1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <linux/i2c.h> 28 #include <linux/input.h> 29 #include <linux/intel-iommu.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/dma-resv.h> 33 #include <linux/slab.h> 34 #include <linux/vgaarb.h> 35 36 #include <drm/drm_atomic.h> 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_fourcc.h> 42 #include <drm/drm_plane_helper.h> 43 #include <drm/drm_probe_helper.h> 44 #include <drm/drm_rect.h> 45 #include <drm/i915_drm.h> 46 47 #include "display/intel_crt.h" 48 #include "display/intel_ddi.h" 49 #include "display/intel_dp.h" 50 #include "display/intel_dsi.h" 51 #include "display/intel_dvo.h" 52 #include "display/intel_gmbus.h" 53 #include "display/intel_hdmi.h" 54 #include "display/intel_lvds.h" 55 #include "display/intel_sdvo.h" 56 #include "display/intel_tv.h" 57 #include "display/intel_vdsc.h" 58 59 #include "i915_drv.h" 60 #include "i915_trace.h" 61 #include "intel_acpi.h" 62 #include "intel_atomic.h" 63 #include "intel_atomic_plane.h" 64 #include "intel_bw.h" 65 #include "intel_cdclk.h" 66 #include "intel_color.h" 67 #include "intel_display_types.h" 68 #include "intel_fbc.h" 69 #include "intel_fbdev.h" 70 #include "intel_fifo_underrun.h" 71 #include "intel_frontbuffer.h" 72 #include "intel_hdcp.h" 73 #include "intel_hotplug.h" 74 #include "intel_overlay.h" 75 #include "intel_pipe_crc.h" 76 #include "intel_pm.h" 77 #include "intel_psr.h" 78 #include "intel_quirks.h" 79 #include "intel_sideband.h" 80 #include "intel_sprite.h" 81 #include "intel_tc.h" 82 83 /* Primary plane formats for gen <= 3 */ 84 static const u32 i8xx_primary_formats[] = { 85 DRM_FORMAT_C8, 86 DRM_FORMAT_RGB565, 87 DRM_FORMAT_XRGB1555, 88 DRM_FORMAT_XRGB8888, 89 }; 90 91 /* Primary plane formats for gen >= 4 */ 92 static const u32 i965_primary_formats[] = { 93 DRM_FORMAT_C8, 94 DRM_FORMAT_RGB565, 95 DRM_FORMAT_XRGB8888, 96 DRM_FORMAT_XBGR8888, 97 DRM_FORMAT_XRGB2101010, 98 DRM_FORMAT_XBGR2101010, 99 }; 100 101 static const u64 i9xx_format_modifiers[] = { 102 I915_FORMAT_MOD_X_TILED, 103 DRM_FORMAT_MOD_LINEAR, 104 DRM_FORMAT_MOD_INVALID 105 }; 106 107 /* Cursor formats */ 108 static const u32 intel_cursor_formats[] = { 109 DRM_FORMAT_ARGB8888, 110 }; 111 112 static const u64 cursor_format_modifiers[] = { 113 DRM_FORMAT_MOD_LINEAR, 114 DRM_FORMAT_MOD_INVALID 115 }; 116 117 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 118 struct intel_crtc_state *pipe_config); 119 static void ironlake_pch_clock_get(struct intel_crtc *crtc, 120 struct intel_crtc_state *pipe_config); 121 122 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 123 struct drm_i915_gem_object *obj, 124 struct drm_mode_fb_cmd2 *mode_cmd); 125 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state); 126 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 127 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 128 const struct intel_link_m_n *m_n, 129 const struct intel_link_m_n *m2_n2); 130 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 131 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state); 132 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state); 133 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 134 static void vlv_prepare_pll(struct intel_crtc *crtc, 135 const struct intel_crtc_state *pipe_config); 136 static void chv_prepare_pll(struct intel_crtc *crtc, 137 const struct intel_crtc_state *pipe_config); 138 static void intel_begin_crtc_commit(struct intel_atomic_state *, struct intel_crtc *); 139 static void intel_finish_crtc_commit(struct intel_atomic_state *, struct intel_crtc *); 140 static void intel_crtc_init_scalers(struct intel_crtc *crtc, 141 struct intel_crtc_state *crtc_state); 142 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state); 143 static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state); 144 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state); 145 static void intel_modeset_setup_hw_state(struct drm_device *dev, 146 struct drm_modeset_acquire_ctx *ctx); 147 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc); 148 149 struct intel_limit { 150 struct { 151 int min, max; 152 } dot, vco, n, m, m1, m2, p, p1; 153 154 struct { 155 int dot_limit; 156 int p2_slow, p2_fast; 157 } p2; 158 }; 159 160 /* returns HPLL frequency in kHz */ 161 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 162 { 163 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 164 165 /* Obtain SKU information */ 166 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 167 CCK_FUSE_HPLL_FREQ_MASK; 168 169 return vco_freq[hpll_freq] * 1000; 170 } 171 172 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 173 const char *name, u32 reg, int ref_freq) 174 { 175 u32 val; 176 int divider; 177 178 val = vlv_cck_read(dev_priv, reg); 179 divider = val & CCK_FREQUENCY_VALUES; 180 181 WARN((val & CCK_FREQUENCY_STATUS) != 182 (divider << CCK_FREQUENCY_STATUS_SHIFT), 183 "%s change in progress\n", name); 184 185 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 186 } 187 188 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 189 const char *name, u32 reg) 190 { 191 int hpll; 192 193 vlv_cck_get(dev_priv); 194 195 if (dev_priv->hpll_freq == 0) 196 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 197 198 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 199 200 vlv_cck_put(dev_priv); 201 202 return hpll; 203 } 204 205 static void intel_update_czclk(struct drm_i915_private *dev_priv) 206 { 207 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 208 return; 209 210 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 211 CCK_CZ_CLOCK_CONTROL); 212 213 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq); 214 } 215 216 static inline u32 /* units of 100MHz */ 217 intel_fdi_link_freq(struct drm_i915_private *dev_priv, 218 const struct intel_crtc_state *pipe_config) 219 { 220 if (HAS_DDI(dev_priv)) 221 return pipe_config->port_clock; /* SPLL */ 222 else 223 return dev_priv->fdi_pll_freq; 224 } 225 226 static const struct intel_limit intel_limits_i8xx_dac = { 227 .dot = { .min = 25000, .max = 350000 }, 228 .vco = { .min = 908000, .max = 1512000 }, 229 .n = { .min = 2, .max = 16 }, 230 .m = { .min = 96, .max = 140 }, 231 .m1 = { .min = 18, .max = 26 }, 232 .m2 = { .min = 6, .max = 16 }, 233 .p = { .min = 4, .max = 128 }, 234 .p1 = { .min = 2, .max = 33 }, 235 .p2 = { .dot_limit = 165000, 236 .p2_slow = 4, .p2_fast = 2 }, 237 }; 238 239 static const struct intel_limit intel_limits_i8xx_dvo = { 240 .dot = { .min = 25000, .max = 350000 }, 241 .vco = { .min = 908000, .max = 1512000 }, 242 .n = { .min = 2, .max = 16 }, 243 .m = { .min = 96, .max = 140 }, 244 .m1 = { .min = 18, .max = 26 }, 245 .m2 = { .min = 6, .max = 16 }, 246 .p = { .min = 4, .max = 128 }, 247 .p1 = { .min = 2, .max = 33 }, 248 .p2 = { .dot_limit = 165000, 249 .p2_slow = 4, .p2_fast = 4 }, 250 }; 251 252 static const struct intel_limit intel_limits_i8xx_lvds = { 253 .dot = { .min = 25000, .max = 350000 }, 254 .vco = { .min = 908000, .max = 1512000 }, 255 .n = { .min = 2, .max = 16 }, 256 .m = { .min = 96, .max = 140 }, 257 .m1 = { .min = 18, .max = 26 }, 258 .m2 = { .min = 6, .max = 16 }, 259 .p = { .min = 4, .max = 128 }, 260 .p1 = { .min = 1, .max = 6 }, 261 .p2 = { .dot_limit = 165000, 262 .p2_slow = 14, .p2_fast = 7 }, 263 }; 264 265 static const struct intel_limit intel_limits_i9xx_sdvo = { 266 .dot = { .min = 20000, .max = 400000 }, 267 .vco = { .min = 1400000, .max = 2800000 }, 268 .n = { .min = 1, .max = 6 }, 269 .m = { .min = 70, .max = 120 }, 270 .m1 = { .min = 8, .max = 18 }, 271 .m2 = { .min = 3, .max = 7 }, 272 .p = { .min = 5, .max = 80 }, 273 .p1 = { .min = 1, .max = 8 }, 274 .p2 = { .dot_limit = 200000, 275 .p2_slow = 10, .p2_fast = 5 }, 276 }; 277 278 static const struct intel_limit intel_limits_i9xx_lvds = { 279 .dot = { .min = 20000, .max = 400000 }, 280 .vco = { .min = 1400000, .max = 2800000 }, 281 .n = { .min = 1, .max = 6 }, 282 .m = { .min = 70, .max = 120 }, 283 .m1 = { .min = 8, .max = 18 }, 284 .m2 = { .min = 3, .max = 7 }, 285 .p = { .min = 7, .max = 98 }, 286 .p1 = { .min = 1, .max = 8 }, 287 .p2 = { .dot_limit = 112000, 288 .p2_slow = 14, .p2_fast = 7 }, 289 }; 290 291 292 static const struct intel_limit intel_limits_g4x_sdvo = { 293 .dot = { .min = 25000, .max = 270000 }, 294 .vco = { .min = 1750000, .max = 3500000}, 295 .n = { .min = 1, .max = 4 }, 296 .m = { .min = 104, .max = 138 }, 297 .m1 = { .min = 17, .max = 23 }, 298 .m2 = { .min = 5, .max = 11 }, 299 .p = { .min = 10, .max = 30 }, 300 .p1 = { .min = 1, .max = 3}, 301 .p2 = { .dot_limit = 270000, 302 .p2_slow = 10, 303 .p2_fast = 10 304 }, 305 }; 306 307 static const struct intel_limit intel_limits_g4x_hdmi = { 308 .dot = { .min = 22000, .max = 400000 }, 309 .vco = { .min = 1750000, .max = 3500000}, 310 .n = { .min = 1, .max = 4 }, 311 .m = { .min = 104, .max = 138 }, 312 .m1 = { .min = 16, .max = 23 }, 313 .m2 = { .min = 5, .max = 11 }, 314 .p = { .min = 5, .max = 80 }, 315 .p1 = { .min = 1, .max = 8}, 316 .p2 = { .dot_limit = 165000, 317 .p2_slow = 10, .p2_fast = 5 }, 318 }; 319 320 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 321 .dot = { .min = 20000, .max = 115000 }, 322 .vco = { .min = 1750000, .max = 3500000 }, 323 .n = { .min = 1, .max = 3 }, 324 .m = { .min = 104, .max = 138 }, 325 .m1 = { .min = 17, .max = 23 }, 326 .m2 = { .min = 5, .max = 11 }, 327 .p = { .min = 28, .max = 112 }, 328 .p1 = { .min = 2, .max = 8 }, 329 .p2 = { .dot_limit = 0, 330 .p2_slow = 14, .p2_fast = 14 331 }, 332 }; 333 334 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 335 .dot = { .min = 80000, .max = 224000 }, 336 .vco = { .min = 1750000, .max = 3500000 }, 337 .n = { .min = 1, .max = 3 }, 338 .m = { .min = 104, .max = 138 }, 339 .m1 = { .min = 17, .max = 23 }, 340 .m2 = { .min = 5, .max = 11 }, 341 .p = { .min = 14, .max = 42 }, 342 .p1 = { .min = 2, .max = 6 }, 343 .p2 = { .dot_limit = 0, 344 .p2_slow = 7, .p2_fast = 7 345 }, 346 }; 347 348 static const struct intel_limit intel_limits_pineview_sdvo = { 349 .dot = { .min = 20000, .max = 400000}, 350 .vco = { .min = 1700000, .max = 3500000 }, 351 /* Pineview's Ncounter is a ring counter */ 352 .n = { .min = 3, .max = 6 }, 353 .m = { .min = 2, .max = 256 }, 354 /* Pineview only has one combined m divider, which we treat as m2. */ 355 .m1 = { .min = 0, .max = 0 }, 356 .m2 = { .min = 0, .max = 254 }, 357 .p = { .min = 5, .max = 80 }, 358 .p1 = { .min = 1, .max = 8 }, 359 .p2 = { .dot_limit = 200000, 360 .p2_slow = 10, .p2_fast = 5 }, 361 }; 362 363 static const struct intel_limit intel_limits_pineview_lvds = { 364 .dot = { .min = 20000, .max = 400000 }, 365 .vco = { .min = 1700000, .max = 3500000 }, 366 .n = { .min = 3, .max = 6 }, 367 .m = { .min = 2, .max = 256 }, 368 .m1 = { .min = 0, .max = 0 }, 369 .m2 = { .min = 0, .max = 254 }, 370 .p = { .min = 7, .max = 112 }, 371 .p1 = { .min = 1, .max = 8 }, 372 .p2 = { .dot_limit = 112000, 373 .p2_slow = 14, .p2_fast = 14 }, 374 }; 375 376 /* Ironlake / Sandybridge 377 * 378 * We calculate clock using (register_value + 2) for N/M1/M2, so here 379 * the range value for them is (actual_value - 2). 380 */ 381 static const struct intel_limit intel_limits_ironlake_dac = { 382 .dot = { .min = 25000, .max = 350000 }, 383 .vco = { .min = 1760000, .max = 3510000 }, 384 .n = { .min = 1, .max = 5 }, 385 .m = { .min = 79, .max = 127 }, 386 .m1 = { .min = 12, .max = 22 }, 387 .m2 = { .min = 5, .max = 9 }, 388 .p = { .min = 5, .max = 80 }, 389 .p1 = { .min = 1, .max = 8 }, 390 .p2 = { .dot_limit = 225000, 391 .p2_slow = 10, .p2_fast = 5 }, 392 }; 393 394 static const struct intel_limit intel_limits_ironlake_single_lvds = { 395 .dot = { .min = 25000, .max = 350000 }, 396 .vco = { .min = 1760000, .max = 3510000 }, 397 .n = { .min = 1, .max = 3 }, 398 .m = { .min = 79, .max = 118 }, 399 .m1 = { .min = 12, .max = 22 }, 400 .m2 = { .min = 5, .max = 9 }, 401 .p = { .min = 28, .max = 112 }, 402 .p1 = { .min = 2, .max = 8 }, 403 .p2 = { .dot_limit = 225000, 404 .p2_slow = 14, .p2_fast = 14 }, 405 }; 406 407 static const struct intel_limit intel_limits_ironlake_dual_lvds = { 408 .dot = { .min = 25000, .max = 350000 }, 409 .vco = { .min = 1760000, .max = 3510000 }, 410 .n = { .min = 1, .max = 3 }, 411 .m = { .min = 79, .max = 127 }, 412 .m1 = { .min = 12, .max = 22 }, 413 .m2 = { .min = 5, .max = 9 }, 414 .p = { .min = 14, .max = 56 }, 415 .p1 = { .min = 2, .max = 8 }, 416 .p2 = { .dot_limit = 225000, 417 .p2_slow = 7, .p2_fast = 7 }, 418 }; 419 420 /* LVDS 100mhz refclk limits. */ 421 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = { 422 .dot = { .min = 25000, .max = 350000 }, 423 .vco = { .min = 1760000, .max = 3510000 }, 424 .n = { .min = 1, .max = 2 }, 425 .m = { .min = 79, .max = 126 }, 426 .m1 = { .min = 12, .max = 22 }, 427 .m2 = { .min = 5, .max = 9 }, 428 .p = { .min = 28, .max = 112 }, 429 .p1 = { .min = 2, .max = 8 }, 430 .p2 = { .dot_limit = 225000, 431 .p2_slow = 14, .p2_fast = 14 }, 432 }; 433 434 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = { 435 .dot = { .min = 25000, .max = 350000 }, 436 .vco = { .min = 1760000, .max = 3510000 }, 437 .n = { .min = 1, .max = 3 }, 438 .m = { .min = 79, .max = 126 }, 439 .m1 = { .min = 12, .max = 22 }, 440 .m2 = { .min = 5, .max = 9 }, 441 .p = { .min = 14, .max = 42 }, 442 .p1 = { .min = 2, .max = 6 }, 443 .p2 = { .dot_limit = 225000, 444 .p2_slow = 7, .p2_fast = 7 }, 445 }; 446 447 static const struct intel_limit intel_limits_vlv = { 448 /* 449 * These are the data rate limits (measured in fast clocks) 450 * since those are the strictest limits we have. The fast 451 * clock and actual rate limits are more relaxed, so checking 452 * them would make no difference. 453 */ 454 .dot = { .min = 25000 * 5, .max = 270000 * 5 }, 455 .vco = { .min = 4000000, .max = 6000000 }, 456 .n = { .min = 1, .max = 7 }, 457 .m1 = { .min = 2, .max = 3 }, 458 .m2 = { .min = 11, .max = 156 }, 459 .p1 = { .min = 2, .max = 3 }, 460 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 461 }; 462 463 static const struct intel_limit intel_limits_chv = { 464 /* 465 * These are the data rate limits (measured in fast clocks) 466 * since those are the strictest limits we have. The fast 467 * clock and actual rate limits are more relaxed, so checking 468 * them would make no difference. 469 */ 470 .dot = { .min = 25000 * 5, .max = 540000 * 5}, 471 .vco = { .min = 4800000, .max = 6480000 }, 472 .n = { .min = 1, .max = 1 }, 473 .m1 = { .min = 2, .max = 2 }, 474 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 475 .p1 = { .min = 2, .max = 4 }, 476 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 477 }; 478 479 static const struct intel_limit intel_limits_bxt = { 480 /* FIXME: find real dot limits */ 481 .dot = { .min = 0, .max = INT_MAX }, 482 .vco = { .min = 4800000, .max = 6700000 }, 483 .n = { .min = 1, .max = 1 }, 484 .m1 = { .min = 2, .max = 2 }, 485 /* FIXME: find real m2 limits */ 486 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 487 .p1 = { .min = 2, .max = 4 }, 488 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 489 }; 490 491 /* WA Display #0827: Gen9:all */ 492 static void 493 skl_wa_827(struct drm_i915_private *dev_priv, int pipe, bool enable) 494 { 495 if (enable) 496 I915_WRITE(CLKGATE_DIS_PSL(pipe), 497 I915_READ(CLKGATE_DIS_PSL(pipe)) | 498 DUPS1_GATING_DIS | DUPS2_GATING_DIS); 499 else 500 I915_WRITE(CLKGATE_DIS_PSL(pipe), 501 I915_READ(CLKGATE_DIS_PSL(pipe)) & 502 ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 503 } 504 505 /* Wa_2006604312:icl */ 506 static void 507 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 508 bool enable) 509 { 510 if (enable) 511 I915_WRITE(CLKGATE_DIS_PSL(pipe), 512 I915_READ(CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 513 else 514 I915_WRITE(CLKGATE_DIS_PSL(pipe), 515 I915_READ(CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 516 } 517 518 static bool 519 needs_modeset(const struct intel_crtc_state *state) 520 { 521 return drm_atomic_crtc_needs_modeset(&state->base); 522 } 523 524 /* 525 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 526 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 527 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 528 * The helpers' return value is the rate of the clock that is fed to the 529 * display engine's pipe which can be the above fast dot clock rate or a 530 * divided-down version of it. 531 */ 532 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 533 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 534 { 535 clock->m = clock->m2 + 2; 536 clock->p = clock->p1 * clock->p2; 537 if (WARN_ON(clock->n == 0 || clock->p == 0)) 538 return 0; 539 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 540 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 541 542 return clock->dot; 543 } 544 545 static u32 i9xx_dpll_compute_m(struct dpll *dpll) 546 { 547 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 548 } 549 550 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 551 { 552 clock->m = i9xx_dpll_compute_m(clock); 553 clock->p = clock->p1 * clock->p2; 554 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) 555 return 0; 556 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 557 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 558 559 return clock->dot; 560 } 561 562 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 563 { 564 clock->m = clock->m1 * clock->m2; 565 clock->p = clock->p1 * clock->p2; 566 if (WARN_ON(clock->n == 0 || clock->p == 0)) 567 return 0; 568 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 569 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 570 571 return clock->dot / 5; 572 } 573 574 int chv_calc_dpll_params(int refclk, struct dpll *clock) 575 { 576 clock->m = clock->m1 * clock->m2; 577 clock->p = clock->p1 * clock->p2; 578 if (WARN_ON(clock->n == 0 || clock->p == 0)) 579 return 0; 580 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), 581 clock->n << 22); 582 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 583 584 return clock->dot / 5; 585 } 586 587 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) 588 589 /* 590 * Returns whether the given set of divisors are valid for a given refclk with 591 * the given connectors. 592 */ 593 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv, 594 const struct intel_limit *limit, 595 const struct dpll *clock) 596 { 597 if (clock->n < limit->n.min || limit->n.max < clock->n) 598 INTELPllInvalid("n out of range\n"); 599 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 600 INTELPllInvalid("p1 out of range\n"); 601 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 602 INTELPllInvalid("m2 out of range\n"); 603 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 604 INTELPllInvalid("m1 out of range\n"); 605 606 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) && 607 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv)) 608 if (clock->m1 <= clock->m2) 609 INTELPllInvalid("m1 <= m2\n"); 610 611 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 612 !IS_GEN9_LP(dev_priv)) { 613 if (clock->p < limit->p.min || limit->p.max < clock->p) 614 INTELPllInvalid("p out of range\n"); 615 if (clock->m < limit->m.min || limit->m.max < clock->m) 616 INTELPllInvalid("m out of range\n"); 617 } 618 619 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 620 INTELPllInvalid("vco out of range\n"); 621 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 622 * connector, etc., rather than just a single range. 623 */ 624 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 625 INTELPllInvalid("dot out of range\n"); 626 627 return true; 628 } 629 630 static int 631 i9xx_select_p2_div(const struct intel_limit *limit, 632 const struct intel_crtc_state *crtc_state, 633 int target) 634 { 635 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 636 637 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 638 /* 639 * For LVDS just rely on its current settings for dual-channel. 640 * We haven't figured out how to reliably set up different 641 * single/dual channel state, if we even can. 642 */ 643 if (intel_is_dual_link_lvds(dev_priv)) 644 return limit->p2.p2_fast; 645 else 646 return limit->p2.p2_slow; 647 } else { 648 if (target < limit->p2.dot_limit) 649 return limit->p2.p2_slow; 650 else 651 return limit->p2.p2_fast; 652 } 653 } 654 655 /* 656 * Returns a set of divisors for the desired target clock with the given 657 * refclk, or FALSE. The returned values represent the clock equation: 658 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 659 * 660 * Target and reference clocks are specified in kHz. 661 * 662 * If match_clock is provided, then best_clock P divider must match the P 663 * divider from @match_clock used for LVDS downclocking. 664 */ 665 static bool 666 i9xx_find_best_dpll(const struct intel_limit *limit, 667 struct intel_crtc_state *crtc_state, 668 int target, int refclk, struct dpll *match_clock, 669 struct dpll *best_clock) 670 { 671 struct drm_device *dev = crtc_state->base.crtc->dev; 672 struct dpll clock; 673 int err = target; 674 675 memset(best_clock, 0, sizeof(*best_clock)); 676 677 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 678 679 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 680 clock.m1++) { 681 for (clock.m2 = limit->m2.min; 682 clock.m2 <= limit->m2.max; clock.m2++) { 683 if (clock.m2 >= clock.m1) 684 break; 685 for (clock.n = limit->n.min; 686 clock.n <= limit->n.max; clock.n++) { 687 for (clock.p1 = limit->p1.min; 688 clock.p1 <= limit->p1.max; clock.p1++) { 689 int this_err; 690 691 i9xx_calc_dpll_params(refclk, &clock); 692 if (!intel_PLL_is_valid(to_i915(dev), 693 limit, 694 &clock)) 695 continue; 696 if (match_clock && 697 clock.p != match_clock->p) 698 continue; 699 700 this_err = abs(clock.dot - target); 701 if (this_err < err) { 702 *best_clock = clock; 703 err = this_err; 704 } 705 } 706 } 707 } 708 } 709 710 return (err != target); 711 } 712 713 /* 714 * Returns a set of divisors for the desired target clock with the given 715 * refclk, or FALSE. The returned values represent the clock equation: 716 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 717 * 718 * Target and reference clocks are specified in kHz. 719 * 720 * If match_clock is provided, then best_clock P divider must match the P 721 * divider from @match_clock used for LVDS downclocking. 722 */ 723 static bool 724 pnv_find_best_dpll(const struct intel_limit *limit, 725 struct intel_crtc_state *crtc_state, 726 int target, int refclk, struct dpll *match_clock, 727 struct dpll *best_clock) 728 { 729 struct drm_device *dev = crtc_state->base.crtc->dev; 730 struct dpll clock; 731 int err = target; 732 733 memset(best_clock, 0, sizeof(*best_clock)); 734 735 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 736 737 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 738 clock.m1++) { 739 for (clock.m2 = limit->m2.min; 740 clock.m2 <= limit->m2.max; clock.m2++) { 741 for (clock.n = limit->n.min; 742 clock.n <= limit->n.max; clock.n++) { 743 for (clock.p1 = limit->p1.min; 744 clock.p1 <= limit->p1.max; clock.p1++) { 745 int this_err; 746 747 pnv_calc_dpll_params(refclk, &clock); 748 if (!intel_PLL_is_valid(to_i915(dev), 749 limit, 750 &clock)) 751 continue; 752 if (match_clock && 753 clock.p != match_clock->p) 754 continue; 755 756 this_err = abs(clock.dot - target); 757 if (this_err < err) { 758 *best_clock = clock; 759 err = this_err; 760 } 761 } 762 } 763 } 764 } 765 766 return (err != target); 767 } 768 769 /* 770 * Returns a set of divisors for the desired target clock with the given 771 * refclk, or FALSE. The returned values represent the clock equation: 772 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 773 * 774 * Target and reference clocks are specified in kHz. 775 * 776 * If match_clock is provided, then best_clock P divider must match the P 777 * divider from @match_clock used for LVDS downclocking. 778 */ 779 static bool 780 g4x_find_best_dpll(const struct intel_limit *limit, 781 struct intel_crtc_state *crtc_state, 782 int target, int refclk, struct dpll *match_clock, 783 struct dpll *best_clock) 784 { 785 struct drm_device *dev = crtc_state->base.crtc->dev; 786 struct dpll clock; 787 int max_n; 788 bool found = false; 789 /* approximately equals target * 0.00585 */ 790 int err_most = (target >> 8) + (target >> 9); 791 792 memset(best_clock, 0, sizeof(*best_clock)); 793 794 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 795 796 max_n = limit->n.max; 797 /* based on hardware requirement, prefer smaller n to precision */ 798 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 799 /* based on hardware requirement, prefere larger m1,m2 */ 800 for (clock.m1 = limit->m1.max; 801 clock.m1 >= limit->m1.min; clock.m1--) { 802 for (clock.m2 = limit->m2.max; 803 clock.m2 >= limit->m2.min; clock.m2--) { 804 for (clock.p1 = limit->p1.max; 805 clock.p1 >= limit->p1.min; clock.p1--) { 806 int this_err; 807 808 i9xx_calc_dpll_params(refclk, &clock); 809 if (!intel_PLL_is_valid(to_i915(dev), 810 limit, 811 &clock)) 812 continue; 813 814 this_err = abs(clock.dot - target); 815 if (this_err < err_most) { 816 *best_clock = clock; 817 err_most = this_err; 818 max_n = clock.n; 819 found = true; 820 } 821 } 822 } 823 } 824 } 825 return found; 826 } 827 828 /* 829 * Check if the calculated PLL configuration is more optimal compared to the 830 * best configuration and error found so far. Return the calculated error. 831 */ 832 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, 833 const struct dpll *calculated_clock, 834 const struct dpll *best_clock, 835 unsigned int best_error_ppm, 836 unsigned int *error_ppm) 837 { 838 /* 839 * For CHV ignore the error and consider only the P value. 840 * Prefer a bigger P value based on HW requirements. 841 */ 842 if (IS_CHERRYVIEW(to_i915(dev))) { 843 *error_ppm = 0; 844 845 return calculated_clock->p > best_clock->p; 846 } 847 848 if (WARN_ON_ONCE(!target_freq)) 849 return false; 850 851 *error_ppm = div_u64(1000000ULL * 852 abs(target_freq - calculated_clock->dot), 853 target_freq); 854 /* 855 * Prefer a better P value over a better (smaller) error if the error 856 * is small. Ensure this preference for future configurations too by 857 * setting the error to 0. 858 */ 859 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 860 *error_ppm = 0; 861 862 return true; 863 } 864 865 return *error_ppm + 10 < best_error_ppm; 866 } 867 868 /* 869 * Returns a set of divisors for the desired target clock with the given 870 * refclk, or FALSE. The returned values represent the clock equation: 871 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 872 */ 873 static bool 874 vlv_find_best_dpll(const struct intel_limit *limit, 875 struct intel_crtc_state *crtc_state, 876 int target, int refclk, struct dpll *match_clock, 877 struct dpll *best_clock) 878 { 879 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 880 struct drm_device *dev = crtc->base.dev; 881 struct dpll clock; 882 unsigned int bestppm = 1000000; 883 /* min update 19.2 MHz */ 884 int max_n = min(limit->n.max, refclk / 19200); 885 bool found = false; 886 887 target *= 5; /* fast clock */ 888 889 memset(best_clock, 0, sizeof(*best_clock)); 890 891 /* based on hardware requirement, prefer smaller n to precision */ 892 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 893 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 894 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 895 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 896 clock.p = clock.p1 * clock.p2; 897 /* based on hardware requirement, prefer bigger m1,m2 values */ 898 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 899 unsigned int ppm; 900 901 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 902 refclk * clock.m1); 903 904 vlv_calc_dpll_params(refclk, &clock); 905 906 if (!intel_PLL_is_valid(to_i915(dev), 907 limit, 908 &clock)) 909 continue; 910 911 if (!vlv_PLL_is_optimal(dev, target, 912 &clock, 913 best_clock, 914 bestppm, &ppm)) 915 continue; 916 917 *best_clock = clock; 918 bestppm = ppm; 919 found = true; 920 } 921 } 922 } 923 } 924 925 return found; 926 } 927 928 /* 929 * Returns a set of divisors for the desired target clock with the given 930 * refclk, or FALSE. The returned values represent the clock equation: 931 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 932 */ 933 static bool 934 chv_find_best_dpll(const struct intel_limit *limit, 935 struct intel_crtc_state *crtc_state, 936 int target, int refclk, struct dpll *match_clock, 937 struct dpll *best_clock) 938 { 939 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 940 struct drm_device *dev = crtc->base.dev; 941 unsigned int best_error_ppm; 942 struct dpll clock; 943 u64 m2; 944 int found = false; 945 946 memset(best_clock, 0, sizeof(*best_clock)); 947 best_error_ppm = 1000000; 948 949 /* 950 * Based on hardware doc, the n always set to 1, and m1 always 951 * set to 2. If requires to support 200Mhz refclk, we need to 952 * revisit this because n may not 1 anymore. 953 */ 954 clock.n = 1, clock.m1 = 2; 955 target *= 5; /* fast clock */ 956 957 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 958 for (clock.p2 = limit->p2.p2_fast; 959 clock.p2 >= limit->p2.p2_slow; 960 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 961 unsigned int error_ppm; 962 963 clock.p = clock.p1 * clock.p2; 964 965 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 966 refclk * clock.m1); 967 968 if (m2 > INT_MAX/clock.m1) 969 continue; 970 971 clock.m2 = m2; 972 973 chv_calc_dpll_params(refclk, &clock); 974 975 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock)) 976 continue; 977 978 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, 979 best_error_ppm, &error_ppm)) 980 continue; 981 982 *best_clock = clock; 983 best_error_ppm = error_ppm; 984 found = true; 985 } 986 } 987 988 return found; 989 } 990 991 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 992 struct dpll *best_clock) 993 { 994 int refclk = 100000; 995 const struct intel_limit *limit = &intel_limits_bxt; 996 997 return chv_find_best_dpll(limit, crtc_state, 998 crtc_state->port_clock, refclk, 999 NULL, best_clock); 1000 } 1001 1002 bool intel_crtc_active(struct intel_crtc *crtc) 1003 { 1004 /* Be paranoid as we can arrive here with only partial 1005 * state retrieved from the hardware during setup. 1006 * 1007 * We can ditch the adjusted_mode.crtc_clock check as soon 1008 * as Haswell has gained clock readout/fastboot support. 1009 * 1010 * We can ditch the crtc->primary->state->fb check as soon as we can 1011 * properly reconstruct framebuffers. 1012 * 1013 * FIXME: The intel_crtc->active here should be switched to 1014 * crtc->state->active once we have proper CRTC states wired up 1015 * for atomic. 1016 */ 1017 return crtc->active && crtc->base.primary->state->fb && 1018 crtc->config->base.adjusted_mode.crtc_clock; 1019 } 1020 1021 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv, 1022 enum pipe pipe) 1023 { 1024 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 1025 1026 return crtc->config->cpu_transcoder; 1027 } 1028 1029 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 1030 enum pipe pipe) 1031 { 1032 i915_reg_t reg = PIPEDSL(pipe); 1033 u32 line1, line2; 1034 u32 line_mask; 1035 1036 if (IS_GEN(dev_priv, 2)) 1037 line_mask = DSL_LINEMASK_GEN2; 1038 else 1039 line_mask = DSL_LINEMASK_GEN3; 1040 1041 line1 = I915_READ(reg) & line_mask; 1042 msleep(5); 1043 line2 = I915_READ(reg) & line_mask; 1044 1045 return line1 != line2; 1046 } 1047 1048 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 1049 { 1050 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1051 enum pipe pipe = crtc->pipe; 1052 1053 /* Wait for the display line to settle/start moving */ 1054 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 1055 DRM_ERROR("pipe %c scanline %s wait timed out\n", 1056 pipe_name(pipe), onoff(state)); 1057 } 1058 1059 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 1060 { 1061 wait_for_pipe_scanline_moving(crtc, false); 1062 } 1063 1064 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 1065 { 1066 wait_for_pipe_scanline_moving(crtc, true); 1067 } 1068 1069 static void 1070 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 1071 { 1072 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 1073 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1074 1075 if (INTEL_GEN(dev_priv) >= 4) { 1076 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1077 i915_reg_t reg = PIPECONF(cpu_transcoder); 1078 1079 /* Wait for the Pipe State to go off */ 1080 if (intel_de_wait_for_clear(dev_priv, reg, 1081 I965_PIPECONF_ACTIVE, 100)) 1082 WARN(1, "pipe_off wait timed out\n"); 1083 } else { 1084 intel_wait_for_pipe_scanline_stopped(crtc); 1085 } 1086 } 1087 1088 /* Only for pre-ILK configs */ 1089 void assert_pll(struct drm_i915_private *dev_priv, 1090 enum pipe pipe, bool state) 1091 { 1092 u32 val; 1093 bool cur_state; 1094 1095 val = I915_READ(DPLL(pipe)); 1096 cur_state = !!(val & DPLL_VCO_ENABLE); 1097 I915_STATE_WARN(cur_state != state, 1098 "PLL state assertion failure (expected %s, current %s)\n", 1099 onoff(state), onoff(cur_state)); 1100 } 1101 1102 /* XXX: the dsi pll is shared between MIPI DSI ports */ 1103 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 1104 { 1105 u32 val; 1106 bool cur_state; 1107 1108 vlv_cck_get(dev_priv); 1109 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 1110 vlv_cck_put(dev_priv); 1111 1112 cur_state = val & DSI_PLL_VCO_EN; 1113 I915_STATE_WARN(cur_state != state, 1114 "DSI PLL state assertion failure (expected %s, current %s)\n", 1115 onoff(state), onoff(cur_state)); 1116 } 1117 1118 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 1119 enum pipe pipe, bool state) 1120 { 1121 bool cur_state; 1122 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, 1123 pipe); 1124 1125 if (HAS_DDI(dev_priv)) { 1126 /* DDI does not have a specific FDI_TX register */ 1127 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); 1128 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 1129 } else { 1130 u32 val = I915_READ(FDI_TX_CTL(pipe)); 1131 cur_state = !!(val & FDI_TX_ENABLE); 1132 } 1133 I915_STATE_WARN(cur_state != state, 1134 "FDI TX state assertion failure (expected %s, current %s)\n", 1135 onoff(state), onoff(cur_state)); 1136 } 1137 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 1138 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 1139 1140 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 1141 enum pipe pipe, bool state) 1142 { 1143 u32 val; 1144 bool cur_state; 1145 1146 val = I915_READ(FDI_RX_CTL(pipe)); 1147 cur_state = !!(val & FDI_RX_ENABLE); 1148 I915_STATE_WARN(cur_state != state, 1149 "FDI RX state assertion failure (expected %s, current %s)\n", 1150 onoff(state), onoff(cur_state)); 1151 } 1152 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 1153 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 1154 1155 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 1156 enum pipe pipe) 1157 { 1158 u32 val; 1159 1160 /* ILK FDI PLL is always enabled */ 1161 if (IS_GEN(dev_priv, 5)) 1162 return; 1163 1164 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 1165 if (HAS_DDI(dev_priv)) 1166 return; 1167 1168 val = I915_READ(FDI_TX_CTL(pipe)); 1169 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 1170 } 1171 1172 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 1173 enum pipe pipe, bool state) 1174 { 1175 u32 val; 1176 bool cur_state; 1177 1178 val = I915_READ(FDI_RX_CTL(pipe)); 1179 cur_state = !!(val & FDI_RX_PLL_ENABLE); 1180 I915_STATE_WARN(cur_state != state, 1181 "FDI RX PLL assertion failure (expected %s, current %s)\n", 1182 onoff(state), onoff(cur_state)); 1183 } 1184 1185 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 1186 { 1187 i915_reg_t pp_reg; 1188 u32 val; 1189 enum pipe panel_pipe = INVALID_PIPE; 1190 bool locked = true; 1191 1192 if (WARN_ON(HAS_DDI(dev_priv))) 1193 return; 1194 1195 if (HAS_PCH_SPLIT(dev_priv)) { 1196 u32 port_sel; 1197 1198 pp_reg = PP_CONTROL(0); 1199 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1200 1201 switch (port_sel) { 1202 case PANEL_PORT_SELECT_LVDS: 1203 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 1204 break; 1205 case PANEL_PORT_SELECT_DPA: 1206 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 1207 break; 1208 case PANEL_PORT_SELECT_DPC: 1209 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 1210 break; 1211 case PANEL_PORT_SELECT_DPD: 1212 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 1213 break; 1214 default: 1215 MISSING_CASE(port_sel); 1216 break; 1217 } 1218 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1219 /* presumably write lock depends on pipe, not port select */ 1220 pp_reg = PP_CONTROL(pipe); 1221 panel_pipe = pipe; 1222 } else { 1223 u32 port_sel; 1224 1225 pp_reg = PP_CONTROL(0); 1226 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1227 1228 WARN_ON(port_sel != PANEL_PORT_SELECT_LVDS); 1229 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 1230 } 1231 1232 val = I915_READ(pp_reg); 1233 if (!(val & PANEL_POWER_ON) || 1234 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 1235 locked = false; 1236 1237 I915_STATE_WARN(panel_pipe == pipe && locked, 1238 "panel assertion failure, pipe %c regs locked\n", 1239 pipe_name(pipe)); 1240 } 1241 1242 void assert_pipe(struct drm_i915_private *dev_priv, 1243 enum pipe pipe, bool state) 1244 { 1245 bool cur_state; 1246 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, 1247 pipe); 1248 enum intel_display_power_domain power_domain; 1249 intel_wakeref_t wakeref; 1250 1251 /* we keep both pipes enabled on 830 */ 1252 if (IS_I830(dev_priv)) 1253 state = true; 1254 1255 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 1256 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 1257 if (wakeref) { 1258 u32 val = I915_READ(PIPECONF(cpu_transcoder)); 1259 cur_state = !!(val & PIPECONF_ENABLE); 1260 1261 intel_display_power_put(dev_priv, power_domain, wakeref); 1262 } else { 1263 cur_state = false; 1264 } 1265 1266 I915_STATE_WARN(cur_state != state, 1267 "pipe %c assertion failure (expected %s, current %s)\n", 1268 pipe_name(pipe), onoff(state), onoff(cur_state)); 1269 } 1270 1271 static void assert_plane(struct intel_plane *plane, bool state) 1272 { 1273 enum pipe pipe; 1274 bool cur_state; 1275 1276 cur_state = plane->get_hw_state(plane, &pipe); 1277 1278 I915_STATE_WARN(cur_state != state, 1279 "%s assertion failure (expected %s, current %s)\n", 1280 plane->base.name, onoff(state), onoff(cur_state)); 1281 } 1282 1283 #define assert_plane_enabled(p) assert_plane(p, true) 1284 #define assert_plane_disabled(p) assert_plane(p, false) 1285 1286 static void assert_planes_disabled(struct intel_crtc *crtc) 1287 { 1288 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1289 struct intel_plane *plane; 1290 1291 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 1292 assert_plane_disabled(plane); 1293 } 1294 1295 static void assert_vblank_disabled(struct drm_crtc *crtc) 1296 { 1297 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) 1298 drm_crtc_vblank_put(crtc); 1299 } 1300 1301 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 1302 enum pipe pipe) 1303 { 1304 u32 val; 1305 bool enabled; 1306 1307 val = I915_READ(PCH_TRANSCONF(pipe)); 1308 enabled = !!(val & TRANS_ENABLE); 1309 I915_STATE_WARN(enabled, 1310 "transcoder assertion failed, should be off on pipe %c but is still active\n", 1311 pipe_name(pipe)); 1312 } 1313 1314 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 1315 enum pipe pipe, enum port port, 1316 i915_reg_t dp_reg) 1317 { 1318 enum pipe port_pipe; 1319 bool state; 1320 1321 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 1322 1323 I915_STATE_WARN(state && port_pipe == pipe, 1324 "PCH DP %c enabled on transcoder %c, should be disabled\n", 1325 port_name(port), pipe_name(pipe)); 1326 1327 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1328 "IBX PCH DP %c still using transcoder B\n", 1329 port_name(port)); 1330 } 1331 1332 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 1333 enum pipe pipe, enum port port, 1334 i915_reg_t hdmi_reg) 1335 { 1336 enum pipe port_pipe; 1337 bool state; 1338 1339 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 1340 1341 I915_STATE_WARN(state && port_pipe == pipe, 1342 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 1343 port_name(port), pipe_name(pipe)); 1344 1345 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1346 "IBX PCH HDMI %c still using transcoder B\n", 1347 port_name(port)); 1348 } 1349 1350 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 1351 enum pipe pipe) 1352 { 1353 enum pipe port_pipe; 1354 1355 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 1356 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 1357 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 1358 1359 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 1360 port_pipe == pipe, 1361 "PCH VGA enabled on transcoder %c, should be disabled\n", 1362 pipe_name(pipe)); 1363 1364 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 1365 port_pipe == pipe, 1366 "PCH LVDS enabled on transcoder %c, should be disabled\n", 1367 pipe_name(pipe)); 1368 1369 /* PCH SDVOB multiplex with HDMIB */ 1370 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 1371 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 1372 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 1373 } 1374 1375 static void _vlv_enable_pll(struct intel_crtc *crtc, 1376 const struct intel_crtc_state *pipe_config) 1377 { 1378 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1379 enum pipe pipe = crtc->pipe; 1380 1381 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1382 POSTING_READ(DPLL(pipe)); 1383 udelay(150); 1384 1385 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1386 DRM_ERROR("DPLL %d failed to lock\n", pipe); 1387 } 1388 1389 static void vlv_enable_pll(struct intel_crtc *crtc, 1390 const struct intel_crtc_state *pipe_config) 1391 { 1392 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1393 enum pipe pipe = crtc->pipe; 1394 1395 assert_pipe_disabled(dev_priv, pipe); 1396 1397 /* PLL is protected by panel, make sure we can write it */ 1398 assert_panel_unlocked(dev_priv, pipe); 1399 1400 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1401 _vlv_enable_pll(crtc, pipe_config); 1402 1403 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); 1404 POSTING_READ(DPLL_MD(pipe)); 1405 } 1406 1407 1408 static void _chv_enable_pll(struct intel_crtc *crtc, 1409 const struct intel_crtc_state *pipe_config) 1410 { 1411 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1412 enum pipe pipe = crtc->pipe; 1413 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1414 u32 tmp; 1415 1416 vlv_dpio_get(dev_priv); 1417 1418 /* Enable back the 10bit clock to display controller */ 1419 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1420 tmp |= DPIO_DCLKP_EN; 1421 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); 1422 1423 vlv_dpio_put(dev_priv); 1424 1425 /* 1426 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 1427 */ 1428 udelay(1); 1429 1430 /* Enable PLL */ 1431 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1432 1433 /* Check PLL is locked */ 1434 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1435 DRM_ERROR("PLL %d failed to lock\n", pipe); 1436 } 1437 1438 static void chv_enable_pll(struct intel_crtc *crtc, 1439 const struct intel_crtc_state *pipe_config) 1440 { 1441 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1442 enum pipe pipe = crtc->pipe; 1443 1444 assert_pipe_disabled(dev_priv, pipe); 1445 1446 /* PLL is protected by panel, make sure we can write it */ 1447 assert_panel_unlocked(dev_priv, pipe); 1448 1449 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1450 _chv_enable_pll(crtc, pipe_config); 1451 1452 if (pipe != PIPE_A) { 1453 /* 1454 * WaPixelRepeatModeFixForC0:chv 1455 * 1456 * DPLLCMD is AWOL. Use chicken bits to propagate 1457 * the value from DPLLBMD to either pipe B or C. 1458 */ 1459 I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 1460 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md); 1461 I915_WRITE(CBR4_VLV, 0); 1462 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; 1463 1464 /* 1465 * DPLLB VGA mode also seems to cause problems. 1466 * We should always have it disabled. 1467 */ 1468 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0); 1469 } else { 1470 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); 1471 POSTING_READ(DPLL_MD(pipe)); 1472 } 1473 } 1474 1475 static bool i9xx_has_pps(struct drm_i915_private *dev_priv) 1476 { 1477 if (IS_I830(dev_priv)) 1478 return false; 1479 1480 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 1481 } 1482 1483 static void i9xx_enable_pll(struct intel_crtc *crtc, 1484 const struct intel_crtc_state *crtc_state) 1485 { 1486 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1487 i915_reg_t reg = DPLL(crtc->pipe); 1488 u32 dpll = crtc_state->dpll_hw_state.dpll; 1489 int i; 1490 1491 assert_pipe_disabled(dev_priv, crtc->pipe); 1492 1493 /* PLL is protected by panel, make sure we can write it */ 1494 if (i9xx_has_pps(dev_priv)) 1495 assert_panel_unlocked(dev_priv, crtc->pipe); 1496 1497 /* 1498 * Apparently we need to have VGA mode enabled prior to changing 1499 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1500 * dividers, even though the register value does change. 1501 */ 1502 I915_WRITE(reg, dpll & ~DPLL_VGA_MODE_DIS); 1503 I915_WRITE(reg, dpll); 1504 1505 /* Wait for the clocks to stabilize. */ 1506 POSTING_READ(reg); 1507 udelay(150); 1508 1509 if (INTEL_GEN(dev_priv) >= 4) { 1510 I915_WRITE(DPLL_MD(crtc->pipe), 1511 crtc_state->dpll_hw_state.dpll_md); 1512 } else { 1513 /* The pixel multiplier can only be updated once the 1514 * DPLL is enabled and the clocks are stable. 1515 * 1516 * So write it again. 