(dev, crtc) { 16800 if (encoder->pipe_mask & BIT(crtc->pipe)) 16801 possible_crtcs |= drm_crtc_mask(&crtc->base); 16802 } 16803 16804 return possible_crtcs; 16805 } 16806 16807 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 16808 { 16809 if (!IS_MOBILE(dev_priv)) 16810 return false; 16811 16812 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 16813 return false; 16814 16815 if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 16816 return false; 16817 16818 return true; 16819 } 16820 16821 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 16822 { 16823 if (INTEL_GEN(dev_priv) >= 9) 16824 return false; 16825 16826 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 16827 return false; 16828 16829 if (HAS_PCH_LPT_H(dev_priv) && 16830 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 16831 return false; 16832 16833 /* DDI E can't be used if DDI A requires 4 lanes */ 16834 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 16835 return false; 16836 16837 if (!dev_priv->vbt.int_crt_support) 16838 return false; 16839 16840 return true; 16841 } 16842 16843 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv) 16844 { 16845 int pps_num; 16846 int pps_idx; 16847 16848 if (HAS_DDI(dev_priv)) 16849 return; 16850 /* 16851 * This w/a is needed at least on CPT/PPT, but to be sure apply it 16852 * everywhere where registers can be write protected. 16853 */ 16854 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16855 pps_num = 2; 16856 else 16857 pps_num = 1; 16858 16859 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) { 16860 u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx)); 16861 16862 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS; 16863 intel_de_write(dev_priv, PP_CONTROL(pps_idx), val); 16864 } 16865 } 16866 16867 static void intel_pps_init(struct drm_i915_private *dev_priv) 16868 { 16869 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv)) 16870 dev_priv->pps_mmio_base = PCH_PPS_BASE; 16871 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16872 dev_priv->pps_mmio_base = VLV_PPS_BASE; 16873 else 16874 dev_priv->pps_mmio_base = PPS_BASE; 16875 16876 intel_pps_unlock_regs_wa(dev_priv); 16877 } 16878 16879 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 16880 { 16881 struct intel_encoder *encoder; 16882 bool dpd_is_edp = false; 16883 16884 intel_pps_init(dev_priv); 16885 16886 if (!HAS_DISPLAY(dev_priv)) 16887 return; 16888 16889 if (IS_ROCKETLAKE(dev_priv)) { 16890 intel_ddi_init(dev_priv, PORT_A); 16891 intel_ddi_init(dev_priv, PORT_B); 16892 intel_ddi_init(dev_priv, PORT_D); /* DDI TC1 */ 16893 intel_ddi_init(dev_priv, PORT_E); /* DDI TC2 */ 16894 } else if (INTEL_GEN(dev_priv) >= 12) { 16895 intel_ddi_init(dev_priv, PORT_A); 16896 intel_ddi_init(dev_priv, PORT_B); 16897 intel_ddi_init(dev_priv, PORT_D); 16898 intel_ddi_init(dev_priv, PORT_E); 16899 intel_ddi_init(dev_priv, PORT_F); 16900 intel_ddi_init(dev_priv, PORT_G); 16901 intel_ddi_init(dev_priv, PORT_H); 16902 intel_ddi_init(dev_priv, PORT_I); 16903 icl_dsi_init(dev_priv); 16904 } else if (IS_ELKHARTLAKE(dev_priv)) { 16905 intel_ddi_init(dev_priv, PORT_A); 16906 intel_ddi_init(dev_priv, PORT_B); 16907 intel_ddi_init(dev_priv, PORT_C); 16908 intel_ddi_init(dev_priv, PORT_D); 16909 icl_dsi_init(dev_priv); 16910 } else if (IS_GEN(dev_priv, 11)) { 16911 intel_ddi_init(dev_priv, PORT_A); 16912 intel_ddi_init(dev_priv, PORT_B); 16913 intel_ddi_init(dev_priv, PORT_C); 16914 intel_ddi_init(dev_priv, PORT_D); 16915 intel_ddi_init(dev_priv, PORT_E); 16916 /* 16917 * On some ICL SKUs port F is not present. No strap bits for 16918 * this, so rely on VBT. 16919 * Work around broken VBTs on SKUs known to have no port F. 16920 */ 16921 if (IS_ICL_WITH_PORT_F(dev_priv) && 16922 intel_bios_is_port_present(dev_priv, PORT_F)) 16923 intel_ddi_init(dev_priv, PORT_F); 16924 16925 icl_dsi_init(dev_priv); 16926 } else if (IS_GEN9_LP(dev_priv)) { 16927 /* 16928 * FIXME: Broxton doesn't support port detection via the 16929 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to 16930 * detect the ports. 16931 */ 16932 intel_ddi_init(dev_priv, PORT_A); 16933 intel_ddi_init(dev_priv, PORT_B); 16934 intel_ddi_init(dev_priv, PORT_C); 16935 16936 vlv_dsi_init(dev_priv); 16937 } else if (HAS_DDI(dev_priv)) { 16938 int found; 16939 16940 if (intel_ddi_crt_present(dev_priv)) 16941 intel_crt_init(dev_priv); 16942 16943 /* 16944 * Haswell uses DDI functions to detect digital outputs. 16945 * On SKL pre-D0 the strap isn't connected, so we assume 16946 * it's there. 16947 */ 16948 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 16949 /* WaIgnoreDDIAStrap: skl */ 16950 if (found || IS_GEN9_BC(dev_priv)) 16951 intel_ddi_init(dev_priv, PORT_A); 16952 16953 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP 16954 * register */ 16955 found = intel_de_read(dev_priv, SFUSE_STRAP); 16956 16957 if (found & SFUSE_STRAP_DDIB_DETECTED) 16958 intel_ddi_init(dev_priv, PORT_B); 16959 if (found & SFUSE_STRAP_DDIC_DETECTED) 16960 intel_ddi_init(dev_priv, PORT_C); 16961 if (found & SFUSE_STRAP_DDID_DETECTED) 16962 intel_ddi_init(dev_priv, PORT_D); 16963 if (found & SFUSE_STRAP_DDIF_DETECTED) 16964 intel_ddi_init(dev_priv, PORT_F); 16965 /* 16966 * On SKL we don't have a way to detect DDI-E so we rely on VBT. 16967 */ 16968 if (IS_GEN9_BC(dev_priv) && 16969 intel_bios_is_port_present(dev_priv, PORT_E)) 16970 intel_ddi_init(dev_priv, PORT_E); 16971 16972 } else if (HAS_PCH_SPLIT(dev_priv)) { 16973 int found; 16974 16975 /* 16976 * intel_edp_init_connector() depends on this completing first, 16977 * to prevent the registration of both eDP and LVDS and the 16978 * incorrect sharing of the PPS. 16979 */ 16980 intel_lvds_init(dev_priv); 16981 intel_crt_init(dev_priv); 16982 16983 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 16984 16985 if (ilk_has_edp_a(dev_priv)) 16986 intel_dp_init(dev_priv, DP_A, PORT_A); 16987 16988 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 16989 /* PCH SDVOB multiplex with HDMIB */ 16990 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 16991 if (!found) 16992 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 16993 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 16994 intel_dp_init(dev_priv, PCH_DP_B, PORT_B); 16995 } 16996 16997 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 16998 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 16999 17000 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 17001 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 17002 17003 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 17004 intel_dp_init(dev_priv, PCH_DP_C, PORT_C); 17005 17006 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 17007 intel_dp_init(dev_priv, PCH_DP_D, PORT_D); 17008 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 17009 bool has_edp, has_port; 17010 17011 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 17012 intel_crt_init(dev_priv); 17013 17014 /* 17015 * The DP_DETECTED bit is the latched state of the DDC 17016 * SDA pin at boot. However since eDP doesn't require DDC 17017 * (no way to plug in a DP->HDMI dongle) the DDC pins for 17018 * eDP ports may have been muxed to an alternate function. 17019 * Thus we can't rely on the DP_DETECTED bit alone to detect 17020 * eDP ports. Consult the VBT as well as DP_DETECTED to 17021 * detect eDP ports. 17022 * 17023 * Sadly the straps seem to be missing sometimes even for HDMI 17024 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 17025 * and VBT for the presence of the port. Additionally we can't 17026 * trust the port type the VBT declares as we've seen at least 17027 * HDMI ports that the VBT claim are DP or eDP. 17028 */ 17029 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 17030 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 17031 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 17032 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B); 17033 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 17034 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 17035 17036 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 17037 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 17038 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 17039 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C); 17040 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 17041 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 17042 17043 if (IS_CHERRYVIEW(dev_priv)) { 17044 /* 17045 * eDP not supported on port D, 17046 * so no need to worry about it 17047 */ 17048 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 17049 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 17050 intel_dp_init(dev_priv, CHV_DP_D, PORT_D); 17051 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 17052 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 17053 } 17054 17055 vlv_dsi_init(dev_priv); 17056 } else if (IS_PINEVIEW(dev_priv)) { 17057 intel_lvds_init(dev_priv); 17058 intel_crt_init(dev_priv); 17059 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) { 17060 bool found = false; 17061 17062 if (IS_MOBILE(dev_priv)) 17063 intel_lvds_init(dev_priv); 17064 17065 intel_crt_init(dev_priv); 17066 17067 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 17068 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 17069 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 17070 if (!found && IS_G4X(dev_priv)) { 17071 drm_dbg_kms(&dev_priv->drm, 17072 "probing HDMI on SDVOB\n"); 17073 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 17074 } 17075 