1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <linux/dma-resv.h> 28 #include <linux/i2c.h> 29 #include <linux/input.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/slab.h> 33 #include <linux/string_helpers.h> 34 35 #include <drm/display/drm_dp_helper.h> 36 #include <drm/display/drm_dp_tunnel.h> 37 #include <drm/drm_atomic.h> 38 #include <drm/drm_atomic_helper.h> 39 #include <drm/drm_atomic_uapi.h> 40 #include <drm/drm_damage_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_fixed.h> 43 #include <drm/drm_fourcc.h> 44 #include <drm/drm_probe_helper.h> 45 #include <drm/drm_rect.h> 46 #include <drm/drm_vblank.h> 47 48 #include "g4x_dp.h" 49 #include "g4x_hdmi.h" 50 #include "hsw_ips.h" 51 #include "i915_config.h" 52 #include "i915_drv.h" 53 #include "i915_reg.h" 54 #include "i915_utils.h" 55 #include "i9xx_plane.h" 56 #include "i9xx_plane_regs.h" 57 #include "i9xx_wm.h" 58 #include "intel_atomic.h" 59 #include "intel_atomic_plane.h" 60 #include "intel_audio.h" 61 #include "intel_bo.h" 62 #include "intel_bw.h" 63 #include "intel_cdclk.h" 64 #include "intel_clock_gating.h" 65 #include "intel_color.h" 66 #include "intel_crt.h" 67 #include "intel_crtc.h" 68 #include "intel_crtc_state_dump.h" 69 #include "intel_cursor_regs.h" 70 #include "intel_cx0_phy.h" 71 #include "intel_cursor.h" 72 #include "intel_ddi.h" 73 #include "intel_de.h" 74 #include "intel_display_driver.h" 75 #include "intel_display_power.h" 76 #include "intel_display_rpm.h" 77 #include "intel_display_types.h" 78 #include "intel_dmc.h" 79 #include "intel_dp.h" 80 #include "intel_dp_link_training.h" 81 #include "intel_dp_mst.h" 82 #include "intel_dp_tunnel.h" 83 #include "intel_dpll.h" 84 #include "intel_dpll_mgr.h" 85 #include "intel_dpt.h" 86 #include "intel_dpt_common.h" 87 #include "intel_drrs.h" 88 #include "intel_dsb.h" 89 #include "intel_dsi.h" 90 #include "intel_dvo.h" 91 #include "intel_fb.h" 92 #include "intel_fbc.h" 93 #include "intel_fdi.h" 94 #include "intel_fifo_underrun.h" 95 #include "intel_frontbuffer.h" 96 #include "intel_hdmi.h" 97 #include "intel_hotplug.h" 98 #include "intel_link_bw.h" 99 #include "intel_lvds.h" 100 #include "intel_lvds_regs.h" 101 #include "intel_modeset_setup.h" 102 #include "intel_modeset_verify.h" 103 #include "intel_overlay.h" 104 #include "intel_panel.h" 105 #include "intel_pch_display.h" 106 #include "intel_pch_refclk.h" 107 #include "intel_pcode.h" 108 #include "intel_pfit.h" 109 #include "intel_pipe_crc.h" 110 #include "intel_plane_initial.h" 111 #include "intel_pmdemand.h" 112 #include "intel_pps.h" 113 #include "intel_psr.h" 114 #include "intel_psr_regs.h" 115 #include "intel_sdvo.h" 116 #include "intel_snps_phy.h" 117 #include "intel_tc.h" 118 #include "intel_tdf.h" 119 #include "intel_tv.h" 120 #include "intel_vblank.h" 121 #include "intel_vdsc.h" 122 #include "intel_vdsc_regs.h" 123 #include "intel_vga.h" 124 #include "intel_vrr.h" 125 #include "intel_wm.h" 126 #include "skl_scaler.h" 127 #include "skl_universal_plane.h" 128 #include "skl_watermark.h" 129 #include "vlv_dpio_phy_regs.h" 130 #include "vlv_dsi.h" 131 #include "vlv_dsi_pll.h" 132 #include "vlv_dsi_regs.h" 133 #include "vlv_sideband.h" 134 135 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state); 136 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 137 static void hsw_set_transconf(const struct intel_crtc_state *crtc_state); 138 static void bdw_set_pipe_misc(struct intel_dsb *dsb, 139 const struct intel_crtc_state *crtc_state); 140 141 /* returns HPLL frequency in kHz */ 142 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 143 { 144 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 145 146 /* Obtain SKU information */ 147 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 148 CCK_FUSE_HPLL_FREQ_MASK; 149 150 return vco_freq[hpll_freq] * 1000; 151 } 152 153 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 154 const char *name, u32 reg, int ref_freq) 155 { 156 u32 val; 157 int divider; 158 159 val = vlv_cck_read(dev_priv, reg); 160 divider = val & CCK_FREQUENCY_VALUES; 161 162 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 163 (divider << CCK_FREQUENCY_STATUS_SHIFT), 164 "%s change in progress\n", name); 165 166 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 167 } 168 169 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 170 const char *name, u32 reg) 171 { 172 int hpll; 173 174 vlv_cck_get(dev_priv); 175 176 if (dev_priv->hpll_freq == 0) 177 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 178 179 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 180 181 vlv_cck_put(dev_priv); 182 183 return hpll; 184 } 185 186 void intel_update_czclk(struct intel_display *display) 187 { 188 struct drm_i915_private *dev_priv = to_i915(display->drm); 189 190 if (!display->platform.valleyview && !display->platform.cherryview) 191 return; 192 193 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 194 CCK_CZ_CLOCK_CONTROL); 195 196 drm_dbg_kms(display->drm, "CZ clock rate: %d kHz\n", dev_priv->czclk_freq); 197 } 198 199 static bool is_hdr_mode(const struct intel_crtc_state *crtc_state) 200 { 201 return (crtc_state->active_planes & 202 ~(icl_hdr_plane_mask() | BIT(PLANE_CURSOR))) == 0; 203 } 204 205 /* WA Display #0827: Gen9:all */ 206 static void 207 skl_wa_827(struct intel_display *display, enum pipe pipe, bool enable) 208 { 209 intel_de_rmw(display, CLKGATE_DIS_PSL(pipe), 210 DUPS1_GATING_DIS | DUPS2_GATING_DIS, 211 enable ? DUPS1_GATING_DIS | DUPS2_GATING_DIS : 0); 212 } 213 214 /* Wa_2006604312:icl,ehl */ 215 static void 216 icl_wa_scalerclkgating(struct intel_display *display, enum pipe pipe, 217 bool enable) 218 { 219 intel_de_rmw(display, CLKGATE_DIS_PSL(pipe), 220 DPFR_GATING_DIS, 221 enable ? DPFR_GATING_DIS : 0); 222 } 223 224 /* Wa_1604331009:icl,jsl,ehl */ 225 static void 226 icl_wa_cursorclkgating(struct intel_display *display, enum pipe pipe, 227 bool enable) 228 { 229 intel_de_rmw(display, CLKGATE_DIS_PSL(pipe), 230 CURSOR_GATING_DIS, 231 enable ? CURSOR_GATING_DIS : 0); 232 } 233 234 static bool 235 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 236 { 237 return crtc_state->master_transcoder != INVALID_TRANSCODER; 238 } 239 240 bool 241 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 242 { 243 return crtc_state->sync_mode_slaves_mask != 0; 244 } 245 246 bool 247 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 248 { 249 return is_trans_port_sync_master(crtc_state) || 250 is_trans_port_sync_slave(crtc_state); 251 } 252 253 static enum pipe joiner_primary_pipe(const struct intel_crtc_state *crtc_state) 254 { 255 return ffs(crtc_state->joiner_pipes) - 1; 256 } 257 258 /* 259 * The following helper functions, despite being named for bigjoiner, 260 * are applicable to both bigjoiner and uncompressed joiner configurations. 261 */ 262 static bool is_bigjoiner(const struct intel_crtc_state *crtc_state) 263 { 264 return hweight8(crtc_state->joiner_pipes) >= 2; 265 } 266 267 static u8 bigjoiner_primary_pipes(const struct intel_crtc_state *crtc_state) 268 { 269 if (!is_bigjoiner(crtc_state)) 270 return 0; 271 272 return crtc_state->joiner_pipes & (0b01010101 << joiner_primary_pipe(crtc_state)); 273 } 274 275 static unsigned int bigjoiner_secondary_pipes(const struct intel_crtc_state *crtc_state) 276 { 277 if (!is_bigjoiner(crtc_state)) 278 return 0; 279 280 return crtc_state->joiner_pipes & (0b10101010 << joiner_primary_pipe(crtc_state)); 281 } 282 283 bool intel_crtc_is_bigjoiner_primary(const struct intel_crtc_state *crtc_state) 284 { 285 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 286 287 if (!is_bigjoiner(crtc_state)) 288 return false; 289 290 return BIT(crtc->pipe) & bigjoiner_primary_pipes(crtc_state); 291 } 292 293 bool intel_crtc_is_bigjoiner_secondary(const struct intel_crtc_state *crtc_state) 294 { 295 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 296 297 if (!is_bigjoiner(crtc_state)) 298 return false; 299 300 return BIT(crtc->pipe) & bigjoiner_secondary_pipes(crtc_state); 301 } 302 303 u8 _intel_modeset_primary_pipes(const struct intel_crtc_state *crtc_state) 304 { 305 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 306 307 if (!is_bigjoiner(crtc_state)) 308 return BIT(crtc->pipe); 309 310 return bigjoiner_primary_pipes(crtc_state); 311 } 312 313 u8 _intel_modeset_secondary_pipes(const struct intel_crtc_state *crtc_state) 314 { 315 return bigjoiner_secondary_pipes(crtc_state); 316 } 317 318 bool intel_crtc_is_ultrajoiner(const struct intel_crtc_state *crtc_state) 319 { 320 return intel_crtc_num_joined_pipes(crtc_state) >= 4; 321 } 322 323 static u8 ultrajoiner_primary_pipes(const struct intel_crtc_state *crtc_state) 324 { 325 if (!intel_crtc_is_ultrajoiner(crtc_state)) 326 return 0; 327 328 return crtc_state->joiner_pipes & (0b00010001 << joiner_primary_pipe(crtc_state)); 329 } 330 331 bool intel_crtc_is_ultrajoiner_primary(const struct intel_crtc_state *crtc_state) 332 { 333 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 334 335 return intel_crtc_is_ultrajoiner(crtc_state) && 336 BIT(crtc->pipe) & ultrajoiner_primary_pipes(crtc_state); 337 } 338 339 /* 340 * The ultrajoiner enable bit doesn't seem to follow primary/secondary logic or 341 * any other logic, so lets just add helper function to 342 * at least hide this hassle.. 343 */ 344 static u8 ultrajoiner_enable_pipes(const struct intel_crtc_state *crtc_state) 345 { 346 if (!intel_crtc_is_ultrajoiner(crtc_state)) 347 return 0; 348 349 return crtc_state->joiner_pipes & (0b01110111 << joiner_primary_pipe(crtc_state)); 350 } 351 352 bool intel_crtc_ultrajoiner_enable_needed(const struct intel_crtc_state *crtc_state) 353 { 354 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 355 356 return intel_crtc_is_ultrajoiner(crtc_state) && 357 BIT(crtc->pipe) & ultrajoiner_enable_pipes(crtc_state); 358 } 359 360 u8 intel_crtc_joiner_secondary_pipes(const struct intel_crtc_state *crtc_state) 361 { 362 if (crtc_state->joiner_pipes) 363 return crtc_state->joiner_pipes & ~BIT(joiner_primary_pipe(crtc_state)); 364 else 365 return 0; 366 } 367 368 bool intel_crtc_is_joiner_secondary(const struct intel_crtc_state *crtc_state) 369 { 370 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 371 372 return crtc_state->joiner_pipes && 373 crtc->pipe != joiner_primary_pipe(crtc_state); 374 } 375 376 bool intel_crtc_is_joiner_primary(const struct intel_crtc_state *crtc_state) 377 { 378 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 379 380 return crtc_state->joiner_pipes && 381 crtc->pipe == joiner_primary_pipe(crtc_state); 382 } 383 384 int intel_crtc_num_joined_pipes(const struct intel_crtc_state *crtc_state) 385 { 386 return hweight8(intel_crtc_joined_pipe_mask(crtc_state)); 387 } 388 389 u8 intel_crtc_joined_pipe_mask(const struct intel_crtc_state *crtc_state) 390 { 391 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 392 393 return BIT(crtc->pipe) | crtc_state->joiner_pipes; 394 } 395 396 struct intel_crtc *intel_primary_crtc(const struct intel_crtc_state *crtc_state) 397 { 398 struct intel_display *display = to_intel_display(crtc_state); 399 400 if (intel_crtc_is_joiner_secondary(crtc_state)) 401 return intel_crtc_for_pipe(display, joiner_primary_pipe(crtc_state)); 402 else 403 return to_intel_crtc(crtc_state->uapi.crtc); 404 } 405 406 static void 407 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 408 { 409 struct intel_display *display = to_intel_display(old_crtc_state); 410 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 411 412 if (DISPLAY_VER(display) >= 4) { 413 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 414 415 /* Wait for the Pipe State to go off */ 416 if (intel_de_wait_for_clear(display, TRANSCONF(display, cpu_transcoder), 417 TRANSCONF_STATE_ENABLE, 100)) 418 drm_WARN(display->drm, 1, "pipe_off wait timed out\n"); 419 } else { 420 intel_wait_for_pipe_scanline_stopped(crtc); 421 } 422 } 423 424 void assert_transcoder(struct intel_display *display, 425 enum transcoder cpu_transcoder, bool state) 426 { 427 bool cur_state; 428 enum intel_display_power_domain power_domain; 429 intel_wakeref_t wakeref; 430 431 /* we keep both pipes enabled on 830 */ 432 if (display->platform.i830) 433 state = true; 434 435 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 436 wakeref = intel_display_power_get_if_enabled(display, power_domain); 437 if (wakeref) { 438 u32 val = intel_de_read(display, 439 TRANSCONF(display, cpu_transcoder)); 440 cur_state = !!(val & TRANSCONF_ENABLE); 441 442 intel_display_power_put(display, power_domain, wakeref); 443 } else { 444 cur_state = false; 445 } 446 447 INTEL_DISPLAY_STATE_WARN(display, cur_state != state, 448 "transcoder %s assertion failure (expected %s, current %s)\n", 449 transcoder_name(cpu_transcoder), str_on_off(state), 450 str_on_off(cur_state)); 451 } 452 453 static void assert_plane(struct intel_plane *plane, bool state) 454 { 455 struct intel_display *display = to_intel_display(plane->base.dev); 456 enum pipe pipe; 457 bool cur_state; 458 459 cur_state = plane->get_hw_state(plane, &pipe); 460 461 INTEL_DISPLAY_STATE_WARN(display, cur_state != state, 462 "%s assertion failure (expected %s, current %s)\n", 463 plane->base.name, str_on_off(state), 464 str_on_off(cur_state)); 465 } 466 467 #define assert_plane_enabled(p) assert_plane(p, true) 468 #define assert_plane_disabled(p) assert_plane(p, false) 469 470 static void assert_planes_disabled(struct intel_crtc *crtc) 471 { 472 struct intel_display *display = to_intel_display(crtc); 473 struct intel_plane *plane; 474 475 for_each_intel_plane_on_crtc(display->drm, crtc, plane) 476 assert_plane_disabled(plane); 477 } 478 479 void intel_enable_transcoder(const struct intel_crtc_state *new_crtc_state) 480 { 481 struct intel_display *display = to_intel_display(new_crtc_state); 482 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 483 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 484 enum pipe pipe = crtc->pipe; 485 u32 val; 486 487 drm_dbg_kms(display->drm, "enabling pipe %c\n", pipe_name(pipe)); 488 489 assert_planes_disabled(crtc); 490 491 /* 492 * A pipe without a PLL won't actually be able to drive bits from 493 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 494 * need the check. 495 */ 496 if (HAS_GMCH(display)) { 497 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 498 assert_dsi_pll_enabled(display); 499 else 500 assert_pll_enabled(display, pipe); 501 } else { 502 if (new_crtc_state->has_pch_encoder) { 503 /* if driving the PCH, we need FDI enabled */ 504 assert_fdi_rx_pll_enabled(display, 505 intel_crtc_pch_transcoder(crtc)); 506 assert_fdi_tx_pll_enabled(display, 507 (enum pipe) cpu_transcoder); 508 } 509 /* FIXME: assert CPU port conditions for SNB+ */ 510 } 511 512 /* Wa_22012358565:adl-p */ 513 if (DISPLAY_VER(display) == 13) 514 intel_de_rmw(display, PIPE_ARB_CTL(display, pipe), 515 0, PIPE_ARB_USE_PROG_SLOTS); 516 517 if (DISPLAY_VER(display) >= 14) { 518 u32 clear = DP_DSC_INSERT_SF_AT_EOL_WA; 519 u32 set = 0; 520 521 if (DISPLAY_VER(display) == 14) 522 set |= DP_FEC_BS_JITTER_WA; 523 524 intel_de_rmw(display, CHICKEN_TRANS(display, cpu_transcoder), 525 clear, set); 526 } 527 528 val = intel_de_read(display, TRANSCONF(display, cpu_transcoder)); 529 if (val & TRANSCONF_ENABLE) { 530 /* we keep both pipes enabled on 830 */ 531 drm_WARN_ON(display->drm, !display->platform.i830); 532 return; 533 } 534 535 /* Wa_1409098942:adlp+ */ 536 if (DISPLAY_VER(display) >= 13 && 537 new_crtc_state->dsc.compression_enable) { 538 val &= ~TRANSCONF_PIXEL_COUNT_SCALING_MASK; 539 val |= REG_FIELD_PREP(TRANSCONF_PIXEL_COUNT_SCALING_MASK, 540 TRANSCONF_PIXEL_COUNT_SCALING_X4); 541 } 542 543 intel_de_write(display, TRANSCONF(display, cpu_transcoder), 544 val | TRANSCONF_ENABLE); 545 intel_de_posting_read(display, TRANSCONF(display, cpu_transcoder)); 546 547 /* 548 * Until the pipe starts PIPEDSL reads will return a stale value, 549 * which causes an apparent vblank timestamp jump when PIPEDSL 550 * resets to its proper value. That also messes up the frame count 551 * when it's derived from the timestamps. So let's wait for the 552 * pipe to start properly before we call drm_crtc_vblank_on() 553 */ 554 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 555 intel_wait_for_pipe_scanline_moving(crtc); 556 } 557 558 void intel_disable_transcoder(const struct intel_crtc_state *old_crtc_state) 559 { 560 struct intel_display *display = to_intel_display(old_crtc_state); 561 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 562 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 563 enum pipe pipe = crtc->pipe; 564 u32 val; 565 566 drm_dbg_kms(display->drm, "disabling pipe %c\n", pipe_name(pipe)); 567 568 /* 569 * Make sure planes won't keep trying to pump pixels to us, 570 * or we might hang the display. 571 */ 572 assert_planes_disabled(crtc); 573 574 val = intel_de_read(display, TRANSCONF(display, cpu_transcoder)); 575 if ((val & TRANSCONF_ENABLE) == 0) 576 return; 577 578 /* 579 * Double wide has implications for planes 580 * so best keep it disabled when not needed. 581 */ 582 if (old_crtc_state->double_wide) 583 val &= ~TRANSCONF_DOUBLE_WIDE; 584 585 /* Don't disable pipe or pipe PLLs if needed */ 586 if (!display->platform.i830) 587 val &= ~TRANSCONF_ENABLE; 588 589 /* Wa_1409098942:adlp+ */ 590 if (DISPLAY_VER(display) >= 13 && 591 old_crtc_state->dsc.compression_enable) 592 val &= ~TRANSCONF_PIXEL_COUNT_SCALING_MASK; 593 594 intel_de_write(display, TRANSCONF(display, cpu_transcoder), val); 595 596 if (DISPLAY_VER(display) >= 12) 597 intel_de_rmw(display, CHICKEN_TRANS(display, cpu_transcoder), 598 FECSTALL_DIS_DPTSTREAM_DPTTG, 0); 599 600 if ((val & TRANSCONF_ENABLE) == 0) 601 intel_wait_for_pipe_off(old_crtc_state); 602 } 603 604 u32 intel_plane_fb_max_stride(struct drm_device *drm, 605 u32 pixel_format, u64 modifier) 606 { 607 struct intel_display *display = to_intel_display(drm); 608 struct intel_crtc *crtc; 609 struct intel_plane *plane; 610 611 if (!HAS_DISPLAY(display)) 612 return 0; 613 614 /* 615 * We assume the primary plane for pipe A has 616 * the highest stride limits of them all, 617 * if in case pipe A is disabled, use the first pipe from pipe_mask. 618 */ 619 crtc = intel_first_crtc(display); 620 if (!crtc) 621 return 0; 622 623 plane = to_intel_plane(crtc->base.primary); 624 625 return plane->max_stride(plane, pixel_format, modifier, 626 DRM_MODE_ROTATE_0); 627 } 628 629 void intel_set_plane_visible(struct intel_crtc_state *crtc_state, 630 struct intel_plane_state *plane_state, 631 bool visible) 632 { 633 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 634 635 plane_state->uapi.visible = visible; 636 637 if (visible) 638 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 639 else 640 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 641 } 642 643 void intel_plane_fixup_bitmasks(struct intel_crtc_state *crtc_state) 644 { 645 struct intel_display *display = to_intel_display(crtc_state); 646 struct drm_plane *plane; 647 648 /* 649 * Active_planes aliases if multiple "primary" or cursor planes 650 * have been used on the same (or wrong) pipe. plane_mask uses 651 * unique ids, hence we can use that to reconstruct active_planes. 652 */ 653 crtc_state->enabled_planes = 0; 654 crtc_state->active_planes = 0; 655 656 drm_for_each_plane_mask(plane, display->drm, 657 crtc_state->uapi.plane_mask) { 658 crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id); 659 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 660 } 661 } 662 663 void intel_plane_disable_noatomic(struct intel_crtc *crtc, 664 struct intel_plane *plane) 665 { 666 struct intel_display *display = to_intel_display(crtc); 667 struct intel_crtc_state *crtc_state = 668 to_intel_crtc_state(crtc->base.state); 669 struct intel_plane_state *plane_state = 670 to_intel_plane_state(plane->base.state); 671 672 drm_dbg_kms(display->drm, 673 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 674 plane->base.base.id, plane->base.name, 675 crtc->base.base.id, crtc->base.name); 676 677 intel_plane_set_invisible(crtc_state, plane_state); 678 intel_set_plane_visible(crtc_state, plane_state, false); 679 intel_plane_fixup_bitmasks(crtc_state); 680 681 skl_wm_plane_disable_noatomic(crtc, plane); 682 683 if ((crtc_state->active_planes & ~BIT(PLANE_CURSOR)) == 0 && 684 hsw_ips_disable(crtc_state)) { 685 crtc_state->ips_enabled = false; 686 intel_plane_initial_vblank_wait(crtc); 687 } 688 689 /* 690 * Vblank time updates from the shadow to live plane control register 691 * are blocked if the memory self-refresh mode is active at that 692 * moment. So to make sure the plane gets truly disabled, disable 693 * first the self-refresh mode. The self-refresh enable bit in turn 694 * will be checked/applied by the HW only at the next frame start 695 * event which is after the vblank start event, so we need to have a 696 * wait-for-vblank between disabling the plane and the pipe. 697 */ 698 if (HAS_GMCH(display) && 699 intel_set_memory_cxsr(display, false)) 700 intel_plane_initial_vblank_wait(crtc); 701 702 /* 703 * Gen2 reports pipe underruns whenever all planes are disabled. 704 * So disable underrun reporting before all the planes get disabled. 705 */ 706 if (DISPLAY_VER(display) == 2 && !crtc_state->active_planes) 707 intel_set_cpu_fifo_underrun_reporting(display, crtc->pipe, false); 708 709 intel_plane_disable_arm(NULL, plane, crtc_state); 710 intel_plane_initial_vblank_wait(crtc); 711 } 712 713 unsigned int 714 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) 715 { 716 int x = 0, y = 0; 717 718 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 719 plane_state->view.color_plane[0].offset, 0); 720 721 return y; 722 } 723 724 static void icl_set_pipe_chicken(const struct intel_crtc_state *crtc_state) 725 { 726 struct intel_display *display = to_intel_display(crtc_state); 727 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 728 enum pipe pipe = crtc->pipe; 729 u32 tmp; 730 731 tmp = intel_de_read(display, PIPE_CHICKEN(pipe)); 732 733 /* 734 * Display WA #1153: icl 735 * enable hardware to bypass the alpha math 736 * and rounding for per-pixel values 00 and 0xff 737 */ 738 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 739 /* 740 * Display WA # 1605353570: icl 741 * Set the pixel rounding bit to 1 for allowing 742 * passthrough of Frame buffer pixels unmodified 743 * across pipe 744 */ 745 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 746 747 /* 748 * Underrun recovery must always be disabled on display 13+. 749 * DG2 chicken bit meaning is inverted compared to other platforms. 750 */ 751 if (display->platform.dg2) 752 tmp &= ~UNDERRUN_RECOVERY_ENABLE_DG2; 753 else if ((DISPLAY_VER(display) >= 13) && (DISPLAY_VER(display) < 30)) 754 tmp |= UNDERRUN_RECOVERY_DISABLE_ADLP; 755 756 /* Wa_14010547955:dg2 */ 757 if (display->platform.dg2) 758 tmp |= DG2_RENDER_CCSTAG_4_3_EN; 759 760 intel_de_write(display, PIPE_CHICKEN(pipe), tmp); 761 } 762 763 bool intel_has_pending_fb_unpin(struct intel_display *display) 764 { 765 struct drm_crtc *crtc; 766 bool cleanup_done; 767 768 drm_for_each_crtc(crtc, display->drm) { 769 struct drm_crtc_commit *commit; 770 spin_lock(&crtc->commit_lock); 771 commit = list_first_entry_or_null(&crtc->commit_list, 772 struct drm_crtc_commit, commit_entry); 773 cleanup_done = commit ? 774 try_wait_for_completion(&commit->cleanup_done) : true; 775 spin_unlock(&crtc->commit_lock); 776 777 if (cleanup_done) 778 continue; 779 780 intel_crtc_wait_for_next_vblank(to_intel_crtc(crtc)); 781 782 return true; 783 } 784 785 return false; 786 } 787 788 /* 789 * Finds the encoder associated with the given CRTC. This can only be 790 * used when we know that the CRTC isn't feeding multiple encoders! 791 */ 792 struct intel_encoder * 793 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 794 const struct intel_crtc_state *crtc_state) 795 { 796 const struct drm_connector_state *connector_state; 797 const struct drm_connector *connector; 798 struct intel_encoder *encoder = NULL; 799 struct intel_crtc *primary_crtc; 800 int num_encoders = 0; 801 int i; 802 803 primary_crtc = intel_primary_crtc(crtc_state); 804 805 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 806 if (connector_state->crtc != &primary_crtc->base) 807 continue; 808 809 encoder = to_intel_encoder(connector_state->best_encoder); 810 num_encoders++; 811 } 812 813 drm_WARN(state->base.dev, num_encoders != 1, 814 "%d encoders for pipe %c\n", 815 num_encoders, pipe_name(primary_crtc->pipe)); 816 817 return encoder; 818 } 819 820 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *crtc) 821 { 822 if (crtc->overlay) 823 (void) intel_overlay_switch_off(crtc->overlay); 824 825 /* Let userspace switch the overlay on again. In most cases userspace 826 * has to recompute where to put it anyway. 827 */ 828 } 829 830 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 831 { 832 struct intel_display *display = to_intel_display(crtc_state); 833 834 if (!crtc_state->nv12_planes) 835 return false; 836 837 /* WA Display #0827: Gen9:all */ 838 if (DISPLAY_VER(display) == 9) 839 return true; 840 841 return false; 842 } 843 844 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 845 { 846 struct intel_display *display = to_intel_display(crtc_state); 847 848 /* Wa_2006604312:icl,ehl */ 849 if (crtc_state->scaler_state.scaler_users > 0 && DISPLAY_VER(display) == 11) 850 return true; 851 852 return false; 853 } 854 855 static bool needs_cursorclk_wa(const struct intel_crtc_state *crtc_state) 856 { 857 struct intel_display *display = to_intel_display(crtc_state); 858 859 /* Wa_1604331009:icl,jsl,ehl */ 860 if (is_hdr_mode(crtc_state) && 861 crtc_state->active_planes & BIT(PLANE_CURSOR) && 862 DISPLAY_VER(display) == 11) 863 return true; 864 865 return false; 866 } 867 868 static void intel_async_flip_vtd_wa(struct intel_display *display, 869 enum pipe pipe, bool enable) 870 { 871 if (DISPLAY_VER(display) == 9) { 872 /* 873 * "Plane N stretch max must be programmed to 11b (x1) 874 * when Async flips are enabled on that plane." 875 */ 876 intel_de_rmw(display, CHICKEN_PIPESL_1(pipe), 877 SKL_PLANE1_STRETCH_MAX_MASK, 878 enable ? SKL_PLANE1_STRETCH_MAX_X1 : SKL_PLANE1_STRETCH_MAX_X8); 879 } else { 880 /* Also needed on HSW/BDW albeit undocumented */ 881 intel_de_rmw(display, CHICKEN_PIPESL_1(pipe), 882 HSW_PRI_STRETCH_MAX_MASK, 883 enable ? HSW_PRI_STRETCH_MAX_X1 : HSW_PRI_STRETCH_MAX_X8); 884 } 885 } 886 887 static bool needs_async_flip_vtd_wa(const struct intel_crtc_state *crtc_state) 888 { 889 struct intel_display *display = to_intel_display(crtc_state); 890 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 891 892 return crtc_state->uapi.async_flip && i915_vtd_active(i915) && 893 (DISPLAY_VER(display) == 9 || display->platform.broadwell || 894 display->platform.haswell); 895 } 896 897 static void intel_encoders_audio_enable(struct intel_atomic_state *state, 898 struct intel_crtc *crtc) 899 { 900 const struct intel_crtc_state *crtc_state = 901 intel_atomic_get_new_crtc_state(state, crtc); 902 const struct drm_connector_state *conn_state; 903 struct drm_connector *conn; 904 int i; 905 906 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 907 struct intel_encoder *encoder = 908 to_intel_encoder(conn_state->best_encoder); 909 910 if (conn_state->crtc != &crtc->base) 911 continue; 912 913 if (encoder->audio_enable) 914 encoder->audio_enable(encoder, crtc_state, conn_state); 915 } 916 } 917 918 static void intel_encoders_audio_disable(struct intel_atomic_state *state, 919 struct intel_crtc *crtc) 920 { 921 const struct intel_crtc_state *old_crtc_state = 922 intel_atomic_get_old_crtc_state(state, crtc); 923 const struct drm_connector_state *old_conn_state; 924 struct drm_connector *conn; 925 int i; 926 927 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 928 struct intel_encoder *encoder = 929 to_intel_encoder(old_conn_state->best_encoder); 930 931 if (old_conn_state->crtc != &crtc->base) 932 continue; 933 934 if (encoder->audio_disable) 935 encoder->audio_disable(encoder, old_crtc_state, old_conn_state); 936 } 937 } 938 939 #define is_enabling(feature, old_crtc_state, new_crtc_state) \ 940 ((!(old_crtc_state)->feature || intel_crtc_needs_modeset(new_crtc_state)) && \ 941 (new_crtc_state)->feature) 942 #define is_disabling(feature, old_crtc_state, new_crtc_state) \ 943 ((old_crtc_state)->feature && \ 944 (!(new_crtc_state)->feature || intel_crtc_needs_modeset(new_crtc_state))) 945 946 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 947 const struct intel_crtc_state *new_crtc_state) 948 { 949 if (!new_crtc_state->hw.active) 950 return false; 951 952 return is_enabling(active_planes, old_crtc_state, new_crtc_state); 953 } 954 955 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 956 const struct intel_crtc_state *new_crtc_state) 957 { 958 if (!old_crtc_state->hw.active) 959 return false; 960 961 return is_disabling(active_planes, old_crtc_state, new_crtc_state); 962 } 963 964 static bool vrr_params_changed(const struct intel_crtc_state *old_crtc_state, 965 const struct intel_crtc_state *new_crtc_state) 966 { 967 return old_crtc_state->vrr.flipline != new_crtc_state->vrr.flipline || 968 old_crtc_state->vrr.vmin != new_crtc_state->vrr.vmin || 969 old_crtc_state->vrr.vmax != new_crtc_state->vrr.vmax || 970 old_crtc_state->vrr.guardband != new_crtc_state->vrr.guardband || 971 old_crtc_state->vrr.pipeline_full != new_crtc_state->vrr.pipeline_full || 972 old_crtc_state->vrr.vsync_start != new_crtc_state->vrr.vsync_start || 973 old_crtc_state->vrr.vsync_end != new_crtc_state->vrr.vsync_end; 974 } 975 976 static bool cmrr_params_changed(const struct intel_crtc_state *old_crtc_state, 977 const struct intel_crtc_state *new_crtc_state) 978 { 979 return old_crtc_state->cmrr.cmrr_m != new_crtc_state->cmrr.cmrr_m || 980 old_crtc_state->cmrr.cmrr_n != new_crtc_state->cmrr.cmrr_n; 981 } 982 983 static bool intel_crtc_vrr_enabling(struct intel_atomic_state *state, 984 struct intel_crtc *crtc) 985 { 986 const struct intel_crtc_state *old_crtc_state = 987 intel_atomic_get_old_crtc_state(state, crtc); 988 const struct intel_crtc_state *new_crtc_state = 989 intel_atomic_get_new_crtc_state(state, crtc); 990 991 if (!new_crtc_state->hw.active) 992 return false; 993 994 return is_enabling(vrr.enable, old_crtc_state, new_crtc_state) || 995 (new_crtc_state->vrr.enable && 996 (new_crtc_state->update_m_n || new_crtc_state->update_lrr || 997 vrr_params_changed(old_crtc_state, new_crtc_state))); 998 } 999 1000 bool intel_crtc_vrr_disabling(struct intel_atomic_state *state, 1001 struct intel_crtc *crtc) 1002 { 1003 const struct intel_crtc_state *old_crtc_state = 1004 intel_atomic_get_old_crtc_state(state, crtc); 1005 const struct intel_crtc_state *new_crtc_state = 1006 intel_atomic_get_new_crtc_state(state, crtc); 1007 1008 if (!old_crtc_state->hw.active) 1009 return false; 1010 1011 return is_disabling(vrr.enable, old_crtc_state, new_crtc_state) || 1012 (old_crtc_state->vrr.enable && 1013 (new_crtc_state->update_m_n || new_crtc_state->update_lrr || 1014 vrr_params_changed(old_crtc_state, new_crtc_state))); 1015 } 1016 1017 static bool audio_enabling(const struct intel_crtc_state *old_crtc_state, 1018 const struct intel_crtc_state *new_crtc_state) 1019 { 1020 if (!new_crtc_state->hw.active) 1021 return false; 1022 1023 return is_enabling(has_audio, old_crtc_state, new_crtc_state) || 1024 (new_crtc_state->has_audio && 1025 memcmp(old_crtc_state->eld, new_crtc_state->eld, MAX_ELD_BYTES) != 0); 1026 } 1027 1028 static bool audio_disabling(const struct intel_crtc_state *old_crtc_state, 1029 const struct intel_crtc_state *new_crtc_state) 1030 { 1031 if (!old_crtc_state->hw.active) 1032 return false; 1033 1034 return is_disabling(has_audio, old_crtc_state, new_crtc_state) || 1035 (old_crtc_state->has_audio && 1036 memcmp(old_crtc_state->eld, new_crtc_state->eld, MAX_ELD_BYTES) != 0); 1037 } 1038 1039 #undef is_disabling 1040 #undef is_enabling 1041 1042 static void intel_post_plane_update(struct intel_atomic_state *state, 1043 struct intel_crtc *crtc) 1044 { 1045 struct intel_display *display = to_intel_display(state); 1046 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1047 const struct intel_crtc_state *old_crtc_state = 1048 intel_atomic_get_old_crtc_state(state, crtc); 1049 const struct intel_crtc_state *new_crtc_state = 1050 intel_atomic_get_new_crtc_state(state, crtc); 1051 enum pipe pipe = crtc->pipe; 1052 1053 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 1054 1055 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 1056 intel_update_watermarks(display); 1057 1058 intel_fbc_post_update(state, crtc); 1059 1060 if (needs_async_flip_vtd_wa(old_crtc_state) && 1061 !needs_async_flip_vtd_wa(new_crtc_state)) 1062 intel_async_flip_vtd_wa(display, pipe, false); 1063 1064 if (needs_nv12_wa(old_crtc_state) && 1065 !needs_nv12_wa(new_crtc_state)) 1066 skl_wa_827(display, pipe, false); 1067 1068 if (needs_scalerclk_wa(old_crtc_state) && 1069 !needs_scalerclk_wa(new_crtc_state)) 1070 icl_wa_scalerclkgating(display, pipe, false); 1071 1072 if (needs_cursorclk_wa(old_crtc_state) && 1073 !needs_cursorclk_wa(new_crtc_state)) 1074 icl_wa_cursorclkgating(display, pipe, false); 1075 1076 if (intel_crtc_needs_color_update(new_crtc_state)) 1077 intel_color_post_update(new_crtc_state); 1078 1079 if (audio_enabling(old_crtc_state, new_crtc_state)) 1080 intel_encoders_audio_enable(state, crtc); 1081 1082 intel_psr_post_plane_update(state, crtc); 1083 } 1084 1085 static void intel_post_plane_update_after_readout(struct intel_atomic_state *state, 1086 struct intel_crtc *crtc) 1087 { 1088 const struct intel_crtc_state *new_crtc_state = 1089 intel_atomic_get_new_crtc_state(state, crtc); 1090 1091 /* Must be done after gamma readout due to HSW split gamma vs. IPS w/a */ 1092 hsw_ips_post_update(state, crtc); 1093 1094 /* 1095 * Activate DRRS after state readout to avoid 1096 * dp_m_n vs. dp_m2_n2 confusion on BDW+. 