1517 */ 1518 I915_WRITE(reg, dpll); 1519 } 1520 1521 /* We do this three times for luck */ 1522 for (i = 0; i < 3; i++) { 1523 I915_WRITE(reg, dpll); 1524 POSTING_READ(reg); 1525 udelay(150); /* wait for warmup */ 1526 } 1527 } 1528 1529 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 1530 { 1531 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 1532 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1533 enum pipe pipe = crtc->pipe; 1534 1535 /* Don't disable pipe or pipe PLLs if needed */ 1536 if (IS_I830(dev_priv)) 1537 return; 1538 1539 /* Make sure the pipe isn't still relying on us */ 1540 assert_pipe_disabled(dev_priv, pipe); 1541 1542 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS); 1543 POSTING_READ(DPLL(pipe)); 1544 } 1545 1546 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1547 { 1548 u32 val; 1549 1550 /* Make sure the pipe isn't still relying on us */ 1551 assert_pipe_disabled(dev_priv, pipe); 1552 1553 val = DPLL_INTEGRATED_REF_CLK_VLV | 1554 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1555 if (pipe != PIPE_A) 1556 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1557 1558 I915_WRITE(DPLL(pipe), val); 1559 POSTING_READ(DPLL(pipe)); 1560 } 1561 1562 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1563 { 1564 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1565 u32 val; 1566 1567 /* Make sure the pipe isn't still relying on us */ 1568 assert_pipe_disabled(dev_priv, pipe); 1569 1570 val = DPLL_SSC_REF_CLK_CHV | 1571 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1572 if (pipe != PIPE_A) 1573 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1574 1575 I915_WRITE(DPLL(pipe), val); 1576 POSTING_READ(DPLL(pipe)); 1577 1578 vlv_dpio_get(dev_priv); 1579 1580 /* Disable 10bit clock to display controller */ 1581 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1582 val &= ~DPIO_DCLKP_EN; 1583 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); 1584 1585 vlv_dpio_put(dev_priv); 1586 } 1587 1588 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 1589 struct intel_digital_port *dport, 1590 unsigned int expected_mask) 1591 { 1592 u32 port_mask; 1593 i915_reg_t dpll_reg; 1594 1595 switch (dport->base.port) { 1596 case PORT_B: 1597 port_mask = DPLL_PORTB_READY_MASK; 1598 dpll_reg = DPLL(0); 1599 break; 1600 case PORT_C: 1601 port_mask = DPLL_PORTC_READY_MASK; 1602 dpll_reg = DPLL(0); 1603 expected_mask <<= 4; 1604 break; 1605 case PORT_D: 1606 port_mask = DPLL_PORTD_READY_MASK; 1607 dpll_reg = DPIO_PHY_STATUS; 1608 break; 1609 default: 1610 BUG(); 1611 } 1612 1613 if (intel_de_wait_for_register(dev_priv, dpll_reg, 1614 port_mask, expected_mask, 1000)) 1615 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n", 1616 port_name(dport->base.port), 1617 I915_READ(dpll_reg) & port_mask, expected_mask); 1618 } 1619 1620 static void ironlake_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 1621 { 1622 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 1623 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1624 enum pipe pipe = crtc->pipe; 1625 i915_reg_t reg; 1626 u32 val, pipeconf_val; 1627 1628 /* Make sure PCH DPLL is enabled */ 1629 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 1630 1631 /* FDI must be feeding us bits for PCH ports */ 1632 assert_fdi_tx_enabled(dev_priv, pipe); 1633 assert_fdi_rx_enabled(dev_priv, pipe); 1634 1635 if (HAS_PCH_CPT(dev_priv)) { 1636 /* Workaround: Set the timing override bit before enabling the 1637 * pch transcoder. */ 1638 reg = TRANS_CHICKEN2(pipe); 1639 val = I915_READ(reg); 1640 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1641 I915_WRITE(reg, val); 1642 } 1643 1644 reg = PCH_TRANSCONF(pipe); 1645 val = I915_READ(reg); 1646 pipeconf_val = I915_READ(PIPECONF(pipe)); 1647 1648 if (HAS_PCH_IBX(dev_priv)) { 1649 /* 1650 * Make the BPC in transcoder be consistent with 1651 * that in pipeconf reg. For HDMI we must use 8bpc 1652 * here for both 8bpc and 12bpc. 1653 */ 1654 val &= ~PIPECONF_BPC_MASK; 1655 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1656 val |= PIPECONF_8BPC; 1657 else 1658 val |= pipeconf_val & PIPECONF_BPC_MASK; 1659 } 1660 1661 val &= ~TRANS_INTERLACE_MASK; 1662 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 1663 if (HAS_PCH_IBX(dev_priv) && 1664 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 1665 val |= TRANS_LEGACY_INTERLACED_ILK; 1666 else 1667 val |= TRANS_INTERLACED; 1668 } else { 1669 val |= TRANS_PROGRESSIVE; 1670 } 1671 1672 I915_WRITE(reg, val | TRANS_ENABLE); 1673 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 1674 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe)); 1675 } 1676 1677 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 1678 enum transcoder cpu_transcoder) 1679 { 1680 u32 val, pipeconf_val; 1681 1682 /* FDI must be feeding us bits for PCH ports */ 1683 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 1684 assert_fdi_rx_enabled(dev_priv, PIPE_A); 1685 1686 /* Workaround: set timing override bit. */ 1687 val = I915_READ(TRANS_CHICKEN2(PIPE_A)); 1688 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1689 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val); 1690 1691 val = TRANS_ENABLE; 1692 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder)); 1693 1694 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 1695 PIPECONF_INTERLACED_ILK) 1696 val |= TRANS_INTERLACED; 1697 else 1698 val |= TRANS_PROGRESSIVE; 1699 1700 I915_WRITE(LPT_TRANSCONF, val); 1701 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 1702 TRANS_STATE_ENABLE, 100)) 1703 DRM_ERROR("Failed to enable PCH transcoder\n"); 1704 } 1705 1706 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv, 1707 enum pipe pipe) 1708 { 1709 i915_reg_t reg; 1710 u32 val; 1711 1712 /* FDI relies on the transcoder */ 1713 assert_fdi_tx_disabled(dev_priv, pipe); 1714 assert_fdi_rx_disabled(dev_priv, pipe); 1715 1716 /* Ports must be off as well */ 1717 assert_pch_ports_disabled(dev_priv, pipe); 1718 1719 reg = PCH_TRANSCONF(pipe); 1720 val = I915_READ(reg); 1721 val &= ~TRANS_ENABLE; 1722 I915_WRITE(reg, val); 1723 /* wait for PCH transcoder off, transcoder state */ 1724 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 1725 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe)); 1726 1727 if (HAS_PCH_CPT(dev_priv)) { 1728 /* Workaround: Clear the timing override chicken bit again. */ 1729 reg = TRANS_CHICKEN2(pipe); 1730 val = I915_READ(reg); 1731 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1732 I915_WRITE(reg, val); 1733 } 1734 } 1735 1736 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 1737 { 1738 u32 val; 1739 1740 val = I915_READ(LPT_TRANSCONF); 1741 val &= ~TRANS_ENABLE; 1742 I915_WRITE(LPT_TRANSCONF, val); 1743 /* wait for PCH transcoder off, transcoder state */ 1744 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 1745 TRANS_STATE_ENABLE, 50)) 1746 DRM_ERROR("Failed to disable PCH transcoder\n"); 1747 1748 /* Workaround: clear timing override bit. */ 1749 val = I915_READ(TRANS_CHICKEN2(PIPE_A)); 1750 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1751 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val); 1752 } 1753 1754 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 1755 { 1756 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1757 1758 if (HAS_PCH_LPT(dev_priv)) 1759 return PIPE_A; 1760 else 1761 return crtc->pipe; 1762 } 1763 1764 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) 1765 { 1766 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 1767 1768 /* 1769 * On i965gm the hardware frame counter reads 1770 * zero when the TV encoder is enabled :( 1771 */ 1772 if (IS_I965GM(dev_priv) && 1773 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) 1774 return 0; 1775 1776 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1777 return 0xffffffff; /* full 32 bit counter */ 1778 else if (INTEL_GEN(dev_priv) >= 3) 1779 return 0xffffff; /* only 24 bits of frame count */ 1780 else 1781 return 0; /* Gen2 doesn't have a hardware frame counter */ 1782 } 1783 1784 static void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) 1785 { 1786 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 1787 1788 drm_crtc_set_max_vblank_count(&crtc->base, 1789 intel_crtc_max_vblank_count(crtc_state)); 1790 drm_crtc_vblank_on(&crtc->base); 1791 } 1792 1793 static void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 1794 { 1795 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 1796 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1797 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 1798 enum pipe pipe = crtc->pipe; 1799 i915_reg_t reg; 1800 u32 val; 1801 1802 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe)); 1803 1804 assert_planes_disabled(crtc); 1805 1806 /* 1807 * A pipe without a PLL won't actually be able to drive bits from 1808 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 1809 * need the check. 1810 */ 1811 if (HAS_GMCH(dev_priv)) { 1812 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 1813 assert_dsi_pll_enabled(dev_priv); 1814 else 1815 assert_pll_enabled(dev_priv, pipe); 1816 } else { 1817 if (new_crtc_state->has_pch_encoder) { 1818 /* if driving the PCH, we need FDI enabled */ 1819 assert_fdi_rx_pll_enabled(dev_priv, 1820 intel_crtc_pch_transcoder(crtc)); 1821 assert_fdi_tx_pll_enabled(dev_priv, 1822 (enum pipe) cpu_transcoder); 1823 } 1824 /* FIXME: assert CPU port conditions for SNB+ */ 1825 } 1826 1827 trace_intel_pipe_enable(crtc); 1828 1829 reg = PIPECONF(cpu_transcoder); 1830 val = I915_READ(reg); 1831 if (val & PIPECONF_ENABLE) { 1832 /* we keep both pipes enabled on 830 */ 1833 WARN_ON(!IS_I830(dev_priv)); 1834 return; 1835 } 1836 1837 I915_WRITE(reg, val | PIPECONF_ENABLE); 1838 POSTING_READ(reg); 1839 1840 /* 1841 * Until the pipe starts PIPEDSL reads will return a stale value, 1842 * which causes an apparent vblank timestamp jump when PIPEDSL 1843 * resets to its proper value. That also messes up the frame count 1844 * when it's derived from the timestamps. So let's wait for the 1845 * pipe to start properly before we call drm_crtc_vblank_on() 1846 */ 1847 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1848 intel_wait_for_pipe_scanline_moving(crtc); 1849 } 1850 1851 static void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1852 { 1853 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 1854 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1855 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1856 enum pipe pipe = crtc->pipe; 1857 i915_reg_t reg; 1858 u32 val; 1859 1860 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe)); 1861 1862 /* 1863 * Make sure planes won't keep trying to pump pixels to us, 1864 * or we might hang the display. 1865 */ 1866 assert_planes_disabled(crtc); 1867 1868 trace_intel_pipe_disable(crtc); 1869 1870 reg = PIPECONF(cpu_transcoder); 1871 val = I915_READ(reg); 1872 if ((val & PIPECONF_ENABLE) == 0) 1873 return; 1874 1875 /* 1876 * Double wide has implications for planes 1877 * so best keep it disabled when not needed. 1878 */ 1879 if (old_crtc_state->double_wide) 1880 val &= ~PIPECONF_DOUBLE_WIDE; 1881 1882 /* Don't disable pipe or pipe PLLs if needed */ 1883 if (!IS_I830(dev_priv)) 1884 val &= ~PIPECONF_ENABLE; 1885 1886 I915_WRITE(reg, val); 1887 if ((val & PIPECONF_ENABLE) == 0) 1888 intel_wait_for_pipe_off(old_crtc_state); 1889 } 1890 1891 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) 1892 { 1893 return IS_GEN(dev_priv, 2) ? 2048 : 4096; 1894 } 1895 1896 static unsigned int 1897 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 1898 { 1899 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1900 unsigned int cpp = fb->format->cpp[color_plane]; 1901 1902 switch (fb->modifier) { 1903 case DRM_FORMAT_MOD_LINEAR: 1904 return intel_tile_size(dev_priv); 1905 case I915_FORMAT_MOD_X_TILED: 1906 if (IS_GEN(dev_priv, 2)) 1907 return 128; 1908 else 1909 return 512; 1910 case I915_FORMAT_MOD_Y_TILED_CCS: 1911 if (color_plane == 1) 1912 return 128; 1913 /* fall through */ 1914 case I915_FORMAT_MOD_Y_TILED: 1915 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv)) 1916 return 128; 1917 else 1918 return 512; 1919 case I915_FORMAT_MOD_Yf_TILED_CCS: 1920 if (color_plane == 1) 1921 return 128; 1922 /* fall through */ 1923 case I915_FORMAT_MOD_Yf_TILED: 1924 switch (cpp) { 1925 case 1: 1926 return 64; 1927 case 2: 1928 case 4: 1929 return 128; 1930 case 8: 1931 case 16: 1932 return 256; 1933 default: 1934 MISSING_CASE(cpp); 1935 return cpp; 1936 } 1937 break; 1938 default: 1939 MISSING_CASE(fb->modifier); 1940 return cpp; 1941 } 1942 } 1943 1944 static unsigned int 1945 intel_tile_height(const struct drm_framebuffer *fb, int color_plane) 1946 { 1947 return intel_tile_size(to_i915(fb->dev)) / 1948 intel_tile_width_bytes(fb, color_plane); 1949 } 1950 1951 /* Return the tile dimensions in pixel units */ 1952 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane, 1953 unsigned int *tile_width, 1954 unsigned int *tile_height) 1955 { 1956 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane); 1957 unsigned int cpp = fb->format->cpp[color_plane]; 1958 1959 *tile_width = tile_width_bytes / cpp; 1960 *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes; 1961 } 1962 1963 unsigned int 1964 intel_fb_align_height(const struct drm_framebuffer *fb, 1965 int color_plane, unsigned int height) 1966 { 1967 unsigned int tile_height = intel_tile_height(fb, color_plane); 1968 1969 return ALIGN(height, tile_height); 1970 } 1971 1972 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 1973 { 1974 unsigned int size = 0; 1975 int i; 1976 1977 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 1978 size += rot_info->plane[i].width * rot_info->plane[i].height; 1979 1980 return size; 1981 } 1982 1983 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 1984 { 1985 unsigned int size = 0; 1986 int i; 1987 1988 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 1989 size += rem_info->plane[i].width * rem_info->plane[i].height; 1990 1991 return size; 1992 } 1993 1994 static void 1995 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, 1996 const struct drm_framebuffer *fb, 1997 unsigned int rotation) 1998 { 1999 view->type = I915_GGTT_VIEW_NORMAL; 2000 if (drm_rotation_90_or_270(rotation)) { 2001 view->type = I915_GGTT_VIEW_ROTATED; 2002 view->rotated = to_intel_framebuffer(fb)->rot_info; 2003 } 2004 } 2005 2006 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv) 2007 { 2008 if (IS_I830(dev_priv)) 2009 return 16 * 1024; 2010 else if (IS_I85X(dev_priv)) 2011 return 256; 2012 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) 2013 return 32; 2014 else 2015 return 4 * 1024; 2016 } 2017 2018 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 2019 { 2020 if (INTEL_GEN(dev_priv) >= 9) 2021 return 256 * 1024; 2022 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 2023 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2024 return 128 * 1024; 2025 else if (INTEL_GEN(dev_priv) >= 4) 2026 return 4 * 1024; 2027 else 2028 return 0; 2029 } 2030 2031 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 2032 int color_plane) 2033 { 2034 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2035 2036 /* AUX_DIST needs only 4K alignment */ 2037 if (color_plane == 1) 2038 return 4096; 2039 2040 switch (fb->modifier) { 2041 case DRM_FORMAT_MOD_LINEAR: 2042 return intel_linear_alignment(dev_priv); 2043 case I915_FORMAT_MOD_X_TILED: 2044 if (INTEL_GEN(dev_priv) >= 9) 2045 return 256 * 1024; 2046 return 0; 2047 case I915_FORMAT_MOD_Y_TILED_CCS: 2048 case I915_FORMAT_MOD_Yf_TILED_CCS: 2049 case I915_FORMAT_MOD_Y_TILED: 2050 case I915_FORMAT_MOD_Yf_TILED: 2051 return 1 * 1024 * 1024; 2052 default: 2053 MISSING_CASE(fb->modifier); 2054 return 0; 2055 } 2056 } 2057 2058 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 2059 { 2060 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 2061 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2062 2063 return INTEL_GEN(dev_priv) < 4 || 2064 (plane->has_fbc && 2065 plane_state->view.type == I915_GGTT_VIEW_NORMAL); 2066 } 2067 2068 struct i915_vma * 2069 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 2070 const struct i915_ggtt_view *view, 2071 bool uses_fence, 2072 unsigned long *out_flags) 2073 { 2074 struct drm_device *dev = fb->dev; 2075 struct drm_i915_private *dev_priv = to_i915(dev); 2076 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2077 intel_wakeref_t wakeref; 2078 struct i915_vma *vma; 2079 unsigned int pinctl; 2080 u32 alignment; 2081 2082 WARN_ON(!mutex_is_locked(&dev->struct_mutex)); 2083 2084 alignment = intel_surf_alignment(fb, 0); 2085 2086 /* Note that the w/a also requires 64 PTE of padding following the 2087 * bo. We currently fill all unused PTE with the shadow page and so 2088 * we should always have valid PTE following the scanout preventing 2089 * the VT-d warning. 2090 */ 2091 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 2092 alignment = 256 * 1024; 2093 2094 /* 2095 * Global gtt pte registers are special registers which actually forward 2096 * writes to a chunk of system memory. Which means that there is no risk 2097 * that the register values disappear as soon as we call 2098 * intel_runtime_pm_put(), so it is correct to wrap only the 2099 * pin/unpin/fence and not more. 2100 */ 2101 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 2102 i915_gem_object_lock(obj); 2103 2104 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 2105 2106 pinctl = 0; 2107 2108 /* Valleyview is definitely limited to scanning out the first 2109 * 512MiB. Lets presume this behaviour was inherited from the 2110 * g4x display engine and that all earlier gen are similarly 2111 * limited. Testing suggests that it is a little more 2112 * complicated than this. For example, Cherryview appears quite 2113 * happy to scanout from anywhere within its global aperture. 2114 */ 2115 if (HAS_GMCH(dev_priv)) 2116 pinctl |= PIN_MAPPABLE; 2117 2118 vma = i915_gem_object_pin_to_display_plane(obj, 2119 alignment, view, pinctl); 2120 if (IS_ERR(vma)) 2121 goto err; 2122 2123 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 2124 int ret; 2125 2126 /* Install a fence for tiled scan-out. Pre-i965 always needs a 2127 * fence, whereas 965+ only requires a fence if using 2128 * framebuffer compression. For simplicity, we always, when 2129 * possible, install a fence as the cost is not that onerous. 2130 * 2131 * If we fail to fence the tiled scanout, then either the 2132 * modeset will reject the change (which is highly unlikely as 2133 * the affected systems, all but one, do not have unmappable 2134 * space) or we will not be able to enable full powersaving 2135 * techniques (also likely not to apply due to various limits 2136 * FBC and the like impose on the size of the buffer, which 2137 * presumably we violated anyway with this unmappable buffer). 2138 * Anyway, it is presumably better to stumble onwards with 2139 * something and try to run the system in a "less than optimal" 2140 * mode that matches the user configuration. 2141 */ 2142 ret = i915_vma_pin_fence(vma); 2143 if (ret != 0 && INTEL_GEN(dev_priv) < 4) { 2144 i915_gem_object_unpin_from_display_plane(vma); 2145 vma = ERR_PTR(ret); 2146 goto err; 2147 } 2148 2149 if (ret == 0 && vma->fence) 2150 *out_flags |= PLANE_HAS_FENCE; 2151 } 2152 2153 i915_vma_get(vma); 2154 err: 2155 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 2156 2157 i915_gem_object_unlock(obj); 2158 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 2159 return vma; 2160 } 2161 2162 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 2163 { 2164 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); 2165 2166 i915_gem_object_lock(vma->obj); 2167 if (flags & PLANE_HAS_FENCE) 2168 i915_vma_unpin_fence(vma); 2169 i915_gem_object_unpin_from_display_plane(vma); 2170 i915_gem_object_unlock(vma->obj); 2171 2172 i915_vma_put(vma); 2173 } 2174 2175 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane, 2176 unsigned int rotation) 2177 { 2178 if (drm_rotation_90_or_270(rotation)) 2179 return to_intel_framebuffer(fb)->rotated[color_plane].pitch; 2180 else 2181 return fb->pitches[color_plane]; 2182 } 2183 2184 /* 2185 * Convert the x/y offsets into a linear offset. 2186 * Only valid with 0/180 degree rotation, which is fine since linear 2187 * offset is only used with linear buffers on pre-hsw and tiled buffers 2188 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 2189 */ 2190 u32 intel_fb_xy_to_linear(int x, int y, 2191 const struct intel_plane_state *state, 2192 int color_plane) 2193 { 2194 const struct drm_framebuffer *fb = state->base.fb; 2195 unsigned int cpp = fb->format->cpp[color_plane]; 2196 unsigned int pitch = state->color_plane[color_plane].stride; 2197 2198 return y * pitch + x * cpp; 2199 } 2200 2201 /* 2202 * Add the x/y offsets derived from fb->offsets[] to the user 2203 * specified plane src x/y offsets. The resulting x/y offsets 2204 * specify the start of scanout from the beginning of the gtt mapping. 2205 */ 2206 void intel_add_fb_offsets(int *x, int *y, 2207 const struct intel_plane_state *state, 2208 int color_plane) 2209 2210 { 2211 *x += state->color_plane[color_plane].x; 2212 *y += state->color_plane[color_plane].y; 2213 } 2214 2215 static u32 intel_adjust_tile_offset(int *x, int *y, 2216 unsigned int tile_width, 2217 unsigned int tile_height, 2218 unsigned int tile_size, 2219 unsigned int pitch_tiles, 2220 u32 old_offset, 2221 u32 new_offset) 2222 { 2223 unsigned int pitch_pixels = pitch_tiles * tile_width; 2224 unsigned int tiles; 2225 2226 WARN_ON(old_offset & (tile_size - 1)); 2227 WARN_ON(new_offset & (tile_size - 1)); 2228 WARN_ON(new_offset > old_offset); 2229 2230 tiles = (old_offset - new_offset) / tile_size; 2231 2232 *y += tiles / pitch_tiles * tile_height; 2233 *x += tiles % pitch_tiles * tile_width; 2234 2235 /* minimize x in case it got needlessly big */ 2236 *y += *x / pitch_pixels * tile_height; 2237 *x %= pitch_pixels; 2238 2239 return new_offset; 2240 } 2241 2242 static bool is_surface_linear(u64 modifier, int color_plane) 2243 { 2244 return modifier == DRM_FORMAT_MOD_LINEAR; 2245 } 2246 2247 static u32 intel_adjust_aligned_offset(int *x, int *y, 2248 const struct drm_framebuffer *fb, 2249 int color_plane, 2250 unsigned int rotation, 2251 unsigned int pitch, 2252 u32 old_offset, u32 new_offset) 2253 { 2254 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2255 unsigned int cpp = fb->format->cpp[color_plane]; 2256 2257 WARN_ON(new_offset > old_offset); 2258 2259 if (!is_surface_linear(fb->modifier, color_plane)) { 2260 unsigned int tile_size, tile_width, tile_height; 2261 unsigned int pitch_tiles; 2262 2263 tile_size = intel_tile_size(dev_priv); 2264 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2265 2266 if (drm_rotation_90_or_270(rotation)) { 2267 pitch_tiles = pitch / tile_height; 2268 swap(tile_width, tile_height); 2269 } else { 2270 pitch_tiles = pitch / (tile_width * cpp); 2271 } 2272 2273 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2274 tile_size, pitch_tiles, 2275 old_offset, new_offset); 2276 } else { 2277 old_offset += *y * pitch + *x * cpp; 2278 2279 *y = (old_offset - new_offset) / pitch; 2280 *x = ((old_offset - new_offset) - *y * pitch) / cpp; 2281 } 2282 2283 return new_offset; 2284 } 2285 2286 /* 2287 * Adjust the tile offset by moving the difference into 2288 * the x/y offsets. 2289 */ 2290 static u32 intel_plane_adjust_aligned_offset(int *x, int *y, 2291 const struct intel_plane_state *state, 2292 int color_plane, 2293 u32 old_offset, u32 new_offset) 2294 { 2295 return intel_adjust_aligned_offset(x, y, state->base.fb, color_plane, 2296 state->base.rotation, 2297 state->color_plane[color_plane].stride, 2298 old_offset, new_offset); 2299 } 2300 2301 /* 2302 * Computes the aligned offset to the base tile and adjusts 2303 * x, y. bytes per pixel is assumed to be a power-of-two. 2304 * 2305 * In the 90/270 rotated case, x and y are assumed 2306 * to be already rotated to match the rotated GTT view, and 2307 * pitch is the tile_height aligned framebuffer height. 2308 * 2309 * This function is used when computing the derived information 2310 * under intel_framebuffer, so using any of that information 2311 * here is not allowed. Anything under drm_framebuffer can be 2312 * used. This is why the user has to pass in the pitch since it 2313 * is specified in the rotated orientation. 2314 */ 2315 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv, 2316 int *x, int *y, 2317 const struct drm_framebuffer *fb, 2318 int color_plane, 2319 unsigned int pitch, 2320 unsigned int rotation, 2321 u32 alignment) 2322 { 2323 unsigned int cpp = fb->format->cpp[color_plane]; 2324 u32 offset, offset_aligned; 2325 2326 if (alignment) 2327 alignment--; 2328 2329 if (!is_surface_linear(fb->modifier, color_plane)) { 2330 unsigned int tile_size, tile_width, tile_height; 2331 unsigned int tile_rows, tiles, pitch_tiles; 2332 2333 tile_size = intel_tile_size(dev_priv); 2334 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2335 2336 if (drm_rotation_90_or_270(rotation)) { 2337 pitch_tiles = pitch / tile_height; 2338 swap(tile_width, tile_height); 2339 } else { 2340 pitch_tiles = pitch / (tile_width * cpp); 2341 } 2342 2343 tile_rows = *y / tile_height; 2344 *y %= tile_height; 2345 2346 tiles = *x / tile_width; 2347 *x %= tile_width; 2348 2349 offset = (tile_rows * pitch_tiles + tiles) * tile_size; 2350 offset_aligned = offset & ~alignment; 2351 2352 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2353 tile_size, pitch_tiles, 2354 offset, offset_aligned); 2355 } else { 2356 offset = *y * pitch + *x * cpp; 2357 offset_aligned = offset & ~alignment; 2358 2359 *y = (offset & alignment) / pitch; 2360 *x = ((offset & alignment) - *y * pitch) / cpp; 2361 } 2362 2363 return offset_aligned; 2364 } 2365 2366 static u32 intel_plane_compute_aligned_offset(int *x, int *y, 2367 const struct intel_plane_state *state, 2368 int color_plane) 2369 { 2370 struct intel_plane *intel_plane = to_intel_plane(state->base.plane); 2371 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 2372 const struct drm_framebuffer *fb = state->base.fb; 2373 unsigned int rotation = state->base.rotation; 2374 int pitch = state->color_plane[color_plane].stride; 2375 u32 alignment; 2376 2377 if (intel_plane->id == PLANE_CURSOR) 2378 alignment = intel_cursor_alignment(dev_priv); 2379 else 2380 alignment = intel_surf_alignment(fb, color_plane); 2381 2382 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane, 2383 pitch, rotation, alignment); 2384 } 2385 2386 /* Convert the fb->offset[] into x/y offsets */ 2387 static int intel_fb_offset_to_xy(int *x, int *y, 2388 const struct drm_framebuffer *fb, 2389 int color_plane) 2390 { 2391 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2392 unsigned int height; 2393 2394 if (fb->modifier != DRM_FORMAT_MOD_LINEAR && 2395 fb->offsets[color_plane] % intel_tile_size(dev_priv)) { 2396 DRM_DEBUG_KMS("Misaligned offset 0x%08x for color plane %d\n", 2397 fb->offsets[color_plane], color_plane); 2398 return -EINVAL; 2399 } 2400 2401 height = drm_framebuffer_plane_height(fb->height, fb, color_plane); 2402 height = ALIGN(height, intel_tile_height(fb, color_plane)); 2403 2404 /* Catch potential overflows early */ 2405 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]), 2406 fb->offsets[color_plane])) { 2407 DRM_DEBUG_KMS("Bad offset 0x%08x or pitch %d for color plane %d\n", 2408 fb->offsets[color_plane], fb->pitches[color_plane], 2409 color_plane); 2410 return -ERANGE; 2411 } 2412 2413 *x = 0; 2414 *y = 0; 2415 2416 intel_adjust_aligned_offset(x, y, 2417 fb, color_plane, DRM_MODE_ROTATE_0, 2418 fb->pitches[color_plane], 2419 fb->offsets[color_plane], 0); 2420 2421 return 0; 2422 } 2423 2424 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 2425 { 2426 switch (fb_modifier) { 2427 case I915_FORMAT_MOD_X_TILED: 2428 return I915_TILING_X; 2429 case I915_FORMAT_MOD_Y_TILED: 2430 case I915_FORMAT_MOD_Y_TILED_CCS: 2431 return I915_TILING_Y; 2432 default: 2433 return I915_TILING_NONE; 2434 } 2435 } 2436 2437 /* 2438 * From the Sky Lake PRM: 2439 * "The Color Control Surface (CCS) contains the compression status of 2440 * the cache-line pairs. The compression state of the cache-line pair 2441 * is specified by 2 bits in the CCS. Each CCS cache-line represents 2442 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 2443 * cache-line-pairs. CCS is always Y tiled." 2444 * 2445 * Since cache line pairs refers to horizontally adjacent cache lines, 2446 * each cache line in the CCS corresponds to an area of 32x16 cache 2447 * lines on the main surface. Since each pixel is 4 bytes, this gives 2448 * us a ratio of one byte in the CCS for each 8x16 pixels in the 2449 * main surface. 2450 */ 2451 static const struct drm_format_info ccs_formats[] = { 2452 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2453 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2454 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2455 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2456 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2457 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2458 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2459 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2460 }; 2461 2462 static const struct drm_format_info * 2463 lookup_format_info(const struct drm_format_info formats[], 2464 int num_formats, u32 format) 2465 { 2466 int i; 2467 2468 for (i = 0; i < num_formats; i++) { 2469 if (formats[i].format == format) 2470 return &formats[i]; 2471 } 2472 2473 return NULL; 2474 } 2475 2476 static const struct drm_format_info * 2477 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 2478 { 2479 switch (cmd->modifier[0]) { 2480 case I915_FORMAT_MOD_Y_TILED_CCS: 2481 case I915_FORMAT_MOD_Yf_TILED_CCS: 2482 return lookup_format_info(ccs_formats, 2483 ARRAY_SIZE(ccs_formats), 2484 cmd->pixel_format); 2485 default: 2486 return NULL; 2487 } 2488 } 2489 2490 bool is_ccs_modifier(u64 modifier) 2491 { 2492 return modifier == I915_FORMAT_MOD_Y_TILED_CCS || 2493 modifier == I915_FORMAT_MOD_Yf_TILED_CCS; 2494 } 2495 2496 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 2497 u32 pixel_format, u64 modifier) 2498 { 2499 struct intel_crtc *crtc; 2500 struct intel_plane *plane; 2501 2502 /* 2503 * We assume the primary plane for pipe A has 2504 * the highest stride limits of them all. 2505 */ 2506 crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A); 2507 plane = to_intel_plane(crtc->base.primary); 2508 2509 return plane->max_stride(plane, pixel_format, modifier, 2510 DRM_MODE_ROTATE_0); 2511 } 2512 2513 static 2514 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 2515 u32 pixel_format, u64 modifier) 2516 { 2517 /* 2518 * Arbitrary limit for gen4+ chosen to match the 2519 * render engine max stride. 2520 * 2521 * The new CCS hash mode makes remapping impossible 2522 */ 2523 if (!is_ccs_modifier(modifier)) { 2524 if (INTEL_GEN(dev_priv) >= 7) 2525 return 256*1024; 2526 else if (INTEL_GEN(dev_priv) >= 4) 2527 return 128*1024; 2528 } 2529 2530 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 2531 } 2532 2533 static u32 2534 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 2535 { 2536 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2537 2538 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { 2539 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 2540 fb->format->format, 2541 fb->modifier); 2542 2543 /* 2544 * To make remapping with linear generally feasible 2545 * we need the stride to be page aligned. 2546 */ 2547 if (fb->pitches[color_plane] > max_stride) 2548 return intel_tile_size(dev_priv); 2549 else 2550 return 64; 2551 } else { 2552 return intel_tile_width_bytes(fb, color_plane); 2553 } 2554 } 2555 2556 bool intel_plane_can_remap(const struct intel_plane_state *plane_state) 2557 { 2558 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 2559 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2560 const struct drm_framebuffer *fb = plane_state->base.fb; 2561 int i; 2562 2563 /* We don't want to deal with remapping with cursors */ 2564 if (plane->id == PLANE_CURSOR) 2565 return false; 2566 2567 /* 2568 * The display engine limits already match/exceed the 2569 * render engine limits, so not much point in remapping. 2570 * Would also need to deal with the fence POT alignment 2571 * and gen2 2KiB GTT tile size. 2572 */ 2573 if (INTEL_GEN(dev_priv) < 4) 2574 return false; 2575 2576 /* 2577 * The new CCS hash mode isn't compatible with remapping as 2578 * the virtual address of the pages affects the compressed data. 2579 */ 2580 if (is_ccs_modifier(fb->modifier)) 2581 return false; 2582 2583 /* Linear needs a page aligned stride for remapping */ 2584 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { 2585 unsigned int alignment = intel_tile_size(dev_priv) - 1; 2586 2587 for (i = 0; i < fb->format->num_planes; i++) { 2588 if (fb->pitches[i] & alignment) 2589 return false; 2590 } 2591 } 2592 2593 return true; 2594 } 2595 2596 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state) 2597 { 2598 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 2599 const struct drm_framebuffer *fb = plane_state->base.fb; 2600 unsigned int rotation = plane_state->base.rotation; 2601 u32 stride, max_stride; 2602 2603 /* 2604 * No remapping for invisible planes since we don't have 2605 * an actual source viewport to remap. 2606 */ 2607 if (!plane_state->base.visible) 2608 return false; 2609 2610 if (!intel_plane_can_remap(plane_state)) 2611 return false; 2612 2613 /* 2614 * FIXME: aux plane limits on gen9+ are 2615 * unclear in Bspec, for now no checking. 2616 */ 2617 stride = intel_fb_pitch(fb, 0, rotation); 2618 max_stride = plane->max_stride(plane, fb->format->format, 2619 fb->modifier, rotation); 2620 2621 return stride > max_stride; 2622 } 2623 2624 static int 2625 intel_fill_fb_info(struct drm_i915_private *dev_priv, 2626 struct drm_framebuffer *fb) 2627 { 2628 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2629 struct intel_rotation_info *rot_info = &intel_fb->rot_info; 2630 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2631 u32 gtt_offset_rotated = 0; 2632 unsigned int max_size = 0; 2633 int i, num_planes = fb->format->num_planes; 2634 unsigned int tile_size = intel_tile_size(dev_priv); 2635 2636 for (i = 0; i < num_planes; i++) { 2637 unsigned int width, height; 2638 unsigned int cpp, size; 2639 u32 offset; 2640 int x, y; 2641 int ret; 2642 2643 cpp = fb->format->cpp[i]; 2644 width = drm_framebuffer_plane_width(fb->width, fb, i); 2645 height = drm_framebuffer_plane_height(fb->height, fb, i); 2646 2647 ret = intel_fb_offset_to_xy(&x, &y, fb, i); 2648 if (ret) { 2649 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n", 2650 i, fb->offsets[i]); 2651 return ret; 2652 } 2653 2654 if (is_ccs_modifier(fb->modifier) && i == 1) { 2655 int hsub = fb->format->hsub; 2656 int vsub = fb->format->vsub; 2657 int tile_width, tile_height; 2658 int main_x, main_y; 2659 int ccs_x, ccs_y; 2660 2661 intel_tile_dims(fb, i, &tile_width, &tile_height); 2662 tile_width *= hsub; 2663 tile_height *= vsub; 2664 2665 ccs_x = (x * hsub) % tile_width; 2666 ccs_y = (y * vsub) % tile_height; 2667 main_x = intel_fb->normal[0].x % tile_width; 2668 main_y = intel_fb->normal[0].y % tile_height; 2669 2670 /* 2671 * CCS doesn't have its own x/y offset register, so the intra CCS tile 2672 * x/y offsets must match between CCS and the main surface. 2673 */ 2674 if (main_x != ccs_x || main_y != ccs_y) { 2675 DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n", 2676 main_x, main_y, 2677 ccs_x, ccs_y, 2678 intel_fb->normal[0].x, 2679 intel_fb->normal[0].y, 2680 x, y); 2681 return -EINVAL; 2682 } 2683 } 2684 2685 /* 2686 * The fence (if used) is aligned to the start of the object 2687 * so having the framebuffer wrap around across the edge of the 2688 * fenced region doesn't really work. We have no API to configure 2689 * the fence start offset within the object (nor could we probably 2690 * on gen2/3). So it's just easier if we just require that the 2691 * fb layout agrees with the fence layout. We already check that the 2692 * fb stride matches the fence stride elsewhere. 2693 */ 2694 if (i == 0 && i915_gem_object_is_tiled(obj) && 2695 (x + width) * cpp > fb->pitches[i]) { 2696 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n", 2697 i, fb->offsets[i]); 2698 return -EINVAL; 2699 } 2700 2701 /* 2702 * First pixel of the framebuffer from 2703 * the start of the normal gtt mapping. 2704 */ 2705 intel_fb->normal[i].x = x; 2706 intel_fb->normal[i].y = y; 2707 2708 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, 2709 fb->pitches[i], 2710 DRM_MODE_ROTATE_0, 2711 tile_size); 2712 offset /= tile_size; 2713 2714 if (!is_surface_linear(fb->modifier, i)) { 2715 unsigned int tile_width, tile_height; 2716 unsigned int pitch_tiles; 2717 struct drm_rect r; 2718 2719 intel_tile_dims(fb, i, &tile_width, &tile_height); 2720 2721 rot_info->plane[i].offset = offset; 2722 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp); 2723 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); 2724 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); 2725 2726 intel_fb->rotated[i].pitch = 2727 rot_info->plane[i].height * tile_height; 2728 2729 /* how many tiles does this plane need */ 2730 size = rot_info->plane[i].stride * rot_info->plane[i].height; 2731 /* 2732 * If the plane isn't horizontally tile aligned, 2733 * we need one more tile. 2734 */ 2735 if (x != 0) 2736 size++; 2737 2738 /* rotate the x/y offsets to match the GTT view */ 2739 r.x1 = x; 2740 r.y1 = y; 2741 r.x2 = x + width; 2742 r.y2 = y + height; 2743 drm_rect_rotate(&r, 2744 rot_info->plane[i].width * tile_width, 2745 rot_info->plane[i].height * tile_height, 2746 DRM_MODE_ROTATE_270); 2747 x = r.x1; 2748 y = r.y1; 2749 2750 /* rotate the tile dimensions to match the GTT view */ 2751 pitch_tiles = intel_fb->rotated[i].pitch / tile_height; 2752 swap(tile_width, tile_height); 2753 2754 /* 2755 * We only keep the x/y offsets, so push all of the 2756 * gtt offset into the x/y offsets. 2757 */ 2758 intel_adjust_tile_offset(&x, &y, 2759 tile_width, tile_height, 2760 tile_size, pitch_tiles, 2761 gtt_offset_rotated * tile_size, 0); 2762 2763 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height; 2764 2765 /* 2766 * First pixel of the framebuffer from 2767 * the start of the rotated gtt mapping. 2768 */ 2769 intel_fb->rotated[i].x = x; 2770 intel_fb->rotated[i].y = y; 2771 } else { 2772 size = DIV_ROUND_UP((y + height) * fb->pitches[i] + 2773 x * cpp, tile_size); 2774 } 2775 2776 /* how many tiles in total needed in the bo */ 2777 max_size = max(max_size, offset + size); 2778 } 2779 2780 if (mul_u32_u32(max_size, tile_size) > obj->base.size) { 2781 DRM_DEBUG_KMS("fb too big for bo (need %llu bytes, have %zu bytes)\n", 2782 mul_u32_u32(max_size, tile_size), obj->base.size); 2783 return -EINVAL; 2784 } 2785 2786 return 0; 2787 } 2788 2789 static void 2790 intel_plane_remap_gtt(struct intel_plane_state *plane_state) 2791 { 2792 struct drm_i915_private *dev_priv = 2793 to_i915(plane_state->base.plane->dev); 2794 struct drm_framebuffer *fb = plane_state->base.fb; 2795 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2796 struct intel_rotation_info *info = &plane_state->view.rotated; 2797 unsigned int rotation = plane_state->base.rotation; 2798 int i, num_planes = fb->format->num_planes; 2799 unsigned int tile_size = intel_tile_size(dev_priv); 2800 unsigned int src_x, src_y; 2801 unsigned int src_w, src_h; 2802 u32 gtt_offset = 0; 2803 2804 memset(&plane_state->view, 0, sizeof(plane_state->view)); 2805 plane_state->view.type = drm_rotation_90_or_270(rotation) ? 2806 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED; 2807 2808 src_x = plane_state->base.src.x1 >> 16; 2809 src_y = plane_state->base.src.y1 >> 16; 2810 src_w = drm_rect_width(&plane_state->base.src) >> 16; 2811 src_h = drm_rect_height(&plane_state->base.src) >> 16; 2812 2813 WARN_ON(is_ccs_modifier(fb->modifier)); 2814 2815 /* Make src coordinates relative to the viewport */ 2816 drm_rect_translate(&plane_state->base.src, 2817 -(src_x << 16), -(src_y << 16)); 2818 2819 /* Rotate src coordinates to match rotated GTT view */ 2820 if (drm_rotation_90_or_270(rotation)) 2821 drm_rect_rotate(&plane_state->base.src, 2822 src_w << 16, src_h << 16, 2823 DRM_MODE_ROTATE_270); 2824 2825 for (i = 0; i < num_planes; i++) { 2826 unsigned int hsub = i ? fb->format->hsub : 1; 2827 unsigned int vsub = i ? fb->format->vsub : 1; 2828 unsigned int cpp = fb->format->cpp[i]; 2829 unsigned int tile_width, tile_height; 2830 unsigned int width, height; 2831 unsigned int pitch_tiles; 2832 unsigned int x, y; 2833 u32 offset; 2834 2835 intel_tile_dims(fb, i, &tile_width, &tile_height); 2836 2837 x = src_x / hsub; 2838 y = src_y / vsub; 2839 width = src_w / hsub; 2840 height = src_h / vsub; 2841 2842 /* 2843 * First pixel of the src viewport from the 2844 * start of the normal gtt mapping. 2845 */ 2846 x += intel_fb->normal[i].x; 2847 y += intel_fb->normal[i].y; 2848 2849 offset = intel_compute_aligned_offset(dev_priv, &x, &y, 2850 fb, i, fb->pitches[i], 2851 DRM_MODE_ROTATE_0, tile_size); 2852 offset /= tile_size; 2853 2854 info->plane[i].offset = offset; 2855 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], 2856 tile_width * cpp); 2857 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); 2858 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); 2859 2860 if (drm_rotation_90_or_270(rotation)) { 2861 struct drm_rect r; 2862 2863 /* rotate the x/y offsets to match the GTT view */ 2864 r.x1 = x; 2865 r.y1 = y; 2866 r.x2 = x + width; 2867 r.y2 = y + height; 2868 drm_rect_rotate(&r, 2869 info->plane[i].width * tile_width, 2870 info->plane[i].height * tile_height, 2871 DRM_MODE_ROTATE_270); 2872 x = r.x1; 2873 y = r.y1; 2874 2875 pitch_tiles = info->plane[i].height; 2876 plane_state->color_plane[i].stride = pitch_tiles * tile_height; 2877 2878 /* rotate the tile dimensions to match the GTT view */ 2879 swap(tile_width, tile_height); 2880 } else { 2881 pitch_tiles = info->plane[i].width; 2882 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp; 2883 } 2884 2885 /* 2886 * We only keep the x/y offsets, so push all of the 2887 * gtt offset into the x/y offsets. 2888 */ 2889 intel_adjust_tile_offset(&x, &y, 2890 tile_width, tile_height, 2891 tile_size, pitch_tiles, 2892 gtt_offset * tile_size, 0); 2893 2894 gtt_offset += info->plane[i].width * info->plane[i].height; 2895 2896 plane_state->color_plane[i].offset = 0; 2897 plane_state->color_plane[i].x = x; 2898 plane_state->color_plane[i].y = y; 2899 } 2900 } 2901 2902 static int 2903 intel_plane_compute_gtt(struct intel_plane_state *plane_state) 2904 { 2905 const struct intel_framebuffer *fb = 2906 to_intel_framebuffer(plane_state->base.fb); 2907 unsigned int rotation = plane_state->base.rotation; 2908 int i, num_planes; 2909 2910 if (!fb) 2911 return 0; 2912 2913 num_planes = fb->base.format->num_planes; 2914 2915 if (intel_plane_needs_remap(plane_state)) { 2916 intel_plane_remap_gtt(plane_state); 2917 2918 /* 2919 * Sometimes even remapping can't overcome 2920 * the stride limitations :( Can happen with 2921 * big plane sizes and suitably misaligned 2922 * offsets. 2923 */ 2924 return intel_plane_check_stride(plane_state); 2925 } 2926 2927 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation); 2928 2929 for (i = 0; i < num_planes; i++) { 2930 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation); 2931 plane_state->color_plane[i].offset = 0; 2932 2933 if (drm_rotation_90_or_270(rotation)) { 2934 plane_state->color_plane[i].x = fb->rotated[i].x; 2935 plane_state->color_plane[i].y = fb->rotated[i].y; 2936 } else { 2937 plane_state->color_plane[i].x = fb->normal[i].x; 2938 plane_state->color_plane[i].y = fb->normal[i].y; 2939 } 2940 } 2941 2942 /* Rotate src coordinates to match rotated GTT view */ 2943 if (drm_rotation_90_or_270(rotation)) 2944 drm_rect_rotate(&plane_state->base.src, 2945 fb->base.width << 16, fb->base.height << 16, 2946 DRM_MODE_ROTATE_270); 2947 2948 return intel_plane_check_stride(plane_state); 2949 } 2950 2951 static int i9xx_format_to_fourcc(int format) 2952 { 2953 switch (format) { 2954 case DISPPLANE_8BPP: 2955 return DRM_FORMAT_C8; 2956 case DISPPLANE_BGRX555: 2957 return DRM_FORMAT_XRGB1555; 2958 case DISPPLANE_BGRX565: 2959 return DRM_FORMAT_RGB565; 2960 default: 2961 case DISPPLANE_BGRX888: 2962 return DRM_FORMAT_XRGB8888; 2963 case DISPPLANE_RGBX888: 2964 return DRM_FORMAT_XBGR8888; 2965 case DISPPLANE_BGRX101010: 2966 return DRM_FORMAT_XRGB2101010; 2967 case DISPPLANE_RGBX101010: 2968 return DRM_FORMAT_XBGR2101010; 2969 } 2970 } 2971 2972 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) 2973 { 2974 switch (format) { 2975 case PLANE_CTL_FORMAT_RGB_565: 2976 return DRM_FORMAT_RGB565; 2977 case PLANE_CTL_FORMAT_NV12: 2978 return DRM_FORMAT_NV12; 2979 case PLANE_CTL_FORMAT_P010: 2980 return DRM_FORMAT_P010; 2981 case PLANE_CTL_FORMAT_P012: 2982 return DRM_FORMAT_P012; 2983 case PLANE_CTL_FORMAT_P016: 2984 return DRM_FORMAT_P016; 2985 case PLANE_CTL_FORMAT_Y210: 2986 return DRM_FORMAT_Y210; 2987 case PLANE_CTL_FORMAT_Y212: 2988 return DRM_FORMAT_Y212; 2989 case PLANE_CTL_FORMAT_Y216: 2990 return DRM_FORMAT_Y216; 2991 case PLANE_CTL_FORMAT_Y410: 2992 return DRM_FORMAT_XVYU2101010; 2993 case PLANE_CTL_FORMAT_Y412: 2994 return DRM_FORMAT_XVYU12_16161616; 2995 case PLANE_CTL_FORMAT_Y416: 2996 return DRM_FORMAT_XVYU16161616; 2997 default: 2998 case PLANE_CTL_FORMAT_XRGB_8888: 2999 if (rgb_order) { 3000 if (alpha) 3001 return DRM_FORMAT_ABGR8888; 3002 else 3003 return DRM_FORMAT_XBGR8888; 3004 } else { 3005 if (alpha) 3006 return DRM_FORMAT_ARGB8888; 3007 else 3008 return DRM_FORMAT_XRGB8888; 3009 } 3010 case PLANE_CTL_FORMAT_XRGB_2101010: 3011 if (rgb_order) 3012 return DRM_FORMAT_XBGR2101010; 3013 else 3014 return DRM_FORMAT_XRGB2101010; 3015 case PLANE_CTL_FORMAT_XRGB_16161616F: 3016 if (rgb_order) { 3017 if (alpha) 3018 return DRM_FORMAT_ABGR16161616F; 3019 else 3020 return DRM_FORMAT_XBGR16161616F; 3021 } else { 3022 if (alpha) 3023 return DRM_FORMAT_ARGB16161616F; 3024 else 3025 return DRM_FORMAT_XRGB16161616F; 3026 } 3027 } 3028 } 3029 3030 static bool 3031 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 3032 struct intel_initial_plane_config *plane_config) 3033 { 3034 struct drm_device *dev = crtc->base.dev; 3035 struct drm_i915_private *dev_priv = to_i915(dev); 3036 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 3037 struct drm_framebuffer *fb = &plane_config->fb->base; 3038 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE); 3039 u32 size_aligned = round_up(plane_config->base + plane_config->size, 3040 PAGE_SIZE); 3041 struct drm_i915_gem_object *obj; 3042 bool ret = false; 3043 3044 size_aligned -= base_aligned; 3045 3046 if (plane_config->size == 0) 3047 return false; 3048 3049 /* If the FB is too big, just don't use it since fbdev is not very 3050 * important and we should probably use that space with FBC or other 3051 * features. */ 3052 if (size_aligned * 2 > dev_priv->stolen_usable_size) 3053 return false; 3054 3055 switch (fb->modifier) { 3056 case DRM_FORMAT_MOD_LINEAR: 3057 case I915_FORMAT_MOD_X_TILED: 3058 case I915_FORMAT_MOD_Y_TILED: 3059 break; 3060 default: 3061 DRM_DEBUG_DRIVER("Unsupported modifier for initial FB: 0x%llx\n", 3062 fb->modifier); 3063 return false; 3064 } 3065 3066 mutex_lock(&dev->struct_mutex); 3067 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv, 3068 base_aligned, 3069 base_aligned, 3070 size_aligned); 3071 mutex_unlock(&dev->struct_mutex); 3072 if (!obj) 3073 return false; 3074 3075 switch (plane_config->tiling) { 3076 case I915_TILING_NONE: 3077 break; 3078 case I915_TILING_X: 3079 case I915_TILING_Y: 3080 obj->tiling_and_stride = fb->pitches[0] | plane_config->tiling; 3081 break; 3082 default: 3083 MISSING_CASE(plane_config->tiling); 3084 goto out; 3085 } 3086 3087 mode_cmd.pixel_format = fb->format->format; 3088 mode_cmd.width = fb->width; 3089 mode_cmd.height = fb->height; 3090 mode_cmd.pitches[0] = fb->pitches[0]; 3091 mode_cmd.modifier[0] = fb->modifier; 3092 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 3093 3094 if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) { 3095 DRM_DEBUG_KMS("intel fb init failed\n"); 3096 goto out; 3097 } 3098 3099 3100 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj); 3101 ret = true; 3102 out: 3103 i915_gem_object_put(obj); 3104 return ret; 3105 } 3106 3107 static void 3108 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 3109 struct intel_plane_state *plane_state, 3110 bool visible) 3111 { 3112 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 3113 3114 plane_state->base.visible = visible; 3115 3116 if (visible) 3117 crtc_state->base.plane_mask |= drm_plane_mask(&plane->base); 3118 else 3119 crtc_state->base.plane_mask &= ~drm_plane_mask(&plane->base); 3120 } 3121 3122 static void fixup_active_planes(struct intel_crtc_state *crtc_state) 3123 { 3124 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 3125 struct drm_plane *plane; 3126 3127 /* 3128 * Active_planes aliases if multiple "primary" or cursor planes 3129 * have been used on the same (or wrong) pipe. plane_mask uses 3130 * unique ids, hence we can use that to reconstruct active_planes. 3131 */ 3132 crtc_state->active_planes = 0; 3133 3134 drm_for_each_plane_mask(plane, &dev_priv->drm, 3135 crtc_state->base.plane_mask) 3136 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 3137 } 3138 3139 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 3140 struct intel_plane *plane) 3141 { 3142 struct intel_crtc_state *crtc_state = 3143 to_intel_crtc_state(crtc->base.state); 3144 struct intel_plane_state *plane_state = 3145 to_intel_plane_state(plane->base.state); 3146 3147 DRM_DEBUG_KMS("Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 3148 plane->base.base.id, plane->base.name, 3149 crtc->base.base.id, crtc->base.name); 3150 3151 intel_set_plane_visible(crtc_state, plane_state, false); 3152 fixup_active_planes(crtc_state); 3153 crtc_state->data_rate[plane->id] = 0; 3154 3155 if (plane->id == PLANE_PRIMARY) 3156 intel_pre_disable_primary_noatomic(&crtc->base); 3157 3158 intel_disable_plane(plane, crtc_state); 3159 } 3160 3161 static struct intel_frontbuffer * 3162 to_intel_frontbuffer(struct drm_framebuffer *fb) 3163 { 3164 return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL; 3165 } 3166 3167 static void 3168 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 3169 struct intel_initial_plane_config *plane_config) 3170 { 3171 struct drm_device *dev = intel_crtc->base.dev; 3172 struct drm_i915_private *dev_priv = to_i915(dev); 3173 struct drm_crtc *c; 3174 struct drm_plane *primary = intel_crtc->base.primary; 3175 struct drm_plane_state *plane_state = primary->state; 3176 struct intel_plane *intel_plane = to_intel_plane(primary); 3177 struct intel_plane_state *intel_state = 3178 to_intel_plane_state(plane_state); 3179 struct drm_framebuffer *fb; 3180 3181 if (!plane_config->fb) 3182 return; 3183 3184 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 3185 fb = &plane_config->fb->base; 3186 goto valid_fb; 3187 } 3188 3189 kfree(plane_config->fb); 3190 3191 /* 3192 * Failed to alloc the obj, check to see if we should share 3193 * an fb with another CRTC instead 3194 */ 3195 for_each_crtc(dev, c) { 3196 struct intel_plane_state *state; 3197 3198 if (c == &intel_crtc->base) 3199 continue; 3200 3201 if (!to_intel_crtc(c)->active) 3202 continue; 3203 3204 state = to_intel_plane_state(c->primary->state); 3205 if (!state->vma) 3206 continue; 3207 3208 if (intel_plane_ggtt_offset(state) == plane_config->base) { 3209 fb = state->base.fb; 3210 drm_framebuffer_get(fb); 3211 goto valid_fb; 3212 } 3213 } 3214 3215 /* 3216 * We've failed to reconstruct the BIOS FB. Current display state 3217 * indicates that the primary plane is visible, but has a NULL FB, 3218 * which will lead to problems later if we don't fix it up. The 3219 * simplest solution is to just disable the primary plane now and 3220 * pretend the BIOS never had it enabled. 