17076 if (!found && IS_G4X(dev_priv)) 17077 intel_dp_init(dev_priv, DP_B, PORT_B); 17078 } 17079 17080 /* Before G4X SDVOC doesn't have its own detect register */ 17081 17082 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 17083 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 17084 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 17085 } 17086 17087 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 17088 17089 if (IS_G4X(dev_priv)) { 17090 drm_dbg_kms(&dev_priv->drm, 17091 "probing HDMI on SDVOC\n"); 17092 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 17093 } 17094 if (IS_G4X(dev_priv)) 17095 intel_dp_init(dev_priv, DP_C, PORT_C); 17096 } 17097 17098 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 17099 intel_dp_init(dev_priv, DP_D, PORT_D); 17100 17101 if (SUPPORTS_TV(dev_priv)) 17102 intel_tv_init(dev_priv); 17103 } else if (IS_GEN(dev_priv, 2)) { 17104 if (IS_I85X(dev_priv)) 17105 intel_lvds_init(dev_priv); 17106 17107 intel_crt_init(dev_priv); 17108 intel_dvo_init(dev_priv); 17109 } 17110 17111 intel_psr_init(dev_priv); 17112 17113 for_each_intel_encoder(&dev_priv->drm, encoder) { 17114 encoder->base.possible_crtcs = 17115 intel_encoder_possible_crtcs(encoder); 17116 encoder->base.possible_clones = 17117 intel_encoder_possible_clones(encoder); 17118 } 17119 17120 intel_init_pch_refclk(dev_priv); 17121 17122 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 17123 } 17124 17125 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 17126 { 17127 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 17128 17129 drm_framebuffer_cleanup(fb); 17130 intel_frontbuffer_put(intel_fb->frontbuffer); 17131 17132 kfree(intel_fb); 17133 } 17134 17135 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 17136 struct drm_file *file, 17137 unsigned int *handle) 17138 { 17139 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 17140 struct drm_i915_private *i915 = to_i915(obj->base.dev); 17141 17142 if (obj->userptr.mm) { 17143 drm_dbg(&i915->drm, 17144 "attempting to use a userptr for a framebuffer, denied\n"); 17145 return -EINVAL; 17146 } 17147 17148 return drm_gem_handle_create(file, &obj->base, handle); 17149 } 17150 17151 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 17152 struct drm_file *file, 17153 unsigned flags, unsigned color, 17154 struct drm_clip_rect *clips, 17155 unsigned num_clips) 17156 { 17157 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 17158 17159 i915_gem_object_flush_if_display(obj); 17160 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 17161 17162 return 0; 17163 } 17164 17165 static const struct drm_framebuffer_funcs intel_fb_funcs = { 17166 .destroy = intel_user_framebuffer_destroy, 17167 .create_handle = intel_user_framebuffer_create_handle, 17168 .dirty = intel_user_framebuffer_dirty, 17169 }; 17170 17171 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 17172 struct drm_i915_gem_object *obj, 17173 struct drm_mode_fb_cmd2 *mode_cmd) 17174 { 17175 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 17176 struct drm_framebuffer *fb = &intel_fb->base; 17177 u32 max_stride; 17178 unsigned int tiling, stride; 17179 int ret = -EINVAL; 17180 int i; 17181 17182 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 17183 if (!intel_fb->frontbuffer) 17184 return -ENOMEM; 17185 17186 i915_gem_object_lock(obj, NULL); 17187 tiling = i915_gem_object_get_tiling(obj); 17188 stride = i915_gem_object_get_stride(obj); 17189 i915_gem_object_unlock(obj); 17190 17191 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 17192 /* 17193 * If there's a fence, enforce that 17194 * the fb modifier and tiling mode match. 17195 */ 17196 if (tiling != I915_TILING_NONE && 17197 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 17198 drm_dbg_kms(&dev_priv->drm, 17199 "tiling_mode doesn't match fb modifier\n"); 17200 goto err; 17201 } 17202 } else { 17203 if (tiling == I915_TILING_X) { 17204 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 17205 } else if (tiling == I915_TILING_Y) { 17206 drm_dbg_kms(&dev_priv->drm, 17207 "No Y tiling for legacy addfb\n"); 17208 goto err; 17209 } 17210 } 17211 17212 if (!drm_any_plane_has_format(&dev_priv->drm, 17213 mode_cmd->pixel_format, 17214 mode_cmd->modifier[0])) { 17215 struct drm_format_name_buf format_name; 17216 17217 drm_dbg_kms(&dev_priv->drm, 17218 "unsupported pixel format %s / modifier 0x%llx\n", 17219 drm_get_format_name(mode_cmd->pixel_format, 17220 &format_name), 17221 mode_cmd->modifier[0]); 17222 goto err; 17223 } 17224 17225 /* 17226 * gen2/3 display engine uses the fence if present, 17227 * so the tiling mode must match the fb modifier exactly. 17228 */ 17229 if (INTEL_GEN(dev_priv) < 4 && 17230 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 17231 drm_dbg_kms(&dev_priv->drm, 17232 "tiling_mode must match fb modifier exactly on gen2/3\n"); 17233 goto err; 17234 } 17235 17236 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 17237 mode_cmd->modifier[0]); 17238 if (mode_cmd->pitches[0] > max_stride) { 17239 drm_dbg_kms(&dev_priv->drm, 17240 "%s pitch (%u) must be at most %d\n", 17241 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 17242 "tiled" : "linear", 17243 mode_cmd->pitches[0], max_stride); 17244 goto err; 17245 } 17246 17247 /* 17248 * If there's a fence, enforce that 17249 * the fb pitch and fence stride match. 17250 */ 17251 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 17252 drm_dbg_kms(&dev_priv->drm, 17253 "pitch (%d) must match tiling stride (%d)\n", 17254 mode_cmd->pitches[0], stride); 17255 goto err; 17256 } 17257 17258 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 17259 if (mode_cmd->offsets[0] != 0) { 17260 drm_dbg_kms(&dev_priv->drm, 17261 "plane 0 offset (0x%08x) must be 0\n", 17262 mode_cmd->offsets[0]); 17263 goto err; 17264 } 17265 17266 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 17267 17268 for (i = 0; i < fb->format->num_planes; i++) { 17269 u32 stride_alignment; 17270 17271 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 17272 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 17273 i); 17274 goto err; 17275 } 17276 17277 stride_alignment = intel_fb_stride_alignment(fb, i); 17278 if (fb->pitches[i] & (stride_alignment - 1)) { 17279 drm_dbg_kms(&dev_priv->drm, 17280 "plane %d pitch (%d) must be at least %u byte aligned\n", 17281 i, fb->pitches[i], stride_alignment); 17282 goto err; 17283 } 17284 17285 if (is_gen12_ccs_plane(fb, i)) { 17286 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 17287 17288 if (fb->pitches[i] != ccs_aux_stride) { 17289 drm_dbg_kms(&dev_priv->drm, 17290 "ccs aux plane %d pitch (%d) must be %d\n", 17291 i, 17292 fb->pitches[i], ccs_aux_stride); 17293 goto err; 17294 } 17295 } 17296 17297 fb->obj[i] = &obj->base; 17298 } 17299 17300 ret = intel_fill_fb_info(dev_priv, fb); 17301 if (ret) 17302 goto err; 17303 17304 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 17305 if (ret) { 17306 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 17307 goto err; 17308 } 17309 17310 return 0; 17311 17312 err: 17313 intel_frontbuffer_put(intel_fb->frontbuffer); 17314 return ret; 17315 } 17316 17317 static struct drm_framebuffer * 17318 intel_user_framebuffer_create(struct drm_device *dev, 17319 struct drm_file *filp, 17320 const struct drm_mode_fb_cmd2 *user_mode_cmd) 17321 { 17322 struct drm_framebuffer *fb; 17323 struct drm_i915_gem_object *obj; 17324 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 17325 17326 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 17327 if (!obj) 17328 return ERR_PTR(-ENOENT); 17329 17330 fb = intel_framebuffer_create(obj, &mode_cmd); 17331 i915_gem_object_put(obj); 17332 17333 return fb; 17334 } 17335 17336 static enum drm_mode_status 17337 intel_mode_valid(struct drm_device *dev, 17338 const struct drm_display_mode *mode) 17339 { 17340 struct drm_i915_private *dev_priv = to_i915(dev); 17341 int hdisplay_max, htotal_max; 17342 int vdisplay_max, vtotal_max; 17343 17344 /* 17345 * Can't reject DBLSCAN here because Xorg ddxen can add piles 17346 * of DBLSCAN modes to the output's mode list when they detect 17347 * the scaling mode property on the connector. And they don't 17348 * ask the kernel to validate those modes in any way until 17349 * modeset time at which point the client gets a protocol error. 17350 * So in order to not upset those clients we silently ignore the 17351 * DBLSCAN flag on such connectors. For other connectors we will 17352 * reject modes with the DBLSCAN flag in encoder->compute_config(). 