1097 */ 1098 intel_drrs_activate(new_crtc_state); 1099 } 1100 1101 static void intel_crtc_enable_flip_done(struct intel_atomic_state *state, 1102 struct intel_crtc *crtc) 1103 { 1104 const struct intel_crtc_state *crtc_state = 1105 intel_atomic_get_new_crtc_state(state, crtc); 1106 u8 update_planes = crtc_state->update_planes; 1107 const struct intel_plane_state __maybe_unused *plane_state; 1108 struct intel_plane *plane; 1109 int i; 1110 1111 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 1112 if (plane->pipe == crtc->pipe && 1113 update_planes & BIT(plane->id)) 1114 plane->enable_flip_done(plane); 1115 } 1116 } 1117 1118 static void intel_crtc_disable_flip_done(struct intel_atomic_state *state, 1119 struct intel_crtc *crtc) 1120 { 1121 const struct intel_crtc_state *crtc_state = 1122 intel_atomic_get_new_crtc_state(state, crtc); 1123 u8 update_planes = crtc_state->update_planes; 1124 const struct intel_plane_state __maybe_unused *plane_state; 1125 struct intel_plane *plane; 1126 int i; 1127 1128 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 1129 if (plane->pipe == crtc->pipe && 1130 update_planes & BIT(plane->id)) 1131 plane->disable_flip_done(plane); 1132 } 1133 } 1134 1135 static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state, 1136 struct intel_crtc *crtc) 1137 { 1138 const struct intel_crtc_state *old_crtc_state = 1139 intel_atomic_get_old_crtc_state(state, crtc); 1140 const struct intel_crtc_state *new_crtc_state = 1141 intel_atomic_get_new_crtc_state(state, crtc); 1142 u8 disable_async_flip_planes = old_crtc_state->async_flip_planes & 1143 ~new_crtc_state->async_flip_planes; 1144 const struct intel_plane_state *old_plane_state; 1145 struct intel_plane *plane; 1146 bool need_vbl_wait = false; 1147 int i; 1148 1149 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 1150 if (plane->need_async_flip_toggle_wa && 1151 plane->pipe == crtc->pipe && 1152 disable_async_flip_planes & BIT(plane->id)) { 1153 /* 1154 * Apart from the async flip bit we want to 1155 * preserve the old state for the plane. 1156 */ 1157 intel_plane_async_flip(NULL, plane, 1158 old_crtc_state, old_plane_state, false); 1159 need_vbl_wait = true; 1160 } 1161 } 1162 1163 if (need_vbl_wait) 1164 intel_crtc_wait_for_next_vblank(crtc); 1165 } 1166 1167 static void intel_pre_plane_update(struct intel_atomic_state *state, 1168 struct intel_crtc *crtc) 1169 { 1170 struct intel_display *display = to_intel_display(state); 1171 const struct intel_crtc_state *old_crtc_state = 1172 intel_atomic_get_old_crtc_state(state, crtc); 1173 const struct intel_crtc_state *new_crtc_state = 1174 intel_atomic_get_new_crtc_state(state, crtc); 1175 enum pipe pipe = crtc->pipe; 1176 1177 intel_psr_pre_plane_update(state, crtc); 1178 1179 if (intel_crtc_vrr_disabling(state, crtc)) { 1180 intel_vrr_disable(old_crtc_state); 1181 intel_crtc_update_active_timings(old_crtc_state, false); 1182 } 1183 1184 if (audio_disabling(old_crtc_state, new_crtc_state)) 1185 intel_encoders_audio_disable(state, crtc); 1186 1187 intel_drrs_deactivate(old_crtc_state); 1188 1189 if (hsw_ips_pre_update(state, crtc)) 1190 intel_crtc_wait_for_next_vblank(crtc); 1191 1192 if (intel_fbc_pre_update(state, crtc)) 1193 intel_crtc_wait_for_next_vblank(crtc); 1194 1195 if (!needs_async_flip_vtd_wa(old_crtc_state) && 1196 needs_async_flip_vtd_wa(new_crtc_state)) 1197 intel_async_flip_vtd_wa(display, pipe, true); 1198 1199 /* Display WA 827 */ 1200 if (!needs_nv12_wa(old_crtc_state) && 1201 needs_nv12_wa(new_crtc_state)) 1202 skl_wa_827(display, pipe, true); 1203 1204 /* Wa_2006604312:icl,ehl */ 1205 if (!needs_scalerclk_wa(old_crtc_state) && 1206 needs_scalerclk_wa(new_crtc_state)) 1207 icl_wa_scalerclkgating(display, pipe, true); 1208 1209 /* Wa_1604331009:icl,jsl,ehl */ 1210 if (!needs_cursorclk_wa(old_crtc_state) && 1211 needs_cursorclk_wa(new_crtc_state)) 1212 icl_wa_cursorclkgating(display, pipe, true); 1213 1214 /* 1215 * Vblank time updates from the shadow to live plane control register 1216 * are blocked if the memory self-refresh mode is active at that 1217 * moment. So to make sure the plane gets truly disabled, disable 1218 * first the self-refresh mode. The self-refresh enable bit in turn 1219 * will be checked/applied by the HW only at the next frame start 1220 * event which is after the vblank start event, so we need to have a 1221 * wait-for-vblank between disabling the plane and the pipe. 1222 */ 1223 if (HAS_GMCH(display) && old_crtc_state->hw.active && 1224 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(display, false)) 1225 intel_crtc_wait_for_next_vblank(crtc); 1226 1227 /* 1228 * IVB workaround: must disable low power watermarks for at least 1229 * one frame before enabling scaling. LP watermarks can be re-enabled 1230 * when scaling is disabled. 1231 * 1232 * WaCxSRDisabledForSpriteScaling:ivb 1233 */ 1234 if (!HAS_GMCH(display) && old_crtc_state->hw.active && 1235 new_crtc_state->disable_cxsr && ilk_disable_cxsr(display)) 1236 intel_crtc_wait_for_next_vblank(crtc); 1237 1238 /* 1239 * If we're doing a modeset we don't need to do any 1240 * pre-vblank watermark programming here. 1241 */ 1242 if (!intel_crtc_needs_modeset(new_crtc_state)) { 1243 /* 1244 * For platforms that support atomic watermarks, program the 1245 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 1246 * will be the intermediate values that are safe for both pre- and 1247 * post- vblank; when vblank happens, the 'active' values will be set 1248 * to the final 'target' values and we'll do this again to get the 1249 * optimal watermarks. For gen9+ platforms, the values we program here 1250 * will be the final target values which will get automatically latched 1251 * at vblank time; no further programming will be necessary. 1252 * 1253 * If a platform hasn't been transitioned to atomic watermarks yet, 1254 * we'll continue to update watermarks the old way, if flags tell 1255 * us to. 1256 */ 1257 if (!intel_initial_watermarks(state, crtc)) 1258 if (new_crtc_state->update_wm_pre) 1259 intel_update_watermarks(display); 1260 } 1261 1262 /* 1263 * Gen2 reports pipe underruns whenever all planes are disabled. 1264 * So disable underrun reporting before all the planes get disabled. 1265 * 1266 * We do this after .initial_watermarks() so that we have a 1267 * chance of catching underruns with the intermediate watermarks 1268 * vs. the old plane configuration. 1269 */ 1270 if (DISPLAY_VER(display) == 2 && planes_disabling(old_crtc_state, new_crtc_state)) 1271 intel_set_cpu_fifo_underrun_reporting(display, pipe, false); 1272 1273 /* 1274 * WA for platforms where async address update enable bit 1275 * is double buffered and only latched at start of vblank. 1276 */ 1277 if (old_crtc_state->async_flip_planes & ~new_crtc_state->async_flip_planes) 1278 intel_crtc_async_flip_disable_wa(state, crtc); 1279 } 1280 1281 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 1282 struct intel_crtc *crtc) 1283 { 1284 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1285 const struct intel_crtc_state *new_crtc_state = 1286 intel_atomic_get_new_crtc_state(state, crtc); 1287 unsigned int update_mask = new_crtc_state->update_planes; 1288 const struct intel_plane_state *old_plane_state; 1289 struct intel_plane *plane; 1290 unsigned fb_bits = 0; 1291 int i; 1292 1293 intel_crtc_dpms_overlay_disable(crtc); 1294 1295 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 1296 if (crtc->pipe != plane->pipe || 1297 !(update_mask & BIT(plane->id))) 1298 continue; 1299 1300 intel_plane_disable_arm(NULL, plane, new_crtc_state); 1301 1302 if (old_plane_state->uapi.visible) 1303 fb_bits |= plane->frontbuffer_bit; 1304 } 1305 1306 intel_frontbuffer_flip(dev_priv, fb_bits); 1307 } 1308 1309 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 1310 { 1311 struct intel_display *display = to_intel_display(state); 1312 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 1313 struct intel_crtc *crtc; 1314 int i; 1315 1316 /* 1317 * Make sure the DPLL state is up-to-date for fastset TypeC ports after non-blocking commits. 1318 * TODO: Update the DPLL state for all cases in the encoder->update_prepare() hook. 1319 */ 1320 if (display->dpll.mgr) { 1321 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 1322 if (intel_crtc_needs_modeset(new_crtc_state)) 1323 continue; 1324 1325 new_crtc_state->shared_dpll = old_crtc_state->shared_dpll; 1326 new_crtc_state->dpll_hw_state = old_crtc_state->dpll_hw_state; 1327 } 1328 } 1329 } 1330 1331 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 1332 struct intel_crtc *crtc) 1333 { 1334 const struct intel_crtc_state *crtc_state = 1335 intel_atomic_get_new_crtc_state(state, crtc); 1336 const struct drm_connector_state *conn_state; 1337 struct drm_connector *conn; 1338 int i; 1339 1340 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 1341 struct intel_encoder *encoder = 1342 to_intel_encoder(conn_state->best_encoder); 1343 1344 if (conn_state->crtc != &crtc->base) 1345 continue; 1346 1347 if (encoder->pre_pll_enable) 1348 encoder->pre_pll_enable(state, encoder, 1349 crtc_state, conn_state); 1350 } 1351 } 1352 1353 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 1354 struct intel_crtc *crtc) 1355 { 1356 const struct intel_crtc_state *crtc_state = 1357 intel_atomic_get_new_crtc_state(state, crtc); 1358 const struct drm_connector_state *conn_state; 1359 struct drm_connector *conn; 1360 int i; 1361 1362 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 1363 struct intel_encoder *encoder = 1364 to_intel_encoder(conn_state->best_encoder); 1365 1366 if (conn_state->crtc != &crtc->base) 1367 continue; 1368 1369 if (encoder->pre_enable) 1370 encoder->pre_enable(state, encoder, 1371 crtc_state, conn_state); 1372 } 1373 } 1374 1375 static void intel_encoders_enable(struct intel_atomic_state *state, 1376 struct intel_crtc *crtc) 1377 { 1378 const struct intel_crtc_state *crtc_state = 1379 intel_atomic_get_new_crtc_state(state, crtc); 1380 const struct drm_connector_state *conn_state; 1381 struct drm_connector *conn; 1382 int i; 1383 1384 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 1385 struct intel_encoder *encoder = 1386 to_intel_encoder(conn_state->best_encoder); 1387 1388 if (conn_state->crtc != &crtc->base) 1389 continue; 1390 1391 if (encoder->enable) 1392 encoder->enable(state, encoder, 1393 crtc_state, conn_state); 1394 intel_opregion_notify_encoder(encoder, true); 1395 } 1396 } 1397 1398 static void intel_encoders_disable(struct intel_atomic_state *state, 1399 struct intel_crtc *crtc) 1400 { 1401 const struct intel_crtc_state *old_crtc_state = 1402 intel_atomic_get_old_crtc_state(state, crtc); 1403 const struct drm_connector_state *old_conn_state; 1404 struct drm_connector *conn; 1405 int i; 1406 1407 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 1408 struct intel_encoder *encoder = 1409 to_intel_encoder(old_conn_state->best_encoder); 1410 1411 if (old_conn_state->crtc != &crtc->base) 1412 continue; 1413 1414 intel_opregion_notify_encoder(encoder, false); 1415 if (encoder->disable) 1416 encoder->disable(state, encoder, 1417 old_crtc_state, old_conn_state); 1418 } 1419 } 1420 1421 static void intel_encoders_post_disable(struct intel_atomic_state *state, 1422 struct intel_crtc *crtc) 1423 { 1424 const struct intel_crtc_state *old_crtc_state = 1425 intel_atomic_get_old_crtc_state(state, crtc); 1426 const struct drm_connector_state *old_conn_state; 1427 struct drm_connector *conn; 1428 int i; 1429 1430 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 1431 struct intel_encoder *encoder = 1432 to_intel_encoder(old_conn_state->best_encoder); 1433 1434 if (old_conn_state->crtc != &crtc->base) 1435 continue; 1436 1437 if (encoder->post_disable) 1438 encoder->post_disable(state, encoder, 1439 old_crtc_state, old_conn_state); 1440 } 1441 } 1442 1443 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 1444 struct intel_crtc *crtc) 1445 { 1446 const struct intel_crtc_state *old_crtc_state = 1447 intel_atomic_get_old_crtc_state(state, crtc); 1448 const struct drm_connector_state *old_conn_state; 1449 struct drm_connector *conn; 1450 int i; 1451 1452 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 1453 struct intel_encoder *encoder = 1454 to_intel_encoder(old_conn_state->best_encoder); 1455 1456 if (old_conn_state->crtc != &crtc->base) 1457 continue; 1458 1459 if (encoder->post_pll_disable) 1460 encoder->post_pll_disable(state, encoder, 1461 old_crtc_state, old_conn_state); 1462 } 1463 } 1464 1465 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 1466 struct intel_crtc *crtc) 1467 { 1468 const struct intel_crtc_state *crtc_state = 1469 intel_atomic_get_new_crtc_state(state, crtc); 1470 const struct drm_connector_state *conn_state; 1471 struct drm_connector *conn; 1472 int i; 1473 1474 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 1475 struct intel_encoder *encoder = 1476 to_intel_encoder(conn_state->best_encoder); 1477 1478 if (conn_state->crtc != &crtc->base) 1479 continue; 1480 1481 if (encoder->update_pipe) 1482 encoder->update_pipe(state, encoder, 1483 crtc_state, conn_state); 1484 } 1485 } 1486 1487 static void ilk_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state) 1488 { 1489 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1490 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 1491 1492 if (crtc_state->has_pch_encoder) { 1493 intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder, 1494 &crtc_state->fdi_m_n); 1495 } else if (intel_crtc_has_dp_encoder(crtc_state)) { 1496 intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder, 1497 &crtc_state->dp_m_n); 1498 intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder, 1499 &crtc_state->dp_m2_n2); 1500 } 1501 1502 intel_set_transcoder_timings(crtc_state); 1503 1504 ilk_set_pipeconf(crtc_state); 1505 } 1506 1507 static void ilk_crtc_enable(struct intel_atomic_state *state, 1508 struct intel_crtc *crtc) 1509 { 1510 struct intel_display *display = to_intel_display(crtc); 1511 const struct intel_crtc_state *new_crtc_state = 1512 intel_atomic_get_new_crtc_state(state, crtc); 1513 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1514 enum pipe pipe = crtc->pipe; 1515 1516 if (drm_WARN_ON(display->drm, crtc->active)) 1517 return; 1518 1519 /* 1520 * Sometimes spurious CPU pipe underruns happen during FDI 1521 * training, at least with VGA+HDMI cloning. Suppress them. 1522 * 1523 * On ILK we get an occasional spurious CPU pipe underruns 1524 * between eDP port A enable and vdd enable. Also PCH port 1525 * enable seems to result in the occasional CPU pipe underrun. 1526 * 1527 * Spurious PCH underruns also occur during PCH enabling. 1528 */ 1529 intel_set_cpu_fifo_underrun_reporting(display, pipe, false); 1530 intel_set_pch_fifo_underrun_reporting(display, pipe, false); 1531 1532 ilk_configure_cpu_transcoder(new_crtc_state); 1533 1534 intel_set_pipe_src_size(new_crtc_state); 1535 1536 crtc->active = true; 1537 1538 intel_encoders_pre_enable(state, crtc); 1539 1540 if (new_crtc_state->has_pch_encoder) { 1541 ilk_pch_pre_enable(state, crtc); 1542 } else { 1543 assert_fdi_tx_disabled(display, pipe); 1544 assert_fdi_rx_disabled(display, pipe); 1545 } 1546 1547 ilk_pfit_enable(new_crtc_state); 1548 1549 /* 1550 * On ILK+ LUT must be loaded before the pipe is running but with 1551 * clocks enabled 1552 */ 1553 intel_color_modeset(new_crtc_state); 1554 1555 intel_initial_watermarks(state, crtc); 1556 intel_enable_transcoder(new_crtc_state); 1557 1558 if (new_crtc_state->has_pch_encoder) 1559 ilk_pch_enable(state, crtc); 1560 1561 intel_crtc_vblank_on(new_crtc_state); 1562 1563 intel_encoders_enable(state, crtc); 1564 1565 if (HAS_PCH_CPT(dev_priv)) 1566 intel_wait_for_pipe_scanline_moving(crtc); 1567 1568 /* 1569 * Must wait for vblank to avoid spurious PCH FIFO underruns. 1570 * And a second vblank wait is needed at least on ILK with 1571 * some interlaced HDMI modes. Let's do the double wait always 1572 * in case there are more corner cases we don't know about. 1573 */ 1574 if (new_crtc_state->has_pch_encoder) { 1575 intel_crtc_wait_for_next_vblank(crtc); 1576 intel_crtc_wait_for_next_vblank(crtc); 1577 } 1578 intel_set_cpu_fifo_underrun_reporting(display, pipe, true); 1579 intel_set_pch_fifo_underrun_reporting(display, pipe, true); 1580 } 1581 1582 /* Display WA #1180: WaDisableScalarClockGating: glk */ 1583 static bool glk_need_scaler_clock_gating_wa(const struct intel_crtc_state *crtc_state) 1584 { 1585 struct intel_display *display = to_intel_display(crtc_state); 1586 1587 return DISPLAY_VER(display) == 10 && crtc_state->pch_pfit.enabled; 1588 } 1589 1590 static void glk_pipe_scaler_clock_gating_wa(struct intel_crtc *crtc, bool enable) 1591 { 1592 struct intel_display *display = to_intel_display(crtc); 1593 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 1594 1595 intel_de_rmw(display, CLKGATE_DIS_PSL(crtc->pipe), 1596 mask, enable ? mask : 0); 1597 } 1598 1599 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 1600 { 1601 struct intel_display *display = to_intel_display(crtc_state); 1602 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1603 1604 intel_de_write(display, WM_LINETIME(crtc->pipe), 1605 HSW_LINETIME(crtc_state->linetime) | 1606 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 1607 } 1608 1609 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 1610 { 1611 struct intel_display *display = to_intel_display(crtc_state); 1612 1613 intel_de_rmw(display, CHICKEN_TRANS(display, crtc_state->cpu_transcoder), 1614 HSW_FRAME_START_DELAY_MASK, 1615 HSW_FRAME_START_DELAY(crtc_state->framestart_delay - 1)); 1616 } 1617 1618 static void hsw_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state) 1619 { 1620 struct intel_display *display = to_intel_display(crtc_state); 1621 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1622 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 1623 1624 if (crtc_state->has_pch_encoder) { 1625 intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder, 1626 &crtc_state->fdi_m_n); 1627 } else if (intel_crtc_has_dp_encoder(crtc_state)) { 1628 intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder, 1629 &crtc_state->dp_m_n); 1630 intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder, 1631 &crtc_state->dp_m2_n2); 1632 } 1633 1634 intel_set_transcoder_timings(crtc_state); 1635 if (HAS_VRR(display)) 1636 intel_vrr_set_transcoder_timings(crtc_state); 1637 1638 if (cpu_transcoder != TRANSCODER_EDP) 1639 intel_de_write(display, TRANS_MULT(display, cpu_transcoder), 1640 crtc_state->pixel_multiplier - 1); 1641 1642 hsw_set_frame_start_delay(crtc_state); 1643 1644 hsw_set_transconf(crtc_state); 1645 } 1646 1647 static void hsw_crtc_enable(struct intel_atomic_state *state, 1648 struct intel_crtc *crtc) 1649 { 1650 struct intel_display *display = to_intel_display(state); 1651 const struct intel_crtc_state *new_crtc_state = 1652 intel_atomic_get_new_crtc_state(state, crtc); 1653 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 1654 struct intel_crtc *pipe_crtc; 1655 int i; 1656 1657 if (drm_WARN_ON(display->drm, crtc->active)) 1658 return; 1659 for_each_pipe_crtc_modeset_enable(display, pipe_crtc, new_crtc_state, i) 1660 intel_dmc_enable_pipe(display, pipe_crtc->pipe); 1661 1662 intel_encoders_pre_pll_enable(state, crtc); 1663 1664 if (new_crtc_state->shared_dpll) 1665 intel_enable_shared_dpll(new_crtc_state); 1666 1667 intel_encoders_pre_enable(state, crtc); 1668 1669 for_each_pipe_crtc_modeset_enable(display, pipe_crtc, new_crtc_state, i) { 1670 const struct intel_crtc_state *pipe_crtc_state = 1671 intel_atomic_get_new_crtc_state(state, pipe_crtc); 1672 1673 intel_dsc_enable(pipe_crtc_state); 1674 1675 if (HAS_UNCOMPRESSED_JOINER(display)) 1676 intel_uncompressed_joiner_enable(pipe_crtc_state); 1677 1678 intel_set_pipe_src_size(pipe_crtc_state); 1679 1680 if (DISPLAY_VER(display) >= 9 || display->platform.broadwell) 1681 bdw_set_pipe_misc(NULL, pipe_crtc_state); 1682 } 1683 1684 if (!transcoder_is_dsi(cpu_transcoder)) 1685 hsw_configure_cpu_transcoder(new_crtc_state); 1686 1687 for_each_pipe_crtc_modeset_enable(display, pipe_crtc, new_crtc_state, i) { 1688 const struct intel_crtc_state *pipe_crtc_state = 1689 intel_atomic_get_new_crtc_state(state, pipe_crtc); 1690 1691 pipe_crtc->active = true; 1692 1693 if (glk_need_scaler_clock_gating_wa(pipe_crtc_state)) 1694 glk_pipe_scaler_clock_gating_wa(pipe_crtc, true); 1695 1696 if (DISPLAY_VER(display) >= 9) 1697 skl_pfit_enable(pipe_crtc_state); 1698 else 1699 ilk_pfit_enable(pipe_crtc_state); 1700 1701 /* 1702 * On ILK+ LUT must be loaded before the pipe is running but with 1703 * clocks enabled 1704 */ 1705 intel_color_modeset(pipe_crtc_state); 1706 1707 hsw_set_linetime_wm(pipe_crtc_state); 1708 1709 if (DISPLAY_VER(display) >= 11) 1710 icl_set_pipe_chicken(pipe_crtc_state); 1711 1712 intel_initial_watermarks(state, pipe_crtc); 1713 } 1714 1715 intel_encoders_enable(state, crtc); 1716 1717 for_each_pipe_crtc_modeset_enable(display, pipe_crtc, new_crtc_state, i) { 1718 const struct intel_crtc_state *pipe_crtc_state = 1719 intel_atomic_get_new_crtc_state(state, pipe_crtc); 1720 enum pipe hsw_workaround_pipe; 1721 1722 if (glk_need_scaler_clock_gating_wa(pipe_crtc_state)) { 1723 intel_crtc_wait_for_next_vblank(pipe_crtc); 1724 glk_pipe_scaler_clock_gating_wa(pipe_crtc, false); 1725 } 1726 1727 /* 1728 * If we change the relative order between pipe/planes 1729 * enabling, we need to change the workaround. 1730 */ 1731 hsw_workaround_pipe = pipe_crtc_state->hsw_workaround_pipe; 1732 if (display->platform.haswell && hsw_workaround_pipe != INVALID_PIPE) { 1733 struct intel_crtc *wa_crtc = 1734 intel_crtc_for_pipe(display, hsw_workaround_pipe); 1735 1736 intel_crtc_wait_for_next_vblank(wa_crtc); 1737 intel_crtc_wait_for_next_vblank(wa_crtc); 1738 } 1739 } 1740 } 1741 1742 static void ilk_crtc_disable(struct intel_atomic_state *state, 1743 struct intel_crtc *crtc) 1744 { 1745 struct intel_display *display = to_intel_display(crtc); 1746 const struct intel_crtc_state *old_crtc_state = 1747 intel_atomic_get_old_crtc_state(state, crtc); 1748 enum pipe pipe = crtc->pipe; 1749 1750 /* 1751 * Sometimes spurious CPU pipe underruns happen when the 1752 * pipe is already disabled, but FDI RX/TX is still enabled. 1753 * Happens at least with VGA+HDMI cloning. Suppress them. 1754 */ 1755 intel_set_cpu_fifo_underrun_reporting(display, pipe, false); 1756 intel_set_pch_fifo_underrun_reporting(display, pipe, false); 1757 1758 intel_encoders_disable(state, crtc); 1759 1760 intel_crtc_vblank_off(old_crtc_state); 1761 1762 intel_disable_transcoder(old_crtc_state); 1763 1764 ilk_pfit_disable(old_crtc_state); 1765 1766 if (old_crtc_state->has_pch_encoder) 1767 ilk_pch_disable(state, crtc); 1768 1769 intel_encoders_post_disable(state, crtc); 1770 1771 if (old_crtc_state->has_pch_encoder) 1772 ilk_pch_post_disable(state, crtc); 1773 1774 intel_set_cpu_fifo_underrun_reporting(display, pipe, true); 1775 intel_set_pch_fifo_underrun_reporting(display, pipe, true); 1776 } 1777 1778 static void hsw_crtc_disable(struct intel_atomic_state *state, 1779 struct intel_crtc *crtc) 1780 { 1781 struct intel_display *display = to_intel_display(state); 1782 const struct intel_crtc_state *old_crtc_state = 1783 intel_atomic_get_old_crtc_state(state, crtc); 1784 struct intel_crtc *pipe_crtc; 1785 int i; 1786 1787 /* 1788 * FIXME collapse everything to one hook. 1789 * Need care with mst->ddi interactions. 1790 */ 1791 intel_encoders_disable(state, crtc); 1792 intel_encoders_post_disable(state, crtc); 1793 1794 intel_disable_shared_dpll(old_crtc_state); 1795 1796 intel_encoders_post_pll_disable(state, crtc); 1797 1798 for_each_pipe_crtc_modeset_disable(display, pipe_crtc, old_crtc_state, i) 1799 intel_dmc_disable_pipe(display, pipe_crtc->pipe); 1800 } 1801 1802 /* Prefer intel_encoder_is_combo() */ 1803 bool intel_phy_is_combo(struct intel_display *display, enum phy phy) 1804 { 1805 if (phy == PHY_NONE) 1806 return false; 1807 else if (display->platform.alderlake_s) 1808 return phy <= PHY_E; 1809 else if (display->platform.dg1 || display->platform.rocketlake) 1810 return phy <= PHY_D; 1811 else if (display->platform.jasperlake || display->platform.elkhartlake) 1812 return phy <= PHY_C; 1813 else if (display->platform.alderlake_p || IS_DISPLAY_VER(display, 11, 12)) 1814 return phy <= PHY_B; 1815 else 1816 /* 1817 * DG2 outputs labelled as "combo PHY" in the bspec use 1818 * SNPS PHYs with completely different programming, 1819 * hence we always return false here. 1820 */ 1821 return false; 1822 } 1823 1824 /* Prefer intel_encoder_is_tc() */ 1825 bool intel_phy_is_tc(struct intel_display *display, enum phy phy) 1826 { 1827 /* 1828 * Discrete GPU phy's are not attached to FIA's to support TC 1829 * subsystem Legacy or non-legacy, and only support native DP/HDMI 1830 */ 1831 if (display->platform.dgfx) 1832 return false; 1833 1834 if (DISPLAY_VER(display) >= 13) 1835 return phy >= PHY_F && phy <= PHY_I; 1836 else if (display->platform.tigerlake) 1837 return phy >= PHY_D && phy <= PHY_I; 1838 else if (display->platform.icelake) 1839 return phy >= PHY_C && phy <= PHY_F; 1840 1841 return false; 1842 } 1843 1844 /* Prefer intel_encoder_is_snps() */ 1845 bool intel_phy_is_snps(struct intel_display *display, enum phy phy) 1846 { 1847 /* 1848 * For DG2, and for DG2 only, all four "combo" ports and the TC1 port 1849 * (PHY E) use Synopsis PHYs. See intel_phy_is_tc(). 1850 */ 1851 return display->platform.dg2 && phy > PHY_NONE && phy <= PHY_E; 1852 } 1853 1854 /* Prefer intel_encoder_to_phy() */ 1855 enum phy intel_port_to_phy(struct intel_display *display, enum port port) 1856 { 1857 if (DISPLAY_VER(display) >= 13 && port >= PORT_D_XELPD) 1858 return PHY_D + port - PORT_D_XELPD; 1859 else if (DISPLAY_VER(display) >= 13 && port >= PORT_TC1) 1860 return PHY_F + port - PORT_TC1; 1861 else if (display->platform.alderlake_s && port >= PORT_TC1) 1862 return PHY_B + port - PORT_TC1; 1863 else if ((display->platform.dg1 || display->platform.rocketlake) && port >= PORT_TC1) 1864 return PHY_C + port - PORT_TC1; 1865 else if ((display->platform.jasperlake || display->platform.elkhartlake) && 1866 port == PORT_D) 1867 return PHY_A; 1868 1869 return PHY_A + port - PORT_A; 1870 } 1871 1872 /* Prefer intel_encoder_to_tc() */ 1873 enum tc_port intel_port_to_tc(struct intel_display *display, enum port port) 1874 { 1875 if (!intel_phy_is_tc(display, intel_port_to_phy(display, port))) 1876 return TC_PORT_NONE; 1877 1878 if (DISPLAY_VER(display) >= 12) 1879 return TC_PORT_1 + port - PORT_TC1; 1880 else 1881 return TC_PORT_1 + port - PORT_C; 1882 } 1883 1884 enum phy intel_encoder_to_phy(struct intel_encoder *encoder) 1885 { 1886 struct intel_display *display = to_intel_display(encoder); 1887 1888 return intel_port_to_phy(display, encoder->port); 1889 } 1890 1891 bool intel_encoder_is_combo(struct intel_encoder *encoder) 1892 { 1893 struct intel_display *display = to_intel_display(encoder); 1894 1895 return intel_phy_is_combo(display, intel_encoder_to_phy(encoder)); 1896 } 1897 1898 bool intel_encoder_is_snps(struct intel_encoder *encoder) 1899 { 1900 struct intel_display *display = to_intel_display(encoder); 1901 1902 return intel_phy_is_snps(display, intel_encoder_to_phy(encoder)); 1903 } 1904 1905 bool intel_encoder_is_tc(struct intel_encoder *encoder) 1906 { 1907 struct intel_display *display = to_intel_display(encoder); 1908 1909 return intel_phy_is_tc(display, intel_encoder_to_phy(encoder)); 1910 } 1911 1912 enum tc_port intel_encoder_to_tc(struct intel_encoder *encoder) 1913 { 1914 struct intel_display *display = to_intel_display(encoder); 1915 1916 return intel_port_to_tc(display, encoder->port); 1917 } 1918 1919 enum intel_display_power_domain 1920 intel_aux_power_domain(struct intel_digital_port *dig_port) 1921 { 1922 struct intel_display *display = to_intel_display(dig_port); 1923 1924 if (intel_tc_port_in_tbt_alt_mode(dig_port)) 1925 return intel_display_power_tbt_aux_domain(display, dig_port->aux_ch); 1926 1927 return intel_display_power_legacy_aux_domain(display, dig_port->aux_ch); 1928 } 1929 1930 static void get_crtc_power_domains(struct intel_crtc_state *crtc_state, 1931 struct intel_power_domain_mask *mask) 1932 { 1933 struct intel_display *display = to_intel_display(crtc_state); 1934 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1935 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 1936 struct drm_encoder *encoder; 1937 enum pipe pipe = crtc->pipe; 1938 1939 bitmap_zero(mask->bits, POWER_DOMAIN_NUM); 1940 1941 if (!crtc_state->hw.active) 1942 return; 1943 1944 set_bit(POWER_DOMAIN_PIPE(pipe), mask->bits); 1945 set_bit(POWER_DOMAIN_TRANSCODER(cpu_transcoder), mask->bits); 1946 if (crtc_state->pch_pfit.enabled || 1947 crtc_state->pch_pfit.force_thru) 1948 set_bit(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe), mask->bits); 1949 1950 drm_for_each_encoder_mask(encoder, display->drm, 1951 crtc_state->uapi.encoder_mask) { 1952 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 1953 1954 set_bit(intel_encoder->power_domain, mask->bits); 1955 } 1956 1957 if (HAS_DDI(display) && crtc_state->has_audio) 1958 set_bit(POWER_DOMAIN_AUDIO_MMIO, mask->bits); 1959 1960 if (crtc_state->shared_dpll) 1961 set_bit(POWER_DOMAIN_DISPLAY_CORE, mask->bits); 1962 1963 if (crtc_state->dsc.compression_enable) 1964 set_bit(intel_dsc_power_domain(crtc, cpu_transcoder), mask->bits); 1965 } 1966 1967 void intel_modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state, 1968 struct intel_power_domain_mask *old_domains) 1969 { 1970 struct intel_display *display = to_intel_display(crtc_state); 1971 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1972 enum intel_display_power_domain domain; 1973 struct intel_power_domain_mask domains, new_domains; 1974 1975 get_crtc_power_domains(crtc_state, &domains); 1976 1977 bitmap_andnot(new_domains.bits, 1978 domains.bits, 1979 crtc->enabled_power_domains.mask.bits, 1980 POWER_DOMAIN_NUM); 1981 bitmap_andnot(old_domains->bits, 1982 crtc->enabled_power_domains.mask.bits, 1983 domains.bits, 1984 POWER_DOMAIN_NUM); 1985 1986 for_each_power_domain(domain, &new_domains) 1987 intel_display_power_get_in_set(display, 1988 &crtc->enabled_power_domains, 1989 domain); 1990 } 1991 1992 void intel_modeset_put_crtc_power_domains(struct intel_crtc *crtc, 1993 struct intel_power_domain_mask *domains) 1994 { 1995 struct intel_display *display = to_intel_display(crtc); 1996 1997 intel_display_power_put_mask_in_set(display, 1998 &crtc->enabled_power_domains, 1999 domains); 2000 } 2001 2002 static void i9xx_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state) 2003 { 2004 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2005 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2006 2007 if (intel_crtc_has_dp_encoder(crtc_state)) { 2008 intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder, 2009 &crtc_state->dp_m_n); 2010 intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder, 2011 &crtc_state->dp_m2_n2); 2012 } 2013 2014 intel_set_transcoder_timings(crtc_state); 2015 2016 i9xx_set_pipeconf(crtc_state); 2017 } 2018 2019 static void valleyview_crtc_enable(struct intel_atomic_state *state, 2020 struct intel_crtc *crtc) 2021 { 2022 struct intel_display *display = to_intel_display(crtc); 2023 const struct intel_crtc_state *new_crtc_state = 2024 intel_atomic_get_new_crtc_state(state, crtc); 2025 enum pipe pipe = crtc->pipe; 2026 2027 if (drm_WARN_ON(display->drm, crtc->active)) 2028 return; 2029 2030 i9xx_configure_cpu_transcoder(new_crtc_state); 2031 2032 intel_set_pipe_src_size(new_crtc_state); 2033 2034 intel_de_write(display, VLV_PIPE_MSA_MISC(display, pipe), 0); 2035 2036 if (display->platform.cherryview && pipe == PIPE_B) { 2037 intel_de_write(display, CHV_BLEND(display, pipe), 2038 CHV_BLEND_LEGACY); 2039 intel_de_write(display, CHV_CANVAS(display, pipe), 0); 2040 } 2041 2042 crtc->active = true; 2043 2044 intel_set_cpu_fifo_underrun_reporting(display, pipe, true); 2045 2046 intel_encoders_pre_pll_enable(state, crtc); 2047 2048 if (display->platform.cherryview) 2049 chv_enable_pll(new_crtc_state); 2050 else 2051 vlv_enable_pll(new_crtc_state); 2052 2053 intel_encoders_pre_enable(state, crtc); 2054 2055 i9xx_pfit_enable(new_crtc_state); 2056 2057 intel_color_modeset(new_crtc_state); 2058 2059 intel_initial_watermarks(state, crtc); 2060 intel_enable_transcoder(new_crtc_state); 2061 2062 intel_crtc_vblank_on(new_crtc_state); 2063 2064 intel_encoders_enable(state, crtc); 2065 } 2066 2067 static void i9xx_crtc_enable(struct intel_atomic_state *state, 2068 struct intel_crtc *crtc) 2069 { 2070 struct intel_display *display = to_intel_display(crtc); 2071 const struct intel_crtc_state *new_crtc_state = 2072 intel_atomic_get_new_crtc_state(state, crtc); 2073 enum pipe pipe = crtc->pipe; 2074 2075 if (drm_WARN_ON(display->drm, crtc->active)) 2076 return; 2077 2078 i9xx_configure_cpu_transcoder(new_crtc_state); 2079 2080 intel_set_pipe_src_size(new_crtc_state); 2081 2082 crtc->active = true; 2083 2084 if (DISPLAY_VER(display) != 2) 2085 intel_set_cpu_fifo_underrun_reporting(display, pipe, true); 2086 2087 intel_encoders_pre_enable(state, crtc); 2088 2089 i9xx_enable_pll(new_crtc_state); 2090 2091 i9xx_pfit_enable(new_crtc_state); 2092 2093 intel_color_modeset(new_crtc_state); 2094 