3221 */ 3222 intel_plane_disable_noatomic(intel_crtc, intel_plane); 3223 3224 return; 3225 3226 valid_fb: 3227 intel_state->base.rotation = plane_config->rotation; 3228 intel_fill_fb_ggtt_view(&intel_state->view, fb, 3229 intel_state->base.rotation); 3230 intel_state->color_plane[0].stride = 3231 intel_fb_pitch(fb, 0, intel_state->base.rotation); 3232 3233 mutex_lock(&dev->struct_mutex); 3234 intel_state->vma = 3235 intel_pin_and_fence_fb_obj(fb, 3236 &intel_state->view, 3237 intel_plane_uses_fence(intel_state), 3238 &intel_state->flags); 3239 mutex_unlock(&dev->struct_mutex); 3240 if (IS_ERR(intel_state->vma)) { 3241 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n", 3242 intel_crtc->pipe, PTR_ERR(intel_state->vma)); 3243 3244 intel_state->vma = NULL; 3245 drm_framebuffer_put(fb); 3246 return; 3247 } 3248 3249 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 3250 3251 plane_state->src_x = 0; 3252 plane_state->src_y = 0; 3253 plane_state->src_w = fb->width << 16; 3254 plane_state->src_h = fb->height << 16; 3255 3256 plane_state->crtc_x = 0; 3257 plane_state->crtc_y = 0; 3258 plane_state->crtc_w = fb->width; 3259 plane_state->crtc_h = fb->height; 3260 3261 intel_state->base.src = drm_plane_state_src(plane_state); 3262 intel_state->base.dst = drm_plane_state_dest(plane_state); 3263 3264 if (plane_config->tiling) 3265 dev_priv->preserve_bios_swizzle = true; 3266 3267 plane_state->fb = fb; 3268 plane_state->crtc = &intel_crtc->base; 3269 3270 atomic_or(to_intel_plane(primary)->frontbuffer_bit, 3271 &to_intel_frontbuffer(fb)->bits); 3272 } 3273 3274 static int skl_max_plane_width(const struct drm_framebuffer *fb, 3275 int color_plane, 3276 unsigned int rotation) 3277 { 3278 int cpp = fb->format->cpp[color_plane]; 3279 3280 switch (fb->modifier) { 3281 case DRM_FORMAT_MOD_LINEAR: 3282 case I915_FORMAT_MOD_X_TILED: 3283 /* 3284 * Validated limit is 4k, but has 5k should 3285 * work apart from the following features: 3286 * - Ytile (already limited to 4k) 3287 * - FP16 (already limited to 4k) 3288 * - render compression (already limited to 4k) 3289 * - KVMR sprite and cursor (don't care) 3290 * - horizontal panning (TODO verify this) 3291 * - pipe and plane scaling (TODO verify this) 3292 */ 3293 if (cpp == 8) 3294 return 4096; 3295 else 3296 return 5120; 3297 case I915_FORMAT_MOD_Y_TILED_CCS: 3298 case I915_FORMAT_MOD_Yf_TILED_CCS: 3299 /* FIXME AUX plane? */ 3300 case I915_FORMAT_MOD_Y_TILED: 3301 case I915_FORMAT_MOD_Yf_TILED: 3302 if (cpp == 8) 3303 return 2048; 3304 else 3305 return 4096; 3306 default: 3307 MISSING_CASE(fb->modifier); 3308 return 2048; 3309 } 3310 } 3311 3312 static int glk_max_plane_width(const struct drm_framebuffer *fb, 3313 int color_plane, 3314 unsigned int rotation) 3315 { 3316 int cpp = fb->format->cpp[color_plane]; 3317 3318 switch (fb->modifier) { 3319 case DRM_FORMAT_MOD_LINEAR: 3320 case I915_FORMAT_MOD_X_TILED: 3321 if (cpp == 8) 3322 return 4096; 3323 else 3324 return 5120; 3325 case I915_FORMAT_MOD_Y_TILED_CCS: 3326 case I915_FORMAT_MOD_Yf_TILED_CCS: 3327 /* FIXME AUX plane? */ 3328 case I915_FORMAT_MOD_Y_TILED: 3329 case I915_FORMAT_MOD_Yf_TILED: 3330 if (cpp == 8) 3331 return 2048; 3332 else 3333 return 5120; 3334 default: 3335 MISSING_CASE(fb->modifier); 3336 return 2048; 3337 } 3338 } 3339 3340 static int icl_max_plane_width(const struct drm_framebuffer *fb, 3341 int color_plane, 3342 unsigned int rotation) 3343 { 3344 return 5120; 3345 } 3346 3347 static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state, 3348 int main_x, int main_y, u32 main_offset) 3349 { 3350 const struct drm_framebuffer *fb = plane_state->base.fb; 3351 int hsub = fb->format->hsub; 3352 int vsub = fb->format->vsub; 3353 int aux_x = plane_state->color_plane[1].x; 3354 int aux_y = plane_state->color_plane[1].y; 3355 u32 aux_offset = plane_state->color_plane[1].offset; 3356 u32 alignment = intel_surf_alignment(fb, 1); 3357 3358 while (aux_offset >= main_offset && aux_y <= main_y) { 3359 int x, y; 3360 3361 if (aux_x == main_x && aux_y == main_y) 3362 break; 3363 3364 if (aux_offset == 0) 3365 break; 3366 3367 x = aux_x / hsub; 3368 y = aux_y / vsub; 3369 aux_offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 1, 3370 aux_offset, aux_offset - alignment); 3371 aux_x = x * hsub + aux_x % hsub; 3372 aux_y = y * vsub + aux_y % vsub; 3373 } 3374 3375 if (aux_x != main_x || aux_y != main_y) 3376 return false; 3377 3378 plane_state->color_plane[1].offset = aux_offset; 3379 plane_state->color_plane[1].x = aux_x; 3380 plane_state->color_plane[1].y = aux_y; 3381 3382 return true; 3383 } 3384 3385 static int skl_check_main_surface(struct intel_plane_state *plane_state) 3386 { 3387 struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev); 3388 const struct drm_framebuffer *fb = plane_state->base.fb; 3389 unsigned int rotation = plane_state->base.rotation; 3390 int x = plane_state->base.src.x1 >> 16; 3391 int y = plane_state->base.src.y1 >> 16; 3392 int w = drm_rect_width(&plane_state->base.src) >> 16; 3393 int h = drm_rect_height(&plane_state->base.src) >> 16; 3394 int max_width; 3395 int max_height = 4096; 3396 u32 alignment, offset, aux_offset = plane_state->color_plane[1].offset; 3397 3398 if (INTEL_GEN(dev_priv) >= 11) 3399 max_width = icl_max_plane_width(fb, 0, rotation); 3400 else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 3401 max_width = glk_max_plane_width(fb, 0, rotation); 3402 else 3403 max_width = skl_max_plane_width(fb, 0, rotation); 3404 3405 if (w > max_width || h > max_height) { 3406 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n", 3407 w, h, max_width, max_height); 3408 return -EINVAL; 3409 } 3410 3411 intel_add_fb_offsets(&x, &y, plane_state, 0); 3412 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0); 3413 alignment = intel_surf_alignment(fb, 0); 3414 3415 /* 3416 * AUX surface offset is specified as the distance from the 3417 * main surface offset, and it must be non-negative. Make 3418 * sure that is what we will get. 3419 */ 3420 if (offset > aux_offset) 3421 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3422 offset, aux_offset & ~(alignment - 1)); 3423 3424 /* 3425 * When using an X-tiled surface, the plane blows up 3426 * if the x offset + width exceed the stride. 3427 * 3428 * TODO: linear and Y-tiled seem fine, Yf untested, 3429 */ 3430 if (fb->modifier == I915_FORMAT_MOD_X_TILED) { 3431 int cpp = fb->format->cpp[0]; 3432 3433 while ((x + w) * cpp > plane_state->color_plane[0].stride) { 3434 if (offset == 0) { 3435 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n"); 3436 return -EINVAL; 3437 } 3438 3439 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3440 offset, offset - alignment); 3441 } 3442 } 3443 3444 /* 3445 * CCS AUX surface doesn't have its own x/y offsets, we must make sure 3446 * they match with the main surface x/y offsets. 3447 */ 3448 if (is_ccs_modifier(fb->modifier)) { 3449 while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) { 3450 if (offset == 0) 3451 break; 3452 3453 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3454 offset, offset - alignment); 3455 } 3456 3457 if (x != plane_state->color_plane[1].x || y != plane_state->color_plane[1].y) { 3458 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n"); 3459 return -EINVAL; 3460 } 3461 } 3462 3463 plane_state->color_plane[0].offset = offset; 3464 plane_state->color_plane[0].x = x; 3465 plane_state->color_plane[0].y = y; 3466 3467 /* 3468 * Put the final coordinates back so that the src 3469 * coordinate checks will see the right values. 3470 */ 3471 drm_rect_translate(&plane_state->base.src, 3472 (x << 16) - plane_state->base.src.x1, 3473 (y << 16) - plane_state->base.src.y1); 3474 3475 return 0; 3476 } 3477 3478 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state) 3479 { 3480 const struct drm_framebuffer *fb = plane_state->base.fb; 3481 unsigned int rotation = plane_state->base.rotation; 3482 int max_width = skl_max_plane_width(fb, 1, rotation); 3483 int max_height = 4096; 3484 int x = plane_state->base.src.x1 >> 17; 3485 int y = plane_state->base.src.y1 >> 17; 3486 int w = drm_rect_width(&plane_state->base.src) >> 17; 3487 int h = drm_rect_height(&plane_state->base.src) >> 17; 3488 u32 offset; 3489 3490 intel_add_fb_offsets(&x, &y, plane_state, 1); 3491 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1); 3492 3493 /* FIXME not quite sure how/if these apply to the chroma plane */ 3494 if (w > max_width || h > max_height) { 3495 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n", 3496 w, h, max_width, max_height); 3497 return -EINVAL; 3498 } 3499 3500 plane_state->color_plane[1].offset = offset; 3501 plane_state->color_plane[1].x = x; 3502 plane_state->color_plane[1].y = y; 3503 3504 return 0; 3505 } 3506 3507 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state) 3508 { 3509 const struct drm_framebuffer *fb = plane_state->base.fb; 3510 int src_x = plane_state->base.src.x1 >> 16; 3511 int src_y = plane_state->base.src.y1 >> 16; 3512 int hsub = fb->format->hsub; 3513 int vsub = fb->format->vsub; 3514 int x = src_x / hsub; 3515 int y = src_y / vsub; 3516 u32 offset; 3517 3518 intel_add_fb_offsets(&x, &y, plane_state, 1); 3519 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1); 3520 3521 plane_state->color_plane[1].offset = offset; 3522 plane_state->color_plane[1].x = x * hsub + src_x % hsub; 3523 plane_state->color_plane[1].y = y * vsub + src_y % vsub; 3524 3525 return 0; 3526 } 3527 3528 int skl_check_plane_surface(struct intel_plane_state *plane_state) 3529 { 3530 const struct drm_framebuffer *fb = plane_state->base.fb; 3531 int ret; 3532 3533 ret = intel_plane_compute_gtt(plane_state); 3534 if (ret) 3535 return ret; 3536 3537 if (!plane_state->base.visible) 3538 return 0; 3539 3540 /* 3541 * Handle the AUX surface first since 3542 * the main surface setup depends on it. 3543 */ 3544 if (is_planar_yuv_format(fb->format->format)) { 3545 ret = skl_check_nv12_aux_surface(plane_state); 3546 if (ret) 3547 return ret; 3548 } else if (is_ccs_modifier(fb->modifier)) { 3549 ret = skl_check_ccs_aux_surface(plane_state); 3550 if (ret) 3551 return ret; 3552 } else { 3553 plane_state->color_plane[1].offset = ~0xfff; 3554 plane_state->color_plane[1].x = 0; 3555 plane_state->color_plane[1].y = 0; 3556 } 3557 3558 ret = skl_check_main_surface(plane_state); 3559 if (ret) 3560 return ret; 3561 3562 return 0; 3563 } 3564 3565 unsigned int 3566 i9xx_plane_max_stride(struct intel_plane *plane, 3567 u32 pixel_format, u64 modifier, 3568 unsigned int rotation) 3569 { 3570 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3571 3572 if (!HAS_GMCH(dev_priv)) { 3573 return 32*1024; 3574 } else if (INTEL_GEN(dev_priv) >= 4) { 3575 if (modifier == I915_FORMAT_MOD_X_TILED) 3576 return 16*1024; 3577 else 3578 return 32*1024; 3579 } else if (INTEL_GEN(dev_priv) >= 3) { 3580 if (modifier == I915_FORMAT_MOD_X_TILED) 3581 return 8*1024; 3582 else 3583 return 16*1024; 3584 } else { 3585 if (plane->i9xx_plane == PLANE_C) 3586 return 4*1024; 3587 else 3588 return 8*1024; 3589 } 3590 } 3591 3592 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 3593 { 3594 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 3595 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3596 u32 dspcntr = 0; 3597 3598 if (crtc_state->gamma_enable) 3599 dspcntr |= DISPPLANE_GAMMA_ENABLE; 3600 3601 if (crtc_state->csc_enable) 3602 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; 3603 3604 if (INTEL_GEN(dev_priv) < 5) 3605 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe); 3606 3607 return dspcntr; 3608 } 3609 3610 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state, 3611 const struct intel_plane_state *plane_state) 3612 { 3613 struct drm_i915_private *dev_priv = 3614 to_i915(plane_state->base.plane->dev); 3615 const struct drm_framebuffer *fb = plane_state->base.fb; 3616 unsigned int rotation = plane_state->base.rotation; 3617 u32 dspcntr; 3618 3619 dspcntr = DISPLAY_PLANE_ENABLE; 3620 3621 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) || 3622 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 3623 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; 3624 3625 switch (fb->format->format) { 3626 case DRM_FORMAT_C8: 3627 dspcntr |= DISPPLANE_8BPP; 3628 break; 3629 case DRM_FORMAT_XRGB1555: 3630 dspcntr |= DISPPLANE_BGRX555; 3631 break; 3632 case DRM_FORMAT_RGB565: 3633 dspcntr |= DISPPLANE_BGRX565; 3634 break; 3635 case DRM_FORMAT_XRGB8888: 3636 dspcntr |= DISPPLANE_BGRX888; 3637 break; 3638 case DRM_FORMAT_XBGR8888: 3639 dspcntr |= DISPPLANE_RGBX888; 3640 break; 3641 case DRM_FORMAT_XRGB2101010: 3642 dspcntr |= DISPPLANE_BGRX101010; 3643 break; 3644 case DRM_FORMAT_XBGR2101010: 3645 dspcntr |= DISPPLANE_RGBX101010; 3646 break; 3647 default: 3648 MISSING_CASE(fb->format->format); 3649 return 0; 3650 } 3651 3652 if (INTEL_GEN(dev_priv) >= 4 && 3653 fb->modifier == I915_FORMAT_MOD_X_TILED) 3654 dspcntr |= DISPPLANE_TILED; 3655 3656 if (rotation & DRM_MODE_ROTATE_180) 3657 dspcntr |= DISPPLANE_ROTATE_180; 3658 3659 if (rotation & DRM_MODE_REFLECT_X) 3660 dspcntr |= DISPPLANE_MIRROR; 3661 3662 return dspcntr; 3663 } 3664 3665 int i9xx_check_plane_surface(struct intel_plane_state *plane_state) 3666 { 3667 struct drm_i915_private *dev_priv = 3668 to_i915(plane_state->base.plane->dev); 3669 int src_x, src_y; 3670 u32 offset; 3671 int ret; 3672 3673 ret = intel_plane_compute_gtt(plane_state); 3674 if (ret) 3675 return ret; 3676 3677 if (!plane_state->base.visible) 3678 return 0; 3679 3680 src_x = plane_state->base.src.x1 >> 16; 3681 src_y = plane_state->base.src.y1 >> 16; 3682 3683 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 3684 3685 if (INTEL_GEN(dev_priv) >= 4) 3686 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 3687 plane_state, 0); 3688 else 3689 offset = 0; 3690 3691 /* 3692 * Put the final coordinates back so that the src 3693 * coordinate checks will see the right values. 3694 */ 3695 drm_rect_translate(&plane_state->base.src, 3696 (src_x << 16) - plane_state->base.src.x1, 3697 (src_y << 16) - plane_state->base.src.y1); 3698 3699 /* HSW/BDW do this automagically in hardware */ 3700 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) { 3701 unsigned int rotation = plane_state->base.rotation; 3702 int src_w = drm_rect_width(&plane_state->base.src) >> 16; 3703 int src_h = drm_rect_height(&plane_state->base.src) >> 16; 3704 3705 if (rotation & DRM_MODE_ROTATE_180) { 3706 src_x += src_w - 1; 3707 src_y += src_h - 1; 3708 } else if (rotation & DRM_MODE_REFLECT_X) { 3709 src_x += src_w - 1; 3710 } 3711 } 3712 3713 plane_state->color_plane[0].offset = offset; 3714 plane_state->color_plane[0].x = src_x; 3715 plane_state->color_plane[0].y = src_y; 3716 3717 return 0; 3718 } 3719 3720 static bool i9xx_plane_has_windowing(struct intel_plane *plane) 3721 { 3722 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3723 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 3724 3725 if (IS_CHERRYVIEW(dev_priv)) 3726 return i9xx_plane == PLANE_B; 3727 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 3728 return false; 3729 else if (IS_GEN(dev_priv, 4)) 3730 return i9xx_plane == PLANE_C; 3731 else 3732 return i9xx_plane == PLANE_B || 3733 i9xx_plane == PLANE_C; 3734 } 3735 3736 static int 3737 i9xx_plane_check(struct intel_crtc_state *crtc_state, 3738 struct intel_plane_state *plane_state) 3739 { 3740 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 3741 int ret; 3742 3743 ret = chv_plane_check_rotation(plane_state); 3744 if (ret) 3745 return ret; 3746 3747 ret = drm_atomic_helper_check_plane_state(&plane_state->base, 3748 &crtc_state->base, 3749 DRM_PLANE_HELPER_NO_SCALING, 3750 DRM_PLANE_HELPER_NO_SCALING, 3751 i9xx_plane_has_windowing(plane), 3752 true); 3753 if (ret) 3754 return ret; 3755 3756 ret = i9xx_check_plane_surface(plane_state); 3757 if (ret) 3758 return ret; 3759 3760 if (!plane_state->base.visible) 3761 return 0; 3762 3763 ret = intel_plane_check_src_coordinates(plane_state); 3764 if (ret) 3765 return ret; 3766 3767 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state); 3768 3769 return 0; 3770 } 3771 3772 static void i9xx_update_plane(struct intel_plane *plane, 3773 const struct intel_crtc_state *crtc_state, 3774 const struct intel_plane_state *plane_state) 3775 { 3776 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3777 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 3778 u32 linear_offset; 3779 int x = plane_state->color_plane[0].x; 3780 int y = plane_state->color_plane[0].y; 3781 int crtc_x = plane_state->base.dst.x1; 3782 int crtc_y = plane_state->base.dst.y1; 3783 int crtc_w = drm_rect_width(&plane_state->base.dst); 3784 int crtc_h = drm_rect_height(&plane_state->base.dst); 3785 unsigned long irqflags; 3786 u32 dspaddr_offset; 3787 u32 dspcntr; 3788 3789 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state); 3790 3791 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0); 3792 3793 if (INTEL_GEN(dev_priv) >= 4) 3794 dspaddr_offset = plane_state->color_plane[0].offset; 3795 else 3796 dspaddr_offset = linear_offset; 3797 3798 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 3799 3800 I915_WRITE_FW(DSPSTRIDE(i9xx_plane), plane_state->color_plane[0].stride); 3801 3802 if (INTEL_GEN(dev_priv) < 4) { 3803 /* 3804 * PLANE_A doesn't actually have a full window 3805 * generator but let's assume we still need to 3806 * program whatever is there. 3807 */ 3808 I915_WRITE_FW(DSPPOS(i9xx_plane), (crtc_y << 16) | crtc_x); 3809 I915_WRITE_FW(DSPSIZE(i9xx_plane), 3810 ((crtc_h - 1) << 16) | (crtc_w - 1)); 3811 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) { 3812 I915_WRITE_FW(PRIMPOS(i9xx_plane), (crtc_y << 16) | crtc_x); 3813 I915_WRITE_FW(PRIMSIZE(i9xx_plane), 3814 ((crtc_h - 1) << 16) | (crtc_w - 1)); 3815 I915_WRITE_FW(PRIMCNSTALPHA(i9xx_plane), 0); 3816 } 3817 3818 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 3819 I915_WRITE_FW(DSPOFFSET(i9xx_plane), (y << 16) | x); 3820 } else if (INTEL_GEN(dev_priv) >= 4) { 3821 I915_WRITE_FW(DSPLINOFF(i9xx_plane), linear_offset); 3822 I915_WRITE_FW(DSPTILEOFF(i9xx_plane), (y << 16) | x); 3823 } 3824 3825 /* 3826 * The control register self-arms if the plane was previously 3827 * disabled. Try to make the plane enable atomic by writing 3828 * the control register just before the surface register. 3829 */ 3830 I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr); 3831 if (INTEL_GEN(dev_priv) >= 4) 3832 I915_WRITE_FW(DSPSURF(i9xx_plane), 3833 intel_plane_ggtt_offset(plane_state) + 3834 dspaddr_offset); 3835 else 3836 I915_WRITE_FW(DSPADDR(i9xx_plane), 3837 intel_plane_ggtt_offset(plane_state) + 3838 dspaddr_offset); 3839 3840 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 3841 } 3842 3843 static void i9xx_disable_plane(struct intel_plane *plane, 3844 const struct intel_crtc_state *crtc_state) 3845 { 3846 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3847 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 3848 unsigned long irqflags; 3849 u32 dspcntr; 3850 3851 /* 3852 * DSPCNTR pipe gamma enable on g4x+ and pipe csc 3853 * enable on ilk+ affect the pipe bottom color as 3854 * well, so we must configure them even if the plane 3855 * is disabled. 3856 * 3857 * On pre-g4x there is no way to gamma correct the 3858 * pipe bottom color but we'll keep on doing this 3859 * anyway so that the crtc state readout works correctly. 3860 */ 3861 dspcntr = i9xx_plane_ctl_crtc(crtc_state); 3862 3863 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 3864 3865 I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr); 3866 if (INTEL_GEN(dev_priv) >= 4) 3867 I915_WRITE_FW(DSPSURF(i9xx_plane), 0); 3868 else 3869 I915_WRITE_FW(DSPADDR(i9xx_plane), 0); 3870 3871 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 3872 } 3873 3874 static bool i9xx_plane_get_hw_state(struct intel_plane *plane, 3875 enum pipe *pipe) 3876 { 3877 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3878 enum intel_display_power_domain power_domain; 3879 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 3880 intel_wakeref_t wakeref; 3881 bool ret; 3882 u32 val; 3883 3884 /* 3885 * Not 100% correct for planes that can move between pipes, 3886 * but that's only the case for gen2-4 which don't have any 3887 * display power wells. 3888 */ 3889 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 3890 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 3891 if (!wakeref) 3892 return false; 3893 3894 val = I915_READ(DSPCNTR(i9xx_plane)); 3895 3896 ret = val & DISPLAY_PLANE_ENABLE; 3897 3898 if (INTEL_GEN(dev_priv) >= 5) 3899 *pipe = plane->pipe; 3900 else 3901 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> 3902 DISPPLANE_SEL_PIPE_SHIFT; 3903 3904 intel_display_power_put(dev_priv, power_domain, wakeref); 3905 3906 return ret; 3907 } 3908 3909 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) 3910 { 3911 struct drm_device *dev = intel_crtc->base.dev; 3912 struct drm_i915_private *dev_priv = to_i915(dev); 3913 3914 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0); 3915 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); 3916 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); 3917 } 3918 3919 /* 3920 * This function detaches (aka. unbinds) unused scalers in hardware 3921 */ 3922 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state) 3923 { 3924 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 3925 const struct intel_crtc_scaler_state *scaler_state = 3926 &crtc_state->scaler_state; 3927 int i; 3928 3929 /* loop through and disable scalers that aren't in use */ 3930 for (i = 0; i < intel_crtc->num_scalers; i++) { 3931 if (!scaler_state->scalers[i].in_use) 3932 skl_detach_scaler(intel_crtc, i); 3933 } 3934 } 3935 3936 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb, 3937 int color_plane, unsigned int rotation) 3938 { 3939 /* 3940 * The stride is either expressed as a multiple of 64 bytes chunks for 3941 * linear buffers or in number of tiles for tiled buffers. 3942 */ 3943 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) 3944 return 64; 3945 else if (drm_rotation_90_or_270(rotation)) 3946 return intel_tile_height(fb, color_plane); 3947 else 3948 return intel_tile_width_bytes(fb, color_plane); 3949 } 3950 3951 u32 skl_plane_stride(const struct intel_plane_state *plane_state, 3952 int color_plane) 3953 { 3954 const struct drm_framebuffer *fb = plane_state->base.fb; 3955 unsigned int rotation = plane_state->base.rotation; 3956 u32 stride = plane_state->color_plane[color_plane].stride; 3957 3958 if (color_plane >= fb->format->num_planes) 3959 return 0; 3960 3961 return stride / skl_plane_stride_mult(fb, color_plane, rotation); 3962 } 3963 3964 static u32 skl_plane_ctl_format(u32 pixel_format) 3965 { 3966 switch (pixel_format) { 3967 case DRM_FORMAT_C8: 3968 return PLANE_CTL_FORMAT_INDEXED; 3969 case DRM_FORMAT_RGB565: 3970 return PLANE_CTL_FORMAT_RGB_565; 3971 case DRM_FORMAT_XBGR8888: 3972 case DRM_FORMAT_ABGR8888: 3973 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; 3974 case DRM_FORMAT_XRGB8888: 3975 case DRM_FORMAT_ARGB8888: 3976 return PLANE_CTL_FORMAT_XRGB_8888; 3977 case DRM_FORMAT_XBGR2101010: 3978 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX; 3979 case DRM_FORMAT_XRGB2101010: 3980 return PLANE_CTL_FORMAT_XRGB_2101010; 3981 case DRM_FORMAT_XBGR16161616F: 3982 case DRM_FORMAT_ABGR16161616F: 3983 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX; 3984 case DRM_FORMAT_XRGB16161616F: 3985 case DRM_FORMAT_ARGB16161616F: 3986 return PLANE_CTL_FORMAT_XRGB_16161616F; 3987 case DRM_FORMAT_YUYV: 3988 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; 3989 case DRM_FORMAT_YVYU: 3990 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; 3991 case DRM_FORMAT_UYVY: 3992 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; 3993 case DRM_FORMAT_VYUY: 3994 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; 3995 case DRM_FORMAT_NV12: 3996 return PLANE_CTL_FORMAT_NV12; 3997 case DRM_FORMAT_P010: 3998 return PLANE_CTL_FORMAT_P010; 3999 case DRM_FORMAT_P012: 4000 return PLANE_CTL_FORMAT_P012; 4001 case DRM_FORMAT_P016: 4002 return PLANE_CTL_FORMAT_P016; 4003 case DRM_FORMAT_Y210: 4004 return PLANE_CTL_FORMAT_Y210; 4005 case DRM_FORMAT_Y212: 4006 return PLANE_CTL_FORMAT_Y212; 4007 case DRM_FORMAT_Y216: 4008 return PLANE_CTL_FORMAT_Y216; 4009 case DRM_FORMAT_XVYU2101010: 4010 return PLANE_CTL_FORMAT_Y410; 4011 case DRM_FORMAT_XVYU12_16161616: 4012 return PLANE_CTL_FORMAT_Y412; 4013 case DRM_FORMAT_XVYU16161616: 4014 return PLANE_CTL_FORMAT_Y416; 4015 default: 4016 MISSING_CASE(pixel_format); 4017 } 4018 4019 return 0; 4020 } 4021 4022 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state) 4023 { 4024 if (!plane_state->base.fb->format->has_alpha) 4025 return PLANE_CTL_ALPHA_DISABLE; 4026 4027 switch (plane_state->base.pixel_blend_mode) { 4028 case DRM_MODE_BLEND_PIXEL_NONE: 4029 return PLANE_CTL_ALPHA_DISABLE; 4030 case DRM_MODE_BLEND_PREMULTI: 4031 return PLANE_CTL_ALPHA_SW_PREMULTIPLY; 4032 case DRM_MODE_BLEND_COVERAGE: 4033 return PLANE_CTL_ALPHA_HW_PREMULTIPLY; 4034 default: 4035 MISSING_CASE(plane_state->base.pixel_blend_mode); 4036 return PLANE_CTL_ALPHA_DISABLE; 4037 } 4038 } 4039 4040 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state) 4041 { 4042 if (!plane_state->base.fb->format->has_alpha) 4043 return PLANE_COLOR_ALPHA_DISABLE; 4044 4045 switch (plane_state->base.pixel_blend_mode) { 4046 case DRM_MODE_BLEND_PIXEL_NONE: 4047 return PLANE_COLOR_ALPHA_DISABLE; 4048 case DRM_MODE_BLEND_PREMULTI: 4049 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY; 4050 case DRM_MODE_BLEND_COVERAGE: 4051 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY; 4052 default: 4053 MISSING_CASE(plane_state->base.pixel_blend_mode); 4054 return PLANE_COLOR_ALPHA_DISABLE; 4055 } 4056 } 4057 4058 static u32 skl_plane_ctl_tiling(u64 fb_modifier) 4059 { 4060 switch (fb_modifier) { 4061 case DRM_FORMAT_MOD_LINEAR: 4062 break; 4063 case I915_FORMAT_MOD_X_TILED: 4064 return PLANE_CTL_TILED_X; 4065 case I915_FORMAT_MOD_Y_TILED: 4066 return PLANE_CTL_TILED_Y; 4067 case I915_FORMAT_MOD_Y_TILED_CCS: 4068 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4069 case I915_FORMAT_MOD_Yf_TILED: 4070 return PLANE_CTL_TILED_YF; 4071 case I915_FORMAT_MOD_Yf_TILED_CCS: 4072 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4073 default: 4074 MISSING_CASE(fb_modifier); 4075 } 4076 4077 return 0; 4078 } 4079 4080 static u32 skl_plane_ctl_rotate(unsigned int rotate) 4081 { 4082 switch (rotate) { 4083 case DRM_MODE_ROTATE_0: 4084 break; 4085 /* 4086 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 4087 * while i915 HW rotation is clockwise, thats why this swapping. 4088 */ 4089 case DRM_MODE_ROTATE_90: 4090 return PLANE_CTL_ROTATE_270; 4091 case DRM_MODE_ROTATE_180: 4092 return PLANE_CTL_ROTATE_180; 4093 case DRM_MODE_ROTATE_270: 4094 return PLANE_CTL_ROTATE_90; 4095 default: 4096 MISSING_CASE(rotate); 4097 } 4098 4099 return 0; 4100 } 4101 4102 static u32 cnl_plane_ctl_flip(unsigned int reflect) 4103 { 4104 switch (reflect) { 4105 case 0: 4106 break; 4107 case DRM_MODE_REFLECT_X: 4108 return PLANE_CTL_FLIP_HORIZONTAL; 4109 case DRM_MODE_REFLECT_Y: 4110 default: 4111 MISSING_CASE(reflect); 4112 } 4113 4114 return 0; 4115 } 4116 4117 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4118 { 4119 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 4120 u32 plane_ctl = 0; 4121 4122 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4123 return plane_ctl; 4124 4125 if (crtc_state->gamma_enable) 4126 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE; 4127 4128 if (crtc_state->csc_enable) 4129 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE; 4130 4131 return plane_ctl; 4132 } 4133 4134 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state, 4135 const struct intel_plane_state *plane_state) 4136 { 4137 struct drm_i915_private *dev_priv = 4138 to_i915(plane_state->base.plane->dev); 4139 const struct drm_framebuffer *fb = plane_state->base.fb; 4140 unsigned int rotation = plane_state->base.rotation; 4141 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey; 4142 u32 plane_ctl; 4143 4144 plane_ctl = PLANE_CTL_ENABLE; 4145 4146 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) { 4147 plane_ctl |= skl_plane_ctl_alpha(plane_state); 4148 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; 4149 4150 if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709) 4151 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709; 4152 4153 if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4154 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE; 4155 } 4156 4157 plane_ctl |= skl_plane_ctl_format(fb->format->format); 4158 plane_ctl |= skl_plane_ctl_tiling(fb->modifier); 4159 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK); 4160 4161 if (INTEL_GEN(dev_priv) >= 10) 4162 plane_ctl |= cnl_plane_ctl_flip(rotation & 4163 DRM_MODE_REFLECT_MASK); 4164 4165 if (key->flags & I915_SET_COLORKEY_DESTINATION) 4166 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION; 4167 else if (key->flags & I915_SET_COLORKEY_SOURCE) 4168 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE; 4169 4170 return plane_ctl; 4171 } 4172 4173 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state) 4174 { 4175 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 4176 u32 plane_color_ctl = 0; 4177 4178 if (INTEL_GEN(dev_priv) >= 11) 4179 return plane_color_ctl; 4180 4181 if (crtc_state->gamma_enable) 4182 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE; 4183 4184 if (crtc_state->csc_enable) 4185 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE; 4186 4187 return plane_color_ctl; 4188 } 4189 4190 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state, 4191 const struct intel_plane_state *plane_state) 4192 { 4193 struct drm_i915_private *dev_priv = 4194 to_i915(plane_state->base.plane->dev); 4195 const struct drm_framebuffer *fb = plane_state->base.fb; 4196 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 4197 u32 plane_color_ctl = 0; 4198 4199 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE; 4200 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state); 4201 4202 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) { 4203 if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709) 4204 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709; 4205 else 4206 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709; 4207 4208 if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4209 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE; 4210 } else if (fb->format->is_yuv) { 4211 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE; 4212 } 4213 4214 return plane_color_ctl; 4215 } 4216 4217 static int 4218 __intel_display_resume(struct drm_device *dev, 4219 struct drm_atomic_state *state, 4220 struct drm_modeset_acquire_ctx *ctx) 4221 { 4222 struct drm_crtc_state *crtc_state; 4223 struct drm_crtc *crtc; 4224 int i, ret; 4225 4226 intel_modeset_setup_hw_state(dev, ctx); 4227 i915_redisable_vga(to_i915(dev)); 4228 4229 if (!state) 4230 return 0; 4231 4232 /* 4233 * We've duplicated the state, pointers to the old state are invalid. 4234 * 4235 * Don't attempt to use the old state until we commit the duplicated state. 4236 */ 4237 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 4238 /* 4239 * Force recalculation even if we restore 4240 * current state. With fast modeset this may not result 4241 * in a modeset when the state is compatible. 4242 */ 4243 crtc_state->mode_changed = true; 4244 } 4245 4246 /* ignore any reset values/BIOS leftovers in the WM registers */ 4247 if (!HAS_GMCH(to_i915(dev))) 4248 to_intel_atomic_state(state)->skip_intermediate_wm = true; 4249 4250 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 4251 4252 WARN_ON(ret == -EDEADLK); 4253 return ret; 4254 } 4255 4256 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 4257 { 4258 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 4259 intel_has_gpu_reset(dev_priv)); 4260 } 4261 4262 void intel_prepare_reset(struct drm_i915_private *dev_priv) 4263 { 4264 struct drm_device *dev = &dev_priv->drm; 4265 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4266 struct drm_atomic_state *state; 4267 int ret; 4268 4269 /* reset doesn't touch the display */ 4270 if (!i915_modparams.force_reset_modeset_test && 4271 !gpu_reset_clobbers_display(dev_priv)) 4272 return; 4273 4274 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 4275 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4276 smp_mb__after_atomic(); 4277 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 4278 4279 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 4280 DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n"); 4281 intel_gt_set_wedged(&dev_priv->gt); 4282 } 4283 4284 /* 4285 * Need mode_config.mutex so that we don't 4286 * trample ongoing ->detect() and whatnot. 4287 */ 4288 mutex_lock(&dev->mode_config.mutex); 4289 drm_modeset_acquire_init(ctx, 0); 4290 while (1) { 4291 ret = drm_modeset_lock_all_ctx(dev, ctx); 4292 if (ret != -EDEADLK) 4293 break; 4294 4295 drm_modeset_backoff(ctx); 4296 } 4297 /* 4298 * Disabling the crtcs gracefully seems nicer. Also the 4299 * g33 docs say we should at least disable all the planes. 4300 */ 4301 state = drm_atomic_helper_duplicate_state(dev, ctx); 4302 if (IS_ERR(state)) { 4303 ret = PTR_ERR(state); 4304 DRM_ERROR("Duplicating state failed with %i\n", ret); 4305 return; 4306 } 4307 4308 ret = drm_atomic_helper_disable_all(dev, ctx); 4309 if (ret) { 4310 DRM_ERROR("Suspending crtc's failed with %i\n", ret); 4311 drm_atomic_state_put(state); 4312 return; 4313 } 4314 4315 dev_priv->modeset_restore_state = state; 4316 state->acquire_ctx = ctx; 4317 } 4318 4319 void intel_finish_reset(struct drm_i915_private *dev_priv) 4320 { 4321 struct drm_device *dev = &dev_priv->drm; 4322 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4323 struct drm_atomic_state *state; 4324 int ret; 4325 4326 /* reset doesn't touch the display */ 4327 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 4328 return; 4329 4330 state = fetch_and_zero(&dev_priv->modeset_restore_state); 4331 if (!state) 4332 goto unlock; 4333 4334 /* reset doesn't touch the display */ 4335 if (!gpu_reset_clobbers_display(dev_priv)) { 4336 /* for testing only restore the display */ 4337 ret = __intel_display_resume(dev, state, ctx); 4338 if (ret) 4339 DRM_ERROR("Restoring old state failed with %i\n", ret); 4340 } else { 4341 /* 4342 * The display has been reset as well, 4343 * so need a full re-initialization. 4344 */ 4345 intel_pps_unlock_regs_wa(dev_priv); 4346 intel_modeset_init_hw(dev); 4347 intel_init_clock_gating(dev_priv); 4348 4349 spin_lock_irq(&dev_priv->irq_lock); 4350 if (dev_priv->display.hpd_irq_setup) 4351 dev_priv->display.hpd_irq_setup(dev_priv); 4352 spin_unlock_irq(&dev_priv->irq_lock); 4353 4354 ret = __intel_display_resume(dev, state, ctx); 4355 if (ret) 4356 DRM_ERROR("Restoring old state failed with %i\n", ret); 4357 4358 intel_hpd_init(dev_priv); 4359 } 4360 4361 drm_atomic_state_put(state); 4362 unlock: 4363 drm_modeset_drop_locks(ctx); 4364 drm_modeset_acquire_fini(ctx); 4365 mutex_unlock(&dev->mode_config.mutex); 4366 4367 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4368 } 4369 4370 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 4371 { 4372 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4373 enum pipe pipe = crtc->pipe; 4374 u32 tmp; 4375 4376 tmp = I915_READ(PIPE_CHICKEN(pipe)); 4377 4378 /* 4379 * Display WA #1153: icl 4380 * enable hardware to bypass the alpha math 4381 * and rounding for per-pixel values 00 and 0xff 4382 */ 4383 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 4384 /* 4385 * Display WA # 1605353570: icl 4386 * Set the pixel rounding bit to 1 for allowing 4387 * passthrough of Frame buffer pixels unmodified 4388 * across pipe 4389 */ 4390 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 4391 I915_WRITE(PIPE_CHICKEN(pipe), tmp); 4392 } 4393 4394 static void intel_update_pipe_config(const struct intel_crtc_state *old_crtc_state, 4395 const struct intel_crtc_state *new_crtc_state) 4396 { 4397 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 4398 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4399 4400 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */ 4401 crtc->base.mode = new_crtc_state->base.mode; 4402 4403 /* 4404 * Update pipe size and adjust fitter if needed: the reason for this is 4405 * that in compute_mode_changes we check the native mode (not the pfit 4406 * mode) to see if we can flip rather than do a full mode set. In the 4407 * fastboot case, we'll flip, but if we don't update the pipesrc and 4408 * pfit state, we'll end up with a big fb scanned out into the wrong 4409 * sized surface. 4410 */ 4411 4412 I915_WRITE(PIPESRC(crtc->pipe), 4413 ((new_crtc_state->pipe_src_w - 1) << 16) | 4414 (new_crtc_state->pipe_src_h - 1)); 4415 4416 /* on skylake this is done by detaching scalers */ 4417 if (INTEL_GEN(dev_priv) >= 9) { 4418 skl_detach_scalers(new_crtc_state); 4419 4420 if (new_crtc_state->pch_pfit.enabled) 4421 skylake_pfit_enable(new_crtc_state); 4422 } else if (HAS_PCH_SPLIT(dev_priv)) { 4423 if (new_crtc_state->pch_pfit.enabled) 4424 ironlake_pfit_enable(new_crtc_state); 4425 else if (old_crtc_state->pch_pfit.enabled) 4426 ironlake_pfit_disable(old_crtc_state); 4427 } 4428 4429 if (INTEL_GEN(dev_priv) >= 11) 4430 icl_set_pipe_chicken(crtc); 4431 } 4432 4433 static void intel_fdi_normal_train(struct intel_crtc *crtc) 4434 { 4435 struct drm_device *dev = crtc->base.dev; 4436 struct drm_i915_private *dev_priv = to_i915(dev); 4437 int pipe = crtc->pipe; 4438 i915_reg_t reg; 4439 u32 temp; 4440 4441 /* enable normal train */ 4442 reg = FDI_TX_CTL(pipe); 4443 temp = I915_READ(reg); 4444 if (IS_IVYBRIDGE(dev_priv)) { 4445 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 4446 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; 4447 } else { 4448 temp &= ~FDI_LINK_TRAIN_NONE; 4449 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; 4450 } 4451 I915_WRITE(reg, temp); 4452 4453 reg = FDI_RX_CTL(pipe); 4454 temp = I915_READ(reg); 4455 if (HAS_PCH_CPT(dev_priv)) { 4456 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4457 temp |= FDI_LINK_TRAIN_NORMAL_CPT; 4458 } else { 4459 temp &= ~FDI_LINK_TRAIN_NONE; 4460 temp |= FDI_LINK_TRAIN_NONE; 4461 } 4462 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); 4463 4464 /* wait one idle pattern time */ 4465 POSTING_READ(reg); 4466 udelay(1000); 4467 4468 /* IVB wants error correction enabled */ 4469 if (IS_IVYBRIDGE(dev_priv)) 4470 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE | 4471 FDI_FE_ERRC_ENABLE); 4472 } 4473 4474 /* The FDI link training functions for ILK/Ibexpeak. */ 4475 static void ironlake_fdi_link_train(struct intel_crtc *crtc, 4476 const struct intel_crtc_state *crtc_state) 4477 { 4478 struct drm_device *dev = crtc->base.dev; 4479 struct drm_i915_private *dev_priv = to_i915(dev); 4480 int pipe = crtc->pipe; 4481 i915_reg_t reg; 4482 u32 temp, tries; 4483 4484 /* FDI needs bits from pipe first */ 4485 assert_pipe_enabled(dev_priv, pipe); 4486 4487 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 4488 for train result */ 4489 reg = FDI_RX_IMR(pipe); 4490 temp = I915_READ(reg); 4491 temp &= ~FDI_RX_SYMBOL_LOCK; 4492 temp &= ~FDI_RX_BIT_LOCK; 4493 I915_WRITE(reg, temp); 4494 I915_READ(reg); 4495 udelay(150); 4496 4497 /* enable CPU FDI TX and PCH FDI RX */ 4498 reg = FDI_TX_CTL(pipe); 4499 temp = I915_READ(reg); 4500 temp &= ~FDI_DP_PORT_WIDTH_MASK; 4501 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 4502 temp &= ~FDI_LINK_TRAIN_NONE; 4503 temp |= FDI_LINK_TRAIN_PATTERN_1; 4504 I915_WRITE(reg, temp | FDI_TX_ENABLE); 4505 4506 reg = FDI_RX_CTL(pipe); 4507 temp = I915_READ(reg); 4508 temp &= ~FDI_LINK_TRAIN_NONE; 4509 temp |= FDI_LINK_TRAIN_PATTERN_1; 4510 I915_WRITE(reg, temp | FDI_RX_ENABLE); 4511 4512 POSTING_READ(reg); 4513 udelay(150); 4514 4515 /* Ironlake workaround, enable clock pointer after FDI enable*/ 4516 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); 4517 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR | 4518 FDI_RX_PHASE_SYNC_POINTER_EN); 4519 4520 reg = FDI_RX_IIR(pipe); 4521 for (tries = 0; tries < 5; tries++) { 4522 temp = I915_READ(reg); 4523 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4524 4525 if ((temp & FDI_RX_BIT_LOCK)) { 4526 DRM_DEBUG_KMS("FDI train 1 done.\n"); 4527 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 4528 break; 4529 } 4530 } 4531 if (tries == 5) 4532 DRM_ERROR("FDI train 1 fail!\n"); 4533 4534 /* Train 2 */ 4535 reg = FDI_TX_CTL(pipe); 4536 temp = I915_READ(reg); 4537 temp &= ~FDI_LINK_TRAIN_NONE; 4538 temp |= FDI_LINK_TRAIN_PATTERN_2; 4539 I915_WRITE(reg, temp); 4540 4541 reg = FDI_RX_CTL(pipe); 4542 temp = I915_READ(reg); 4543 temp &= ~FDI_LINK_TRAIN_NONE; 4544 temp |= FDI_LINK_TRAIN_PATTERN_2; 4545 I915_WRITE(reg, temp); 4546 4547 POSTING_READ(reg); 4548 udelay(150); 4549 4550 reg = FDI_RX_IIR(pipe); 4551 for (tries = 0; tries < 5; tries++) { 4552 temp = I915_READ(reg); 4553 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4554 4555 if (temp & FDI_RX_SYMBOL_LOCK) { 4556 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 4557 DRM_DEBUG_KMS("FDI train 2 done.\n"); 4558 break; 4559 } 4560 } 4561 if (tries == 5) 4562 DRM_ERROR("FDI train 2 fail!\n"); 4563 4564 DRM_DEBUG_KMS("FDI train done\n"); 4565 4566 } 4567 4568 static const int snb_b_fdi_train_param[] = { 4569 FDI_LINK_TRAIN_400MV_0DB_SNB_B, 4570 FDI_LINK_TRAIN_400MV_6DB_SNB_B, 4571 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, 4572 FDI_LINK_TRAIN_800MV_0DB_SNB_B, 4573 }; 4574 4575 /* The FDI link training functions for SNB/Cougarpoint. */ 4576 static void gen6_fdi_link_train(struct intel_crtc *crtc, 4577 const struct intel_crtc_state *crtc_state) 4578 { 4579 struct drm_device *dev = crtc->base.dev; 4580 struct drm_i915_private *dev_priv = to_i915(dev); 4581 int pipe = crtc->pipe; 4582 i915_reg_t reg; 4583 u32 temp, i, retry; 4584 4585 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 4586 for train result */ 4587 reg = FDI_RX_IMR(pipe); 4588 temp = I915_READ(reg); 4589 temp &= ~FDI_RX_SYMBOL_LOCK; 4590 temp &= ~FDI_RX_BIT_LOCK; 4591 I915_WRITE(reg, temp); 4592 4593 POSTING_READ(reg); 4594 udelay(150); 4595 4596 /* enable CPU FDI TX and PCH FDI RX */ 4597 reg = FDI_TX_CTL(pipe); 4598 temp = I915_READ(reg); 4599 temp &= ~FDI_DP_PORT_WIDTH_MASK; 4600 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 4601 temp &= ~FDI_LINK_TRAIN_NONE; 4602 temp |= FDI_LINK_TRAIN_PATTERN_1; 4603 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4604 /* SNB-B */ 4605 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 4606 I915_WRITE(reg, temp | FDI_TX_ENABLE); 4607 4608 I915_WRITE(FDI_RX_MISC(pipe), 4609 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 4610 4611 reg = FDI_RX_CTL(pipe); 4612 temp = I915_READ(reg); 4613 if (HAS_PCH_CPT(dev_priv)) { 4614 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4615 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 4616 } else { 4617 temp &= ~FDI_LINK_TRAIN_NONE; 4618 temp |= FDI_LINK_TRAIN_PATTERN_1; 4619 } 4620 I915_WRITE(reg, temp | FDI_RX_ENABLE); 4621 4622 POSTING_READ(reg); 4623 udelay(150); 4624 4625 for (i = 0; i < 4; i++) { 4626 reg = FDI_TX_CTL(pipe); 4627 temp = I915_READ(reg); 4628 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4629 temp |= snb_b_fdi_train_param[i]; 4630 I915_WRITE(reg, temp); 4631 4632 POSTING_READ(reg); 4633 udelay(500); 4634 4635 for (retry = 0; retry < 5; retry++) { 4636 reg = FDI_RX_IIR(pipe); 4637 temp = I915_READ(reg); 4638 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4639 if (temp & FDI_RX_BIT_LOCK) { 4640 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 4641 DRM_DEBUG_KMS("FDI train 1 done.\n"); 4642 break; 4643 } 4644 udelay(50); 4645 } 4646 if (retry < 5) 4647 break; 4648 } 4649 if (i == 4) 4650 DRM_ERROR("FDI train 1 fail!\n"); 4651 4652 /* Train 2 */ 4653 reg = FDI_TX_CTL(pipe); 4654 temp = I915_READ(reg); 4655 temp &= ~FDI_LINK_TRAIN_NONE; 4656 temp |= FDI_LINK_TRAIN_PATTERN_2; 4657 if (IS_GEN(dev_priv, 6)) { 4658 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4659 /* SNB-B */ 4660 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 4661 } 4662 I915_WRITE(reg, temp); 4663 4664 reg = FDI_RX_CTL(pipe); 4665 temp = I915_READ(reg); 4666 if (HAS_PCH_CPT(dev_priv)) { 4667 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4668 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 4669 } else { 4670 temp &= ~FDI_LINK_TRAIN_NONE; 4671 temp |= FDI_LINK_TRAIN_PATTERN_2; 4672 } 4673 I915_WRITE(reg, temp); 4674 4675 POSTING_READ(reg); 4676 udelay(150); 4677 4678 for (i = 0; i < 4; i++) { 4679 reg = FDI_TX_CTL(pipe); 4680 temp = I915_READ(reg); 4681 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4682 temp |= snb_b_fdi_train_param[i]; 4683 I915_WRITE(reg, temp); 4684 4685 POSTING_READ(reg); 4686 udelay(500); 4687 4688 for (retry = 0; retry < 5; retry++) { 4689 reg = FDI_RX_IIR(pipe); 4690 temp = I915_READ(reg); 4691 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4692 if (temp & FDI_RX_SYMBOL_LOCK) { 4693 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 4694 DRM_DEBUG_KMS("FDI train 2 done.\n"); 4695 break; 4696 } 4697 udelay(50); 4698 } 4699 if (retry < 5) 4700 break; 4701 } 4702 if (i == 4) 4703 DRM_ERROR("FDI train 2 fail!\n"); 4704 4705 DRM_DEBUG_KMS("FDI train done.\n"); 4706 } 4707 4708 /* Manual link training for Ivy Bridge A0 parts */ 4709 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc, 4710 const struct intel_crtc_state *crtc_state) 4711 { 4712 struct drm_device *dev = crtc->base.dev; 4713 struct drm_i915_private *dev_priv = to_i915(dev); 4714 int pipe = crtc->pipe; 4715 i915_reg_t reg; 4716 u32 temp, i, j; 4717 4718 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 4719 for train result */ 4720 reg = FDI_RX_IMR(pipe); 4721 temp = I915_READ(reg); 4722 temp &= ~FDI_RX_SYMBOL_LOCK; 4723 temp &= ~FDI_RX_BIT_LOCK; 4724 I915_WRITE(reg, temp); 4725 4726 POSTING_READ(reg); 4727 udelay(150); 4728 4729 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n", 4730 I915_READ(FDI_RX_IIR(pipe))); 4731 4732 /* Try each vswing and preemphasis setting twice before moving on */ 4733 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { 4734 /* disable first in case we need to retry */ 4735 reg = FDI_TX_CTL(pipe); 4736 temp = I915_READ(reg); 4737 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); 4738 temp &= ~FDI_TX_ENABLE; 4739 I915_WRITE(reg, temp); 4740 4741 reg = FDI_RX_CTL(pipe); 4742 temp = I915_READ(reg); 4743 temp &= ~FDI_LINK_TRAIN_AUTO; 4744 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4745 temp &= ~FDI_RX_ENABLE; 4746 I915_WRITE(reg, temp); 4747 4748 /* enable CPU FDI TX and PCH FDI RX */ 4749 reg = FDI_TX_CTL(pipe); 4750 temp = I915_READ(reg); 4751 temp &= ~FDI_DP_PORT_WIDTH_MASK; 4752 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 4753 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; 4754 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4755 temp |= snb_b_fdi_train_param[j/2]; 4756 temp |= FDI_COMPOSITE_SYNC; 4757 I915_WRITE(reg, temp | FDI_TX_ENABLE); 4758 4759 I915_WRITE(FDI_RX_MISC(pipe), 4760 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 4761 4762 reg = FDI_RX_CTL(pipe); 4763 temp = I915_READ(reg); 4764 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 4765 temp |= FDI_COMPOSITE_SYNC; 4766 I915_WRITE(reg, temp | FDI_RX_ENABLE); 4767 4768 POSTING_READ(reg); 4769 udelay(1); /* should be 0.5us */ 4770 4771 for (i = 0; i < 4; i++) { 4772 reg = FDI_RX_IIR(pipe); 4773 temp = I915_READ(reg); 4774 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4775 4776 if (temp & FDI_RX_BIT_LOCK || 4777 (I915_READ(reg) & FDI_RX_BIT_LOCK)) { 4778 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 4779 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", 4780 i); 4781 break; 4782 } 4783 udelay(1); /* should be 0.5us */ 4784 } 4785 if (i == 4) { 4786 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2); 4787 continue; 4788 } 4789 4790 /* Train 2 */ 4791 reg = FDI_TX_CTL(pipe); 4792 temp = I915_READ(reg); 4793 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 4794 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; 4795 I915_WRITE(reg, temp); 4796 4797 reg = FDI_RX_CTL(pipe); 4798 temp = I915_READ(reg); 4799 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4800 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 4801 I915_WRITE(reg, temp); 4802 4803 POSTING_READ(reg); 4804 udelay(2); /* should be 1.5us */ 4805 4806 for (i = 0; i < 4; i++) { 4807 reg = FDI_RX_IIR(pipe); 4808 temp = I915_READ(reg); 4809 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4810 4811 if (temp & FDI_RX_SYMBOL_LOCK || 4812 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) { 4813 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 4814 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", 4815 i); 4816 goto train_done; 4817 } 4818 udelay(2); /* should be 1.5us */ 4819 } 4820 if (i == 4) 4821 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2); 4822 } 4823 4824 train_done: 4825 DRM_DEBUG_KMS("FDI train done.