17353 * And we always reject DBLSCAN modes in connector->mode_valid() 17354 * as we never want such modes on the connector's mode list. 17355 */ 17356 17357 if (mode->vscan > 1) 17358 return MODE_NO_VSCAN; 17359 17360 if (mode->flags & DRM_MODE_FLAG_HSKEW) 17361 return MODE_H_ILLEGAL; 17362 17363 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 17364 DRM_MODE_FLAG_NCSYNC | 17365 DRM_MODE_FLAG_PCSYNC)) 17366 return MODE_HSYNC; 17367 17368 if (mode->flags & (DRM_MODE_FLAG_BCAST | 17369 DRM_MODE_FLAG_PIXMUX | 17370 DRM_MODE_FLAG_CLKDIV2)) 17371 return MODE_BAD; 17372 17373 /* Transcoder timing limits */ 17374 if (INTEL_GEN(dev_priv) >= 11) { 17375 hdisplay_max = 16384; 17376 vdisplay_max = 8192; 17377 htotal_max = 16384; 17378 vtotal_max = 8192; 17379 } else if (INTEL_GEN(dev_priv) >= 9 || 17380 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 17381 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 17382 vdisplay_max = 4096; 17383 htotal_max = 8192; 17384 vtotal_max = 8192; 17385 } else if (INTEL_GEN(dev_priv) >= 3) { 17386 hdisplay_max = 4096; 17387 vdisplay_max = 4096; 17388 htotal_max = 8192; 17389 vtotal_max = 8192; 17390 } else { 17391 hdisplay_max = 2048; 17392 vdisplay_max = 2048; 17393 htotal_max = 4096; 17394 vtotal_max = 4096; 17395 } 17396 17397 if (mode->hdisplay > hdisplay_max || 17398 mode->hsync_start > htotal_max || 17399 mode->hsync_end > htotal_max || 17400 mode->htotal > htotal_max) 17401 return MODE_H_ILLEGAL; 17402 17403 if (mode->vdisplay > vdisplay_max || 17404 mode->vsync_start > vtotal_max || 17405 mode->vsync_end > vtotal_max || 17406 mode->vtotal > vtotal_max) 17407 return MODE_V_ILLEGAL; 17408 17409 if (INTEL_GEN(dev_priv) >= 5) { 17410 if (mode->hdisplay < 64 || 17411 mode->htotal - mode->hdisplay < 32) 17412 return MODE_H_ILLEGAL; 17413 17414 if (mode->vtotal - mode->vdisplay < 5) 17415 return MODE_V_ILLEGAL; 17416 } else { 17417 if (mode->htotal - mode->hdisplay < 32) 17418 return MODE_H_ILLEGAL; 17419 17420 if (mode->vtotal - mode->vdisplay < 3) 17421 return MODE_V_ILLEGAL; 17422 } 17423 17424 return MODE_OK; 17425 } 17426 17427 enum drm_mode_status 17428 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 17429 const struct drm_display_mode *mode) 17430 { 17431 int plane_width_max, plane_height_max; 17432 17433 /* 17434 * intel_mode_valid() should be 17435 * sufficient on older platforms. 17436 */ 17437 if (INTEL_GEN(dev_priv) < 9) 17438 return MODE_OK; 17439 17440 /* 17441 * Most people will probably want a fullscreen 17442 * plane so let's not advertize modes that are 17443 * too big for that. 17444 */ 17445 if (INTEL_GEN(dev_priv) >= 11) { 17446 plane_width_max = 5120; 17447 plane_height_max = 4320; 17448 } else { 17449 plane_width_max = 5120; 17450 plane_height_max = 4096; 17451 } 17452 17453 if (mode->hdisplay > plane_width_max) 17454 return MODE_H_ILLEGAL; 17455 17456 if (mode->vdisplay > plane_height_max) 17457 return MODE_V_ILLEGAL; 17458 17459 return MODE_OK; 17460 } 17461 17462 static const struct drm_mode_config_funcs intel_mode_funcs = { 17463 .fb_create = intel_user_framebuffer_create, 17464 .get_format_info = intel_get_format_info, 17465 .output_poll_changed = intel_fbdev_output_poll_changed, 17466 .mode_valid = intel_mode_valid, 17467 .atomic_check = intel_atomic_check, 17468 .atomic_commit = intel_atomic_commit, 17469 .atomic_state_alloc = intel_atomic_state_alloc, 17470 .atomic_state_clear = intel_atomic_state_clear, 17471 .atomic_state_free = intel_atomic_state_free, 17472 }; 17473 17474 /** 17475 * intel_init_display_hooks - initialize the display modesetting hooks 17476 * @dev_priv: device private 17477 */ 17478 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 17479 { 17480 intel_init_cdclk_hooks(dev_priv); 17481 17482 if (INTEL_GEN(dev_priv) >= 9) { 17483 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 17484 dev_priv->display.get_initial_plane_config = 17485 skl_get_initial_plane_config; 17486 dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock; 17487 dev_priv->display.crtc_enable = hsw_crtc_enable; 17488 dev_priv->display.crtc_disable = hsw_crtc_disable; 17489 } else if (HAS_DDI(dev_priv)) { 17490 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 17491 dev_priv->display.get_initial_plane_config = 17492 i9xx_get_initial_plane_config; 17493 dev_priv->display.crtc_compute_clock = 17494 hsw_crtc_compute_clock; 17495 dev_priv->display.crtc_enable = hsw_crtc_enable; 17496 dev_priv->display.crtc_disable = hsw_crtc_disable; 17497 } else if (HAS_PCH_SPLIT(dev_priv)) { 17498 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 17499 dev_priv->display.get_initial_plane_config = 17500 i9xx_get_initial_plane_config; 17501 dev_priv->display.crtc_compute_clock = 17502 ilk_crtc_compute_clock; 17503 dev_priv->display.crtc_enable = ilk_crtc_enable; 17504 dev_priv->display.crtc_disable = ilk_crtc_disable; 17505 } else if (IS_CHERRYVIEW(dev_priv)) { 17506 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17507 dev_priv->display.get_initial_plane_config = 17508 i9xx_get_initial_plane_config; 17509 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; 17510 dev_priv->display.crtc_enable = valleyview_crtc_enable; 17511 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17512 } else if (IS_VALLEYVIEW(dev_priv)) { 17513 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17514 dev_priv->display.get_initial_plane_config = 17515 i9xx_get_initial_plane_config; 17516 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; 17517 dev_priv->display.crtc_enable = valleyview_crtc_enable; 17518 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17519 } else if (IS_G4X(dev_priv)) { 17520 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17521 dev_priv->display.get_initial_plane_config = 17522 i9xx_get_initial_plane_config; 17523 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; 17524 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17525 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17526 } else if (IS_PINEVIEW(dev_priv)) { 17527 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17528 dev_priv->display.get_initial_plane_config = 17529 i9xx_get_initial_plane_config; 17530 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; 17531 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17532 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17533 } else if (!IS_GEN(dev_priv, 2)) { 17534 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17535 dev_priv->display.get_initial_plane_config = 17536 i9xx_get_initial_plane_config; 17537 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; 17538 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17539 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17540 } else { 17541 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17542 dev_priv->display.get_initial_plane_config = 17543 i9xx_get_initial_plane_config; 17544 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; 17545 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17546 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17547 } 17548 17549 if (IS_GEN(dev_priv, 5)) { 17550 dev_priv->display.fdi_link_train = ilk_fdi_link_train; 17551 } else if (IS_GEN(dev_priv, 6)) { 17552 dev_priv->display.fdi_link_train = gen6_fdi_link_train; 17553 } else if (IS_IVYBRIDGE(dev_priv)) { 17554 /* FIXME: detect B0+ stepping and use auto training */ 17555 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; 17556 } 17557 17558 if (INTEL_GEN(dev_priv) >= 9) 17559 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 17560 else 17561 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 17562 17563 } 17564 17565 void intel_modeset_init_hw(struct drm_i915_private *i915) 17566 { 17567 struct intel_cdclk_state *cdclk_state = 17568 to_intel_cdclk_state(i915->cdclk.obj.state); 17569 struct intel_dbuf_state *dbuf_state = 17570 to_intel_dbuf_state(i915->dbuf.obj.state); 17571 17572 intel_update_cdclk(i915); 17573 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 17574 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 17575 17576 dbuf_state->enabled_slices = i915->dbuf.enabled_slices; 17577 } 17578 17579 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 17580 { 17581 struct drm_plane *plane; 17582 struct intel_crtc *crtc; 17583 17584 for_each_intel_crtc(state->dev, crtc) { 17585 struct intel_crtc_state *crtc_state; 17586 17587 crtc_state = intel_atomic_get_crtc_state(state, crtc); 17588 if (IS_ERR(crtc_state)) 17589 return PTR_ERR(crtc_state); 17590 17591 if (crtc_state->hw.active) { 17592 /* 17593 * Preserve the inherited flag to avoid 17594 * taking the full modeset path. 17595 */ 17596 crtc_state->inherited = true; 17597 } 17598 } 17599 17600 drm_for_each_plane(plane, state->dev) { 17601 struct drm_plane_state *plane_state; 17602 17603 plane_state = drm_atomic_get_plane_state(state, plane); 17604 if (IS_ERR(plane_state)) 17605 return PTR_ERR(plane_state); 17606 } 17607 17608 return 0; 17609 } 17610 17611 /* 17612 * Calculate what we think the watermarks should be for the state we've read 17613 * out of the hardware and then immediately program those watermarks so that 17614 * we ensure the hardware settings match our internal state. 17615 * 17616 * We can calculate what we think WM's should be by creating a duplicate of the 17617 * current state (which was constructed during hardware readout) and running it 17618 * through the atomic check code to calculate new watermark values in the 17619 * state object. 17620 */ 17621 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 17622 { 17623 struct drm_atomic_state *state; 17624 struct intel_atomic_state *intel_state; 17625 struct intel_crtc *crtc; 17626 struct intel_crtc_state *crtc_state; 17627 struct drm_modeset_acquire_ctx ctx; 17628 int ret; 17629 int i; 17630 17631 /* Only supported on platforms that use atomic watermark design */ 17632 if (!dev_priv->display.optimize_watermarks) 17633 return; 17634 17635 state = drm_atomic_state_alloc(&dev_priv->drm); 17636 if (drm_WARN_ON(&dev_priv->drm, !state)) 17637 return; 17638 17639 intel_state = to_intel_atomic_state(state); 17640 17641 drm_modeset_acquire_init(&ctx, 0); 17642 17643 retry: 17644 state->acquire_ctx = &ctx; 17645 17646 /* 17647 * Hardware readout is the only time we don't want to calculate 17648 * intermediate watermarks (since we don't trust the current 17649 * watermarks). 