2095 if (!intel_initial_watermarks(state, crtc)) 2096 intel_update_watermarks(display); 2097 intel_enable_transcoder(new_crtc_state); 2098 2099 intel_crtc_vblank_on(new_crtc_state); 2100 2101 intel_encoders_enable(state, crtc); 2102 2103 /* prevents spurious underruns */ 2104 if (DISPLAY_VER(display) == 2) 2105 intel_crtc_wait_for_next_vblank(crtc); 2106 } 2107 2108 static void i9xx_crtc_disable(struct intel_atomic_state *state, 2109 struct intel_crtc *crtc) 2110 { 2111 struct intel_display *display = to_intel_display(state); 2112 struct intel_crtc_state *old_crtc_state = 2113 intel_atomic_get_old_crtc_state(state, crtc); 2114 enum pipe pipe = crtc->pipe; 2115 2116 /* 2117 * On gen2 planes are double buffered but the pipe isn't, so we must 2118 * wait for planes to fully turn off before disabling the pipe. 2119 */ 2120 if (DISPLAY_VER(display) == 2) 2121 intel_crtc_wait_for_next_vblank(crtc); 2122 2123 intel_encoders_disable(state, crtc); 2124 2125 intel_crtc_vblank_off(old_crtc_state); 2126 2127 intel_disable_transcoder(old_crtc_state); 2128 2129 i9xx_pfit_disable(old_crtc_state); 2130 2131 intel_encoders_post_disable(state, crtc); 2132 2133 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 2134 if (display->platform.cherryview) 2135 chv_disable_pll(display, pipe); 2136 else if (display->platform.valleyview) 2137 vlv_disable_pll(display, pipe); 2138 else 2139 i9xx_disable_pll(old_crtc_state); 2140 } 2141 2142 intel_encoders_post_pll_disable(state, crtc); 2143 2144 if (DISPLAY_VER(display) != 2) 2145 intel_set_cpu_fifo_underrun_reporting(display, pipe, false); 2146 2147 if (!display->funcs.wm->initial_watermarks) 2148 intel_update_watermarks(display); 2149 2150 /* clock the pipe down to 640x480@60 to potentially save power */ 2151 if (display->platform.i830) 2152 i830_enable_pipe(display, pipe); 2153 } 2154 2155 void intel_encoder_destroy(struct drm_encoder *encoder) 2156 { 2157 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 2158 2159 drm_encoder_cleanup(encoder); 2160 kfree(intel_encoder); 2161 } 2162 2163 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 2164 { 2165 struct intel_display *display = to_intel_display(crtc); 2166 2167 /* GDG double wide on either pipe, otherwise pipe A only */ 2168 return HAS_DOUBLE_WIDE(display) && 2169 (crtc->pipe == PIPE_A || display->platform.i915g); 2170 } 2171 2172 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) 2173 { 2174 u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock; 2175 struct drm_rect src; 2176 2177 /* 2178 * We only use IF-ID interlacing. If we ever use 2179 * PF-ID we'll need to adjust the pixel_rate here. 2180 */ 2181 2182 if (!crtc_state->pch_pfit.enabled) 2183 return pixel_rate; 2184 2185 drm_rect_init(&src, 0, 0, 2186 drm_rect_width(&crtc_state->pipe_src) << 16, 2187 drm_rect_height(&crtc_state->pipe_src) << 16); 2188 2189 return intel_adjusted_rate(&src, &crtc_state->pch_pfit.dst, 2190 pixel_rate); 2191 } 2192 2193 static void intel_mode_from_crtc_timings(struct drm_display_mode *mode, 2194 const struct drm_display_mode *timings) 2195 { 2196 mode->hdisplay = timings->crtc_hdisplay; 2197 mode->htotal = timings->crtc_htotal; 2198 mode->hsync_start = timings->crtc_hsync_start; 2199 mode->hsync_end = timings->crtc_hsync_end; 2200 2201 mode->vdisplay = timings->crtc_vdisplay; 2202 mode->vtotal = timings->crtc_vtotal; 2203 mode->vsync_start = timings->crtc_vsync_start; 2204 mode->vsync_end = timings->crtc_vsync_end; 2205 2206 mode->flags = timings->flags; 2207 mode->type = DRM_MODE_TYPE_DRIVER; 2208 2209 mode->clock = timings->crtc_clock; 2210 2211 drm_mode_set_name(mode); 2212 } 2213 2214 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 2215 { 2216 struct intel_display *display = to_intel_display(crtc_state); 2217 2218 if (HAS_GMCH(display)) 2219 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 2220 crtc_state->pixel_rate = 2221 crtc_state->hw.pipe_mode.crtc_clock; 2222 else 2223 crtc_state->pixel_rate = 2224 ilk_pipe_pixel_rate(crtc_state); 2225 } 2226 2227 static void intel_joiner_adjust_timings(const struct intel_crtc_state *crtc_state, 2228 struct drm_display_mode *mode) 2229 { 2230 int num_pipes = intel_crtc_num_joined_pipes(crtc_state); 2231 2232 if (num_pipes == 1) 2233 return; 2234 2235 mode->crtc_clock /= num_pipes; 2236 mode->crtc_hdisplay /= num_pipes; 2237 mode->crtc_hblank_start /= num_pipes; 2238 mode->crtc_hblank_end /= num_pipes; 2239 mode->crtc_hsync_start /= num_pipes; 2240 mode->crtc_hsync_end /= num_pipes; 2241 mode->crtc_htotal /= num_pipes; 2242 } 2243 2244 static void intel_splitter_adjust_timings(const struct intel_crtc_state *crtc_state, 2245 struct drm_display_mode *mode) 2246 { 2247 int overlap = crtc_state->splitter.pixel_overlap; 2248 int n = crtc_state->splitter.link_count; 2249 2250 if (!crtc_state->splitter.enable) 2251 return; 2252 2253 /* 2254 * eDP MSO uses segment timings from EDID for transcoder 2255 * timings, but full mode for everything else. 2256 * 2257 * h_full = (h_segment - pixel_overlap) * link_count 2258 */ 2259 mode->crtc_hdisplay = (mode->crtc_hdisplay - overlap) * n; 2260 mode->crtc_hblank_start = (mode->crtc_hblank_start - overlap) * n; 2261 mode->crtc_hblank_end = (mode->crtc_hblank_end - overlap) * n; 2262 mode->crtc_hsync_start = (mode->crtc_hsync_start - overlap) * n; 2263 mode->crtc_hsync_end = (mode->crtc_hsync_end - overlap) * n; 2264 mode->crtc_htotal = (mode->crtc_htotal - overlap) * n; 2265 mode->crtc_clock *= n; 2266 } 2267 2268 static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state) 2269 { 2270 struct drm_display_mode *mode = &crtc_state->hw.mode; 2271 struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 2272 struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 2273 2274 /* 2275 * Start with the adjusted_mode crtc timings, which 2276 * have been filled with the transcoder timings. 2277 */ 2278 drm_mode_copy(pipe_mode, adjusted_mode); 2279 2280 /* Expand MSO per-segment transcoder timings to full */ 2281 intel_splitter_adjust_timings(crtc_state, pipe_mode); 2282 2283 /* 2284 * We want the full numbers in adjusted_mode normal timings, 2285 * adjusted_mode crtc timings are left with the raw transcoder 2286 * timings. 2287 */ 2288 intel_mode_from_crtc_timings(adjusted_mode, pipe_mode); 2289 2290 /* Populate the "user" mode with full numbers */ 2291 drm_mode_copy(mode, pipe_mode); 2292 intel_mode_from_crtc_timings(mode, mode); 2293 mode->hdisplay = drm_rect_width(&crtc_state->pipe_src) * 2294 intel_crtc_num_joined_pipes(crtc_state); 2295 mode->vdisplay = drm_rect_height(&crtc_state->pipe_src); 2296 2297 /* Derive per-pipe timings in case joiner is used */ 2298 intel_joiner_adjust_timings(crtc_state, pipe_mode); 2299 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 2300 2301 intel_crtc_compute_pixel_rate(crtc_state); 2302 } 2303 2304 void intel_encoder_get_config(struct intel_encoder *encoder, 2305 struct intel_crtc_state *crtc_state) 2306 { 2307 encoder->get_config(encoder, crtc_state); 2308 2309 intel_crtc_readout_derived_state(crtc_state); 2310 } 2311 2312 static void intel_joiner_compute_pipe_src(struct intel_crtc_state *crtc_state) 2313 { 2314 int num_pipes = intel_crtc_num_joined_pipes(crtc_state); 2315 int width, height; 2316 2317 if (num_pipes == 1) 2318 return; 2319 2320 width = drm_rect_width(&crtc_state->pipe_src); 2321 height = drm_rect_height(&crtc_state->pipe_src); 2322 2323 drm_rect_init(&crtc_state->pipe_src, 0, 0, 2324 width / num_pipes, height); 2325 } 2326 2327 static int intel_crtc_compute_pipe_src(struct intel_crtc_state *crtc_state) 2328 { 2329 struct intel_display *display = to_intel_display(crtc_state); 2330 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2331 2332 intel_joiner_compute_pipe_src(crtc_state); 2333 2334 /* 2335 * Pipe horizontal size must be even in: 2336 * - DVO ganged mode 2337 * - LVDS dual channel mode 2338 * - Double wide pipe 2339 */ 2340 if (drm_rect_width(&crtc_state->pipe_src) & 1) { 2341 if (crtc_state->double_wide) { 2342 drm_dbg_kms(display->drm, 2343 "[CRTC:%d:%s] Odd pipe source width not supported with double wide pipe\n", 2344 crtc->base.base.id, crtc->base.name); 2345 return -EINVAL; 2346 } 2347 2348 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 2349 intel_is_dual_link_lvds(display)) { 2350 drm_dbg_kms(display->drm, 2351 "[CRTC:%d:%s] Odd pipe source width not supported with dual link LVDS\n", 2352 crtc->base.base.id, crtc->base.name); 2353 return -EINVAL; 2354 } 2355 } 2356 2357 return 0; 2358 } 2359 2360 static int intel_crtc_compute_pipe_mode(struct intel_crtc_state *crtc_state) 2361 { 2362 struct intel_display *display = to_intel_display(crtc_state); 2363 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2364 struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 2365 struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 2366 int clock_limit = display->cdclk.max_dotclk_freq; 2367 2368 /* 2369 * Start with the adjusted_mode crtc timings, which 2370 * have been filled with the transcoder timings. 2371 */ 2372 drm_mode_copy(pipe_mode, adjusted_mode); 2373 2374 /* Expand MSO per-segment transcoder timings to full */ 2375 intel_splitter_adjust_timings(crtc_state, pipe_mode); 2376 2377 /* Derive per-pipe timings in case joiner is used */ 2378 intel_joiner_adjust_timings(crtc_state, pipe_mode); 2379 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 2380 2381 if (DISPLAY_VER(display) < 4) { 2382 clock_limit = display->cdclk.max_cdclk_freq * 9 / 10; 2383 2384 /* 2385 * Enable double wide mode when the dot clock 2386 * is > 90% of the (display) core speed. 2387 */ 2388 if (intel_crtc_supports_double_wide(crtc) && 2389 pipe_mode->crtc_clock > clock_limit) { 2390 clock_limit = display->cdclk.max_dotclk_freq; 2391 crtc_state->double_wide = true; 2392 } 2393 } 2394 2395 if (pipe_mode->crtc_clock > clock_limit) { 2396 drm_dbg_kms(display->drm, 2397 "[CRTC:%d:%s] requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 2398 crtc->base.base.id, crtc->base.name, 2399 pipe_mode->crtc_clock, clock_limit, 2400 str_yes_no(crtc_state->double_wide)); 2401 return -EINVAL; 2402 } 2403 2404 return 0; 2405 } 2406 2407 static bool intel_crtc_needs_wa_14015401596(const struct intel_crtc_state *crtc_state) 2408 { 2409 struct intel_display *display = to_intel_display(crtc_state); 2410 2411 return intel_vrr_possible(crtc_state) && crtc_state->has_psr && 2412 IS_DISPLAY_VER(display, 13, 14); 2413 } 2414 2415 static int intel_crtc_vblank_delay(const struct intel_crtc_state *crtc_state) 2416 { 2417 struct intel_display *display = to_intel_display(crtc_state); 2418 int vblank_delay = 0; 2419 2420 if (!HAS_DSB(display)) 2421 return 0; 2422 2423 /* Wa_14015401596 */ 2424 if (intel_crtc_needs_wa_14015401596(crtc_state)) 2425 vblank_delay = max(vblank_delay, 1); 2426 2427 return vblank_delay; 2428 } 2429 2430 static int intel_crtc_compute_vblank_delay(struct intel_atomic_state *state, 2431 struct intel_crtc *crtc) 2432 { 2433 struct intel_display *display = to_intel_display(state); 2434 struct intel_crtc_state *crtc_state = 2435 intel_atomic_get_new_crtc_state(state, crtc); 2436 struct drm_display_mode *adjusted_mode = 2437 &crtc_state->hw.adjusted_mode; 2438 int vblank_delay, max_vblank_delay; 2439 2440 vblank_delay = intel_crtc_vblank_delay(crtc_state); 2441 max_vblank_delay = adjusted_mode->crtc_vblank_end - adjusted_mode->crtc_vblank_start - 1; 2442 2443 if (vblank_delay > max_vblank_delay) { 2444 drm_dbg_kms(display->drm, "[CRTC:%d:%s] vblank delay (%d) exceeds max (%d)\n", 2445 crtc->base.base.id, crtc->base.name, vblank_delay, max_vblank_delay); 2446 return -EINVAL; 2447 } 2448 2449 adjusted_mode->crtc_vblank_start += vblank_delay; 2450 2451 return 0; 2452 } 2453 2454 static int intel_crtc_compute_config(struct intel_atomic_state *state, 2455 struct intel_crtc *crtc) 2456 { 2457 struct intel_crtc_state *crtc_state = 2458 intel_atomic_get_new_crtc_state(state, crtc); 2459 int ret; 2460 2461 ret = intel_crtc_compute_vblank_delay(state, crtc); 2462 if (ret) 2463 return ret; 2464 2465 ret = intel_dpll_crtc_compute_clock(state, crtc); 2466 if (ret) 2467 return ret; 2468 2469 ret = intel_crtc_compute_pipe_src(crtc_state); 2470 if (ret) 2471 return ret; 2472 2473 ret = intel_crtc_compute_pipe_mode(crtc_state); 2474 if (ret) 2475 return ret; 2476 2477 intel_crtc_compute_pixel_rate(crtc_state); 2478 2479 if (crtc_state->has_pch_encoder) 2480 return ilk_fdi_compute_config(crtc, crtc_state); 2481 2482 return 0; 2483 } 2484 2485 static void 2486 intel_reduce_m_n_ratio(u32 *num, u32 *den) 2487 { 2488 while (*num > DATA_LINK_M_N_MASK || 2489 *den > DATA_LINK_M_N_MASK) { 2490 *num >>= 1; 2491 *den >>= 1; 2492 } 2493 } 2494 2495 static void compute_m_n(u32 *ret_m, u32 *ret_n, 2496 u32 m, u32 n, u32 constant_n) 2497 { 2498 if (constant_n) 2499 *ret_n = constant_n; 2500 else 2501 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 2502 2503 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 2504 intel_reduce_m_n_ratio(ret_m, ret_n); 2505 } 2506 2507 void 2508 intel_link_compute_m_n(u16 bits_per_pixel_x16, int nlanes, 2509 int pixel_clock, int link_clock, 2510 int bw_overhead, 2511 struct intel_link_m_n *m_n) 2512 { 2513 u32 link_symbol_clock = intel_dp_link_symbol_clock(link_clock); 2514 u32 data_m = intel_dp_effective_data_rate(pixel_clock, bits_per_pixel_x16, 2515 bw_overhead); 2516 u32 data_n = drm_dp_max_dprx_data_rate(link_clock, nlanes); 2517 2518 /* 2519 * Windows/BIOS uses fixed M/N values always. Follow suit. 2520 * 2521 * Also several DP dongles in particular seem to be fussy 2522 * about too large link M/N values. Presumably the 20bit 2523 * value used by Windows/BIOS is acceptable to everyone. 2524 */ 2525 m_n->tu = 64; 2526 compute_m_n(&m_n->data_m, &m_n->data_n, 2527 data_m, data_n, 2528 0x8000000); 2529 2530 compute_m_n(&m_n->link_m, &m_n->link_n, 2531 pixel_clock, link_symbol_clock, 2532 0x80000); 2533 } 2534 2535 void intel_panel_sanitize_ssc(struct intel_display *display) 2536 { 2537 struct drm_i915_private *dev_priv = to_i915(display->drm); 2538 2539 /* 2540 * There may be no VBT; and if the BIOS enabled SSC we can 2541 * just keep using it to avoid unnecessary flicker. Whereas if the 2542 * BIOS isn't using it, don't assume it will work even if the VBT 2543 * indicates as much. 2544 */ 2545 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 2546 bool bios_lvds_use_ssc = intel_de_read(display, 2547 PCH_DREF_CONTROL) & 2548 DREF_SSC1_ENABLE; 2549 2550 if (display->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 2551 drm_dbg_kms(display->drm, 2552 "SSC %s by BIOS, overriding VBT which says %s\n", 2553 str_enabled_disabled(bios_lvds_use_ssc), 2554 str_enabled_disabled(display->vbt.lvds_use_ssc)); 2555 display->vbt.lvds_use_ssc = bios_lvds_use_ssc; 2556 } 2557 } 2558 } 2559 2560 void intel_zero_m_n(struct intel_link_m_n *m_n) 2561 { 2562 /* corresponds to 0 register value */ 2563 memset(m_n, 0, sizeof(*m_n)); 2564 m_n->tu = 1; 2565 } 2566 2567 void intel_set_m_n(struct intel_display *display, 2568 const struct intel_link_m_n *m_n, 2569 i915_reg_t data_m_reg, i915_reg_t data_n_reg, 2570 i915_reg_t link_m_reg, i915_reg_t link_n_reg) 2571 { 2572 intel_de_write(display, data_m_reg, TU_SIZE(m_n->tu) | m_n->data_m); 2573 intel_de_write(display, data_n_reg, m_n->data_n); 2574 intel_de_write(display, link_m_reg, m_n->link_m); 2575 /* 2576 * On BDW+ writing LINK_N arms the double buffered update 2577 * of all the M/N registers, so it must be written last. 2578 */ 2579 intel_de_write(display, link_n_reg, m_n->link_n); 2580 } 2581 2582 bool intel_cpu_transcoder_has_m2_n2(struct intel_display *display, 2583 enum transcoder transcoder) 2584 { 2585 if (display->platform.haswell) 2586 return transcoder == TRANSCODER_EDP; 2587 2588 return IS_DISPLAY_VER(display, 5, 7) || display->platform.cherryview; 2589 } 2590 2591 void intel_cpu_transcoder_set_m1_n1(struct intel_crtc *crtc, 2592 enum transcoder transcoder, 2593 const struct intel_link_m_n *m_n) 2594 { 2595 struct intel_display *display = to_intel_display(crtc); 2596 enum pipe pipe = crtc->pipe; 2597 2598 if (DISPLAY_VER(display) >= 5) 2599 intel_set_m_n(display, m_n, 2600 PIPE_DATA_M1(display, transcoder), 2601 PIPE_DATA_N1(display, transcoder), 2602 PIPE_LINK_M1(display, transcoder), 2603 PIPE_LINK_N1(display, transcoder)); 2604 else 2605 intel_set_m_n(display, m_n, 2606 PIPE_DATA_M_G4X(pipe), PIPE_DATA_N_G4X(pipe), 2607 PIPE_LINK_M_G4X(pipe), PIPE_LINK_N_G4X(pipe)); 2608 } 2609 2610 void intel_cpu_transcoder_set_m2_n2(struct intel_crtc *crtc, 2611 enum transcoder transcoder, 2612 const struct intel_link_m_n *m_n) 2613 { 2614 struct intel_display *display = to_intel_display(crtc); 2615 2616 if (!intel_cpu_transcoder_has_m2_n2(display, transcoder)) 2617 return; 2618 2619 intel_set_m_n(display, m_n, 2620 PIPE_DATA_M2(display, transcoder), 2621 PIPE_DATA_N2(display, transcoder), 2622 PIPE_LINK_M2(display, transcoder), 2623 PIPE_LINK_N2(display, transcoder)); 2624 } 2625 2626 static bool 2627 transcoder_has_vrr(const struct intel_crtc_state *crtc_state) 2628 { 2629 struct intel_display *display = to_intel_display(crtc_state); 2630 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2631 2632 return HAS_VRR(display) && !transcoder_is_dsi(cpu_transcoder); 2633 } 2634 2635 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state) 2636 { 2637 struct intel_display *display = to_intel_display(crtc_state); 2638 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2639 enum pipe pipe = crtc->pipe; 2640 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2641 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 2642 u32 crtc_vdisplay, crtc_vtotal, crtc_vblank_start, crtc_vblank_end; 2643 int vsyncshift = 0; 2644 2645 drm_WARN_ON(display->drm, transcoder_is_dsi(cpu_transcoder)); 2646 2647 /* We need to be careful not to changed the adjusted mode, for otherwise 2648 * the hw state checker will get angry at the mismatch. */ 2649 crtc_vdisplay = adjusted_mode->crtc_vdisplay; 2650 crtc_vtotal = adjusted_mode->crtc_vtotal; 2651 crtc_vblank_start = adjusted_mode->crtc_vblank_start; 2652 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 2653 2654 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 2655 /* the chip adds 2 halflines automatically */ 2656 crtc_vtotal -= 1; 2657 crtc_vblank_end -= 1; 2658 2659 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 2660 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 2661 else 2662 vsyncshift = adjusted_mode->crtc_hsync_start - 2663 adjusted_mode->crtc_htotal / 2; 2664 if (vsyncshift < 0) 2665 vsyncshift += adjusted_mode->crtc_htotal; 2666 } 2667 2668 /* 2669 * VBLANK_START no longer works on ADL+, instead we must use 2670 * TRANS_SET_CONTEXT_LATENCY to configure the pipe vblank start. 2671 */ 2672 if (DISPLAY_VER(display) >= 13) { 2673 intel_de_write(display, 2674 TRANS_SET_CONTEXT_LATENCY(display, cpu_transcoder), 2675 crtc_vblank_start - crtc_vdisplay); 2676 2677 /* 2678 * VBLANK_START not used by hw, just clear it 2679 * to make it stand out in register dumps. 2680 */ 2681 crtc_vblank_start = 1; 2682 } 2683 2684 if (DISPLAY_VER(display) >= 4) 2685 intel_de_write(display, 2686 TRANS_VSYNCSHIFT(display, cpu_transcoder), 2687 vsyncshift); 2688 2689 intel_de_write(display, TRANS_HTOTAL(display, cpu_transcoder), 2690 HACTIVE(adjusted_mode->crtc_hdisplay - 1) | 2691 HTOTAL(adjusted_mode->crtc_htotal - 1)); 2692 intel_de_write(display, TRANS_HBLANK(display, cpu_transcoder), 2693 HBLANK_START(adjusted_mode->crtc_hblank_start - 1) | 2694 HBLANK_END(adjusted_mode->crtc_hblank_end - 1)); 2695 intel_de_write(display, TRANS_HSYNC(display, cpu_transcoder), 2696 HSYNC_START(adjusted_mode->crtc_hsync_start - 1) | 2697 HSYNC_END(adjusted_mode->crtc_hsync_end - 1)); 2698 2699 /* 2700 * For platforms that always use VRR Timing Generator, the VTOTAL.Vtotal 2701 * bits are not required. Since the support for these bits is going to 2702 * be deprecated in upcoming platforms, avoid writing these bits for the 2703 * platforms that do not use legacy Timing Generator. 2704 */ 2705 if (intel_vrr_always_use_vrr_tg(display)) 2706 crtc_vtotal = 1; 2707 2708 intel_de_write(display, TRANS_VTOTAL(display, cpu_transcoder), 2709 VACTIVE(crtc_vdisplay - 1) | 2710 VTOTAL(crtc_vtotal - 1)); 2711 intel_de_write(display, TRANS_VBLANK(display, cpu_transcoder), 2712 VBLANK_START(crtc_vblank_start - 1) | 2713 VBLANK_END(crtc_vblank_end - 1)); 2714 intel_de_write(display, TRANS_VSYNC(display, cpu_transcoder), 2715 VSYNC_START(adjusted_mode->crtc_vsync_start - 1) | 2716 VSYNC_END(adjusted_mode->crtc_vsync_end - 1)); 2717 2718 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 2719 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 2720 * documented on the DDI_FUNC_CTL register description, EDP Input Select 2721 * bits. */ 2722 if (display->platform.haswell && cpu_transcoder == TRANSCODER_EDP && 2723 (pipe == PIPE_B || pipe == PIPE_C)) 2724 intel_de_write(display, TRANS_VTOTAL(display, pipe), 2725 VACTIVE(crtc_vdisplay - 1) | 2726 VTOTAL(crtc_vtotal - 1)); 2727 } 2728 2729 static void intel_set_transcoder_timings_lrr(const struct intel_crtc_state *crtc_state) 2730 { 2731 struct intel_display *display = to_intel_display(crtc_state); 2732 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2733 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 2734 u32 crtc_vdisplay, crtc_vtotal, crtc_vblank_start, crtc_vblank_end; 2735 2736 drm_WARN_ON(display->drm, transcoder_is_dsi(cpu_transcoder)); 2737 2738 crtc_vdisplay = adjusted_mode->crtc_vdisplay; 2739 crtc_vtotal = adjusted_mode->crtc_vtotal; 2740 crtc_vblank_start = adjusted_mode->crtc_vblank_start; 2741 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 2742 2743 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 2744 /* the chip adds 2 halflines automatically */ 2745 crtc_vtotal -= 1; 2746 crtc_vblank_end -= 1; 2747 } 2748 2749 if (DISPLAY_VER(display) >= 13) { 2750 intel_de_write(display, 2751 TRANS_SET_CONTEXT_LATENCY(display, cpu_transcoder), 2752 crtc_vblank_start - crtc_vdisplay); 2753 2754 /* 2755 * VBLANK_START not used by hw, just clear it 2756 * to make it stand out in register dumps. 2757 */ 2758 crtc_vblank_start = 1; 2759 } 2760 2761 /* 2762 * The hardware actually ignores TRANS_VBLANK.VBLANK_END in DP mode. 2763 * But let's write it anyway to keep the state checker happy. 2764 */ 2765 intel_de_write(display, TRANS_VBLANK(display, cpu_transcoder), 2766 VBLANK_START(crtc_vblank_start - 1) | 2767 VBLANK_END(crtc_vblank_end - 1)); 2768 /* 2769 * For platforms that always use VRR Timing Generator, the VTOTAL.Vtotal 2770 * bits are not required. Since the support for these bits is going to 2771 * be deprecated in upcoming platforms, avoid writing these bits for the 2772 * platforms that do not use legacy Timing Generator. 2773 */ 2774 if (intel_vrr_always_use_vrr_tg(display)) 2775 crtc_vtotal = 1; 2776 2777 /* 2778 * The double buffer latch point for TRANS_VTOTAL 2779 * is the transcoder's undelayed vblank. 2780 */ 2781 intel_de_write(display, TRANS_VTOTAL(display, cpu_transcoder), 2782 VACTIVE(crtc_vdisplay - 1) | 2783 VTOTAL(crtc_vtotal - 1)); 2784 2785 intel_vrr_set_fixed_rr_timings(crtc_state); 2786 intel_vrr_transcoder_enable(crtc_state); 2787 } 2788 2789 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 2790 { 2791 struct intel_display *display = to_intel_display(crtc_state); 2792 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2793 int width = drm_rect_width(&crtc_state->pipe_src); 2794 int height = drm_rect_height(&crtc_state->pipe_src); 2795 enum pipe pipe = crtc->pipe; 2796 2797 /* pipesrc controls the size that is scaled from, which should 2798 * always be the user's requested size. 2799 */ 2800 intel_de_write(display, PIPESRC(display, pipe), 2801 PIPESRC_WIDTH(width - 1) | PIPESRC_HEIGHT(height - 1)); 2802 } 2803 2804 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 2805 { 2806 struct intel_display *display = to_intel_display(crtc_state); 2807 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2808 2809 if (DISPLAY_VER(display) == 2) 2810 return false; 2811 2812 if (DISPLAY_VER(display) >= 9 || 2813 display->platform.broadwell || display->platform.haswell) 2814 return intel_de_read(display, 2815 TRANSCONF(display, cpu_transcoder)) & TRANSCONF_INTERLACE_MASK_HSW; 2816 else 2817 return intel_de_read(display, 2818 TRANSCONF(display, cpu_transcoder)) & TRANSCONF_INTERLACE_MASK; 2819 } 2820 2821 static void intel_get_transcoder_timings(struct intel_crtc *crtc, 2822 struct intel_crtc_state *pipe_config) 2823 { 2824 struct intel_display *display = to_intel_display(crtc); 2825 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 2826 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2827 u32 tmp; 2828 2829 tmp = intel_de_read(display, TRANS_HTOTAL(display, cpu_transcoder)); 2830 adjusted_mode->crtc_hdisplay = REG_FIELD_GET(HACTIVE_MASK, tmp) + 1; 2831 adjusted_mode->crtc_htotal = REG_FIELD_GET(HTOTAL_MASK, tmp) + 1; 2832 2833 if (!transcoder_is_dsi(cpu_transcoder)) { 2834 tmp = intel_de_read(display, 2835 TRANS_HBLANK(display, cpu_transcoder)); 2836 adjusted_mode->crtc_hblank_start = REG_FIELD_GET(HBLANK_START_MASK, tmp) + 1; 2837 adjusted_mode->crtc_hblank_end = REG_FIELD_GET(HBLANK_END_MASK, tmp) + 1; 2838 } 2839 2840 tmp = intel_de_read(display, TRANS_HSYNC(display, cpu_transcoder)); 2841 adjusted_mode->crtc_hsync_start = REG_FIELD_GET(HSYNC_START_MASK, tmp) + 1; 2842 adjusted_mode->crtc_hsync_end = REG_FIELD_GET(HSYNC_END_MASK, tmp) + 1; 2843 2844 tmp = intel_de_read(display, TRANS_VTOTAL(display, cpu_transcoder)); 2845 adjusted_mode->crtc_vdisplay = REG_FIELD_GET(VACTIVE_MASK, tmp) + 1; 2846 adjusted_mode->crtc_vtotal = REG_FIELD_GET(VTOTAL_MASK, tmp) + 1; 2847 2848 /* FIXME TGL+ DSI transcoders have this! */ 2849 if (!transcoder_is_dsi(cpu_transcoder)) { 2850 tmp = intel_de_read(display, 2851 TRANS_VBLANK(display, cpu_transcoder)); 2852 adjusted_mode->crtc_vblank_start = REG_FIELD_GET(VBLANK_START_MASK, tmp) + 1; 2853 adjusted_mode->crtc_vblank_end = REG_FIELD_GET(VBLANK_END_MASK, tmp) + 1; 2854 } 2855 tmp = intel_de_read(display, TRANS_VSYNC(display, cpu_transcoder)); 2856 adjusted_mode->crtc_vsync_start = REG_FIELD_GET(VSYNC_START_MASK, tmp) + 1; 2857 adjusted_mode->crtc_vsync_end = REG_FIELD_GET(VSYNC_END_MASK, tmp) + 1; 2858 2859 if (intel_pipe_is_interlaced(pipe_config)) { 2860 adjusted_mode->flags |= DRM_MODE_FLAG_INTERLACE; 2861 adjusted_mode->crtc_vtotal += 1; 2862 adjusted_mode->crtc_vblank_end += 1; 2863 } 2864 2865 if (DISPLAY_VER(display) >= 13 && !transcoder_is_dsi(cpu_transcoder)) 2866 adjusted_mode->crtc_vblank_start = 2867 adjusted_mode->crtc_vdisplay + 2868 intel_de_read(display, 2869 TRANS_SET_CONTEXT_LATENCY(display, cpu_transcoder)); 2870 } 2871 2872 static void intel_joiner_adjust_pipe_src(struct intel_crtc_state *crtc_state) 2873 { 2874 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2875 int num_pipes = intel_crtc_num_joined_pipes(crtc_state); 2876 enum pipe primary_pipe, pipe = crtc->pipe; 2877 int width; 2878 2879 if (num_pipes == 1) 2880 return; 2881 2882 primary_pipe = joiner_primary_pipe(crtc_state); 2883 width = drm_rect_width(&crtc_state->pipe_src); 2884 2885 drm_rect_translate_to(&crtc_state->pipe_src, 2886 (pipe - primary_pipe) * width, 0); 2887 } 2888 2889 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 2890 struct intel_crtc_state *pipe_config) 2891 { 2892 struct intel_display *display = to_intel_display(crtc); 2893 u32 tmp; 2894 2895 tmp = intel_de_read(display, PIPESRC(display, crtc->pipe)); 2896 2897 drm_rect_init(&pipe_config->pipe_src, 0, 0, 2898 REG_FIELD_GET(PIPESRC_WIDTH_MASK, tmp) + 1, 2899 REG_FIELD_GET(PIPESRC_HEIGHT_MASK, tmp) + 1); 2900 2901 intel_joiner_adjust_pipe_src(pipe_config); 2902 } 2903 2904 void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 2905 { 2906 struct intel_display *display = to_intel_display(crtc_state); 2907 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2908 u32 val = 0; 2909 2910 /* 2911 * - We keep both pipes enabled on 830 2912 * - During modeset the pipe is still disabled and must remain so 2913 * - During fastset the pipe is already enabled and must remain so 2914 */ 2915 if (display->platform.i830 || !intel_crtc_needs_modeset(crtc_state)) 2916 val |= TRANSCONF_ENABLE; 2917 2918 if (crtc_state->double_wide) 2919 val |= TRANSCONF_DOUBLE_WIDE; 2920 2921 /* only g4x and later have fancy bpc/dither controls */ 2922 if (display->platform.g4x || display->platform.valleyview || 2923 display->platform.cherryview) { 2924 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 2925 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 2926 val |= TRANSCONF_DITHER_EN | 2927 TRANSCONF_DITHER_TYPE_SP; 2928 2929 switch (crtc_state->pipe_bpp) { 2930 default: 2931 /* Case prevented by intel_choose_pipe_bpp_dither. */ 2932 MISSING_CASE(crtc_state->pipe_bpp); 2933 fallthrough; 2934 case 18: 2935 val |= TRANSCONF_BPC_6; 2936 break; 2937 case 24: 2938 val |= TRANSCONF_BPC_8; 2939 break; 2940 case 30: 2941 val |= TRANSCONF_BPC_10; 2942 break; 2943 } 2944 } 2945 2946 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 2947 if (DISPLAY_VER(display) < 4 || 2948 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 2949 val |= TRANSCONF_INTERLACE_W_FIELD_INDICATION; 2950 else 2951 val |= TRANSCONF_INTERLACE_W_SYNC_SHIFT; 2952 } else { 2953 val |= TRANSCONF_INTERLACE_PROGRESSIVE; 2954 } 2955 2956 if ((display->platform.valleyview || display->platform.cherryview) && 2957 crtc_state->limited_color_range) 2958 val |= TRANSCONF_COLOR_RANGE_SELECT; 2959 2960 val |= TRANSCONF_GAMMA_MODE(crtc_state->gamma_mode); 2961 2962 if (crtc_state->wgc_enable) 2963 val |= TRANSCONF_WGC_ENABLE; 2964 2965 val |= TRANSCONF_FRAME_START_DELAY(crtc_state->framestart_delay - 1); 2966 2967 intel_de_write(display, TRANSCONF(display, cpu_transcoder), val); 2968 intel_de_posting_read(display, TRANSCONF(display, cpu_transcoder)); 2969 } 2970 2971 static enum intel_output_format 2972 bdw_get_pipe_misc_output_format(struct intel_crtc *crtc) 2973 { 2974 struct intel_display *display = to_intel_display(crtc); 2975 u32 tmp; 2976 2977 tmp = intel_de_read(display, PIPE_MISC(crtc->pipe)); 2978 2979 if (tmp & PIPE_MISC_YUV420_ENABLE) { 2980 /* 2981 * We support 4:2:0 in full blend mode only. 2982 * For xe3_lpd+ this is implied in YUV420 Enable bit. 2983 * Ensure the same for prior platforms in YUV420 Mode bit. 2984 */ 2985 if (DISPLAY_VER(display) < 30) 2986 drm_WARN_ON(display->drm, 2987 (tmp & PIPE_MISC_YUV420_MODE_FULL_BLEND) == 0); 2988 2989 return INTEL_OUTPUT_FORMAT_YCBCR420; 2990 } else if (tmp & PIPE_MISC_OUTPUT_COLORSPACE_YUV) { 2991 return INTEL_OUTPUT_FORMAT_YCBCR444; 2992 } else { 2993 return INTEL_OUTPUT_FORMAT_RGB; 2994 } 2995 } 2996 2997 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 2998 struct intel_crtc_state *pipe_config) 2999 { 3000 struct intel_display *display = to_intel_display(crtc); 3001 enum intel_display_power_domain power_domain; 3002 enum transcoder cpu_transcoder = (enum transcoder)crtc->pipe; 3003 intel_wakeref_t wakeref; 3004 bool ret = false; 3005 u32 tmp; 3006 3007 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 3008 wakeref = intel_display_power_get_if_enabled(display, power_domain); 3009 if (!wakeref) 3010 return false; 3011 3012 tmp = intel_de_read(display, TRANSCONF(display, cpu_transcoder)); 3013 if (!(tmp & TRANSCONF_ENABLE)) 3014 goto out; 3015 3016 pipe_config->cpu_transcoder = cpu_transcoder; 3017 3018 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 3019 pipe_config->sink_format = pipe_config->output_format; 3020 3021 if (display->platform.g4x || display->platform.valleyview || 3022 display->platform.cherryview) { 3023 switch (tmp & TRANSCONF_BPC_MASK) { 3024 case TRANSCONF_BPC_6: 3025 pipe_config->pipe_bpp = 18; 3026 break; 3027 case TRANSCONF_BPC_8: 3028 pipe_config->pipe_bpp = 24; 3029 break; 3030 case TRANSCONF_BPC_10: 3031 pipe_config->pipe_bpp = 30; 3032 break; 3033 default: 3034 MISSING_CASE(tmp); 3035 break; 3036 } 3037 } 3038 3039 if ((display->platform.valleyview || display->platform.cherryview) && 3040 (tmp & TRANSCONF_COLOR_RANGE_SELECT)) 3041 pipe_config->limited_color_range = true; 3042 3043 pipe_config->gamma_mode = REG_FIELD_GET(TRANSCONF_GAMMA_MODE_MASK_I9XX, tmp); 3044 3045 pipe_config->framestart_delay = REG_FIELD_GET(TRANSCONF_FRAME_START_DELAY_MASK, tmp) + 1; 3046 3047 if ((display->platform.valleyview || display->platform.cherryview) && 3048 (tmp & TRANSCONF_WGC_ENABLE)) 3049 pipe_config->wgc_enable = true; 3050 3051 intel_color_get_config(pipe_config); 3052 3053 if (HAS_DOUBLE_WIDE(display)) 3054 pipe_config->double_wide = tmp & TRANSCONF_DOUBLE_WIDE; 3055 3056 intel_get_transcoder_timings(crtc, pipe_config); 3057 intel_get_pipe_src_size(crtc, pipe_config); 3058 3059 i9xx_pfit_get_config(pipe_config); 3060 3061 i9xx_dpll_get_hw_state(crtc, &pipe_config->dpll_hw_state); 3062 3063 if (DISPLAY_VER(display) >= 4) { 3064 tmp = pipe_config->dpll_hw_state.i9xx.dpll_md; 3065 pipe_config->pixel_multiplier = 3066 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 3067 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 3068 } else if (display->platform.i945g || display->platform.i945gm || 3069 display->platform.g33 || display->platform.pineview) { 3070 tmp = pipe_config->dpll_hw_state.i9xx.dpll; 3071 pipe_config->pixel_multiplier = 3072 ((tmp & SDVO_MULTIPLIER_MASK) 3073 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 3074 } else { 3075 /* Note that on i915G/GM the pixel multiplier is in the sdvo 3076 * port and will be fixed up in the encoder->get_config 3077 * function. */ 3078 pipe_config->pixel_multiplier = 1; 3079 } 3080 3081 if (display->platform.cherryview) 3082 chv_crtc_clock_get(pipe_config); 3083 else if (display->platform.valleyview) 3084 vlv_crtc_clock_get(pipe_config); 3085 else 3086 i9xx_crtc_clock_get(pipe_config); 3087 3088 /* 3089 * Normally the dotclock is filled in by the encoder .get_config() 3090 * but in case the pipe is enabled w/o any ports we need a sane 3091 * default. 