\n"); 4826 } 4827 4828 static void ironlake_fdi_pll_enable(const struct intel_crtc_state *crtc_state) 4829 { 4830 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 4831 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 4832 int pipe = intel_crtc->pipe; 4833 i915_reg_t reg; 4834 u32 temp; 4835 4836 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ 4837 reg = FDI_RX_CTL(pipe); 4838 temp = I915_READ(reg); 4839 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); 4840 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 4841 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 4842 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE); 4843 4844 POSTING_READ(reg); 4845 udelay(200); 4846 4847 /* Switch from Rawclk to PCDclk */ 4848 temp = I915_READ(reg); 4849 I915_WRITE(reg, temp | FDI_PCDCLK); 4850 4851 POSTING_READ(reg); 4852 udelay(200); 4853 4854 /* Enable CPU FDI TX PLL, always on for Ironlake */ 4855 reg = FDI_TX_CTL(pipe); 4856 temp = I915_READ(reg); 4857 if ((temp & FDI_TX_PLL_ENABLE) == 0) { 4858 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE); 4859 4860 POSTING_READ(reg); 4861 udelay(100); 4862 } 4863 } 4864 4865 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc) 4866 { 4867 struct drm_device *dev = intel_crtc->base.dev; 4868 struct drm_i915_private *dev_priv = to_i915(dev); 4869 int pipe = intel_crtc->pipe; 4870 i915_reg_t reg; 4871 u32 temp; 4872 4873 /* Switch from PCDclk to Rawclk */ 4874 reg = FDI_RX_CTL(pipe); 4875 temp = I915_READ(reg); 4876 I915_WRITE(reg, temp & ~FDI_PCDCLK); 4877 4878 /* Disable CPU FDI TX PLL */ 4879 reg = FDI_TX_CTL(pipe); 4880 temp = I915_READ(reg); 4881 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE); 4882 4883 POSTING_READ(reg); 4884 udelay(100); 4885 4886 reg = FDI_RX_CTL(pipe); 4887 temp = I915_READ(reg); 4888 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE); 4889 4890 /* Wait for the clocks to turn off. */ 4891 POSTING_READ(reg); 4892 udelay(100); 4893 } 4894 4895 static void ironlake_fdi_disable(struct drm_crtc *crtc) 4896 { 4897 struct drm_device *dev = crtc->dev; 4898 struct drm_i915_private *dev_priv = to_i915(dev); 4899 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 4900 int pipe = intel_crtc->pipe; 4901 i915_reg_t reg; 4902 u32 temp; 4903 4904 /* disable CPU FDI tx and PCH FDI rx */ 4905 reg = FDI_TX_CTL(pipe); 4906 temp = I915_READ(reg); 4907 I915_WRITE(reg, temp & ~FDI_TX_ENABLE); 4908 POSTING_READ(reg); 4909 4910 reg = FDI_RX_CTL(pipe); 4911 temp = I915_READ(reg); 4912 temp &= ~(0x7 << 16); 4913 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 4914 I915_WRITE(reg, temp & ~FDI_RX_ENABLE); 4915 4916 POSTING_READ(reg); 4917 udelay(100); 4918 4919 /* Ironlake workaround, disable clock pointer after downing FDI */ 4920 if (HAS_PCH_IBX(dev_priv)) 4921 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); 4922 4923 /* still set train pattern 1 */ 4924 reg = FDI_TX_CTL(pipe); 4925 temp = I915_READ(reg); 4926 temp &= ~FDI_LINK_TRAIN_NONE; 4927 temp |= FDI_LINK_TRAIN_PATTERN_1; 4928 I915_WRITE(reg, temp); 4929 4930 reg = FDI_RX_CTL(pipe); 4931 temp = I915_READ(reg); 4932 if (HAS_PCH_CPT(dev_priv)) { 4933 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4934 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 4935 } else { 4936 temp &= ~FDI_LINK_TRAIN_NONE; 4937 temp |= FDI_LINK_TRAIN_PATTERN_1; 4938 } 4939 /* BPC in FDI rx is consistent with that in PIPECONF */ 4940 temp &= ~(0x07 << 16); 4941 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 4942 I915_WRITE(reg, temp); 4943 4944 POSTING_READ(reg); 4945 udelay(100); 4946 } 4947 4948 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 4949 { 4950 struct drm_crtc *crtc; 4951 bool cleanup_done; 4952 4953 drm_for_each_crtc(crtc, &dev_priv->drm) { 4954 struct drm_crtc_commit *commit; 4955 spin_lock(&crtc->commit_lock); 4956 commit = list_first_entry_or_null(&crtc->commit_list, 4957 struct drm_crtc_commit, commit_entry); 4958 cleanup_done = commit ? 4959 try_wait_for_completion(&commit->cleanup_done) : true; 4960 spin_unlock(&crtc->commit_lock); 4961 4962 if (cleanup_done) 4963 continue; 4964 4965 drm_crtc_wait_one_vblank(crtc); 4966 4967 return true; 4968 } 4969 4970 return false; 4971 } 4972 4973 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 4974 { 4975 u32 temp; 4976 4977 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE); 4978 4979 mutex_lock(&dev_priv->sb_lock); 4980 4981 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 4982 temp |= SBI_SSCCTL_DISABLE; 4983 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 4984 4985 mutex_unlock(&dev_priv->sb_lock); 4986 } 4987 4988 /* Program iCLKIP clock to the desired frequency */ 4989 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 4990 { 4991 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 4992 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4993 int clock = crtc_state->base.adjusted_mode.crtc_clock; 4994 u32 divsel, phaseinc, auxdiv, phasedir = 0; 4995 u32 temp; 4996 4997 lpt_disable_iclkip(dev_priv); 4998 4999 /* The iCLK virtual clock root frequency is in MHz, 5000 * but the adjusted_mode->crtc_clock in in KHz. To get the 5001 * divisors, it is necessary to divide one by another, so we 5002 * convert the virtual clock precision to KHz here for higher 5003 * precision. 5004 */ 5005 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 5006 u32 iclk_virtual_root_freq = 172800 * 1000; 5007 u32 iclk_pi_range = 64; 5008 u32 desired_divisor; 5009 5010 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5011 clock << auxdiv); 5012 divsel = (desired_divisor / iclk_pi_range) - 2; 5013 phaseinc = desired_divisor % iclk_pi_range; 5014 5015 /* 5016 * Near 20MHz is a corner case which is 5017 * out of range for the 7-bit divisor 5018 */ 5019 if (divsel <= 0x7f) 5020 break; 5021 } 5022 5023 /* This should not happen with any sane values */ 5024 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 5025 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 5026 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) & 5027 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 5028 5029 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 5030 clock, 5031 auxdiv, 5032 divsel, 5033 phasedir, 5034 phaseinc); 5035 5036 mutex_lock(&dev_priv->sb_lock); 5037 5038 /* Program SSCDIVINTPHASE6 */ 5039 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5040 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 5041 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 5042 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 5043 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 5044 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 5045 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 5046 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 5047 5048 /* Program SSCAUXDIV */ 5049 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5050 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 5051 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 5052 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 5053 5054 /* Enable modulator and associated divider */ 5055 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5056 temp &= ~SBI_SSCCTL_DISABLE; 5057 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5058 5059 mutex_unlock(&dev_priv->sb_lock); 5060 5061 /* Wait for initialization time */ 5062 udelay(24); 5063 5064 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE); 5065 } 5066 5067 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 5068 { 5069 u32 divsel, phaseinc, auxdiv; 5070 u32 iclk_virtual_root_freq = 172800 * 1000; 5071 u32 iclk_pi_range = 64; 5072 u32 desired_divisor; 5073 u32 temp; 5074 5075 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 5076 return 0; 5077 5078 mutex_lock(&dev_priv->sb_lock); 5079 5080 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5081 if (temp & SBI_SSCCTL_DISABLE) { 5082 mutex_unlock(&dev_priv->sb_lock); 5083 return 0; 5084 } 5085 5086 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5087 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 5088 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 5089 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 5090 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 5091 5092 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5093 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 5094 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 5095 5096 mutex_unlock(&dev_priv->sb_lock); 5097 5098 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 5099 5100 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5101 desired_divisor << auxdiv); 5102 } 5103 5104 static void ironlake_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 5105 enum pipe pch_transcoder) 5106 { 5107 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5108 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5109 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5110 5111 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder), 5112 I915_READ(HTOTAL(cpu_transcoder))); 5113 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder), 5114 I915_READ(HBLANK(cpu_transcoder))); 5115 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder), 5116 I915_READ(HSYNC(cpu_transcoder))); 5117 5118 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder), 5119 I915_READ(VTOTAL(cpu_transcoder))); 5120 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder), 5121 I915_READ(VBLANK(cpu_transcoder))); 5122 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder), 5123 I915_READ(VSYNC(cpu_transcoder))); 5124 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder), 5125 I915_READ(VSYNCSHIFT(cpu_transcoder))); 5126 } 5127 5128 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 5129 { 5130 u32 temp; 5131 5132 temp = I915_READ(SOUTH_CHICKEN1); 5133 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 5134 return; 5135 5136 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); 5137 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); 5138 5139 temp &= ~FDI_BC_BIFURCATION_SELECT; 5140 if (enable) 5141 temp |= FDI_BC_BIFURCATION_SELECT; 5142 5143 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis"); 5144 I915_WRITE(SOUTH_CHICKEN1, temp); 5145 POSTING_READ(SOUTH_CHICKEN1); 5146 } 5147 5148 static void ivybridge_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 5149 { 5150 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5151 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5152 5153 switch (crtc->pipe) { 5154 case PIPE_A: 5155 break; 5156 case PIPE_B: 5157 if (crtc_state->fdi_lanes > 2) 5158 cpt_set_fdi_bc_bifurcation(dev_priv, false); 5159 else 5160 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5161 5162 break; 5163 case PIPE_C: 5164 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5165 5166 break; 5167 default: 5168 BUG(); 5169 } 5170 } 5171 5172 /* 5173 * Finds the encoder associated with the given CRTC. This can only be 5174 * used when we know that the CRTC isn't feeding multiple encoders! 5175 */ 5176 static struct intel_encoder * 5177 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 5178 const struct intel_crtc_state *crtc_state) 5179 { 5180 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5181 const struct drm_connector_state *connector_state; 5182 const struct drm_connector *connector; 5183 struct intel_encoder *encoder = NULL; 5184 int num_encoders = 0; 5185 int i; 5186 5187 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 5188 if (connector_state->crtc != &crtc->base) 5189 continue; 5190 5191 encoder = to_intel_encoder(connector_state->best_encoder); 5192 num_encoders++; 5193 } 5194 5195 WARN(num_encoders != 1, "%d encoders for pipe %c\n", 5196 num_encoders, pipe_name(crtc->pipe)); 5197 5198 return encoder; 5199 } 5200 5201 /* 5202 * Enable PCH resources required for PCH ports: 5203 * - PCH PLLs 5204 * - FDI training & RX/TX 5205 * - update transcoder timings 5206 * - DP transcoding bits 5207 * - transcoder 5208 */ 5209 static void ironlake_pch_enable(const struct intel_atomic_state *state, 5210 const struct intel_crtc_state *crtc_state) 5211 { 5212 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5213 struct drm_device *dev = crtc->base.dev; 5214 struct drm_i915_private *dev_priv = to_i915(dev); 5215 int pipe = crtc->pipe; 5216 u32 temp; 5217 5218 assert_pch_transcoder_disabled(dev_priv, pipe); 5219 5220 if (IS_IVYBRIDGE(dev_priv)) 5221 ivybridge_update_fdi_bc_bifurcation(crtc_state); 5222 5223 /* Write the TU size bits before fdi link training, so that error 5224 * detection works. */ 5225 I915_WRITE(FDI_RX_TUSIZE1(pipe), 5226 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 5227 5228 /* For PCH output, training FDI link */ 5229 dev_priv->display.fdi_link_train(crtc, crtc_state); 5230 5231 /* We need to program the right clock selection before writing the pixel 5232 * mutliplier into the DPLL. */ 5233 if (HAS_PCH_CPT(dev_priv)) { 5234 u32 sel; 5235 5236 temp = I915_READ(PCH_DPLL_SEL); 5237 temp |= TRANS_DPLL_ENABLE(pipe); 5238 sel = TRANS_DPLLB_SEL(pipe); 5239 if (crtc_state->shared_dpll == 5240 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 5241 temp |= sel; 5242 else 5243 temp &= ~sel; 5244 I915_WRITE(PCH_DPLL_SEL, temp); 5245 } 5246 5247 /* XXX: pch pll's can be enabled any time before we enable the PCH 5248 * transcoder, and we actually should do this to not upset any PCH 5249 * transcoder that already use the clock when we share it. 5250 * 5251 * Note that enable_shared_dpll tries to do the right thing, but 5252 * get_shared_dpll unconditionally resets the pll - we need that to have 5253 * the right LVDS enable sequence. */ 5254 intel_enable_shared_dpll(crtc_state); 5255 5256 /* set transcoder timing, panel must allow it */ 5257 assert_panel_unlocked(dev_priv, pipe); 5258 ironlake_pch_transcoder_set_timings(crtc_state, pipe); 5259 5260 intel_fdi_normal_train(crtc); 5261 5262 /* For PCH DP, enable TRANS_DP_CTL */ 5263 if (HAS_PCH_CPT(dev_priv) && 5264 intel_crtc_has_dp_encoder(crtc_state)) { 5265 const struct drm_display_mode *adjusted_mode = 5266 &crtc_state->base.adjusted_mode; 5267 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 5268 i915_reg_t reg = TRANS_DP_CTL(pipe); 5269 enum port port; 5270 5271 temp = I915_READ(reg); 5272 temp &= ~(TRANS_DP_PORT_SEL_MASK | 5273 TRANS_DP_SYNC_MASK | 5274 TRANS_DP_BPC_MASK); 5275 temp |= TRANS_DP_OUTPUT_ENABLE; 5276 temp |= bpc << 9; /* same format but at 11:9 */ 5277 5278 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 5279 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 5280 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 5281 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 5282 5283 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 5284 WARN_ON(port < PORT_B || port > PORT_D); 5285 temp |= TRANS_DP_PORT_SEL(port); 5286 5287 I915_WRITE(reg, temp); 5288 } 5289 5290 ironlake_enable_pch_transcoder(crtc_state); 5291 } 5292 5293 static void lpt_pch_enable(const struct intel_atomic_state *state, 5294 const struct intel_crtc_state *crtc_state) 5295 { 5296 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5297 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5298 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5299 5300 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 5301 5302 lpt_program_iclkip(crtc_state); 5303 5304 /* Set transcoder timing. */ 5305 ironlake_pch_transcoder_set_timings(crtc_state, PIPE_A); 5306 5307 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 5308 } 5309 5310 static void cpt_verify_modeset(struct drm_device *dev, int pipe) 5311 { 5312 struct drm_i915_private *dev_priv = to_i915(dev); 5313 i915_reg_t dslreg = PIPEDSL(pipe); 5314 u32 temp; 5315 5316 temp = I915_READ(dslreg); 5317 udelay(500); 5318 if (wait_for(I915_READ(dslreg) != temp, 5)) { 5319 if (wait_for(I915_READ(dslreg) != temp, 5)) 5320 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe)); 5321 } 5322 } 5323 5324 /* 5325 * The hardware phase 0.0 refers to the center of the pixel. 5326 * We want to start from the top/left edge which is phase 5327 * -0.5. That matches how the hardware calculates the scaling 5328 * factors (from top-left of the first pixel to bottom-right 5329 * of the last pixel, as opposed to the pixel centers). 5330 * 5331 * For 4:2:0 subsampled chroma planes we obviously have to 5332 * adjust that so that the chroma sample position lands in 5333 * the right spot. 5334 * 5335 * Note that for packed YCbCr 4:2:2 formats there is no way to 5336 * control chroma siting. The hardware simply replicates the 5337 * chroma samples for both of the luma samples, and thus we don't 5338 * actually get the expected MPEG2 chroma siting convention :( 5339 * The same behaviour is observed on pre-SKL platforms as well. 5340 * 5341 * Theory behind the formula (note that we ignore sub-pixel 5342 * source coordinates): 5343 * s = source sample position 5344 * d = destination sample position 5345 * 5346 * Downscaling 4:1: 5347 * -0.5 5348 * | 0.0 5349 * | | 1.5 (initial phase) 5350 * | | | 5351 * v v v 5352 * | s | s | s | s | 5353 * | d | 5354 * 5355 * Upscaling 1:4: 5356 * -0.5 5357 * | -0.375 (initial phase) 5358 * | | 0.0 5359 * | | | 5360 * v v v 5361 * | s | 5362 * | d | d | d | d | 5363 */ 5364 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited) 5365 { 5366 int phase = -0x8000; 5367 u16 trip = 0; 5368 5369 if (chroma_cosited) 5370 phase += (sub - 1) * 0x8000 / sub; 5371 5372 phase += scale / (2 * sub); 5373 5374 /* 5375 * Hardware initial phase limited to [-0.5:1.5]. 5376 * Since the max hardware scale factor is 3.0, we 5377 * should never actually excdeed 1.0 here. 5378 */ 5379 WARN_ON(phase < -0x8000 || phase > 0x18000); 5380 5381 if (phase < 0) 5382 phase = 0x10000 + phase; 5383 else 5384 trip = PS_PHASE_TRIP; 5385 5386 return ((phase >> 2) & PS_PHASE_MASK) | trip; 5387 } 5388 5389 #define SKL_MIN_SRC_W 8 5390 #define SKL_MAX_SRC_W 4096 5391 #define SKL_MIN_SRC_H 8 5392 #define SKL_MAX_SRC_H 4096 5393 #define SKL_MIN_DST_W 8 5394 #define SKL_MAX_DST_W 4096 5395 #define SKL_MIN_DST_H 8 5396 #define SKL_MAX_DST_H 4096 5397 #define ICL_MAX_SRC_W 5120 5398 #define ICL_MAX_SRC_H 4096 5399 #define ICL_MAX_DST_W 5120 5400 #define ICL_MAX_DST_H 4096 5401 #define SKL_MIN_YUV_420_SRC_W 16 5402 #define SKL_MIN_YUV_420_SRC_H 16 5403 5404 static int 5405 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, 5406 unsigned int scaler_user, int *scaler_id, 5407 int src_w, int src_h, int dst_w, int dst_h, 5408 const struct drm_format_info *format, bool need_scaler) 5409 { 5410 struct intel_crtc_scaler_state *scaler_state = 5411 &crtc_state->scaler_state; 5412 struct intel_crtc *intel_crtc = 5413 to_intel_crtc(crtc_state->base.crtc); 5414 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 5415 const struct drm_display_mode *adjusted_mode = 5416 &crtc_state->base.adjusted_mode; 5417 5418 /* 5419 * Src coordinates are already rotated by 270 degrees for 5420 * the 90/270 degree plane rotation cases (to match the 5421 * GTT mapping), hence no need to account for rotation here. 5422 */ 5423 if (src_w != dst_w || src_h != dst_h) 5424 need_scaler = true; 5425 5426 /* 5427 * Scaling/fitting not supported in IF-ID mode in GEN9+ 5428 * TODO: Interlace fetch mode doesn't support YUV420 planar formats. 5429 * Once NV12 is enabled, handle it here while allocating scaler 5430 * for NV12. 5431 */ 5432 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable && 5433 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 5434 DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n"); 5435 return -EINVAL; 5436 } 5437 5438 /* 5439 * if plane is being disabled or scaler is no more required or force detach 5440 * - free scaler binded to this plane/crtc 5441 * - in order to do this, update crtc->scaler_usage 5442 * 5443 * Here scaler state in crtc_state is set free so that 5444 * scaler can be assigned to other user. Actual register 5445 * update to free the scaler is done in plane/panel-fit programming. 5446 * For this purpose crtc/plane_state->scaler_id isn't reset here. 5447 */ 5448 if (force_detach || !need_scaler) { 5449 if (*scaler_id >= 0) { 5450 scaler_state->scaler_users &= ~(1 << scaler_user); 5451 scaler_state->scalers[*scaler_id].in_use = 0; 5452 5453 DRM_DEBUG_KMS("scaler_user index %u.%u: " 5454 "Staged freeing scaler id %d scaler_users = 0x%x\n", 5455 intel_crtc->pipe, scaler_user, *scaler_id, 5456 scaler_state->scaler_users); 5457 *scaler_id = -1; 5458 } 5459 return 0; 5460 } 5461 5462 if (format && is_planar_yuv_format(format->format) && 5463 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) { 5464 DRM_DEBUG_KMS("Planar YUV: src dimensions not met\n"); 5465 return -EINVAL; 5466 } 5467 5468 /* range checks */ 5469 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || 5470 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || 5471 (INTEL_GEN(dev_priv) >= 11 && 5472 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H || 5473 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) || 5474 (INTEL_GEN(dev_priv) < 11 && 5475 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || 5476 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) { 5477 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u " 5478 "size is out of scaler range\n", 5479 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h); 5480 return -EINVAL; 5481 } 5482 5483 /* mark this plane as a scaler user in crtc_state */ 5484 scaler_state->scaler_users |= (1 << scaler_user); 5485 DRM_DEBUG_KMS("scaler_user index %u.%u: " 5486 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", 5487 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, 5488 scaler_state->scaler_users); 5489 5490 return 0; 5491 } 5492 5493 /** 5494 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc. 5495 * 5496 * @state: crtc's scaler state 5497 * 5498 * Return 5499 * 0 - scaler_usage updated successfully 5500 * error - requested scaling cannot be supported or other error condition 5501 */ 5502 int skl_update_scaler_crtc(struct intel_crtc_state *state) 5503 { 5504 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode; 5505 bool need_scaler = false; 5506 5507 if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 5508 need_scaler = true; 5509 5510 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX, 5511 &state->scaler_state.scaler_id, 5512 state->pipe_src_w, state->pipe_src_h, 5513 adjusted_mode->crtc_hdisplay, 5514 adjusted_mode->crtc_vdisplay, NULL, need_scaler); 5515 } 5516 5517 /** 5518 * skl_update_scaler_plane - Stages update to scaler state for a given plane. 5519 * @crtc_state: crtc's scaler state 5520 * @plane_state: atomic plane state to update 5521 * 5522 * Return 5523 * 0 - scaler_usage updated successfully 5524 * error - requested scaling cannot be supported or other error condition 5525 */ 5526 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, 5527 struct intel_plane_state *plane_state) 5528 { 5529 struct intel_plane *intel_plane = 5530 to_intel_plane(plane_state->base.plane); 5531 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 5532 struct drm_framebuffer *fb = plane_state->base.fb; 5533 int ret; 5534 bool force_detach = !fb || !plane_state->base.visible; 5535 bool need_scaler = false; 5536 5537 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */ 5538 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) && 5539 fb && is_planar_yuv_format(fb->format->format)) 5540 need_scaler = true; 5541 5542 ret = skl_update_scaler(crtc_state, force_detach, 5543 drm_plane_index(&intel_plane->base), 5544 &plane_state->scaler_id, 5545 drm_rect_width(&plane_state->base.src) >> 16, 5546 drm_rect_height(&plane_state->base.src) >> 16, 5547 drm_rect_width(&plane_state->base.dst), 5548 drm_rect_height(&plane_state->base.dst), 5549 fb ? fb->format : NULL, need_scaler); 5550 5551 if (ret || plane_state->scaler_id < 0) 5552 return ret; 5553 5554 /* check colorkey */ 5555 if (plane_state->ckey.flags) { 5556 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed", 5557 intel_plane->base.base.id, 5558 intel_plane->base.name); 5559 return -EINVAL; 5560 } 5561 5562 /* Check src format */ 5563 switch (fb->format->format) { 5564 case DRM_FORMAT_RGB565: 5565 case DRM_FORMAT_XBGR8888: 5566 case DRM_FORMAT_XRGB8888: 5567 case DRM_FORMAT_ABGR8888: 5568 case DRM_FORMAT_ARGB8888: 5569 case DRM_FORMAT_XRGB2101010: 5570 case DRM_FORMAT_XBGR2101010: 5571 case DRM_FORMAT_XBGR16161616F: 5572 case DRM_FORMAT_ABGR16161616F: 5573 case DRM_FORMAT_XRGB16161616F: 5574 case DRM_FORMAT_ARGB16161616F: 5575 case DRM_FORMAT_YUYV: 5576 case DRM_FORMAT_YVYU: 5577 case DRM_FORMAT_UYVY: 5578 case DRM_FORMAT_VYUY: 5579 case DRM_FORMAT_NV12: 5580 case DRM_FORMAT_P010: 5581 case DRM_FORMAT_P012: 5582 case DRM_FORMAT_P016: 5583 case DRM_FORMAT_Y210: 5584 case DRM_FORMAT_Y212: 5585 case DRM_FORMAT_Y216: 5586 case DRM_FORMAT_XVYU2101010: 5587 case DRM_FORMAT_XVYU12_16161616: 5588 case DRM_FORMAT_XVYU16161616: 5589 break; 5590 default: 5591 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n", 5592 intel_plane->base.base.id, intel_plane->base.name, 5593 fb->base.id, fb->format->format); 5594 return -EINVAL; 5595 } 5596 5597 return 0; 5598 } 5599 5600 static void skylake_scaler_disable(struct intel_crtc *crtc) 5601 { 5602 int i; 5603 5604 for (i = 0; i < crtc->num_scalers; i++) 5605 skl_detach_scaler(crtc, i); 5606 } 5607 5608 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state) 5609 { 5610 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5611 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5612 enum pipe pipe = crtc->pipe; 5613 const struct intel_crtc_scaler_state *scaler_state = 5614 &crtc_state->scaler_state; 5615 5616 if (crtc_state->pch_pfit.enabled) { 5617 u16 uv_rgb_hphase, uv_rgb_vphase; 5618 int pfit_w, pfit_h, hscale, vscale; 5619 int id; 5620 5621 if (WARN_ON(crtc_state->scaler_state.scaler_id < 0)) 5622 return; 5623 5624 pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF; 5625 pfit_h = crtc_state->pch_pfit.size & 0xFFFF; 5626 5627 hscale = (crtc_state->pipe_src_w << 16) / pfit_w; 5628 vscale = (crtc_state->pipe_src_h << 16) / pfit_h; 5629 5630 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false); 5631 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false); 5632 5633 id = scaler_state->scaler_id; 5634 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN | 5635 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode); 5636 I915_WRITE_FW(SKL_PS_VPHASE(pipe, id), 5637 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase)); 5638 I915_WRITE_FW(SKL_PS_HPHASE(pipe, id), 5639 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase)); 5640 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc_state->pch_pfit.pos); 5641 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc_state->pch_pfit.size); 5642 } 5643 } 5644 5645 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state) 5646 { 5647 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5648 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5649 int pipe = crtc->pipe; 5650 5651 if (crtc_state->pch_pfit.enabled) { 5652 /* Force use of hard-coded filter coefficients 5653 * as some pre-programmed values are broken, 5654 * e.g. x201. 5655 */ 5656 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 5657 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | 5658 PF_PIPE_SEL_IVB(pipe)); 5659 else 5660 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); 5661 I915_WRITE(PF_WIN_POS(pipe), crtc_state->pch_pfit.pos); 5662 I915_WRITE(PF_WIN_SZ(pipe), crtc_state->pch_pfit.size); 5663 } 5664 } 5665 5666 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 5667 { 5668 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5669 struct drm_device *dev = crtc->base.dev; 5670 struct drm_i915_private *dev_priv = to_i915(dev); 5671 5672 if (!crtc_state->ips_enabled) 5673 return; 5674 5675 /* 5676 * We can only enable IPS after we enable a plane and wait for a vblank 5677 * This function is called from post_plane_update, which is run after 5678 * a vblank wait. 5679 */ 5680 WARN_ON(!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 5681 5682 if (IS_BROADWELL(dev_priv)) { 5683 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 5684 IPS_ENABLE | IPS_PCODE_CONTROL)); 5685 /* Quoting Art Runyan: "its not safe to expect any particular 5686 * value in IPS_CTL bit 31 after enabling IPS through the 5687 * mailbox." Moreover, the mailbox may return a bogus state, 5688 * so we need to just enable it and continue on. 5689 */ 5690 } else { 5691 I915_WRITE(IPS_CTL, IPS_ENABLE); 5692 /* The bit only becomes 1 in the next vblank, so this wait here 5693 * is essentially intel_wait_for_vblank. If we don't have this 5694 * and don't wait for vblanks until the end of crtc_enable, then 5695 * the HW state readout code will complain that the expected 5696 * IPS_CTL value is not the one we read. */ 5697 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 5698 DRM_ERROR("Timed out waiting for IPS enable\n"); 5699 } 5700 } 5701 5702 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 5703 { 5704 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5705 struct drm_device *dev = crtc->base.dev; 5706 struct drm_i915_private *dev_priv = to_i915(dev); 5707 5708 if (!crtc_state->ips_enabled) 5709 return; 5710 5711 if (IS_BROADWELL(dev_priv)) { 5712 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 5713 /* 5714 * Wait for PCODE to finish disabling IPS. The BSpec specified 5715 * 42ms timeout value leads to occasional timeouts so use 100ms 5716 * instead. 5717 */ 5718 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 5719 DRM_ERROR("Timed out waiting for IPS disable\n"); 5720 } else { 5721 I915_WRITE(IPS_CTL, 0); 5722 POSTING_READ(IPS_CTL); 5723 } 5724 5725 /* We need to wait for a vblank before we can disable the plane. */ 5726 intel_wait_for_vblank(dev_priv, crtc->pipe); 5727 } 5728 5729 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 5730 { 5731 if (intel_crtc->overlay) { 5732 struct drm_device *dev = intel_crtc->base.dev; 5733 5734 mutex_lock(&dev->struct_mutex); 5735 (void) intel_overlay_switch_off(intel_crtc->overlay); 5736 mutex_unlock(&dev->struct_mutex); 5737 } 5738 5739 /* Let userspace switch the overlay on again. In most cases userspace 5740 * has to recompute where to put it anyway. 5741 */ 5742 } 5743 5744 /** 5745 * intel_post_enable_primary - Perform operations after enabling primary plane 5746 * @crtc: the CRTC whose primary plane was just enabled 5747 * @new_crtc_state: the enabling state 5748 * 5749 * Performs potentially sleeping operations that must be done after the primary 5750 * plane is enabled, such as updating FBC and IPS. Note that this may be 5751 * called due to an explicit primary plane update, or due to an implicit 5752 * re-enable that is caused when a sprite plane is updated to no longer 5753 * completely hide the primary plane. 5754 */ 5755 static void 5756 intel_post_enable_primary(struct drm_crtc *crtc, 5757 const struct intel_crtc_state *new_crtc_state) 5758 { 5759 struct drm_device *dev = crtc->dev; 5760 struct drm_i915_private *dev_priv = to_i915(dev); 5761 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 5762 int pipe = intel_crtc->pipe; 5763 5764 /* 5765 * Gen2 reports pipe underruns whenever all planes are disabled. 5766 * So don't enable underrun reporting before at least some planes 5767 * are enabled. 5768 * FIXME: Need to fix the logic to work when we turn off all planes 5769 * but leave the pipe running. 5770 */ 5771 if (IS_GEN(dev_priv, 2)) 5772 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 5773 5774 /* Underruns don't always raise interrupts, so check manually. */ 5775 intel_check_cpu_fifo_underruns(dev_priv); 5776 intel_check_pch_fifo_underruns(dev_priv); 5777 } 5778 5779 /* FIXME get rid of this and use pre_plane_update */ 5780 static void 5781 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc) 5782 { 5783 struct drm_device *dev = crtc->dev; 5784 struct drm_i915_private *dev_priv = to_i915(dev); 5785 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 5786 int pipe = intel_crtc->pipe; 5787 5788 /* 5789 * Gen2 reports pipe underruns whenever all planes are disabled. 5790 * So disable underrun reporting before all the planes get disabled. 5791 */ 5792 if (IS_GEN(dev_priv, 2)) 5793 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 5794 5795 hsw_disable_ips(to_intel_crtc_state(crtc->state)); 5796 5797 /* 5798 * Vblank time updates from the shadow to live plane control register 5799 * are blocked if the memory self-refresh mode is active at that 5800 * moment. So to make sure the plane gets truly disabled, disable 5801 * first the self-refresh mode. The self-refresh enable bit in turn 5802 * will be checked/applied by the HW only at the next frame start 5803 * event which is after the vblank start event, so we need to have a 5804 * wait-for-vblank between disabling the plane and the pipe. 5805 */ 5806 if (HAS_GMCH(dev_priv) && 5807 intel_set_memory_cxsr(dev_priv, false)) 5808 intel_wait_for_vblank(dev_priv, pipe); 5809 } 5810 5811 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 5812 const struct intel_crtc_state *new_crtc_state) 5813 { 5814 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 5815 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5816 5817 if (!old_crtc_state->ips_enabled) 5818 return false; 5819 5820 if (needs_modeset(new_crtc_state)) 5821 return true; 5822 5823 /* 5824 * Workaround : Do not read or write the pipe palette/gamma data while 5825 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 5826 * 5827 * Disable IPS before we program the LUT. 5828 */ 5829 if (IS_HASWELL(dev_priv) && 5830 (new_crtc_state->base.color_mgmt_changed || 5831 new_crtc_state->update_pipe) && 5832 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 5833 return true; 5834 5835 return !new_crtc_state->ips_enabled; 5836 } 5837 5838 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 5839 const struct intel_crtc_state *new_crtc_state) 5840 { 5841 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 5842 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5843 5844 if (!new_crtc_state->ips_enabled) 5845 return false; 5846 5847 if (needs_modeset(new_crtc_state)) 5848 return true; 5849 5850 /* 5851 * Workaround : Do not read or write the pipe palette/gamma data while 5852 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 5853 * 5854 * Re-enable IPS after the LUT has been programmed. 5855 */ 5856 if (IS_HASWELL(dev_priv) && 5857 (new_crtc_state->base.color_mgmt_changed || 5858 new_crtc_state->update_pipe) && 5859 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 5860 return true; 5861 5862 /* 5863 * We can't read out IPS on broadwell, assume the worst and 5864 * forcibly enable IPS on the first fastset. 5865 */ 5866 if (new_crtc_state->update_pipe && 5867 old_crtc_state->base.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED) 5868 return true; 5869 5870 return !old_crtc_state->ips_enabled; 5871 } 5872 5873 static bool needs_nv12_wa(struct drm_i915_private *dev_priv, 5874 const struct intel_crtc_state *crtc_state) 5875 { 5876 if (!crtc_state->nv12_planes) 5877 return false; 5878 5879 /* WA Display #0827: Gen9:all */ 5880 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) 5881 return true; 5882 5883 return false; 5884 } 5885 5886 static bool needs_scalerclk_wa(struct drm_i915_private *dev_priv, 5887 const struct intel_crtc_state *crtc_state) 5888 { 5889 /* Wa_2006604312:icl */ 5890 if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv)) 5891 return true; 5892 5893 return false; 5894 } 5895 5896 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state) 5897 { 5898 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 5899 struct drm_device *dev = crtc->base.dev; 5900 struct drm_i915_private *dev_priv = to_i915(dev); 5901 struct drm_atomic_state *state = old_crtc_state->base.state; 5902 struct intel_crtc_state *pipe_config = 5903 intel_atomic_get_new_crtc_state(to_intel_atomic_state(state), 5904 crtc); 5905 struct drm_plane *primary = crtc->base.primary; 5906 struct drm_plane_state *old_primary_state = 5907 drm_atomic_get_old_plane_state(state, primary); 5908 5909 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits); 5910 5911 if (pipe_config->update_wm_post && pipe_config->base.active) 5912 intel_update_watermarks(crtc); 5913 5914 if (hsw_post_update_enable_ips(old_crtc_state, pipe_config)) 5915 hsw_enable_ips(pipe_config); 5916 5917 if (old_primary_state) { 5918 struct drm_plane_state *new_primary_state = 5919 drm_atomic_get_new_plane_state(state, primary); 5920 5921 intel_fbc_post_update(crtc); 5922 5923 if (new_primary_state->visible && 5924 (needs_modeset(pipe_config) || 5925 !old_primary_state->visible)) 5926 intel_post_enable_primary(&crtc->base, pipe_config); 5927 } 5928 5929 if (needs_nv12_wa(dev_priv, old_crtc_state) && 5930 !needs_nv12_wa(dev_priv, pipe_config)) 5931 skl_wa_827(dev_priv, crtc->pipe, false); 5932 5933 if (needs_scalerclk_wa(dev_priv, old_crtc_state) && 5934 !needs_scalerclk_wa(dev_priv, pipe_config)) 5935 icl_wa_scalerclkgating(dev_priv, crtc->pipe, false); 5936 } 5937 5938 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state, 5939 struct intel_crtc_state *pipe_config) 5940 { 5941 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 5942 struct drm_device *dev = crtc->base.dev; 5943 struct drm_i915_private *dev_priv = to_i915(dev); 5944 struct drm_atomic_state *state = old_crtc_state->base.state; 5945 struct drm_plane *primary = crtc->base.primary; 5946 struct drm_plane_state *old_primary_state = 5947 drm_atomic_get_old_plane_state(state, primary); 5948 bool modeset = needs_modeset(pipe_config); 5949 struct intel_atomic_state *intel_state = 5950 to_intel_atomic_state(state); 5951 5952 if (hsw_pre_update_disable_ips(old_crtc_state, pipe_config)) 5953 hsw_disable_ips(old_crtc_state); 5954 5955 if (old_primary_state) { 5956 struct intel_plane_state *new_primary_state = 5957 intel_atomic_get_new_plane_state(intel_state, 5958 to_intel_plane(primary)); 5959 5960 intel_fbc_pre_update(crtc, pipe_config, new_primary_state); 5961 /* 5962 * Gen2 reports pipe underruns whenever all planes are disabled. 5963 * So disable underrun reporting before all the planes get disabled. 5964 */ 5965 if (IS_GEN(dev_priv, 2) && old_primary_state->visible && 5966 (modeset || !new_primary_state->base.visible)) 5967 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 5968 } 5969 5970 /* Display WA 827 */ 5971 if (!needs_nv12_wa(dev_priv, old_crtc_state) && 5972 needs_nv12_wa(dev_priv, pipe_config)) 5973 skl_wa_827(dev_priv, crtc->pipe, true); 5974 5975 /* Wa_2006604312:icl */ 5976 if (!needs_scalerclk_wa(dev_priv, old_crtc_state) && 5977 needs_scalerclk_wa(dev_priv, pipe_config)) 5978 icl_wa_scalerclkgating(dev_priv, crtc->pipe, true); 5979 5980 /* 5981 * Vblank time updates from the shadow to live plane control register 5982 * are blocked if the memory self-refresh mode is active at that 5983 * moment. So to make sure the plane gets truly disabled, disable 5984 * first the self-refresh mode. The self-refresh enable bit in turn 5985 * will be checked/applied by the HW only at the next frame start 5986 * event which is after the vblank start event, so we need to have a 5987 * wait-for-vblank between disabling the plane and the pipe. 5988 */ 5989 if (HAS_GMCH(dev_priv) && old_crtc_state->base.active && 5990 pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 5991 intel_wait_for_vblank(dev_priv, crtc->pipe); 5992 5993 /* 5994 * IVB workaround: must disable low power watermarks for at least 5995 * one frame before enabling scaling. LP watermarks can be re-enabled 5996 * when scaling is disabled. 5997 * 5998 * WaCxSRDisabledForSpriteScaling:ivb 5999 */ 6000 if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev) && 6001 old_crtc_state->base.active) 6002 intel_wait_for_vblank(dev_priv, crtc->pipe); 6003 6004 /* 6005 * If we're doing a modeset, we're done. No need to do any pre-vblank 6006 * watermark programming here. 6007 */ 6008 if (needs_modeset(pipe_config)) 6009 return; 6010 6011 /* 6012 * For platforms that support atomic watermarks, program the 6013 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 6014 * will be the intermediate values that are safe for both pre- and 6015 * post- vblank; when vblank happens, the 'active' values will be set 6016 * to the final 'target' values and we'll do this again to get the 6017 * optimal watermarks. For gen9+ platforms, the values we program here 6018 * will be the final target values which will get automatically latched 6019 * at vblank time; no further programming will be necessary. 6020 * 6021 * If a platform hasn't been transitioned to atomic watermarks yet, 6022 * we'll continue to update watermarks the old way, if flags tell 6023 * us to. 6024 */ 6025 if (dev_priv->display.initial_watermarks != NULL) 6026 dev_priv->display.initial_watermarks(intel_state, 6027 pipe_config); 6028 else if (pipe_config->update_wm_pre) 6029 intel_update_watermarks(crtc); 6030 } 6031 6032 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 6033 struct intel_crtc *crtc) 6034 { 6035 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6036 const struct intel_crtc_state *new_crtc_state = 6037 intel_atomic_get_new_crtc_state(state, crtc); 6038 unsigned int update_mask = new_crtc_state->update_planes; 6039 const struct intel_plane_state *old_plane_state; 6040 struct intel_plane *plane; 6041 unsigned fb_bits = 0; 6042 int i; 6043 6044 intel_crtc_dpms_overlay_disable(crtc); 6045 6046 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 6047 if (crtc->pipe != plane->pipe || 6048 !(update_mask & BIT(plane->id))) 6049 continue; 6050 6051 intel_disable_plane(plane, new_crtc_state); 6052 6053 if (old_plane_state->base.visible) 6054 fb_bits |= plane->frontbuffer_bit; 6055 } 6056 6057 intel_frontbuffer_flip(dev_priv, fb_bits); 6058 } 6059 6060 /* 6061 * intel_connector_primary_encoder - get the primary encoder for a connector 6062 * @connector: connector for which to return the encoder 6063 * 6064 * Returns the primary encoder for a connector. There is a 1:1 mapping from 6065 * all connectors to their encoder, except for DP-MST connectors which have 6066 * both a virtual and a primary encoder. These DP-MST primary encoders can be 6067 * pointed to by as many DP-MST connectors as there are pipes. 6068 */ 6069 static struct intel_encoder * 6070 intel_connector_primary_encoder(struct intel_connector *connector) 6071 { 6072 struct intel_encoder *encoder; 6073 6074 if (connector->mst_port) 6075 return &dp_to_dig_port(connector->mst_port)->base; 6076 6077 encoder = intel_attached_encoder(&connector->base); 6078 WARN_ON(!encoder); 6079 6080 return encoder; 6081 } 6082 6083 static bool 6084 intel_connector_needs_modeset(struct intel_atomic_state *state, 6085 const struct drm_connector_state *old_conn_state, 6086 const struct drm_connector_state *new_conn_state) 6087 { 6088 struct intel_crtc *old_crtc = old_conn_state->crtc ? 6089 to_intel_crtc(old_conn_state->crtc) : NULL; 6090 struct intel_crtc *new_crtc = new_conn_state->crtc ? 6091 to_intel_crtc(new_conn_state->crtc) : NULL; 6092 6093 return new_crtc != old_crtc || 6094 (new_crtc && 6095 needs_modeset(intel_atomic_get_new_crtc_state(state, new_crtc))); 6096 } 6097 6098 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 6099 { 6100 struct drm_connector_state *old_conn_state; 6101 struct drm_connector_state *new_conn_state; 6102 struct drm_connector *conn; 6103 int i; 6104 6105 for_each_oldnew_connector_in_state(&state->base, conn, 6106 old_conn_state, new_conn_state, i) { 6107 struct intel_encoder *encoder; 6108 struct intel_crtc *crtc; 6109 6110 if (!intel_connector_needs_modeset(state, 6111 old_conn_state, 6112 new_conn_state)) 6113 continue; 6114 6115 encoder = intel_connector_primary_encoder(to_intel_connector(conn)); 6116 if (!encoder->update_prepare) 6117 continue; 6118 6119 crtc = new_conn_state->crtc ? 6120 to_intel_crtc(new_conn_state->crtc) : NULL; 6121 encoder->update_prepare(state, encoder, crtc); 6122 } 6123 } 6124 6125 static void intel_encoders_update_complete(struct intel_atomic_state *state) 6126 { 6127 struct drm_connector_state *old_conn_state; 6128 struct drm_connector_state *new_conn_state; 6129 struct drm_connector *conn; 6130 int i; 6131 6132 for_each_oldnew_connector_in_state(&state->base, conn, 6133 old_conn_state, new_conn_state, i) { 6134 struct intel_encoder *encoder; 6135 struct intel_crtc *crtc; 6136 6137 if (!intel_connector_needs_modeset(state, 6138 old_conn_state, 6139 new_conn_state)) 6140 continue; 6141 6142 encoder = intel_connector_primary_encoder(to_intel_connector(conn)); 6143 if (!encoder->update_complete) 6144 continue; 6145 6146 crtc = new_conn_state->crtc ? 6147 to_intel_crtc(new_conn_state->crtc) : NULL; 6148 encoder->update_complete(state, encoder, crtc); 6149 } 6150 } 6151 6152 static void intel_encoders_pre_pll_enable(struct intel_crtc *crtc, 6153 struct intel_crtc_state *crtc_state, 6154 struct intel_atomic_state *state) 6155 { 6156 struct drm_connector_state *conn_state; 6157 struct drm_connector *conn; 6158 int i; 6159 6160 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6161 struct intel_encoder *encoder = 6162 to_intel_encoder(conn_state->best_encoder); 6163 6164 if (conn_state->crtc != &crtc->base) 6165 continue; 6166 6167 if (encoder->pre_pll_enable) 6168 encoder->pre_pll_enable(encoder, crtc_state, conn_state); 6169 } 6170 } 6171 6172 static void intel_encoders_pre_enable(struct intel_crtc *crtc, 6173 struct intel_crtc_state *crtc_state, 6174 struct intel_atomic_state *state) 6175 { 6176 struct drm_connector_state *conn_state; 6177 struct drm_connector *conn; 6178 int i; 6179 6180 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6181 struct intel_encoder *encoder = 6182 to_intel_encoder(conn_state->best_encoder); 6183 6184 if (conn_state->crtc != &crtc->base) 6185 continue; 6186 6187 if (encoder->pre_enable) 6188 encoder->pre_enable(encoder, crtc_state, conn_state); 6189 } 6190 } 6191 6192 static void intel_encoders_enable(struct intel_crtc *crtc, 6193 struct intel_crtc_state *crtc_state, 6194 struct intel_atomic_state *state) 6195 { 6196 struct drm_connector_state *conn_state; 6197 struct drm_connector *conn; 6198 int i; 6199 6200 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6201 struct intel_encoder *encoder = 6202 to_intel_encoder(conn_state->best_encoder); 6203 6204 if (conn_state->crtc != &crtc->base) 6205 continue; 6206 6207 if (encoder->enable) 6208 encoder->enable(encoder, crtc_state, conn_state); 6209 intel_opregion_notify_encoder(encoder, true); 6210 } 6211 } 6212 6213 static void intel_encoders_disable(struct intel_crtc *crtc, 6214 struct intel_crtc_state *old_crtc_state, 6215 struct intel_atomic_state *state) 6216 { 6217 struct drm_connector_state *old_conn_state; 6218 struct drm_connector *conn; 6219 int i; 6220 6221 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6222 struct intel_encoder *encoder = 6223 to_intel_encoder(old_conn_state->best_encoder); 6224 6225 if (old_conn_state->crtc != &crtc->base) 6226 continue; 6227 6228 intel_opregion_notify_encoder(encoder, false); 6229 if (encoder->disable) 6230 encoder->disable(encoder, old_crtc_state, old_conn_state); 6231 } 6232 } 6233 6234 static void intel_encoders_post_disable(struct intel_crtc *crtc, 6235 struct intel_crtc_state *old_crtc_state, 6236 struct intel_atomic_state *state) 6237 { 6238 struct drm_connector_state *old_conn_state; 6239 struct drm_connector *conn; 6240 int i; 6241 6242 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6243 struct intel_encoder *encoder = 6244 to_intel_encoder(old_conn_state->best_encoder); 6245 6246 if (old_conn_state->crtc != &crtc->base) 6247 continue; 6248 6249 if (encoder->post_disable) 6250 encoder->post_disable(encoder, old_crtc_state, old_conn_state); 6251 } 6252 } 6253 6254 static void intel_encoders_post_pll_disable(struct intel_crtc *crtc, 6255 struct intel_crtc_state *old_crtc_state, 6256 struct intel_atomic_state *state) 6257 { 6258 struct drm_connector_state *old_conn_state; 6259 struct drm_connector *conn; 6260 int i; 6261 6262 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6263 struct intel_encoder *encoder = 6264 to_intel_encoder(old_conn_state->best_encoder); 6265 6266 if (old_conn_state->crtc != &crtc->base) 6267 continue; 6268 6269 if (encoder->post_pll_disable) 6270 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state); 6271 } 6272 } 6273 6274 static void intel_encoders_update_pipe(struct intel_crtc *crtc, 6275 struct intel_crtc_state *crtc_state, 6276 struct intel_atomic_state *state) 6277 { 6278 struct drm_connector_state *conn_state; 6279 struct drm_connector *conn; 6280 int i; 6281 6282 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6283 struct intel_encoder *encoder = 6284 to_intel_encoder(conn_state->best_encoder); 6285 6286 if (conn_state->crtc != &crtc->base) 6287 continue; 6288 6289 if (encoder->update_pipe) 6290 encoder->update_pipe(encoder, crtc_state, conn_state); 6291 } 6292 } 6293 6294 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 6295 { 6296 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 6297 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 6298 6299 plane->disable_plane(plane, crtc_state); 6300 } 6301 6302 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config, 6303 struct intel_atomic_state *state) 6304 { 6305 struct drm_crtc *crtc = pipe_config->base.crtc; 6306 struct drm_device *dev = crtc->dev; 6307 struct drm_i915_private *dev_priv = to_i915(dev); 6308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6309 int pipe = intel_crtc->pipe; 6310 6311 if (WARN_ON(intel_crtc->active)) 6312 return; 6313 6314 /* 6315 * Sometimes spurious CPU pipe underruns happen during FDI 6316 * training, at least with VGA+HDMI cloning. Suppress them. 6317 * 6318 * On ILK we get an occasional spurious CPU pipe underruns 6319 * between eDP port A enable and vdd enable. Also PCH port 6320 * enable seems to result in the occasional CPU pipe underrun. 