17650 */ 17651 if (!HAS_GMCH(dev_priv)) 17652 intel_state->skip_intermediate_wm = true; 17653 17654 ret = sanitize_watermarks_add_affected(state); 17655 if (ret) 17656 goto fail; 17657 17658 ret = intel_atomic_check(&dev_priv->drm, state); 17659 if (ret) 17660 goto fail; 17661 17662 /* Write calculated watermark values back */ 17663 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 17664 crtc_state->wm.need_postvbl_update = true; 17665 dev_priv->display.optimize_watermarks(intel_state, crtc); 17666 17667 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 17668 } 17669 17670 fail: 17671 if (ret == -EDEADLK) { 17672 drm_atomic_state_clear(state); 17673 drm_modeset_backoff(&ctx); 17674 goto retry; 17675 } 17676 17677 /* 17678 * If we fail here, it means that the hardware appears to be 17679 * programmed in a way that shouldn't be possible, given our 17680 * understanding of watermark requirements. This might mean a 17681 * mistake in the hardware readout code or a mistake in the 17682 * watermark calculations for a given platform. Raise a WARN 17683 * so that this is noticeable. 17684 * 17685 * If this actually happens, we'll have to just leave the 17686 * BIOS-programmed watermarks untouched and hope for the best. 17687 */ 17688 drm_WARN(&dev_priv->drm, ret, 17689 "Could not determine valid watermarks for inherited state\n"); 17690 17691 drm_atomic_state_put(state); 17692 17693 drm_modeset_drop_locks(&ctx); 17694 drm_modeset_acquire_fini(&ctx); 17695 } 17696 17697 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 17698 { 17699 if (IS_GEN(dev_priv, 5)) { 17700 u32 fdi_pll_clk = 17701 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 17702 17703 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 17704 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) { 17705 dev_priv->fdi_pll_freq = 270000; 17706 } else { 17707 return; 17708 } 17709 17710 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 17711 } 17712 17713 static int intel_initial_commit(struct drm_device *dev) 17714 { 17715 struct drm_atomic_state *state = NULL; 17716 struct drm_modeset_acquire_ctx ctx; 17717 struct intel_crtc *crtc; 17718 int ret = 0; 17719 17720 state = drm_atomic_state_alloc(dev); 17721 if (!state) 17722 return -ENOMEM; 17723 17724 drm_modeset_acquire_init(&ctx, 0); 17725 17726 retry: 17727 state->acquire_ctx = &ctx; 17728 17729 for_each_intel_crtc(dev, crtc) { 17730 struct intel_crtc_state *crtc_state = 17731 intel_atomic_get_crtc_state(state, crtc); 17732 17733 if (IS_ERR(crtc_state)) { 17734 ret = PTR_ERR(crtc_state); 17735 goto out; 17736 } 17737 17738 if (crtc_state->hw.active) { 17739 /* 17740 * We've not yet detected sink capabilities 17741 * (audio,infoframes,etc.) and thus we don't want to 17742 * force a full state recomputation yet. We want that to 17743 * happen only for the first real commit from userspace. 17744 * So preserve the inherited flag for the time being. 17745 */ 17746 crtc_state->inherited = true; 17747 17748 ret = drm_atomic_add_affected_planes(state, &crtc->base); 17749 if (ret) 17750 goto out; 17751 17752 /* 17753 * FIXME hack to force a LUT update to avoid the 17754 * plane update forcing the pipe gamma on without 17755 * having a proper LUT loaded. Remove once we 17756 * have readout for pipe gamma enable. 17757 */ 17758 crtc_state->uapi.color_mgmt_changed = true; 17759 17760 /* 17761 * FIXME hack to force full modeset when DSC is being 17762 * used. 17763 * 17764 * As long as we do not have full state readout and 17765 * config comparison of crtc_state->dsc, we have no way 17766 * to ensure reliable fastset. Remove once we have 17767 * readout for DSC. 17768 */ 17769 if (crtc_state->dsc.compression_enable) { 17770 ret = drm_atomic_add_affected_connectors(state, 17771 &crtc->base); 17772 if (ret) 17773 goto out; 17774 crtc_state->uapi.mode_changed = true; 17775 drm_dbg_kms(dev, "Force full modeset for DSC\n"); 17776 } 17777 } 17778 } 17779 17780 ret = drm_atomic_commit(state); 17781 17782 out: 17783 if (ret == -EDEADLK) { 17784 drm_atomic_state_clear(state); 17785 drm_modeset_backoff(&ctx); 17786 goto retry; 17787 } 17788 17789 drm_atomic_state_put(state); 17790 17791 drm_modeset_drop_locks(&ctx); 17792 drm_modeset_acquire_fini(&ctx); 17793 17794 return ret; 17795 } 17796 17797 static void intel_mode_config_init(struct drm_i915_private *i915) 17798 { 17799 struct drm_mode_config *mode_config = &i915->drm.mode_config; 17800 17801 drm_mode_config_init(&i915->drm); 17802 INIT_LIST_HEAD(&i915->global_obj_list); 17803 17804 mode_config->min_width = 0; 17805 mode_config->min_height = 0; 17806 17807 mode_config->preferred_depth = 24; 17808 mode_config->prefer_shadow = 1; 17809 17810 mode_config->allow_fb_modifiers = true; 17811 17812 mode_config->funcs = &intel_mode_funcs; 17813 17814 /* 17815 * Maximum framebuffer dimensions, chosen to match 17816 * the maximum render engine surface size on gen4+. 17817 */ 17818 if (INTEL_GEN(i915) >= 7) { 17819 mode_config->max_width = 16384; 17820 mode_config->max_height = 16384; 17821 } else if (INTEL_GEN(i915) >= 4) { 17822 mode_config->max_width = 8192; 17823 mode_config->max_height = 8192; 17824 } else if (IS_GEN(i915, 3)) { 17825 mode_config->max_width = 4096; 17826 mode_config->max_height = 4096; 17827 } else { 17828 mode_config->max_width = 2048; 17829 mode_config->max_height = 2048; 17830 } 17831 17832 if (IS_I845G(i915) || IS_I865G(i915)) { 17833 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 17834 mode_config->cursor_height = 1023; 17835 } else if (IS_I830(i915) || IS_I85X(i915) || 17836 IS_I915G(i915) || IS_I915GM(i915)) { 17837 mode_config->cursor_width = 64; 17838 mode_config->cursor_height = 64; 17839 } else { 17840 mode_config->cursor_width = 256; 17841 mode_config->cursor_height = 256; 17842 } 17843 } 17844 17845 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 17846 { 17847 intel_atomic_global_obj_cleanup(i915); 17848 drm_mode_config_cleanup(&i915->drm); 17849 } 17850 17851 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 17852 { 17853 if (plane_config->fb) { 17854 struct drm_framebuffer *fb = &plane_config->fb->base; 17855 17856 /* We may only have the stub and not a full framebuffer */ 17857 if (drm_framebuffer_read_refcount(fb)) 17858 drm_framebuffer_put(fb); 17859 else 17860 kfree(fb); 17861 } 17862 17863 if (plane_config->vma) 17864 i915_vma_put(plane_config->vma); 17865 } 17866 17867 /* part #1: call before irq install */ 17868 int intel_modeset_init_noirq(struct drm_i915_private *i915) 17869 { 17870 int ret; 17871 17872 if (i915_inject_probe_failure(i915)) 17873 return -ENODEV; 17874 17875 if (HAS_DISPLAY(i915)) { 17876 ret = drm_vblank_init(&i915->drm, 17877 INTEL_NUM_PIPES(i915)); 17878 if (ret) 17879 return ret; 17880 } 17881 17882 intel_bios_init(i915); 17883 17884 ret = intel_vga_register(i915); 17885 if (ret) 17886 goto cleanup_bios; 17887 17888 /* FIXME: completely on the wrong abstraction layer */ 17889 intel_power_domains_init_hw(i915, false); 17890 17891 intel_csr_ucode_init(i915); 17892 17893 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 17894 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 17895 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 17896 17897 intel_mode_config_init(i915); 17898 17899 ret = intel_cdclk_init(i915); 17900 if (ret) 17901 goto cleanup_vga_client_pw_domain_csr; 17902 17903 ret = intel_dbuf_init(i915); 17904 if (ret) 17905 goto cleanup_vga_client_pw_domain_csr; 17906 17907 ret = intel_bw_init(i915); 17908 if (ret) 17909 goto cleanup_vga_client_pw_domain_csr; 17910 17911 init_llist_head(&i915->atomic_helper.free_list); 17912 INIT_WORK(&i915->atomic_helper.free_work, 17913 intel_atomic_helper_free_state_worker); 17914 17915 intel_init_quirks(i915); 17916 17917 intel_fbc_init(i915); 17918 17919 return 0; 17920 17921 cleanup_vga_client_pw_domain_csr: 17922 intel_csr_ucode_fini(i915); 17923 intel_power_domains_driver_remove(i915); 17924 intel_vga_unregister(i915); 17925 cleanup_bios: 17926 intel_bios_driver_remove(i915); 17927 17928 return ret; 17929 } 17930 17931 /* part #2: call after irq install, but before gem init */ 17932 int intel_modeset_init_nogem(struct drm_i915_private *i915) 17933 { 17934 struct drm_device *dev = &i915->drm; 17935 enum pipe pipe; 17936 struct intel_crtc *crtc; 17937 int ret; 17938 17939 intel_init_pm(i915); 17940 17941 intel_panel_sanitize_ssc(i915); 17942 17943 intel_gmbus_setup(i915); 17944 17945 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 17946 INTEL_NUM_PIPES(i915), 17947 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 17948 17949 if (HAS_DISPLAY(i915)) { 17950 for_each_pipe(i915, pipe) { 17951 ret = intel_crtc_init(i915, pipe); 17952 if (ret) { 17953 intel_mode_config_cleanup(i915); 17954 return ret; 17955 } 17956 } 17957 } 17958 17959 intel_plane_possible_crtcs_init(i915); 17960 intel_shared_dpll_init(dev); 17961 intel_update_fdi_pll_freq(i915); 17962 17963 intel_update_czclk(i915); 17964 intel_modeset_init_hw(i915); 17965 17966 intel_hdcp_component_init(i915); 17967 17968 if (i915->max_cdclk_freq == 0) 17969 intel_update_max_cdclk(i915); 17970 17971 /* 17972 * If the platform has HTI, we need to find out whether it has reserved 17973 * any display resources before we create our display outputs. 17974 */ 17975 if (INTEL_INFO(i915)->display.has_hti) 17976 i915->hti_state = intel_de_read(i915, HDPORT_STATE); 17977 17978 /* Just disable it once at startup */ 17979 intel_vga_disable(i915); 17980 intel_setup_outputs(i915); 17981 17982 drm_modeset_lock_all(dev); 17983 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 17984 drm_modeset_unlock_all(dev); 17985 17986 for_each_intel_crtc(dev, crtc) { 17987 struct intel_initial_plane_config plane_config = {}; 17988 17989 if (!crtc->active) 17990 continue; 17991 17992 /* 17993 * Note that reserving the BIOS fb up front prevents us 17994 * from stuffing other stolen allocations like the ring 17995 * on top. This prevents some ugliness at boot time, and 17996 * can even allow for smooth boot transitions if the BIOS 17997 * fb is large enough for the active pipe configuration. 