3092 */ 3093 pipe_config->hw.adjusted_mode.crtc_clock = 3094 pipe_config->port_clock / pipe_config->pixel_multiplier; 3095 3096 ret = true; 3097 3098 out: 3099 intel_display_power_put(display, power_domain, wakeref); 3100 3101 return ret; 3102 } 3103 3104 void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 3105 { 3106 struct intel_display *display = to_intel_display(crtc_state); 3107 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 3108 u32 val = 0; 3109 3110 /* 3111 * - During modeset the pipe is still disabled and must remain so 3112 * - During fastset the pipe is already enabled and must remain so 3113 */ 3114 if (!intel_crtc_needs_modeset(crtc_state)) 3115 val |= TRANSCONF_ENABLE; 3116 3117 switch (crtc_state->pipe_bpp) { 3118 default: 3119 /* Case prevented by intel_choose_pipe_bpp_dither. */ 3120 MISSING_CASE(crtc_state->pipe_bpp); 3121 fallthrough; 3122 case 18: 3123 val |= TRANSCONF_BPC_6; 3124 break; 3125 case 24: 3126 val |= TRANSCONF_BPC_8; 3127 break; 3128 case 30: 3129 val |= TRANSCONF_BPC_10; 3130 break; 3131 case 36: 3132 val |= TRANSCONF_BPC_12; 3133 break; 3134 } 3135 3136 if (crtc_state->dither) 3137 val |= TRANSCONF_DITHER_EN | TRANSCONF_DITHER_TYPE_SP; 3138 3139 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 3140 val |= TRANSCONF_INTERLACE_IF_ID_ILK; 3141 else 3142 val |= TRANSCONF_INTERLACE_PF_PD_ILK; 3143 3144 /* 3145 * This would end up with an odd purple hue over 3146 * the entire display. Make sure we don't do it. 3147 */ 3148 drm_WARN_ON(display->drm, crtc_state->limited_color_range && 3149 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 3150 3151 if (crtc_state->limited_color_range && 3152 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 3153 val |= TRANSCONF_COLOR_RANGE_SELECT; 3154 3155 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 3156 val |= TRANSCONF_OUTPUT_COLORSPACE_YUV709; 3157 3158 val |= TRANSCONF_GAMMA_MODE(crtc_state->gamma_mode); 3159 3160 val |= TRANSCONF_FRAME_START_DELAY(crtc_state->framestart_delay - 1); 3161 val |= TRANSCONF_MSA_TIMING_DELAY(crtc_state->msa_timing_delay); 3162 3163 intel_de_write(display, TRANSCONF(display, cpu_transcoder), val); 3164 intel_de_posting_read(display, TRANSCONF(display, cpu_transcoder)); 3165 } 3166 3167 static void hsw_set_transconf(const struct intel_crtc_state *crtc_state) 3168 { 3169 struct intel_display *display = to_intel_display(crtc_state); 3170 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 3171 u32 val = 0; 3172 3173 /* 3174 * - During modeset the pipe is still disabled and must remain so 3175 * - During fastset the pipe is already enabled and must remain so 3176 */ 3177 if (!intel_crtc_needs_modeset(crtc_state)) 3178 val |= TRANSCONF_ENABLE; 3179 3180 if (display->platform.haswell && crtc_state->dither) 3181 val |= TRANSCONF_DITHER_EN | TRANSCONF_DITHER_TYPE_SP; 3182 3183 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 3184 val |= TRANSCONF_INTERLACE_IF_ID_ILK; 3185 else 3186 val |= TRANSCONF_INTERLACE_PF_PD_ILK; 3187 3188 if (display->platform.haswell && 3189 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 3190 val |= TRANSCONF_OUTPUT_COLORSPACE_YUV_HSW; 3191 3192 intel_de_write(display, TRANSCONF(display, cpu_transcoder), val); 3193 intel_de_posting_read(display, TRANSCONF(display, cpu_transcoder)); 3194 } 3195 3196 static void bdw_set_pipe_misc(struct intel_dsb *dsb, 3197 const struct intel_crtc_state *crtc_state) 3198 { 3199 struct intel_display *display = to_intel_display(crtc_state); 3200 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3201 u32 val = 0; 3202 3203 switch (crtc_state->pipe_bpp) { 3204 case 18: 3205 val |= PIPE_MISC_BPC_6; 3206 break; 3207 case 24: 3208 val |= PIPE_MISC_BPC_8; 3209 break; 3210 case 30: 3211 val |= PIPE_MISC_BPC_10; 3212 break; 3213 case 36: 3214 /* Port output 12BPC defined for ADLP+ */ 3215 if (DISPLAY_VER(display) >= 13) 3216 val |= PIPE_MISC_BPC_12_ADLP; 3217 break; 3218 default: 3219 MISSING_CASE(crtc_state->pipe_bpp); 3220 break; 3221 } 3222 3223 if (crtc_state->dither) 3224 val |= PIPE_MISC_DITHER_ENABLE | PIPE_MISC_DITHER_TYPE_SP; 3225 3226 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 3227 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 3228 val |= PIPE_MISC_OUTPUT_COLORSPACE_YUV; 3229 3230 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 3231 val |= DISPLAY_VER(display) >= 30 ? PIPE_MISC_YUV420_ENABLE : 3232 PIPE_MISC_YUV420_ENABLE | PIPE_MISC_YUV420_MODE_FULL_BLEND; 3233 3234 if (DISPLAY_VER(display) >= 11 && is_hdr_mode(crtc_state)) 3235 val |= PIPE_MISC_HDR_MODE_PRECISION; 3236 3237 if (DISPLAY_VER(display) >= 12) 3238 val |= PIPE_MISC_PIXEL_ROUNDING_TRUNC; 3239 3240 /* allow PSR with sprite enabled */ 3241 if (display->platform.broadwell) 3242 val |= PIPE_MISC_PSR_MASK_SPRITE_ENABLE; 3243 3244 intel_de_write_dsb(display, dsb, PIPE_MISC(crtc->pipe), val); 3245 } 3246 3247 int bdw_get_pipe_misc_bpp(struct intel_crtc *crtc) 3248 { 3249 struct intel_display *display = to_intel_display(crtc); 3250 u32 tmp; 3251 3252 tmp = intel_de_read(display, PIPE_MISC(crtc->pipe)); 3253 3254 switch (tmp & PIPE_MISC_BPC_MASK) { 3255 case PIPE_MISC_BPC_6: 3256 return 18; 3257 case PIPE_MISC_BPC_8: 3258 return 24; 3259 case PIPE_MISC_BPC_10: 3260 return 30; 3261 /* 3262 * PORT OUTPUT 12 BPC defined for ADLP+. 3263 * 3264 * TODO: 3265 * For previous platforms with DSI interface, bits 5:7 3266 * are used for storing pipe_bpp irrespective of dithering. 3267 * Since the value of 12 BPC is not defined for these bits 3268 * on older platforms, need to find a workaround for 12 BPC 3269 * MIPI DSI HW readout. 3270 */ 3271 case PIPE_MISC_BPC_12_ADLP: 3272 if (DISPLAY_VER(display) >= 13) 3273 return 36; 3274 fallthrough; 3275 default: 3276 MISSING_CASE(tmp); 3277 return 0; 3278 } 3279 } 3280 3281 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 3282 { 3283 /* 3284 * Account for spread spectrum to avoid 3285 * oversubscribing the link. Max center spread 3286 * is 2.5%; use 5% for safety's sake. 3287 */ 3288 u32 bps = target_clock * bpp * 21 / 20; 3289 return DIV_ROUND_UP(bps, link_bw * 8); 3290 } 3291 3292 void intel_get_m_n(struct intel_display *display, 3293 struct intel_link_m_n *m_n, 3294 i915_reg_t data_m_reg, i915_reg_t data_n_reg, 3295 i915_reg_t link_m_reg, i915_reg_t link_n_reg) 3296 { 3297 m_n->link_m = intel_de_read(display, link_m_reg) & DATA_LINK_M_N_MASK; 3298 m_n->link_n = intel_de_read(display, link_n_reg) & DATA_LINK_M_N_MASK; 3299 m_n->data_m = intel_de_read(display, data_m_reg) & DATA_LINK_M_N_MASK; 3300 m_n->data_n = intel_de_read(display, data_n_reg) & DATA_LINK_M_N_MASK; 3301 m_n->tu = REG_FIELD_GET(TU_SIZE_MASK, intel_de_read(display, data_m_reg)) + 1; 3302 } 3303 3304 void intel_cpu_transcoder_get_m1_n1(struct intel_crtc *crtc, 3305 enum transcoder transcoder, 3306 struct intel_link_m_n *m_n) 3307 { 3308 struct intel_display *display = to_intel_display(crtc); 3309 enum pipe pipe = crtc->pipe; 3310 3311 if (DISPLAY_VER(display) >= 5) 3312 intel_get_m_n(display, m_n, 3313 PIPE_DATA_M1(display, transcoder), 3314 PIPE_DATA_N1(display, transcoder), 3315 PIPE_LINK_M1(display, transcoder), 3316 PIPE_LINK_N1(display, transcoder)); 3317 else 3318 intel_get_m_n(display, m_n, 3319 PIPE_DATA_M_G4X(pipe), PIPE_DATA_N_G4X(pipe), 3320 PIPE_LINK_M_G4X(pipe), PIPE_LINK_N_G4X(pipe)); 3321 } 3322 3323 void intel_cpu_transcoder_get_m2_n2(struct intel_crtc *crtc, 3324 enum transcoder transcoder, 3325 struct intel_link_m_n *m_n) 3326 { 3327 struct intel_display *display = to_intel_display(crtc); 3328 3329 if (!intel_cpu_transcoder_has_m2_n2(display, transcoder)) 3330 return; 3331 3332 intel_get_m_n(display, m_n, 3333 PIPE_DATA_M2(display, transcoder), 3334 PIPE_DATA_N2(display, transcoder), 3335 PIPE_LINK_M2(display, transcoder), 3336 PIPE_LINK_N2(display, transcoder)); 3337 } 3338 3339 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 3340 struct intel_crtc_state *pipe_config) 3341 { 3342 struct intel_display *display = to_intel_display(crtc); 3343 enum intel_display_power_domain power_domain; 3344 enum transcoder cpu_transcoder = (enum transcoder)crtc->pipe; 3345 intel_wakeref_t wakeref; 3346 bool ret = false; 3347 u32 tmp; 3348 3349 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 3350 wakeref = intel_display_power_get_if_enabled(display, power_domain); 3351 if (!wakeref) 3352 return false; 3353 3354 tmp = intel_de_read(display, TRANSCONF(display, cpu_transcoder)); 3355 if (!(tmp & TRANSCONF_ENABLE)) 3356 goto out; 3357 3358 pipe_config->cpu_transcoder = cpu_transcoder; 3359 3360 switch (tmp & TRANSCONF_BPC_MASK) { 3361 case TRANSCONF_BPC_6: 3362 pipe_config->pipe_bpp = 18; 3363 break; 3364 case TRANSCONF_BPC_8: 3365 pipe_config->pipe_bpp = 24; 3366 break; 3367 case TRANSCONF_BPC_10: 3368 pipe_config->pipe_bpp = 30; 3369 break; 3370 case TRANSCONF_BPC_12: 3371 pipe_config->pipe_bpp = 36; 3372 break; 3373 default: 3374 break; 3375 } 3376 3377 if (tmp & TRANSCONF_COLOR_RANGE_SELECT) 3378 pipe_config->limited_color_range = true; 3379 3380 switch (tmp & TRANSCONF_OUTPUT_COLORSPACE_MASK) { 3381 case TRANSCONF_OUTPUT_COLORSPACE_YUV601: 3382 case TRANSCONF_OUTPUT_COLORSPACE_YUV709: 3383 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 3384 break; 3385 default: 3386 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 3387 break; 3388 } 3389 3390 pipe_config->sink_format = pipe_config->output_format; 3391 3392 pipe_config->gamma_mode = REG_FIELD_GET(TRANSCONF_GAMMA_MODE_MASK_ILK, tmp); 3393 3394 pipe_config->framestart_delay = REG_FIELD_GET(TRANSCONF_FRAME_START_DELAY_MASK, tmp) + 1; 3395 3396 pipe_config->msa_timing_delay = REG_FIELD_GET(TRANSCONF_MSA_TIMING_DELAY_MASK, tmp); 3397 3398 intel_color_get_config(pipe_config); 3399 3400 pipe_config->pixel_multiplier = 1; 3401 3402 ilk_pch_get_config(pipe_config); 3403 3404 intel_get_transcoder_timings(crtc, pipe_config); 3405 intel_get_pipe_src_size(crtc, pipe_config); 3406 3407 ilk_pfit_get_config(pipe_config); 3408 3409 ret = true; 3410 3411 out: 3412 intel_display_power_put(display, power_domain, wakeref); 3413 3414 return ret; 3415 } 3416 3417 static u8 joiner_pipes(struct intel_display *display) 3418 { 3419 u8 pipes; 3420 3421 if (DISPLAY_VER(display) >= 12) 3422 pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D); 3423 else if (DISPLAY_VER(display) >= 11) 3424 pipes = BIT(PIPE_B) | BIT(PIPE_C); 3425 else 3426 pipes = 0; 3427 3428 return pipes & DISPLAY_RUNTIME_INFO(display)->pipe_mask; 3429 } 3430 3431 static bool transcoder_ddi_func_is_enabled(struct intel_display *display, 3432 enum transcoder cpu_transcoder) 3433 { 3434 enum intel_display_power_domain power_domain; 3435 intel_wakeref_t wakeref; 3436 u32 tmp = 0; 3437 3438 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 3439 3440 with_intel_display_power_if_enabled(display, power_domain, wakeref) 3441 tmp = intel_de_read(display, 3442 TRANS_DDI_FUNC_CTL(display, cpu_transcoder)); 3443 3444 return tmp & TRANS_DDI_FUNC_ENABLE; 3445 } 3446 3447 static void enabled_uncompressed_joiner_pipes(struct intel_display *display, 3448 u8 *primary_pipes, u8 *secondary_pipes) 3449 { 3450 struct intel_crtc *crtc; 3451 3452 *primary_pipes = 0; 3453 *secondary_pipes = 0; 3454 3455 if (!HAS_UNCOMPRESSED_JOINER(display)) 3456 return; 3457 3458 for_each_intel_crtc_in_pipe_mask(display->drm, crtc, 3459 joiner_pipes(display)) { 3460 enum intel_display_power_domain power_domain; 3461 enum pipe pipe = crtc->pipe; 3462 intel_wakeref_t wakeref; 3463 3464 power_domain = POWER_DOMAIN_PIPE(pipe); 3465 with_intel_display_power_if_enabled(display, power_domain, wakeref) { 3466 u32 tmp = intel_de_read(display, ICL_PIPE_DSS_CTL1(pipe)); 3467 3468 if (tmp & UNCOMPRESSED_JOINER_PRIMARY) 3469 *primary_pipes |= BIT(pipe); 3470 if (tmp & UNCOMPRESSED_JOINER_SECONDARY) 3471 *secondary_pipes |= BIT(pipe); 3472 } 3473 } 3474 } 3475 3476 static void enabled_bigjoiner_pipes(struct intel_display *display, 3477 u8 *primary_pipes, u8 *secondary_pipes) 3478 { 3479 struct intel_crtc *crtc; 3480 3481 *primary_pipes = 0; 3482 *secondary_pipes = 0; 3483 3484 if (!HAS_BIGJOINER(display)) 3485 return; 3486 3487 for_each_intel_crtc_in_pipe_mask(display->drm, crtc, 3488 joiner_pipes(display)) { 3489 enum intel_display_power_domain power_domain; 3490 enum pipe pipe = crtc->pipe; 3491 intel_wakeref_t wakeref; 3492 3493 power_domain = intel_dsc_power_domain(crtc, (enum transcoder)pipe); 3494 with_intel_display_power_if_enabled(display, power_domain, wakeref) { 3495 u32 tmp = intel_de_read(display, ICL_PIPE_DSS_CTL1(pipe)); 3496 3497 if (!(tmp & BIG_JOINER_ENABLE)) 3498 continue; 3499 3500 if (tmp & PRIMARY_BIG_JOINER_ENABLE) 3501 *primary_pipes |= BIT(pipe); 3502 else 3503 *secondary_pipes |= BIT(pipe); 3504 } 3505 } 3506 } 3507 3508 static u8 expected_secondary_pipes(u8 primary_pipes, int num_pipes) 3509 { 3510 u8 secondary_pipes = 0; 3511 3512 for (int i = 1; i < num_pipes; i++) 3513 secondary_pipes |= primary_pipes << i; 3514 3515 return secondary_pipes; 3516 } 3517 3518 static u8 expected_uncompressed_joiner_secondary_pipes(u8 uncompjoiner_primary_pipes) 3519 { 3520 return expected_secondary_pipes(uncompjoiner_primary_pipes, 2); 3521 } 3522 3523 static u8 expected_bigjoiner_secondary_pipes(u8 bigjoiner_primary_pipes) 3524 { 3525 return expected_secondary_pipes(bigjoiner_primary_pipes, 2); 3526 } 3527 3528 static u8 get_joiner_primary_pipe(enum pipe pipe, u8 primary_pipes) 3529 { 3530 primary_pipes &= GENMASK(pipe, 0); 3531 3532 return primary_pipes ? BIT(fls(primary_pipes) - 1) : 0; 3533 } 3534 3535 static u8 expected_ultrajoiner_secondary_pipes(u8 ultrajoiner_primary_pipes) 3536 { 3537 return expected_secondary_pipes(ultrajoiner_primary_pipes, 4); 3538 } 3539 3540 static u8 fixup_ultrajoiner_secondary_pipes(u8 ultrajoiner_primary_pipes, 3541 u8 ultrajoiner_secondary_pipes) 3542 { 3543 return ultrajoiner_secondary_pipes | ultrajoiner_primary_pipes << 3; 3544 } 3545 3546 static void enabled_ultrajoiner_pipes(struct intel_display *display, 3547 u8 *primary_pipes, u8 *secondary_pipes) 3548 { 3549 struct intel_crtc *crtc; 3550 3551 *primary_pipes = 0; 3552 *secondary_pipes = 0; 3553 3554 if (!HAS_ULTRAJOINER(display)) 3555 return; 3556 3557 for_each_intel_crtc_in_pipe_mask(display->drm, crtc, 3558 joiner_pipes(display)) { 3559 enum intel_display_power_domain power_domain; 3560 enum pipe pipe = crtc->pipe; 3561 intel_wakeref_t wakeref; 3562 3563 power_domain = intel_dsc_power_domain(crtc, (enum transcoder)pipe); 3564 with_intel_display_power_if_enabled(display, power_domain, wakeref) { 3565 u32 tmp = intel_de_read(display, ICL_PIPE_DSS_CTL1(pipe)); 3566 3567 if (!(tmp & ULTRA_JOINER_ENABLE)) 3568 continue; 3569 3570 if (tmp & PRIMARY_ULTRA_JOINER_ENABLE) 3571 *primary_pipes |= BIT(pipe); 3572 else 3573 *secondary_pipes |= BIT(pipe); 3574 } 3575 } 3576 } 3577 3578 static void enabled_joiner_pipes(struct intel_display *display, 3579 enum pipe pipe, 3580 u8 *primary_pipe, u8 *secondary_pipes) 3581 { 3582 u8 primary_ultrajoiner_pipes; 3583 u8 primary_uncompressed_joiner_pipes, primary_bigjoiner_pipes; 3584 u8 secondary_ultrajoiner_pipes; 3585 u8 secondary_uncompressed_joiner_pipes, secondary_bigjoiner_pipes; 3586 u8 ultrajoiner_pipes; 3587 u8 uncompressed_joiner_pipes, bigjoiner_pipes; 3588 3589 enabled_ultrajoiner_pipes(display, &primary_ultrajoiner_pipes, 3590 &secondary_ultrajoiner_pipes); 3591 /* 3592 * For some strange reason the last pipe in the set of four 3593 * shouldn't have ultrajoiner enable bit set in hardware. 3594 * Set the bit anyway to make life easier. 3595 */ 3596 drm_WARN_ON(display->drm, 3597 expected_secondary_pipes(primary_ultrajoiner_pipes, 3) != 3598 secondary_ultrajoiner_pipes); 3599 secondary_ultrajoiner_pipes = 3600 fixup_ultrajoiner_secondary_pipes(primary_ultrajoiner_pipes, 3601 secondary_ultrajoiner_pipes); 3602 3603 drm_WARN_ON(display->drm, (primary_ultrajoiner_pipes & secondary_ultrajoiner_pipes) != 0); 3604 3605 enabled_uncompressed_joiner_pipes(display, &primary_uncompressed_joiner_pipes, 3606 &secondary_uncompressed_joiner_pipes); 3607 3608 drm_WARN_ON(display->drm, 3609 (primary_uncompressed_joiner_pipes & secondary_uncompressed_joiner_pipes) != 0); 3610 3611 enabled_bigjoiner_pipes(display, &primary_bigjoiner_pipes, 3612 &secondary_bigjoiner_pipes); 3613 3614 drm_WARN_ON(display->drm, 3615 (primary_bigjoiner_pipes & secondary_bigjoiner_pipes) != 0); 3616 3617 ultrajoiner_pipes = primary_ultrajoiner_pipes | secondary_ultrajoiner_pipes; 3618 uncompressed_joiner_pipes = primary_uncompressed_joiner_pipes | 3619 secondary_uncompressed_joiner_pipes; 3620 bigjoiner_pipes = primary_bigjoiner_pipes | secondary_bigjoiner_pipes; 3621 3622 drm_WARN(display->drm, (ultrajoiner_pipes & bigjoiner_pipes) != ultrajoiner_pipes, 3623 "Ultrajoiner pipes(%#x) should be bigjoiner pipes(%#x)\n", 3624 ultrajoiner_pipes, bigjoiner_pipes); 3625 3626 drm_WARN(display->drm, secondary_ultrajoiner_pipes != 3627 expected_ultrajoiner_secondary_pipes(primary_ultrajoiner_pipes), 3628 "Wrong secondary ultrajoiner pipes(expected %#x, current %#x)\n", 3629 expected_ultrajoiner_secondary_pipes(primary_ultrajoiner_pipes), 3630 secondary_ultrajoiner_pipes); 3631 3632 drm_WARN(display->drm, (uncompressed_joiner_pipes & bigjoiner_pipes) != 0, 3633 "Uncompressed joiner pipes(%#x) and bigjoiner pipes(%#x) can't intersect\n", 3634 uncompressed_joiner_pipes, bigjoiner_pipes); 3635 3636 drm_WARN(display->drm, secondary_bigjoiner_pipes != 3637 expected_bigjoiner_secondary_pipes(primary_bigjoiner_pipes), 3638 "Wrong secondary bigjoiner pipes(expected %#x, current %#x)\n", 3639 expected_bigjoiner_secondary_pipes(primary_bigjoiner_pipes), 3640 secondary_bigjoiner_pipes); 3641 3642 drm_WARN(display->drm, secondary_uncompressed_joiner_pipes != 3643 expected_uncompressed_joiner_secondary_pipes(primary_uncompressed_joiner_pipes), 3644 "Wrong secondary uncompressed joiner pipes(expected %#x, current %#x)\n", 3645 expected_uncompressed_joiner_secondary_pipes(primary_uncompressed_joiner_pipes), 3646 secondary_uncompressed_joiner_pipes); 3647 3648 *primary_pipe = 0; 3649 *secondary_pipes = 0; 3650 3651 if (ultrajoiner_pipes & BIT(pipe)) { 3652 *primary_pipe = get_joiner_primary_pipe(pipe, primary_ultrajoiner_pipes); 3653 *secondary_pipes = secondary_ultrajoiner_pipes & 3654 expected_ultrajoiner_secondary_pipes(*primary_pipe); 3655 3656 drm_WARN(display->drm, 3657 expected_ultrajoiner_secondary_pipes(*primary_pipe) != 3658 *secondary_pipes, 3659 "Wrong ultrajoiner secondary pipes for primary_pipe %#x (expected %#x, current %#x)\n", 3660 *primary_pipe, 3661 expected_ultrajoiner_secondary_pipes(*primary_pipe), 3662 *secondary_pipes); 3663 return; 3664 } 3665 3666 if (uncompressed_joiner_pipes & BIT(pipe)) { 3667 *primary_pipe = get_joiner_primary_pipe(pipe, primary_uncompressed_joiner_pipes); 3668 *secondary_pipes = secondary_uncompressed_joiner_pipes & 3669 expected_uncompressed_joiner_secondary_pipes(*primary_pipe); 3670 3671 drm_WARN(display->drm, 3672 expected_uncompressed_joiner_secondary_pipes(*primary_pipe) != 3673 *secondary_pipes, 3674 "Wrong uncompressed joiner secondary pipes for primary_pipe %#x (expected %#x, current %#x)\n", 3675 *primary_pipe, 3676 expected_uncompressed_joiner_secondary_pipes(*primary_pipe), 3677 *secondary_pipes); 3678 return; 3679 } 3680 3681 if (bigjoiner_pipes & BIT(pipe)) { 3682 *primary_pipe = get_joiner_primary_pipe(pipe, primary_bigjoiner_pipes); 3683 *secondary_pipes = secondary_bigjoiner_pipes & 3684 expected_bigjoiner_secondary_pipes(*primary_pipe); 3685 3686 drm_WARN(display->drm, 3687 expected_bigjoiner_secondary_pipes(*primary_pipe) != 3688 *secondary_pipes, 3689 "Wrong bigjoiner secondary pipes for primary_pipe %#x (expected %#x, current %#x)\n", 3690 *primary_pipe, 3691 expected_bigjoiner_secondary_pipes(*primary_pipe), 3692 *secondary_pipes); 3693 return; 3694 } 3695 } 3696 3697 static u8 hsw_panel_transcoders(struct intel_display *display) 3698 { 3699 u8 panel_transcoder_mask = BIT(TRANSCODER_EDP); 3700 3701 if (DISPLAY_VER(display) >= 11) 3702 panel_transcoder_mask |= BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 3703 3704 return panel_transcoder_mask; 3705 } 3706 3707 static u8 hsw_enabled_transcoders(struct intel_crtc *crtc) 3708 { 3709 struct intel_display *display = to_intel_display(crtc); 3710 u8 panel_transcoder_mask = hsw_panel_transcoders(display); 3711 enum transcoder cpu_transcoder; 3712 u8 primary_pipe, secondary_pipes; 3713 u8 enabled_transcoders = 0; 3714 3715 /* 3716 * XXX: Do intel_display_power_get_if_enabled before reading this (for 3717 * consistency and less surprising code; it's in always on power). 3718 */ 3719 for_each_cpu_transcoder_masked(display, cpu_transcoder, 3720 panel_transcoder_mask) { 3721 enum intel_display_power_domain power_domain; 3722 intel_wakeref_t wakeref; 3723 enum pipe trans_pipe; 3724 u32 tmp = 0; 3725 3726 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 3727 with_intel_display_power_if_enabled(display, power_domain, wakeref) 3728 tmp = intel_de_read(display, 3729 TRANS_DDI_FUNC_CTL(display, cpu_transcoder)); 3730 3731 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 3732 continue; 3733 3734 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 3735 default: 3736 drm_WARN(display->drm, 1, 3737 "unknown pipe linked to transcoder %s\n", 3738 transcoder_name(cpu_transcoder)); 3739 fallthrough; 3740 case TRANS_DDI_EDP_INPUT_A_ONOFF: 3741 case TRANS_DDI_EDP_INPUT_A_ON: 3742 trans_pipe = PIPE_A; 3743 break; 3744 case TRANS_DDI_EDP_INPUT_B_ONOFF: 3745 trans_pipe = PIPE_B; 3746 break; 3747 case TRANS_DDI_EDP_INPUT_C_ONOFF: 3748 trans_pipe = PIPE_C; 3749 break; 3750 case TRANS_DDI_EDP_INPUT_D_ONOFF: 3751 trans_pipe = PIPE_D; 3752 break; 3753 } 3754 3755 if (trans_pipe == crtc->pipe) 3756 enabled_transcoders |= BIT(cpu_transcoder); 3757 } 3758 3759 /* single pipe or joiner primary */ 3760 cpu_transcoder = (enum transcoder) crtc->pipe; 3761 if (transcoder_ddi_func_is_enabled(display, cpu_transcoder)) 3762 enabled_transcoders |= BIT(cpu_transcoder); 3763 3764 /* joiner secondary -> consider the primary pipe's transcoder as well */ 3765 enabled_joiner_pipes(display, crtc->pipe, &primary_pipe, &secondary_pipes); 3766 if (secondary_pipes & BIT(crtc->pipe)) { 3767 cpu_transcoder = (enum transcoder)ffs(primary_pipe) - 1; 3768 if (transcoder_ddi_func_is_enabled(display, cpu_transcoder)) 3769 enabled_transcoders |= BIT(cpu_transcoder); 3770 } 3771 3772 return enabled_transcoders; 3773 } 3774 3775 static bool has_edp_transcoders(u8 enabled_transcoders) 3776 { 3777 return enabled_transcoders & BIT(TRANSCODER_EDP); 3778 } 3779 3780 static bool has_dsi_transcoders(u8 enabled_transcoders) 3781 { 3782 return enabled_transcoders & (BIT(TRANSCODER_DSI_0) | 3783 BIT(TRANSCODER_DSI_1)); 3784 } 3785 3786 static bool has_pipe_transcoders(u8 enabled_transcoders) 3787 { 3788 return enabled_transcoders & ~(BIT(TRANSCODER_EDP) | 3789 BIT(TRANSCODER_DSI_0) | 3790 BIT(TRANSCODER_DSI_1)); 3791 } 3792 3793 static void assert_enabled_transcoders(struct intel_display *display, 3794 u8 enabled_transcoders) 3795 { 3796 /* Only one type of transcoder please */ 3797 drm_WARN_ON(display->drm, 3798 has_edp_transcoders(enabled_transcoders) + 3799 has_dsi_transcoders(enabled_transcoders) + 3800 has_pipe_transcoders(enabled_transcoders) > 1); 3801 3802 /* Only DSI transcoders can be ganged */ 3803 drm_WARN_ON(display->drm, 3804 !has_dsi_transcoders(enabled_transcoders) && 3805 !is_power_of_2(enabled_transcoders)); 3806 } 3807 3808 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 3809 struct intel_crtc_state *pipe_config, 3810 struct intel_display_power_domain_set *power_domain_set) 3811 { 3812 struct intel_display *display = to_intel_display(crtc); 3813 unsigned long enabled_transcoders; 3814 u32 tmp; 3815 3816 enabled_transcoders = hsw_enabled_transcoders(crtc); 3817 if (!enabled_transcoders) 3818 return false; 3819 3820 assert_enabled_transcoders(display, enabled_transcoders); 3821 3822 /* 3823 * With the exception of DSI we should only ever have 3824 * a single enabled transcoder. With DSI let's just 3825 * pick the first one. 3826 */ 3827 pipe_config->cpu_transcoder = ffs(enabled_transcoders) - 1; 3828 3829 if (!intel_display_power_get_in_set_if_enabled(display, power_domain_set, 3830 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) 3831 return false; 3832 3833 if (hsw_panel_transcoders(display) & BIT(pipe_config->cpu_transcoder)) { 3834 tmp = intel_de_read(display, 3835 TRANS_DDI_FUNC_CTL(display, pipe_config->cpu_transcoder)); 3836 3837 if ((tmp & TRANS_DDI_EDP_INPUT_MASK) == TRANS_DDI_EDP_INPUT_A_ONOFF) 3838 pipe_config->pch_pfit.force_thru = true; 3839 } 3840 3841 tmp = intel_de_read(display, 3842 TRANSCONF(display, pipe_config->cpu_transcoder)); 3843 3844 return tmp & TRANSCONF_ENABLE; 3845 } 3846 3847 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 3848 struct intel_crtc_state *pipe_config, 3849 struct intel_display_power_domain_set *power_domain_set) 3850 { 3851 struct intel_display *display = to_intel_display(crtc); 3852 enum transcoder cpu_transcoder; 3853 enum port port; 3854 u32 tmp; 3855 3856 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 3857 if (port == PORT_A) 3858 cpu_transcoder = TRANSCODER_DSI_A; 3859 else 3860 cpu_transcoder = TRANSCODER_DSI_C; 3861 3862 if (!intel_display_power_get_in_set_if_enabled(display, power_domain_set, 3863 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) 3864 continue; 3865 3866 /* 3867 * The PLL needs to be enabled with a valid divider 3868 * configuration, otherwise accessing DSI registers will hang 3869 * the machine. See BSpec North Display Engine 3870 * registers/MIPI[BXT]. We can break out here early, since we 3871 * need the same DSI PLL to be enabled for both DSI ports. 3872 */ 3873 if (!bxt_dsi_pll_is_enabled(display)) 3874 break; 3875 3876 /* XXX: this works for video mode only */ 3877 tmp = intel_de_read(display, BXT_MIPI_PORT_CTRL(port)); 3878 if (!(tmp & DPI_ENABLE)) 3879 continue; 3880 3881 tmp = intel_de_read(display, MIPI_CTRL(display, port)); 3882 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 3883 continue; 3884 3885 pipe_config->cpu_transcoder = cpu_transcoder; 3886 break; 3887 } 3888 3889 return transcoder_is_dsi(pipe_config->cpu_transcoder); 3890 } 3891 3892 static void intel_joiner_get_config(struct intel_crtc_state *crtc_state) 3893 { 3894 struct intel_display *display = to_intel_display(crtc_state); 3895 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3896 u8 primary_pipe, secondary_pipes; 3897 enum pipe pipe = crtc->pipe; 3898 3899 enabled_joiner_pipes(display, pipe, &primary_pipe, &secondary_pipes); 3900 3901 if (((primary_pipe | secondary_pipes) & BIT(pipe)) == 0) 3902 return; 3903 3904 crtc_state->joiner_pipes = primary_pipe | secondary_pipes; 3905 } 3906 3907 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 3908 struct intel_crtc_state *pipe_config) 3909 { 3910 struct intel_display *display = to_intel_display(crtc); 3911 bool active; 3912 u32 tmp; 3913 3914 if (!intel_display_power_get_in_set_if_enabled(display, &crtc->hw_readout_power_domains, 3915 POWER_DOMAIN_PIPE(crtc->pipe))) 3916 return false; 3917 3918 active = hsw_get_transcoder_state(crtc, pipe_config, &crtc->hw_readout_power_domains); 3919 3920 if ((display->platform.geminilake || display->platform.broxton) && 3921 bxt_get_dsi_transcoder_state(crtc, pipe_config, &crtc->hw_readout_power_domains)) { 3922 drm_WARN_ON(display->drm, active); 3923 active = true; 3924 } 3925 3926 if (!active) 3927 goto out; 3928 3929 intel_joiner_get_config(pipe_config); 3930 intel_dsc_get_config(pipe_config); 3931 3932 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 3933 DISPLAY_VER(display) >= 11) 3934 intel_get_transcoder_timings(crtc, pipe_config); 3935 3936 if (transcoder_has_vrr(pipe_config)) 3937 intel_vrr_get_config(pipe_config); 3938 3939 intel_get_pipe_src_size(crtc, pipe_config); 3940 3941 if (display->platform.haswell) { 3942 u32 tmp = intel_de_read(display, 3943 TRANSCONF(display, pipe_config->cpu_transcoder)); 3944 3945 if (tmp & TRANSCONF_OUTPUT_COLORSPACE_YUV_HSW) 3946 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 3947 else 3948 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 3949 } else { 3950 pipe_config->output_format = 3951 bdw_get_pipe_misc_output_format(crtc); 3952 } 3953 3954 pipe_config->sink_format = pipe_config->output_format; 3955 3956 intel_color_get_config(pipe_config); 3957 3958 tmp = intel_de_read(display, WM_LINETIME(crtc->pipe)); 3959 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 3960 if (display->platform.broadwell || display->platform.haswell) 3961 pipe_config->ips_linetime = 3962 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 3963 3964 if (intel_display_power_get_in_set_if_enabled(display, &crtc->hw_readout_power_domains, 3965 POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) { 3966 if (DISPLAY_VER(display) >= 9) 3967 skl_scaler_get_config(pipe_config); 3968 else 3969 ilk_pfit_get_config(pipe_config); 3970 } 3971 3972 hsw_ips_get_config(pipe_config); 3973 3974 if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 3975 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 3976 pipe_config->pixel_multiplier = 3977 intel_de_read(display, 3978 TRANS_MULT(display, pipe_config->cpu_transcoder)) + 1; 3979 } else { 3980 pipe_config->pixel_multiplier = 1; 3981 } 3982 3983 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) { 3984 tmp = intel_de_read(display, CHICKEN_TRANS(display, pipe_config->cpu_transcoder)); 3985 3986 pipe_config->framestart_delay = REG_FIELD_GET(HSW_FRAME_START_DELAY_MASK, tmp) + 1; 3987 } else { 3988 /* no idea if this is correct */ 3989 pipe_config->framestart_delay = 1; 3990 } 3991 3992 out: 3993 intel_display_power_put_all_in_set(display, &crtc->hw_readout_power_domains); 3994 3995 return active; 3996 } 3997 3998 bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state) 3999 { 4000 struct intel_display *display = to_intel_display(crtc_state); 4001 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4002 4003 if (!display->funcs.display->get_pipe_config(crtc, crtc_state)) 4004 return false; 4005 4006 crtc_state->hw.active = true; 4007 4008 intel_crtc_readout_derived_state(crtc_state); 4009 4010 return true; 4011 } 4012 4013 int intel_dotclock_calculate(int link_freq, 4014 const struct intel_link_m_n *m_n) 4015 { 4016 /* 4017 * The calculation for the data clock -> pixel clock is: 4018 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 4019 * But we want to avoid losing precision if possible, so: 4020 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 4021 * 4022 * and for link freq (10kbs units) -> pixel clock it is: 4023 * link_symbol_clock = link_freq * 10 / link_symbol_size 4024 * pixel_clock = (m * link_symbol_clock) / n 4025 * or for more precision: 4026 * pixel_clock = (m * link_freq * 10) / (n * link_symbol_size) 4027 */ 4028 4029 if (!m_n->link_n) 4030 return 0; 4031 4032 return DIV_ROUND_UP_ULL(mul_u32_u32(m_n->link_m, link_freq * 10), 4033 m_n->link_n * intel_dp_link_symbol_size(link_freq)); 4034 } 4035 4036 int intel_crtc_dotclock(const struct intel_crtc_state *pipe_config) 4037 { 4038 int dotclock; 4039 4040 if (intel_crtc_has_dp_encoder(pipe_config)) 4041 dotclock = intel_dotclock_calculate(pipe_config->port_clock, 4042 &pipe_config->dp_m_n); 4043 else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp > 24) 4044 dotclock = DIV_ROUND_CLOSEST(pipe_config->port_clock * 24, 4045 pipe_config->pipe_bpp); 4046 else 4047 dotclock = pipe_config->port_clock; 4048 4049 if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 && 4050 !intel_crtc_has_dp_encoder(pipe_config)) 4051 dotclock *= 2; 4052 4053 if (pipe_config->pixel_multiplier) 4054 dotclock /= pipe_config->pixel_multiplier; 4055 4056 return dotclock; 4057 } 4058 4059 /* Returns the currently programmed mode of the given encoder. */ 4060 struct drm_display_mode * 4061 intel_encoder_current_mode(struct intel_encoder *encoder) 4062 { 4063 struct intel_display *display = to_intel_display(encoder); 4064 struct intel_crtc_state *crtc_state; 4065 struct drm_display_mode *mode; 4066 struct intel_crtc *crtc; 4067 enum pipe pipe; 4068 4069 if (!encoder->get_hw_state(encoder, &pipe)) 4070 return NULL; 4071 4072 crtc = intel_crtc_for_pipe(display, pipe); 4073 4074 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 4075 if (!mode) 4076 return NULL; 4077 4078 crtc_state = intel_crtc_state_alloc(crtc); 4079 if (!crtc_state) { 4080 kfree(mode); 4081 return NULL; 4082 } 4083 4084 if (!intel_crtc_get_pipe_config(crtc_state)) { 4085 intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi); 4086 kfree(mode); 4087 return NULL; 4088 } 4089 4090 intel_encoder_get_config(encoder, crtc_state); 4091 4092 intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode); 4093 4094 intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi); 4095 4096 return mode; 4097 } 4098 4099 static bool encoders_cloneable(const struct intel_encoder *a, 4100 const struct intel_encoder *b) 4101 { 4102 /* masks could be asymmetric, so check both ways */ 4103 return a == b || (a->cloneable & BIT(b->type) && 4104 b->cloneable & BIT(a->type)); 4105 } 4106 4107 static bool check_single_encoder_cloning(struct intel_atomic_state *state, 4108 struct intel_crtc *crtc, 4109 struct intel_encoder *encoder) 4110 { 4111 struct intel_encoder *source_encoder; 4112 struct drm_connector *connector; 4113 struct drm_connector_state *connector_state; 4114 int i; 4115 4116 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 4117 if (connector_state->crtc != &crtc->base) 4118 continue; 4119 4120 source_encoder = 4121 to_intel_encoder(connector_state->best_encoder); 4122 if (!encoders_cloneable(encoder, source_encoder)) 4123 return false; 4124 } 4125 4126 return true; 4127 } 4128 4129 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 4130 { 4131 const struct drm_display_mode *pipe_mode = 4132 &crtc_state->hw.pipe_mode; 4133 int linetime_wm; 4134 4135 if (!crtc_state->hw.enable) 4136 return 0; 4137 4138 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 4139 pipe_mode->crtc_clock); 4140 4141 return min(linetime_wm, 0x1ff); 4142 } 4143 4144 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 4145 const struct intel_cdclk_state *cdclk_state) 4146 { 4147 const struct drm_display_mode *pipe_mode = 4148 &crtc_state->hw.pipe_mode; 4149 int linetime_wm; 4150 4151 if (!crtc_state->hw.enable) 4152 return 0; 4153 4154 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 4155 cdclk_state->logical.cdclk); 4156 4157 return min(linetime_wm, 0x1ff); 4158 } 4159 4160 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 4161 { 4162 struct intel_display *display = to_intel_display(crtc_state); 4163 const struct drm_display_mode *pipe_mode = 4164 &crtc_state->hw.pipe_mode; 4165 int linetime_wm; 4166 4167 if (!crtc_state->hw.enable) 4168 return 0; 4169 4170 linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8, 4171 crtc_state->pixel_rate); 4172 4173 /* Display WA #1135: BXT:ALL GLK:ALL */ 4174 if ((display->platform.geminilake || display->platform.broxton) && 4175 skl_watermark_ipc_enabled(display)) 4176 linetime_wm /= 2; 4177 4178 return min(linetime_wm, 0x1ff); 4179 } 4180 4181 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 4182 struct intel_crtc *crtc) 4183 { 4184 struct intel_display *display = to_intel_display(state); 4185 struct intel_crtc_state *crtc_state = 4186 intel_atomic_get_new_crtc_state(state, crtc); 4187 const struct intel_cdclk_state *cdclk_state; 4188 4189 if (DISPLAY_VER(display) >= 9) 4190 crtc_state->linetime = skl_linetime_wm(crtc_state); 4191 else 4192 crtc_state->linetime = hsw_linetime_wm(crtc_state); 4193 4194 if (!hsw_crtc_supports_ips(crtc)) 4195 return 0; 4196 4197 cdclk_state = intel_atomic_get_cdclk_state(state); 4198 if (IS_ERR(cdclk_state)) 4199 return PTR_ERR(cdclk_state); 4200 4201 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 4202 cdclk_state); 4203 4204 return 0; 4205 } 4206 4207 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 4208 struct intel_crtc *crtc) 4209 { 4210 struct intel_display *display = to_intel_display(crtc); 4211 struct intel_crtc_state *crtc_state = 4212 intel_atomic_get_new_crtc_state(state, crtc); 4213 int ret; 4214 4215 if (DISPLAY_VER(display) < 5 && !display->platform.g4x && 4216 intel_crtc_needs_modeset(crtc_state) && 4217 !crtc_state->hw.active) 4218 crtc_state->update_wm_post = true; 4219 4220 if (intel_crtc_needs_modeset(crtc_state)) { 4221 ret = intel_dpll_crtc_get_shared_dpll(state, crtc); 4222 if (ret) 4223 return ret; 4224 } 4225 4226 ret = intel_color_check(state, crtc); 4227 if (ret) 4228 return ret; 4229 4230 ret = intel_wm_compute(state, crtc); 4231 if (ret) { 4232 drm_dbg_kms(display->drm, 4233 "[CRTC:%d:%s] watermarks are invalid\n", 4234 crtc->base.base.id, crtc->base.name); 4235 return ret; 4236 } 4237 4238 if (DISPLAY_VER(display) >= 9) { 4239 if (intel_crtc_needs_modeset(crtc_state) || 4240 intel_crtc_needs_fastset(crtc_state)) { 4241 ret = skl_update_scaler_crtc(crtc_state); 4242 if (ret) 4243 return ret; 4244 } 4245 4246 ret = intel_atomic_setup_scalers(state, crtc); 4247 if (ret) 4248 return ret; 4249 } 4250 4251 if (HAS_IPS(display)) { 4252 ret = hsw_ips_compute_config(state, crtc); 4253 if (ret) 4254 return ret; 4255 } 4256 4257 if (DISPLAY_VER(display) >= 9 || 4258 display->platform.broadwell || display->platform.haswell) { 4259 ret = hsw_compute_linetime_wm(state, crtc); 4260 if (ret) 4261 return ret; 4262 4263 } 4264 4265 ret = intel_psr2_sel_fetch_update(state, crtc); 4266 if (ret) 4267 return ret; 4268 4269 return 0; 4270 } 4271 4272 static int 4273 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 4274 struct intel_crtc_state *crtc_state) 4275 { 4276 struct intel_display *display = to_intel_display(crtc_state); 4277 struct drm_connector *connector = conn_state->connector; 4278 const struct drm_display_info *info = &connector->display_info; 4279 int bpp; 4280 4281 switch (conn_state->max_bpc) { 4282 case 6 ... 