6321 * 6322 * Spurious PCH underruns also occur during PCH enabling. 6323 */ 6324 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6325 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 6326 6327 if (pipe_config->has_pch_encoder) 6328 intel_prepare_shared_dpll(pipe_config); 6329 6330 if (intel_crtc_has_dp_encoder(pipe_config)) 6331 intel_dp_set_m_n(pipe_config, M1_N1); 6332 6333 intel_set_pipe_timings(pipe_config); 6334 intel_set_pipe_src_size(pipe_config); 6335 6336 if (pipe_config->has_pch_encoder) { 6337 intel_cpu_transcoder_set_m_n(pipe_config, 6338 &pipe_config->fdi_m_n, NULL); 6339 } 6340 6341 ironlake_set_pipeconf(pipe_config); 6342 6343 intel_crtc->active = true; 6344 6345 intel_encoders_pre_enable(intel_crtc, pipe_config, state); 6346 6347 if (pipe_config->has_pch_encoder) { 6348 /* Note: FDI PLL enabling _must_ be done before we enable the 6349 * cpu pipes, hence this is separate from all the other fdi/pch 6350 * enabling. */ 6351 ironlake_fdi_pll_enable(pipe_config); 6352 } else { 6353 assert_fdi_tx_disabled(dev_priv, pipe); 6354 assert_fdi_rx_disabled(dev_priv, pipe); 6355 } 6356 6357 ironlake_pfit_enable(pipe_config); 6358 6359 /* 6360 * On ILK+ LUT must be loaded before the pipe is running but with 6361 * clocks enabled 6362 */ 6363 intel_color_load_luts(pipe_config); 6364 intel_color_commit(pipe_config); 6365 /* update DSPCNTR to configure gamma for pipe bottom color */ 6366 intel_disable_primary_plane(pipe_config); 6367 6368 if (dev_priv->display.initial_watermarks != NULL) 6369 dev_priv->display.initial_watermarks(state, pipe_config); 6370 intel_enable_pipe(pipe_config); 6371 6372 if (pipe_config->has_pch_encoder) 6373 ironlake_pch_enable(state, pipe_config); 6374 6375 assert_vblank_disabled(crtc); 6376 intel_crtc_vblank_on(pipe_config); 6377 6378 intel_encoders_enable(intel_crtc, pipe_config, state); 6379 6380 if (HAS_PCH_CPT(dev_priv)) 6381 cpt_verify_modeset(dev, intel_crtc->pipe); 6382 6383 /* 6384 * Must wait for vblank to avoid spurious PCH FIFO underruns. 6385 * And a second vblank wait is needed at least on ILK with 6386 * some interlaced HDMI modes. Let's do the double wait always 6387 * in case there are more corner cases we don't know about. 6388 */ 6389 if (pipe_config->has_pch_encoder) { 6390 intel_wait_for_vblank(dev_priv, pipe); 6391 intel_wait_for_vblank(dev_priv, pipe); 6392 } 6393 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6394 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 6395 } 6396 6397 /* IPS only exists on ULT machines and is tied to pipe A. */ 6398 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 6399 { 6400 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 6401 } 6402 6403 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 6404 enum pipe pipe, bool apply) 6405 { 6406 u32 val = I915_READ(CLKGATE_DIS_PSL(pipe)); 6407 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 6408 6409 if (apply) 6410 val |= mask; 6411 else 6412 val &= ~mask; 6413 6414 I915_WRITE(CLKGATE_DIS_PSL(pipe), val); 6415 } 6416 6417 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 6418 { 6419 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6420 enum pipe pipe = crtc->pipe; 6421 u32 val; 6422 6423 val = MBUS_DBOX_A_CREDIT(2); 6424 6425 if (INTEL_GEN(dev_priv) >= 12) { 6426 val |= MBUS_DBOX_BW_CREDIT(2); 6427 val |= MBUS_DBOX_B_CREDIT(12); 6428 } else { 6429 val |= MBUS_DBOX_BW_CREDIT(1); 6430 val |= MBUS_DBOX_B_CREDIT(8); 6431 } 6432 6433 I915_WRITE(PIPE_MBUS_DBOX_CTL(pipe), val); 6434 } 6435 6436 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config, 6437 struct intel_atomic_state *state) 6438 { 6439 struct drm_crtc *crtc = pipe_config->base.crtc; 6440 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 6441 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6442 int pipe = intel_crtc->pipe, hsw_workaround_pipe; 6443 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 6444 bool psl_clkgate_wa; 6445 6446 if (WARN_ON(intel_crtc->active)) 6447 return; 6448 6449 intel_encoders_pre_pll_enable(intel_crtc, pipe_config, state); 6450 6451 if (pipe_config->shared_dpll) 6452 intel_enable_shared_dpll(pipe_config); 6453 6454 intel_encoders_pre_enable(intel_crtc, pipe_config, state); 6455 6456 if (intel_crtc_has_dp_encoder(pipe_config)) 6457 intel_dp_set_m_n(pipe_config, M1_N1); 6458 6459 if (!transcoder_is_dsi(cpu_transcoder)) 6460 intel_set_pipe_timings(pipe_config); 6461 6462 intel_set_pipe_src_size(pipe_config); 6463 6464 if (cpu_transcoder != TRANSCODER_EDP && 6465 !transcoder_is_dsi(cpu_transcoder)) { 6466 I915_WRITE(PIPE_MULT(cpu_transcoder), 6467 pipe_config->pixel_multiplier - 1); 6468 } 6469 6470 if (pipe_config->has_pch_encoder) { 6471 intel_cpu_transcoder_set_m_n(pipe_config, 6472 &pipe_config->fdi_m_n, NULL); 6473 } 6474 6475 if (!transcoder_is_dsi(cpu_transcoder)) 6476 haswell_set_pipeconf(pipe_config); 6477 6478 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 6479 bdw_set_pipemisc(pipe_config); 6480 6481 intel_crtc->active = true; 6482 6483 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 6484 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) && 6485 pipe_config->pch_pfit.enabled; 6486 if (psl_clkgate_wa) 6487 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 6488 6489 if (INTEL_GEN(dev_priv) >= 9) 6490 skylake_pfit_enable(pipe_config); 6491 else 6492 ironlake_pfit_enable(pipe_config); 6493 6494 /* 6495 * On ILK+ LUT must be loaded before the pipe is running but with 6496 * clocks enabled 6497 */ 6498 intel_color_load_luts(pipe_config); 6499 intel_color_commit(pipe_config); 6500 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 6501 if (INTEL_GEN(dev_priv) < 9) 6502 intel_disable_primary_plane(pipe_config); 6503 6504 if (INTEL_GEN(dev_priv) >= 11) 6505 icl_set_pipe_chicken(intel_crtc); 6506 6507 intel_ddi_set_pipe_settings(pipe_config); 6508 if (!transcoder_is_dsi(cpu_transcoder)) 6509 intel_ddi_enable_transcoder_func(pipe_config); 6510 6511 if (dev_priv->display.initial_watermarks != NULL) 6512 dev_priv->display.initial_watermarks(state, pipe_config); 6513 6514 if (INTEL_GEN(dev_priv) >= 11) 6515 icl_pipe_mbus_enable(intel_crtc); 6516 6517 /* XXX: Do the pipe assertions at the right place for BXT DSI. */ 6518 if (!transcoder_is_dsi(cpu_transcoder)) 6519 intel_enable_pipe(pipe_config); 6520 6521 if (pipe_config->has_pch_encoder) 6522 lpt_pch_enable(state, pipe_config); 6523 6524 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) 6525 intel_ddi_set_vc_payload_alloc(pipe_config, true); 6526 6527 assert_vblank_disabled(crtc); 6528 intel_crtc_vblank_on(pipe_config); 6529 6530 intel_encoders_enable(intel_crtc, pipe_config, state); 6531 6532 if (psl_clkgate_wa) { 6533 intel_wait_for_vblank(dev_priv, pipe); 6534 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 6535 } 6536 6537 /* If we change the relative order between pipe/planes enabling, we need 6538 * to change the workaround. */ 6539 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe; 6540 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 6541 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 6542 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 6543 } 6544 } 6545 6546 static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state) 6547 { 6548 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 6549 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6550 enum pipe pipe = crtc->pipe; 6551 6552 /* To avoid upsetting the power well on haswell only disable the pfit if 6553 * it's in use. The hw state code will make sure we get this right. */ 6554 if (old_crtc_state->pch_pfit.enabled) { 6555 I915_WRITE(PF_CTL(pipe), 0); 6556 I915_WRITE(PF_WIN_POS(pipe), 0); 6557 I915_WRITE(PF_WIN_SZ(pipe), 0); 6558 } 6559 } 6560 6561 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state, 6562 struct intel_atomic_state *state) 6563 { 6564 struct drm_crtc *crtc = old_crtc_state->base.crtc; 6565 struct drm_device *dev = crtc->dev; 6566 struct drm_i915_private *dev_priv = to_i915(dev); 6567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6568 int pipe = intel_crtc->pipe; 6569 6570 /* 6571 * Sometimes spurious CPU pipe underruns happen when the 6572 * pipe is already disabled, but FDI RX/TX is still enabled. 6573 * Happens at least with VGA+HDMI cloning. Suppress them. 6574 */ 6575 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6576 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 6577 6578 intel_encoders_disable(intel_crtc, old_crtc_state, state); 6579 6580 drm_crtc_vblank_off(crtc); 6581 assert_vblank_disabled(crtc); 6582 6583 intel_disable_pipe(old_crtc_state); 6584 6585 ironlake_pfit_disable(old_crtc_state); 6586 6587 if (old_crtc_state->has_pch_encoder) 6588 ironlake_fdi_disable(crtc); 6589 6590 intel_encoders_post_disable(intel_crtc, old_crtc_state, state); 6591 6592 if (old_crtc_state->has_pch_encoder) { 6593 ironlake_disable_pch_transcoder(dev_priv, pipe); 6594 6595 if (HAS_PCH_CPT(dev_priv)) { 6596 i915_reg_t reg; 6597 u32 temp; 6598 6599 /* disable TRANS_DP_CTL */ 6600 reg = TRANS_DP_CTL(pipe); 6601 temp = I915_READ(reg); 6602 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 6603 TRANS_DP_PORT_SEL_MASK); 6604 temp |= TRANS_DP_PORT_SEL_NONE; 6605 I915_WRITE(reg, temp); 6606 6607 /* disable DPLL_SEL */ 6608 temp = I915_READ(PCH_DPLL_SEL); 6609 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 6610 I915_WRITE(PCH_DPLL_SEL, temp); 6611 } 6612 6613 ironlake_fdi_pll_disable(intel_crtc); 6614 } 6615 6616 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6617 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 6618 } 6619 6620 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state, 6621 struct intel_atomic_state *state) 6622 { 6623 struct drm_crtc *crtc = old_crtc_state->base.crtc; 6624 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 6625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6626 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 6627 6628 intel_encoders_disable(intel_crtc, old_crtc_state, state); 6629 6630 drm_crtc_vblank_off(crtc); 6631 assert_vblank_disabled(crtc); 6632 6633 /* XXX: Do the pipe assertions at the right place for BXT DSI. */ 6634 if (!transcoder_is_dsi(cpu_transcoder)) 6635 intel_disable_pipe(old_crtc_state); 6636 6637 if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST)) 6638 intel_ddi_set_vc_payload_alloc(old_crtc_state, false); 6639 6640 if (!transcoder_is_dsi(cpu_transcoder)) 6641 intel_ddi_disable_transcoder_func(old_crtc_state); 6642 6643 intel_dsc_disable(old_crtc_state); 6644 6645 if (INTEL_GEN(dev_priv) >= 9) 6646 skylake_scaler_disable(intel_crtc); 6647 else 6648 ironlake_pfit_disable(old_crtc_state); 6649 6650 intel_encoders_post_disable(intel_crtc, old_crtc_state, state); 6651 6652 intel_encoders_post_pll_disable(intel_crtc, old_crtc_state, state); 6653 } 6654 6655 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 6656 { 6657 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 6658 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6659 6660 if (!crtc_state->gmch_pfit.control) 6661 return; 6662 6663 /* 6664 * The panel fitter should only be adjusted whilst the pipe is disabled, 6665 * according to register description and PRM. 6666 */ 6667 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE); 6668 assert_pipe_disabled(dev_priv, crtc->pipe); 6669 6670 I915_WRITE(PFIT_PGM_RATIOS, crtc_state->gmch_pfit.pgm_ratios); 6671 I915_WRITE(PFIT_CONTROL, crtc_state->gmch_pfit.control); 6672 6673 /* Border color in case we don't scale up to the full screen. Black by 6674 * default, change to something else for debugging. */ 6675 I915_WRITE(BCLRPAT(crtc->pipe), 0); 6676 } 6677 6678 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 6679 { 6680 if (phy == PHY_NONE) 6681 return false; 6682 6683 if (IS_ELKHARTLAKE(dev_priv)) 6684 return phy <= PHY_C; 6685 6686 if (INTEL_GEN(dev_priv) >= 11) 6687 return phy <= PHY_B; 6688 6689 return false; 6690 } 6691 6692 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 6693 { 6694 if (INTEL_GEN(dev_priv) >= 12) 6695 return phy >= PHY_D && phy <= PHY_I; 6696 6697 if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv)) 6698 return phy >= PHY_C && phy <= PHY_F; 6699 6700 return false; 6701 } 6702 6703 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 6704 { 6705 if (IS_ELKHARTLAKE(i915) && port == PORT_D) 6706 return PHY_A; 6707 6708 return (enum phy)port; 6709 } 6710 6711 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 6712 { 6713 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 6714 return PORT_TC_NONE; 6715 6716 if (INTEL_GEN(dev_priv) >= 12) 6717 return port - PORT_D; 6718 6719 return port - PORT_C; 6720 } 6721 6722 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 6723 { 6724 switch (port) { 6725 case PORT_A: 6726 return POWER_DOMAIN_PORT_DDI_A_LANES; 6727 case PORT_B: 6728 return POWER_DOMAIN_PORT_DDI_B_LANES; 6729 case PORT_C: 6730 return POWER_DOMAIN_PORT_DDI_C_LANES; 6731 case PORT_D: 6732 return POWER_DOMAIN_PORT_DDI_D_LANES; 6733 case PORT_E: 6734 return POWER_DOMAIN_PORT_DDI_E_LANES; 6735 case PORT_F: 6736 return POWER_DOMAIN_PORT_DDI_F_LANES; 6737 default: 6738 MISSING_CASE(port); 6739 return POWER_DOMAIN_PORT_OTHER; 6740 } 6741 } 6742 6743 enum intel_display_power_domain 6744 intel_aux_power_domain(struct intel_digital_port *dig_port) 6745 { 6746 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 6747 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 6748 6749 if (intel_phy_is_tc(dev_priv, phy) && 6750 dig_port->tc_mode == TC_PORT_TBT_ALT) { 6751 switch (dig_port->aux_ch) { 6752 case AUX_CH_C: 6753 return POWER_DOMAIN_AUX_TBT1; 6754 case AUX_CH_D: 6755 return POWER_DOMAIN_AUX_TBT2; 6756 case AUX_CH_E: 6757 return POWER_DOMAIN_AUX_TBT3; 6758 case AUX_CH_F: 6759 return POWER_DOMAIN_AUX_TBT4; 6760 default: 6761 MISSING_CASE(dig_port->aux_ch); 6762 return POWER_DOMAIN_AUX_TBT1; 6763 } 6764 } 6765 6766 switch (dig_port->aux_ch) { 6767 case AUX_CH_A: 6768 return POWER_DOMAIN_AUX_A; 6769 case AUX_CH_B: 6770 return POWER_DOMAIN_AUX_B; 6771 case AUX_CH_C: 6772 return POWER_DOMAIN_AUX_C; 6773 case AUX_CH_D: 6774 return POWER_DOMAIN_AUX_D; 6775 case AUX_CH_E: 6776 return POWER_DOMAIN_AUX_E; 6777 case AUX_CH_F: 6778 return POWER_DOMAIN_AUX_F; 6779 default: 6780 MISSING_CASE(dig_port->aux_ch); 6781 return POWER_DOMAIN_AUX_A; 6782 } 6783 } 6784 6785 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 6786 { 6787 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 6788 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6789 struct drm_encoder *encoder; 6790 enum pipe pipe = crtc->pipe; 6791 u64 mask; 6792 enum transcoder transcoder = crtc_state->cpu_transcoder; 6793 6794 if (!crtc_state->base.active) 6795 return 0; 6796 6797 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 6798 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 6799 if (crtc_state->pch_pfit.enabled || 6800 crtc_state->pch_pfit.force_thru) 6801 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 6802 6803 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 6804 crtc_state->base.encoder_mask) { 6805 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 6806 6807 mask |= BIT_ULL(intel_encoder->power_domain); 6808 } 6809 6810 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 6811 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 6812 6813 if (crtc_state->shared_dpll) 6814 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 6815 6816 return mask; 6817 } 6818 6819 static u64 6820 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 6821 { 6822 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 6823 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6824 enum intel_display_power_domain domain; 6825 u64 domains, new_domains, old_domains; 6826 6827 old_domains = crtc->enabled_power_domains; 6828 crtc->enabled_power_domains = new_domains = 6829 get_crtc_power_domains(crtc_state); 6830 6831 domains = new_domains & ~old_domains; 6832 6833 for_each_power_domain(domain, domains) 6834 intel_display_power_get(dev_priv, domain); 6835 6836 return old_domains & ~new_domains; 6837 } 6838 6839 static void modeset_put_power_domains(struct drm_i915_private *dev_priv, 6840 u64 domains) 6841 { 6842 enum intel_display_power_domain domain; 6843 6844 for_each_power_domain(domain, domains) 6845 intel_display_power_put_unchecked(dev_priv, domain); 6846 } 6847 6848 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config, 6849 struct intel_atomic_state *state) 6850 { 6851 struct drm_crtc *crtc = pipe_config->base.crtc; 6852 struct drm_device *dev = crtc->dev; 6853 struct drm_i915_private *dev_priv = to_i915(dev); 6854 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6855 int pipe = intel_crtc->pipe; 6856 6857 if (WARN_ON(intel_crtc->active)) 6858 return; 6859 6860 if (intel_crtc_has_dp_encoder(pipe_config)) 6861 intel_dp_set_m_n(pipe_config, M1_N1); 6862 6863 intel_set_pipe_timings(pipe_config); 6864 intel_set_pipe_src_size(pipe_config); 6865 6866 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 6867 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY); 6868 I915_WRITE(CHV_CANVAS(pipe), 0); 6869 } 6870 6871 i9xx_set_pipeconf(pipe_config); 6872 6873 intel_crtc->active = true; 6874 6875 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6876 6877 intel_encoders_pre_pll_enable(intel_crtc, pipe_config, state); 6878 6879 if (IS_CHERRYVIEW(dev_priv)) { 6880 chv_prepare_pll(intel_crtc, pipe_config); 6881 chv_enable_pll(intel_crtc, pipe_config); 6882 } else { 6883 vlv_prepare_pll(intel_crtc, pipe_config); 6884 vlv_enable_pll(intel_crtc, pipe_config); 6885 } 6886 6887 intel_encoders_pre_enable(intel_crtc, pipe_config, state); 6888 6889 i9xx_pfit_enable(pipe_config); 6890 6891 intel_color_load_luts(pipe_config); 6892 intel_color_commit(pipe_config); 6893 /* update DSPCNTR to configure gamma for pipe bottom color */ 6894 intel_disable_primary_plane(pipe_config); 6895 6896 dev_priv->display.initial_watermarks(state, pipe_config); 6897 intel_enable_pipe(pipe_config); 6898 6899 assert_vblank_disabled(crtc); 6900 intel_crtc_vblank_on(pipe_config); 6901 6902 intel_encoders_enable(intel_crtc, pipe_config, state); 6903 } 6904 6905 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 6906 { 6907 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 6908 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6909 6910 I915_WRITE(FP0(crtc->pipe), crtc_state->dpll_hw_state.fp0); 6911 I915_WRITE(FP1(crtc->pipe), crtc_state->dpll_hw_state.fp1); 6912 } 6913 6914 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config, 6915 struct intel_atomic_state *state) 6916 { 6917 struct drm_crtc *crtc = pipe_config->base.crtc; 6918 struct drm_device *dev = crtc->dev; 6919 struct drm_i915_private *dev_priv = to_i915(dev); 6920 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6921 enum pipe pipe = intel_crtc->pipe; 6922 6923 if (WARN_ON(intel_crtc->active)) 6924 return; 6925 6926 i9xx_set_pll_dividers(pipe_config); 6927 6928 if (intel_crtc_has_dp_encoder(pipe_config)) 6929 intel_dp_set_m_n(pipe_config, M1_N1); 6930 6931 intel_set_pipe_timings(pipe_config); 6932 intel_set_pipe_src_size(pipe_config); 6933 6934 i9xx_set_pipeconf(pipe_config); 6935 6936 intel_crtc->active = true; 6937 6938 if (!IS_GEN(dev_priv, 2)) 6939 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6940 6941 intel_encoders_pre_enable(intel_crtc, pipe_config, state); 6942 6943 i9xx_enable_pll(intel_crtc, pipe_config); 6944 6945 i9xx_pfit_enable(pipe_config); 6946 6947 intel_color_load_luts(pipe_config); 6948 intel_color_commit(pipe_config); 6949 /* update DSPCNTR to configure gamma for pipe bottom color */ 6950 intel_disable_primary_plane(pipe_config); 6951 6952 if (dev_priv->display.initial_watermarks != NULL) 6953 dev_priv->display.initial_watermarks(state, 6954 pipe_config); 6955 else 6956 intel_update_watermarks(intel_crtc); 6957 intel_enable_pipe(pipe_config); 6958 6959 assert_vblank_disabled(crtc); 6960 intel_crtc_vblank_on(pipe_config); 6961 6962 intel_encoders_enable(intel_crtc, pipe_config, state); 6963 } 6964 6965 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 6966 { 6967 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 6968 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6969 6970 if (!old_crtc_state->gmch_pfit.control) 6971 return; 6972 6973 assert_pipe_disabled(dev_priv, crtc->pipe); 6974 6975 DRM_DEBUG_KMS("disabling pfit, current: 0x%08x\n", 6976 I915_READ(PFIT_CONTROL)); 6977 I915_WRITE(PFIT_CONTROL, 0); 6978 } 6979 6980 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state, 6981 struct intel_atomic_state *state) 6982 { 6983 struct drm_crtc *crtc = old_crtc_state->base.crtc; 6984 struct drm_device *dev = crtc->dev; 6985 struct drm_i915_private *dev_priv = to_i915(dev); 6986 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6987 int pipe = intel_crtc->pipe; 6988 6989 /* 6990 * On gen2 planes are double buffered but the pipe isn't, so we must 6991 * wait for planes to fully turn off before disabling the pipe. 6992 */ 6993 if (IS_GEN(dev_priv, 2)) 6994 intel_wait_for_vblank(dev_priv, pipe); 6995 6996 intel_encoders_disable(intel_crtc, old_crtc_state, state); 6997 6998 drm_crtc_vblank_off(crtc); 6999 assert_vblank_disabled(crtc); 7000 7001 intel_disable_pipe(old_crtc_state); 7002 7003 i9xx_pfit_disable(old_crtc_state); 7004 7005 intel_encoders_post_disable(intel_crtc, old_crtc_state, state); 7006 7007 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 7008 if (IS_CHERRYVIEW(dev_priv)) 7009 chv_disable_pll(dev_priv, pipe); 7010 else if (IS_VALLEYVIEW(dev_priv)) 7011 vlv_disable_pll(dev_priv, pipe); 7012 else 7013 i9xx_disable_pll(old_crtc_state); 7014 } 7015 7016 intel_encoders_post_pll_disable(intel_crtc, old_crtc_state, state); 7017 7018 if (!IS_GEN(dev_priv, 2)) 7019 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7020 7021 if (!dev_priv->display.initial_watermarks) 7022 intel_update_watermarks(intel_crtc); 7023 7024 /* clock the pipe down to 640x480@60 to potentially save power */ 7025 if (IS_I830(dev_priv)) 7026 i830_enable_pipe(dev_priv, pipe); 7027 } 7028 7029 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc, 7030 struct drm_modeset_acquire_ctx *ctx) 7031 { 7032 struct intel_encoder *encoder; 7033 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 7034 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 7035 struct intel_bw_state *bw_state = 7036 to_intel_bw_state(dev_priv->bw_obj.state); 7037 enum intel_display_power_domain domain; 7038 struct intel_plane *plane; 7039 u64 domains; 7040 struct drm_atomic_state *state; 7041 struct intel_crtc_state *crtc_state; 7042 int ret; 7043 7044 if (!intel_crtc->active) 7045 return; 7046 7047 for_each_intel_plane_on_crtc(&dev_priv->drm, intel_crtc, plane) { 7048 const struct intel_plane_state *plane_state = 7049 to_intel_plane_state(plane->base.state); 7050 7051 if (plane_state->base.visible) 7052 intel_plane_disable_noatomic(intel_crtc, plane); 7053 } 7054 7055 state = drm_atomic_state_alloc(crtc->dev); 7056 if (!state) { 7057 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory", 7058 crtc->base.id, crtc->name); 7059 return; 7060 } 7061 7062 state->acquire_ctx = ctx; 7063 7064 /* Everything's already locked, -EDEADLK can't happen. */ 7065 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 7066 ret = drm_atomic_add_affected_connectors(state, crtc); 7067 7068 WARN_ON(IS_ERR(crtc_state) || ret); 7069 7070 dev_priv->display.crtc_disable(crtc_state, to_intel_atomic_state(state)); 7071 7072 drm_atomic_state_put(state); 7073 7074 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 7075 crtc->base.id, crtc->name); 7076 7077 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0); 7078 crtc->state->active = false; 7079 intel_crtc->active = false; 7080 crtc->enabled = false; 7081 crtc->state->connector_mask = 0; 7082 crtc->state->encoder_mask = 0; 7083 7084 for_each_encoder_on_crtc(crtc->dev, crtc, encoder) 7085 encoder->base.crtc = NULL; 7086 7087 intel_fbc_disable(intel_crtc); 7088 intel_update_watermarks(intel_crtc); 7089 intel_disable_shared_dpll(to_intel_crtc_state(crtc->state)); 7090 7091 domains = intel_crtc->enabled_power_domains; 7092 for_each_power_domain(domain, domains) 7093 intel_display_power_put_unchecked(dev_priv, domain); 7094 intel_crtc->enabled_power_domains = 0; 7095 7096 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe); 7097 dev_priv->min_cdclk[intel_crtc->pipe] = 0; 7098 dev_priv->min_voltage_level[intel_crtc->pipe] = 0; 7099 7100 bw_state->data_rate[intel_crtc->pipe] = 0; 7101 bw_state->num_active_planes[intel_crtc->pipe] = 0; 7102 } 7103 7104 /* 7105 * turn all crtc's off, but do not adjust state 7106 * This has to be paired with a call to intel_modeset_setup_hw_state. 7107 */ 7108 int intel_display_suspend(struct drm_device *dev) 7109 { 7110 struct drm_i915_private *dev_priv = to_i915(dev); 7111 struct drm_atomic_state *state; 7112 int ret; 7113 7114 state = drm_atomic_helper_suspend(dev); 7115 ret = PTR_ERR_OR_ZERO(state); 7116 if (ret) 7117 DRM_ERROR("Suspending crtc's failed with %i\n", ret); 7118 else 7119 dev_priv->modeset_restore_state = state; 7120 return ret; 7121 } 7122 7123 void intel_encoder_destroy(struct drm_encoder *encoder) 7124 { 7125 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7126 7127 drm_encoder_cleanup(encoder); 7128 kfree(intel_encoder); 7129 } 7130 7131 /* Cross check the actual hw state with our own modeset state tracking (and it's 7132 * internal consistency). */ 7133 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 7134 struct drm_connector_state *conn_state) 7135 { 7136 struct intel_connector *connector = to_intel_connector(conn_state->connector); 7137 7138 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 7139 connector->base.base.id, 7140 connector->base.name); 7141 7142 if (connector->get_hw_state(connector)) { 7143 struct intel_encoder *encoder = connector->encoder; 7144 7145 I915_STATE_WARN(!crtc_state, 7146 "connector enabled without attached crtc\n"); 7147 7148 if (!crtc_state) 7149 return; 7150 7151 I915_STATE_WARN(!crtc_state->base.active, 7152 "connector is active, but attached crtc isn't\n"); 7153 7154 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 7155 return; 7156 7157 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 7158 "atomic encoder doesn't match attached encoder\n"); 7159 7160 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 7161 "attached encoder crtc differs from connector crtc\n"); 7162 } else { 7163 I915_STATE_WARN(crtc_state && crtc_state->base.active, 7164 "attached crtc is active, but connector isn't\n"); 7165 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 7166 "best encoder set without crtc!\n"); 7167 } 7168 } 7169 7170 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state) 7171 { 7172 if (crtc_state->base.enable && crtc_state->has_pch_encoder) 7173 return crtc_state->fdi_lanes; 7174 7175 return 0; 7176 } 7177 7178 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, 7179 struct intel_crtc_state *pipe_config) 7180 { 7181 struct drm_i915_private *dev_priv = to_i915(dev); 7182 struct drm_atomic_state *state = pipe_config->base.state; 7183 struct intel_crtc *other_crtc; 7184 struct intel_crtc_state *other_crtc_state; 7185 7186 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n", 7187 pipe_name(pipe), pipe_config->fdi_lanes); 7188 if (pipe_config->fdi_lanes > 4) { 7189 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n", 7190 pipe_name(pipe), pipe_config->fdi_lanes); 7191 return -EINVAL; 7192 } 7193 7194 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 7195 if (pipe_config->fdi_lanes > 2) { 7196 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n", 7197 pipe_config->fdi_lanes); 7198 return -EINVAL; 7199 } else { 7200 return 0; 7201 } 7202 } 7203 7204 if (INTEL_INFO(dev_priv)->num_pipes == 2) 7205 return 0; 7206 7207 /* Ivybridge 3 pipe is really complicated */ 7208 switch (pipe) { 7209 case PIPE_A: 7210 return 0; 7211 case PIPE_B: 7212 if (pipe_config->fdi_lanes <= 2) 7213 return 0; 7214 7215 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C); 7216 other_crtc_state = 7217 intel_atomic_get_crtc_state(state, other_crtc); 7218 if (IS_ERR(other_crtc_state)) 7219 return PTR_ERR(other_crtc_state); 7220 7221 if (pipe_required_fdi_lanes(other_crtc_state) > 0) { 7222 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n", 7223 pipe_name(pipe), pipe_config->fdi_lanes); 7224 return -EINVAL; 7225 } 7226 return 0; 7227 case PIPE_C: 7228 if (pipe_config->fdi_lanes > 2) { 7229 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n", 7230 pipe_name(pipe), pipe_config->fdi_lanes); 7231 return -EINVAL; 7232 } 7233 7234 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B); 7235 other_crtc_state = 7236 intel_atomic_get_crtc_state(state, other_crtc); 7237 if (IS_ERR(other_crtc_state)) 7238 return PTR_ERR(other_crtc_state); 7239 7240 if (pipe_required_fdi_lanes(other_crtc_state) > 2) { 7241 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n"); 7242 return -EINVAL; 7243 } 7244 return 0; 7245 default: 7246 BUG(); 7247 } 7248 } 7249 7250 #define RETRY 1 7251 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc, 7252 struct intel_crtc_state *pipe_config) 7253 { 7254 struct drm_device *dev = intel_crtc->base.dev; 7255 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 7256 int lane, link_bw, fdi_dotclock, ret; 7257 bool needs_recompute = false; 7258 7259 retry: 7260 /* FDI is a binary signal running at ~2.7GHz, encoding 7261 * each output octet as 10 bits. The actual frequency 7262 * is stored as a divider into a 100MHz clock, and the 7263 * mode pixel clock is stored in units of 1KHz. 7264 * Hence the bw of each lane in terms of the mode signal 7265 * is: 7266 */ 7267 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config); 7268 7269 fdi_dotclock = adjusted_mode->crtc_clock; 7270 7271 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw, 7272 pipe_config->pipe_bpp); 7273 7274 pipe_config->fdi_lanes = lane; 7275 7276 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, 7277 link_bw, &pipe_config->fdi_m_n, false, false); 7278 7279 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config); 7280 if (ret == -EDEADLK) 7281 return ret; 7282 7283 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) { 7284 pipe_config->pipe_bpp -= 2*3; 7285 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n", 7286 pipe_config->pipe_bpp); 7287 needs_recompute = true; 7288 pipe_config->bw_constrained = true; 7289 7290 goto retry; 7291 } 7292 7293 if (needs_recompute) 7294 return RETRY; 7295 7296 return ret; 7297 } 7298 7299 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 7300 { 7301 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 7302 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7303 7304 /* IPS only exists on ULT machines and is tied to pipe A. */ 7305 if (!hsw_crtc_supports_ips(crtc)) 7306 return false; 7307 7308 if (!i915_modparams.enable_ips) 7309 return false; 7310 7311 if (crtc_state->pipe_bpp > 24) 7312 return false; 7313 7314 /* 7315 * We compare against max which means we must take 7316 * the increased cdclk requirement into account when 7317 * calculating the new cdclk. 7318 * 7319 * Should measure whether using a lower cdclk w/o IPS 7320 */ 7321 if (IS_BROADWELL(dev_priv) && 7322 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 7323 return false; 7324 7325 return true; 7326 } 7327 7328 static bool hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 7329 { 7330 struct drm_i915_private *dev_priv = 7331 to_i915(crtc_state->base.crtc->dev); 7332 struct intel_atomic_state *intel_state = 7333 to_intel_atomic_state(crtc_state->base.state); 7334 7335 if (!hsw_crtc_state_ips_capable(crtc_state)) 7336 return false; 7337 7338 /* 7339 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 7340 * enabled and disabled dynamically based on package C states, 7341 * user space can't make reliable use of the CRCs, so let's just 7342 * completely disable it. 7343 */ 7344 if (crtc_state->crc_enabled) 7345 return false; 7346 7347 /* IPS should be fine as long as at least one plane is enabled. */ 7348 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 7349 return false; 7350 7351 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 7352 if (IS_BROADWELL(dev_priv) && 7353 crtc_state->pixel_rate > intel_state->cdclk.logical.cdclk * 95 / 100) 7354 return false; 7355 7356 return true; 7357 } 7358 7359 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 7360 { 7361 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7362 7363 /* GDG double wide on either pipe, otherwise pipe A only */ 7364 return INTEL_GEN(dev_priv) < 4 && 7365 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 7366 } 7367 7368 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config) 7369 { 7370 u32 pixel_rate; 7371 7372 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock; 7373 7374 /* 7375 * We only use IF-ID interlacing. If we ever use 7376 * PF-ID we'll need to adjust the pixel_rate here. 7377 */ 7378 7379 if (pipe_config->pch_pfit.enabled) { 7380 u64 pipe_w, pipe_h, pfit_w, pfit_h; 7381 u32 pfit_size = pipe_config->pch_pfit.size; 7382 7383 pipe_w = pipe_config->pipe_src_w; 7384 pipe_h = pipe_config->pipe_src_h; 7385 7386 pfit_w = (pfit_size >> 16) & 0xFFFF; 7387 pfit_h = pfit_size & 0xFFFF; 7388 if (pipe_w < pfit_w) 7389 pipe_w = pfit_w; 7390 if (pipe_h < pfit_h) 7391 pipe_h = pfit_h; 7392 7393 if (WARN_ON(!pfit_w || !pfit_h)) 7394 return pixel_rate; 7395 7396 pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h), 7397 pfit_w * pfit_h); 7398 } 7399 7400 return pixel_rate; 7401 } 7402 7403 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 7404 { 7405 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 7406 7407 if (HAS_GMCH(dev_priv)) 7408 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 7409 crtc_state->pixel_rate = 7410 crtc_state->base.adjusted_mode.crtc_clock; 7411 else 7412 crtc_state->pixel_rate = 7413 ilk_pipe_pixel_rate(crtc_state); 7414 } 7415 7416 static int intel_crtc_compute_config(struct intel_crtc *crtc, 7417 struct intel_crtc_state *pipe_config) 7418 { 7419 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7420 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 7421 int clock_limit = dev_priv->max_dotclk_freq; 7422 7423 if (INTEL_GEN(dev_priv) < 4) { 7424 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 7425 7426 /* 7427 * Enable double wide mode when the dot clock 7428 * is > 90% of the (display) core speed. 7429 */ 7430 if (intel_crtc_supports_double_wide(crtc) && 7431 adjusted_mode->crtc_clock > clock_limit) { 7432 clock_limit = dev_priv->max_dotclk_freq; 7433 pipe_config->double_wide = true; 7434 } 7435 } 7436 7437 if (adjusted_mode->crtc_clock > clock_limit) { 7438 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 7439 adjusted_mode->crtc_clock, clock_limit, 7440 yesno(pipe_config->double_wide)); 7441 return -EINVAL; 7442 } 7443 7444 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 7445 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) && 7446 pipe_config->base.ctm) { 7447 /* 7448 * There is only one pipe CSC unit per pipe, and we need that 7449 * for output conversion from RGB->YCBCR. So if CTM is already 7450 * applied we can't support YCBCR420 output. 7451 */ 7452 DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n"); 7453 return -EINVAL; 7454 } 7455 7456 /* 7457 * Pipe horizontal size must be even in: 7458 * - DVO ganged mode 7459 * - LVDS dual channel mode 7460 * - Double wide pipe 7461 */ 7462 if (pipe_config->pipe_src_w & 1) { 7463 if (pipe_config->double_wide) { 7464 DRM_DEBUG_KMS("Odd pipe source width not supported with double wide pipe\n"); 7465 return -EINVAL; 7466 } 7467 7468 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 7469 intel_is_dual_link_lvds(dev_priv)) { 7470 DRM_DEBUG_KMS("Odd pipe source width not supported with dual link LVDS\n"); 7471 return -EINVAL; 7472 } 7473 } 7474 7475 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 7476 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 7477 */ 7478 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) && 7479 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay) 7480 return -EINVAL; 7481 7482 intel_crtc_compute_pixel_rate(pipe_config); 7483 7484 if (pipe_config->has_pch_encoder) 7485 return ironlake_fdi_compute_config(crtc, pipe_config); 7486 7487 return 0; 7488 } 7489 7490 static void 7491 intel_reduce_m_n_ratio(u32 *num, u32 *den) 7492 { 7493 while (*num > DATA_LINK_M_N_MASK || 7494 *den > DATA_LINK_M_N_MASK) { 7495 *num >>= 1; 7496 *den >>= 1; 7497 } 7498 } 7499 7500 static void compute_m_n(unsigned int m, unsigned int n, 7501 u32 *ret_m, u32 *ret_n, 7502 bool constant_n) 7503 { 7504 /* 7505 * Several DP dongles in particular seem to be fussy about 7506 * too large link M/N values. Give N value as 0x8000 that 7507 * should be acceptable by specific devices. 0x8000 is the 7508 * specified fixed N value for asynchronous clock mode, 7509 * which the devices expect also in synchronous clock mode. 7510 */ 7511 if (constant_n) 7512 *ret_n = 0x8000; 7513 else 7514 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 7515 7516 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 7517 intel_reduce_m_n_ratio(ret_m, ret_n); 7518 } 7519 7520 void 7521 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 7522 int pixel_clock, int link_clock, 7523 struct intel_link_m_n *m_n, 7524 bool constant_n, bool fec_enable) 7525 { 7526 u32 data_clock = bits_per_pixel * pixel_clock; 7527 7528 if (fec_enable) 7529 data_clock = intel_dp_mode_to_fec_clock(data_clock); 7530 7531 m_n->tu = 64; 7532 compute_m_n(data_clock, 7533 link_clock * nlanes * 8, 7534 &m_n->gmch_m, &m_n->gmch_n, 7535 constant_n); 7536 7537 compute_m_n(pixel_clock, link_clock, 7538 &m_n->link_m, &m_n->link_n, 7539 constant_n); 7540 } 7541 7542 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) 7543 { 7544 if (i915_modparams.panel_use_ssc >= 0) 7545 return i915_modparams.panel_use_ssc != 0; 7546 return dev_priv->vbt.lvds_use_ssc 7547 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); 7548 } 7549 7550 static u32 pnv_dpll_compute_fp(struct dpll *dpll) 7551 { 7552 return (1 << dpll->n) << 16 | dpll->m2; 7553 } 7554 7555 static u32 i9xx_dpll_compute_fp(struct dpll *dpll) 7556 { 7557 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 7558 } 7559 7560 static void i9xx_update_pll_dividers(struct intel_crtc *crtc, 7561 struct intel_crtc_state *crtc_state, 7562 struct dpll *reduced_clock) 7563 { 7564 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7565 u32 fp, fp2 = 0; 7566 7567 if (IS_PINEVIEW(dev_priv)) { 7568 fp = pnv_dpll_compute_fp(&crtc_state->dpll); 7569 if (reduced_clock) 7570 fp2 = pnv_dpll_compute_fp(reduced_clock); 7571 } else { 7572 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 7573 if (reduced_clock) 7574 fp2 = i9xx_dpll_compute_fp(reduced_clock); 7575 } 7576 7577 crtc_state->dpll_hw_state.fp0 = fp; 7578 7579 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 7580 reduced_clock) { 7581 crtc_state->dpll_hw_state.fp1 = fp2; 7582 } else { 7583 crtc_state->dpll_hw_state.fp1 = fp; 7584 } 7585 } 7586 7587 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe 7588 pipe) 7589 { 7590 u32 reg_val; 7591 7592 /* 7593 * PLLB opamp always calibrates to max value of 0x3f, force enable it 7594 * and set it to a reasonable value instead. 7595 */ 7596 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 7597 reg_val &= 0xffffff00; 7598 reg_val |= 0x00000030; 7599 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 7600 7601 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 7602 reg_val &= 0x00ffffff; 7603 reg_val |= 0x8c000000; 7604 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 7605 7606 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 7607 reg_val &= 0xffffff00; 7608 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 7609 7610 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 7611 reg_val &= 0x00ffffff; 7612 reg_val |= 0xb0000000; 7613 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 7614 } 7615 7616 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 7617 const struct intel_link_m_n *m_n) 7618 { 7619 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 7620 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7621 enum pipe pipe = crtc->pipe; 7622 7623 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); 7624 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 7625 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m); 7626 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n); 7627 } 7628 7629 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 7630 enum transcoder transcoder) 7631 { 7632 if (IS_HASWELL(dev_priv)) 7633 return transcoder == TRANSCODER_EDP; 7634 7635 /* 7636 * Strictly speaking some registers are available before 7637 * gen7, but we only support DRRS on gen7+ 7638 */ 7639 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv); 7640 } 7641 7642 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 7643 const struct intel_link_m_n *m_n, 7644 const struct intel_link_m_n *m2_n2) 7645 { 7646 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 7647 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7648 enum pipe pipe = crtc->pipe; 7649 enum transcoder transcoder = crtc_state->cpu_transcoder; 7650 7651 if (INTEL_GEN(dev_priv) >= 5) { 7652 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m); 7653 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n); 7654 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m); 7655 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n); 7656 /* 7657 * M2_N2 registers are set only if DRRS is supported 7658 * (to make sure the registers are not unnecessarily accessed). 7659 */ 7660 if (m2_n2 && crtc_state->has_drrs && 7661 transcoder_has_m2_n2(dev_priv, transcoder)) { 7662 I915_WRITE(PIPE_DATA_M2(transcoder), 7663 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 7664 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n); 7665 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m); 7666 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n); 7667 } 7668 } else { 7669 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); 7670 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 7671 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m); 7672 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n); 7673 } 7674 } 7675 7676 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 7677 { 7678 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 7679 7680 if (m_n == M1_N1) { 7681 dp_m_n = &crtc_state->dp_m_n; 7682 dp_m2_n2 = &crtc_state->dp_m2_n2; 7683 } else if (m_n == M2_N2) { 7684 7685 /* 7686 * M2_N2 registers are not supported. Hence m2_n2 divider value 7687 * needs to be programmed into M1_N1. 7688 */ 7689 dp_m_n = &crtc_state->dp_m2_n2; 7690 } else { 7691 DRM_ERROR("Unsupported divider value\n"); 7692 return; 7693 } 7694 7695 if (crtc_state->has_pch_encoder) 7696 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 7697 else 7698 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 7699 } 7700 7701 static void vlv_compute_dpll(struct intel_crtc *crtc, 7702 struct intel_crtc_state *pipe_config) 7703 { 7704 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | 7705 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 7706 if (crtc->pipe != PIPE_A) 7707 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 7708 7709 /* DPLL not used with DSI, but still need the rest set up */ 7710 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 7711 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | 7712 DPLL_EXT_BUFFER_ENABLE_VLV; 7713 7714 pipe_config->dpll_hw_state.dpll_md = 7715 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 7716 } 7717 7718 static void chv_compute_dpll(struct intel_crtc *crtc, 7719 struct intel_crtc_state *pipe_config) 7720 { 7721 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | 7722 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 7723 if (crtc->pipe != PIPE_A) 7724 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 7725 7726 /* DPLL not used with DSI, but still need the rest set up */ 7727 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 7728 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; 7729 7730 pipe_config->dpll_hw_state.dpll_md = 7731 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 7732 } 7733 7734 static void vlv_prepare_pll(struct intel_crtc *crtc, 7735 const struct intel_crtc_state *pipe_config) 7736 { 7737 struct drm_device *dev = crtc->base.dev; 7738 struct drm_i915_private *dev_priv = to_i915(dev); 7739 enum pipe pipe = crtc->pipe; 7740 u32 mdiv; 7741 u32 bestn, bestm1, bestm2, bestp1, bestp2; 7742 u32 coreclk, reg_val; 7743 7744 /* Enable Refclk */ 7745 I915_WRITE(DPLL(pipe), 7746 pipe_config->dpll_hw_state.dpll & 7747 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 7748 7749 /* No need to actually set up the DPLL with DSI */ 7750 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 7751 return; 7752 7753 vlv_dpio_get(dev_priv); 7754 7755 bestn = pipe_config->dpll.n; 7756 bestm1 = pipe_config->dpll.m1; 7757 bestm2 = pipe_config->dpll.m2; 7758 bestp1 = pipe_config->dpll.p1; 7759 bestp2 = pipe_config->dpll.p2; 7760 7761 /* See eDP HDMI DPIO driver vbios notes doc */ 7762 7763 /* PLL B needs special handling */ 7764 if (pipe == PIPE_B) 7765 vlv_pllb_recal_opamp(dev_priv, pipe); 7766 7767 /* Set up Tx target for periodic Rcomp update */ 7768 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); 7769 7770 /* Disable target IRef on PLL */ 7771 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); 7772 reg_val &= 0x00ffffff; 7773 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); 7774 7775 /* Disable fast lock */ 7776 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); 7777 7778 /* Set idtafcrecal before PLL is enabled */ 7779 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); 7780 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); 7781 mdiv |= ((bestn << DPIO_N_SHIFT)); 7782 mdiv |= (1 << DPIO_K_SHIFT); 7783 7784 /* 7785 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 7786 * but we don't support that). 7787 * Note: don't use the DAC post divider as it seems unstable. 