17998 */ 17999 i915->display.get_initial_plane_config(crtc, &plane_config); 18000 18001 /* 18002 * If the fb is shared between multiple heads, we'll 18003 * just get the first one. 18004 */ 18005 intel_find_initial_plane_obj(crtc, &plane_config); 18006 18007 plane_config_fini(&plane_config); 18008 } 18009 18010 /* 18011 * Make sure hardware watermarks really match the state we read out. 18012 * Note that we need to do this after reconstructing the BIOS fb's 18013 * since the watermark calculation done here will use pstate->fb. 18014 */ 18015 if (!HAS_GMCH(i915)) 18016 sanitize_watermarks(i915); 18017 18018 /* 18019 * Force all active planes to recompute their states. So that on 18020 * mode_setcrtc after probe, all the intel_plane_state variables 18021 * are already calculated and there is no assert_plane warnings 18022 * during bootup. 18023 */ 18024 ret = intel_initial_commit(dev); 18025 if (ret) 18026 drm_dbg_kms(&i915->drm, "Initial commit in probe failed.\n"); 18027 18028 return 0; 18029 } 18030 18031 /* part #3: call after gem init */ 18032 int intel_modeset_init(struct drm_i915_private *i915) 18033 { 18034 int ret; 18035 18036 intel_overlay_setup(i915); 18037 18038 if (!HAS_DISPLAY(i915)) 18039 return 0; 18040 18041 ret = intel_fbdev_init(&i915->drm); 18042 if (ret) 18043 return ret; 18044 18045 /* Only enable hotplug handling once the fbdev is fully set up. */ 18046 intel_hpd_init(i915); 18047 18048 intel_init_ipc(i915); 18049 18050 intel_psr_set_force_mode_changed(i915->psr.dp); 18051 18052 return 0; 18053 } 18054 18055 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 18056 { 18057 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18058 /* 640x480@60Hz, ~25175 kHz */ 18059 struct dpll clock = { 18060 .m1 = 18, 18061 .m2 = 7, 18062 .p1 = 13, 18063 .p2 = 4, 18064 .n = 2, 18065 }; 18066 u32 dpll, fp; 18067 int i; 18068 18069 drm_WARN_ON(&dev_priv->drm, 18070 i9xx_calc_dpll_params(48000, &clock) != 25154); 18071 18072 drm_dbg_kms(&dev_priv->drm, 18073 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 18074 pipe_name(pipe), clock.vco, clock.dot); 18075 18076 fp = i9xx_dpll_compute_fp(&clock); 18077 dpll = DPLL_DVO_2X_MODE | 18078 DPLL_VGA_MODE_DIS | 18079 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 18080 PLL_P2_DIVIDE_BY_4 | 18081 PLL_REF_INPUT_DREFCLK | 18082 DPLL_VCO_ENABLE; 18083 18084 intel_de_write(dev_priv, FP0(pipe), fp); 18085 intel_de_write(dev_priv, FP1(pipe), fp); 18086 18087 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 18088 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 18089 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 18090 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 18091 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 18092 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 18093 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 18094 18095 /* 18096 * Apparently we need to have VGA mode enabled prior to changing 18097 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 18098 * dividers, even though the register value does change. 18099 */ 18100 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 18101 intel_de_write(dev_priv, DPLL(pipe), dpll); 18102 18103 /* Wait for the clocks to stabilize. */ 18104 intel_de_posting_read(dev_priv, DPLL(pipe)); 18105 udelay(150); 18106 18107 /* The pixel multiplier can only be updated once the 18108 * DPLL is enabled and the clocks are stable. 18109 * 18110 * So write it again. 18111 */ 18112 intel_de_write(dev_priv, DPLL(pipe), dpll); 18113 18114 /* We do this three times for luck */ 18115 for (i = 0; i < 3 ; i++) { 18116 intel_de_write(dev_priv, DPLL(pipe), dpll); 18117 intel_de_posting_read(dev_priv, DPLL(pipe)); 18118 udelay(150); /* wait for warmup */ 18119 } 18120 18121 intel_de_write(dev_priv, PIPECONF(pipe), 18122 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 18123 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 18124 18125 intel_wait_for_pipe_scanline_moving(crtc); 18126 } 18127 18128 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 18129 { 18130 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18131 18132 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 18133 pipe_name(pipe)); 18134 18135 drm_WARN_ON(&dev_priv->drm, 18136 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 18137 DISPLAY_PLANE_ENABLE); 18138 drm_WARN_ON(&dev_priv->drm, 18139 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 18140 DISPLAY_PLANE_ENABLE); 18141 drm_WARN_ON(&dev_priv->drm, 18142 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 18143 DISPLAY_PLANE_ENABLE); 18144 drm_WARN_ON(&dev_priv->drm, 18145 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 18146 drm_WARN_ON(&dev_priv->drm, 18147 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 18148 18149 intel_de_write(dev_priv, PIPECONF(pipe), 0); 18150 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 18151 18152 intel_wait_for_pipe_scanline_stopped(crtc); 18153 18154 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 18155 intel_de_posting_read(dev_priv, DPLL(pipe)); 18156 } 18157 18158 static void 18159 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 18160 { 18161 struct intel_crtc *crtc; 18162 18163 if (INTEL_GEN(dev_priv) >= 4) 18164 return; 18165 18166 for_each_intel_crtc(&dev_priv->drm, crtc) { 18167 struct intel_plane *plane = 18168 to_intel_plane(crtc->base.primary); 18169 struct intel_crtc *plane_crtc; 18170 enum pipe pipe; 18171 18172 if (!plane->get_hw_state(plane, &pipe)) 18173 continue; 18174 18175 if (pipe == crtc->pipe) 18176 continue; 18177 18178 drm_dbg_kms(&dev_priv->drm, 18179 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 18180 plane->base.base.id, plane->base.name); 18181 18182 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18183 intel_plane_disable_noatomic(plane_crtc, plane); 18184 } 18185 } 18186 18187 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 18188 { 18189 struct drm_device *dev = crtc->base.dev; 18190 struct intel_encoder *encoder; 18191 18192 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 18193 return true; 18194 18195 return false; 18196 } 18197 18198 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 18199 { 18200 struct drm_device *dev = encoder->base.dev; 18201 struct intel_connector *connector; 18202 18203 for_each_connector_on_encoder(dev, &encoder->base, connector) 18204 return connector; 18205 18206 return NULL; 18207 } 18208 18209 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 18210 enum pipe pch_transcoder) 18211 { 18212 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 18213 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 18214 } 18215 18216 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 18217 { 18218 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 18219 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 18220 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 18221 18222 if (INTEL_GEN(dev_priv) >= 9 || 18223 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 18224 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 18225 u32 val; 18226 18227 if (transcoder_is_dsi(cpu_transcoder)) 18228 return; 18229 18230 val = intel_de_read(dev_priv, reg); 18231 val &= ~HSW_FRAME_START_DELAY_MASK; 18232 val |= HSW_FRAME_START_DELAY(0); 18233 intel_de_write(dev_priv, reg, val); 18234 } else { 18235 i915_reg_t reg = PIPECONF(cpu_transcoder); 18236 u32 val; 18237 18238 val = intel_de_read(dev_priv, reg); 18239 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 18240 val |= PIPECONF_FRAME_START_DELAY(0); 18241 intel_de_write(dev_priv, reg, val); 18242 } 18243 18244 if (!crtc_state->has_pch_encoder) 18245 return; 18246 18247 if (HAS_PCH_IBX(dev_priv)) { 18248 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 18249 u32 val; 18250 18251 val = intel_de_read(dev_priv, reg); 18252 val &= ~TRANS_FRAME_START_DELAY_MASK; 18253 val |= TRANS_FRAME_START_DELAY(0); 18254 intel_de_write(dev_priv, reg, val); 18255 } else { 18256 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 18257 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 18258 u32 val; 18259 18260 val = intel_de_read(dev_priv, reg); 18261 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 18262 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 18263 intel_de_write(dev_priv, reg, val); 18264 } 18265 } 18266 18267 static void intel_sanitize_crtc(struct intel_crtc *crtc, 18268 struct drm_modeset_acquire_ctx *ctx) 18269 { 18270 struct drm_device *dev = crtc->base.dev; 18271 struct drm_i915_private *dev_priv = to_i915(dev); 18272 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 18273 18274 if (crtc_state->hw.active) { 18275 struct intel_plane *plane; 18276 18277 /* Clear any frame start delays used for debugging left by the BIOS */ 18278 intel_sanitize_frame_start_delay(crtc_state); 18279 18280 /* Disable everything but the primary plane */ 18281 for_each_intel_plane_on_crtc(dev, crtc, plane) { 18282 const struct intel_plane_state *plane_state = 18283 to_intel_plane_state(plane->base.state); 18284 18285 if (plane_state->uapi.visible && 18286 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 18287 intel_plane_disable_noatomic(crtc, plane); 18288 } 18289 18290 /* 18291 * Disable any background color set by the BIOS, but enable the 18292 * gamma and CSC to match how we program our planes. 