7: 4283 bpp = 6 * 3; 4284 break; 4285 case 8 ... 9: 4286 bpp = 8 * 3; 4287 break; 4288 case 10 ... 11: 4289 bpp = 10 * 3; 4290 break; 4291 case 12 ... 16: 4292 bpp = 12 * 3; 4293 break; 4294 default: 4295 MISSING_CASE(conn_state->max_bpc); 4296 return -EINVAL; 4297 } 4298 4299 if (bpp < crtc_state->pipe_bpp) { 4300 drm_dbg_kms(display->drm, 4301 "[CONNECTOR:%d:%s] Limiting display bpp to %d " 4302 "(EDID bpp %d, max requested bpp %d, max platform bpp %d)\n", 4303 connector->base.id, connector->name, 4304 bpp, 3 * info->bpc, 4305 3 * conn_state->max_requested_bpc, 4306 crtc_state->pipe_bpp); 4307 4308 crtc_state->pipe_bpp = bpp; 4309 } 4310 4311 return 0; 4312 } 4313 4314 static int 4315 compute_baseline_pipe_bpp(struct intel_atomic_state *state, 4316 struct intel_crtc *crtc) 4317 { 4318 struct intel_display *display = to_intel_display(crtc); 4319 struct intel_crtc_state *crtc_state = 4320 intel_atomic_get_new_crtc_state(state, crtc); 4321 struct drm_connector *connector; 4322 struct drm_connector_state *connector_state; 4323 int bpp, i; 4324 4325 if (display->platform.g4x || display->platform.valleyview || 4326 display->platform.cherryview) 4327 bpp = 10*3; 4328 else if (DISPLAY_VER(display) >= 5) 4329 bpp = 12*3; 4330 else 4331 bpp = 8*3; 4332 4333 crtc_state->pipe_bpp = bpp; 4334 4335 /* Clamp display bpp to connector max bpp */ 4336 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 4337 int ret; 4338 4339 if (connector_state->crtc != &crtc->base) 4340 continue; 4341 4342 ret = compute_sink_pipe_bpp(connector_state, crtc_state); 4343 if (ret) 4344 return ret; 4345 } 4346 4347 return 0; 4348 } 4349 4350 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 4351 { 4352 struct intel_display *display = to_intel_display(state); 4353 struct drm_connector *connector; 4354 struct drm_connector_list_iter conn_iter; 4355 unsigned int used_ports = 0; 4356 unsigned int used_mst_ports = 0; 4357 bool ret = true; 4358 4359 /* 4360 * We're going to peek into connector->state, 4361 * hence connection_mutex must be held. 4362 */ 4363 drm_modeset_lock_assert_held(&display->drm->mode_config.connection_mutex); 4364 4365 /* 4366 * Walk the connector list instead of the encoder 4367 * list to detect the problem on ddi platforms 4368 * where there's just one encoder per digital port. 4369 */ 4370 drm_connector_list_iter_begin(display->drm, &conn_iter); 4371 drm_for_each_connector_iter(connector, &conn_iter) { 4372 struct drm_connector_state *connector_state; 4373 struct intel_encoder *encoder; 4374 4375 connector_state = 4376 drm_atomic_get_new_connector_state(&state->base, 4377 connector); 4378 if (!connector_state) 4379 connector_state = connector->state; 4380 4381 if (!connector_state->best_encoder) 4382 continue; 4383 4384 encoder = to_intel_encoder(connector_state->best_encoder); 4385 4386 drm_WARN_ON(display->drm, !connector_state->crtc); 4387 4388 switch (encoder->type) { 4389 case INTEL_OUTPUT_DDI: 4390 if (drm_WARN_ON(display->drm, !HAS_DDI(display))) 4391 break; 4392 fallthrough; 4393 case INTEL_OUTPUT_DP: 4394 case INTEL_OUTPUT_HDMI: 4395 case INTEL_OUTPUT_EDP: 4396 /* the same port mustn't appear more than once */ 4397 if (used_ports & BIT(encoder->port)) 4398 ret = false; 4399 4400 used_ports |= BIT(encoder->port); 4401 break; 4402 case INTEL_OUTPUT_DP_MST: 4403 used_mst_ports |= 4404 1 << encoder->port; 4405 break; 4406 default: 4407 break; 4408 } 4409 } 4410 drm_connector_list_iter_end(&conn_iter); 4411 4412 /* can't mix MST and SST/HDMI on the same port */ 4413 if (used_ports & used_mst_ports) 4414 return false; 4415 4416 return ret; 4417 } 4418 4419 static void 4420 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state, 4421 struct intel_crtc *crtc) 4422 { 4423 struct intel_crtc_state *crtc_state = 4424 intel_atomic_get_new_crtc_state(state, crtc); 4425 4426 WARN_ON(intel_crtc_is_joiner_secondary(crtc_state)); 4427 4428 drm_property_replace_blob(&crtc_state->hw.degamma_lut, 4429 crtc_state->uapi.degamma_lut); 4430 drm_property_replace_blob(&crtc_state->hw.gamma_lut, 4431 crtc_state->uapi.gamma_lut); 4432 drm_property_replace_blob(&crtc_state->hw.ctm, 4433 crtc_state->uapi.ctm); 4434 } 4435 4436 static void 4437 intel_crtc_copy_uapi_to_hw_state_modeset(struct intel_atomic_state *state, 4438 struct intel_crtc *crtc) 4439 { 4440 struct intel_crtc_state *crtc_state = 4441 intel_atomic_get_new_crtc_state(state, crtc); 4442 4443 WARN_ON(intel_crtc_is_joiner_secondary(crtc_state)); 4444 4445 crtc_state->hw.enable = crtc_state->uapi.enable; 4446 crtc_state->hw.active = crtc_state->uapi.active; 4447 drm_mode_copy(&crtc_state->hw.mode, 4448 &crtc_state->uapi.mode); 4449 drm_mode_copy(&crtc_state->hw.adjusted_mode, 4450 &crtc_state->uapi.adjusted_mode); 4451 crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter; 4452 4453 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc); 4454 } 4455 4456 static void 4457 copy_joiner_crtc_state_nomodeset(struct intel_atomic_state *state, 4458 struct intel_crtc *secondary_crtc) 4459 { 4460 struct intel_crtc_state *secondary_crtc_state = 4461 intel_atomic_get_new_crtc_state(state, secondary_crtc); 4462 struct intel_crtc *primary_crtc = intel_primary_crtc(secondary_crtc_state); 4463 const struct intel_crtc_state *primary_crtc_state = 4464 intel_atomic_get_new_crtc_state(state, primary_crtc); 4465 4466 drm_property_replace_blob(&secondary_crtc_state->hw.degamma_lut, 4467 primary_crtc_state->hw.degamma_lut); 4468 drm_property_replace_blob(&secondary_crtc_state->hw.gamma_lut, 4469 primary_crtc_state->hw.gamma_lut); 4470 drm_property_replace_blob(&secondary_crtc_state->hw.ctm, 4471 primary_crtc_state->hw.ctm); 4472 4473 secondary_crtc_state->uapi.color_mgmt_changed = primary_crtc_state->uapi.color_mgmt_changed; 4474 } 4475 4476 static int 4477 copy_joiner_crtc_state_modeset(struct intel_atomic_state *state, 4478 struct intel_crtc *secondary_crtc) 4479 { 4480 struct intel_crtc_state *secondary_crtc_state = 4481 intel_atomic_get_new_crtc_state(state, secondary_crtc); 4482 struct intel_crtc *primary_crtc = intel_primary_crtc(secondary_crtc_state); 4483 const struct intel_crtc_state *primary_crtc_state = 4484 intel_atomic_get_new_crtc_state(state, primary_crtc); 4485 struct intel_crtc_state *saved_state; 4486 4487 WARN_ON(primary_crtc_state->joiner_pipes != 4488 secondary_crtc_state->joiner_pipes); 4489 4490 saved_state = kmemdup(primary_crtc_state, sizeof(*saved_state), GFP_KERNEL); 4491 if (!saved_state) 4492 return -ENOMEM; 4493 4494 /* preserve some things from the slave's original crtc state */ 4495 saved_state->uapi = secondary_crtc_state->uapi; 4496 saved_state->scaler_state = secondary_crtc_state->scaler_state; 4497 saved_state->shared_dpll = secondary_crtc_state->shared_dpll; 4498 saved_state->crc_enabled = secondary_crtc_state->crc_enabled; 4499 4500 intel_crtc_free_hw_state(secondary_crtc_state); 4501 if (secondary_crtc_state->dp_tunnel_ref.tunnel) 4502 drm_dp_tunnel_ref_put(&secondary_crtc_state->dp_tunnel_ref); 4503 memcpy(secondary_crtc_state, saved_state, sizeof(*secondary_crtc_state)); 4504 kfree(saved_state); 4505 4506 /* Re-init hw state */ 4507 memset(&secondary_crtc_state->hw, 0, sizeof(secondary_crtc_state->hw)); 4508 secondary_crtc_state->hw.enable = primary_crtc_state->hw.enable; 4509 secondary_crtc_state->hw.active = primary_crtc_state->hw.active; 4510 drm_mode_copy(&secondary_crtc_state->hw.mode, 4511 &primary_crtc_state->hw.mode); 4512 drm_mode_copy(&secondary_crtc_state->hw.pipe_mode, 4513 &primary_crtc_state->hw.pipe_mode); 4514 drm_mode_copy(&secondary_crtc_state->hw.adjusted_mode, 4515 &primary_crtc_state->hw.adjusted_mode); 4516 secondary_crtc_state->hw.scaling_filter = primary_crtc_state->hw.scaling_filter; 4517 4518 if (primary_crtc_state->dp_tunnel_ref.tunnel) 4519 drm_dp_tunnel_ref_get(primary_crtc_state->dp_tunnel_ref.tunnel, 4520 &secondary_crtc_state->dp_tunnel_ref); 4521 4522 copy_joiner_crtc_state_nomodeset(state, secondary_crtc); 4523 4524 secondary_crtc_state->uapi.mode_changed = primary_crtc_state->uapi.mode_changed; 4525 secondary_crtc_state->uapi.connectors_changed = primary_crtc_state->uapi.connectors_changed; 4526 secondary_crtc_state->uapi.active_changed = primary_crtc_state->uapi.active_changed; 4527 4528 WARN_ON(primary_crtc_state->joiner_pipes != 4529 secondary_crtc_state->joiner_pipes); 4530 4531 return 0; 4532 } 4533 4534 static int 4535 intel_crtc_prepare_cleared_state(struct intel_atomic_state *state, 4536 struct intel_crtc *crtc) 4537 { 4538 struct intel_display *display = to_intel_display(state); 4539 struct intel_crtc_state *crtc_state = 4540 intel_atomic_get_new_crtc_state(state, crtc); 4541 struct intel_crtc_state *saved_state; 4542 4543 saved_state = intel_crtc_state_alloc(crtc); 4544 if (!saved_state) 4545 return -ENOMEM; 4546 4547 /* free the old crtc_state->hw members */ 4548 intel_crtc_free_hw_state(crtc_state); 4549 4550 intel_dp_tunnel_atomic_clear_stream_bw(state, crtc_state); 4551 4552 /* FIXME: before the switch to atomic started, a new pipe_config was 4553 * kzalloc'd. Code that depends on any field being zero should be 4554 * fixed, so that the crtc_state can be safely duplicated. For now, 4555 * only fields that are know to not cause problems are preserved. */ 4556 4557 saved_state->uapi = crtc_state->uapi; 4558 saved_state->inherited = crtc_state->inherited; 4559 saved_state->scaler_state = crtc_state->scaler_state; 4560 saved_state->shared_dpll = crtc_state->shared_dpll; 4561 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 4562 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 4563 sizeof(saved_state->icl_port_dplls)); 4564 saved_state->crc_enabled = crtc_state->crc_enabled; 4565 if (display->platform.g4x || 4566 display->platform.valleyview || display->platform.cherryview) 4567 saved_state->wm = crtc_state->wm; 4568 4569 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 4570 kfree(saved_state); 4571 4572 intel_crtc_copy_uapi_to_hw_state_modeset(state, crtc); 4573 4574 return 0; 4575 } 4576 4577 static int 4578 intel_modeset_pipe_config(struct intel_atomic_state *state, 4579 struct intel_crtc *crtc, 4580 const struct intel_link_bw_limits *limits) 4581 { 4582 struct intel_display *display = to_intel_display(crtc); 4583 struct intel_crtc_state *crtc_state = 4584 intel_atomic_get_new_crtc_state(state, crtc); 4585 struct drm_connector *connector; 4586 struct drm_connector_state *connector_state; 4587 int pipe_src_w, pipe_src_h; 4588 int base_bpp, ret, i; 4589 4590 crtc_state->cpu_transcoder = (enum transcoder) crtc->pipe; 4591 4592 crtc_state->framestart_delay = 1; 4593 4594 /* 4595 * Sanitize sync polarity flags based on requested ones. If neither 4596 * positive or negative polarity is requested, treat this as meaning 4597 * negative polarity. 4598 */ 4599 if (!(crtc_state->hw.adjusted_mode.flags & 4600 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 4601 crtc_state->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 4602 4603 if (!(crtc_state->hw.adjusted_mode.flags & 4604 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 4605 crtc_state->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 4606 4607 ret = compute_baseline_pipe_bpp(state, crtc); 4608 if (ret) 4609 return ret; 4610 4611 crtc_state->fec_enable = limits->force_fec_pipes & BIT(crtc->pipe); 4612 crtc_state->max_link_bpp_x16 = limits->max_bpp_x16[crtc->pipe]; 4613 4614 if (crtc_state->pipe_bpp > fxp_q4_to_int(crtc_state->max_link_bpp_x16)) { 4615 drm_dbg_kms(display->drm, 4616 "[CRTC:%d:%s] Link bpp limited to " FXP_Q4_FMT "\n", 4617 crtc->base.base.id, crtc->base.name, 4618 FXP_Q4_ARGS(crtc_state->max_link_bpp_x16)); 4619 crtc_state->bw_constrained = true; 4620 } 4621 4622 base_bpp = crtc_state->pipe_bpp; 4623 4624 /* 4625 * Determine the real pipe dimensions. Note that stereo modes can 4626 * increase the actual pipe size due to the frame doubling and 4627 * insertion of additional space for blanks between the frame. This 4628 * is stored in the crtc timings. We use the requested mode to do this 4629 * computation to clearly distinguish it from the adjusted mode, which 4630 * can be changed by the connectors in the below retry loop. 4631 */ 4632 drm_mode_get_hv_timing(&crtc_state->hw.mode, 4633 &pipe_src_w, &pipe_src_h); 4634 drm_rect_init(&crtc_state->pipe_src, 0, 0, 4635 pipe_src_w, pipe_src_h); 4636 4637 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 4638 struct intel_encoder *encoder = 4639 to_intel_encoder(connector_state->best_encoder); 4640 4641 if (connector_state->crtc != &crtc->base) 4642 continue; 4643 4644 if (!check_single_encoder_cloning(state, crtc, encoder)) { 4645 drm_dbg_kms(display->drm, 4646 "[ENCODER:%d:%s] rejecting invalid cloning configuration\n", 4647 encoder->base.base.id, encoder->base.name); 4648 return -EINVAL; 4649 } 4650 4651 /* 4652 * Determine output_types before calling the .compute_config() 4653 * hooks so that the hooks can use this information safely. 4654 */ 4655 if (encoder->compute_output_type) 4656 crtc_state->output_types |= 4657 BIT(encoder->compute_output_type(encoder, crtc_state, 4658 connector_state)); 4659 else 4660 crtc_state->output_types |= BIT(encoder->type); 4661 } 4662 4663 /* Ensure the port clock defaults are reset when retrying. */ 4664 crtc_state->port_clock = 0; 4665 crtc_state->pixel_multiplier = 1; 4666 4667 /* Fill in default crtc timings, allow encoders to overwrite them. */ 4668 drm_mode_set_crtcinfo(&crtc_state->hw.adjusted_mode, 4669 CRTC_STEREO_DOUBLE); 4670 4671 /* Pass our mode to the connectors and the CRTC to give them a chance to 4672 * adjust it according to limitations or connector properties, and also 4673 * a chance to reject the mode entirely. 4674 */ 4675 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 4676 struct intel_encoder *encoder = 4677 to_intel_encoder(connector_state->best_encoder); 4678 4679 if (connector_state->crtc != &crtc->base) 4680 continue; 4681 4682 ret = encoder->compute_config(encoder, crtc_state, 4683 connector_state); 4684 if (ret == -EDEADLK) 4685 return ret; 4686 if (ret < 0) { 4687 drm_dbg_kms(display->drm, "[ENCODER:%d:%s] config failure: %d\n", 4688 encoder->base.base.id, encoder->base.name, ret); 4689 return ret; 4690 } 4691 } 4692 4693 /* Set default port clock if not overwritten by the encoder. Needs to be 4694 * done afterwards in case the encoder adjusts the mode. */ 4695 if (!crtc_state->port_clock) 4696 crtc_state->port_clock = crtc_state->hw.adjusted_mode.crtc_clock 4697 * crtc_state->pixel_multiplier; 4698 4699 ret = intel_crtc_compute_config(state, crtc); 4700 if (ret == -EDEADLK) 4701 return ret; 4702 if (ret < 0) { 4703 drm_dbg_kms(display->drm, "[CRTC:%d:%s] config failure: %d\n", 4704 crtc->base.base.id, crtc->base.name, ret); 4705 return ret; 4706 } 4707 4708 /* Dithering seems to not pass-through bits correctly when it should, so 4709 * only enable it on 6bpc panels and when its not a compliance 4710 * test requesting 6bpc video pattern. 4711 */ 4712 crtc_state->dither = (crtc_state->pipe_bpp == 6*3) && 4713 !crtc_state->dither_force_disable; 4714 drm_dbg_kms(display->drm, 4715 "[CRTC:%d:%s] hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 4716 crtc->base.base.id, crtc->base.name, 4717 base_bpp, crtc_state->pipe_bpp, crtc_state->dither); 4718 4719 return 0; 4720 } 4721 4722 static int 4723 intel_modeset_pipe_config_late(struct intel_atomic_state *state, 4724 struct intel_crtc *crtc) 4725 { 4726 struct intel_crtc_state *crtc_state = 4727 intel_atomic_get_new_crtc_state(state, crtc); 4728 struct drm_connector_state *conn_state; 4729 struct drm_connector *connector; 4730 int i; 4731 4732 intel_vrr_compute_config_late(crtc_state); 4733 4734 for_each_new_connector_in_state(&state->base, connector, 4735 conn_state, i) { 4736 struct intel_encoder *encoder = 4737 to_intel_encoder(conn_state->best_encoder); 4738 int ret; 4739 4740 if (conn_state->crtc != &crtc->base || 4741 !encoder->compute_config_late) 4742 continue; 4743 4744 ret = encoder->compute_config_late(encoder, crtc_state, 4745 conn_state); 4746 if (ret) 4747 return ret; 4748 } 4749 4750 return 0; 4751 } 4752 4753 bool intel_fuzzy_clock_check(int clock1, int clock2) 4754 { 4755 int diff; 4756 4757 if (clock1 == clock2) 4758 return true; 4759 4760 if (!clock1 || !clock2) 4761 return false; 4762 4763 diff = abs(clock1 - clock2); 4764 4765 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 4766 return true; 4767 4768 return false; 4769 } 4770 4771 static bool 4772 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 4773 const struct intel_link_m_n *m2_n2) 4774 { 4775 return m_n->tu == m2_n2->tu && 4776 m_n->data_m == m2_n2->data_m && 4777 m_n->data_n == m2_n2->data_n && 4778 m_n->link_m == m2_n2->link_m && 4779 m_n->link_n == m2_n2->link_n; 4780 } 4781 4782 static bool 4783 intel_compare_infoframe(const union hdmi_infoframe *a, 4784 const union hdmi_infoframe *b) 4785 { 4786 return memcmp(a, b, sizeof(*a)) == 0; 4787 } 4788 4789 static bool 4790 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, 4791 const struct drm_dp_vsc_sdp *b) 4792 { 4793 return a->pixelformat == b->pixelformat && 4794 a->colorimetry == b->colorimetry && 4795 a->bpc == b->bpc && 4796 a->dynamic_range == b->dynamic_range && 4797 a->content_type == b->content_type; 4798 } 4799 4800 static bool 4801 intel_compare_dp_as_sdp(const struct drm_dp_as_sdp *a, 4802 const struct drm_dp_as_sdp *b) 4803 { 4804 return a->vtotal == b->vtotal && 4805 a->target_rr == b->target_rr && 4806 a->duration_incr_ms == b->duration_incr_ms && 4807 a->duration_decr_ms == b->duration_decr_ms && 4808 a->mode == b->mode; 4809 } 4810 4811 static bool 4812 intel_compare_buffer(const u8 *a, const u8 *b, size_t len) 4813 { 4814 return memcmp(a, b, len) == 0; 4815 } 4816 4817 static void __printf(5, 6) 4818 pipe_config_mismatch(struct drm_printer *p, bool fastset, 4819 const struct intel_crtc *crtc, 4820 const char *name, const char *format, ...) 4821 { 4822 struct va_format vaf; 4823 va_list args; 4824 4825 va_start(args, format); 4826 vaf.fmt = format; 4827 vaf.va = &args; 4828 4829 if (fastset) 4830 drm_printf(p, "[CRTC:%d:%s] fastset requirement not met in %s %pV\n", 4831 crtc->base.base.id, crtc->base.name, name, &vaf); 4832 else 4833 drm_printf(p, "[CRTC:%d:%s] mismatch in %s %pV\n", 4834 crtc->base.base.id, crtc->base.name, name, &vaf); 4835 4836 va_end(args); 4837 } 4838 4839 static void 4840 pipe_config_infoframe_mismatch(struct drm_printer *p, bool fastset, 4841 const struct intel_crtc *crtc, 4842 const char *name, 4843 const union hdmi_infoframe *a, 4844 const union hdmi_infoframe *b) 4845 { 4846 struct intel_display *display = to_intel_display(crtc); 4847 const char *loglevel; 4848 4849 if (fastset) { 4850 if (!drm_debug_enabled(DRM_UT_KMS)) 4851 return; 4852 4853 loglevel = KERN_DEBUG; 4854 } else { 4855 loglevel = KERN_ERR; 4856 } 4857 4858 pipe_config_mismatch(p, fastset, crtc, name, "infoframe"); 4859 4860 drm_printf(p, "expected:\n"); 4861 hdmi_infoframe_log(loglevel, display->drm->dev, a); 4862 drm_printf(p, "found:\n"); 4863 hdmi_infoframe_log(loglevel, display->drm->dev, b); 4864 } 4865 4866 static void 4867 pipe_config_dp_vsc_sdp_mismatch(struct drm_printer *p, bool fastset, 4868 const struct intel_crtc *crtc, 4869 const char *name, 4870 const struct drm_dp_vsc_sdp *a, 4871 const struct drm_dp_vsc_sdp *b) 4872 { 4873 pipe_config_mismatch(p, fastset, crtc, name, "dp vsc sdp"); 4874 4875 drm_printf(p, "expected:\n"); 4876 drm_dp_vsc_sdp_log(p, a); 4877 drm_printf(p, "found:\n"); 4878 drm_dp_vsc_sdp_log(p, b); 4879 } 4880 4881 static void 4882 pipe_config_dp_as_sdp_mismatch(struct drm_printer *p, bool fastset, 4883 const struct intel_crtc *crtc, 4884 const char *name, 4885 const struct drm_dp_as_sdp *a, 4886 const struct drm_dp_as_sdp *b) 4887 { 4888 pipe_config_mismatch(p, fastset, crtc, name, "dp as sdp"); 4889 4890 drm_printf(p, "expected:\n"); 4891 drm_dp_as_sdp_log(p, a); 4892 drm_printf(p, "found:\n"); 4893 drm_dp_as_sdp_log(p, b); 4894 } 4895 4896 /* Returns the length up to and including the last differing byte */ 4897 static size_t 4898 memcmp_diff_len(const u8 *a, const u8 *b, size_t len) 4899 { 4900 int i; 4901 4902 for (i = len - 1; i >= 0; i--) { 4903 if (a[i] != b[i]) 4904 return i + 1; 4905 } 4906 4907 return 0; 4908 } 4909 4910 static void 4911 pipe_config_buffer_mismatch(struct drm_printer *p, bool fastset, 4912 const struct intel_crtc *crtc, 4913 const char *name, 4914 const u8 *a, const u8 *b, size_t len) 4915 { 4916 pipe_config_mismatch(p, fastset, crtc, name, "buffer"); 4917 4918 /* only dump up to the last difference */ 4919 len = memcmp_diff_len(a, b, len); 4920 4921 drm_print_hex_dump(p, "expected: ", a, len); 4922 drm_print_hex_dump(p, "found: ", b, len); 4923 } 4924 4925 static void 4926 pipe_config_pll_mismatch(struct drm_printer *p, bool fastset, 4927 const struct intel_crtc *crtc, 4928 const char *name, 4929 const struct intel_dpll_hw_state *a, 4930 const struct intel_dpll_hw_state *b) 4931 { 4932 struct intel_display *display = to_intel_display(crtc); 4933 4934 pipe_config_mismatch(p, fastset, crtc, name, " "); /* stupid -Werror=format-zero-length */ 4935 4936 drm_printf(p, "expected:\n"); 4937 intel_dpll_dump_hw_state(display, p, a); 4938 drm_printf(p, "found:\n"); 4939 intel_dpll_dump_hw_state(display, p, b); 4940 } 4941 4942 static void 4943 pipe_config_cx0pll_mismatch(struct drm_printer *p, bool fastset, 4944 const struct intel_crtc *crtc, 4945 const char *name, 4946 const struct intel_cx0pll_state *a, 4947 const struct intel_cx0pll_state *b) 4948 { 4949 struct intel_display *display = to_intel_display(crtc); 4950 char *chipname = a->use_c10 ? "C10" : "C20"; 4951 4952 pipe_config_mismatch(p, fastset, crtc, name, chipname); 4953 4954 drm_printf(p, "expected:\n"); 4955 intel_cx0pll_dump_hw_state(display, a); 4956 drm_printf(p, "found:\n"); 4957 intel_cx0pll_dump_hw_state(display, b); 4958 } 4959 4960 static bool allow_vblank_delay_fastset(const struct intel_crtc_state *old_crtc_state) 4961 { 4962 struct intel_display *display = to_intel_display(old_crtc_state); 4963 4964 /* 4965 * Allow fastboot to fix up vblank delay (handled via LRR 4966 * codepaths), a bit dodgy as the registers aren't 4967 * double buffered but seems to be working more or less... 4968 */ 4969 return HAS_LRR(display) && old_crtc_state->inherited && 4970 !intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI); 4971 } 4972 4973 bool 4974 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 4975 const struct intel_crtc_state *pipe_config, 4976 bool fastset) 4977 { 4978 struct intel_display *display = to_intel_display(current_config); 4979 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 4980 struct drm_printer p; 4981 u32 exclude_infoframes = 0; 4982 bool ret = true; 4983 4984 if (fastset) 4985 p = drm_dbg_printer(display->drm, DRM_UT_KMS, NULL); 4986 else 4987 p = drm_err_printer(display->drm, NULL); 4988 4989 #define PIPE_CONF_CHECK_X(name) do { \ 4990 if (current_config->name != pipe_config->name) { \ 4991 BUILD_BUG_ON_MSG(__same_type(current_config->name, bool), \ 4992 __stringify(name) " is bool"); \ 4993 pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \ 4994 "(expected 0x%08x, found 0x%08x)", \ 4995 current_config->name, \ 4996 pipe_config->name); \ 4997 ret = false; \ 4998 } \ 4999 } while (0) 5000 5001 #define PIPE_CONF_CHECK_X_WITH_MASK(name, mask) do { \ 5002 if ((current_config->name & (mask)) != (pipe_config->name & (mask))) { \ 5003 BUILD_BUG_ON_MSG(__same_type(current_config->name, bool), \ 5004 __stringify(name) " is bool"); \ 5005 pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \ 5006 "(expected 0x%08x, found 0x%08x)", \ 5007 current_config->name & (mask), \ 5008 pipe_config->name & (mask)); \ 5009 ret = false; \ 5010 } \ 5011 } while (0) 5012 5013 #define PIPE_CONF_CHECK_I(name) do { \ 5014 if (current_config->name != pipe_config->name) { \ 5015 BUILD_BUG_ON_MSG(__same_type(current_config->name, bool), \ 5016 __stringify(name) " is bool"); \ 5017 pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \ 5018 "(expected %i, found %i)", \ 5019 current_config->name, \ 5020 pipe_config->name); \ 5021 ret = false; \ 5022 } \ 5023 } while (0) 5024 5025 #define PIPE_CONF_CHECK_LLI(name) do { \ 5026 if (current_config->name != pipe_config->name) { \ 5027 pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \ 5028 "(expected %lli, found %lli)", \ 5029 current_config->name, \ 5030 pipe_config->name); \ 5031 ret = false; \ 5032 } \ 5033 } while (0) 5034 5035 #define PIPE_CONF_CHECK_BOOL(name) do { \ 5036 if (current_config->name != pipe_config->name) { \ 5037 BUILD_BUG_ON_MSG(!__same_type(current_config->name, bool), \ 5038 __stringify(name) " is not bool"); \ 5039 pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \ 5040 "(expected %s, found %s)", \ 5041 str_yes_no(current_config->name), \ 5042 str_yes_no(pipe_config->name)); \ 5043 ret = false; \ 5044 } \ 5045 } while (0) 5046 5047 #define PIPE_CONF_CHECK_P(name) do { \ 5048 if (current_config->name != pipe_config->name) { \ 5049 pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \ 5050 "(expected %p, found %p)", \ 5051 current_config->name, \ 5052 pipe_config->name); \ 5053 ret = false; \ 5054 } \ 5055 } while (0) 5056 5057 #define PIPE_CONF_CHECK_M_N(name) do { \ 5058 if (!intel_compare_link_m_n(¤t_config->name, \ 5059 &pipe_config->name)) { \ 5060 pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \ 5061 "(expected tu %i data %i/%i link %i/%i, " \ 5062 "found tu %i, data %i/%i link %i/%i)", \ 5063 current_config->name.tu, \ 5064 current_config->name.data_m, \ 5065 current_config->name.data_n, \ 5066 current_config->name.link_m, \ 5067 current_config->name.link_n, \ 5068 pipe_config->name.tu, \ 5069 pipe_config->name.data_m, \ 5070 pipe_config->name.data_n, \ 5071 pipe_config->name.link_m, \ 5072 pipe_config->name.link_n); \ 5073 ret = false; \ 5074 } \ 5075 } while (0) 5076 5077 #define PIPE_CONF_CHECK_PLL(name) do { \ 5078 if (!intel_dpll_compare_hw_state(display, ¤t_config->name, \ 5079 &pipe_config->name)) { \ 5080 pipe_config_pll_mismatch(&p, fastset, crtc, __stringify(name), \ 5081 ¤t_config->name, \ 5082 &pipe_config->name); \ 5083 ret = false; \ 5084 } \ 5085 } while (0) 5086 5087 #define PIPE_CONF_CHECK_PLL_CX0(name) do { \ 5088 if (!intel_cx0pll_compare_hw_state(¤t_config->name, \ 5089 &pipe_config->name)) { \ 5090 pipe_config_cx0pll_mismatch(&p, fastset, crtc, __stringify(name), \ 5091 ¤t_config->name, \ 5092 &pipe_config->name); \ 5093 ret = false; \ 5094 } \ 5095 } while (0) 5096 5097 #define PIPE_CONF_CHECK_TIMINGS(name) do { \ 5098 PIPE_CONF_CHECK_I(name.crtc_hdisplay); \ 5099 PIPE_CONF_CHECK_I(name.crtc_htotal); \ 5100 PIPE_CONF_CHECK_I(name.crtc_hblank_start); \ 5101 PIPE_CONF_CHECK_I(name.crtc_hblank_end); \ 5102 PIPE_CONF_CHECK_I(name.crtc_hsync_start); \ 5103 PIPE_CONF_CHECK_I(name.crtc_hsync_end); \ 5104 PIPE_CONF_CHECK_I(name.crtc_vdisplay); \ 5105 if (!fastset || !allow_vblank_delay_fastset(current_config)) \ 5106 PIPE_CONF_CHECK_I(name.crtc_vblank_start); \ 5107 PIPE_CONF_CHECK_I(name.crtc_vsync_start); \ 5108 PIPE_CONF_CHECK_I(name.crtc_vsync_end); \ 5109 if (!fastset || !pipe_config->update_lrr) { \ 5110 PIPE_CONF_CHECK_I(name.crtc_vtotal); \ 5111 PIPE_CONF_CHECK_I(name.crtc_vblank_end); \ 5112 } \ 5113 } while (0) 5114 5115 #define PIPE_CONF_CHECK_RECT(name) do { \ 5116 PIPE_CONF_CHECK_I(name.x1); \ 5117 PIPE_CONF_CHECK_I(name.x2); \ 5118 PIPE_CONF_CHECK_I(name.y1); \ 5119 PIPE_CONF_CHECK_I(name.y2); \ 5120 } while (0) 5121 5122 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 5123 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 5124 pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \ 5125 "(%x) (expected %i, found %i)", \ 5126 (mask), \ 5127 current_config->name & (mask), \ 5128 pipe_config->name & (mask)); \ 5129 ret = false; \ 5130 } \ 5131 } while (0) 5132 5133 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 5134 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 5135 &pipe_config->infoframes.name)) { \ 5136 pipe_config_infoframe_mismatch(&p, fastset, crtc, __stringify(name), \ 5137 ¤t_config->infoframes.name, \ 5138 &pipe_config->infoframes.name); \ 5139 ret = false; \ 5140 } \ 5141 } while (0) 5142 5143 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ 5144 if (!intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ 5145 &pipe_config->infoframes.name)) { \ 5146 pipe_config_dp_vsc_sdp_mismatch(&p, fastset, crtc, __stringify(name), \ 5147 ¤t_config->infoframes.name, \ 5148 &pipe_config->infoframes.name); \ 5149 ret = false; \ 5150 } \ 5151 } while (0) 5152 5153 #define PIPE_CONF_CHECK_DP_AS_SDP(name) do { \ 5154 if (!intel_compare_dp_as_sdp(¤t_config->infoframes.name, \ 5155 &pipe_config->infoframes.name)) { \ 5156 pipe_config_dp_as_sdp_mismatch(&p, fastset, crtc, __stringify(name), \ 5157 ¤t_config->infoframes.name, \ 5158 &pipe_config->infoframes.name); \ 5159 ret = false; \ 5160 } \ 5161 } while (0) 5162 5163 #define PIPE_CONF_CHECK_BUFFER(name, len) do { \ 5164 BUILD_BUG_ON(sizeof(current_config->name) != (len)); \ 5165 BUILD_BUG_ON(sizeof(pipe_config->name) != (len)); \ 5166 if (!intel_compare_buffer(current_config->name, pipe_config->name, (len))) { \ 5167 pipe_config_buffer_mismatch(&p, fastset, crtc, __stringify(name), \ 5168 current_config->name, \ 5169 pipe_config->name, \ 5170 (len)); \ 5171 ret = false; \ 5172 } \ 5173 } while (0) 5174 5175 #define PIPE_CONF_CHECK_COLOR_LUT(lut, is_pre_csc_lut) do { \ 5176 if (current_config->gamma_mode == pipe_config->gamma_mode && \ 5177 !intel_color_lut_equal(current_config, \ 5178 current_config->lut, pipe_config->lut, \ 5179 is_pre_csc_lut)) { \ 5180 pipe_config_mismatch(&p, fastset, crtc, __stringify(lut), \ 5181 "hw_state doesn't match sw_state"); \ 5182 ret = false; \ 5183 } \ 5184 } while (0) 5185 5186 #define PIPE_CONF_CHECK_CSC(name) do { \ 5187 PIPE_CONF_CHECK_X(name.preoff[0]); \ 5188 PIPE_CONF_CHECK_X(name.preoff[1]); \ 5189 PIPE_CONF_CHECK_X(name.preoff[2]); \ 5190 PIPE_CONF_CHECK_X(name.coeff[0]); \ 5191 PIPE_CONF_CHECK_X(name.coeff[1]); \ 5192 PIPE_CONF_CHECK_X(name.coeff[2]); \ 5193 PIPE_CONF_CHECK_X(name.coeff[3]); \ 5194 PIPE_CONF_CHECK_X(name.coeff[4]); \ 5195 PIPE_CONF_CHECK_X(name.coeff[5]); \ 5196 PIPE_CONF_CHECK_X(name.coeff[6]); \ 5197 PIPE_CONF_CHECK_X(name.coeff[7]); \ 5198 PIPE_CONF_CHECK_X(name.coeff[8]); \ 5199 PIPE_CONF_CHECK_X(name.postoff[0]); \ 5200 PIPE_CONF_CHECK_X(name.postoff[1]); \ 5201 PIPE_CONF_CHECK_X(name.postoff[2]); \ 5202 } while (0) 5203 5204 #define PIPE_CONF_QUIRK(quirk) \ 5205 ((current_config->quirks | pipe_config->quirks) & (quirk)) 5206 5207 PIPE_CONF_CHECK_BOOL(hw.enable); 5208 PIPE_CONF_CHECK_BOOL(hw.active); 5209 5210 PIPE_CONF_CHECK_I(cpu_transcoder); 5211 PIPE_CONF_CHECK_I(mst_master_transcoder); 5212 5213 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 5214 PIPE_CONF_CHECK_I(fdi_lanes); 5215 PIPE_CONF_CHECK_M_N(fdi_m_n); 5216 5217 PIPE_CONF_CHECK_I(lane_count); 5218 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 5219 5220 if (HAS_DOUBLE_BUFFERED_M_N(display)) { 5221 if (!fastset || !pipe_config->update_m_n) 5222 PIPE_CONF_CHECK_M_N(dp_m_n); 5223 } else { 5224 PIPE_CONF_CHECK_M_N(dp_m_n); 5225 PIPE_CONF_CHECK_M_N(dp_m2_n2); 5226 } 5227 5228 PIPE_CONF_CHECK_X(output_types); 5229 5230 PIPE_CONF_CHECK_I(framestart_delay); 5231 PIPE_CONF_CHECK_I(msa_timing_delay); 5232 5233 PIPE_CONF_CHECK_TIMINGS(hw.pipe_mode); 5234 PIPE_CONF_CHECK_TIMINGS(hw.adjusted_mode); 5235 5236 PIPE_CONF_CHECK_I(pixel_multiplier); 5237 5238 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 5239 DRM_MODE_FLAG_INTERLACE); 5240 5241 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 5242 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 5243 DRM_MODE_FLAG_PHSYNC); 5244 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 5245 DRM_MODE_FLAG_NHSYNC); 5246 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 5247 DRM_MODE_FLAG_PVSYNC); 5248 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 5249 DRM_MODE_FLAG_NVSYNC); 5250 } 5251 5252 PIPE_CONF_CHECK_I(output_format); 5253 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 5254 if ((DISPLAY_VER(display) < 8 && !display->platform.haswell) || 5255 display->platform.valleyview || display->platform.cherryview) 5256 PIPE_CONF_CHECK_BOOL(limited_color_range); 5257 5258 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 5259 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 5260 PIPE_CONF_CHECK_BOOL(has_infoframe); 5261 PIPE_CONF_CHECK_BOOL(enhanced_framing); 5262 PIPE_CONF_CHECK_BOOL(fec_enable); 5263 5264 if (!fastset) { 5265 PIPE_CONF_CHECK_BOOL(has_audio); 5266 PIPE_CONF_CHECK_BUFFER(eld, MAX_ELD_BYTES); 5267 } 5268 5269 PIPE_CONF_CHECK_X(gmch_pfit.control); 5270 /* pfit ratios are autocomputed by the hw on gen4+ */ 5271 if (DISPLAY_VER(display) < 4) 5272 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 5273 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 5274 5275 /* 5276 * Changing the EDP transcoder input mux 5277 * (A_ONOFF vs. A_ON) requires a full modeset. 