7788 */ 7789 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); 7790 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 7791 7792 mdiv |= DPIO_ENABLE_CALIBRATION; 7793 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 7794 7795 /* Set HBR and RBR LPF coefficients */ 7796 if (pipe_config->port_clock == 162000 || 7797 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) || 7798 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) 7799 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 7800 0x009f0003); 7801 else 7802 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 7803 0x00d0000f); 7804 7805 if (intel_crtc_has_dp_encoder(pipe_config)) { 7806 /* Use SSC source */ 7807 if (pipe == PIPE_A) 7808 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7809 0x0df40000); 7810 else 7811 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7812 0x0df70000); 7813 } else { /* HDMI or VGA */ 7814 /* Use bend source */ 7815 if (pipe == PIPE_A) 7816 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7817 0x0df70000); 7818 else 7819 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7820 0x0df40000); 7821 } 7822 7823 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); 7824 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 7825 if (intel_crtc_has_dp_encoder(pipe_config)) 7826 coreclk |= 0x01000000; 7827 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); 7828 7829 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); 7830 7831 vlv_dpio_put(dev_priv); 7832 } 7833 7834 static void chv_prepare_pll(struct intel_crtc *crtc, 7835 const struct intel_crtc_state *pipe_config) 7836 { 7837 struct drm_device *dev = crtc->base.dev; 7838 struct drm_i915_private *dev_priv = to_i915(dev); 7839 enum pipe pipe = crtc->pipe; 7840 enum dpio_channel port = vlv_pipe_to_channel(pipe); 7841 u32 loopfilter, tribuf_calcntr; 7842 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; 7843 u32 dpio_val; 7844 int vco; 7845 7846 /* Enable Refclk and SSC */ 7847 I915_WRITE(DPLL(pipe), 7848 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); 7849 7850 /* No need to actually set up the DPLL with DSI */ 7851 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 7852 return; 7853 7854 bestn = pipe_config->dpll.n; 7855 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; 7856 bestm1 = pipe_config->dpll.m1; 7857 bestm2 = pipe_config->dpll.m2 >> 22; 7858 bestp1 = pipe_config->dpll.p1; 7859 bestp2 = pipe_config->dpll.p2; 7860 vco = pipe_config->dpll.vco; 7861 dpio_val = 0; 7862 loopfilter = 0; 7863 7864 vlv_dpio_get(dev_priv); 7865 7866 /* p1 and p2 divider */ 7867 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 7868 5 << DPIO_CHV_S1_DIV_SHIFT | 7869 bestp1 << DPIO_CHV_P1_DIV_SHIFT | 7870 bestp2 << DPIO_CHV_P2_DIV_SHIFT | 7871 1 << DPIO_CHV_K_DIV_SHIFT); 7872 7873 /* Feedback post-divider - m2 */ 7874 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); 7875 7876 /* Feedback refclk divider - n and m1 */ 7877 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), 7878 DPIO_CHV_M1_DIV_BY_2 | 7879 1 << DPIO_CHV_N_DIV_SHIFT); 7880 7881 /* M2 fraction division */ 7882 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); 7883 7884 /* M2 fraction division enable */ 7885 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 7886 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 7887 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); 7888 if (bestm2_frac) 7889 dpio_val |= DPIO_CHV_FRAC_DIV_EN; 7890 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); 7891 7892 /* Program digital lock detect threshold */ 7893 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); 7894 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 7895 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 7896 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); 7897 if (!bestm2_frac) 7898 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 7899 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); 7900 7901 /* Loop filter */ 7902 if (vco == 5400000) { 7903 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); 7904 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); 7905 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); 7906 tribuf_calcntr = 0x9; 7907 } else if (vco <= 6200000) { 7908 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); 7909 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); 7910 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 7911 tribuf_calcntr = 0x9; 7912 } else if (vco <= 6480000) { 7913 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 7914 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 7915 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 7916 tribuf_calcntr = 0x8; 7917 } else { 7918 /* Not supported. Apply the same limits as in the max case */ 7919 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 7920 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 7921 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 7922 tribuf_calcntr = 0; 7923 } 7924 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); 7925 7926 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); 7927 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 7928 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); 7929 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); 7930 7931 /* AFC Recal */ 7932 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), 7933 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | 7934 DPIO_AFC_RECAL); 7935 7936 vlv_dpio_put(dev_priv); 7937 } 7938 7939 /** 7940 * vlv_force_pll_on - forcibly enable just the PLL 7941 * @dev_priv: i915 private structure 7942 * @pipe: pipe PLL to enable 7943 * @dpll: PLL configuration 7944 * 7945 * Enable the PLL for @pipe using the supplied @dpll config. To be used 7946 * in cases where we need the PLL enabled even when @pipe is not going to 7947 * be enabled. 7948 */ 7949 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, 7950 const struct dpll *dpll) 7951 { 7952 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 7953 struct intel_crtc_state *pipe_config; 7954 7955 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL); 7956 if (!pipe_config) 7957 return -ENOMEM; 7958 7959 pipe_config->base.crtc = &crtc->base; 7960 pipe_config->pixel_multiplier = 1; 7961 pipe_config->dpll = *dpll; 7962 7963 if (IS_CHERRYVIEW(dev_priv)) { 7964 chv_compute_dpll(crtc, pipe_config); 7965 chv_prepare_pll(crtc, pipe_config); 7966 chv_enable_pll(crtc, pipe_config); 7967 } else { 7968 vlv_compute_dpll(crtc, pipe_config); 7969 vlv_prepare_pll(crtc, pipe_config); 7970 vlv_enable_pll(crtc, pipe_config); 7971 } 7972 7973 kfree(pipe_config); 7974 7975 return 0; 7976 } 7977 7978 /** 7979 * vlv_force_pll_off - forcibly disable just the PLL 7980 * @dev_priv: i915 private structure 7981 * @pipe: pipe PLL to disable 7982 * 7983 * Disable the PLL for @pipe. To be used in cases where we need 7984 * the PLL enabled even when @pipe is not going to be enabled. 7985 */ 7986 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) 7987 { 7988 if (IS_CHERRYVIEW(dev_priv)) 7989 chv_disable_pll(dev_priv, pipe); 7990 else 7991 vlv_disable_pll(dev_priv, pipe); 7992 } 7993 7994 static void i9xx_compute_dpll(struct intel_crtc *crtc, 7995 struct intel_crtc_state *crtc_state, 7996 struct dpll *reduced_clock) 7997 { 7998 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7999 u32 dpll; 8000 struct dpll *clock = &crtc_state->dpll; 8001 8002 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8003 8004 dpll = DPLL_VGA_MODE_DIS; 8005 8006 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 8007 dpll |= DPLLB_MODE_LVDS; 8008 else 8009 dpll |= DPLLB_MODE_DAC_SERIAL; 8010 8011 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 8012 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 8013 dpll |= (crtc_state->pixel_multiplier - 1) 8014 << SDVO_MULTIPLIER_SHIFT_HIRES; 8015 } 8016 8017 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 8018 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 8019 dpll |= DPLL_SDVO_HIGH_SPEED; 8020 8021 if (intel_crtc_has_dp_encoder(crtc_state)) 8022 dpll |= DPLL_SDVO_HIGH_SPEED; 8023 8024 /* compute bitmask from p1 value */ 8025 if (IS_PINEVIEW(dev_priv)) 8026 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 8027 else { 8028 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8029 if (IS_G4X(dev_priv) && reduced_clock) 8030 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 8031 } 8032 switch (clock->p2) { 8033 case 5: 8034 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 8035 break; 8036 case 7: 8037 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 8038 break; 8039 case 10: 8040 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 8041 break; 8042 case 14: 8043 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 8044 break; 8045 } 8046 if (INTEL_GEN(dev_priv) >= 4) 8047 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 8048 8049 if (crtc_state->sdvo_tv_clock) 8050 dpll |= PLL_REF_INPUT_TVCLKINBC; 8051 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8052 intel_panel_use_ssc(dev_priv)) 8053 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8054 else 8055 dpll |= PLL_REF_INPUT_DREFCLK; 8056 8057 dpll |= DPLL_VCO_ENABLE; 8058 crtc_state->dpll_hw_state.dpll = dpll; 8059 8060 if (INTEL_GEN(dev_priv) >= 4) { 8061 u32 dpll_md = (crtc_state->pixel_multiplier - 1) 8062 << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8063 crtc_state->dpll_hw_state.dpll_md = dpll_md; 8064 } 8065 } 8066 8067 static void i8xx_compute_dpll(struct intel_crtc *crtc, 8068 struct intel_crtc_state *crtc_state, 8069 struct dpll *reduced_clock) 8070 { 8071 struct drm_device *dev = crtc->base.dev; 8072 struct drm_i915_private *dev_priv = to_i915(dev); 8073 u32 dpll; 8074 struct dpll *clock = &crtc_state->dpll; 8075 8076 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8077 8078 dpll = DPLL_VGA_MODE_DIS; 8079 8080 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8081 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8082 } else { 8083 if (clock->p1 == 2) 8084 dpll |= PLL_P1_DIVIDE_BY_TWO; 8085 else 8086 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8087 if (clock->p2 == 4) 8088 dpll |= PLL_P2_DIVIDE_BY_4; 8089 } 8090 8091 /* 8092 * Bspec: 8093 * "[Almador Errata}: For the correct operation of the muxed DVO pins 8094 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 8095 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 8096 * Enable) must be set to “1” in both the DPLL A Control Register 8097 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 8098 * 8099 * For simplicity We simply keep both bits always enabled in 8100 * both DPLLS. The spec says we should disable the DVO 2X clock 8101 * when not needed, but this seems to work fine in practice. 8102 */ 8103 if (IS_I830(dev_priv) || 8104 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 8105 dpll |= DPLL_DVO_2X_MODE; 8106 8107 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8108 intel_panel_use_ssc(dev_priv)) 8109 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8110 else 8111 dpll |= PLL_REF_INPUT_DREFCLK; 8112 8113 dpll |= DPLL_VCO_ENABLE; 8114 crtc_state->dpll_hw_state.dpll = dpll; 8115 } 8116 8117 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state) 8118 { 8119 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 8120 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8121 enum pipe pipe = crtc->pipe; 8122 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8123 const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; 8124 u32 crtc_vtotal, crtc_vblank_end; 8125 int vsyncshift = 0; 8126 8127 /* We need to be careful not to changed the adjusted mode, for otherwise 8128 * the hw state checker will get angry at the mismatch. */ 8129 crtc_vtotal = adjusted_mode->crtc_vtotal; 8130 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 8131 8132 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 8133 /* the chip adds 2 halflines automatically */ 8134 crtc_vtotal -= 1; 8135 crtc_vblank_end -= 1; 8136 8137 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8138 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 8139 else 8140 vsyncshift = adjusted_mode->crtc_hsync_start - 8141 adjusted_mode->crtc_htotal / 2; 8142 if (vsyncshift < 0) 8143 vsyncshift += adjusted_mode->crtc_htotal; 8144 } 8145 8146 if (INTEL_GEN(dev_priv) > 3) 8147 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift); 8148 8149 I915_WRITE(HTOTAL(cpu_transcoder), 8150 (adjusted_mode->crtc_hdisplay - 1) | 8151 ((adjusted_mode->crtc_htotal - 1) << 16)); 8152 I915_WRITE(HBLANK(cpu_transcoder), 8153 (adjusted_mode->crtc_hblank_start - 1) | 8154 ((adjusted_mode->crtc_hblank_end - 1) << 16)); 8155 I915_WRITE(HSYNC(cpu_transcoder), 8156 (adjusted_mode->crtc_hsync_start - 1) | 8157 ((adjusted_mode->crtc_hsync_end - 1) << 16)); 8158 8159 I915_WRITE(VTOTAL(cpu_transcoder), 8160 (adjusted_mode->crtc_vdisplay - 1) | 8161 ((crtc_vtotal - 1) << 16)); 8162 I915_WRITE(VBLANK(cpu_transcoder), 8163 (adjusted_mode->crtc_vblank_start - 1) | 8164 ((crtc_vblank_end - 1) << 16)); 8165 I915_WRITE(VSYNC(cpu_transcoder), 8166 (adjusted_mode->crtc_vsync_start - 1) | 8167 ((adjusted_mode->crtc_vsync_end - 1) << 16)); 8168 8169 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 8170 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 8171 * documented on the DDI_FUNC_CTL register description, EDP Input Select 8172 * bits. */ 8173 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 8174 (pipe == PIPE_B || pipe == PIPE_C)) 8175 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder))); 8176 8177 } 8178 8179 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 8180 { 8181 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 8182 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8183 enum pipe pipe = crtc->pipe; 8184 8185 /* pipesrc controls the size that is scaled from, which should 8186 * always be the user's requested size. 8187 */ 8188 I915_WRITE(PIPESRC(pipe), 8189 ((crtc_state->pipe_src_w - 1) << 16) | 8190 (crtc_state->pipe_src_h - 1)); 8191 } 8192 8193 static void intel_get_pipe_timings(struct intel_crtc *crtc, 8194 struct intel_crtc_state *pipe_config) 8195 { 8196 struct drm_device *dev = crtc->base.dev; 8197 struct drm_i915_private *dev_priv = to_i915(dev); 8198 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 8199 u32 tmp; 8200 8201 tmp = I915_READ(HTOTAL(cpu_transcoder)); 8202 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 8203 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 8204 8205 if (!transcoder_is_dsi(cpu_transcoder)) { 8206 tmp = I915_READ(HBLANK(cpu_transcoder)); 8207 pipe_config->base.adjusted_mode.crtc_hblank_start = 8208 (tmp & 0xffff) + 1; 8209 pipe_config->base.adjusted_mode.crtc_hblank_end = 8210 ((tmp >> 16) & 0xffff) + 1; 8211 } 8212 tmp = I915_READ(HSYNC(cpu_transcoder)); 8213 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 8214 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 8215 8216 tmp = I915_READ(VTOTAL(cpu_transcoder)); 8217 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 8218 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 8219 8220 if (!transcoder_is_dsi(cpu_transcoder)) { 8221 tmp = I915_READ(VBLANK(cpu_transcoder)); 8222 pipe_config->base.adjusted_mode.crtc_vblank_start = 8223 (tmp & 0xffff) + 1; 8224 pipe_config->base.adjusted_mode.crtc_vblank_end = 8225 ((tmp >> 16) & 0xffff) + 1; 8226 } 8227 tmp = I915_READ(VSYNC(cpu_transcoder)); 8228 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 8229 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 8230 8231 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) { 8232 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 8233 pipe_config->base.adjusted_mode.crtc_vtotal += 1; 8234 pipe_config->base.adjusted_mode.crtc_vblank_end += 1; 8235 } 8236 } 8237 8238 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 8239 struct intel_crtc_state *pipe_config) 8240 { 8241 struct drm_device *dev = crtc->base.dev; 8242 struct drm_i915_private *dev_priv = to_i915(dev); 8243 u32 tmp; 8244 8245 tmp = I915_READ(PIPESRC(crtc->pipe)); 8246 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 8247 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 8248 8249 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h; 8250 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w; 8251 } 8252 8253 void intel_mode_from_pipe_config(struct drm_display_mode *mode, 8254 struct intel_crtc_state *pipe_config) 8255 { 8256 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay; 8257 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal; 8258 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start; 8259 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end; 8260 8261 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay; 8262 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal; 8263 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start; 8264 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end; 8265 8266 mode->flags = pipe_config->base.adjusted_mode.flags; 8267 mode->type = DRM_MODE_TYPE_DRIVER; 8268 8269 mode->clock = pipe_config->base.adjusted_mode.crtc_clock; 8270 8271 mode->hsync = drm_mode_hsync(mode); 8272 mode->vrefresh = drm_mode_vrefresh(mode); 8273 drm_mode_set_name(mode); 8274 } 8275 8276 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 8277 { 8278 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 8279 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8280 u32 pipeconf; 8281 8282 pipeconf = 0; 8283 8284 /* we keep both pipes enabled on 830 */ 8285 if (IS_I830(dev_priv)) 8286 pipeconf |= I915_READ(PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 8287 8288 if (crtc_state->double_wide) 8289 pipeconf |= PIPECONF_DOUBLE_WIDE; 8290 8291 /* only g4x and later have fancy bpc/dither controls */ 8292 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 8293 IS_CHERRYVIEW(dev_priv)) { 8294 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 8295 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 8296 pipeconf |= PIPECONF_DITHER_EN | 8297 PIPECONF_DITHER_TYPE_SP; 8298 8299 switch (crtc_state->pipe_bpp) { 8300 case 18: 8301 pipeconf |= PIPECONF_6BPC; 8302 break; 8303 case 24: 8304 pipeconf |= PIPECONF_8BPC; 8305 break; 8306 case 30: 8307 pipeconf |= PIPECONF_10BPC; 8308 break; 8309 default: 8310 /* Case prevented by intel_choose_pipe_bpp_dither. */ 8311 BUG(); 8312 } 8313 } 8314 8315 if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 8316 if (INTEL_GEN(dev_priv) < 4 || 8317 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8318 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 8319 else 8320 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 8321 } else { 8322 pipeconf |= PIPECONF_PROGRESSIVE; 8323 } 8324 8325 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 8326 crtc_state->limited_color_range) 8327 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 8328 8329 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 8330 8331 I915_WRITE(PIPECONF(crtc->pipe), pipeconf); 8332 POSTING_READ(PIPECONF(crtc->pipe)); 8333 } 8334 8335 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, 8336 struct intel_crtc_state *crtc_state) 8337 { 8338 struct drm_device *dev = crtc->base.dev; 8339 struct drm_i915_private *dev_priv = to_i915(dev); 8340 const struct intel_limit *limit; 8341 int refclk = 48000; 8342 8343 memset(&crtc_state->dpll_hw_state, 0, 8344 sizeof(crtc_state->dpll_hw_state)); 8345 8346 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8347 if (intel_panel_use_ssc(dev_priv)) { 8348 refclk = dev_priv->vbt.lvds_ssc_freq; 8349 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 8350 } 8351 8352 limit = &intel_limits_i8xx_lvds; 8353 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 8354 limit = &intel_limits_i8xx_dvo; 8355 } else { 8356 limit = &intel_limits_i8xx_dac; 8357 } 8358 8359 if (!crtc_state->clock_set && 8360 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8361 refclk, NULL, &crtc_state->dpll)) { 8362 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8363 return -EINVAL; 8364 } 8365 8366 i8xx_compute_dpll(crtc, crtc_state, NULL); 8367 8368 return 0; 8369 } 8370 8371 static int g4x_crtc_compute_clock(struct intel_crtc *crtc, 8372 struct intel_crtc_state *crtc_state) 8373 { 8374 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8375 const struct intel_limit *limit; 8376 int refclk = 96000; 8377 8378 memset(&crtc_state->dpll_hw_state, 0, 8379 sizeof(crtc_state->dpll_hw_state)); 8380 8381 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8382 if (intel_panel_use_ssc(dev_priv)) { 8383 refclk = dev_priv->vbt.lvds_ssc_freq; 8384 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 8385 } 8386 8387 if (intel_is_dual_link_lvds(dev_priv)) 8388 limit = &intel_limits_g4x_dual_channel_lvds; 8389 else 8390 limit = &intel_limits_g4x_single_channel_lvds; 8391 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 8392 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 8393 limit = &intel_limits_g4x_hdmi; 8394 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 8395 limit = &intel_limits_g4x_sdvo; 8396 } else { 8397 /* The option is for other outputs */ 8398 limit = &intel_limits_i9xx_sdvo; 8399 } 8400 8401 if (!crtc_state->clock_set && 8402 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8403 refclk, NULL, &crtc_state->dpll)) { 8404 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8405 return -EINVAL; 8406 } 8407 8408 i9xx_compute_dpll(crtc, crtc_state, NULL); 8409 8410 return 0; 8411 } 8412 8413 static int pnv_crtc_compute_clock(struct intel_crtc *crtc, 8414 struct intel_crtc_state *crtc_state) 8415 { 8416 struct drm_device *dev = crtc->base.dev; 8417 struct drm_i915_private *dev_priv = to_i915(dev); 8418 const struct intel_limit *limit; 8419 int refclk = 96000; 8420 8421 memset(&crtc_state->dpll_hw_state, 0, 8422 sizeof(crtc_state->dpll_hw_state)); 8423 8424 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8425 if (intel_panel_use_ssc(dev_priv)) { 8426 refclk = dev_priv->vbt.lvds_ssc_freq; 8427 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 8428 } 8429 8430 limit = &intel_limits_pineview_lvds; 8431 } else { 8432 limit = &intel_limits_pineview_sdvo; 8433 } 8434 8435 if (!crtc_state->clock_set && 8436 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8437 refclk, NULL, &crtc_state->dpll)) { 8438 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8439 return -EINVAL; 8440 } 8441 8442 i9xx_compute_dpll(crtc, crtc_state, NULL); 8443 8444 return 0; 8445 } 8446 8447 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, 8448 struct intel_crtc_state *crtc_state) 8449 { 8450 struct drm_device *dev = crtc->base.dev; 8451 struct drm_i915_private *dev_priv = to_i915(dev); 8452 const struct intel_limit *limit; 8453 int refclk = 96000; 8454 8455 memset(&crtc_state->dpll_hw_state, 0, 8456 sizeof(crtc_state->dpll_hw_state)); 8457 8458 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8459 if (intel_panel_use_ssc(dev_priv)) { 8460 refclk = dev_priv->vbt.lvds_ssc_freq; 8461 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 8462 } 8463 8464 limit = &intel_limits_i9xx_lvds; 8465 } else { 8466 limit = &intel_limits_i9xx_sdvo; 8467 } 8468 8469 if (!crtc_state->clock_set && 8470 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8471 refclk, NULL, &crtc_state->dpll)) { 8472 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8473 return -EINVAL; 8474 } 8475 8476 i9xx_compute_dpll(crtc, crtc_state, NULL); 8477 8478 return 0; 8479 } 8480 8481 static int chv_crtc_compute_clock(struct intel_crtc *crtc, 8482 struct intel_crtc_state *crtc_state) 8483 { 8484 int refclk = 100000; 8485 const struct intel_limit *limit = &intel_limits_chv; 8486 8487 memset(&crtc_state->dpll_hw_state, 0, 8488 sizeof(crtc_state->dpll_hw_state)); 8489 8490 if (!crtc_state->clock_set && 8491 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8492 refclk, NULL, &crtc_state->dpll)) { 8493 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8494 return -EINVAL; 8495 } 8496 8497 chv_compute_dpll(crtc, crtc_state); 8498 8499 return 0; 8500 } 8501 8502 static int vlv_crtc_compute_clock(struct intel_crtc *crtc, 8503 struct intel_crtc_state *crtc_state) 8504 { 8505 int refclk = 100000; 8506 const struct intel_limit *limit = &intel_limits_vlv; 8507 8508 memset(&crtc_state->dpll_hw_state, 0, 8509 sizeof(crtc_state->dpll_hw_state)); 8510 8511 if (!crtc_state->clock_set && 8512 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8513 refclk, NULL, &crtc_state->dpll)) { 8514 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8515 return -EINVAL; 8516 } 8517 8518 vlv_compute_dpll(crtc, crtc_state); 8519 8520 return 0; 8521 } 8522 8523 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 8524 { 8525 if (IS_I830(dev_priv)) 8526 return false; 8527 8528 return INTEL_GEN(dev_priv) >= 4 || 8529 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 8530 } 8531 8532 static void i9xx_get_pfit_config(struct intel_crtc *crtc, 8533 struct intel_crtc_state *pipe_config) 8534 { 8535 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8536 u32 tmp; 8537 8538 if (!i9xx_has_pfit(dev_priv)) 8539 return; 8540 8541 tmp = I915_READ(PFIT_CONTROL); 8542 if (!(tmp & PFIT_ENABLE)) 8543 return; 8544 8545 /* Check whether the pfit is attached to our pipe. */ 8546 if (INTEL_GEN(dev_priv) < 4) { 8547 if (crtc->pipe != PIPE_B) 8548 return; 8549 } else { 8550 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 8551 return; 8552 } 8553 8554 pipe_config->gmch_pfit.control = tmp; 8555 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS); 8556 } 8557 8558 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 8559 struct intel_crtc_state *pipe_config) 8560 { 8561 struct drm_device *dev = crtc->base.dev; 8562 struct drm_i915_private *dev_priv = to_i915(dev); 8563 int pipe = pipe_config->cpu_transcoder; 8564 struct dpll clock; 8565 u32 mdiv; 8566 int refclk = 100000; 8567 8568 /* In case of DSI, DPLL will not be used */ 8569 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8570 return; 8571 8572 vlv_dpio_get(dev_priv); 8573 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 8574 vlv_dpio_put(dev_priv); 8575 8576 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 8577 clock.m2 = mdiv & DPIO_M2DIV_MASK; 8578 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 8579 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 8580 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 8581 8582 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 8583 } 8584 8585 static void 8586 i9xx_get_initial_plane_config(struct intel_crtc *crtc, 8587 struct intel_initial_plane_config *plane_config) 8588 { 8589 struct drm_device *dev = crtc->base.dev; 8590 struct drm_i915_private *dev_priv = to_i915(dev); 8591 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 8592 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 8593 enum pipe pipe; 8594 u32 val, base, offset; 8595 int fourcc, pixel_format; 8596 unsigned int aligned_height; 8597 struct drm_framebuffer *fb; 8598 struct intel_framebuffer *intel_fb; 8599 8600 if (!plane->get_hw_state(plane, &pipe)) 8601 return; 8602 8603 WARN_ON(pipe != crtc->pipe); 8604 8605 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 8606 if (!intel_fb) { 8607 DRM_DEBUG_KMS("failed to alloc fb\n"); 8608 return; 8609 } 8610 8611 fb = &intel_fb->base; 8612 8613 fb->dev = dev; 8614 8615 val = I915_READ(DSPCNTR(i9xx_plane)); 8616 8617 if (INTEL_GEN(dev_priv) >= 4) { 8618 if (val & DISPPLANE_TILED) { 8619 plane_config->tiling = I915_TILING_X; 8620 fb->modifier = I915_FORMAT_MOD_X_TILED; 8621 } 8622 8623 if (val & DISPPLANE_ROTATE_180) 8624 plane_config->rotation = DRM_MODE_ROTATE_180; 8625 } 8626 8627 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B && 8628 val & DISPPLANE_MIRROR) 8629 plane_config->rotation |= DRM_MODE_REFLECT_X; 8630 8631 pixel_format = val & DISPPLANE_PIXFORMAT_MASK; 8632 fourcc = i9xx_format_to_fourcc(pixel_format); 8633 fb->format = drm_format_info(fourcc); 8634 8635 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 8636 offset = I915_READ(DSPOFFSET(i9xx_plane)); 8637 base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000; 8638 } else if (INTEL_GEN(dev_priv) >= 4) { 8639 if (plane_config->tiling) 8640 offset = I915_READ(DSPTILEOFF(i9xx_plane)); 8641 else 8642 offset = I915_READ(DSPLINOFF(i9xx_plane)); 8643 base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000; 8644 } else { 8645 base = I915_READ(DSPADDR(i9xx_plane)); 8646 } 8647 plane_config->base = base; 8648 8649 val = I915_READ(PIPESRC(pipe)); 8650 fb->width = ((val >> 16) & 0xfff) + 1; 8651 fb->height = ((val >> 0) & 0xfff) + 1; 8652 8653 val = I915_READ(DSPSTRIDE(i9xx_plane)); 8654 fb->pitches[0] = val & 0xffffffc0; 8655 8656 aligned_height = intel_fb_align_height(fb, 0, fb->height); 8657 8658 plane_config->size = fb->pitches[0] * aligned_height; 8659 8660 DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 8661 crtc->base.name, plane->base.name, fb->width, fb->height, 8662 fb->format->cpp[0] * 8, base, fb->pitches[0], 8663 plane_config->size); 8664 8665 plane_config->fb = intel_fb; 8666 } 8667 8668 static void chv_crtc_clock_get(struct intel_crtc *crtc, 8669 struct intel_crtc_state *pipe_config) 8670 { 8671 struct drm_device *dev = crtc->base.dev; 8672 struct drm_i915_private *dev_priv = to_i915(dev); 8673 int pipe = pipe_config->cpu_transcoder; 8674 enum dpio_channel port = vlv_pipe_to_channel(pipe); 8675 struct dpll clock; 8676 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 8677 int refclk = 100000; 8678 8679 /* In case of DSI, DPLL will not be used */ 8680 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8681 return; 8682 8683 vlv_dpio_get(dev_priv); 8684 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 8685 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 8686 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 8687 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 8688 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 8689 vlv_dpio_put(dev_priv); 8690 8691 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 8692 clock.m2 = (pll_dw0 & 0xff) << 22; 8693 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 8694 clock.m2 |= pll_dw2 & 0x3fffff; 8695 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 8696 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 8697 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 8698 8699 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 8700 } 8701 8702 static void intel_get_crtc_ycbcr_config(struct intel_crtc *crtc, 8703 struct intel_crtc_state *pipe_config) 8704 { 8705 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8706 enum intel_output_format output = INTEL_OUTPUT_FORMAT_RGB; 8707 8708 pipe_config->lspcon_downsampling = false; 8709 8710 if (IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9) { 8711 u32 tmp = I915_READ(PIPEMISC(crtc->pipe)); 8712 8713 if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 8714 bool ycbcr420_enabled = tmp & PIPEMISC_YUV420_ENABLE; 8715 bool blend = tmp & PIPEMISC_YUV420_MODE_FULL_BLEND; 8716 8717 if (ycbcr420_enabled) { 8718 /* We support 4:2:0 in full blend mode only */ 8719 if (!blend) 8720 output = INTEL_OUTPUT_FORMAT_INVALID; 8721 else if (!(IS_GEMINILAKE(dev_priv) || 8722 INTEL_GEN(dev_priv) >= 10)) 8723 output = INTEL_OUTPUT_FORMAT_INVALID; 8724 else 8725 output = INTEL_OUTPUT_FORMAT_YCBCR420; 8726 } else { 8727 /* 8728 * Currently there is no interface defined to 8729 * check user preference between RGB/YCBCR444 8730 * or YCBCR420. So the only possible case for 8731 * YCBCR444 usage is driving YCBCR420 output 8732 * with LSPCON, when pipe is configured for 8733 * YCBCR444 output and LSPCON takes care of 8734 * downsampling it. 8735 */ 8736 pipe_config->lspcon_downsampling = true; 8737 output = INTEL_OUTPUT_FORMAT_YCBCR444; 8738 } 8739 } 8740 } 8741 8742 pipe_config->output_format = output; 8743 } 8744 8745 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 8746 { 8747 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 8748 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 8749 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8750 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 8751 u32 tmp; 8752 8753 tmp = I915_READ(DSPCNTR(i9xx_plane)); 8754 8755 if (tmp & DISPPLANE_GAMMA_ENABLE) 8756 crtc_state->gamma_enable = true; 8757 8758 if (!HAS_GMCH(dev_priv) && 8759 tmp & DISPPLANE_PIPE_CSC_ENABLE) 8760 crtc_state->csc_enable = true; 8761 } 8762 8763 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 8764 struct intel_crtc_state *pipe_config) 8765 { 8766 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8767 enum intel_display_power_domain power_domain; 8768 intel_wakeref_t wakeref; 8769 u32 tmp; 8770 bool ret; 8771 8772 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 8773 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 8774 if (!wakeref) 8775 return false; 8776 8777 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 8778 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 8779 pipe_config->shared_dpll = NULL; 8780 8781 ret = false; 8782 8783 tmp = I915_READ(PIPECONF(crtc->pipe)); 8784 if (!(tmp & PIPECONF_ENABLE)) 8785 goto out; 8786 8787 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 8788 IS_CHERRYVIEW(dev_priv)) { 8789 switch (tmp & PIPECONF_BPC_MASK) { 8790 case PIPECONF_6BPC: 8791 pipe_config->pipe_bpp = 18; 8792 break; 8793 case PIPECONF_8BPC: 8794 pipe_config->pipe_bpp = 24; 8795 break; 8796 case PIPECONF_10BPC: 8797 pipe_config->pipe_bpp = 30; 8798 break; 8799 default: 8800 break; 8801 } 8802 } 8803 8804 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 8805 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 8806 pipe_config->limited_color_range = true; 8807 8808 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 8809 PIPECONF_GAMMA_MODE_SHIFT; 8810 8811 if (IS_CHERRYVIEW(dev_priv)) 8812 pipe_config->cgm_mode = I915_READ(CGM_PIPE_MODE(crtc->pipe)); 8813 8814 i9xx_get_pipe_color_config(pipe_config); 8815 intel_color_get_config(pipe_config); 8816 8817 if (INTEL_GEN(dev_priv) < 4) 8818 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 8819 8820 intel_get_pipe_timings(crtc, pipe_config); 8821 intel_get_pipe_src_size(crtc, pipe_config); 8822 8823 i9xx_get_pfit_config(crtc, pipe_config); 8824 8825 if (INTEL_GEN(dev_priv) >= 4) { 8826 /* No way to read it out on pipes B and C */ 8827 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 8828 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 8829 else 8830 tmp = I915_READ(DPLL_MD(crtc->pipe)); 8831 pipe_config->pixel_multiplier = 8832 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 8833 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 8834 pipe_config->dpll_hw_state.dpll_md = tmp; 8835 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 8836 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 8837 tmp = I915_READ(DPLL(crtc->pipe)); 8838 pipe_config->pixel_multiplier = 8839 ((tmp & SDVO_MULTIPLIER_MASK) 8840 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 8841 } else { 8842 /* Note that on i915G/GM the pixel multiplier is in the sdvo 8843 * port and will be fixed up in the encoder->get_config 8844 * function. */ 8845 pipe_config->pixel_multiplier = 1; 8846 } 8847 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe)); 8848 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 8849 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe)); 8850 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe)); 8851 } else { 8852 /* Mask out read-only status bits. */ 8853 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 8854 DPLL_PORTC_READY_MASK | 8855 DPLL_PORTB_READY_MASK); 8856 } 8857 8858 if (IS_CHERRYVIEW(dev_priv)) 8859 chv_crtc_clock_get(crtc, pipe_config); 8860 else if (IS_VALLEYVIEW(dev_priv)) 8861 vlv_crtc_clock_get(crtc, pipe_config); 8862 else 8863 i9xx_crtc_clock_get(crtc, pipe_config); 8864 8865 /* 8866 * Normally the dotclock is filled in by the encoder .get_config() 8867 * but in case the pipe is enabled w/o any ports we need a sane 8868 * default. 8869 */ 8870 pipe_config->base.adjusted_mode.crtc_clock = 8871 pipe_config->port_clock / pipe_config->pixel_multiplier; 8872 8873 ret = true; 8874 8875 out: 8876 intel_display_power_put(dev_priv, power_domain, wakeref); 8877 8878 return ret; 8879 } 8880 8881 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv) 8882 { 8883 struct intel_encoder *encoder; 8884 int i; 8885 u32 val, final; 8886 bool has_lvds = false; 8887 bool has_cpu_edp = false; 8888 bool has_panel = false; 8889 bool has_ck505 = false; 8890 bool can_ssc = false; 8891 bool using_ssc_source = false; 8892 8893 /* We need to take the global config into account */ 8894 for_each_intel_encoder(&dev_priv->drm, encoder) { 8895 switch (encoder->type) { 8896 case INTEL_OUTPUT_LVDS: 8897 has_panel = true; 8898 has_lvds = true; 8899 break; 8900 case INTEL_OUTPUT_EDP: 8901 has_panel = true; 8902 if (encoder->port == PORT_A) 8903 has_cpu_edp = true; 8904 break; 8905 default: 8906 break; 8907 } 8908 } 8909 8910 if (HAS_PCH_IBX(dev_priv)) { 8911 has_ck505 = dev_priv->vbt.display_clock_mode; 8912 can_ssc = has_ck505; 8913 } else { 8914 has_ck505 = false; 8915 can_ssc = true; 8916 } 8917 8918 /* Check if any DPLLs are using the SSC source */ 8919 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 8920 u32 temp = I915_READ(PCH_DPLL(i)); 8921 8922 if (!(temp & DPLL_VCO_ENABLE)) 8923 continue; 8924 8925 if ((temp & PLL_REF_INPUT_MASK) == 8926 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 8927 using_ssc_source = true; 8928 break; 8929 } 8930 } 8931 8932 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 8933 has_panel, has_lvds, has_ck505, using_ssc_source); 8934 8935 /* Ironlake: try to setup display ref clock before DPLL 8936 * enabling. This is only under driver's control after 8937 * PCH B stepping, previous chipset stepping should be 8938 * ignoring this setting. 8939 */ 8940 val = I915_READ(PCH_DREF_CONTROL); 8941 8942 /* As we must carefully and slowly disable/enable each source in turn, 8943 * compute the final state we want first and check if we need to 8944 * make any changes at all. 8945 */ 8946 final = val; 8947 final &= ~DREF_NONSPREAD_SOURCE_MASK; 8948 if (has_ck505) 8949 final |= DREF_NONSPREAD_CK505_ENABLE; 8950 else 8951 final |= DREF_NONSPREAD_SOURCE_ENABLE; 8952 8953 final &= ~DREF_SSC_SOURCE_MASK; 8954 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 8955 final &= ~DREF_SSC1_ENABLE; 8956 8957 if (has_panel) { 8958 final |= DREF_SSC_SOURCE_ENABLE; 8959 8960 if (intel_panel_use_ssc(dev_priv) && can_ssc) 8961 final |= DREF_SSC1_ENABLE; 8962 8963 if (has_cpu_edp) { 8964 if (intel_panel_use_ssc(dev_priv) && can_ssc) 8965 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 8966 else 8967 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 8968 } else 8969 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 8970 } else if (using_ssc_source) { 8971 final |= DREF_SSC_SOURCE_ENABLE; 8972 final |= DREF_SSC1_ENABLE; 8973 } 8974 8975 if (final == val) 8976 return; 8977 8978 /* Always enable nonspread source */ 8979 val &= ~DREF_NONSPREAD_SOURCE_MASK; 8980 8981 if (has_ck505) 8982 val |= DREF_NONSPREAD_CK505_ENABLE; 8983 else 8984 val |= DREF_NONSPREAD_SOURCE_ENABLE; 8985 8986 if (has_panel) { 8987 val &= ~DREF_SSC_SOURCE_MASK; 8988 val |= DREF_SSC_SOURCE_ENABLE; 8989 8990 /* SSC must be turned on before enabling the CPU output */ 8991 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 8992 DRM_DEBUG_KMS("Using SSC on panel\n"); 8993 val |= DREF_SSC1_ENABLE; 8994 } else 8995 val &= ~DREF_SSC1_ENABLE; 8996 8997 /* Get SSC going before enabling the outputs */ 8998 I915_WRITE(PCH_DREF_CONTROL, val); 8999 POSTING_READ(PCH_DREF_CONTROL); 9000 udelay(200); 9001 9002 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9003 9004 /* Enable CPU source on CPU attached eDP */ 9005 if (has_cpu_edp) { 9006 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9007 DRM_DEBUG_KMS("Using SSC on eDP\n"); 9008 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9009 } else 9010 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9011 } else 9012 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9013 9014 I915_WRITE(PCH_DREF_CONTROL, val); 9015 POSTING_READ(PCH_DREF_CONTROL); 9016 udelay(200); 9017 } else { 9018 DRM_DEBUG_KMS("Disabling CPU source output\n"); 9019 9020 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9021 9022 /* Turn off CPU output */ 9023 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9024 9025 I915_WRITE(PCH_DREF_CONTROL, val); 9026 POSTING_READ(PCH_DREF_CONTROL); 9027 udelay(200); 9028 9029 if (!using_ssc_source) { 9030 DRM_DEBUG_KMS("Disabling SSC source\n"); 9031 9032 /* Turn off the SSC source */ 9033 val &= ~DREF_SSC_SOURCE_MASK; 9034 val |= DREF_SSC_SOURCE_DISABLE; 9035 9036 /* Turn off SSC1 */ 9037 val &= ~DREF_SSC1_ENABLE; 9038 9039 I915_WRITE(PCH_DREF_CONTROL, val); 9040 POSTING_READ(PCH_DREF_CONTROL); 9041 udelay(200); 9042 } 9043 } 9044 9045 BUG_ON(val != final); 9046 } 9047 9048 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 9049 { 9050 u32 tmp; 9051 9052 tmp = I915_READ(SOUTH_CHICKEN2); 9053 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 9054 I915_WRITE(SOUTH_CHICKEN2, tmp); 9055 9056 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) & 9057 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 9058 DRM_ERROR("FDI mPHY reset assert timeout\n"); 9059 9060 tmp = I915_READ(SOUTH_CHICKEN2); 9061 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 9062 I915_WRITE(SOUTH_CHICKEN2, tmp); 9063 9064 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) & 9065 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 9066 DRM_ERROR("FDI mPHY reset de-assert timeout\n"); 9067 } 9068 9069 /* WaMPhyProgramming:hsw */ 9070 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 9071 { 9072 u32 tmp; 9073 9074 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 9075 tmp &= ~(0xFF << 24); 9076 tmp |= (0x12 << 24); 9077 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 9078 9079 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 9080 tmp |= (1 << 11); 9081 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 9082 9083 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 9084 tmp |= (1 << 11); 9085 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 9086 9087 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 9088 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9089 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 9090 9091 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 9092 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9093 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 9094 9095 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 9096 tmp &= ~(7 << 13); 9097 tmp |= (5 << 13); 9098 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 9099 9100 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 9101 tmp &= ~(7 << 13); 9102 tmp |= (5 << 13); 9103 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 9104 9105 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 9106 tmp &= ~0xFF; 9107 tmp |= 0x1C; 9108 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 9109 9110 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 9111 tmp &= ~0xFF; 9112 tmp |= 0x1C; 9113 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 9114 9115 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 9116 tmp &= ~(0xFF << 16); 9117 tmp |= (0x1C << 16); 9118 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 9119 9120 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 9121 tmp &= ~(0xFF << 16); 9122 tmp |= (0x1C << 16); 9123 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 9124 9125 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 9126 tmp |= (1 << 27); 9127 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 9128 9129 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 9130 tmp |= (1 << 27); 9131 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 9132 9133 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 9134 tmp &= ~(0xF << 28); 9135 tmp |= (4 << 28); 9136 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 9137 9138 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 9139 tmp &= ~(0xF << 28); 9140 tmp |= (4 << 28); 9141 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 9142 } 9143 9144 /* Implements 3 different sequences from BSpec chapter "Display iCLK 9145 * Programming" based on the parameters passed: 9146 * - Sequence to enable CLKOUT_DP 9147 * - Sequence to enable CLKOUT_DP without spread 9148 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 9149 */ 9150 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 9151 bool with_spread, bool with_fdi) 9152 { 9153 u32 reg, tmp; 9154 9155 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n")) 9156 with_spread = true; 9157 if (WARN(HAS_PCH_LPT_LP(dev_priv) && 9158 with_fdi, "LP PCH doesn't have FDI\n")) 9159 with_fdi = false; 9160 9161 mutex_lock(&dev_priv->sb_lock); 9162 9163 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9164 tmp &= ~SBI_SSCCTL_DISABLE; 9165 tmp |= SBI_SSCCTL_PATHALT; 9166 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9167 9168 udelay(24); 9169 9170 if (with_spread) { 9171 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9172 tmp &= ~SBI_SSCCTL_PATHALT; 9173 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9174 9175 if (with_fdi) { 9176 lpt_reset_fdi_mphy(dev_priv); 9177 lpt_program_fdi_mphy(dev_priv); 9178 } 9179 } 9180 9181 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9182 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9183 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9184 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9185 9186 mutex_unlock(&dev_priv->sb_lock); 9187 } 9188 9189 /* Sequence to disable CLKOUT_DP */ 9190 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 9191 { 9192 u32 reg, tmp; 9193 9194 mutex_lock(&dev_priv->sb_lock); 9195 9196 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9197 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9198 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9199 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9200 9201 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9202 if (!(tmp & SBI_SSCCTL_DISABLE)) { 9203 if (!(tmp & SBI_SSCCTL_PATHALT)) { 9204 tmp |= SBI_SSCCTL_PATHALT; 9205 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9206 udelay(32); 9207 } 9208 tmp |= SBI_SSCCTL_DISABLE; 9209 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9210 } 9211 9212 mutex_unlock(&dev_priv->sb_lock); 9213 } 9214 9215 #define BEND_IDX(steps) ((50 + (steps)) / 5) 9216 9217 static const u16 sscdivintphase[] = { 9218 [BEND_IDX( 50)] = 0x3B23, 9219 [BEND_IDX( 45)] = 0x3B23, 9220 [BEND_IDX( 40)] = 0x3C23, 9221 [BEND_IDX( 35)] = 0x3C23, 9222 [BEND_IDX( 30)] = 0x3D23, 9223 [BEND_IDX( 25)] = 0x3D23, 9224 [BEND_IDX( 20)] = 0x3E23, 9225 [BEND_IDX( 15)] = 0x3E23, 9226 [BEND_IDX( 10)] = 0x3F23, 9227 [BEND_IDX( 5)] = 0x3F23, 9228 [BEND_IDX( 0)] = 0x0025, 9229 [BEND_IDX( -5)] = 0x0025, 9230 [BEND_IDX(-10)] = 0x0125, 9231 [BEND_IDX(-15)] = 0x0125, 9232 [BEND_IDX(-20)] = 0x0225, 9233 [BEND_IDX(-25)] = 0x0225, 9234 [BEND_IDX(-30)] = 0x0325, 9235 [BEND_IDX(-35)] = 0x0325, 9236 [BEND_IDX(-40)] = 0x0425, 9237 [BEND_IDX(-45)] = 0x0425, 9238 [BEND_IDX(-50)] = 0x0525, 9239 }; 9240 9241 /* 9242 * Bend CLKOUT_DP 9243 * steps -50 to 50 inclusive, in steps of 5 9244 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 9245 * change in clock period = -(steps / 10) * 5.787 ps 9246 */ 9247 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 9248 { 9249 u32 tmp; 9250 int idx = BEND_IDX(steps); 9251 9252 if (WARN_ON(steps % 5 != 0)) 9253 return; 9254 9255 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase))) 9256 return; 9257 9258 mutex_lock(&dev_priv->sb_lock); 9259 9260 if (steps % 10 != 0) 9261 tmp = 0xAAAAAAAB; 9262 else 9263 tmp = 0x00000000; 9264 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 9265 9266 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 9267 tmp &= 0xffff0000; 9268 tmp |= sscdivintphase[idx]; 9269 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 9270 9271 mutex_unlock(&dev_priv->sb_lock); 9272 } 9273 9274 #undef BEND_IDX 9275 9276 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 9277 { 9278 u32 fuse_strap = I915_READ(FUSE_STRAP); 9279 u32 ctl = I915_READ(SPLL_CTL); 9280 9281 if ((ctl & SPLL_PLL_ENABLE) == 0) 9282 return false; 9283 9284 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 9285 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9286 return true; 9287 9288 if (IS_BROADWELL(dev_priv) && 9289 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 9290 return true; 9291 9292 return false; 9293 } 9294 9295 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 9296 enum intel_dpll_id id) 9297 { 9298 u32 fuse_strap = I915_READ(FUSE_STRAP); 9299 u32 ctl = I915_READ(WRPLL_CTL(id)); 9300 9301 if ((ctl & WRPLL_PLL_ENABLE) == 0) 9302 return false; 9303 9304 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 9305 return true; 9306 9307 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 9308 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 9309 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9310 return true; 9311 9312 return false; 9313 } 9314 9315 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 9316 { 9317 struct intel_encoder *encoder; 9318 bool pch_ssc_in_use = false; 9319 bool has_fdi = false; 9320 9321 for_each_intel_encoder(&dev_priv->drm, encoder) { 9322 switch (encoder->type) { 9323 case INTEL_OUTPUT_ANALOG: 9324 has_fdi = true; 9325 break; 9326 default: 9327 break; 9328 } 9329 } 9330 9331 /* 9332 * The BIOS may have decided to use the PCH SSC 9333 * reference so we must not disable it until the 9334 * relevant PLLs have stopped relying on it. We'll 9335 * just leave the PCH SSC reference enabled in case 9336 * any active PLL is using it. It will get disabled 9337 * after runtime suspend if we don't have FDI. 9338 * 9339 * TODO: Move the whole reference clock handling 9340 * to the modeset sequence proper so that we can 9341 * actually enable/disable/reconfigure these things 9342 * safely. To do that we need to introduce a real 9343 * clock hierarchy. That would also allow us to do 9344 * clock bending finally. 