18293 */ 18294 if (INTEL_GEN(dev_priv) >= 9) 18295 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 18296 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 18297 } 18298 18299 /* Adjust the state of the output pipe according to whether we 18300 * have active connectors/encoders. */ 18301 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc)) 18302 intel_crtc_disable_noatomic(crtc, ctx); 18303 18304 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 18305 /* 18306 * We start out with underrun reporting disabled to avoid races. 18307 * For correct bookkeeping mark this on active crtcs. 18308 * 18309 * Also on gmch platforms we dont have any hardware bits to 18310 * disable the underrun reporting. Which means we need to start 18311 * out with underrun reporting disabled also on inactive pipes, 18312 * since otherwise we'll complain about the garbage we read when 18313 * e.g. coming up after runtime pm. 18314 * 18315 * No protection against concurrent access is required - at 18316 * worst a fifo underrun happens which also sets this to false. 18317 */ 18318 crtc->cpu_fifo_underrun_disabled = true; 18319 /* 18320 * We track the PCH trancoder underrun reporting state 18321 * within the crtc. With crtc for pipe A housing the underrun 18322 * reporting state for PCH transcoder A, crtc for pipe B housing 18323 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 18324 * and marking underrun reporting as disabled for the non-existing 18325 * PCH transcoders B and C would prevent enabling the south 18326 * error interrupt (see cpt_can_enable_serr_int()). 18327 */ 18328 if (has_pch_trancoder(dev_priv, crtc->pipe)) 18329 crtc->pch_fifo_underrun_disabled = true; 18330 } 18331 } 18332 18333 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 18334 { 18335 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 18336 18337 /* 18338 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 18339 * the hardware when a high res displays plugged in. DPLL P 18340 * divider is zero, and the pipe timings are bonkers. We'll 18341 * try to disable everything in that case. 18342 * 18343 * FIXME would be nice to be able to sanitize this state 18344 * without several WARNs, but for now let's take the easy 18345 * road. 18346 */ 18347 return IS_GEN(dev_priv, 6) && 18348 crtc_state->hw.active && 18349 crtc_state->shared_dpll && 18350 crtc_state->port_clock == 0; 18351 } 18352 18353 static void intel_sanitize_encoder(struct intel_encoder *encoder) 18354 { 18355 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 18356 struct intel_connector *connector; 18357 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 18358 struct intel_crtc_state *crtc_state = crtc ? 18359 to_intel_crtc_state(crtc->base.state) : NULL; 18360 18361 /* We need to check both for a crtc link (meaning that the 18362 * encoder is active and trying to read from a pipe) and the 18363 * pipe itself being active. */ 18364 bool has_active_crtc = crtc_state && 18365 crtc_state->hw.active; 18366 18367 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 18368 drm_dbg_kms(&dev_priv->drm, 18369 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 18370 pipe_name(crtc->pipe)); 18371 has_active_crtc = false; 18372 } 18373 18374 connector = intel_encoder_find_connector(encoder); 18375 if (connector && !has_active_crtc) { 18376 drm_dbg_kms(&dev_priv->drm, 18377 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 18378 encoder->base.base.id, 18379 encoder->base.name); 18380 18381 /* Connector is active, but has no active pipe. This is 18382 * fallout from our resume register restoring. Disable 18383 * the encoder manually again. */ 18384 if (crtc_state) { 18385 struct drm_encoder *best_encoder; 18386 18387 drm_dbg_kms(&dev_priv->drm, 18388 "[ENCODER:%d:%s] manually disabled\n", 18389 encoder->base.base.id, 18390 encoder->base.name); 18391 18392 /* avoid oopsing in case the hooks consult best_encoder */ 18393 best_encoder = connector->base.state->best_encoder; 18394 connector->base.state->best_encoder = &encoder->base; 18395 18396 /* FIXME NULL atomic state passed! */ 18397 if (encoder->disable) 18398 encoder->disable(NULL, encoder, crtc_state, 18399 connector->base.state); 18400 if (encoder->post_disable) 18401 encoder->post_disable(NULL, encoder, crtc_state, 18402 connector->base.state); 18403 18404 connector->base.state->best_encoder = best_encoder; 18405 } 18406 encoder->base.crtc = NULL; 18407 18408 /* Inconsistent output/port/pipe state happens presumably due to 18409 * a bug in one of the get_hw_state functions. Or someplace else 18410 * in our code, like the register restore mess on resume. Clamp 18411 * things to off as a safer default. */ 18412 18413 connector->base.dpms = DRM_MODE_DPMS_OFF; 18414 connector->base.encoder = NULL; 18415 } 18416 18417 /* notify opregion of the sanitized encoder state */ 18418 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 18419 18420 if (INTEL_GEN(dev_priv) >= 11) 18421 icl_sanitize_encoder_pll_mapping(encoder); 18422 } 18423 18424 /* FIXME read out full plane state for all planes */ 18425 static void readout_plane_state(struct drm_i915_private *dev_priv) 18426 { 18427 struct intel_plane *plane; 18428 struct intel_crtc *crtc; 18429 18430 for_each_intel_plane(&dev_priv->drm, plane) { 18431 struct intel_plane_state *plane_state = 18432 to_intel_plane_state(plane->base.state); 18433 struct intel_crtc_state *crtc_state; 18434 enum pipe pipe = PIPE_A; 18435 bool visible; 18436 18437 visible = plane->get_hw_state(plane, &pipe); 18438 18439 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18440 crtc_state = to_intel_crtc_state(crtc->base.state); 18441 18442 intel_set_plane_visible(crtc_state, plane_state, visible); 18443 18444 drm_dbg_kms(&dev_priv->drm, 18445 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 18446 plane->base.base.id, plane->base.name, 18447 enableddisabled(visible), pipe_name(pipe)); 18448 } 18449 18450 for_each_intel_crtc(&dev_priv->drm, crtc) { 18451 struct intel_crtc_state *crtc_state = 18452 to_intel_crtc_state(crtc->base.state); 18453 18454 fixup_active_planes(crtc_state); 18455 } 18456 } 18457 18458 static void intel_modeset_readout_hw_state(struct drm_device *dev) 18459 { 18460 struct drm_i915_private *dev_priv = to_i915(dev); 18461 struct intel_cdclk_state *cdclk_state = 18462 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 18463 struct intel_dbuf_state *dbuf_state = 18464 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 18465 enum pipe pipe; 18466 struct intel_crtc *crtc; 18467 struct intel_encoder *encoder; 18468 struct intel_connector *connector; 18469 struct drm_connector_list_iter conn_iter; 18470 u8 active_pipes = 0; 18471 18472 for_each_intel_crtc(dev, crtc) { 18473 struct intel_crtc_state *crtc_state = 18474 to_intel_crtc_state(crtc->base.state); 18475 18476 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 18477 intel_crtc_free_hw_state(crtc_state); 18478 intel_crtc_state_reset(crtc_state, crtc); 18479 18480 crtc_state->hw.active = crtc_state->hw.enable = 18481 dev_priv->display.get_pipe_config(crtc, crtc_state); 18482 18483 crtc->base.enabled = crtc_state->hw.enable; 18484 crtc->active = crtc_state->hw.active; 18485 18486 if (crtc_state->hw.active) 18487 active_pipes |= BIT(crtc->pipe); 18488 18489 drm_dbg_kms(&dev_priv->drm, 18490 "[CRTC:%d:%s] hw state readout: %s\n", 18491 crtc->base.base.id, crtc->base.name, 18492 enableddisabled(crtc_state->hw.active)); 18493 } 18494 18495 dev_priv->active_pipes = cdclk_state->active_pipes = 18496 dbuf_state->active_pipes = active_pipes; 18497 18498 readout_plane_state(dev_priv); 18499 18500 intel_dpll_readout_hw_state(dev_priv); 18501 18502 for_each_intel_encoder(dev, encoder) { 18503 pipe = 0; 18504 18505 if (encoder->get_hw_state(encoder, &pipe)) { 18506 struct intel_crtc_state *crtc_state; 18507 18508 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18509 crtc_state = to_intel_crtc_state(crtc->base.state); 18510 18511 encoder->base.crtc = &crtc->base; 18512 encoder->get_config(encoder, crtc_state); 18513 } else { 18514 encoder->base.crtc = NULL; 18515 } 18516 18517 drm_dbg_kms(&dev_priv->drm, 18518 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 18519 encoder->base.base.id, encoder->base.name, 18520 enableddisabled(encoder->base.crtc), 18521 pipe_name(pipe)); 18522 } 18523 18524 drm_connector_list_iter_begin(dev, &conn_iter); 18525 for_each_intel_connector_iter(connector, &conn_iter) { 18526 if (connector->get_hw_state(connector)) { 18527 struct intel_crtc_state *crtc_state; 18528 struct intel_crtc *crtc; 18529 18530 connector->base.dpms = DRM_MODE_DPMS_ON; 18531 18532 encoder = intel_attached_encoder(connector); 18533 connector->base.encoder = &encoder->base; 18534 18535 crtc = to_intel_crtc(encoder->base.crtc); 18536 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 18537 18538 if (crtc_state && crtc_state->hw.active) { 18539 /* 18540 * This has to be done during hardware readout 18541 * because anything calling .crtc_disable may 18542 * rely on the connector_mask being accurate. 