5278 */ 5279 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 5280 5281 if (!fastset) { 5282 PIPE_CONF_CHECK_RECT(pipe_src); 5283 5284 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 5285 PIPE_CONF_CHECK_RECT(pch_pfit.dst); 5286 5287 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 5288 PIPE_CONF_CHECK_I(pixel_rate); 5289 5290 PIPE_CONF_CHECK_X(gamma_mode); 5291 if (display->platform.cherryview) 5292 PIPE_CONF_CHECK_X(cgm_mode); 5293 else 5294 PIPE_CONF_CHECK_X(csc_mode); 5295 PIPE_CONF_CHECK_BOOL(gamma_enable); 5296 PIPE_CONF_CHECK_BOOL(csc_enable); 5297 PIPE_CONF_CHECK_BOOL(wgc_enable); 5298 5299 PIPE_CONF_CHECK_I(linetime); 5300 PIPE_CONF_CHECK_I(ips_linetime); 5301 5302 PIPE_CONF_CHECK_COLOR_LUT(pre_csc_lut, true); 5303 PIPE_CONF_CHECK_COLOR_LUT(post_csc_lut, false); 5304 5305 PIPE_CONF_CHECK_CSC(csc); 5306 PIPE_CONF_CHECK_CSC(output_csc); 5307 } 5308 5309 PIPE_CONF_CHECK_BOOL(double_wide); 5310 5311 if (display->dpll.mgr) 5312 PIPE_CONF_CHECK_P(shared_dpll); 5313 5314 /* FIXME convert everything over the dpll_mgr */ 5315 if (display->dpll.mgr || HAS_GMCH(display)) 5316 PIPE_CONF_CHECK_PLL(dpll_hw_state); 5317 5318 /* FIXME convert MTL+ platforms over to dpll_mgr */ 5319 if (DISPLAY_VER(display) >= 14) 5320 PIPE_CONF_CHECK_PLL_CX0(dpll_hw_state.cx0pll); 5321 5322 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 5323 PIPE_CONF_CHECK_X(dsi_pll.div); 5324 5325 if (display->platform.g4x || DISPLAY_VER(display) >= 5) 5326 PIPE_CONF_CHECK_I(pipe_bpp); 5327 5328 if (!fastset || !pipe_config->update_m_n) { 5329 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_clock); 5330 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_clock); 5331 } 5332 PIPE_CONF_CHECK_I(port_clock); 5333 5334 PIPE_CONF_CHECK_I(min_voltage_level); 5335 5336 if (current_config->has_psr || pipe_config->has_psr) 5337 exclude_infoframes |= intel_hdmi_infoframe_enable(DP_SDP_VSC); 5338 5339 if (current_config->vrr.enable || pipe_config->vrr.enable) 5340 exclude_infoframes |= intel_hdmi_infoframe_enable(DP_SDP_ADAPTIVE_SYNC); 5341 5342 PIPE_CONF_CHECK_X_WITH_MASK(infoframes.enable, ~exclude_infoframes); 5343 PIPE_CONF_CHECK_X(infoframes.gcp); 5344 PIPE_CONF_CHECK_INFOFRAME(avi); 5345 PIPE_CONF_CHECK_INFOFRAME(spd); 5346 PIPE_CONF_CHECK_INFOFRAME(hdmi); 5347 if (!fastset) { 5348 PIPE_CONF_CHECK_INFOFRAME(drm); 5349 PIPE_CONF_CHECK_DP_AS_SDP(as_sdp); 5350 } 5351 PIPE_CONF_CHECK_DP_VSC_SDP(vsc); 5352 5353 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 5354 PIPE_CONF_CHECK_I(master_transcoder); 5355 PIPE_CONF_CHECK_X(joiner_pipes); 5356 5357 PIPE_CONF_CHECK_BOOL(dsc.config.block_pred_enable); 5358 PIPE_CONF_CHECK_BOOL(dsc.config.convert_rgb); 5359 PIPE_CONF_CHECK_BOOL(dsc.config.simple_422); 5360 PIPE_CONF_CHECK_BOOL(dsc.config.native_422); 5361 PIPE_CONF_CHECK_BOOL(dsc.config.native_420); 5362 PIPE_CONF_CHECK_BOOL(dsc.config.vbr_enable); 5363 PIPE_CONF_CHECK_I(dsc.config.line_buf_depth); 5364 PIPE_CONF_CHECK_I(dsc.config.bits_per_component); 5365 PIPE_CONF_CHECK_I(dsc.config.pic_width); 5366 PIPE_CONF_CHECK_I(dsc.config.pic_height); 5367 PIPE_CONF_CHECK_I(dsc.config.slice_width); 5368 PIPE_CONF_CHECK_I(dsc.config.slice_height); 5369 PIPE_CONF_CHECK_I(dsc.config.initial_dec_delay); 5370 PIPE_CONF_CHECK_I(dsc.config.initial_xmit_delay); 5371 PIPE_CONF_CHECK_I(dsc.config.scale_decrement_interval); 5372 PIPE_CONF_CHECK_I(dsc.config.scale_increment_interval); 5373 PIPE_CONF_CHECK_I(dsc.config.initial_scale_value); 5374 PIPE_CONF_CHECK_I(dsc.config.first_line_bpg_offset); 5375 PIPE_CONF_CHECK_I(dsc.config.flatness_min_qp); 5376 PIPE_CONF_CHECK_I(dsc.config.flatness_max_qp); 5377 PIPE_CONF_CHECK_I(dsc.config.slice_bpg_offset); 5378 PIPE_CONF_CHECK_I(dsc.config.nfl_bpg_offset); 5379 PIPE_CONF_CHECK_I(dsc.config.initial_offset); 5380 PIPE_CONF_CHECK_I(dsc.config.final_offset); 5381 PIPE_CONF_CHECK_I(dsc.config.rc_model_size); 5382 PIPE_CONF_CHECK_I(dsc.config.rc_quant_incr_limit0); 5383 PIPE_CONF_CHECK_I(dsc.config.rc_quant_incr_limit1); 5384 PIPE_CONF_CHECK_I(dsc.config.slice_chunk_size); 5385 PIPE_CONF_CHECK_I(dsc.config.second_line_bpg_offset); 5386 PIPE_CONF_CHECK_I(dsc.config.nsl_bpg_offset); 5387 5388 PIPE_CONF_CHECK_BOOL(dsc.compression_enable); 5389 PIPE_CONF_CHECK_I(dsc.num_streams); 5390 PIPE_CONF_CHECK_I(dsc.compressed_bpp_x16); 5391 5392 PIPE_CONF_CHECK_BOOL(splitter.enable); 5393 PIPE_CONF_CHECK_I(splitter.link_count); 5394 PIPE_CONF_CHECK_I(splitter.pixel_overlap); 5395 5396 if (!fastset) { 5397 PIPE_CONF_CHECK_BOOL(vrr.enable); 5398 PIPE_CONF_CHECK_I(vrr.vmin); 5399 PIPE_CONF_CHECK_I(vrr.vmax); 5400 PIPE_CONF_CHECK_I(vrr.flipline); 5401 PIPE_CONF_CHECK_I(vrr.vsync_start); 5402 PIPE_CONF_CHECK_I(vrr.vsync_end); 5403 PIPE_CONF_CHECK_LLI(cmrr.cmrr_m); 5404 PIPE_CONF_CHECK_LLI(cmrr.cmrr_n); 5405 PIPE_CONF_CHECK_BOOL(cmrr.enable); 5406 } 5407 5408 if (!fastset || intel_vrr_always_use_vrr_tg(display)) { 5409 PIPE_CONF_CHECK_I(vrr.pipeline_full); 5410 PIPE_CONF_CHECK_I(vrr.guardband); 5411 } 5412 5413 #undef PIPE_CONF_CHECK_X 5414 #undef PIPE_CONF_CHECK_I 5415 #undef PIPE_CONF_CHECK_LLI 5416 #undef PIPE_CONF_CHECK_BOOL 5417 #undef PIPE_CONF_CHECK_P 5418 #undef PIPE_CONF_CHECK_FLAGS 5419 #undef PIPE_CONF_CHECK_COLOR_LUT 5420 #undef PIPE_CONF_CHECK_TIMINGS 5421 #undef PIPE_CONF_CHECK_RECT 5422 #undef PIPE_CONF_QUIRK 5423 5424 return ret; 5425 } 5426 5427 static void 5428 intel_verify_planes(struct intel_atomic_state *state) 5429 { 5430 struct intel_plane *plane; 5431 const struct intel_plane_state *plane_state; 5432 int i; 5433 5434 for_each_new_intel_plane_in_state(state, plane, 5435 plane_state, i) 5436 assert_plane(plane, plane_state->is_y_plane || 5437 plane_state->uapi.visible); 5438 } 5439 5440 static int intel_modeset_pipe(struct intel_atomic_state *state, 5441 struct intel_crtc_state *crtc_state, 5442 const char *reason) 5443 { 5444 struct intel_display *display = to_intel_display(state); 5445 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5446 int ret; 5447 5448 drm_dbg_kms(display->drm, "[CRTC:%d:%s] Full modeset due to %s\n", 5449 crtc->base.base.id, crtc->base.name, reason); 5450 5451 ret = drm_atomic_add_affected_connectors(&state->base, 5452 &crtc->base); 5453 if (ret) 5454 return ret; 5455 5456 ret = intel_dp_tunnel_atomic_add_state_for_crtc(state, crtc); 5457 if (ret) 5458 return ret; 5459 5460 ret = intel_dp_mst_add_topology_state_for_crtc(state, crtc); 5461 if (ret) 5462 return ret; 5463 5464 ret = intel_atomic_add_affected_planes(state, crtc); 5465 if (ret) 5466 return ret; 5467 5468 crtc_state->uapi.mode_changed = true; 5469 5470 return 0; 5471 } 5472 5473 /** 5474 * intel_modeset_pipes_in_mask_early - force a full modeset on a set of pipes 5475 * @state: intel atomic state 5476 * @reason: the reason for the full modeset 5477 * @mask: mask of pipes to modeset 5478 * 5479 * Add pipes in @mask to @state and force a full modeset on the enabled ones 5480 * due to the description in @reason. 5481 * This function can be called only before new plane states are computed. 5482 * 5483 * Returns 0 in case of success, negative error code otherwise. 5484 */ 5485 int intel_modeset_pipes_in_mask_early(struct intel_atomic_state *state, 5486 const char *reason, u8 mask) 5487 { 5488 struct intel_display *display = to_intel_display(state); 5489 struct intel_crtc *crtc; 5490 5491 for_each_intel_crtc_in_pipe_mask(display->drm, crtc, mask) { 5492 struct intel_crtc_state *crtc_state; 5493 int ret; 5494 5495 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 5496 if (IS_ERR(crtc_state)) 5497 return PTR_ERR(crtc_state); 5498 5499 if (!crtc_state->hw.enable || 5500 intel_crtc_needs_modeset(crtc_state)) 5501 continue; 5502 5503 ret = intel_modeset_pipe(state, crtc_state, reason); 5504 if (ret) 5505 return ret; 5506 } 5507 5508 return 0; 5509 } 5510 5511 static void 5512 intel_crtc_flag_modeset(struct intel_crtc_state *crtc_state) 5513 { 5514 crtc_state->uapi.mode_changed = true; 5515 5516 crtc_state->update_pipe = false; 5517 crtc_state->update_m_n = false; 5518 crtc_state->update_lrr = false; 5519 } 5520 5521 /** 5522 * intel_modeset_all_pipes_late - force a full modeset on all pipes 5523 * @state: intel atomic state 5524 * @reason: the reason for the full modeset 5525 * 5526 * Add all pipes to @state and force a full modeset on the active ones due to 5527 * the description in @reason. 5528 * This function can be called only after new plane states are computed already. 5529 * 5530 * Returns 0 in case of success, negative error code otherwise. 5531 */ 5532 int intel_modeset_all_pipes_late(struct intel_atomic_state *state, 5533 const char *reason) 5534 { 5535 struct intel_display *display = to_intel_display(state); 5536 struct intel_crtc *crtc; 5537 5538 for_each_intel_crtc(display->drm, crtc) { 5539 struct intel_crtc_state *crtc_state; 5540 int ret; 5541 5542 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 5543 if (IS_ERR(crtc_state)) 5544 return PTR_ERR(crtc_state); 5545 5546 if (!crtc_state->hw.active || 5547 intel_crtc_needs_modeset(crtc_state)) 5548 continue; 5549 5550 ret = intel_modeset_pipe(state, crtc_state, reason); 5551 if (ret) 5552 return ret; 5553 5554 intel_crtc_flag_modeset(crtc_state); 5555 5556 crtc_state->update_planes |= crtc_state->active_planes; 5557 crtc_state->async_flip_planes = 0; 5558 crtc_state->do_async_flip = false; 5559 } 5560 5561 return 0; 5562 } 5563 5564 int intel_modeset_commit_pipes(struct intel_display *display, 5565 u8 pipe_mask, 5566 struct drm_modeset_acquire_ctx *ctx) 5567 { 5568 struct drm_atomic_state *state; 5569 struct intel_crtc *crtc; 5570 int ret; 5571 5572 state = drm_atomic_state_alloc(display->drm); 5573 if (!state) 5574 return -ENOMEM; 5575 5576 state->acquire_ctx = ctx; 5577 to_intel_atomic_state(state)->internal = true; 5578 5579 for_each_intel_crtc_in_pipe_mask(display->drm, crtc, pipe_mask) { 5580 struct intel_crtc_state *crtc_state = 5581 intel_atomic_get_crtc_state(state, crtc); 5582 5583 if (IS_ERR(crtc_state)) { 5584 ret = PTR_ERR(crtc_state); 5585 goto out; 5586 } 5587 5588 crtc_state->uapi.connectors_changed = true; 5589 } 5590 5591 ret = drm_atomic_commit(state); 5592 out: 5593 drm_atomic_state_put(state); 5594 5595 return ret; 5596 } 5597 5598 /* 5599 * This implements the workaround described in the "notes" section of the mode 5600 * set sequence documentation. When going from no pipes or single pipe to 5601 * multiple pipes, and planes are enabled after the pipe, we need to wait at 5602 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 5603 */ 5604 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 5605 { 5606 struct intel_crtc_state *crtc_state; 5607 struct intel_crtc *crtc; 5608 struct intel_crtc_state *first_crtc_state = NULL; 5609 struct intel_crtc_state *other_crtc_state = NULL; 5610 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 5611 int i; 5612 5613 /* look at all crtc's that are going to be enabled in during modeset */ 5614 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 5615 if (!crtc_state->hw.active || 5616 !intel_crtc_needs_modeset(crtc_state)) 5617 continue; 5618 5619 if (first_crtc_state) { 5620 other_crtc_state = crtc_state; 5621 break; 5622 } else { 5623 first_crtc_state = crtc_state; 5624 first_pipe = crtc->pipe; 5625 } 5626 } 5627 5628 /* No workaround needed? */ 5629 if (!first_crtc_state) 5630 return 0; 5631 5632 /* w/a possibly needed, check how many crtc's are already enabled. */ 5633 for_each_intel_crtc(state->base.dev, crtc) { 5634 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 5635 if (IS_ERR(crtc_state)) 5636 return PTR_ERR(crtc_state); 5637 5638 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 5639 5640 if (!crtc_state->hw.active || 5641 intel_crtc_needs_modeset(crtc_state)) 5642 continue; 5643 5644 /* 2 or more enabled crtcs means no need for w/a */ 5645 if (enabled_pipe != INVALID_PIPE) 5646 return 0; 5647 5648 enabled_pipe = crtc->pipe; 5649 } 5650 5651 if (enabled_pipe != INVALID_PIPE) 5652 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 5653 else if (other_crtc_state) 5654 other_crtc_state->hsw_workaround_pipe = first_pipe; 5655 5656 return 0; 5657 } 5658 5659 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 5660 u8 active_pipes) 5661 { 5662 const struct intel_crtc_state *crtc_state; 5663 struct intel_crtc *crtc; 5664 int i; 5665 5666 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 5667 if (crtc_state->hw.active) 5668 active_pipes |= BIT(crtc->pipe); 5669 else 5670 active_pipes &= ~BIT(crtc->pipe); 5671 } 5672 5673 return active_pipes; 5674 } 5675 5676 static int intel_modeset_checks(struct intel_atomic_state *state) 5677 { 5678 struct intel_display *display = to_intel_display(state); 5679 5680 state->modeset = true; 5681 5682 if (display->platform.haswell) 5683 return hsw_mode_set_planes_workaround(state); 5684 5685 return 0; 5686 } 5687 5688 static bool lrr_params_changed(const struct drm_display_mode *old_adjusted_mode, 5689 const struct drm_display_mode *new_adjusted_mode) 5690 { 5691 return old_adjusted_mode->crtc_vblank_start != new_adjusted_mode->crtc_vblank_start || 5692 old_adjusted_mode->crtc_vblank_end != new_adjusted_mode->crtc_vblank_end || 5693 old_adjusted_mode->crtc_vtotal != new_adjusted_mode->crtc_vtotal; 5694 } 5695 5696 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 5697 struct intel_crtc_state *new_crtc_state) 5698 { 5699 struct intel_display *display = to_intel_display(new_crtc_state); 5700 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 5701 5702 /* only allow LRR when the timings stay within the VRR range */ 5703 if (old_crtc_state->vrr.in_range != new_crtc_state->vrr.in_range) 5704 new_crtc_state->update_lrr = false; 5705 5706 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) { 5707 drm_dbg_kms(display->drm, "[CRTC:%d:%s] fastset requirement not met, forcing full modeset\n", 5708 crtc->base.base.id, crtc->base.name); 5709 } else { 5710 if (allow_vblank_delay_fastset(old_crtc_state)) 5711 new_crtc_state->update_lrr = true; 5712 new_crtc_state->uapi.mode_changed = false; 5713 } 5714 5715 if (intel_compare_link_m_n(&old_crtc_state->dp_m_n, 5716 &new_crtc_state->dp_m_n)) 5717 new_crtc_state->update_m_n = false; 5718 5719 if (!lrr_params_changed(&old_crtc_state->hw.adjusted_mode, 5720 &new_crtc_state->hw.adjusted_mode)) 5721 new_crtc_state->update_lrr = false; 5722 5723 if (intel_crtc_needs_modeset(new_crtc_state)) 5724 intel_crtc_flag_modeset(new_crtc_state); 5725 else 5726 new_crtc_state->update_pipe = true; 5727 } 5728 5729 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 5730 { 5731 struct intel_display *display = to_intel_display(state); 5732 struct intel_crtc_state __maybe_unused *crtc_state; 5733 struct intel_crtc *crtc; 5734 int i; 5735 5736 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 5737 int ret; 5738 5739 ret = intel_crtc_atomic_check(state, crtc); 5740 if (ret) { 5741 drm_dbg_atomic(display->drm, 5742 "[CRTC:%d:%s] atomic driver check failed\n", 5743 crtc->base.base.id, crtc->base.name); 5744 return ret; 5745 } 5746 } 5747 5748 return 0; 5749 } 5750 5751 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 5752 u8 transcoders) 5753 { 5754 const struct intel_crtc_state *new_crtc_state; 5755 struct intel_crtc *crtc; 5756 int i; 5757 5758 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 5759 if (new_crtc_state->hw.enable && 5760 transcoders & BIT(new_crtc_state->cpu_transcoder) && 5761 intel_crtc_needs_modeset(new_crtc_state)) 5762 return true; 5763 } 5764 5765 return false; 5766 } 5767 5768 static bool intel_pipes_need_modeset(struct intel_atomic_state *state, 5769 u8 pipes) 5770 { 5771 const struct intel_crtc_state *new_crtc_state; 5772 struct intel_crtc *crtc; 5773 int i; 5774 5775 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 5776 if (new_crtc_state->hw.enable && 5777 pipes & BIT(crtc->pipe) && 5778 intel_crtc_needs_modeset(new_crtc_state)) 5779 return true; 5780 } 5781 5782 return false; 5783 } 5784 5785 static int intel_atomic_check_joiner(struct intel_atomic_state *state, 5786 struct intel_crtc *primary_crtc) 5787 { 5788 struct intel_display *display = to_intel_display(state); 5789 struct intel_crtc_state *primary_crtc_state = 5790 intel_atomic_get_new_crtc_state(state, primary_crtc); 5791 struct intel_crtc *secondary_crtc; 5792 5793 if (!primary_crtc_state->joiner_pipes) 5794 return 0; 5795 5796 /* sanity check */ 5797 if (drm_WARN_ON(display->drm, 5798 primary_crtc->pipe != joiner_primary_pipe(primary_crtc_state))) 5799 return -EINVAL; 5800 5801 if (primary_crtc_state->joiner_pipes & ~joiner_pipes(display)) { 5802 drm_dbg_kms(display->drm, 5803 "[CRTC:%d:%s] Cannot act as joiner primary " 5804 "(need 0x%x as pipes, only 0x%x possible)\n", 5805 primary_crtc->base.base.id, primary_crtc->base.name, 5806 primary_crtc_state->joiner_pipes, joiner_pipes(display)); 5807 return -EINVAL; 5808 } 5809 5810 for_each_intel_crtc_in_pipe_mask(display->drm, secondary_crtc, 5811 intel_crtc_joiner_secondary_pipes(primary_crtc_state)) { 5812 struct intel_crtc_state *secondary_crtc_state; 5813 int ret; 5814 5815 secondary_crtc_state = intel_atomic_get_crtc_state(&state->base, secondary_crtc); 5816 if (IS_ERR(secondary_crtc_state)) 5817 return PTR_ERR(secondary_crtc_state); 5818 5819 /* primary being enabled, secondary was already configured? */ 5820 if (secondary_crtc_state->uapi.enable) { 5821 drm_dbg_kms(display->drm, 5822 "[CRTC:%d:%s] secondary is enabled as normal CRTC, but " 5823 "[CRTC:%d:%s] claiming this CRTC for joiner.\n", 5824 secondary_crtc->base.base.id, secondary_crtc->base.name, 5825 primary_crtc->base.base.id, primary_crtc->base.name); 5826 return -EINVAL; 5827 } 5828 5829 /* 5830 * The state copy logic assumes the primary crtc gets processed 5831 * before the secondary crtc during the main compute_config loop. 5832 * This works because the crtcs are created in pipe order, 5833 * and the hardware requires primary pipe < secondary pipe as well. 5834 * Should that change we need to rethink the logic. 5835 */ 5836 if (WARN_ON(drm_crtc_index(&primary_crtc->base) > 5837 drm_crtc_index(&secondary_crtc->base))) 5838 return -EINVAL; 5839 5840 drm_dbg_kms(display->drm, 5841 "[CRTC:%d:%s] Used as secondary for joiner primary [CRTC:%d:%s]\n", 5842 secondary_crtc->base.base.id, secondary_crtc->base.name, 5843 primary_crtc->base.base.id, primary_crtc->base.name); 5844 5845 secondary_crtc_state->joiner_pipes = 5846 primary_crtc_state->joiner_pipes; 5847 5848 ret = copy_joiner_crtc_state_modeset(state, secondary_crtc); 5849 if (ret) 5850 return ret; 5851 } 5852 5853 return 0; 5854 } 5855 5856 static void kill_joiner_secondaries(struct intel_atomic_state *state, 5857 struct intel_crtc *primary_crtc) 5858 { 5859 struct intel_display *display = to_intel_display(state); 5860 struct intel_crtc_state *primary_crtc_state = 5861 intel_atomic_get_new_crtc_state(state, primary_crtc); 5862 struct intel_crtc *secondary_crtc; 5863 5864 for_each_intel_crtc_in_pipe_mask(display->drm, secondary_crtc, 5865 intel_crtc_joiner_secondary_pipes(primary_crtc_state)) { 5866 struct intel_crtc_state *secondary_crtc_state = 5867 intel_atomic_get_new_crtc_state(state, secondary_crtc); 5868 5869 secondary_crtc_state->joiner_pipes = 0; 5870 5871 intel_crtc_copy_uapi_to_hw_state_modeset(state, secondary_crtc); 5872 } 5873 5874 primary_crtc_state->joiner_pipes = 0; 5875 } 5876 5877 /** 5878 * DOC: asynchronous flip implementation 5879 * 5880 * Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC 5881 * flag. Currently async flip is only supported via the drmModePageFlip IOCTL. 5882 * Correspondingly, support is currently added for primary plane only. 5883 * 5884 * Async flip can only change the plane surface address, so anything else 5885 * changing is rejected from the intel_async_flip_check_hw() function. 5886 * Once this check is cleared, flip done interrupt is enabled using 5887 * the intel_crtc_enable_flip_done() function. 5888 * 5889 * As soon as the surface address register is written, flip done interrupt is 5890 * generated and the requested events are sent to the userspace in the interrupt 5891 * handler itself. The timestamp and sequence sent during the flip done event 5892 * correspond to the last vblank and have no relation to the actual time when 5893 * the flip done event was sent. 5894 */ 5895 static int intel_async_flip_check_uapi(struct intel_atomic_state *state, 5896 struct intel_crtc *crtc) 5897 { 5898 struct intel_display *display = to_intel_display(state); 5899 const struct intel_crtc_state *new_crtc_state = 5900 intel_atomic_get_new_crtc_state(state, crtc); 5901 const struct intel_plane_state *old_plane_state; 5902 struct intel_plane_state *new_plane_state; 5903 struct intel_plane *plane; 5904 int i; 5905 5906 if (!new_crtc_state->uapi.async_flip) 5907 return 0; 5908 5909 if (!new_crtc_state->uapi.active) { 5910 drm_dbg_kms(display->drm, 5911 "[CRTC:%d:%s] not active\n", 5912 crtc->base.base.id, crtc->base.name); 5913 return -EINVAL; 5914 } 5915 5916 if (intel_crtc_needs_modeset(new_crtc_state)) { 5917 drm_dbg_kms(display->drm, 5918 "[CRTC:%d:%s] modeset required\n", 5919 crtc->base.base.id, crtc->base.name); 5920 return -EINVAL; 5921 } 5922 5923 /* 5924 * FIXME: joiner+async flip is busted currently. 5925 * Remove this check once the issues are fixed. 5926 */ 5927 if (new_crtc_state->joiner_pipes) { 5928 drm_dbg_kms(display->drm, 5929 "[CRTC:%d:%s] async flip disallowed with joiner\n", 5930 crtc->base.base.id, crtc->base.name); 5931 return -EINVAL; 5932 } 5933 5934 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 5935 new_plane_state, i) { 5936 if (plane->pipe != crtc->pipe) 5937 continue; 5938 5939 /* 5940 * TODO: Async flip is only supported through the page flip IOCTL 5941 * as of now. So support currently added for primary plane only. 5942 * Support for other planes on platforms on which supports 5943 * this(vlv/chv and icl+) should be added when async flip is 5944 * enabled in the atomic IOCTL path. 5945 */ 5946 if (!plane->async_flip) { 5947 drm_dbg_kms(display->drm, 5948 "[PLANE:%d:%s] async flip not supported\n", 5949 plane->base.base.id, plane->base.name); 5950 return -EINVAL; 5951 } 5952 5953 if (!old_plane_state->uapi.fb || !new_plane_state->uapi.fb) { 5954 drm_dbg_kms(display->drm, 5955 "[PLANE:%d:%s] no old or new framebuffer\n", 5956 plane->base.base.id, plane->base.name); 5957 return -EINVAL; 5958 } 5959 } 5960 5961 return 0; 5962 } 5963 5964 static int intel_async_flip_check_hw(struct intel_atomic_state *state, struct intel_crtc *crtc) 5965 { 5966 struct intel_display *display = to_intel_display(state); 5967 const struct intel_crtc_state *old_crtc_state, *new_crtc_state; 5968 const struct intel_plane_state *new_plane_state, *old_plane_state; 5969 struct intel_plane *plane; 5970 int i; 5971 5972 old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); 5973 new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 5974 5975 if (!new_crtc_state->uapi.async_flip) 5976 return 0; 5977 5978 if (!new_crtc_state->hw.active) { 5979 drm_dbg_kms(display->drm, 5980 "[CRTC:%d:%s] not active\n", 5981 crtc->base.base.id, crtc->base.name); 5982 return -EINVAL; 5983 } 5984 5985 if (intel_crtc_needs_modeset(new_crtc_state)) { 5986 drm_dbg_kms(display->drm, 5987 "[CRTC:%d:%s] modeset required\n", 5988 crtc->base.base.id, crtc->base.name); 5989 return -EINVAL; 5990 } 5991 5992 if (old_crtc_state->active_planes != new_crtc_state->active_planes) { 5993 drm_dbg_kms(display->drm, 5994 "[CRTC:%d:%s] Active planes cannot be in async flip\n", 5995 crtc->base.base.id, crtc->base.name); 5996 return -EINVAL; 5997 } 5998 5999 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 6000 new_plane_state, i) { 6001 if (plane->pipe != crtc->pipe) 6002 continue; 6003 6004 /* 6005 * Only async flip capable planes should be in the state 6006 * if we're really about to ask the hardware to perform 6007 * an async flip. We should never get this far otherwise. 6008 */ 6009 if (drm_WARN_ON(display->drm, 6010 new_crtc_state->do_async_flip && !plane->async_flip)) 6011 return -EINVAL; 6012 6013 /* 6014 * Only check async flip capable planes other planes 6015 * may be involved in the initial commit due to 6016 * the wm0/ddb optimization. 6017 * 6018 * TODO maybe should track which planes actually 6019 * were requested to do the async flip... 6020 */ 6021 if (!plane->async_flip) 6022 continue; 6023 6024 if (!intel_plane_can_async_flip(plane, new_plane_state->hw.fb->format->format, 6025 new_plane_state->hw.fb->modifier)) { 6026 drm_dbg_kms(display->drm, 6027 "[PLANE:%d:%s] pixel format %p4cc / modifier 0x%llx does not support async flip\n", 6028 plane->base.base.id, plane->base.name, 6029 &new_plane_state->hw.fb->format->format, 6030 new_plane_state->hw.fb->modifier); 6031 return -EINVAL; 6032 } 6033 6034 /* 6035 * We turn the first async flip request into a sync flip 6036 * so that we can reconfigure the plane (eg. change modifier). 6037 */ 6038 if (!new_crtc_state->do_async_flip) 6039 continue; 6040 6041 if (old_plane_state->view.color_plane[0].mapping_stride != 6042 new_plane_state->view.color_plane[0].mapping_stride) { 6043 drm_dbg_kms(display->drm, 6044 "[PLANE:%d:%s] Stride cannot be changed in async flip\n", 6045 plane->base.base.id, plane->base.name); 6046 return -EINVAL; 6047 } 6048 6049 if (old_plane_state->hw.fb->modifier != 6050 new_plane_state->hw.fb->modifier) { 6051 drm_dbg_kms(display->drm, 6052 "[PLANE:%d:%s] Modifier cannot be changed in async flip\n", 6053 plane->base.base.id, plane->base.name); 6054 return -EINVAL; 6055 } 6056 6057 if (old_plane_state->hw.fb->format != 6058 new_plane_state->hw.fb->format) { 6059 drm_dbg_kms(display->drm, 6060 "[PLANE:%d:%s] Pixel format cannot be changed in async flip\n", 6061 plane->base.base.id, plane->base.name); 6062 return -EINVAL; 6063 } 6064 6065 if (old_plane_state->hw.rotation != 6066 new_plane_state->hw.rotation) { 6067 drm_dbg_kms(display->drm, 6068 "[PLANE:%d:%s] Rotation cannot be changed in async flip\n", 6069 plane->base.base.id, plane->base.name); 6070 return -EINVAL; 6071 } 6072 6073 if (skl_plane_aux_dist(old_plane_state, 0) != 6074 skl_plane_aux_dist(new_plane_state, 0)) { 6075 drm_dbg_kms(display->drm, 6076 "[PLANE:%d:%s] AUX_DIST cannot be changed in async flip\n", 6077 plane->base.base.id, plane->base.name); 6078 return -EINVAL; 6079 } 6080 6081 if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) || 6082 !drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) { 6083 drm_dbg_kms(display->drm, 6084 "[PLANE:%d:%s] Size/co-ordinates cannot be changed in async flip\n", 6085 plane->base.base.id, plane->base.name); 6086 return -EINVAL; 6087 } 6088 6089 if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) { 6090 drm_dbg_kms(display->drm, 6091 "[PLANES:%d:%s] Alpha value cannot be changed in async flip\n", 6092 plane->base.base.id, plane->base.name); 6093 return -EINVAL; 6094 } 6095 6096 if (old_plane_state->hw.pixel_blend_mode != 6097 new_plane_state->hw.pixel_blend_mode) { 6098 drm_dbg_kms(display->drm, 6099 "[PLANE:%d:%s] Pixel blend mode cannot be changed in async flip\n", 6100 plane->base.base.id, plane->base.name); 6101 return -EINVAL; 6102 } 6103 6104 if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) { 6105 drm_dbg_kms(display->drm, 6106 "[PLANE:%d:%s] Color encoding cannot be changed in async flip\n", 6107 plane->base.base.id, plane->base.name); 6108 return -EINVAL; 6109 } 6110 6111 if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) { 6112 drm_dbg_kms(display->drm, 6113 "[PLANE:%d:%s] Color range cannot be changed in async flip\n", 6114 plane->base.base.id, plane->base.name); 6115 return -EINVAL; 6116 } 6117 6118 /* plane decryption is allow to change only in synchronous flips */ 6119 if (old_plane_state->decrypt != new_plane_state->decrypt) { 6120 drm_dbg_kms(display->drm, 6121 "[PLANE:%d:%s] Decryption cannot be changed in async flip\n", 6122 plane->base.base.id, plane->base.name); 6123 return -EINVAL; 6124 } 6125 } 6126 6127 return 0; 6128 } 6129 6130 static int intel_joiner_add_affected_crtcs(struct intel_atomic_state *state) 6131 { 6132 struct intel_display *display = to_intel_display(state); 6133 const struct intel_plane_state *plane_state; 6134 struct intel_crtc_state *crtc_state; 6135 struct intel_plane *plane; 6136 struct intel_crtc *crtc; 6137 u8 affected_pipes = 0; 6138 u8 modeset_pipes = 0; 6139 int i; 6140 6141 /* 6142 * Any plane which is in use by the joiner needs its crtc. 6143 * Pull those in first as this will not have happened yet 6144 * if the plane remains disabled according to uapi. 6145 */ 6146 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 6147 crtc = to_intel_crtc(plane_state->hw.crtc); 6148 if (!crtc) 6149 continue; 6150 6151 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 6152 if (IS_ERR(crtc_state)) 6153 return PTR_ERR(crtc_state); 6154 } 6155 6156 /* Now pull in all joined crtcs */ 6157 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 6158 affected_pipes |= crtc_state->joiner_pipes; 6159 if (intel_crtc_needs_modeset(crtc_state)) 6160 modeset_pipes |= crtc_state->joiner_pipes; 6161 } 6162 6163 for_each_intel_crtc_in_pipe_mask(display->drm, crtc, affected_pipes) { 6164 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 6165 if (IS_ERR(crtc_state)) 6166 return PTR_ERR(crtc_state); 6167 } 6168 6169 for_each_intel_crtc_in_pipe_mask(display->drm, crtc, modeset_pipes) { 6170 int ret; 6171 6172 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 6173 6174 crtc_state->uapi.mode_changed = true; 6175 6176 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base); 6177 if (ret) 6178 return ret; 6179 6180 ret = intel_atomic_add_affected_planes(state, crtc); 6181 if (ret) 6182 return ret; 6183 } 6184 6185 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 6186 /* Kill old joiner link, we may re-establish afterwards */ 6187 if (intel_crtc_needs_modeset(crtc_state) && 6188 intel_crtc_is_joiner_primary(crtc_state)) 6189 kill_joiner_secondaries(state, crtc); 6190 } 6191 6192 return 0; 6193 } 6194 6195 static int intel_atomic_check_config(struct intel_atomic_state *state, 6196 struct intel_link_bw_limits *limits, 6197 enum pipe *failed_pipe) 6198 { 6199 struct intel_display *display = to_intel_display(state); 6200 struct intel_crtc_state *new_crtc_state; 6201 struct intel_crtc *crtc; 6202 int ret; 6203 int i; 6204 6205 *failed_pipe = INVALID_PIPE; 6206 6207 ret = intel_joiner_add_affected_crtcs(state); 6208 if (ret) 6209 return ret; 6210 6211 ret = intel_fdi_add_affected_crtcs(state); 6212 if (ret) 6213 return ret; 6214 6215 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 6216 if (!intel_crtc_needs_modeset(new_crtc_state)) { 6217 if (intel_crtc_is_joiner_secondary(new_crtc_state)) 6218 copy_joiner_crtc_state_nomodeset(state, crtc); 6219 else 6220 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc); 6221 continue; 6222 } 6223 6224 if (drm_WARN_ON(display->drm, intel_crtc_is_joiner_secondary(new_crtc_state))) 6225 continue; 6226 6227 ret = intel_crtc_prepare_cleared_state(state, crtc); 6228 if (ret) 6229 goto fail; 6230 6231 if (!new_crtc_state->hw.enable) 6232 continue; 6233 6234 ret = intel_modeset_pipe_config(state, crtc, limits); 6235 if (ret) 6236 goto fail; 6237 } 6238 6239 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 6240 if (!intel_crtc_needs_modeset(new_crtc_state)) 6241 continue; 6242 6243 if (drm_WARN_ON(display->drm, intel_crtc_is_joiner_secondary(new_crtc_state))) 6244 continue; 6245 6246 if (!new_crtc_state->hw.enable) 6247 continue; 6248 6249 ret = intel_modeset_pipe_config_late(state, crtc); 6250 if (ret) 6251 goto fail; 6252 } 6253 6254 fail: 6255 if (ret) 6256 *failed_pipe = crtc->pipe; 6257 6258 return ret; 6259 } 6260 6261 static int intel_atomic_check_config_and_link(struct intel_atomic_state *state) 6262 { 6263 struct intel_link_bw_limits new_limits; 6264 struct intel_link_bw_limits old_limits; 6265 int ret; 6266 6267 intel_link_bw_init_limits(state, &new_limits); 6268 old_limits = new_limits; 6269 6270 while (true) { 6271 enum pipe failed_pipe; 6272 6273 ret = intel_atomic_check_config(state, &new_limits, 6274 &failed_pipe); 6275 if (ret) { 6276 /* 6277 * The bpp limit for a pipe is below the minimum it supports, set the 6278 * limit to the minimum and recalculate the config. 