9345 */ 9346 if (spll_uses_pch_ssc(dev_priv)) { 9347 DRM_DEBUG_KMS("SPLL using PCH SSC\n"); 9348 pch_ssc_in_use = true; 9349 } 9350 9351 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 9352 DRM_DEBUG_KMS("WRPLL1 using PCH SSC\n"); 9353 pch_ssc_in_use = true; 9354 } 9355 9356 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 9357 DRM_DEBUG_KMS("WRPLL2 using PCH SSC\n"); 9358 pch_ssc_in_use = true; 9359 } 9360 9361 if (pch_ssc_in_use) 9362 return; 9363 9364 if (has_fdi) { 9365 lpt_bend_clkout_dp(dev_priv, 0); 9366 lpt_enable_clkout_dp(dev_priv, true, true); 9367 } else { 9368 lpt_disable_clkout_dp(dev_priv); 9369 } 9370 } 9371 9372 /* 9373 * Initialize reference clocks when the driver loads 9374 */ 9375 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 9376 { 9377 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 9378 ironlake_init_pch_refclk(dev_priv); 9379 else if (HAS_PCH_LPT(dev_priv)) 9380 lpt_init_pch_refclk(dev_priv); 9381 } 9382 9383 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state) 9384 { 9385 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 9386 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9387 enum pipe pipe = crtc->pipe; 9388 u32 val; 9389 9390 val = 0; 9391 9392 switch (crtc_state->pipe_bpp) { 9393 case 18: 9394 val |= PIPECONF_6BPC; 9395 break; 9396 case 24: 9397 val |= PIPECONF_8BPC; 9398 break; 9399 case 30: 9400 val |= PIPECONF_10BPC; 9401 break; 9402 case 36: 9403 val |= PIPECONF_12BPC; 9404 break; 9405 default: 9406 /* Case prevented by intel_choose_pipe_bpp_dither. */ 9407 BUG(); 9408 } 9409 9410 if (crtc_state->dither) 9411 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 9412 9413 if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 9414 val |= PIPECONF_INTERLACED_ILK; 9415 else 9416 val |= PIPECONF_PROGRESSIVE; 9417 9418 if (crtc_state->limited_color_range) 9419 val |= PIPECONF_COLOR_RANGE_SELECT; 9420 9421 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 9422 9423 I915_WRITE(PIPECONF(pipe), val); 9424 POSTING_READ(PIPECONF(pipe)); 9425 } 9426 9427 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state) 9428 { 9429 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 9430 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9431 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 9432 u32 val = 0; 9433 9434 if (IS_HASWELL(dev_priv) && crtc_state->dither) 9435 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 9436 9437 if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 9438 val |= PIPECONF_INTERLACED_ILK; 9439 else 9440 val |= PIPECONF_PROGRESSIVE; 9441 9442 I915_WRITE(PIPECONF(cpu_transcoder), val); 9443 POSTING_READ(PIPECONF(cpu_transcoder)); 9444 } 9445 9446 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 9447 { 9448 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 9449 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9450 u32 val = 0; 9451 9452 switch (crtc_state->pipe_bpp) { 9453 case 18: 9454 val |= PIPEMISC_DITHER_6_BPC; 9455 break; 9456 case 24: 9457 val |= PIPEMISC_DITHER_8_BPC; 9458 break; 9459 case 30: 9460 val |= PIPEMISC_DITHER_10_BPC; 9461 break; 9462 case 36: 9463 val |= PIPEMISC_DITHER_12_BPC; 9464 break; 9465 default: 9466 MISSING_CASE(crtc_state->pipe_bpp); 9467 break; 9468 } 9469 9470 if (crtc_state->dither) 9471 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 9472 9473 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 9474 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 9475 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 9476 9477 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 9478 val |= PIPEMISC_YUV420_ENABLE | 9479 PIPEMISC_YUV420_MODE_FULL_BLEND; 9480 9481 if (INTEL_GEN(dev_priv) >= 11 && 9482 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 9483 BIT(PLANE_CURSOR))) == 0) 9484 val |= PIPEMISC_HDR_MODE_PRECISION; 9485 9486 I915_WRITE(PIPEMISC(crtc->pipe), val); 9487 } 9488 9489 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 9490 { 9491 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9492 u32 tmp; 9493 9494 tmp = I915_READ(PIPEMISC(crtc->pipe)); 9495 9496 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 9497 case PIPEMISC_DITHER_6_BPC: 9498 return 18; 9499 case PIPEMISC_DITHER_8_BPC: 9500 return 24; 9501 case PIPEMISC_DITHER_10_BPC: 9502 return 30; 9503 case PIPEMISC_DITHER_12_BPC: 9504 return 36; 9505 default: 9506 MISSING_CASE(tmp); 9507 return 0; 9508 } 9509 } 9510 9511 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp) 9512 { 9513 /* 9514 * Account for spread spectrum to avoid 9515 * oversubscribing the link. Max center spread 9516 * is 2.5%; use 5% for safety's sake. 9517 */ 9518 u32 bps = target_clock * bpp * 21 / 20; 9519 return DIV_ROUND_UP(bps, link_bw * 8); 9520 } 9521 9522 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor) 9523 { 9524 return i9xx_dpll_compute_m(dpll) < factor * dpll->n; 9525 } 9526 9527 static void ironlake_compute_dpll(struct intel_crtc *crtc, 9528 struct intel_crtc_state *crtc_state, 9529 struct dpll *reduced_clock) 9530 { 9531 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9532 u32 dpll, fp, fp2; 9533 int factor; 9534 9535 /* Enable autotuning of the PLL clock (if permissible) */ 9536 factor = 21; 9537 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9538 if ((intel_panel_use_ssc(dev_priv) && 9539 dev_priv->vbt.lvds_ssc_freq == 100000) || 9540 (HAS_PCH_IBX(dev_priv) && 9541 intel_is_dual_link_lvds(dev_priv))) 9542 factor = 25; 9543 } else if (crtc_state->sdvo_tv_clock) { 9544 factor = 20; 9545 } 9546 9547 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 9548 9549 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor)) 9550 fp |= FP_CB_TUNE; 9551 9552 if (reduced_clock) { 9553 fp2 = i9xx_dpll_compute_fp(reduced_clock); 9554 9555 if (reduced_clock->m < factor * reduced_clock->n) 9556 fp2 |= FP_CB_TUNE; 9557 } else { 9558 fp2 = fp; 9559 } 9560 9561 dpll = 0; 9562 9563 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 9564 dpll |= DPLLB_MODE_LVDS; 9565 else 9566 dpll |= DPLLB_MODE_DAC_SERIAL; 9567 9568 dpll |= (crtc_state->pixel_multiplier - 1) 9569 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 9570 9571 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 9572 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 9573 dpll |= DPLL_SDVO_HIGH_SPEED; 9574 9575 if (intel_crtc_has_dp_encoder(crtc_state)) 9576 dpll |= DPLL_SDVO_HIGH_SPEED; 9577 9578 /* 9579 * The high speed IO clock is only really required for 9580 * SDVO/HDMI/DP, but we also enable it for CRT to make it 9581 * possible to share the DPLL between CRT and HDMI. Enabling 9582 * the clock needlessly does no real harm, except use up a 9583 * bit of power potentially. 9584 * 9585 * We'll limit this to IVB with 3 pipes, since it has only two 9586 * DPLLs and so DPLL sharing is the only way to get three pipes 9587 * driving PCH ports at the same time. On SNB we could do this, 9588 * and potentially avoid enabling the second DPLL, but it's not 9589 * clear if it''s a win or loss power wise. No point in doing 9590 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 9591 */ 9592 if (INTEL_INFO(dev_priv)->num_pipes == 3 && 9593 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 9594 dpll |= DPLL_SDVO_HIGH_SPEED; 9595 9596 /* compute bitmask from p1 value */ 9597 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 9598 /* also FPA1 */ 9599 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 9600 9601 switch (crtc_state->dpll.p2) { 9602 case 5: 9603 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 9604 break; 9605 case 7: 9606 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 9607 break; 9608 case 10: 9609 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 9610 break; 9611 case 14: 9612 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 9613 break; 9614 } 9615 9616 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 9617 intel_panel_use_ssc(dev_priv)) 9618 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 9619 else 9620 dpll |= PLL_REF_INPUT_DREFCLK; 9621 9622 dpll |= DPLL_VCO_ENABLE; 9623 9624 crtc_state->dpll_hw_state.dpll = dpll; 9625 crtc_state->dpll_hw_state.fp0 = fp; 9626 crtc_state->dpll_hw_state.fp1 = fp2; 9627 } 9628 9629 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc, 9630 struct intel_crtc_state *crtc_state) 9631 { 9632 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9633 struct intel_atomic_state *state = 9634 to_intel_atomic_state(crtc_state->base.state); 9635 const struct intel_limit *limit; 9636 int refclk = 120000; 9637 9638 memset(&crtc_state->dpll_hw_state, 0, 9639 sizeof(crtc_state->dpll_hw_state)); 9640 9641 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 9642 if (!crtc_state->has_pch_encoder) 9643 return 0; 9644 9645 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9646 if (intel_panel_use_ssc(dev_priv)) { 9647 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", 9648 dev_priv->vbt.lvds_ssc_freq); 9649 refclk = dev_priv->vbt.lvds_ssc_freq; 9650 } 9651 9652 if (intel_is_dual_link_lvds(dev_priv)) { 9653 if (refclk == 100000) 9654 limit = &intel_limits_ironlake_dual_lvds_100m; 9655 else 9656 limit = &intel_limits_ironlake_dual_lvds; 9657 } else { 9658 if (refclk == 100000) 9659 limit = &intel_limits_ironlake_single_lvds_100m; 9660 else 9661 limit = &intel_limits_ironlake_single_lvds; 9662 } 9663 } else { 9664 limit = &intel_limits_ironlake_dac; 9665 } 9666 9667 if (!crtc_state->clock_set && 9668 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9669 refclk, NULL, &crtc_state->dpll)) { 9670 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 9671 return -EINVAL; 9672 } 9673 9674 ironlake_compute_dpll(crtc, crtc_state, NULL); 9675 9676 if (!intel_reserve_shared_dplls(state, crtc, NULL)) { 9677 DRM_DEBUG_KMS("failed to find PLL for pipe %c\n", 9678 pipe_name(crtc->pipe)); 9679 return -EINVAL; 9680 } 9681 9682 return 0; 9683 } 9684 9685 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 9686 struct intel_link_m_n *m_n) 9687 { 9688 struct drm_device *dev = crtc->base.dev; 9689 struct drm_i915_private *dev_priv = to_i915(dev); 9690 enum pipe pipe = crtc->pipe; 9691 9692 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe)); 9693 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe)); 9694 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe)) 9695 & ~TU_SIZE_MASK; 9696 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe)); 9697 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe)) 9698 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9699 } 9700 9701 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 9702 enum transcoder transcoder, 9703 struct intel_link_m_n *m_n, 9704 struct intel_link_m_n *m2_n2) 9705 { 9706 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9707 enum pipe pipe = crtc->pipe; 9708 9709 if (INTEL_GEN(dev_priv) >= 5) { 9710 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder)); 9711 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder)); 9712 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder)) 9713 & ~TU_SIZE_MASK; 9714 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder)); 9715 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder)) 9716 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9717 9718 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 9719 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder)); 9720 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder)); 9721 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder)) 9722 & ~TU_SIZE_MASK; 9723 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder)); 9724 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder)) 9725 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9726 } 9727 } else { 9728 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe)); 9729 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe)); 9730 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe)) 9731 & ~TU_SIZE_MASK; 9732 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe)); 9733 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe)) 9734 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9735 } 9736 } 9737 9738 void intel_dp_get_m_n(struct intel_crtc *crtc, 9739 struct intel_crtc_state *pipe_config) 9740 { 9741 if (pipe_config->has_pch_encoder) 9742 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 9743 else 9744 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 9745 &pipe_config->dp_m_n, 9746 &pipe_config->dp_m2_n2); 9747 } 9748 9749 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc, 9750 struct intel_crtc_state *pipe_config) 9751 { 9752 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 9753 &pipe_config->fdi_m_n, NULL); 9754 } 9755 9756 static void skylake_get_pfit_config(struct intel_crtc *crtc, 9757 struct intel_crtc_state *pipe_config) 9758 { 9759 struct drm_device *dev = crtc->base.dev; 9760 struct drm_i915_private *dev_priv = to_i915(dev); 9761 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state; 9762 u32 ps_ctrl = 0; 9763 int id = -1; 9764 int i; 9765 9766 /* find scaler attached to this pipe */ 9767 for (i = 0; i < crtc->num_scalers; i++) { 9768 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i)); 9769 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) { 9770 id = i; 9771 pipe_config->pch_pfit.enabled = true; 9772 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i)); 9773 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i)); 9774 scaler_state->scalers[i].in_use = true; 9775 break; 9776 } 9777 } 9778 9779 scaler_state->scaler_id = id; 9780 if (id >= 0) { 9781 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 9782 } else { 9783 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 9784 } 9785 } 9786 9787 static void 9788 skylake_get_initial_plane_config(struct intel_crtc *crtc, 9789 struct intel_initial_plane_config *plane_config) 9790 { 9791 struct drm_device *dev = crtc->base.dev; 9792 struct drm_i915_private *dev_priv = to_i915(dev); 9793 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9794 enum plane_id plane_id = plane->id; 9795 enum pipe pipe; 9796 u32 val, base, offset, stride_mult, tiling, alpha; 9797 int fourcc, pixel_format; 9798 unsigned int aligned_height; 9799 struct drm_framebuffer *fb; 9800 struct intel_framebuffer *intel_fb; 9801 9802 if (!plane->get_hw_state(plane, &pipe)) 9803 return; 9804 9805 WARN_ON(pipe != crtc->pipe); 9806 9807 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 9808 if (!intel_fb) { 9809 DRM_DEBUG_KMS("failed to alloc fb\n"); 9810 return; 9811 } 9812 9813 fb = &intel_fb->base; 9814 9815 fb->dev = dev; 9816 9817 val = I915_READ(PLANE_CTL(pipe, plane_id)); 9818 9819 if (INTEL_GEN(dev_priv) >= 11) 9820 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK; 9821 else 9822 pixel_format = val & PLANE_CTL_FORMAT_MASK; 9823 9824 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { 9825 alpha = I915_READ(PLANE_COLOR_CTL(pipe, plane_id)); 9826 alpha &= PLANE_COLOR_ALPHA_MASK; 9827 } else { 9828 alpha = val & PLANE_CTL_ALPHA_MASK; 9829 } 9830 9831 fourcc = skl_format_to_fourcc(pixel_format, 9832 val & PLANE_CTL_ORDER_RGBX, alpha); 9833 fb->format = drm_format_info(fourcc); 9834 9835 tiling = val & PLANE_CTL_TILED_MASK; 9836 switch (tiling) { 9837 case PLANE_CTL_TILED_LINEAR: 9838 fb->modifier = DRM_FORMAT_MOD_LINEAR; 9839 break; 9840 case PLANE_CTL_TILED_X: 9841 plane_config->tiling = I915_TILING_X; 9842 fb->modifier = I915_FORMAT_MOD_X_TILED; 9843 break; 9844 case PLANE_CTL_TILED_Y: 9845 plane_config->tiling = I915_TILING_Y; 9846 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 9847 fb->modifier = I915_FORMAT_MOD_Y_TILED_CCS; 9848 else 9849 fb->modifier = I915_FORMAT_MOD_Y_TILED; 9850 break; 9851 case PLANE_CTL_TILED_YF: 9852 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 9853 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS; 9854 else 9855 fb->modifier = I915_FORMAT_MOD_Yf_TILED; 9856 break; 9857 default: 9858 MISSING_CASE(tiling); 9859 goto error; 9860 } 9861 9862 /* 9863 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 9864 * while i915 HW rotation is clockwise, thats why this swapping. 9865 */ 9866 switch (val & PLANE_CTL_ROTATE_MASK) { 9867 case PLANE_CTL_ROTATE_0: 9868 plane_config->rotation = DRM_MODE_ROTATE_0; 9869 break; 9870 case PLANE_CTL_ROTATE_90: 9871 plane_config->rotation = DRM_MODE_ROTATE_270; 9872 break; 9873 case PLANE_CTL_ROTATE_180: 9874 plane_config->rotation = DRM_MODE_ROTATE_180; 9875 break; 9876 case PLANE_CTL_ROTATE_270: 9877 plane_config->rotation = DRM_MODE_ROTATE_90; 9878 break; 9879 } 9880 9881 if (INTEL_GEN(dev_priv) >= 10 && 9882 val & PLANE_CTL_FLIP_HORIZONTAL) 9883 plane_config->rotation |= DRM_MODE_REFLECT_X; 9884 9885 base = I915_READ(PLANE_SURF(pipe, plane_id)) & 0xfffff000; 9886 plane_config->base = base; 9887 9888 offset = I915_READ(PLANE_OFFSET(pipe, plane_id)); 9889 9890 val = I915_READ(PLANE_SIZE(pipe, plane_id)); 9891 fb->height = ((val >> 16) & 0xfff) + 1; 9892 fb->width = ((val >> 0) & 0x1fff) + 1; 9893 9894 val = I915_READ(PLANE_STRIDE(pipe, plane_id)); 9895 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0); 9896 fb->pitches[0] = (val & 0x3ff) * stride_mult; 9897 9898 aligned_height = intel_fb_align_height(fb, 0, fb->height); 9899 9900 plane_config->size = fb->pitches[0] * aligned_height; 9901 9902 DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 9903 crtc->base.name, plane->base.name, fb->width, fb->height, 9904 fb->format->cpp[0] * 8, base, fb->pitches[0], 9905 plane_config->size); 9906 9907 plane_config->fb = intel_fb; 9908 return; 9909 9910 error: 9911 kfree(intel_fb); 9912 } 9913 9914 static void ironlake_get_pfit_config(struct intel_crtc *crtc, 9915 struct intel_crtc_state *pipe_config) 9916 { 9917 struct drm_device *dev = crtc->base.dev; 9918 struct drm_i915_private *dev_priv = to_i915(dev); 9919 u32 tmp; 9920 9921 tmp = I915_READ(PF_CTL(crtc->pipe)); 9922 9923 if (tmp & PF_ENABLE) { 9924 pipe_config->pch_pfit.enabled = true; 9925 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe)); 9926 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe)); 9927 9928 /* We currently do not free assignements of panel fitters on 9929 * ivb/hsw (since we don't use the higher upscaling modes which 9930 * differentiates them) so just WARN about this case for now. */ 9931 if (IS_GEN(dev_priv, 7)) { 9932 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) != 9933 PF_PIPE_SEL_IVB(crtc->pipe)); 9934 } 9935 } 9936 } 9937 9938 static bool ironlake_get_pipe_config(struct intel_crtc *crtc, 9939 struct intel_crtc_state *pipe_config) 9940 { 9941 struct drm_device *dev = crtc->base.dev; 9942 struct drm_i915_private *dev_priv = to_i915(dev); 9943 enum intel_display_power_domain power_domain; 9944 intel_wakeref_t wakeref; 9945 u32 tmp; 9946 bool ret; 9947 9948 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 9949 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 9950 if (!wakeref) 9951 return false; 9952 9953 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 9954 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 9955 pipe_config->shared_dpll = NULL; 9956 9957 ret = false; 9958 tmp = I915_READ(PIPECONF(crtc->pipe)); 9959 if (!(tmp & PIPECONF_ENABLE)) 9960 goto out; 9961 9962 switch (tmp & PIPECONF_BPC_MASK) { 9963 case PIPECONF_6BPC: 9964 pipe_config->pipe_bpp = 18; 9965 break; 9966 case PIPECONF_8BPC: 9967 pipe_config->pipe_bpp = 24; 9968 break; 9969 case PIPECONF_10BPC: 9970 pipe_config->pipe_bpp = 30; 9971 break; 9972 case PIPECONF_12BPC: 9973 pipe_config->pipe_bpp = 36; 9974 break; 9975 default: 9976 break; 9977 } 9978 9979 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 9980 pipe_config->limited_color_range = true; 9981 9982 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 9983 PIPECONF_GAMMA_MODE_SHIFT; 9984 9985 pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe)); 9986 9987 i9xx_get_pipe_color_config(pipe_config); 9988 intel_color_get_config(pipe_config); 9989 9990 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 9991 struct intel_shared_dpll *pll; 9992 enum intel_dpll_id pll_id; 9993 9994 pipe_config->has_pch_encoder = true; 9995 9996 tmp = I915_READ(FDI_RX_CTL(crtc->pipe)); 9997 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 9998 FDI_DP_PORT_WIDTH_SHIFT) + 1; 9999 10000 ironlake_get_fdi_m_n_config(crtc, pipe_config); 10001 10002 if (HAS_PCH_IBX(dev_priv)) { 10003 /* 10004 * The pipe->pch transcoder and pch transcoder->pll 10005 * mapping is fixed. 10006 */ 10007 pll_id = (enum intel_dpll_id) crtc->pipe; 10008 } else { 10009 tmp = I915_READ(PCH_DPLL_SEL); 10010 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 10011 pll_id = DPLL_ID_PCH_PLL_B; 10012 else 10013 pll_id= DPLL_ID_PCH_PLL_A; 10014 } 10015 10016 pipe_config->shared_dpll = 10017 intel_get_shared_dpll_by_id(dev_priv, pll_id); 10018 pll = pipe_config->shared_dpll; 10019 10020 WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll, 10021 &pipe_config->dpll_hw_state)); 10022 10023 tmp = pipe_config->dpll_hw_state.dpll; 10024 pipe_config->pixel_multiplier = 10025 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 10026 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 10027 10028 ironlake_pch_clock_get(crtc, pipe_config); 10029 } else { 10030 pipe_config->pixel_multiplier = 1; 10031 } 10032 10033 intel_get_pipe_timings(crtc, pipe_config); 10034 intel_get_pipe_src_size(crtc, pipe_config); 10035 10036 ironlake_get_pfit_config(crtc, pipe_config); 10037 10038 ret = true; 10039 10040 out: 10041 intel_display_power_put(dev_priv, power_domain, wakeref); 10042 10043 return ret; 10044 } 10045 static int haswell_crtc_compute_clock(struct intel_crtc *crtc, 10046 struct intel_crtc_state *crtc_state) 10047 { 10048 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10049 struct intel_atomic_state *state = 10050 to_intel_atomic_state(crtc_state->base.state); 10051 10052 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) || 10053 INTEL_GEN(dev_priv) >= 11) { 10054 struct intel_encoder *encoder = 10055 intel_get_crtc_new_encoder(state, crtc_state); 10056 10057 if (!intel_reserve_shared_dplls(state, crtc, encoder)) { 10058 DRM_DEBUG_KMS("failed to find PLL for pipe %c\n", 10059 pipe_name(crtc->pipe)); 10060 return -EINVAL; 10061 } 10062 } 10063 10064 return 0; 10065 } 10066 10067 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv, 10068 enum port port, 10069 struct intel_crtc_state *pipe_config) 10070 { 10071 enum intel_dpll_id id; 10072 u32 temp; 10073 10074 temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port); 10075 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port); 10076 10077 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2)) 10078 return; 10079 10080 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10081 } 10082 10083 static void icelake_get_ddi_pll(struct drm_i915_private *dev_priv, 10084 enum port port, 10085 struct intel_crtc_state *pipe_config) 10086 { 10087 enum phy phy = intel_port_to_phy(dev_priv, port); 10088 enum icl_port_dpll_id port_dpll_id; 10089 enum intel_dpll_id id; 10090 u32 temp; 10091 10092 if (intel_phy_is_combo(dev_priv, phy)) { 10093 temp = I915_READ(ICL_DPCLKA_CFGCR0) & 10094 ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); 10095 id = temp >> ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); 10096 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10097 } else if (intel_phy_is_tc(dev_priv, phy)) { 10098 u32 clk_sel = I915_READ(DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK; 10099 10100 if (clk_sel == DDI_CLK_SEL_MG) { 10101 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv, 10102 port)); 10103 port_dpll_id = ICL_PORT_DPLL_MG_PHY; 10104 } else { 10105 WARN_ON(clk_sel < DDI_CLK_SEL_TBT_162); 10106 id = DPLL_ID_ICL_TBTPLL; 10107 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10108 } 10109 } else { 10110 WARN(1, "Invalid port %x\n", port); 10111 return; 10112 } 10113 10114 pipe_config->icl_port_dplls[port_dpll_id].pll = 10115 intel_get_shared_dpll_by_id(dev_priv, id); 10116 10117 icl_set_active_port_dpll(pipe_config, port_dpll_id); 10118 } 10119 10120 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, 10121 enum port port, 10122 struct intel_crtc_state *pipe_config) 10123 { 10124 enum intel_dpll_id id; 10125 10126 switch (port) { 10127 case PORT_A: 10128 id = DPLL_ID_SKL_DPLL0; 10129 break; 10130 case PORT_B: 10131 id = DPLL_ID_SKL_DPLL1; 10132 break; 10133 case PORT_C: 10134 id = DPLL_ID_SKL_DPLL2; 10135 break; 10136 default: 10137 DRM_ERROR("Incorrect port type\n"); 10138 return; 10139 } 10140 10141 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10142 } 10143 10144 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv, 10145 enum port port, 10146 struct intel_crtc_state *pipe_config) 10147 { 10148 enum intel_dpll_id id; 10149 u32 temp; 10150 10151 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); 10152 id = temp >> (port * 3 + 1); 10153 10154 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3)) 10155 return; 10156 10157 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10158 } 10159 10160 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv, 10161 enum port port, 10162 struct intel_crtc_state *pipe_config) 10163 { 10164 enum intel_dpll_id id; 10165 u32 ddi_pll_sel = I915_READ(PORT_CLK_SEL(port)); 10166 10167 switch (ddi_pll_sel) { 10168 case PORT_CLK_SEL_WRPLL1: 10169 id = DPLL_ID_WRPLL1; 10170 break; 10171 case PORT_CLK_SEL_WRPLL2: 10172 id = DPLL_ID_WRPLL2; 10173 break; 10174 case PORT_CLK_SEL_SPLL: 10175 id = DPLL_ID_SPLL; 10176 break; 10177 case PORT_CLK_SEL_LCPLL_810: 10178 id = DPLL_ID_LCPLL_810; 10179 break; 10180 case PORT_CLK_SEL_LCPLL_1350: 10181 id = DPLL_ID_LCPLL_1350; 10182 break; 10183 case PORT_CLK_SEL_LCPLL_2700: 10184 id = DPLL_ID_LCPLL_2700; 10185 break; 10186 default: 10187 MISSING_CASE(ddi_pll_sel); 10188 /* fall through */ 10189 case PORT_CLK_SEL_NONE: 10190 return; 10191 } 10192 10193 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10194 } 10195 10196 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 10197 struct intel_crtc_state *pipe_config, 10198 u64 *power_domain_mask, 10199 intel_wakeref_t *wakerefs) 10200 { 10201 struct drm_device *dev = crtc->base.dev; 10202 struct drm_i915_private *dev_priv = to_i915(dev); 10203 enum intel_display_power_domain power_domain; 10204 unsigned long panel_transcoder_mask = 0; 10205 unsigned long enabled_panel_transcoders = 0; 10206 enum transcoder panel_transcoder; 10207 intel_wakeref_t wf; 10208 u32 tmp; 10209 10210 if (INTEL_GEN(dev_priv) >= 11) 10211 panel_transcoder_mask |= 10212 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 10213 10214 if (HAS_TRANSCODER_EDP(dev_priv)) 10215 panel_transcoder_mask |= BIT(TRANSCODER_EDP); 10216 10217 /* 10218 * The pipe->transcoder mapping is fixed with the exception of the eDP 10219 * and DSI transcoders handled below. 10220 */ 10221 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10222 10223 /* 10224 * XXX: Do intel_display_power_get_if_enabled before reading this (for 10225 * consistency and less surprising code; it's in always on power). 10226 */ 10227 for_each_set_bit(panel_transcoder, 10228 &panel_transcoder_mask, 10229 ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) { 10230 bool force_thru = false; 10231 enum pipe trans_pipe; 10232 10233 tmp = I915_READ(TRANS_DDI_FUNC_CTL(panel_transcoder)); 10234 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 10235 continue; 10236 10237 /* 10238 * Log all enabled ones, only use the first one. 10239 * 10240 * FIXME: This won't work for two separate DSI displays. 10241 */ 10242 enabled_panel_transcoders |= BIT(panel_transcoder); 10243 if (enabled_panel_transcoders != BIT(panel_transcoder)) 10244 continue; 10245 10246 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 10247 default: 10248 WARN(1, "unknown pipe linked to transcoder %s\n", 10249 transcoder_name(panel_transcoder)); 10250 /* fall through */ 10251 case TRANS_DDI_EDP_INPUT_A_ONOFF: 10252 force_thru = true; 10253 /* fall through */ 10254 case TRANS_DDI_EDP_INPUT_A_ON: 10255 trans_pipe = PIPE_A; 10256 break; 10257 case TRANS_DDI_EDP_INPUT_B_ONOFF: 10258 trans_pipe = PIPE_B; 10259 break; 10260 case TRANS_DDI_EDP_INPUT_C_ONOFF: 10261 trans_pipe = PIPE_C; 10262 break; 10263 } 10264 10265 if (trans_pipe == crtc->pipe) { 10266 pipe_config->cpu_transcoder = panel_transcoder; 10267 pipe_config->pch_pfit.force_thru = force_thru; 10268 } 10269 } 10270 10271 /* 10272 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 10273 */ 10274 WARN_ON((enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 10275 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 10276 10277 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder); 10278 WARN_ON(*power_domain_mask & BIT_ULL(power_domain)); 10279 10280 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10281 if (!wf) 10282 return false; 10283 10284 wakerefs[power_domain] = wf; 10285 *power_domain_mask |= BIT_ULL(power_domain); 10286 10287 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder)); 10288 10289 return tmp & PIPECONF_ENABLE; 10290 } 10291 10292 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 10293 struct intel_crtc_state *pipe_config, 10294 u64 *power_domain_mask, 10295 intel_wakeref_t *wakerefs) 10296 { 10297 struct drm_device *dev = crtc->base.dev; 10298 struct drm_i915_private *dev_priv = to_i915(dev); 10299 enum intel_display_power_domain power_domain; 10300 enum transcoder cpu_transcoder; 10301 intel_wakeref_t wf; 10302 enum port port; 10303 u32 tmp; 10304 10305 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 10306 if (port == PORT_A) 10307 cpu_transcoder = TRANSCODER_DSI_A; 10308 else 10309 cpu_transcoder = TRANSCODER_DSI_C; 10310 10311 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 10312 WARN_ON(*power_domain_mask & BIT_ULL(power_domain)); 10313 10314 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10315 if (!wf) 10316 continue; 10317 10318 wakerefs[power_domain] = wf; 10319 *power_domain_mask |= BIT_ULL(power_domain); 10320 10321 /* 10322 * The PLL needs to be enabled with a valid divider 10323 * configuration, otherwise accessing DSI registers will hang 10324 * the machine. See BSpec North Display Engine 10325 * registers/MIPI[BXT]. We can break out here early, since we 10326 * need the same DSI PLL to be enabled for both DSI ports. 10327 */ 10328 if (!bxt_dsi_pll_is_enabled(dev_priv)) 10329 break; 10330 10331 /* XXX: this works for video mode only */ 10332 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port)); 10333 if (!(tmp & DPI_ENABLE)) 10334 continue; 10335 10336 tmp = I915_READ(MIPI_CTRL(port)); 10337 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 10338 continue; 10339 10340 pipe_config->cpu_transcoder = cpu_transcoder; 10341 break; 10342 } 10343 10344 return transcoder_is_dsi(pipe_config->cpu_transcoder); 10345 } 10346 10347 static void haswell_get_ddi_port_state(struct intel_crtc *crtc, 10348 struct intel_crtc_state *pipe_config) 10349 { 10350 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10351 struct intel_shared_dpll *pll; 10352 enum port port; 10353 u32 tmp; 10354 10355 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder)); 10356 10357 if (INTEL_GEN(dev_priv) >= 12) 10358 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 10359 else 10360 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 10361 10362 if (INTEL_GEN(dev_priv) >= 11) 10363 icelake_get_ddi_pll(dev_priv, port, pipe_config); 10364 else if (IS_CANNONLAKE(dev_priv)) 10365 cannonlake_get_ddi_pll(dev_priv, port, pipe_config); 10366 else if (IS_GEN9_BC(dev_priv)) 10367 skylake_get_ddi_pll(dev_priv, port, pipe_config); 10368 else if (IS_GEN9_LP(dev_priv)) 10369 bxt_get_ddi_pll(dev_priv, port, pipe_config); 10370 else 10371 haswell_get_ddi_pll(dev_priv, port, pipe_config); 10372 10373 pll = pipe_config->shared_dpll; 10374 if (pll) { 10375 WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll, 10376 &pipe_config->dpll_hw_state)); 10377 } 10378 10379 /* 10380 * Haswell has only FDI/PCH transcoder A. It is which is connected to 10381 * DDI E. So just check whether this pipe is wired to DDI E and whether 10382 * the PCH transcoder is on. 10383 */ 10384 if (INTEL_GEN(dev_priv) < 9 && 10385 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) { 10386 pipe_config->has_pch_encoder = true; 10387 10388 tmp = I915_READ(FDI_RX_CTL(PIPE_A)); 10389 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 10390 FDI_DP_PORT_WIDTH_SHIFT) + 1; 10391 10392 ironlake_get_fdi_m_n_config(crtc, pipe_config); 10393 } 10394 } 10395 10396 static bool haswell_get_pipe_config(struct intel_crtc *crtc, 10397 struct intel_crtc_state *pipe_config) 10398 { 10399 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10400 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf; 10401 enum intel_display_power_domain power_domain; 10402 u64 power_domain_mask; 10403 bool active; 10404 10405 intel_crtc_init_scalers(crtc, pipe_config); 10406 10407 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 10408 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10409 if (!wf) 10410 return false; 10411 10412 wakerefs[power_domain] = wf; 10413 power_domain_mask = BIT_ULL(power_domain); 10414 10415 pipe_config->shared_dpll = NULL; 10416 10417 active = hsw_get_transcoder_state(crtc, pipe_config, 10418 &power_domain_mask, wakerefs); 10419 10420 if (IS_GEN9_LP(dev_priv) && 10421 bxt_get_dsi_transcoder_state(crtc, pipe_config, 10422 &power_domain_mask, wakerefs)) { 10423 WARN_ON(active); 10424 active = true; 10425 } 10426 10427 if (!active) 10428 goto out; 10429 10430 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 10431 INTEL_GEN(dev_priv) >= 11) { 10432 haswell_get_ddi_port_state(crtc, pipe_config); 10433 intel_get_pipe_timings(crtc, pipe_config); 10434 } 10435 10436 intel_get_pipe_src_size(crtc, pipe_config); 10437 intel_get_crtc_ycbcr_config(crtc, pipe_config); 10438 10439 pipe_config->gamma_mode = I915_READ(GAMMA_MODE(crtc->pipe)); 10440 10441 pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe)); 10442 10443 if (INTEL_GEN(dev_priv) >= 9) { 10444 u32 tmp = I915_READ(SKL_BOTTOM_COLOR(crtc->pipe)); 10445 10446 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 10447 pipe_config->gamma_enable = true; 10448 10449 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 10450 pipe_config->csc_enable = true; 10451 } else { 10452 i9xx_get_pipe_color_config(pipe_config); 10453 } 10454 10455 intel_color_get_config(pipe_config); 10456 10457 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); 10458 WARN_ON(power_domain_mask & BIT_ULL(power_domain)); 10459 10460 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10461 if (wf) { 10462 wakerefs[power_domain] = wf; 10463 power_domain_mask |= BIT_ULL(power_domain); 10464 10465 if (INTEL_GEN(dev_priv) >= 9) 10466 skylake_get_pfit_config(crtc, pipe_config); 10467 else 10468 ironlake_get_pfit_config(crtc, pipe_config); 10469 } 10470 10471 if (hsw_crtc_supports_ips(crtc)) { 10472 if (IS_HASWELL(dev_priv)) 10473 pipe_config->ips_enabled = I915_READ(IPS_CTL) & IPS_ENABLE; 10474 else { 10475 /* 10476 * We cannot readout IPS state on broadwell, set to 10477 * true so we can set it to a defined state on first 10478 * commit. 10479 */ 10480 pipe_config->ips_enabled = true; 10481 } 10482 } 10483 10484 if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 10485 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 10486 pipe_config->pixel_multiplier = 10487 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 10488 } else { 10489 pipe_config->pixel_multiplier = 1; 10490 } 10491 10492 out: 10493 for_each_power_domain(power_domain, power_domain_mask) 10494 intel_display_power_put(dev_priv, 10495 power_domain, wakerefs[power_domain]); 10496 10497 return active; 10498 } 10499 10500 static u32 intel_cursor_base(const struct intel_plane_state *plane_state) 10501 { 10502 struct drm_i915_private *dev_priv = 10503 to_i915(plane_state->base.plane->dev); 10504 const struct drm_framebuffer *fb = plane_state->base.fb; 10505 const struct drm_i915_gem_object *obj = intel_fb_obj(fb); 10506 u32 base; 10507 10508 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical) 10509 base = obj->phys_handle->busaddr; 10510 else 10511 base = intel_plane_ggtt_offset(plane_state); 10512 10513 base += plane_state->color_plane[0].offset; 10514 10515 /* ILK+ do this automagically */ 10516 if (HAS_GMCH(dev_priv) && 10517 plane_state->base.rotation & DRM_MODE_ROTATE_180) 10518 base += (plane_state->base.crtc_h * 10519 plane_state->base.crtc_w - 1) * fb->format->cpp[0]; 10520 10521 return base; 10522 } 10523 10524 static u32 intel_cursor_position(const struct intel_plane_state *plane_state) 10525 { 10526 int x = plane_state->base.crtc_x; 10527 int y = plane_state->base.crtc_y; 10528 u32 pos = 0; 10529 10530 if (x < 0) { 10531 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; 10532 x = -x; 10533 } 10534 pos |= x << CURSOR_X_SHIFT; 10535 10536 if (y < 0) { 10537 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; 10538 y = -y; 10539 } 10540 pos |= y << CURSOR_Y_SHIFT; 10541 10542 return pos; 10543 } 10544 10545 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state) 10546 { 10547 const struct drm_mode_config *config = 10548 &plane_state->base.plane->dev->mode_config; 10549 int width = plane_state->base.crtc_w; 10550 int height = plane_state->base.crtc_h; 10551 10552 return width > 0 && width <= config->cursor_width && 10553 height > 0 && height <= config->cursor_height; 10554 } 10555 10556 static int intel_cursor_check_surface(struct intel_plane_state *plane_state) 10557 { 10558 int src_x, src_y; 10559 u32 offset; 10560 int ret; 10561 10562 ret = intel_plane_compute_gtt(plane_state); 10563 if (ret) 10564 return ret; 10565 10566 if (!plane_state->base.visible) 10567 return 0; 10568 10569 src_x = plane_state->base.src_x >> 16; 10570 src_y = plane_state->base.src_y >> 16; 10571 10572 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 10573 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 10574 plane_state, 0); 10575 10576 if (src_x != 0 || src_y != 0) { 10577 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n"); 10578 return -EINVAL; 10579 } 10580 10581 plane_state->color_plane[0].offset = offset; 10582 10583 return 0; 10584 } 10585 10586 static int intel_check_cursor(struct intel_crtc_state *crtc_state, 10587 struct intel_plane_state *plane_state) 10588 { 10589 const struct drm_framebuffer *fb = plane_state->base.fb; 10590 int ret; 10591 10592 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) { 10593 DRM_DEBUG_KMS("cursor cannot be tiled\n"); 10594 return -EINVAL; 10595 } 10596 10597 ret = drm_atomic_helper_check_plane_state(&plane_state->base, 10598 &crtc_state->base, 10599 DRM_PLANE_HELPER_NO_SCALING, 10600 DRM_PLANE_HELPER_NO_SCALING, 10601 true, true); 10602 if (ret) 10603 return ret; 10604 10605 ret = intel_cursor_check_surface(plane_state); 10606 if (ret) 10607 return ret; 10608 10609 if (!plane_state->base.visible) 10610 return 0; 10611 10612 ret = intel_plane_check_src_coordinates(plane_state); 10613 if (ret) 10614 return ret; 10615 10616 return 0; 10617 } 10618 10619 static unsigned int 10620 i845_cursor_max_stride(struct intel_plane *plane, 10621 u32 pixel_format, u64 modifier, 10622 unsigned int rotation) 10623 { 10624 return 2048; 10625 } 10626 10627 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 10628 { 10629 u32 cntl = 0; 10630 10631 if (crtc_state->gamma_enable) 10632 cntl |= CURSOR_GAMMA_ENABLE; 10633 10634 return cntl; 10635 } 10636 10637 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state, 10638 const struct intel_plane_state *plane_state) 10639 { 10640 return CURSOR_ENABLE | 10641 CURSOR_FORMAT_ARGB | 10642 CURSOR_STRIDE(plane_state->color_plane[0].stride); 10643 } 10644 10645 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state) 10646 { 10647 int width = plane_state->base.crtc_w; 10648 10649 /* 10650 * 845g/865g are only limited by the width of their cursors, 10651 * the height is arbitrary up to the precision of the register. 10652 */ 10653 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64); 10654 } 10655 10656 static int i845_check_cursor(struct intel_crtc_state *crtc_state, 10657 struct intel_plane_state *plane_state) 10658 { 10659 const struct drm_framebuffer *fb = plane_state->base.fb; 10660 int ret; 10661 10662 ret = intel_check_cursor(crtc_state, plane_state); 10663 if (ret) 10664 return ret; 10665 10666 /* if we want to turn off the cursor ignore width and height */ 10667 if (!fb) 10668 return 0; 10669 10670 /* Check for which cursor types we support */ 10671 if (!i845_cursor_size_ok(plane_state)) { 10672 DRM_DEBUG("Cursor dimension %dx%d not supported\n", 10673 plane_state->base.crtc_w, 10674 plane_state->base.crtc_h); 10675 return -EINVAL; 10676 } 10677 10678 WARN_ON(plane_state->base.visible && 10679 plane_state->color_plane[0].stride != fb->pitches[0]); 10680 10681 switch (fb->pitches[0]) { 10682 case 256: 10683 case 512: 10684 case 1024: 10685 case 2048: 10686 break; 10687 default: 10688 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n", 10689 fb->pitches[0]); 10690 return -EINVAL; 10691 } 10692 10693 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state); 10694 10695 return 0; 10696 } 10697 10698 static void i845_update_cursor(struct intel_plane *plane, 10699 const struct intel_crtc_state *crtc_state, 10700 const struct intel_plane_state *plane_state) 10701 { 10702 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 10703 u32 cntl = 0, base = 0, pos = 0, size = 0; 10704 unsigned long irqflags; 10705 10706 if (plane_state && plane_state->base.visible) { 10707 unsigned int width = plane_state->base.crtc_w; 10708 unsigned int height = plane_state->base.crtc_h; 10709 10710 cntl = plane_state->ctl | 10711 i845_cursor_ctl_crtc(crtc_state); 10712 10713 size = (height << 12) | width; 10714 10715 base = intel_cursor_base(plane_state); 10716 pos = intel_cursor_position(plane_state); 10717 } 10718 10719 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 10720 10721 /* On these chipsets we can only modify the base/size/stride 10722 * whilst the cursor is disabled. 10723 */ 10724 if (plane->cursor.base != base || 10725 plane->cursor.size != size || 10726 plane->cursor.cntl != cntl) { 10727 I915_WRITE_FW(CURCNTR(PIPE_A), 0); 10728 I915_WRITE_FW(CURBASE(PIPE_A), base); 10729 I915_WRITE_FW(CURSIZE, size); 10730 I915_WRITE_FW(CURPOS(PIPE_A), pos); 10731 I915_WRITE_FW(CURCNTR(PIPE_A), cntl); 10732 10733 plane->cursor.base = base; 10734 plane->cursor.size = size; 10735 plane->cursor.cntl = cntl; 10736 } else { 10737 I915_WRITE_FW(CURPOS(PIPE_A), pos); 10738 } 10739 10740 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 10741 } 10742 10743 static void i845_disable_cursor(struct intel_plane *plane, 10744 const struct intel_crtc_state *crtc_state) 10745 { 10746 i845_update_cursor(plane, crtc_state, NULL); 10747 } 10748 10749 static bool i845_cursor_get_hw_state(struct intel_plane *plane, 10750 enum pipe *pipe) 10751 { 10752 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 10753 enum intel_display_power_domain power_domain; 10754 intel_wakeref_t wakeref; 10755 bool ret; 10756 10757 power_domain = POWER_DOMAIN_PIPE(PIPE_A); 10758 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 10759 if (!wakeref) 10760 return false; 10761 10762 ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE; 10763 10764 *pipe = PIPE_A; 10765 10766 intel_display_power_put(dev_priv, power_domain, wakeref); 10767 10768 return ret; 10769 } 10770 10771 static unsigned int 10772 i9xx_cursor_max_stride(struct intel_plane *plane, 10773 u32 pixel_format, u64 modifier, 10774 unsigned int rotation) 10775 { 10776 return plane->base.dev->mode_config.cursor_width * 4; 10777 } 10778 10779 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 10780 { 10781 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 10782 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10783 u32 cntl = 0; 10784 10785 if (INTEL_GEN(dev_priv) >= 11) 10786 return cntl; 10787 10788 if (crtc_state->gamma_enable) 10789 cntl = MCURSOR_GAMMA_ENABLE; 10790 10791 if (crtc_state->csc_enable) 10792 cntl |= MCURSOR_PIPE_CSC_ENABLE; 10793 10794 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 10795 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe); 10796 10797 return cntl; 10798 } 10799 10800 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state, 10801 const struct intel_plane_state *plane_state) 10802 { 10803 struct drm_i915_private *dev_priv = 10804 to_i915(plane_state->base.plane->dev); 10805 u32 cntl = 0; 10806 10807 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 10808 cntl |= MCURSOR_TRICKLE_FEED_DISABLE; 10809 10810 switch (plane_state->base.crtc_w) { 10811 case 64: 10812 cntl |= MCURSOR_MODE_64_ARGB_AX; 10813 break; 10814 case 128: 10815 cntl |= MCURSOR_MODE_128_ARGB_AX; 10816 break; 10817 case 256: 10818 cntl |= MCURSOR_MODE_256_ARGB_AX; 10819 break; 10820 default: 10821 MISSING_CASE(plane_state->base.crtc_w); 10822 return 0; 10823 } 10824 10825 if (plane_state->base.rotation & DRM_MODE_ROTATE_180) 10826 cntl |= MCURSOR_ROTATE_180; 10827 10828 return cntl; 10829 } 10830 10831 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state) 10832 { 10833 struct drm_i915_private *dev_priv = 10834 to_i915(plane_state->base.plane->dev); 10835 int width = plane_state->base.crtc_w; 10836 int height = plane_state->base.crtc_h; 10837 10838 if (!intel_cursor_size_ok(plane_state)) 10839 return false; 10840 10841 /* Cursor width is limited to a few power-of-two sizes */ 10842 switch (width) { 10843 case 256: 10844 case 128: 10845 case 64: 10846 break; 10847 default: 10848 return false; 10849 } 10850 10851 /* 10852 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor 10853 * height from 8 lines up to the cursor width, when the 10854 * cursor is not rotated. Everything else requires square 10855 * cursors. 10856 */ 10857 if (HAS_CUR_FBC(dev_priv) && 10858 plane_state->base.rotation & DRM_MODE_ROTATE_0) { 10859 if (height < 8 || height > width) 10860 return false; 10861 } else { 10862 if (height != width) 10863 return false; 10864 } 10865 10866 return true; 10867 } 10868 10869 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state, 10870 struct intel_plane_state *plane_state) 10871 { 10872 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 10873 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 10874 const struct drm_framebuffer *fb = plane_state->base.fb; 10875 enum pipe pipe = plane->pipe; 10876 int ret; 10877 10878 ret = intel_check_cursor(crtc_state, plane_state); 10879 if (ret) 10880 return ret; 10881 10882 /* if we want to turn off the cursor ignore width and height */ 10883 if (!fb) 10884 return 0; 10885 10886 /* Check for which cursor types we support */ 10887 if (!i9xx_cursor_size_ok(plane_state)) { 10888 DRM_DEBUG("Cursor dimension %dx%d not supported\n", 10889 plane_state->base.crtc_w, 10890 plane_state->base.crtc_h); 10891 return -EINVAL; 10892 } 10893 10894 WARN_ON(plane_state->base.visible && 10895 plane_state->color_plane[0].stride != fb->pitches[0]); 10896 10897 if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) { 10898 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n", 10899 fb->pitches[0], plane_state->base.crtc_w); 10900 return -EINVAL; 10901 } 10902 10903 /* 10904 * There's something wrong with the cursor on CHV pipe C. 10905 * If it straddles the left edge of the screen then 10906 * moving it away from the edge or disabling it often 10907 * results in a pipe underrun, and often that can lead to 10908 * dead pipe (constant underrun reported, and it scans 10909 * out just a solid color). To recover from that, the 10910 * display power well must be turned off and on again. 10911 * Refuse the put the cursor into that compromised position. 