18543 */ 18544 crtc_state->uapi.connector_mask |= 18545 drm_connector_mask(&connector->base); 18546 crtc_state->uapi.encoder_mask |= 18547 drm_encoder_mask(&encoder->base); 18548 } 18549 } else { 18550 connector->base.dpms = DRM_MODE_DPMS_OFF; 18551 connector->base.encoder = NULL; 18552 } 18553 drm_dbg_kms(&dev_priv->drm, 18554 "[CONNECTOR:%d:%s] hw state readout: %s\n", 18555 connector->base.base.id, connector->base.name, 18556 enableddisabled(connector->base.encoder)); 18557 } 18558 drm_connector_list_iter_end(&conn_iter); 18559 18560 for_each_intel_crtc(dev, crtc) { 18561 struct intel_bw_state *bw_state = 18562 to_intel_bw_state(dev_priv->bw_obj.state); 18563 struct intel_crtc_state *crtc_state = 18564 to_intel_crtc_state(crtc->base.state); 18565 struct intel_plane *plane; 18566 int min_cdclk = 0; 18567 18568 if (crtc_state->hw.active) { 18569 struct drm_display_mode *mode = &crtc_state->hw.mode; 18570 18571 intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode, 18572 crtc_state); 18573 18574 *mode = crtc_state->hw.adjusted_mode; 18575 mode->hdisplay = crtc_state->pipe_src_w; 18576 mode->vdisplay = crtc_state->pipe_src_h; 18577 18578 /* 18579 * The initial mode needs to be set in order to keep 18580 * the atomic core happy. It wants a valid mode if the 18581 * crtc's enabled, so we do the above call. 18582 * 18583 * But we don't set all the derived state fully, hence 18584 * set a flag to indicate that a full recalculation is 18585 * needed on the next commit. 18586 */ 18587 crtc_state->inherited = true; 18588 18589 intel_crtc_compute_pixel_rate(crtc_state); 18590 18591 intel_crtc_update_active_timings(crtc_state); 18592 18593 intel_crtc_copy_hw_to_uapi_state(crtc_state); 18594 } 18595 18596 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 18597 const struct intel_plane_state *plane_state = 18598 to_intel_plane_state(plane->base.state); 18599 18600 /* 18601 * FIXME don't have the fb yet, so can't 18602 * use intel_plane_data_rate() :( 18603 */ 18604 if (plane_state->uapi.visible) 18605 crtc_state->data_rate[plane->id] = 18606 4 * crtc_state->pixel_rate; 18607 /* 18608 * FIXME don't have the fb yet, so can't 18609 * use plane->min_cdclk() :( 18610 */ 18611 if (plane_state->uapi.visible && plane->min_cdclk) { 18612 if (crtc_state->double_wide || 18613 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 18614 crtc_state->min_cdclk[plane->id] = 18615 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 18616 else 18617 crtc_state->min_cdclk[plane->id] = 18618 crtc_state->pixel_rate; 18619 } 18620 drm_dbg_kms(&dev_priv->drm, 18621 "[PLANE:%d:%s] min_cdclk %d kHz\n", 18622 plane->base.base.id, plane->base.name, 18623 crtc_state->min_cdclk[plane->id]); 18624 } 18625 18626 if (crtc_state->hw.active) { 18627 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 18628 if (drm_WARN_ON(dev, min_cdclk < 0)) 18629 min_cdclk = 0; 18630 } 18631 18632 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 18633 cdclk_state->min_voltage_level[crtc->pipe] = 18634 crtc_state->min_voltage_level; 18635 18636 intel_bw_crtc_update(bw_state, crtc_state); 18637 18638 intel_pipe_config_sanity_check(dev_priv, crtc_state); 18639 } 18640 } 18641 18642 static void 18643 get_encoder_power_domains(struct drm_i915_private *dev_priv) 18644 { 18645 struct intel_encoder *encoder; 18646 18647 for_each_intel_encoder(&dev_priv->drm, encoder) { 18648 struct intel_crtc_state *crtc_state; 18649 18650 if (!encoder->get_power_domains) 18651 continue; 18652 18653 /* 18654 * MST-primary and inactive encoders don't have a crtc state 18655 * and neither of these require any power domain references. 18656 */ 18657 if (!encoder->base.crtc) 18658 continue; 18659 18660 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 18661 encoder->get_power_domains(encoder, crtc_state); 18662 } 18663 } 18664 18665 static void intel_early_display_was(struct drm_i915_private *dev_priv) 18666 { 18667 /* 18668 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl 18669 * Also known as Wa_14010480278. 18670 */ 18671 if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv)) 18672 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 18673 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 18674 18675 if (IS_HASWELL(dev_priv)) { 18676 /* 18677 * WaRsPkgCStateDisplayPMReq:hsw 18678 * System hang if this isn't done before disabling all planes! 18679 */ 18680 intel_de_write(dev_priv, CHICKEN_PAR1_1, 18681 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 18682 } 18683 } 18684 18685 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 18686 enum port port, i915_reg_t hdmi_reg) 18687 { 18688 u32 val = intel_de_read(dev_priv, hdmi_reg); 18689 18690 if (val & SDVO_ENABLE || 18691 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 18692 return; 18693 18694 drm_dbg_kms(&dev_priv->drm, 18695 "Sanitizing transcoder select for HDMI %c\n", 18696 port_name(port)); 18697 18698 val &= ~SDVO_PIPE_SEL_MASK; 18699 val |= SDVO_PIPE_SEL(PIPE_A); 18700 18701 intel_de_write(dev_priv, hdmi_reg, val); 18702 } 18703 18704 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 18705 enum port port, i915_reg_t dp_reg) 18706 { 18707 u32 val = intel_de_read(dev_priv, dp_reg); 18708 18709 if (val & DP_PORT_EN || 18710 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 18711 return; 18712 18713 drm_dbg_kms(&dev_priv->drm, 18714 "Sanitizing transcoder select for DP %c\n", 18715 port_name(port)); 18716 18717 val &= ~DP_PIPE_SEL_MASK; 18718 val |= DP_PIPE_SEL(PIPE_A); 18719 18720 intel_de_write(dev_priv, dp_reg, val); 18721 } 18722 18723 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 18724 { 18725 /* 18726 * The BIOS may select transcoder B on some of the PCH 18727 * ports even it doesn't enable the port. This would trip 18728 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 18729 * Sanitize the transcoder select bits to prevent that. We 18730 * assume that the BIOS never actually enabled the port, 18731 * because if it did we'd actually have to toggle the port 18732 * on and back off to make the transcoder A select stick 18733 * (see. intel_dp_link_down(), intel_disable_hdmi(), 18734 * intel_disable_sdvo()). 18735 */ 18736 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 18737 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 18738 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 18739 18740 /* PCH SDVOB multiplex with HDMIB */ 18741 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 18742 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 18743 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 18744 } 18745 18746 /* Scan out the current hw modeset state, 18747 * and sanitizes it to the current state 18748 */ 18749 static void 18750 intel_modeset_setup_hw_state(struct drm_device *dev, 18751 struct drm_modeset_acquire_ctx *ctx) 18752 { 18753 struct drm_i915_private *dev_priv = to_i915(dev); 18754 struct intel_encoder *encoder; 18755 struct intel_crtc *crtc; 18756 intel_wakeref_t wakeref; 18757 18758 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 18759 18760 intel_early_display_was(dev_priv); 18761 intel_modeset_readout_hw_state(dev); 18762 18763 /* HW state is read out, now we need to sanitize this mess. */ 18764 18765 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 18766 for_each_intel_encoder(dev, encoder) { 18767 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 18768 18769 /* We need to sanitize only the MST primary port. */ 18770 if (encoder->type != INTEL_OUTPUT_DP_MST && 18771 intel_phy_is_tc(dev_priv, phy)) 18772 intel_tc_port_sanitize(enc_to_dig_port(encoder)); 18773 } 18774 18775 get_encoder_power_domains(dev_priv); 18776 18777 if (HAS_PCH_IBX(dev_priv)) 18778 ibx_sanitize_pch_ports(dev_priv); 18779 18780 /* 18781 * intel_sanitize_plane_mapping() may need to do vblank 18782 * waits, so we need vblank interrupts restored beforehand. 18783 */ 18784 for_each_intel_crtc(&dev_priv->drm, crtc) { 18785 struct intel_crtc_state *crtc_state = 18786 to_intel_crtc_state(crtc->base.state); 18787 18788 drm_crtc_vblank_reset(&crtc->base); 18789 18790 if (crtc_state->hw.active) 18791 intel_crtc_vblank_on(crtc_state); 18792 } 18793 18794 intel_sanitize_plane_mapping(dev_priv); 18795 18796 for_each_intel_encoder(dev, encoder) 18797 intel_sanitize_encoder(encoder); 18798 18799 for_each_intel_crtc(&dev_priv->drm, crtc) { 18800 struct intel_crtc_state *crtc_state = 18801 to_intel_crtc_state(crtc->base.state); 18802 18803 intel_sanitize_crtc(crtc, ctx); 18804 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 18805 } 18806 18807 intel_modeset_update_connector_atomic_state(dev); 18808 18809 intel_dpll_sanitize_state(dev_priv); 18810 18811 if (IS_G4X(dev_priv)) { 18812 g4x_wm_get_hw_state(dev_priv); 18813 g4x_wm_sanitize(dev_priv); 18814 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 18815 vlv_wm_get_hw_state(dev_priv); 18816 vlv_wm_sanitize(dev_priv); 18817 } else if (INTEL_GEN(dev_priv) >= 9) { 18818 skl_wm_get_hw_state(dev_priv); 18819 } else if (HAS_PCH_SPLIT(dev_priv)) { 18820 ilk_wm_get_hw_state(dev_priv); 18821 } 18822 18823 for_each_intel_crtc(dev, crtc) { 18824 struct intel_crtc_state *crtc_state = 18825 to_intel_crtc_state(crtc->base.state); 18826 u64 put_domains; 18827 18828 put_domains = modeset_get_crtc_power_domains(crtc_state); 18829 if (drm_WARN_ON(dev, put_domains)) 18830 modeset_put_power_domains(dev_priv, put_domains); 18831 } 18832 18833 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 18834 } 18835 18836 void intel_display_resume(struct drm_device *dev) 18837 { 18838 struct drm_i915_private *dev_priv = to_i915(dev); 18839 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 18840 struct drm_modeset_acquire_ctx ctx; 18841 int ret; 18842 18843 dev_priv->modeset_restore_state = NULL; 18844 if (state) 18845 state->acquire_ctx = &ctx; 18846 18847 drm_modeset_acquire_init(&ctx, 0); 18848 18849 while (1) { 18850 ret = drm_modeset_lock_all_ctx(dev, &ctx); 18851 if (ret != -EDEADLK) 18852 break; 18853 18854 drm_modeset_backoff(&ctx); 18855 } 18856 18857 if (!ret) 18858 ret = __intel_display_resume(dev, state, &ctx); 18859 18860 intel_enable_ipc(dev_priv); 18861 drm_modeset_drop_locks(&ctx); 18862 drm_modeset_acquire_fini(&ctx); 18863 18864 if (ret) 18865 drm_err(&dev_priv->drm, 18866 "Restoring old state failed with %i\n", ret); 18867 if (state) 18868 drm_atomic_state_put(state); 18869 } 18870 18871 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 18872 { 18873 struct intel_connector *connector; 18874 struct drm_connector_list_iter conn_iter; 18875 18876 /* Kill all the work that may have been queued by hpd. */ 18877 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 18878 for_each_intel_connector_iter(connector, &conn_iter) { 18879 if (connector->modeset_retry_work.func) 18880 cancel_work_sync(&connector->modeset_retry_work); 18881 if (connector->hdcp.shim) { 18882 cancel_delayed_work_sync(&connector->hdcp.check_work); 18883 cancel_work_sync(&connector->hdcp.prop_work); 18884 } 18885 } 18886 drm_connector_list_iter_end(&conn_iter); 18887 } 18888 18889 /* part #1: call before irq uninstall */ 18890 void intel_modeset_driver_remove(struct drm_i915_private *i915) 18891 { 18892 flush_workqueue(i915->flip_wq); 18893 flush_workqueue(i915->modeset_wq); 18894 18895 flush_work(&i915->atomic_helper.free_work); 18896 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 18897 } 18898 18899 /* part #2: call after irq uninstall */ 18900 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 18901 { 18902 /* 18903 * Due to the hpd irq storm handling the hotplug work can re-arm the 18904 * poll handlers. Hence disable polling after hpd handling is shut down. 18905 */ 18906 intel_hpd_poll_fini(i915); 18907 18908 /* 18909 * MST topology needs to be suspended so we don't have any calls to 18910 * fbdev after it's finalized. MST will be destroyed later as part of 18911 * drm_mode_config_cleanup() 18912 */ 18913 intel_dp_mst_suspend(i915); 18914 18915 /* poll work can call into fbdev, hence clean that up afterwards */ 18916 intel_fbdev_fini(i915); 18917 18918 intel_unregister_dsm_handler(); 18919 18920 intel_fbc_global_disable(i915); 18921 18922 /* flush any delayed tasks or pending work */ 18923 flush_scheduled_work(); 18924 18925 intel_hdcp_component_fini(i915); 18926 18927 intel_mode_config_cleanup(i915); 18928 18929 intel_overlay_cleanup(i915); 18930 18931 intel_gmbus_teardown(i915); 18932 18933 destroy_workqueue(i915->flip_wq); 18934 destroy_workqueue(i915->modeset_wq); 18935 18936 intel_fbc_cleanup_cfb(i915); 18937 } 18938 18939 /* part #3: call after gem init */ 18940 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915) 18941 { 18942 intel_csr_ucode_fini(i915); 18943 18944 intel_power_domains_driver_remove(i915); 18945 18946 intel_vga_unregister(i915); 18947 18948 intel_bios_driver_remove(i915); 18949 } 18950 18951 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 18952 18953 struct intel_display_error_state { 18954 18955 u32 power_well_driver; 18956 18957 struct intel_cursor_error_state { 18958 u32 control; 18959 u32 position; 18960 u32 base; 18961 u32 size; 18962 } cursor[I915_MAX_PIPES]; 18963 18964 struct intel_pipe_error_state { 18965 bool power_domain_on; 18966 u32 source; 18967 u32 stat; 18968 } pipe[I915_MAX_PIPES]; 18969 18970 struct intel_plane_error_state { 18971 u32 control; 18972 u32 stride; 18973 u32 size; 18974 u32 pos; 18975 u32 addr; 18976 u32 surface; 18977 u32 tile_offset; 18978 } plane[I915_MAX_PIPES]; 18979 18980 struct intel_transcoder_error_state { 18981 bool available; 18982 bool power_domain_on; 18983 enum transcoder cpu_transcoder; 18984 18985 u32 conf; 18986 18987 u32 htotal; 18988 u32 hblank; 18989 u32 hsync; 18990 u32 vtotal; 18991 u32 vblank; 18992 u32 vsync; 18993 } transcoder[5]; 18994 }; 18995 18996 struct intel_display_error_state * 18997 intel_display_capture_error_state(struct drm_i915_private *dev_priv) 18998 { 18999 struct intel_display_error_state *error; 19000 int transcoders[] = { 19001 TRANSCODER_A, 19002 TRANSCODER_B, 19003 TRANSCODER_C, 19004 TRANSCODER_D, 19005 TRANSCODER_EDP, 19006 }; 19007 int i; 19008 19009 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder)); 19010 19011 if (!HAS_DISPLAY(dev_priv)) 19012 return NULL; 19013 19014 error = kzalloc(sizeof(*error), GFP_ATOMIC); 19015 if (error == NULL) 19016 return NULL; 19017 19018 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 19019 error->power_well_driver = intel_de_read(dev_priv, 19020 HSW_PWR_WELL_CTL2); 19021 19022 for_each_pipe(dev_priv, i) { 19023 error->pipe[i].power_domain_on = 19024 __intel_display_power_is_enabled(dev_priv, 19025 POWER_DOMAIN_PIPE(i)); 19026 if (!error->pipe[i].power_domain_on) 19027 continue; 19028 19029 error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i)); 19030 error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i)); 19031 error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i)); 19032 19033 error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i)); 19034 error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i)); 19035 if (INTEL_GEN(dev_priv) <= 3) { 19036 error->plane[i].size = intel_de_read(dev_priv, 19037 DSPSIZE(i)); 19038 error->plane[i].pos = intel_de_read(dev_priv, 19039 DSPPOS(i)); 19040 } 19041 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 19042 error->plane[i].addr = intel_de_read(dev_priv, 19043 DSPADDR(i)); 19044 if (INTEL_GEN(dev_priv) >= 4) { 19045 error->plane[i].surface = intel_de_read(dev_priv, 19046 DSPSURF(i)); 19047 error->plane[i].tile_offset = intel_de_read(dev_priv, 19048 DSPTILEOFF(i)); 19049 } 19050 19051 error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i)); 19052 19053 if (HAS_GMCH(dev_priv)) 19054 error->pipe[i].stat = intel_de_read(dev_priv, 19055 PIPESTAT(i)); 19056 } 19057 19058 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 19059 enum transcoder cpu_transcoder = transcoders[i]; 19060 19061 if (!HAS_TRANSCODER(dev_priv, cpu_transcoder)) 19062 continue; 19063 19064 error->transcoder[i].available = true; 19065 error->transcoder[i].power_domain_on = 19066 __intel_display_power_is_enabled(dev_priv, 19067 POWER_DOMAIN_TRANSCODER(cpu_transcoder)); 19068 if (!error->transcoder[i].power_domain_on) 19069 continue; 19070 19071 error->transcoder[i].cpu_transcoder = cpu_transcoder; 19072 19073 error->transcoder[i].conf = intel_de_read(dev_priv, 19074 PIPECONF(cpu_transcoder)); 19075 error->transcoder[i].htotal = intel_de_read(dev_priv, 19076 HTOTAL(cpu_transcoder)); 19077 error->transcoder[i].hblank = intel_de_read(dev_priv, 19078 HBLANK(cpu_transcoder)); 19079 error->transcoder[i].hsync = intel_de_read(dev_priv, 19080 HSYNC(cpu_transcoder)); 19081 error->transcoder[i].vtotal = intel_de_read(dev_priv, 19082 VTOTAL(cpu_transcoder)); 19083 error->transcoder[i].vblank = intel_de_read(dev_priv, 19084 VBLANK(cpu_transcoder)); 19085 error->transcoder[i].vsync = intel_de_read(dev_priv, 19086 VSYNC(cpu_transcoder)); 19087 } 19088 19089 return error; 19090 } 19091 19092 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) 19093 19094 void 19095 intel_display_print_error_state(struct drm_i915_error_state_buf *m, 19096 struct intel_display_error_state *error) 19097 { 19098 struct drm_i915_private *dev_priv = m->i915; 19099 int i; 19100 19101 if (!error) 19102 return; 19103 19104 err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv)); 19105 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 19106 err_printf(m, "PWR_WELL_CTL2: %08x\n", 19107 error->power_well_driver); 19108 for_each_pipe(dev_priv, i) { 19109 err_printf(m, "Pipe [%d]:\n", i); 19110 err_printf(m, " Power: %s\n", 19111 onoff(error->pipe[i].power_domain_on)); 19112 err_printf(m, " SRC: %08x\n", error->pipe[i].source); 19113 err_printf(m, " STAT: %08x\n", error->pipe[i].stat); 19114 19115 err_printf(m, "Plane [%d]:\n", i); 19116 err_printf(m, " CNTR: %08x\n", error->plane[i].control); 19117 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); 19118 if (INTEL_GEN(dev_priv) <= 3) { 19119 err_printf(m, " SIZE: %08x\n", error->plane[i].size); 19120 err_printf(m, " POS: %08x\n", error->plane[i].pos); 19121 } 19122 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 19123 err_printf(m, " ADDR: %08x\n", error->plane[i].addr); 19124 if (INTEL_GEN(dev_priv) >= 4) { 19125 err_printf(m, " SURF: %08x\n", error->plane[i].surface); 19126 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); 19127 } 19128 19129 err_printf(m, "Cursor [%d]:\n", i); 19130 err_printf(m, " CNTR: %08x\n", error->cursor[i].control); 19131 err_printf(m, " POS: %08x\n", error->cursor[i].position); 19132 err_printf(m, " BASE: %08x\n", error->cursor[i].base); 19133 } 19134 19135 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 19136 if (!error->transcoder[i].available) 19137 continue; 19138 19139 err_printf(m, "CPU transcoder: %s\n", 19140 transcoder_name(error->transcoder[i].cpu_transcoder)); 19141 err_printf(m, " Power: %s\n", 19142 onoff(error->transcoder[i].power_domain_on)); 19143 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); 19144 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); 19145 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); 19146 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); 19147 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); 19148 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); 19149 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); 19150 } 19151 } 19152 19153 #endif 19154