6279 */ 6280 if (ret == -EINVAL && 6281 intel_link_bw_set_bpp_limit_for_pipe(state, 6282 &old_limits, 6283 &new_limits, 6284 failed_pipe)) 6285 continue; 6286 6287 break; 6288 } 6289 6290 old_limits = new_limits; 6291 6292 ret = intel_link_bw_atomic_check(state, &new_limits); 6293 if (ret != -EAGAIN) 6294 break; 6295 } 6296 6297 return ret; 6298 } 6299 /** 6300 * intel_atomic_check - validate state object 6301 * @dev: drm device 6302 * @_state: state to validate 6303 */ 6304 int intel_atomic_check(struct drm_device *dev, 6305 struct drm_atomic_state *_state) 6306 { 6307 struct intel_display *display = to_intel_display(dev); 6308 struct intel_atomic_state *state = to_intel_atomic_state(_state); 6309 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 6310 struct intel_crtc *crtc; 6311 int ret, i; 6312 bool any_ms = false; 6313 6314 if (!intel_display_driver_check_access(display)) 6315 return -ENODEV; 6316 6317 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 6318 new_crtc_state, i) { 6319 /* 6320 * crtc's state no longer considered to be inherited 6321 * after the first userspace/client initiated commit. 6322 */ 6323 if (!state->internal) 6324 new_crtc_state->inherited = false; 6325 6326 if (new_crtc_state->inherited != old_crtc_state->inherited) 6327 new_crtc_state->uapi.mode_changed = true; 6328 6329 if (new_crtc_state->uapi.scaling_filter != 6330 old_crtc_state->uapi.scaling_filter) 6331 new_crtc_state->uapi.mode_changed = true; 6332 } 6333 6334 intel_vrr_check_modeset(state); 6335 6336 ret = drm_atomic_helper_check_modeset(dev, &state->base); 6337 if (ret) 6338 goto fail; 6339 6340 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 6341 ret = intel_async_flip_check_uapi(state, crtc); 6342 if (ret) 6343 return ret; 6344 } 6345 6346 ret = intel_atomic_check_config_and_link(state); 6347 if (ret) 6348 goto fail; 6349 6350 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 6351 if (!intel_crtc_needs_modeset(new_crtc_state)) 6352 continue; 6353 6354 if (intel_crtc_is_joiner_secondary(new_crtc_state)) { 6355 drm_WARN_ON(display->drm, new_crtc_state->uapi.enable); 6356 continue; 6357 } 6358 6359 ret = intel_atomic_check_joiner(state, crtc); 6360 if (ret) 6361 goto fail; 6362 } 6363 6364 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 6365 new_crtc_state, i) { 6366 if (!intel_crtc_needs_modeset(new_crtc_state)) 6367 continue; 6368 6369 intel_joiner_adjust_pipe_src(new_crtc_state); 6370 6371 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 6372 } 6373 6374 /** 6375 * Check if fastset is allowed by external dependencies like other 6376 * pipes and transcoders. 6377 * 6378 * Right now it only forces a fullmodeset when the MST master 6379 * transcoder did not changed but the pipe of the master transcoder 6380 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 6381 * in case of port synced crtcs, if one of the synced crtcs 6382 * needs a full modeset, all other synced crtcs should be 6383 * forced a full modeset. 6384 */ 6385 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 6386 if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state)) 6387 continue; 6388 6389 if (intel_dp_mst_crtc_needs_modeset(state, crtc)) 6390 intel_crtc_flag_modeset(new_crtc_state); 6391 6392 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 6393 enum transcoder master = new_crtc_state->mst_master_transcoder; 6394 6395 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) 6396 intel_crtc_flag_modeset(new_crtc_state); 6397 } 6398 6399 if (is_trans_port_sync_mode(new_crtc_state)) { 6400 u8 trans = new_crtc_state->sync_mode_slaves_mask; 6401 6402 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 6403 trans |= BIT(new_crtc_state->master_transcoder); 6404 6405 if (intel_cpu_transcoders_need_modeset(state, trans)) 6406 intel_crtc_flag_modeset(new_crtc_state); 6407 } 6408 6409 if (new_crtc_state->joiner_pipes) { 6410 if (intel_pipes_need_modeset(state, new_crtc_state->joiner_pipes)) 6411 intel_crtc_flag_modeset(new_crtc_state); 6412 } 6413 } 6414 6415 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 6416 new_crtc_state, i) { 6417 if (!intel_crtc_needs_modeset(new_crtc_state)) 6418 continue; 6419 6420 any_ms = true; 6421 6422 intel_release_shared_dplls(state, crtc); 6423 } 6424 6425 if (any_ms && !check_digital_port_conflicts(state)) { 6426 drm_dbg_kms(display->drm, 6427 "rejecting conflicting digital port configuration\n"); 6428 ret = -EINVAL; 6429 goto fail; 6430 } 6431 6432 ret = intel_atomic_check_planes(state); 6433 if (ret) 6434 goto fail; 6435 6436 ret = intel_compute_global_watermarks(state); 6437 if (ret) 6438 goto fail; 6439 6440 ret = intel_bw_atomic_check(state, any_ms); 6441 if (ret) 6442 goto fail; 6443 6444 ret = intel_cdclk_atomic_check(state, &any_ms); 6445 if (ret) 6446 goto fail; 6447 6448 if (intel_any_crtc_needs_modeset(state)) 6449 any_ms = true; 6450 6451 if (any_ms) { 6452 ret = intel_modeset_checks(state); 6453 if (ret) 6454 goto fail; 6455 6456 ret = intel_modeset_calc_cdclk(state); 6457 if (ret) 6458 return ret; 6459 } 6460 6461 ret = intel_pmdemand_atomic_check(state); 6462 if (ret) 6463 goto fail; 6464 6465 ret = intel_atomic_check_crtcs(state); 6466 if (ret) 6467 goto fail; 6468 6469 ret = intel_fbc_atomic_check(state); 6470 if (ret) 6471 goto fail; 6472 6473 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 6474 new_crtc_state, i) { 6475 intel_color_assert_luts(new_crtc_state); 6476 6477 ret = intel_async_flip_check_hw(state, crtc); 6478 if (ret) 6479 goto fail; 6480 6481 /* Either full modeset or fastset (or neither), never both */ 6482 drm_WARN_ON(display->drm, 6483 intel_crtc_needs_modeset(new_crtc_state) && 6484 intel_crtc_needs_fastset(new_crtc_state)); 6485 6486 if (!intel_crtc_needs_modeset(new_crtc_state) && 6487 !intel_crtc_needs_fastset(new_crtc_state)) 6488 continue; 6489 6490 intel_crtc_state_dump(new_crtc_state, state, 6491 intel_crtc_needs_modeset(new_crtc_state) ? 6492 "modeset" : "fastset"); 6493 } 6494 6495 return 0; 6496 6497 fail: 6498 if (ret == -EDEADLK) 6499 return ret; 6500 6501 /* 6502 * FIXME would probably be nice to know which crtc specifically 6503 * caused the failure, in cases where we can pinpoint it. 6504 */ 6505 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 6506 new_crtc_state, i) 6507 intel_crtc_state_dump(new_crtc_state, state, "failed"); 6508 6509 return ret; 6510 } 6511 6512 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 6513 { 6514 int ret; 6515 6516 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); 6517 if (ret < 0) 6518 return ret; 6519 6520 return 0; 6521 } 6522 6523 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 6524 struct intel_crtc_state *crtc_state) 6525 { 6526 struct intel_display *display = to_intel_display(crtc); 6527 6528 if (DISPLAY_VER(display) != 2 || crtc_state->active_planes) 6529 intel_set_cpu_fifo_underrun_reporting(display, crtc->pipe, true); 6530 6531 if (crtc_state->has_pch_encoder) { 6532 enum pipe pch_transcoder = 6533 intel_crtc_pch_transcoder(crtc); 6534 6535 intel_set_pch_fifo_underrun_reporting(display, pch_transcoder, true); 6536 } 6537 } 6538 6539 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 6540 const struct intel_crtc_state *new_crtc_state) 6541 { 6542 struct intel_display *display = to_intel_display(new_crtc_state); 6543 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6544 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6545 6546 /* 6547 * Update pipe size and adjust fitter if needed: the reason for this is 6548 * that in compute_mode_changes we check the native mode (not the pfit 6549 * mode) to see if we can flip rather than do a full mode set. In the 6550 * fastboot case, we'll flip, but if we don't update the pipesrc and 6551 * pfit state, we'll end up with a big fb scanned out into the wrong 6552 * sized surface. 6553 */ 6554 intel_set_pipe_src_size(new_crtc_state); 6555 6556 /* on skylake this is done by detaching scalers */ 6557 if (DISPLAY_VER(display) >= 9) { 6558 if (new_crtc_state->pch_pfit.enabled) 6559 skl_pfit_enable(new_crtc_state); 6560 } else if (HAS_PCH_SPLIT(dev_priv)) { 6561 if (new_crtc_state->pch_pfit.enabled) 6562 ilk_pfit_enable(new_crtc_state); 6563 else if (old_crtc_state->pch_pfit.enabled) 6564 ilk_pfit_disable(old_crtc_state); 6565 } 6566 6567 /* 6568 * The register is supposedly single buffered so perhaps 6569 * not 100% correct to do this here. But SKL+ calculate 6570 * this based on the adjust pixel rate so pfit changes do 6571 * affect it and so it must be updated for fastsets. 6572 * HSW/BDW only really need this here for fastboot, after 6573 * that the value should not change without a full modeset. 6574 */ 6575 if (DISPLAY_VER(display) >= 9 || 6576 display->platform.broadwell || display->platform.haswell) 6577 hsw_set_linetime_wm(new_crtc_state); 6578 6579 if (new_crtc_state->update_m_n) 6580 intel_cpu_transcoder_set_m1_n1(crtc, new_crtc_state->cpu_transcoder, 6581 &new_crtc_state->dp_m_n); 6582 6583 if (new_crtc_state->update_lrr) 6584 intel_set_transcoder_timings_lrr(new_crtc_state); 6585 } 6586 6587 static void commit_pipe_pre_planes(struct intel_atomic_state *state, 6588 struct intel_crtc *crtc) 6589 { 6590 struct intel_display *display = to_intel_display(state); 6591 const struct intel_crtc_state *old_crtc_state = 6592 intel_atomic_get_old_crtc_state(state, crtc); 6593 const struct intel_crtc_state *new_crtc_state = 6594 intel_atomic_get_new_crtc_state(state, crtc); 6595 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 6596 6597 drm_WARN_ON(display->drm, new_crtc_state->use_dsb); 6598 6599 /* 6600 * During modesets pipe configuration was programmed as the 6601 * CRTC was enabled. 6602 */ 6603 if (!modeset) { 6604 if (intel_crtc_needs_color_update(new_crtc_state)) 6605 intel_color_commit_arm(NULL, new_crtc_state); 6606 6607 if (DISPLAY_VER(display) >= 9 || display->platform.broadwell) 6608 bdw_set_pipe_misc(NULL, new_crtc_state); 6609 6610 if (intel_crtc_needs_fastset(new_crtc_state)) 6611 intel_pipe_fastset(old_crtc_state, new_crtc_state); 6612 } 6613 6614 intel_psr2_program_trans_man_trk_ctl(NULL, new_crtc_state); 6615 6616 intel_atomic_update_watermarks(state, crtc); 6617 } 6618 6619 static void commit_pipe_post_planes(struct intel_atomic_state *state, 6620 struct intel_crtc *crtc) 6621 { 6622 struct intel_display *display = to_intel_display(state); 6623 const struct intel_crtc_state *new_crtc_state = 6624 intel_atomic_get_new_crtc_state(state, crtc); 6625 6626 drm_WARN_ON(display->drm, new_crtc_state->use_dsb); 6627 6628 /* 6629 * Disable the scaler(s) after the plane(s) so that we don't 6630 * get a catastrophic underrun even if the two operations 6631 * end up happening in two different frames. 6632 */ 6633 if (DISPLAY_VER(display) >= 9 && 6634 !intel_crtc_needs_modeset(new_crtc_state)) 6635 skl_detach_scalers(NULL, new_crtc_state); 6636 6637 if (intel_crtc_vrr_enabling(state, crtc)) 6638 intel_vrr_enable(new_crtc_state); 6639 } 6640 6641 static void intel_enable_crtc(struct intel_atomic_state *state, 6642 struct intel_crtc *crtc) 6643 { 6644 struct intel_display *display = to_intel_display(state); 6645 const struct intel_crtc_state *new_crtc_state = 6646 intel_atomic_get_new_crtc_state(state, crtc); 6647 struct intel_crtc *pipe_crtc; 6648 6649 if (!intel_crtc_needs_modeset(new_crtc_state)) 6650 return; 6651 6652 for_each_intel_crtc_in_pipe_mask_reverse(display->drm, pipe_crtc, 6653 intel_crtc_joined_pipe_mask(new_crtc_state)) { 6654 const struct intel_crtc_state *pipe_crtc_state = 6655 intel_atomic_get_new_crtc_state(state, pipe_crtc); 6656 6657 /* VRR will be enable later, if required */ 6658 intel_crtc_update_active_timings(pipe_crtc_state, false); 6659 } 6660 6661 display->funcs.display->crtc_enable(state, crtc); 6662 6663 /* vblanks work again, re-enable pipe CRC. */ 6664 intel_crtc_enable_pipe_crc(crtc); 6665 } 6666 6667 static void intel_pre_update_crtc(struct intel_atomic_state *state, 6668 struct intel_crtc *crtc) 6669 { 6670 struct intel_display *display = to_intel_display(state); 6671 const struct intel_crtc_state *old_crtc_state = 6672 intel_atomic_get_old_crtc_state(state, crtc); 6673 struct intel_crtc_state *new_crtc_state = 6674 intel_atomic_get_new_crtc_state(state, crtc); 6675 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 6676 6677 if (old_crtc_state->inherited || 6678 intel_crtc_needs_modeset(new_crtc_state)) { 6679 if (HAS_DPT(display)) 6680 intel_dpt_configure(crtc); 6681 } 6682 6683 if (!modeset) { 6684 if (new_crtc_state->preload_luts && 6685 intel_crtc_needs_color_update(new_crtc_state)) 6686 intel_color_load_luts(new_crtc_state); 6687 6688 intel_pre_plane_update(state, crtc); 6689 6690 if (intel_crtc_needs_fastset(new_crtc_state)) 6691 intel_encoders_update_pipe(state, crtc); 6692 6693 if (DISPLAY_VER(display) >= 11 && 6694 intel_crtc_needs_fastset(new_crtc_state)) 6695 icl_set_pipe_chicken(new_crtc_state); 6696 6697 if (vrr_params_changed(old_crtc_state, new_crtc_state) || 6698 cmrr_params_changed(old_crtc_state, new_crtc_state)) 6699 intel_vrr_set_transcoder_timings(new_crtc_state); 6700 } 6701 6702 intel_fbc_update(state, crtc); 6703 6704 drm_WARN_ON(display->drm, !intel_display_power_is_enabled(display, POWER_DOMAIN_DC_OFF)); 6705 6706 if (!modeset && 6707 intel_crtc_needs_color_update(new_crtc_state) && 6708 !new_crtc_state->use_dsb) 6709 intel_color_commit_noarm(NULL, new_crtc_state); 6710 6711 if (!new_crtc_state->use_dsb) 6712 intel_crtc_planes_update_noarm(NULL, state, crtc); 6713 } 6714 6715 static void intel_update_crtc(struct intel_atomic_state *state, 6716 struct intel_crtc *crtc) 6717 { 6718 const struct intel_crtc_state *old_crtc_state = 6719 intel_atomic_get_old_crtc_state(state, crtc); 6720 struct intel_crtc_state *new_crtc_state = 6721 intel_atomic_get_new_crtc_state(state, crtc); 6722 6723 if (new_crtc_state->use_dsb) { 6724 intel_crtc_prepare_vblank_event(new_crtc_state, &crtc->dsb_event); 6725 6726 intel_dsb_commit(new_crtc_state->dsb_commit, false); 6727 } else { 6728 /* Perform vblank evasion around commit operation */ 6729 intel_pipe_update_start(state, crtc); 6730 6731 if (new_crtc_state->dsb_commit) 6732 intel_dsb_commit(new_crtc_state->dsb_commit, false); 6733 6734 commit_pipe_pre_planes(state, crtc); 6735 6736 intel_crtc_planes_update_arm(NULL, state, crtc); 6737 6738 commit_pipe_post_planes(state, crtc); 6739 6740 intel_pipe_update_end(state, crtc); 6741 } 6742 6743 /* 6744 * VRR/Seamless M/N update may need to update frame timings. 6745 * 6746 * FIXME Should be synchronized with the start of vblank somehow... 6747 */ 6748 if (intel_crtc_vrr_enabling(state, crtc) || 6749 new_crtc_state->update_m_n || new_crtc_state->update_lrr) 6750 intel_crtc_update_active_timings(new_crtc_state, 6751 new_crtc_state->vrr.enable); 6752 6753 /* 6754 * We usually enable FIFO underrun interrupts as part of the 6755 * CRTC enable sequence during modesets. But when we inherit a 6756 * valid pipe configuration from the BIOS we need to take care 6757 * of enabling them on the CRTC's first fastset. 6758 */ 6759 if (intel_crtc_needs_fastset(new_crtc_state) && 6760 old_crtc_state->inherited) 6761 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 6762 } 6763 6764 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 6765 struct intel_crtc *crtc) 6766 { 6767 struct intel_display *display = to_intel_display(state); 6768 const struct intel_crtc_state *old_crtc_state = 6769 intel_atomic_get_old_crtc_state(state, crtc); 6770 struct intel_crtc *pipe_crtc; 6771 6772 /* 6773 * We need to disable pipe CRC before disabling the pipe, 6774 * or we race against vblank off. 6775 */ 6776 for_each_intel_crtc_in_pipe_mask(display->drm, pipe_crtc, 6777 intel_crtc_joined_pipe_mask(old_crtc_state)) 6778 intel_crtc_disable_pipe_crc(pipe_crtc); 6779 6780 display->funcs.display->crtc_disable(state, crtc); 6781 6782 for_each_intel_crtc_in_pipe_mask(display->drm, pipe_crtc, 6783 intel_crtc_joined_pipe_mask(old_crtc_state)) { 6784 const struct intel_crtc_state *new_pipe_crtc_state = 6785 intel_atomic_get_new_crtc_state(state, pipe_crtc); 6786 6787 pipe_crtc->active = false; 6788 intel_fbc_disable(pipe_crtc); 6789 6790 if (!new_pipe_crtc_state->hw.active) 6791 intel_initial_watermarks(state, pipe_crtc); 6792 } 6793 } 6794 6795 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 6796 { 6797 struct intel_display *display = to_intel_display(state); 6798 const struct intel_crtc_state *new_crtc_state, *old_crtc_state; 6799 struct intel_crtc *crtc; 6800 u8 disable_pipes = 0; 6801 int i; 6802 6803 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 6804 new_crtc_state, i) { 6805 if (!intel_crtc_needs_modeset(new_crtc_state)) 6806 continue; 6807 6808 /* 6809 * Needs to be done even for pipes 6810 * that weren't enabled previously. 6811 */ 6812 intel_pre_plane_update(state, crtc); 6813 6814 if (!old_crtc_state->hw.active) 6815 continue; 6816 6817 disable_pipes |= BIT(crtc->pipe); 6818 } 6819 6820 for_each_old_intel_crtc_in_state(state, crtc, old_crtc_state, i) { 6821 if ((disable_pipes & BIT(crtc->pipe)) == 0) 6822 continue; 6823 6824 intel_crtc_disable_planes(state, crtc); 6825 6826 drm_vblank_work_flush_all(&crtc->base); 6827 } 6828 6829 /* Only disable port sync and MST slaves */ 6830 for_each_old_intel_crtc_in_state(state, crtc, old_crtc_state, i) { 6831 if ((disable_pipes & BIT(crtc->pipe)) == 0) 6832 continue; 6833 6834 if (intel_crtc_is_joiner_secondary(old_crtc_state)) 6835 continue; 6836 6837 /* In case of Transcoder port Sync master slave CRTCs can be 6838 * assigned in any order and we need to make sure that 6839 * slave CRTCs are disabled first and then master CRTC since 6840 * Slave vblanks are masked till Master Vblanks. 6841 */ 6842 if (!is_trans_port_sync_slave(old_crtc_state) && 6843 !intel_dp_mst_is_slave_trans(old_crtc_state)) 6844 continue; 6845 6846 intel_old_crtc_state_disables(state, crtc); 6847 6848 disable_pipes &= ~intel_crtc_joined_pipe_mask(old_crtc_state); 6849 } 6850 6851 /* Disable everything else left on */ 6852 for_each_old_intel_crtc_in_state(state, crtc, old_crtc_state, i) { 6853 if ((disable_pipes & BIT(crtc->pipe)) == 0) 6854 continue; 6855 6856 if (intel_crtc_is_joiner_secondary(old_crtc_state)) 6857 continue; 6858 6859 intel_old_crtc_state_disables(state, crtc); 6860 6861 disable_pipes &= ~intel_crtc_joined_pipe_mask(old_crtc_state); 6862 } 6863 6864 drm_WARN_ON(display->drm, disable_pipes); 6865 } 6866 6867 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 6868 { 6869 struct intel_crtc_state *new_crtc_state; 6870 struct intel_crtc *crtc; 6871 int i; 6872 6873 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 6874 if (!new_crtc_state->hw.active) 6875 continue; 6876 6877 intel_enable_crtc(state, crtc); 6878 intel_pre_update_crtc(state, crtc); 6879 } 6880 6881 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 6882 if (!new_crtc_state->hw.active) 6883 continue; 6884 6885 intel_update_crtc(state, crtc); 6886 } 6887 } 6888 6889 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 6890 { 6891 struct intel_display *display = to_intel_display(state); 6892 struct intel_crtc *crtc; 6893 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 6894 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 6895 u8 update_pipes = 0, modeset_pipes = 0; 6896 int i; 6897 6898 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 6899 enum pipe pipe = crtc->pipe; 6900 6901 if (!new_crtc_state->hw.active) 6902 continue; 6903 6904 /* ignore allocations for crtc's that have been turned off. */ 6905 if (!intel_crtc_needs_modeset(new_crtc_state)) { 6906 entries[pipe] = old_crtc_state->wm.skl.ddb; 6907 update_pipes |= BIT(pipe); 6908 } else { 6909 modeset_pipes |= BIT(pipe); 6910 } 6911 } 6912 6913 /* 6914 * Whenever the number of active pipes changes, we need to make sure we 6915 * update the pipes in the right order so that their ddb allocations 6916 * never overlap with each other between CRTC updates. Otherwise we'll 6917 * cause pipe underruns and other bad stuff. 6918 * 6919 * So first lets enable all pipes that do not need a fullmodeset as 6920 * those don't have any external dependency. 6921 */ 6922 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 6923 enum pipe pipe = crtc->pipe; 6924 6925 if ((update_pipes & BIT(pipe)) == 0) 6926 continue; 6927 6928 intel_pre_update_crtc(state, crtc); 6929 } 6930 6931 intel_dbuf_mbus_pre_ddb_update(state); 6932 6933 while (update_pipes) { 6934 /* 6935 * Commit in reverse order to make joiner primary 6936 * send the uapi events after secondaries are done. 6937 */ 6938 for_each_oldnew_intel_crtc_in_state_reverse(state, crtc, old_crtc_state, 6939 new_crtc_state, i) { 6940 enum pipe pipe = crtc->pipe; 6941 6942 if ((update_pipes & BIT(pipe)) == 0) 6943 continue; 6944 6945 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 6946 entries, I915_MAX_PIPES, pipe)) 6947 continue; 6948 6949 entries[pipe] = new_crtc_state->wm.skl.ddb; 6950 update_pipes &= ~BIT(pipe); 6951 6952 intel_update_crtc(state, crtc); 6953 6954 /* 6955 * If this is an already active pipe, it's DDB changed, 6956 * and this isn't the last pipe that needs updating 6957 * then we need to wait for a vblank to pass for the 6958 * new ddb allocation to take effect. 6959 */ 6960 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 6961 &old_crtc_state->wm.skl.ddb) && 6962 (update_pipes | modeset_pipes)) 6963 intel_crtc_wait_for_next_vblank(crtc); 6964 } 6965 } 6966 6967 intel_dbuf_mbus_post_ddb_update(state); 6968 6969 update_pipes = modeset_pipes; 6970 6971 /* 6972 * Enable all pipes that needs a modeset and do not depends on other 6973 * pipes 6974 */ 6975 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 6976 enum pipe pipe = crtc->pipe; 6977 6978 if ((modeset_pipes & BIT(pipe)) == 0) 6979 continue; 6980 6981 if (intel_crtc_is_joiner_secondary(new_crtc_state)) 6982 continue; 6983 6984 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 6985 is_trans_port_sync_master(new_crtc_state)) 6986 continue; 6987 6988 modeset_pipes &= ~intel_crtc_joined_pipe_mask(new_crtc_state); 6989 6990 intel_enable_crtc(state, crtc); 6991 } 6992 6993 /* 6994 * Then we enable all remaining pipes that depend on other 6995 * pipes: MST slaves and port sync masters 6996 */ 6997 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 6998 enum pipe pipe = crtc->pipe; 6999 7000 if ((modeset_pipes & BIT(pipe)) == 0) 7001 continue; 7002 7003 if (intel_crtc_is_joiner_secondary(new_crtc_state)) 7004 continue; 7005 7006 modeset_pipes &= ~intel_crtc_joined_pipe_mask(new_crtc_state); 7007 7008 intel_enable_crtc(state, crtc); 7009 } 7010 7011 /* 7012 * Finally we do the plane updates/etc. for all pipes that got enabled. 7013 */ 7014 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 7015 enum pipe pipe = crtc->pipe; 7016 7017 if ((update_pipes & BIT(pipe)) == 0) 7018 continue; 7019 7020 intel_pre_update_crtc(state, crtc); 7021 } 7022 7023 /* 7024 * Commit in reverse order to make joiner primary 7025 * send the uapi events after secondaries are done. 7026 */ 7027 for_each_new_intel_crtc_in_state_reverse(state, crtc, new_crtc_state, i) { 7028 enum pipe pipe = crtc->pipe; 7029 7030 if ((update_pipes & BIT(pipe)) == 0) 7031 continue; 7032 7033 drm_WARN_ON(display->drm, 7034 skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 7035 entries, I915_MAX_PIPES, pipe)); 7036 7037 entries[pipe] = new_crtc_state->wm.skl.ddb; 7038 update_pipes &= ~BIT(pipe); 7039 7040 intel_update_crtc(state, crtc); 7041 } 7042 7043 drm_WARN_ON(display->drm, modeset_pipes); 7044 drm_WARN_ON(display->drm, update_pipes); 7045 } 7046 7047 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 7048 { 7049 struct drm_i915_private *i915 = to_i915(intel_state->base.dev); 7050 struct drm_plane *plane; 7051 struct drm_plane_state *new_plane_state; 7052 int ret, i; 7053 7054 for_each_new_plane_in_state(&intel_state->base, plane, new_plane_state, i) { 7055 if (new_plane_state->fence) { 7056 ret = dma_fence_wait_timeout(new_plane_state->fence, false, 7057 i915_fence_timeout(i915)); 7058 if (ret <= 0) 7059 break; 7060 7061 dma_fence_put(new_plane_state->fence); 7062 new_plane_state->fence = NULL; 7063 } 7064 } 7065 } 7066 7067 static void intel_atomic_dsb_wait_commit(struct intel_crtc_state *crtc_state) 7068 { 7069 if (crtc_state->dsb_commit) 7070 intel_dsb_wait(crtc_state->dsb_commit); 7071 7072 intel_color_wait_commit(crtc_state); 7073 } 7074 7075 static void intel_atomic_dsb_cleanup(struct intel_crtc_state *crtc_state) 7076 { 7077 if (crtc_state->dsb_commit) { 7078 intel_dsb_cleanup(crtc_state->dsb_commit); 7079 crtc_state->dsb_commit = NULL; 7080 } 7081 7082 intel_color_cleanup_commit(crtc_state); 7083 } 7084 7085 static void intel_atomic_cleanup_work(struct work_struct *work) 7086 { 7087 struct intel_atomic_state *state = 7088 container_of(work, struct intel_atomic_state, cleanup_work); 7089 struct intel_display *display = to_intel_display(state); 7090 struct intel_crtc_state *old_crtc_state; 7091 struct intel_crtc *crtc; 7092 int i; 7093 7094 for_each_old_intel_crtc_in_state(state, crtc, old_crtc_state, i) 7095 intel_atomic_dsb_cleanup(old_crtc_state); 7096 7097 drm_atomic_helper_cleanup_planes(display->drm, &state->base); 7098 drm_atomic_helper_commit_cleanup_done(&state->base); 7099 drm_atomic_state_put(&state->base); 7100 } 7101 7102 static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state) 7103 { 7104 struct intel_display *display = to_intel_display(state); 7105 struct intel_plane *plane; 7106 struct intel_plane_state *plane_state; 7107 int i; 7108 7109 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7110 struct drm_framebuffer *fb = plane_state->hw.fb; 7111 int cc_plane; 7112 int ret; 7113 7114 if (!fb) 7115 continue; 7116 7117 cc_plane = intel_fb_rc_ccs_cc_plane(fb); 7118 if (cc_plane < 0) 7119 continue; 7120 7121 /* 7122 * The layout of the fast clear color value expected by HW 7123 * (the DRM ABI requiring this value to be located in fb at 7124 * offset 0 of cc plane, plane #2 previous generations or 7125 * plane #1 for flat ccs): 7126 * - 4 x 4 bytes per-channel value 7127 * (in surface type specific float/int format provided by the fb user) 7128 * - 8 bytes native color value used by the display 7129 * (converted/written by GPU during a fast clear operation using the 7130 * above per-channel values) 7131 * 7132 * The commit's FB prepare hook already ensured that FB obj is pinned and the 7133 * caller made sure that the object is synced wrt. the related color clear value 7134 * GPU write on it. 7135 */ 7136 ret = intel_bo_read_from_page(intel_fb_bo(fb), 7137 fb->offsets[cc_plane] + 16, 7138 &plane_state->ccval, 7139 sizeof(plane_state->ccval)); 7140 /* The above could only fail if the FB obj has an unexpected backing store type. */ 7141 drm_WARN_ON(display->drm, ret); 7142 } 7143 } 7144 7145 static void intel_atomic_dsb_prepare(struct intel_atomic_state *state, 7146 struct intel_crtc *crtc) 7147 { 7148 struct intel_display *display = to_intel_display(state); 7149 struct intel_crtc_state *new_crtc_state = 7150 intel_atomic_get_new_crtc_state(state, crtc); 7151 7152 if (!new_crtc_state->hw.active) 7153 return; 7154 7155 if (state->base.legacy_cursor_update) 7156 return; 7157 7158 /* FIXME deal with everything */ 7159 new_crtc_state->use_dsb = 7160 !new_crtc_state->do_async_flip && 7161 (DISPLAY_VER(display) >= 20 || !new_crtc_state->has_psr) && 7162 !intel_crtc_needs_modeset(new_crtc_state) && 7163 !intel_crtc_needs_fastset(new_crtc_state); 7164 7165 intel_color_prepare_commit(state, crtc); 7166 } 7167 7168 static void intel_atomic_dsb_finish(struct intel_atomic_state *state, 7169 struct intel_crtc *crtc) 7170 { 7171 struct intel_display *display = to_intel_display(state); 7172 struct intel_crtc_state *new_crtc_state = 7173 intel_atomic_get_new_crtc_state(state, crtc); 7174 7175 if (!new_crtc_state->use_dsb && !new_crtc_state->dsb_color_vblank) 7176 return; 7177 7178 /* 7179 * Rough estimate: 7180 * ~64 registers per each plane * 8 planes = 512 7181 * Double that for pipe stuff and other overhead. 7182 */ 7183 new_crtc_state->dsb_commit = intel_dsb_prepare(state, crtc, INTEL_DSB_0, 7184 new_crtc_state->use_dsb ? 1024 : 16); 7185 if (!new_crtc_state->dsb_commit) { 7186 new_crtc_state->use_dsb = false; 7187 intel_color_cleanup_commit(new_crtc_state); 7188 return; 7189 } 7190 7191 if (new_crtc_state->use_dsb) { 7192 if (intel_crtc_needs_color_update(new_crtc_state)) 7193 intel_color_commit_noarm(new_crtc_state->dsb_commit, 7194 new_crtc_state); 7195 intel_crtc_planes_update_noarm(new_crtc_state->dsb_commit, 7196 state, crtc); 7197 7198 /* 7199 * Ensure we have "Frame Change" event when PSR state is 7200 * SRDENT(PSR1) or DEEP_SLEEP(PSR2). Otherwise DSB vblank 7201 * evasion hangs as PIPEDSL is reading as 0. 7202 */ 7203 intel_psr_trigger_frame_change_event(new_crtc_state->dsb_commit, 7204 state, crtc); 7205 7206 intel_dsb_vblank_evade(state, new_crtc_state->dsb_commit); 7207 7208 if (intel_crtc_needs_color_update(new_crtc_state)) 7209 intel_color_commit_arm(new_crtc_state->dsb_commit, 7210 new_crtc_state); 7211 bdw_set_pipe_misc(new_crtc_state->dsb_commit, 7212 new_crtc_state); 7213 intel_psr2_program_trans_man_trk_ctl(new_crtc_state->dsb_commit, 7214 new_crtc_state); 7215 intel_crtc_planes_update_arm(new_crtc_state->dsb_commit, 7216 state, crtc); 7217 7218 if (DISPLAY_VER(display) >= 9) 7219 skl_detach_scalers(new_crtc_state->dsb_commit, 7220 new_crtc_state); 7221 7222 if (!new_crtc_state->dsb_color_vblank) { 7223 intel_dsb_wait_vblanks(new_crtc_state->dsb_commit, 1); 7224 7225 intel_vrr_send_push(new_crtc_state->dsb_commit, new_crtc_state); 7226 intel_dsb_wait_vblank_delay(state, new_crtc_state->dsb_commit); 7227 intel_vrr_check_push_sent(new_crtc_state->dsb_commit, new_crtc_state); 7228 intel_dsb_interrupt(new_crtc_state->dsb_commit); 7229 } 7230 } 7231 7232 if (new_crtc_state->dsb_color_vblank) 7233 intel_dsb_chain(state, new_crtc_state->dsb_commit, 7234 new_crtc_state->dsb_color_vblank, true); 7235 7236 intel_dsb_finish(new_crtc_state->dsb_commit); 7237 } 7238 7239 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 7240 { 7241 struct intel_display *display = to_intel_display(state); 7242 struct drm_i915_private __maybe_unused *dev_priv = to_i915(display->drm); 7243 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 7244 struct intel_crtc *crtc; 7245 struct intel_power_domain_mask put_domains[I915_MAX_PIPES] = {}; 7246 intel_wakeref_t wakeref = NULL; 7247 int i; 7248 7249 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 7250 intel_atomic_dsb_prepare(state, crtc); 7251 7252 intel_atomic_commit_fence_wait(state); 7253 7254 intel_td_flush(display); 7255 7256 intel_atomic_prepare_plane_clear_colors(state); 7257 7258 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 7259 intel_fbc_prepare_dirty_rect(state, crtc); 7260 7261 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 7262 intel_atomic_dsb_finish(state, crtc); 7263 7264 drm_atomic_helper_wait_for_dependencies(&state->base); 7265 drm_dp_mst_atomic_wait_for_dependencies(&state->base); 7266 intel_atomic_global_state_wait_for_dependencies(state); 7267 7268 /* 7269 * During full modesets we write a lot of registers, wait 7270 * for PLLs, etc. Doing that while DC states are enabled 7271 * is not a good idea. 7272 * 7273 * During fastsets and other updates we also need to 7274 * disable DC states due to the following scenario: 7275 * 1. DC5 exit and PSR exit happen 7276 * 2. Some or all _noarm() registers are written 7277 * 3. Due to some long delay PSR is re-entered 7278 * 4. DC5 entry -> DMC saves the already written new 7279 * _noarm() registers and the old not yet written 7280 * _arm() registers 7281 * 5. DC5 exit -> DMC restores a mixture of old and 7282 * new register values and arms the update 7283 * 6. PSR exit -> hardware latches a mixture of old and 7284 * new register values -> corrupted frame, or worse 7285 * 7. New _arm() registers are finally written 7286 * 8. Hardware finally latches a complete set of new 7287 * register values, and subsequent frames will be OK again 7288 * 7289 * Also note that due to the pipe CSC hardware issues on 7290 * SKL/GLK DC states must remain off until the pipe CSC 7291 * state readout has happened. Otherwise we risk corrupting 7292 * the CSC latched register values with the readout (see 7293 * skl_read_csc() and skl_color_commit_noarm()). 7294 */ 7295 wakeref = intel_display_power_get(display, POWER_DOMAIN_DC_OFF); 7296 7297 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 7298 new_crtc_state, i) { 7299 if (intel_crtc_needs_modeset(new_crtc_state) || 7300 intel_crtc_needs_fastset(new_crtc_state)) 7301 intel_modeset_get_crtc_power_domains(new_crtc_state, &put_domains[crtc->pipe]); 7302 } 7303 7304 intel_commit_modeset_disables(state); 7305 7306 intel_dp_tunnel_atomic_alloc_bw(state); 7307 7308 /* FIXME: Eventually get rid of our crtc->config pointer */ 7309 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 7310 crtc->config = new_crtc_state; 7311 7312 /* 7313 * In XE_LPD+ Pmdemand combines many parameters such as voltage index, 7314 * plls, cdclk frequency, QGV point selection parameter etc. Voltage 7315 * index, cdclk/ddiclk frequencies are supposed to be configured before 7316 * the cdclk config is set. 7317 */ 7318 intel_pmdemand_pre_plane_update(state); 7319 7320 if (state->modeset) { 7321 drm_atomic_helper_update_legacy_modeset_state(display->drm, &state->base); 7322 7323 intel_set_cdclk_pre_plane_update(state); 7324 7325 intel_modeset_verify_disabled(state); 7326 } 7327 7328 intel_sagv_pre_plane_update(state); 7329 7330 /* Complete the events for pipes that have now been disabled */ 7331 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 7332 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 7333 7334 /* Complete events for now disable pipes here. */ 7335 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 7336 spin_lock_irq(&display->drm->event_lock); 7337 drm_crtc_send_vblank_event(&crtc->base, 7338 new_crtc_state->uapi.event); 7339 spin_unlock_irq(&display->drm->event_lock); 7340 7341 new_crtc_state->uapi.event = NULL; 7342 } 7343 } 7344 7345 intel_encoders_update_prepare(state); 7346 7347 intel_dbuf_pre_plane_update(state); 7348 7349 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 7350 if (new_crtc_state->do_async_flip) 7351 intel_crtc_enable_flip_done(state, crtc); 7352 } 7353 7354 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 7355 display->funcs.display->commit_modeset_enables(state); 7356 7357 intel_program_dpkgc_latency(state); 7358 7359 intel_wait_for_vblank_workers(state); 7360 7361 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 7362 * already, but still need the state for the delayed optimization. To 7363 * fix this: 7364 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 7365 * - schedule that vblank worker _before_ calling hw_done 7366 * - at the start of commit_tail, cancel it _synchrously 7367 * - switch over to the vblank wait helper in the core after that since 7368 * we don't need out special handling any more. 7369 */ 7370 drm_atomic_helper_wait_for_flip_done(display->drm, &state->base); 7371 7372 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 7373 if (new_crtc_state->do_async_flip) 7374 intel_crtc_disable_flip_done(state, crtc); 7375 7376 intel_atomic_dsb_wait_commit(new_crtc_state); 7377 7378 if (!state->base.legacy_cursor_update && !new_crtc_state->use_dsb) 7379 intel_vrr_check_push_sent(NULL, new_crtc_state); 7380 } 7381 7382 /* 7383 * Now that the vblank has passed, we can go ahead and program the 7384 * optimal watermarks on platforms that need two-step watermark 7385 * programming. 7386 * 7387 * TODO: Move this (and other cleanup) to an async worker eventually. 7388 */ 7389 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 7390 new_crtc_state, i) { 7391 /* 7392 * Gen2 reports pipe underruns whenever all planes are disabled. 7393 * So re-enable underrun reporting after some planes get enabled. 7394 * 7395 * We do this before .optimize_watermarks() so that we have a 7396 * chance of catching underruns with the intermediate watermarks 7397 * vs. the new plane configuration. 7398 */ 7399 if (DISPLAY_VER(display) == 2 && planes_enabling(old_crtc_state, new_crtc_state)) 7400 intel_set_cpu_fifo_underrun_reporting(display, crtc->pipe, true); 7401 7402 intel_optimize_watermarks(state, crtc); 7403 } 7404 7405 intel_dbuf_post_plane_update(state); 7406 7407 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 7408 intel_post_plane_update(state, crtc); 7409 7410 intel_modeset_put_crtc_power_domains(crtc, &put_domains[crtc->pipe]); 7411 7412 intel_modeset_verify_crtc(state, crtc); 7413 7414 intel_post_plane_update_after_readout(state, crtc); 7415 7416 /* 7417 * DSB cleanup is done in cleanup_work aligning with framebuffer 7418 * cleanup. So copy and reset the dsb structure to sync with 7419 * commit_done and later do dsb cleanup in cleanup_work. 7420 * 7421 * FIXME get rid of this funny new->old swapping 7422 */ 7423 old_crtc_state->dsb_color_vblank = fetch_and_zero(&new_crtc_state->dsb_color_vblank); 7424 old_crtc_state->dsb_commit = fetch_and_zero(&new_crtc_state->dsb_commit); 7425 } 7426 7427 /* Underruns don't always raise interrupts, so check manually */ 7428 intel_check_cpu_fifo_underruns(display); 7429 intel_check_pch_fifo_underruns(display); 7430 7431 if (state->modeset) 7432 intel_verify_planes(state); 7433 7434 intel_sagv_post_plane_update(state); 7435 if (state->modeset) 7436 intel_set_cdclk_post_plane_update(state); 7437 intel_pmdemand_post_plane_update(state); 7438 7439 drm_atomic_helper_commit_hw_done(&state->base); 7440 intel_atomic_global_state_commit_done(state); 7441 7442 if (state->modeset) { 7443 /* As one of the primary mmio accessors, KMS has a high 7444 * likelihood of triggering bugs in unclaimed access. After we 7445 * finish modesetting, see if an error has been flagged, and if 7446 * so enable debugging for the next modeset - and hope we catch 7447 * the culprit. 7448 */ 7449 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 7450 } 7451 /* 7452 * Delay re-enabling DC states by 17 ms to avoid the off->on->off 7453 * toggling overhead at and above 60 FPS. 7454 */ 7455 intel_display_power_put_async_delay(display, POWER_DOMAIN_DC_OFF, wakeref, 17); 7456 intel_display_rpm_put(display, state->wakeref); 7457 7458 /* 7459 * Defer the cleanup of the old state to a separate worker to not 7460 * impede the current task (userspace for blocking modesets) that 7461 * are executed inline. For out-of-line asynchronous modesets/flips, 7462 * deferring to a new worker seems overkill, but we would place a 7463 * schedule point (cond_resched()) here anyway to keep latencies 7464 * down. 7465 */ 7466 INIT_WORK(&state->cleanup_work, intel_atomic_cleanup_work); 7467 queue_work(display->wq.cleanup, &state->cleanup_work); 7468 } 7469 7470 static void intel_atomic_commit_work(struct work_struct *work) 7471 { 7472 struct intel_atomic_state *state = 7473 container_of(work, struct intel_atomic_state, base.commit_work); 7474 7475 intel_atomic_commit_tail(state); 7476 } 7477 7478 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 7479 { 7480 struct intel_plane_state *old_plane_state, *new_plane_state; 7481 struct intel_plane *plane; 7482 int i; 7483 7484 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 7485 new_plane_state, i) 7486 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 7487 to_intel_frontbuffer(new_plane_state->hw.fb), 7488 plane->frontbuffer_bit); 7489 } 7490 7491 static int intel_atomic_setup_commit(struct intel_atomic_state *state, bool nonblock) 7492 { 7493 int ret; 7494 7495 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 7496 if (ret) 7497 return ret; 7498 7499 ret = intel_atomic_global_state_setup_commit(state); 7500 if (ret) 7501 return ret; 7502 7503 return 0; 7504 } 7505 7506 static int intel_atomic_swap_state(struct intel_atomic_state *state) 7507 { 7508 int ret; 7509 7510 ret = drm_atomic_helper_swap_state(&state->base, true); 7511 if (ret) 7512 return ret; 7513 7514 intel_atomic_swap_global_state(state); 7515 7516 intel_shared_dpll_swap_state(state); 7517 7518 intel_atomic_track_fbs(state); 7519 7520 return 0; 7521 } 7522 7523 int intel_atomic_commit(struct drm_device *dev, struct drm_atomic_state *_state, 7524 bool nonblock) 7525 { 7526 struct intel_display *display = to_intel_display(dev); 7527 struct intel_atomic_state *state = to_intel_atomic_state(_state); 7528 int ret = 0; 7529 7530 state->wakeref = intel_display_rpm_get(display); 7531 7532 /* 7533 * The intel_legacy_cursor_update() fast path takes care 7534 * of avoiding the vblank waits for simple cursor 7535 * movement and flips. For cursor on/off and size changes, 7536 * we want to perform the vblank waits so that watermark 7537 * updates happen during the correct frames. Gen9+ have 7538 * double buffered watermarks and so shouldn't need this. 7539 * 7540 * Unset state->legacy_cursor_update before the call to 7541 * drm_atomic_helper_setup_commit() because otherwise 7542 * drm_atomic_helper_wait_for_flip_done() is a noop and 7543 * we get FIFO underruns because we didn't wait 7544 * for vblank. 7545 * 7546 * FIXME doing watermarks and fb cleanup from a vblank worker 7547 * (assuming we had any) would solve these problems. 7548 */ 7549 if (DISPLAY_VER(display) < 9 && state->base.legacy_cursor_update) { 7550 struct intel_crtc_state *new_crtc_state; 7551 struct intel_crtc *crtc; 7552 int i; 7553 7554 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 7555 if (new_crtc_state->wm.need_postvbl_update || 7556 new_crtc_state->update_wm_post) 7557 state->base.legacy_cursor_update = false; 7558 } 7559 7560 ret = intel_atomic_prepare_commit(state); 7561 if (ret) { 7562 drm_dbg_atomic(display->drm, 7563 "Preparing state failed with %i\n", ret); 7564 intel_display_rpm_put(display, state->wakeref); 7565 return ret; 7566 } 7567 7568 ret = intel_atomic_setup_commit(state, nonblock); 7569 if (!ret) 7570 ret = intel_atomic_swap_state(state); 7571 7572 if (ret) { 7573 drm_atomic_helper_unprepare_planes(dev, &state->base); 7574 intel_display_rpm_put(display, state->wakeref); 7575 return ret; 7576 } 7577 7578 drm_atomic_state_get(&state->base); 7579 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 7580 7581 if (nonblock && state->modeset) { 7582 queue_work(display->wq.modeset, &state->base.commit_work); 7583 } else if (nonblock) { 7584 queue_work(display->wq.flip, &state->base.commit_work); 7585 } else { 7586 if (state->modeset) 7587 flush_workqueue(display->wq.modeset); 7588 intel_atomic_commit_tail(state); 7589 } 7590 7591 return 0; 7592 } 7593 7594 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 7595 { 7596 struct intel_display *display = to_intel_display(encoder); 7597 struct intel_encoder *source_encoder; 7598 u32 possible_clones = 0; 7599 7600 for_each_intel_encoder(display->drm, source_encoder) { 7601 if (encoders_cloneable(encoder, source_encoder)) 7602 possible_clones |= drm_encoder_mask(&source_encoder->base); 7603 } 7604 7605 return possible_clones; 7606 } 7607 7608 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 7609 { 7610 struct intel_display *display = to_intel_display(encoder); 7611 struct intel_crtc *crtc; 7612 u32 possible_crtcs = 0; 7613 7614 for_each_intel_crtc_in_pipe_mask(display->drm, crtc, encoder->pipe_mask) 7615 possible_crtcs |= drm_crtc_mask(&crtc->base); 7616 7617 return possible_crtcs; 7618 } 7619 7620 static bool ilk_has_edp_a(struct intel_display *display) 7621 { 7622 if (!display->platform.mobile) 7623 return false; 7624 7625 if ((intel_de_read(display, DP_A) & DP_DETECTED) == 0) 7626 return false; 7627 7628 if (display->platform.ironlake && (intel_de_read(display, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 7629 return false; 7630 7631 return true; 7632 } 7633 7634 static bool intel_ddi_crt_present(struct intel_display *display) 7635 { 7636 struct drm_i915_private *dev_priv = to_i915(display->drm); 7637 7638 if (DISPLAY_VER(display) >= 9) 7639 return false; 7640 7641 if (display->platform.haswell_ult || display->platform.broadwell_ult) 7642 return false; 7643 7644 if (HAS_PCH_LPT_H(dev_priv) && 7645 intel_de_read(display, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 7646 return false; 7647 7648 /* DDI E can't be used if DDI A requires 4 lanes */ 7649 if (intel_de_read(display, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 7650 return false; 7651 7652 if (!display->vbt.int_crt_support) 7653 return false; 7654 7655 return true; 7656 } 7657 7658 bool assert_port_valid(struct intel_display *display, enum port port) 7659 { 7660 return !drm_WARN(display->drm, !(DISPLAY_RUNTIME_INFO(display)->port_mask & BIT(port)), 7661 "Platform does not support port %c\n", port_name(port)); 7662 } 7663 7664 void intel_setup_outputs(struct intel_display *display) 7665 { 7666 struct drm_i915_private *dev_priv = to_i915(display->drm); 7667 struct intel_encoder *encoder; 7668 bool dpd_is_edp = false; 7669 7670 intel_pps_unlock_regs_wa(display); 7671 7672 if (!HAS_DISPLAY(display)) 7673 return; 7674 7675 if (HAS_DDI(display)) { 7676 if (intel_ddi_crt_present(display)) 7677 intel_crt_init(display); 7678 7679 intel_bios_for_each_encoder(display, intel_ddi_init); 7680 7681 if (display->platform.geminilake || display->platform.broxton) 7682 vlv_dsi_init(display); 7683 } else if (HAS_PCH_SPLIT(dev_priv)) { 7684 int found; 7685 7686 /* 7687 * intel_edp_init_connector() depends on this completing first, 7688 * to prevent the registration of both eDP and LVDS and the 7689 * incorrect sharing of the PPS. 7690 */ 7691 intel_lvds_init(display); 7692 intel_crt_init(display); 7693 7694 dpd_is_edp = intel_dp_is_port_edp(display, PORT_D); 7695 7696 if (ilk_has_edp_a(display)) 7697 g4x_dp_init(display, DP_A, PORT_A); 7698 7699 if (intel_de_read(display, PCH_HDMIB) & SDVO_DETECTED) { 7700 /* PCH SDVOB multiplex with HDMIB */ 7701 found = intel_sdvo_init(display, PCH_SDVOB, PORT_B); 7702 if (!found) 7703 g4x_hdmi_init(display, PCH_HDMIB, PORT_B); 7704 if (!found && (intel_de_read(display, PCH_DP_B) & DP_DETECTED)) 7705 g4x_dp_init(display, PCH_DP_B, PORT_B); 7706 } 7707 7708 if (intel_de_read(display, PCH_HDMIC) & SDVO_DETECTED) 7709 g4x_hdmi_init(display, PCH_HDMIC, PORT_C); 7710 7711 if (!dpd_is_edp && intel_de_read(display, PCH_HDMID) & SDVO_DETECTED) 7712 g4x_hdmi_init(display, PCH_HDMID, PORT_D); 7713 7714 if (intel_de_read(display, PCH_DP_C) & DP_DETECTED) 7715 g4x_dp_init(display, PCH_DP_C, PORT_C); 7716 7717 if (intel_de_read(display, PCH_DP_D) & DP_DETECTED) 7718 g4x_dp_init(display, PCH_DP_D, PORT_D); 7719 } else if (display->platform.valleyview || display->platform.cherryview) { 7720 bool has_edp, has_port; 7721 7722 if (display->platform.valleyview && display->vbt.int_crt_support) 7723 intel_crt_init(display); 7724 7725 /* 7726 * The DP_DETECTED bit is the latched state of the DDC 7727 * SDA pin at boot. However since eDP doesn't require DDC 7728 * (no way to plug in a DP->HDMI dongle) the DDC pins for 7729 * eDP ports may have been muxed to an alternate function. 7730 * Thus we can't rely on the DP_DETECTED bit alone to detect 7731 * eDP ports. Consult the VBT as well as DP_DETECTED to 7732 * detect eDP ports. 7733 * 7734 * Sadly the straps seem to be missing sometimes even for HDMI 7735 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 7736 * and VBT for the presence of the port. Additionally we can't 7737 * trust the port type the VBT declares as we've seen at least 7738 * HDMI ports that the VBT claim are DP or eDP. 7739 */ 7740 has_edp = intel_dp_is_port_edp(display, PORT_B); 7741 has_port = intel_bios_is_port_present(display, PORT_B); 7742 if (intel_de_read(display, VLV_DP_B) & DP_DETECTED || has_port) 7743 has_edp &= g4x_dp_init(display, VLV_DP_B, PORT_B); 7744 if ((intel_de_read(display, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 7745 g4x_hdmi_init(display, VLV_HDMIB, PORT_B); 7746 7747 has_edp = intel_dp_is_port_edp(display, PORT_C); 7748 has_port = intel_bios_is_port_present(display, PORT_C); 7749 if (intel_de_read(display, VLV_DP_C) & DP_DETECTED || has_port) 7750 has_edp &= g4x_dp_init(display, VLV_DP_C, PORT_C); 7751 if ((intel_de_read(display, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 7752 g4x_hdmi_init(display, VLV_HDMIC, PORT_C); 7753 7754 if (display->platform.cherryview) { 7755 /* 7756 * eDP not supported on port D, 7757 * so no need to worry about it 7758 */ 7759 has_port = intel_bios_is_port_present(display, PORT_D); 7760 if (intel_de_read(display, CHV_DP_D) & DP_DETECTED || has_port) 7761 g4x_dp_init(display, CHV_DP_D, PORT_D); 7762 if (intel_de_read(display, CHV_HDMID) & SDVO_DETECTED || has_port) 7763 g4x_hdmi_init(display, CHV_HDMID, PORT_D); 7764 } 7765 7766 vlv_dsi_init(display); 7767 } else if (display->platform.pineview) { 7768 intel_lvds_init(display); 7769 intel_crt_init(display); 7770 } else if (IS_DISPLAY_VER(display, 3, 4)) { 7771 bool found = false; 7772 7773 if (display->platform.mobile) 7774 intel_lvds_init(display); 7775 7776 intel_crt_init(display); 7777 7778 if (intel_de_read(display, GEN3_SDVOB) & SDVO_DETECTED) { 7779 drm_dbg_kms(display->drm, "probing SDVOB\n"); 7780 found = intel_sdvo_init(display, GEN3_SDVOB, PORT_B); 7781 if (!found && display->platform.g4x) { 7782 drm_dbg_kms(display->drm, 7783 "probing HDMI on SDVOB\n"); 7784 g4x_hdmi_init(display, GEN4_HDMIB, PORT_B); 7785 } 7786 7787 if (!found && display->platform.g4x) 7788 g4x_dp_init(display, DP_B, PORT_B); 7789 } 7790 7791 /* Before G4X SDVOC doesn't have its own detect register */ 7792 7793 if (intel_de_read(display, GEN3_SDVOB) & SDVO_DETECTED) { 7794 drm_dbg_kms(display->drm, "probing SDVOC\n"); 7795 found = intel_sdvo_init(display, GEN3_SDVOC, PORT_C); 7796 } 7797 7798 if (!found && (intel_de_read(display, GEN3_SDVOC) & SDVO_DETECTED)) { 7799 7800 if (display->platform.g4x) { 7801 drm_dbg_kms(display->drm, 7802 "probing HDMI on SDVOC\n"); 7803 g4x_hdmi_init(display, GEN4_HDMIC, PORT_C); 7804 } 7805 if (display->platform.g4x) 7806 g4x_dp_init(display, DP_C, PORT_C); 7807 } 7808 7809 if (display->platform.g4x && (intel_de_read(display, DP_D) & DP_DETECTED)) 7810 g4x_dp_init(display, DP_D, PORT_D); 7811 7812 if (SUPPORTS_TV(display)) 7813 intel_tv_init(display); 7814 } else if (DISPLAY_VER(display) == 2) { 7815 if (display->platform.i85x) 7816 intel_lvds_init(display); 7817 7818 intel_crt_init(display); 7819 intel_dvo_init(display); 7820 } 7821 7822 for_each_intel_encoder(display->drm, encoder) { 7823 encoder->base.possible_crtcs = 7824 intel_encoder_possible_crtcs(encoder); 7825 encoder->base.possible_clones = 7826 intel_encoder_possible_clones(encoder); 7827 } 7828 7829 intel_init_pch_refclk(display); 7830 7831 drm_helper_move_panel_connectors_to_head(display->drm); 7832 } 7833 7834 static int max_dotclock(struct intel_display *display) 7835 { 7836 int max_dotclock = display->cdclk.max_dotclk_freq; 7837 7838 if (HAS_ULTRAJOINER(display)) 7839 max_dotclock *= 4; 7840 else if (HAS_UNCOMPRESSED_JOINER(display) || HAS_BIGJOINER(display)) 7841 max_dotclock *= 2; 7842 7843 return max_dotclock; 7844 } 7845 7846 enum drm_mode_status intel_mode_valid(struct drm_device *dev, 7847 const struct drm_display_mode *mode) 7848 { 7849 struct intel_display *display = to_intel_display(dev); 7850 int hdisplay_max, htotal_max; 7851 int vdisplay_max, vtotal_max; 7852 7853 /* 7854 * Can't reject DBLSCAN here because Xorg ddxen can add piles 7855 * of DBLSCAN modes to the output's mode list when they detect 7856 * the scaling mode property on the connector. And they don't 7857 * ask the kernel to validate those modes in any way until 7858 * modeset time at which point the client gets a protocol error. 7859 * So in order to not upset those clients we silently ignore the 7860 * DBLSCAN flag on such connectors. For other connectors we will 7861 * reject modes with the DBLSCAN flag in encoder->compute_config(). 7862 * And we always reject DBLSCAN modes in connector->mode_valid() 7863 * as we never want such modes on the connector's mode list. 7864 */ 7865 7866 if (mode->vscan > 1) 7867 return MODE_NO_VSCAN; 7868 7869 if (mode->flags & DRM_MODE_FLAG_HSKEW) 7870 return MODE_H_ILLEGAL; 7871 7872 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 7873 DRM_MODE_FLAG_NCSYNC | 7874 DRM_MODE_FLAG_PCSYNC)) 7875 return MODE_HSYNC; 7876 7877 if (mode->flags & (DRM_MODE_FLAG_BCAST | 7878 DRM_MODE_FLAG_PIXMUX | 7879 DRM_MODE_FLAG_CLKDIV2)) 7880 return MODE_BAD; 7881 7882 /* 7883 * Reject clearly excessive dotclocks early to 7884 * avoid having to worry about huge integers later. 7885 */ 7886 if (mode->clock > max_dotclock(display)) 7887 return MODE_CLOCK_HIGH; 7888 7889 /* Transcoder timing limits */ 7890 if (DISPLAY_VER(display) >= 11) { 7891 hdisplay_max = 16384; 7892 vdisplay_max = 8192; 7893 htotal_max = 16384; 7894 vtotal_max = 8192; 7895 } else if (DISPLAY_VER(display) >= 9 || 7896 display->platform.broadwell || display->platform.haswell) { 7897 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 7898 vdisplay_max = 4096; 7899 htotal_max = 8192; 7900 vtotal_max = 8192; 7901 } else if (DISPLAY_VER(display) >= 3) { 7902 hdisplay_max = 4096; 7903 vdisplay_max = 4096; 7904 htotal_max = 8192; 7905 vtotal_max = 8192; 7906 } else { 7907 hdisplay_max = 2048; 7908 vdisplay_max = 2048; 7909 htotal_max = 4096; 7910 vtotal_max = 4096; 7911 } 7912 7913 if (mode->hdisplay > hdisplay_max || 7914 mode->hsync_start > htotal_max || 7915 mode->hsync_end > htotal_max || 7916 mode->htotal > htotal_max) 7917 return MODE_H_ILLEGAL; 7918 7919 if (mode->vdisplay > vdisplay_max || 7920 mode->vsync_start > vtotal_max || 7921 mode->vsync_end > vtotal_max || 7922 mode->vtotal > vtotal_max) 7923 return MODE_V_ILLEGAL; 7924 7925 return MODE_OK; 7926 } 7927 7928 enum drm_mode_status intel_cpu_transcoder_mode_valid(struct intel_display *display, 7929 const struct drm_display_mode *mode) 7930 { 7931 /* 7932 * Additional transcoder timing limits, 7933 * excluding BXT/GLK DSI transcoders. 7934 */ 7935 if (DISPLAY_VER(display) >= 5) { 7936 if (mode->hdisplay < 64 || 7937 mode->htotal - mode->hdisplay < 32) 7938 return MODE_H_ILLEGAL; 7939 7940 if (mode->vtotal - mode->vdisplay < 5) 7941 return MODE_V_ILLEGAL; 7942 } else { 7943 if (mode->htotal - mode->hdisplay < 32) 7944 return MODE_H_ILLEGAL; 7945 7946 if (mode->vtotal - mode->vdisplay < 3) 7947 return MODE_V_ILLEGAL; 7948 } 7949 7950 /* 7951 * Cantiga+ cannot handle modes with a hsync front porch of 0. 7952 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 7953 */ 7954 if ((DISPLAY_VER(display) >= 5 || display->platform.g4x) && 7955 mode->hsync_start == mode->hdisplay) 7956 return MODE_H_ILLEGAL; 7957 7958 return MODE_OK; 7959 } 7960 7961 enum drm_mode_status 7962 intel_mode_valid_max_plane_size(struct intel_display *display, 7963 const struct drm_display_mode *mode, 7964 int num_joined_pipes) 7965 { 7966 int plane_width_max, plane_height_max; 7967 7968 /* 7969 * intel_mode_valid() should be 7970 * sufficient on older platforms. 7971 */ 7972 if (DISPLAY_VER(display) < 9) 7973 return MODE_OK; 7974 7975 /* 7976 * Most people will probably want a fullscreen 7977 * plane so let's not advertize modes that are 7978 * too big for that. 7979 */ 7980 if (DISPLAY_VER(display) >= 30) { 7981 plane_width_max = 6144 * num_joined_pipes; 7982 plane_height_max = 4800; 7983 } else if (DISPLAY_VER(display) >= 11) { 7984 plane_width_max = 5120 * num_joined_pipes; 7985 plane_height_max = 4320; 7986 } else { 7987 plane_width_max = 5120; 7988 plane_height_max = 4096; 7989 } 7990 7991 if (mode->hdisplay > plane_width_max) 7992 return MODE_H_ILLEGAL; 7993 7994 if (mode->vdisplay > plane_height_max) 7995 return MODE_V_ILLEGAL; 7996 7997 return MODE_OK; 7998 } 7999 8000 static const struct intel_display_funcs skl_display_funcs = { 8001 .get_pipe_config = hsw_get_pipe_config, 8002 .crtc_enable = hsw_crtc_enable, 8003 .crtc_disable = hsw_crtc_disable, 8004 .commit_modeset_enables = skl_commit_modeset_enables, 8005 .get_initial_plane_config = skl_get_initial_plane_config, 8006 .fixup_initial_plane_config = skl_fixup_initial_plane_config, 8007 }; 8008 8009 static const struct intel_display_funcs ddi_display_funcs = { 8010 .get_pipe_config = hsw_get_pipe_config, 8011 .crtc_enable = hsw_crtc_enable, 8012 .crtc_disable = hsw_crtc_disable, 8013 .commit_modeset_enables = intel_commit_modeset_enables, 8014 .get_initial_plane_config = i9xx_get_initial_plane_config, 8015 .fixup_initial_plane_config = i9xx_fixup_initial_plane_config, 8016 }; 8017 8018 static const struct intel_display_funcs pch_split_display_funcs = { 8019 .get_pipe_config = ilk_get_pipe_config, 8020 .crtc_enable = ilk_crtc_enable, 8021 .crtc_disable = ilk_crtc_disable, 8022 .commit_modeset_enables = intel_commit_modeset_enables, 8023 .get_initial_plane_config = i9xx_get_initial_plane_config, 8024 .fixup_initial_plane_config = i9xx_fixup_initial_plane_config, 8025 }; 8026 8027 static const struct intel_display_funcs vlv_display_funcs = { 8028 .get_pipe_config = i9xx_get_pipe_config, 8029 .crtc_enable = valleyview_crtc_enable, 8030 .crtc_disable = i9xx_crtc_disable, 8031 .commit_modeset_enables = intel_commit_modeset_enables, 8032 .get_initial_plane_config = i9xx_get_initial_plane_config, 8033 .fixup_initial_plane_config = i9xx_fixup_initial_plane_config, 8034 }; 8035 8036 static const struct intel_display_funcs i9xx_display_funcs = { 8037 .get_pipe_config = i9xx_get_pipe_config, 8038 .crtc_enable = i9xx_crtc_enable, 8039 .crtc_disable = i9xx_crtc_disable, 8040 .commit_modeset_enables = intel_commit_modeset_enables, 8041 .get_initial_plane_config = i9xx_get_initial_plane_config, 8042 .fixup_initial_plane_config = i9xx_fixup_initial_plane_config, 8043 }; 8044 8045 /** 8046 * intel_init_display_hooks - initialize the display modesetting hooks 8047 * @display: display device private 8048 */ 8049 void intel_init_display_hooks(struct intel_display *display) 8050 { 8051 struct drm_i915_private *dev_priv = to_i915(display->drm); 8052 8053 if (DISPLAY_VER(display) >= 9) { 8054 display->funcs.display = &skl_display_funcs; 8055 } else if (HAS_DDI(display)) { 8056 display->funcs.display = &ddi_display_funcs; 8057 } else if (HAS_PCH_SPLIT(dev_priv)) { 8058 display->funcs.display = &pch_split_display_funcs; 8059 } else if (display->platform.cherryview || 8060 display->platform.valleyview) { 8061 display->funcs.display = &vlv_display_funcs; 8062 } else { 8063 display->funcs.display = &i9xx_display_funcs; 8064 } 8065 } 8066 8067 int intel_initial_commit(struct intel_display *display) 8068 { 8069 struct drm_atomic_state *state = NULL; 8070 struct drm_modeset_acquire_ctx ctx; 8071 struct intel_crtc *crtc; 8072 int ret = 0; 8073 8074 state = drm_atomic_state_alloc(display->drm); 8075 if (!state) 8076 return -ENOMEM; 8077 8078 drm_modeset_acquire_init(&ctx, 0); 8079 8080 state->acquire_ctx = &ctx; 8081 to_intel_atomic_state(state)->internal = true; 8082 8083 retry: 8084 for_each_intel_crtc(display->drm, crtc) { 8085 struct intel_crtc_state *crtc_state = 8086 intel_atomic_get_crtc_state(state, crtc); 8087 8088 if (IS_ERR(crtc_state)) { 8089 ret = PTR_ERR(crtc_state); 8090 goto out; 8091 } 8092 8093 if (!crtc_state->hw.active) 8094 crtc_state->inherited = false; 8095 8096 if (crtc_state->hw.active) { 8097 struct intel_encoder *encoder; 8098 8099 ret = drm_atomic_add_affected_planes(state, &crtc->base); 8100 if (ret) 8101 goto out; 8102 8103 /* 8104 * FIXME hack to force a LUT update to avoid the 8105 * plane update forcing the pipe gamma on without 8106 * having a proper LUT loaded. Remove once we 8107 * have readout for pipe gamma enable. 8108 */ 8109 crtc_state->uapi.color_mgmt_changed = true; 8110 8111 for_each_intel_encoder_mask(display->drm, encoder, 8112 crtc_state->uapi.encoder_mask) { 8113 if (encoder->initial_fastset_check && 8114 !encoder->initial_fastset_check(encoder, crtc_state)) { 8115 ret = drm_atomic_add_affected_connectors(state, 8116 &crtc->base); 8117 if (ret) 8118 goto out; 8119 } 8120 } 8121 } 8122 } 8123 8124 ret = drm_atomic_commit(state); 8125 8126 out: 8127 if (ret == -EDEADLK) { 8128 drm_atomic_state_clear(state); 8129 drm_modeset_backoff(&ctx); 8130 goto retry; 8131 } 8132 8133 drm_atomic_state_put(state); 8134 8135 drm_modeset_drop_locks(&ctx); 8136 drm_modeset_acquire_fini(&ctx); 8137 8138 return ret; 8139 } 8140 8141 void i830_enable_pipe(struct intel_display *display, enum pipe pipe) 8142 { 8143 struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe); 8144 enum transcoder cpu_transcoder = (enum transcoder)pipe; 8145 /* 640x480@60Hz, ~25175 kHz */ 8146 struct dpll clock = { 8147 .m1 = 18, 8148 .m2 = 7, 8149 .p1 = 13, 8150 .p2 = 4, 8151 .n = 2, 8152 }; 8153 u32 dpll, fp; 8154 int i; 8155 8156 drm_WARN_ON(display->drm, 8157 i9xx_calc_dpll_params(48000, &clock) != 25154); 8158 8159 drm_dbg_kms(display->drm, 8160 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 8161 pipe_name(pipe), clock.vco, clock.dot); 8162 8163 fp = i9xx_dpll_compute_fp(&clock); 8164 dpll = DPLL_DVO_2X_MODE | 8165 DPLL_VGA_MODE_DIS | 8166 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 8167 PLL_P2_DIVIDE_BY_4 | 8168 PLL_REF_INPUT_DREFCLK | 8169 DPLL_VCO_ENABLE; 8170 8171 intel_de_write(display, TRANS_HTOTAL(display, cpu_transcoder), 8172 HACTIVE(640 - 1) | HTOTAL(800 - 1)); 8173 intel_de_write(display, TRANS_HBLANK(display, cpu_transcoder), 8174 HBLANK_START(640 - 1) | HBLANK_END(800 - 1)); 8175 intel_de_write(display, TRANS_HSYNC(display, cpu_transcoder), 8176 HSYNC_START(656 - 1) | HSYNC_END(752 - 1)); 8177 intel_de_write(display, TRANS_VTOTAL(display, cpu_transcoder), 8178 VACTIVE(480 - 1) | VTOTAL(525 - 1)); 8179 intel_de_write(display, TRANS_VBLANK(display, cpu_transcoder), 8180 VBLANK_START(480 - 1) | VBLANK_END(525 - 1)); 8181 intel_de_write(display, TRANS_VSYNC(display, cpu_transcoder), 8182 VSYNC_START(490 - 1) | VSYNC_END(492 - 1)); 8183 intel_de_write(display, PIPESRC(display, pipe), 8184 PIPESRC_WIDTH(640 - 1) | PIPESRC_HEIGHT(480 - 1)); 8185 8186 intel_de_write(display, FP0(pipe), fp); 8187 intel_de_write(display, FP1(pipe), fp); 8188 8189 /* 8190 * Apparently we need to have VGA mode enabled prior to changing 8191 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 8192 * dividers, even though the register value does change. 8193 */ 8194 intel_de_write(display, DPLL(display, pipe), 8195 dpll & ~DPLL_VGA_MODE_DIS); 8196 intel_de_write(display, DPLL(display, pipe), dpll); 8197 8198 /* Wait for the clocks to stabilize. */ 8199 intel_de_posting_read(display, DPLL(display, pipe)); 8200 udelay(150); 8201 8202 /* The pixel multiplier can only be updated once the 8203 * DPLL is enabled and the clocks are stable. 8204 * 8205 * So write it again. 8206 */ 8207 intel_de_write(display, DPLL(display, pipe), dpll); 8208 8209 /* We do this three times for luck */ 8210 for (i = 0; i < 3 ; i++) { 8211 intel_de_write(display, DPLL(display, pipe), dpll); 8212 intel_de_posting_read(display, DPLL(display, pipe)); 8213 udelay(150); /* wait for warmup */ 8214 } 8215 8216 intel_de_write(display, TRANSCONF(display, pipe), TRANSCONF_ENABLE); 8217 intel_de_posting_read(display, TRANSCONF(display, pipe)); 8218 8219 intel_wait_for_pipe_scanline_moving(crtc); 8220 } 8221 8222 void i830_disable_pipe(struct intel_display *display, enum pipe pipe) 8223 { 8224 struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe); 8225 8226 drm_dbg_kms(display->drm, "disabling pipe %c due to force quirk\n", 8227 pipe_name(pipe)); 8228 8229 drm_WARN_ON(display->drm, 8230 intel_de_read(display, DSPCNTR(display, PLANE_A)) & DISP_ENABLE); 8231 drm_WARN_ON(display->drm, 8232 intel_de_read(display, DSPCNTR(display, PLANE_B)) & DISP_ENABLE); 8233 drm_WARN_ON(display->drm, 8234 intel_de_read(display, DSPCNTR(display, PLANE_C)) & DISP_ENABLE); 8235 drm_WARN_ON(display->drm, 8236 intel_de_read(display, CURCNTR(display, PIPE_A)) & MCURSOR_MODE_MASK); 8237 drm_WARN_ON(display->drm, 8238 intel_de_read(display, CURCNTR(display, PIPE_B)) & MCURSOR_MODE_MASK); 8239 8240 intel_de_write(display, TRANSCONF(display, pipe), 0); 8241 intel_de_posting_read(display, TRANSCONF(display, pipe)); 8242 8243 intel_wait_for_pipe_scanline_stopped(crtc); 8244 8245 intel_de_write(display, DPLL(display, pipe), DPLL_VGA_MODE_DIS); 8246 intel_de_posting_read(display, DPLL(display, pipe)); 8247 } 8248 8249 bool intel_scanout_needs_vtd_wa(struct intel_display *display) 8250 { 8251 struct drm_i915_private *i915 = to_i915(display->drm); 8252 8253 return IS_DISPLAY_VER(display, 6, 11) && i915_vtd_active(i915); 8254 } 8255