10912 */ 10913 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C && 10914 plane_state->base.visible && plane_state->base.crtc_x < 0) { 10915 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n"); 10916 return -EINVAL; 10917 } 10918 10919 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state); 10920 10921 return 0; 10922 } 10923 10924 static void i9xx_update_cursor(struct intel_plane *plane, 10925 const struct intel_crtc_state *crtc_state, 10926 const struct intel_plane_state *plane_state) 10927 { 10928 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 10929 enum pipe pipe = plane->pipe; 10930 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0; 10931 unsigned long irqflags; 10932 10933 if (plane_state && plane_state->base.visible) { 10934 cntl = plane_state->ctl | 10935 i9xx_cursor_ctl_crtc(crtc_state); 10936 10937 if (plane_state->base.crtc_h != plane_state->base.crtc_w) 10938 fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1); 10939 10940 base = intel_cursor_base(plane_state); 10941 pos = intel_cursor_position(plane_state); 10942 } 10943 10944 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 10945 10946 /* 10947 * On some platforms writing CURCNTR first will also 10948 * cause CURPOS to be armed by the CURBASE write. 10949 * Without the CURCNTR write the CURPOS write would 10950 * arm itself. Thus we always update CURCNTR before 10951 * CURPOS. 10952 * 10953 * On other platforms CURPOS always requires the 10954 * CURBASE write to arm the update. Additonally 10955 * a write to any of the cursor register will cancel 10956 * an already armed cursor update. Thus leaving out 10957 * the CURBASE write after CURPOS could lead to a 10958 * cursor that doesn't appear to move, or even change 10959 * shape. Thus we always write CURBASE. 10960 * 10961 * The other registers are armed by by the CURBASE write 10962 * except when the plane is getting enabled at which time 10963 * the CURCNTR write arms the update. 10964 */ 10965 10966 if (INTEL_GEN(dev_priv) >= 9) 10967 skl_write_cursor_wm(plane, crtc_state); 10968 10969 if (plane->cursor.base != base || 10970 plane->cursor.size != fbc_ctl || 10971 plane->cursor.cntl != cntl) { 10972 if (HAS_CUR_FBC(dev_priv)) 10973 I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl); 10974 I915_WRITE_FW(CURCNTR(pipe), cntl); 10975 I915_WRITE_FW(CURPOS(pipe), pos); 10976 I915_WRITE_FW(CURBASE(pipe), base); 10977 10978 plane->cursor.base = base; 10979 plane->cursor.size = fbc_ctl; 10980 plane->cursor.cntl = cntl; 10981 } else { 10982 I915_WRITE_FW(CURPOS(pipe), pos); 10983 I915_WRITE_FW(CURBASE(pipe), base); 10984 } 10985 10986 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 10987 } 10988 10989 static void i9xx_disable_cursor(struct intel_plane *plane, 10990 const struct intel_crtc_state *crtc_state) 10991 { 10992 i9xx_update_cursor(plane, crtc_state, NULL); 10993 } 10994 10995 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane, 10996 enum pipe *pipe) 10997 { 10998 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 10999 enum intel_display_power_domain power_domain; 11000 intel_wakeref_t wakeref; 11001 bool ret; 11002 u32 val; 11003 11004 /* 11005 * Not 100% correct for planes that can move between pipes, 11006 * but that's only the case for gen2-3 which don't have any 11007 * display power wells. 11008 */ 11009 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 11010 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11011 if (!wakeref) 11012 return false; 11013 11014 val = I915_READ(CURCNTR(plane->pipe)); 11015 11016 ret = val & MCURSOR_MODE; 11017 11018 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 11019 *pipe = plane->pipe; 11020 else 11021 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >> 11022 MCURSOR_PIPE_SELECT_SHIFT; 11023 11024 intel_display_power_put(dev_priv, power_domain, wakeref); 11025 11026 return ret; 11027 } 11028 11029 /* VESA 640x480x72Hz mode to set on the pipe */ 11030 static const struct drm_display_mode load_detect_mode = { 11031 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 11032 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 11033 }; 11034 11035 struct drm_framebuffer * 11036 intel_framebuffer_create(struct drm_i915_gem_object *obj, 11037 struct drm_mode_fb_cmd2 *mode_cmd) 11038 { 11039 struct intel_framebuffer *intel_fb; 11040 int ret; 11041 11042 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 11043 if (!intel_fb) 11044 return ERR_PTR(-ENOMEM); 11045 11046 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 11047 if (ret) 11048 goto err; 11049 11050 return &intel_fb->base; 11051 11052 err: 11053 kfree(intel_fb); 11054 return ERR_PTR(ret); 11055 } 11056 11057 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 11058 struct drm_crtc *crtc) 11059 { 11060 struct drm_plane *plane; 11061 struct drm_plane_state *plane_state; 11062 int ret, i; 11063 11064 ret = drm_atomic_add_affected_planes(state, crtc); 11065 if (ret) 11066 return ret; 11067 11068 for_each_new_plane_in_state(state, plane, plane_state, i) { 11069 if (plane_state->crtc != crtc) 11070 continue; 11071 11072 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 11073 if (ret) 11074 return ret; 11075 11076 drm_atomic_set_fb_for_plane(plane_state, NULL); 11077 } 11078 11079 return 0; 11080 } 11081 11082 int intel_get_load_detect_pipe(struct drm_connector *connector, 11083 const struct drm_display_mode *mode, 11084 struct intel_load_detect_pipe *old, 11085 struct drm_modeset_acquire_ctx *ctx) 11086 { 11087 struct intel_crtc *intel_crtc; 11088 struct intel_encoder *intel_encoder = 11089 intel_attached_encoder(connector); 11090 struct drm_crtc *possible_crtc; 11091 struct drm_encoder *encoder = &intel_encoder->base; 11092 struct drm_crtc *crtc = NULL; 11093 struct drm_device *dev = encoder->dev; 11094 struct drm_i915_private *dev_priv = to_i915(dev); 11095 struct drm_mode_config *config = &dev->mode_config; 11096 struct drm_atomic_state *state = NULL, *restore_state = NULL; 11097 struct drm_connector_state *connector_state; 11098 struct intel_crtc_state *crtc_state; 11099 int ret, i = -1; 11100 11101 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 11102 connector->base.id, connector->name, 11103 encoder->base.id, encoder->name); 11104 11105 old->restore_state = NULL; 11106 11107 WARN_ON(!drm_modeset_is_locked(&config->connection_mutex)); 11108 11109 /* 11110 * Algorithm gets a little messy: 11111 * 11112 * - if the connector already has an assigned crtc, use it (but make 11113 * sure it's on first) 11114 * 11115 * - try to find the first unused crtc that can drive this connector, 11116 * and use that if we find one 11117 */ 11118 11119 /* See if we already have a CRTC for this connector */ 11120 if (connector->state->crtc) { 11121 crtc = connector->state->crtc; 11122 11123 ret = drm_modeset_lock(&crtc->mutex, ctx); 11124 if (ret) 11125 goto fail; 11126 11127 /* Make sure the crtc and connector are running */ 11128 goto found; 11129 } 11130 11131 /* Find an unused one (if possible) */ 11132 for_each_crtc(dev, possible_crtc) { 11133 i++; 11134 if (!(encoder->possible_crtcs & (1 << i))) 11135 continue; 11136 11137 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 11138 if (ret) 11139 goto fail; 11140 11141 if (possible_crtc->state->enable) { 11142 drm_modeset_unlock(&possible_crtc->mutex); 11143 continue; 11144 } 11145 11146 crtc = possible_crtc; 11147 break; 11148 } 11149 11150 /* 11151 * If we didn't find an unused CRTC, don't use any. 11152 */ 11153 if (!crtc) { 11154 DRM_DEBUG_KMS("no pipe available for load-detect\n"); 11155 ret = -ENODEV; 11156 goto fail; 11157 } 11158 11159 found: 11160 intel_crtc = to_intel_crtc(crtc); 11161 11162 state = drm_atomic_state_alloc(dev); 11163 restore_state = drm_atomic_state_alloc(dev); 11164 if (!state || !restore_state) { 11165 ret = -ENOMEM; 11166 goto fail; 11167 } 11168 11169 state->acquire_ctx = ctx; 11170 restore_state->acquire_ctx = ctx; 11171 11172 connector_state = drm_atomic_get_connector_state(state, connector); 11173 if (IS_ERR(connector_state)) { 11174 ret = PTR_ERR(connector_state); 11175 goto fail; 11176 } 11177 11178 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 11179 if (ret) 11180 goto fail; 11181 11182 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 11183 if (IS_ERR(crtc_state)) { 11184 ret = PTR_ERR(crtc_state); 11185 goto fail; 11186 } 11187 11188 crtc_state->base.active = crtc_state->base.enable = true; 11189 11190 if (!mode) 11191 mode = &load_detect_mode; 11192 11193 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode); 11194 if (ret) 11195 goto fail; 11196 11197 ret = intel_modeset_disable_planes(state, crtc); 11198 if (ret) 11199 goto fail; 11200 11201 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 11202 if (!ret) 11203 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 11204 if (!ret) 11205 ret = drm_atomic_add_affected_planes(restore_state, crtc); 11206 if (ret) { 11207 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret); 11208 goto fail; 11209 } 11210 11211 ret = drm_atomic_commit(state); 11212 if (ret) { 11213 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n"); 11214 goto fail; 11215 } 11216 11217 old->restore_state = restore_state; 11218 drm_atomic_state_put(state); 11219 11220 /* let the connector get through one full cycle before testing */ 11221 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 11222 return true; 11223 11224 fail: 11225 if (state) { 11226 drm_atomic_state_put(state); 11227 state = NULL; 11228 } 11229 if (restore_state) { 11230 drm_atomic_state_put(restore_state); 11231 restore_state = NULL; 11232 } 11233 11234 if (ret == -EDEADLK) 11235 return ret; 11236 11237 return false; 11238 } 11239 11240 void intel_release_load_detect_pipe(struct drm_connector *connector, 11241 struct intel_load_detect_pipe *old, 11242 struct drm_modeset_acquire_ctx *ctx) 11243 { 11244 struct intel_encoder *intel_encoder = 11245 intel_attached_encoder(connector); 11246 struct drm_encoder *encoder = &intel_encoder->base; 11247 struct drm_atomic_state *state = old->restore_state; 11248 int ret; 11249 11250 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 11251 connector->base.id, connector->name, 11252 encoder->base.id, encoder->name); 11253 11254 if (!state) 11255 return; 11256 11257 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 11258 if (ret) 11259 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret); 11260 drm_atomic_state_put(state); 11261 } 11262 11263 static int i9xx_pll_refclk(struct drm_device *dev, 11264 const struct intel_crtc_state *pipe_config) 11265 { 11266 struct drm_i915_private *dev_priv = to_i915(dev); 11267 u32 dpll = pipe_config->dpll_hw_state.dpll; 11268 11269 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 11270 return dev_priv->vbt.lvds_ssc_freq; 11271 else if (HAS_PCH_SPLIT(dev_priv)) 11272 return 120000; 11273 else if (!IS_GEN(dev_priv, 2)) 11274 return 96000; 11275 else 11276 return 48000; 11277 } 11278 11279 /* Returns the clock of the currently programmed mode of the given pipe. */ 11280 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 11281 struct intel_crtc_state *pipe_config) 11282 { 11283 struct drm_device *dev = crtc->base.dev; 11284 struct drm_i915_private *dev_priv = to_i915(dev); 11285 int pipe = pipe_config->cpu_transcoder; 11286 u32 dpll = pipe_config->dpll_hw_state.dpll; 11287 u32 fp; 11288 struct dpll clock; 11289 int port_clock; 11290 int refclk = i9xx_pll_refclk(dev, pipe_config); 11291 11292 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 11293 fp = pipe_config->dpll_hw_state.fp0; 11294 else 11295 fp = pipe_config->dpll_hw_state.fp1; 11296 11297 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 11298 if (IS_PINEVIEW(dev_priv)) { 11299 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 11300 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 11301 } else { 11302 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 11303 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 11304 } 11305 11306 if (!IS_GEN(dev_priv, 2)) { 11307 if (IS_PINEVIEW(dev_priv)) 11308 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 11309 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 11310 else 11311 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 11312 DPLL_FPA01_P1_POST_DIV_SHIFT); 11313 11314 switch (dpll & DPLL_MODE_MASK) { 11315 case DPLLB_MODE_DAC_SERIAL: 11316 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 11317 5 : 10; 11318 break; 11319 case DPLLB_MODE_LVDS: 11320 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 11321 7 : 14; 11322 break; 11323 default: 11324 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " 11325 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 11326 return; 11327 } 11328 11329 if (IS_PINEVIEW(dev_priv)) 11330 port_clock = pnv_calc_dpll_params(refclk, &clock); 11331 else 11332 port_clock = i9xx_calc_dpll_params(refclk, &clock); 11333 } else { 11334 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS); 11335 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 11336 11337 if (is_lvds) { 11338 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 11339 DPLL_FPA01_P1_POST_DIV_SHIFT); 11340 11341 if (lvds & LVDS_CLKB_POWER_UP) 11342 clock.p2 = 7; 11343 else 11344 clock.p2 = 14; 11345 } else { 11346 if (dpll & PLL_P1_DIVIDE_BY_TWO) 11347 clock.p1 = 2; 11348 else { 11349 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 11350 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 11351 } 11352 if (dpll & PLL_P2_DIVIDE_BY_4) 11353 clock.p2 = 4; 11354 else 11355 clock.p2 = 2; 11356 } 11357 11358 port_clock = i9xx_calc_dpll_params(refclk, &clock); 11359 } 11360 11361 /* 11362 * This value includes pixel_multiplier. We will use 11363 * port_clock to compute adjusted_mode.crtc_clock in the 11364 * encoder's get_config() function. 11365 */ 11366 pipe_config->port_clock = port_clock; 11367 } 11368 11369 int intel_dotclock_calculate(int link_freq, 11370 const struct intel_link_m_n *m_n) 11371 { 11372 /* 11373 * The calculation for the data clock is: 11374 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 11375 * But we want to avoid losing precison if possible, so: 11376 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 11377 * 11378 * and the link clock is simpler: 11379 * link_clock = (m * link_clock) / n 11380 */ 11381 11382 if (!m_n->link_n) 11383 return 0; 11384 11385 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 11386 } 11387 11388 static void ironlake_pch_clock_get(struct intel_crtc *crtc, 11389 struct intel_crtc_state *pipe_config) 11390 { 11391 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11392 11393 /* read out port_clock from the DPLL */ 11394 i9xx_crtc_clock_get(crtc, pipe_config); 11395 11396 /* 11397 * In case there is an active pipe without active ports, 11398 * we may need some idea for the dotclock anyway. 11399 * Calculate one based on the FDI configuration. 11400 */ 11401 pipe_config->base.adjusted_mode.crtc_clock = 11402 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 11403 &pipe_config->fdi_m_n); 11404 } 11405 11406 /* Returns the currently programmed mode of the given encoder. */ 11407 struct drm_display_mode * 11408 intel_encoder_current_mode(struct intel_encoder *encoder) 11409 { 11410 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 11411 struct intel_crtc_state *crtc_state; 11412 struct drm_display_mode *mode; 11413 struct intel_crtc *crtc; 11414 enum pipe pipe; 11415 11416 if (!encoder->get_hw_state(encoder, &pipe)) 11417 return NULL; 11418 11419 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 11420 11421 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 11422 if (!mode) 11423 return NULL; 11424 11425 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL); 11426 if (!crtc_state) { 11427 kfree(mode); 11428 return NULL; 11429 } 11430 11431 crtc_state->base.crtc = &crtc->base; 11432 11433 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) { 11434 kfree(crtc_state); 11435 kfree(mode); 11436 return NULL; 11437 } 11438 11439 encoder->get_config(encoder, crtc_state); 11440 11441 intel_mode_from_pipe_config(mode, crtc_state); 11442 11443 kfree(crtc_state); 11444 11445 return mode; 11446 } 11447 11448 static void intel_crtc_destroy(struct drm_crtc *crtc) 11449 { 11450 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 11451 11452 drm_crtc_cleanup(crtc); 11453 kfree(intel_crtc); 11454 } 11455 11456 /** 11457 * intel_wm_need_update - Check whether watermarks need updating 11458 * @cur: current plane state 11459 * @new: new plane state 11460 * 11461 * Check current plane state versus the new one to determine whether 11462 * watermarks need to be recalculated. 11463 * 11464 * Returns true or false. 11465 */ 11466 static bool intel_wm_need_update(const struct intel_plane_state *cur, 11467 struct intel_plane_state *new) 11468 { 11469 /* Update watermarks on tiling or size changes. */ 11470 if (new->base.visible != cur->base.visible) 11471 return true; 11472 11473 if (!cur->base.fb || !new->base.fb) 11474 return false; 11475 11476 if (cur->base.fb->modifier != new->base.fb->modifier || 11477 cur->base.rotation != new->base.rotation || 11478 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) || 11479 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) || 11480 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) || 11481 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst)) 11482 return true; 11483 11484 return false; 11485 } 11486 11487 static bool needs_scaling(const struct intel_plane_state *state) 11488 { 11489 int src_w = drm_rect_width(&state->base.src) >> 16; 11490 int src_h = drm_rect_height(&state->base.src) >> 16; 11491 int dst_w = drm_rect_width(&state->base.dst); 11492 int dst_h = drm_rect_height(&state->base.dst); 11493 11494 return (src_w != dst_w || src_h != dst_h); 11495 } 11496 11497 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 11498 struct intel_crtc_state *crtc_state, 11499 const struct intel_plane_state *old_plane_state, 11500 struct intel_plane_state *plane_state) 11501 { 11502 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 11503 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 11504 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11505 bool mode_changed = needs_modeset(crtc_state); 11506 bool was_crtc_enabled = old_crtc_state->base.active; 11507 bool is_crtc_enabled = crtc_state->base.active; 11508 bool turn_off, turn_on, visible, was_visible; 11509 struct drm_framebuffer *fb = plane_state->base.fb; 11510 int ret; 11511 11512 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 11513 ret = skl_update_scaler_plane(crtc_state, plane_state); 11514 if (ret) 11515 return ret; 11516 } 11517 11518 was_visible = old_plane_state->base.visible; 11519 visible = plane_state->base.visible; 11520 11521 if (!was_crtc_enabled && WARN_ON(was_visible)) 11522 was_visible = false; 11523 11524 /* 11525 * Visibility is calculated as if the crtc was on, but 11526 * after scaler setup everything depends on it being off 11527 * when the crtc isn't active. 11528 * 11529 * FIXME this is wrong for watermarks. Watermarks should also 11530 * be computed as if the pipe would be active. Perhaps move 11531 * per-plane wm computation to the .check_plane() hook, and 11532 * only combine the results from all planes in the current place? 11533 */ 11534 if (!is_crtc_enabled) { 11535 plane_state->base.visible = visible = false; 11536 crtc_state->active_planes &= ~BIT(plane->id); 11537 crtc_state->data_rate[plane->id] = 0; 11538 } 11539 11540 if (!was_visible && !visible) 11541 return 0; 11542 11543 if (fb != old_plane_state->base.fb) 11544 crtc_state->fb_changed = true; 11545 11546 turn_off = was_visible && (!visible || mode_changed); 11547 turn_on = visible && (!was_visible || mode_changed); 11548 11549 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n", 11550 crtc->base.base.id, crtc->base.name, 11551 plane->base.base.id, plane->base.name, 11552 fb ? fb->base.id : -1); 11553 11554 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 11555 plane->base.base.id, plane->base.name, 11556 was_visible, visible, 11557 turn_off, turn_on, mode_changed); 11558 11559 if (turn_on) { 11560 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11561 crtc_state->update_wm_pre = true; 11562 11563 /* must disable cxsr around plane enable/disable */ 11564 if (plane->id != PLANE_CURSOR) 11565 crtc_state->disable_cxsr = true; 11566 } else if (turn_off) { 11567 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11568 crtc_state->update_wm_post = true; 11569 11570 /* must disable cxsr around plane enable/disable */ 11571 if (plane->id != PLANE_CURSOR) 11572 crtc_state->disable_cxsr = true; 11573 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 11574 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) { 11575 /* FIXME bollocks */ 11576 crtc_state->update_wm_pre = true; 11577 crtc_state->update_wm_post = true; 11578 } 11579 } 11580 11581 if (visible || was_visible) 11582 crtc_state->fb_bits |= plane->frontbuffer_bit; 11583 11584 /* 11585 * ILK/SNB DVSACNTR/Sprite Enable 11586 * IVB SPR_CTL/Sprite Enable 11587 * "When in Self Refresh Big FIFO mode, a write to enable the 11588 * plane will be internally buffered and delayed while Big FIFO 11589 * mode is exiting." 11590 * 11591 * Which means that enabling the sprite can take an extra frame 11592 * when we start in big FIFO mode (LP1+). Thus we need to drop 11593 * down to LP0 and wait for vblank in order to make sure the 11594 * sprite gets enabled on the next vblank after the register write. 11595 * Doing otherwise would risk enabling the sprite one frame after 11596 * we've already signalled flip completion. We can resume LP1+ 11597 * once the sprite has been enabled. 11598 * 11599 * 11600 * WaCxSRDisabledForSpriteScaling:ivb 11601 * IVB SPR_SCALE/Scaling Enable 11602 * "Low Power watermarks must be disabled for at least one 11603 * frame before enabling sprite scaling, and kept disabled 11604 * until sprite scaling is disabled." 11605 * 11606 * ILK/SNB DVSASCALE/Scaling Enable 11607 * "When in Self Refresh Big FIFO mode, scaling enable will be 11608 * masked off while Big FIFO mode is exiting." 11609 * 11610 * Despite the w/a only being listed for IVB we assume that 11611 * the ILK/SNB note has similar ramifications, hence we apply 11612 * the w/a on all three platforms. 11613 * 11614 * With experimental results seems this is needed also for primary 11615 * plane, not only sprite plane. 11616 */ 11617 if (plane->id != PLANE_CURSOR && 11618 (IS_GEN_RANGE(dev_priv, 5, 6) || 11619 IS_IVYBRIDGE(dev_priv)) && 11620 (turn_on || (!needs_scaling(old_plane_state) && 11621 needs_scaling(plane_state)))) 11622 crtc_state->disable_lp_wm = true; 11623 11624 return 0; 11625 } 11626 11627 static bool encoders_cloneable(const struct intel_encoder *a, 11628 const struct intel_encoder *b) 11629 { 11630 /* masks could be asymmetric, so check both ways */ 11631 return a == b || (a->cloneable & (1 << b->type) && 11632 b->cloneable & (1 << a->type)); 11633 } 11634 11635 static bool check_single_encoder_cloning(struct drm_atomic_state *state, 11636 struct intel_crtc *crtc, 11637 struct intel_encoder *encoder) 11638 { 11639 struct intel_encoder *source_encoder; 11640 struct drm_connector *connector; 11641 struct drm_connector_state *connector_state; 11642 int i; 11643 11644 for_each_new_connector_in_state(state, connector, connector_state, i) { 11645 if (connector_state->crtc != &crtc->base) 11646 continue; 11647 11648 source_encoder = 11649 to_intel_encoder(connector_state->best_encoder); 11650 if (!encoders_cloneable(encoder, source_encoder)) 11651 return false; 11652 } 11653 11654 return true; 11655 } 11656 11657 static int icl_add_linked_planes(struct intel_atomic_state *state) 11658 { 11659 struct intel_plane *plane, *linked; 11660 struct intel_plane_state *plane_state, *linked_plane_state; 11661 int i; 11662 11663 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 11664 linked = plane_state->linked_plane; 11665 11666 if (!linked) 11667 continue; 11668 11669 linked_plane_state = intel_atomic_get_plane_state(state, linked); 11670 if (IS_ERR(linked_plane_state)) 11671 return PTR_ERR(linked_plane_state); 11672 11673 WARN_ON(linked_plane_state->linked_plane != plane); 11674 WARN_ON(linked_plane_state->slave == plane_state->slave); 11675 } 11676 11677 return 0; 11678 } 11679 11680 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 11681 { 11682 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 11683 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11684 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state); 11685 struct intel_plane *plane, *linked; 11686 struct intel_plane_state *plane_state; 11687 int i; 11688 11689 if (INTEL_GEN(dev_priv) < 11) 11690 return 0; 11691 11692 /* 11693 * Destroy all old plane links and make the slave plane invisible 11694 * in the crtc_state->active_planes mask. 11695 */ 11696 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 11697 if (plane->pipe != crtc->pipe || !plane_state->linked_plane) 11698 continue; 11699 11700 plane_state->linked_plane = NULL; 11701 if (plane_state->slave && !plane_state->base.visible) { 11702 crtc_state->active_planes &= ~BIT(plane->id); 11703 crtc_state->update_planes |= BIT(plane->id); 11704 } 11705 11706 plane_state->slave = false; 11707 } 11708 11709 if (!crtc_state->nv12_planes) 11710 return 0; 11711 11712 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 11713 struct intel_plane_state *linked_state = NULL; 11714 11715 if (plane->pipe != crtc->pipe || 11716 !(crtc_state->nv12_planes & BIT(plane->id))) 11717 continue; 11718 11719 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 11720 if (!icl_is_nv12_y_plane(linked->id)) 11721 continue; 11722 11723 if (crtc_state->active_planes & BIT(linked->id)) 11724 continue; 11725 11726 linked_state = intel_atomic_get_plane_state(state, linked); 11727 if (IS_ERR(linked_state)) 11728 return PTR_ERR(linked_state); 11729 11730 break; 11731 } 11732 11733 if (!linked_state) { 11734 DRM_DEBUG_KMS("Need %d free Y planes for planar YUV\n", 11735 hweight8(crtc_state->nv12_planes)); 11736 11737 return -EINVAL; 11738 } 11739 11740 plane_state->linked_plane = linked; 11741 11742 linked_state->slave = true; 11743 linked_state->linked_plane = plane; 11744 crtc_state->active_planes |= BIT(linked->id); 11745 crtc_state->update_planes |= BIT(linked->id); 11746 DRM_DEBUG_KMS("Using %s as Y plane for %s\n", linked->base.name, plane->base.name); 11747 } 11748 11749 return 0; 11750 } 11751 11752 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 11753 { 11754 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 11755 struct intel_atomic_state *state = 11756 to_intel_atomic_state(new_crtc_state->base.state); 11757 const struct intel_crtc_state *old_crtc_state = 11758 intel_atomic_get_old_crtc_state(state, crtc); 11759 11760 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 11761 } 11762 11763 static int intel_crtc_atomic_check(struct drm_crtc *crtc, 11764 struct drm_crtc_state *crtc_state) 11765 { 11766 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 11767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 11768 struct intel_crtc_state *pipe_config = 11769 to_intel_crtc_state(crtc_state); 11770 int ret; 11771 bool mode_changed = needs_modeset(pipe_config); 11772 11773 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) && 11774 mode_changed && !crtc_state->active) 11775 pipe_config->update_wm_post = true; 11776 11777 if (mode_changed && crtc_state->enable && 11778 dev_priv->display.crtc_compute_clock && 11779 !WARN_ON(pipe_config->shared_dpll)) { 11780 ret = dev_priv->display.crtc_compute_clock(intel_crtc, 11781 pipe_config); 11782 if (ret) 11783 return ret; 11784 } 11785 11786 /* 11787 * May need to update pipe gamma enable bits 11788 * when C8 planes are getting enabled/disabled. 11789 */ 11790 if (c8_planes_changed(pipe_config)) 11791 crtc_state->color_mgmt_changed = true; 11792 11793 if (mode_changed || pipe_config->update_pipe || 11794 crtc_state->color_mgmt_changed) { 11795 ret = intel_color_check(pipe_config); 11796 if (ret) 11797 return ret; 11798 } 11799 11800 ret = 0; 11801 if (dev_priv->display.compute_pipe_wm) { 11802 ret = dev_priv->display.compute_pipe_wm(pipe_config); 11803 if (ret) { 11804 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n"); 11805 return ret; 11806 } 11807 } 11808 11809 if (dev_priv->display.compute_intermediate_wm) { 11810 if (WARN_ON(!dev_priv->display.compute_pipe_wm)) 11811 return 0; 11812 11813 /* 11814 * Calculate 'intermediate' watermarks that satisfy both the 11815 * old state and the new state. We can program these 11816 * immediately. 11817 */ 11818 ret = dev_priv->display.compute_intermediate_wm(pipe_config); 11819 if (ret) { 11820 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n"); 11821 return ret; 11822 } 11823 } 11824 11825 if (INTEL_GEN(dev_priv) >= 9) { 11826 if (mode_changed || pipe_config->update_pipe) 11827 ret = skl_update_scaler_crtc(pipe_config); 11828 11829 if (!ret) 11830 ret = icl_check_nv12_planes(pipe_config); 11831 if (!ret) 11832 ret = skl_check_pipe_max_pixel_rate(intel_crtc, 11833 pipe_config); 11834 if (!ret) 11835 ret = intel_atomic_setup_scalers(dev_priv, intel_crtc, 11836 pipe_config); 11837 } 11838 11839 if (HAS_IPS(dev_priv)) 11840 pipe_config->ips_enabled = hsw_compute_ips_config(pipe_config); 11841 11842 return ret; 11843 } 11844 11845 static const struct drm_crtc_helper_funcs intel_helper_funcs = { 11846 .atomic_check = intel_crtc_atomic_check, 11847 }; 11848 11849 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 11850 { 11851 struct intel_connector *connector; 11852 struct drm_connector_list_iter conn_iter; 11853 11854 drm_connector_list_iter_begin(dev, &conn_iter); 11855 for_each_intel_connector_iter(connector, &conn_iter) { 11856 if (connector->base.state->crtc) 11857 drm_connector_put(&connector->base); 11858 11859 if (connector->base.encoder) { 11860 connector->base.state->best_encoder = 11861 connector->base.encoder; 11862 connector->base.state->crtc = 11863 connector->base.encoder->crtc; 11864 11865 drm_connector_get(&connector->base); 11866 } else { 11867 connector->base.state->best_encoder = NULL; 11868 connector->base.state->crtc = NULL; 11869 } 11870 } 11871 drm_connector_list_iter_end(&conn_iter); 11872 } 11873 11874 static int 11875 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 11876 struct intel_crtc_state *pipe_config) 11877 { 11878 struct drm_connector *connector = conn_state->connector; 11879 const struct drm_display_info *info = &connector->display_info; 11880 int bpp; 11881 11882 switch (conn_state->max_bpc) { 11883 case 6 ... 7: 11884 bpp = 6 * 3; 11885 break; 11886 case 8 ... 9: 11887 bpp = 8 * 3; 11888 break; 11889 case 10 ... 11: 11890 bpp = 10 * 3; 11891 break; 11892 case 12: 11893 bpp = 12 * 3; 11894 break; 11895 default: 11896 return -EINVAL; 11897 } 11898 11899 if (bpp < pipe_config->pipe_bpp) { 11900 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 11901 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 11902 connector->base.id, connector->name, 11903 bpp, 3 * info->bpc, 3 * conn_state->max_requested_bpc, 11904 pipe_config->pipe_bpp); 11905 11906 pipe_config->pipe_bpp = bpp; 11907 } 11908 11909 return 0; 11910 } 11911 11912 static int 11913 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 11914 struct intel_crtc_state *pipe_config) 11915 { 11916 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11917 struct drm_atomic_state *state = pipe_config->base.state; 11918 struct drm_connector *connector; 11919 struct drm_connector_state *connector_state; 11920 int bpp, i; 11921 11922 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 11923 IS_CHERRYVIEW(dev_priv))) 11924 bpp = 10*3; 11925 else if (INTEL_GEN(dev_priv) >= 5) 11926 bpp = 12*3; 11927 else 11928 bpp = 8*3; 11929 11930 pipe_config->pipe_bpp = bpp; 11931 11932 /* Clamp display bpp to connector max bpp */ 11933 for_each_new_connector_in_state(state, connector, connector_state, i) { 11934 int ret; 11935 11936 if (connector_state->crtc != &crtc->base) 11937 continue; 11938 11939 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 11940 if (ret) 11941 return ret; 11942 } 11943 11944 return 0; 11945 } 11946 11947 static void intel_dump_crtc_timings(const struct drm_display_mode *mode) 11948 { 11949 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, " 11950 "type: 0x%x flags: 0x%x\n", 11951 mode->crtc_clock, 11952 mode->crtc_hdisplay, mode->crtc_hsync_start, 11953 mode->crtc_hsync_end, mode->crtc_htotal, 11954 mode->crtc_vdisplay, mode->crtc_vsync_start, 11955 mode->crtc_vsync_end, mode->crtc_vtotal, 11956 mode->type, mode->flags); 11957 } 11958 11959 static inline void 11960 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 11961 const char *id, unsigned int lane_count, 11962 const struct intel_link_m_n *m_n) 11963 { 11964 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 11965 id, lane_count, 11966 m_n->gmch_m, m_n->gmch_n, 11967 m_n->link_m, m_n->link_n, m_n->tu); 11968 } 11969 11970 static void 11971 intel_dump_infoframe(struct drm_i915_private *dev_priv, 11972 const union hdmi_infoframe *frame) 11973 { 11974 if ((drm_debug & DRM_UT_KMS) == 0) 11975 return; 11976 11977 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 11978 } 11979 11980 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 11981 11982 static const char * const output_type_str[] = { 11983 OUTPUT_TYPE(UNUSED), 11984 OUTPUT_TYPE(ANALOG), 11985 OUTPUT_TYPE(DVO), 11986 OUTPUT_TYPE(SDVO), 11987 OUTPUT_TYPE(LVDS), 11988 OUTPUT_TYPE(TVOUT), 11989 OUTPUT_TYPE(HDMI), 11990 OUTPUT_TYPE(DP), 11991 OUTPUT_TYPE(EDP), 11992 OUTPUT_TYPE(DSI), 11993 OUTPUT_TYPE(DDI), 11994 OUTPUT_TYPE(DP_MST), 11995 }; 11996 11997 #undef OUTPUT_TYPE 11998 11999 static void snprintf_output_types(char *buf, size_t len, 12000 unsigned int output_types) 12001 { 12002 char *str = buf; 12003 int i; 12004 12005 str[0] = '\0'; 12006 12007 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 12008 int r; 12009 12010 if ((output_types & BIT(i)) == 0) 12011 continue; 12012 12013 r = snprintf(str, len, "%s%s", 12014 str != buf ? "," : "", output_type_str[i]); 12015 if (r >= len) 12016 break; 12017 str += r; 12018 len -= r; 12019 12020 output_types &= ~BIT(i); 12021 } 12022 12023 WARN_ON_ONCE(output_types != 0); 12024 } 12025 12026 static const char * const output_format_str[] = { 12027 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid", 12028 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 12029 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 12030 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 12031 }; 12032 12033 static const char *output_formats(enum intel_output_format format) 12034 { 12035 if (format >= ARRAY_SIZE(output_format_str)) 12036 format = INTEL_OUTPUT_FORMAT_INVALID; 12037 return output_format_str[format]; 12038 } 12039 12040 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 12041 { 12042 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 12043 const struct drm_framebuffer *fb = plane_state->base.fb; 12044 struct drm_format_name_buf format_name; 12045 12046 if (!fb) { 12047 DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 12048 plane->base.base.id, plane->base.name, 12049 yesno(plane_state->base.visible)); 12050 return; 12051 } 12052 12053 DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n", 12054 plane->base.base.id, plane->base.name, 12055 fb->base.id, fb->width, fb->height, 12056 drm_get_format_name(fb->format->format, &format_name), 12057 yesno(plane_state->base.visible)); 12058 DRM_DEBUG_KMS("\trotation: 0x%x, scaler: %d\n", 12059 plane_state->base.rotation, plane_state->scaler_id); 12060 if (plane_state->base.visible) 12061 DRM_DEBUG_KMS("\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 12062 DRM_RECT_FP_ARG(&plane_state->base.src), 12063 DRM_RECT_ARG(&plane_state->base.dst)); 12064 } 12065 12066 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 12067 struct intel_atomic_state *state, 12068 const char *context) 12069 { 12070 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 12071 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12072 const struct intel_plane_state *plane_state; 12073 struct intel_plane *plane; 12074 char buf[64]; 12075 int i; 12076 12077 DRM_DEBUG_KMS("[CRTC:%d:%s] enable: %s %s\n", 12078 crtc->base.base.id, crtc->base.name, 12079 yesno(pipe_config->base.enable), context); 12080 12081 if (!pipe_config->base.enable) 12082 goto dump_planes; 12083 12084 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 12085 DRM_DEBUG_KMS("active: %s, output_types: %s (0x%x), output format: %s\n", 12086 yesno(pipe_config->base.active), 12087 buf, pipe_config->output_types, 12088 output_formats(pipe_config->output_format)); 12089 12090 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 12091 transcoder_name(pipe_config->cpu_transcoder), 12092 pipe_config->pipe_bpp, pipe_config->dither); 12093 12094 if (pipe_config->has_pch_encoder) 12095 intel_dump_m_n_config(pipe_config, "fdi", 12096 pipe_config->fdi_lanes, 12097 &pipe_config->fdi_m_n); 12098 12099 if (intel_crtc_has_dp_encoder(pipe_config)) { 12100 intel_dump_m_n_config(pipe_config, "dp m_n", 12101 pipe_config->lane_count, &pipe_config->dp_m_n); 12102 if (pipe_config->has_drrs) 12103 intel_dump_m_n_config(pipe_config, "dp m2_n2", 12104 pipe_config->lane_count, 12105 &pipe_config->dp_m2_n2); 12106 } 12107 12108 DRM_DEBUG_KMS("audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 12109 pipe_config->has_audio, pipe_config->has_infoframe, 12110 pipe_config->infoframes.enable); 12111 12112 if (pipe_config->infoframes.enable & 12113 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 12114 DRM_DEBUG_KMS("GCP: 0x%x\n", pipe_config->infoframes.gcp); 12115 if (pipe_config->infoframes.enable & 12116 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 12117 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 12118 if (pipe_config->infoframes.enable & 12119 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 12120 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 12121 if (pipe_config->infoframes.enable & 12122 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 12123 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 12124 12125 DRM_DEBUG_KMS("requested mode:\n"); 12126 drm_mode_debug_printmodeline(&pipe_config->base.mode); 12127 DRM_DEBUG_KMS("adjusted mode:\n"); 12128 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode); 12129 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode); 12130 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 12131 pipe_config->port_clock, 12132 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 12133 pipe_config->pixel_rate); 12134 12135 if (INTEL_GEN(dev_priv) >= 9) 12136 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 12137 crtc->num_scalers, 12138 pipe_config->scaler_state.scaler_users, 12139 pipe_config->scaler_state.scaler_id); 12140 12141 if (HAS_GMCH(dev_priv)) 12142 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 12143 pipe_config->gmch_pfit.control, 12144 pipe_config->gmch_pfit.pgm_ratios, 12145 pipe_config->gmch_pfit.lvds_border_bits); 12146 else 12147 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s, force thru: %s\n", 12148 pipe_config->pch_pfit.pos, 12149 pipe_config->pch_pfit.size, 12150 enableddisabled(pipe_config->pch_pfit.enabled), 12151 yesno(pipe_config->pch_pfit.force_thru)); 12152 12153 DRM_DEBUG_KMS("ips: %i, double wide: %i\n", 12154 pipe_config->ips_enabled, pipe_config->double_wide); 12155 12156 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 12157 12158 dump_planes: 12159 if (!state) 12160 return; 12161 12162 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12163 if (plane->pipe == crtc->pipe) 12164 intel_dump_plane_state(plane_state); 12165 } 12166 } 12167 12168 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 12169 { 12170 struct drm_device *dev = state->base.dev; 12171 struct drm_connector *connector; 12172 struct drm_connector_list_iter conn_iter; 12173 unsigned int used_ports = 0; 12174 unsigned int used_mst_ports = 0; 12175 bool ret = true; 12176 12177 /* 12178 * Walk the connector list instead of the encoder 12179 * list to detect the problem on ddi platforms 12180 * where there's just one encoder per digital port. 12181 */ 12182 drm_connector_list_iter_begin(dev, &conn_iter); 12183 drm_for_each_connector_iter(connector, &conn_iter) { 12184 struct drm_connector_state *connector_state; 12185 struct intel_encoder *encoder; 12186 12187 connector_state = 12188 drm_atomic_get_new_connector_state(&state->base, 12189 connector); 12190 if (!connector_state) 12191 connector_state = connector->state; 12192 12193 if (!connector_state->best_encoder) 12194 continue; 12195 12196 encoder = to_intel_encoder(connector_state->best_encoder); 12197 12198 WARN_ON(!connector_state->crtc); 12199 12200 switch (encoder->type) { 12201 unsigned int port_mask; 12202 case INTEL_OUTPUT_DDI: 12203 if (WARN_ON(!HAS_DDI(to_i915(dev)))) 12204 break; 12205 /* else, fall through */ 12206 case INTEL_OUTPUT_DP: 12207 case INTEL_OUTPUT_HDMI: 12208 case INTEL_OUTPUT_EDP: 12209 port_mask = 1 << encoder->port; 12210 12211 /* the same port mustn't appear more than once */ 12212 if (used_ports & port_mask) 12213 ret = false; 12214 12215 used_ports |= port_mask; 12216 break; 12217 case INTEL_OUTPUT_DP_MST: 12218 used_mst_ports |= 12219 1 << encoder->port; 12220 break; 12221 default: 12222 break; 12223 } 12224 } 12225 drm_connector_list_iter_end(&conn_iter); 12226 12227 /* can't mix MST and SST/HDMI on the same port */ 12228 if (used_ports & used_mst_ports) 12229 return false; 12230 12231 return ret; 12232 } 12233 12234 static int 12235 clear_intel_crtc_state(struct intel_crtc_state *crtc_state) 12236 { 12237 struct drm_i915_private *dev_priv = 12238 to_i915(crtc_state->base.crtc->dev); 12239 struct intel_crtc_state *saved_state; 12240 12241 saved_state = kzalloc(sizeof(*saved_state), GFP_KERNEL); 12242 if (!saved_state) 12243 return -ENOMEM; 12244 12245 /* FIXME: before the switch to atomic started, a new pipe_config was 12246 * kzalloc'd. Code that depends on any field being zero should be 12247 * fixed, so that the crtc_state can be safely duplicated. For now, 12248 * only fields that are know to not cause problems are preserved. */ 12249 12250 saved_state->scaler_state = crtc_state->scaler_state; 12251 saved_state->shared_dpll = crtc_state->shared_dpll; 12252 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 12253 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 12254 sizeof(saved_state->icl_port_dplls)); 12255 saved_state->crc_enabled = crtc_state->crc_enabled; 12256 if (IS_G4X(dev_priv) || 12257 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 12258 saved_state->wm = crtc_state->wm; 12259 12260 /* Keep base drm_crtc_state intact, only clear our extended struct */ 12261 BUILD_BUG_ON(offsetof(struct intel_crtc_state, base)); 12262 memcpy(&crtc_state->base + 1, &saved_state->base + 1, 12263 sizeof(*crtc_state) - sizeof(crtc_state->base)); 12264 12265 kfree(saved_state); 12266 return 0; 12267 } 12268 12269 static int 12270 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config) 12271 { 12272 struct drm_crtc *crtc = pipe_config->base.crtc; 12273 struct drm_atomic_state *state = pipe_config->base.state; 12274 struct intel_encoder *encoder; 12275 struct drm_connector *connector; 12276 struct drm_connector_state *connector_state; 12277 int base_bpp, ret; 12278 int i; 12279 bool retry = true; 12280 12281 ret = clear_intel_crtc_state(pipe_config); 12282 if (ret) 12283 return ret; 12284 12285 pipe_config->cpu_transcoder = 12286 (enum transcoder) to_intel_crtc(crtc)->pipe; 12287 12288 /* 12289 * Sanitize sync polarity flags based on requested ones. If neither 12290 * positive or negative polarity is requested, treat this as meaning 12291 * negative polarity. 12292 */ 12293 if (!(pipe_config->base.adjusted_mode.flags & 12294 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 12295 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 12296 12297 if (!(pipe_config->base.adjusted_mode.flags & 12298 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 12299 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 12300 12301 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 12302 pipe_config); 12303 if (ret) 12304 return ret; 12305 12306 base_bpp = pipe_config->pipe_bpp; 12307 12308 /* 12309 * Determine the real pipe dimensions. Note that stereo modes can 12310 * increase the actual pipe size due to the frame doubling and 12311 * insertion of additional space for blanks between the frame. This 12312 * is stored in the crtc timings. We use the requested mode to do this 12313 * computation to clearly distinguish it from the adjusted mode, which 12314 * can be changed by the connectors in the below retry loop. 12315 */ 12316 drm_mode_get_hv_timing(&pipe_config->base.mode, 12317 &pipe_config->pipe_src_w, 12318 &pipe_config->pipe_src_h); 12319 12320 for_each_new_connector_in_state(state, connector, connector_state, i) { 12321 if (connector_state->crtc != crtc) 12322 continue; 12323 12324 encoder = to_intel_encoder(connector_state->best_encoder); 12325 12326 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 12327 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n"); 12328 return -EINVAL; 12329 } 12330 12331 /* 12332 * Determine output_types before calling the .compute_config() 12333 * hooks so that the hooks can use this information safely. 12334 */ 12335 if (encoder->compute_output_type) 12336 pipe_config->output_types |= 12337 BIT(encoder->compute_output_type(encoder, pipe_config, 12338 connector_state)); 12339 else 12340 pipe_config->output_types |= BIT(encoder->type); 12341 } 12342 12343 encoder_retry: 12344 /* Ensure the port clock defaults are reset when retrying. */ 12345 pipe_config->port_clock = 0; 12346 pipe_config->pixel_multiplier = 1; 12347 12348 /* Fill in default crtc timings, allow encoders to overwrite them. */ 12349 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode, 12350 CRTC_STEREO_DOUBLE); 12351 12352 /* Pass our mode to the connectors and the CRTC to give them a chance to 12353 * adjust it according to limitations or connector properties, and also 12354 * a chance to reject the mode entirely. 12355 */ 12356 for_each_new_connector_in_state(state, connector, connector_state, i) { 12357 if (connector_state->crtc != crtc) 12358 continue; 12359 12360 encoder = to_intel_encoder(connector_state->best_encoder); 12361 ret = encoder->compute_config(encoder, pipe_config, 12362 connector_state); 12363 if (ret < 0) { 12364 if (ret != -EDEADLK) 12365 DRM_DEBUG_KMS("Encoder config failure: %d\n", 12366 ret); 12367 return ret; 12368 } 12369 } 12370 12371 /* Set default port clock if not overwritten by the encoder. Needs to be 12372 * done afterwards in case the encoder adjusts the mode. */ 12373 if (!pipe_config->port_clock) 12374 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock 12375 * pipe_config->pixel_multiplier; 12376 12377 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 12378 if (ret == -EDEADLK) 12379 return ret; 12380 if (ret < 0) { 12381 DRM_DEBUG_KMS("CRTC fixup failed\n"); 12382 return ret; 12383 } 12384 12385 if (ret == RETRY) { 12386 if (WARN(!retry, "loop in pipe configuration computation\n")) 12387 return -EINVAL; 12388 12389 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n"); 12390 retry = false; 12391 goto encoder_retry; 12392 } 12393 12394 /* Dithering seems to not pass-through bits correctly when it should, so 12395 * only enable it on 6bpc panels and when its not a compliance 12396 * test requesting 6bpc video pattern. 12397 */ 12398 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 12399 !pipe_config->dither_force_disable; 12400 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 12401 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 12402 12403 return 0; 12404 } 12405 12406 bool intel_fuzzy_clock_check(int clock1, int clock2) 12407 { 12408 int diff; 12409 12410 if (clock1 == clock2) 12411 return true; 12412 12413 if (!clock1 || !clock2) 12414 return false; 12415 12416 diff = abs(clock1 - clock2); 12417 12418 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 12419 return true; 12420 12421 return false; 12422 } 12423 12424 static bool 12425 intel_compare_m_n(unsigned int m, unsigned int n, 12426 unsigned int m2, unsigned int n2, 12427 bool exact) 12428 { 12429 if (m == m2 && n == n2) 12430 return true; 12431 12432 if (exact || !m || !n || !m2 || !n2) 12433 return false; 12434 12435 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 12436 12437 if (n > n2) { 12438 while (n > n2) { 12439 m2 <<= 1; 12440 n2 <<= 1; 12441 } 12442 } else if (n < n2) { 12443 while (n < n2) { 12444 m <<= 1; 12445 n <<= 1; 12446 } 12447 } 12448 12449 if (n != n2) 12450 return false; 12451 12452 return intel_fuzzy_clock_check(m, m2); 12453 } 12454 12455 static bool 12456 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 12457 const struct intel_link_m_n *m2_n2, 12458 bool exact) 12459 { 12460 return m_n->tu == m2_n2->tu && 12461 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 12462 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 12463 intel_compare_m_n(m_n->link_m, m_n->link_n, 12464 m2_n2->link_m, m2_n2->link_n, exact); 12465 } 12466 12467 static bool 12468 intel_compare_infoframe(const union hdmi_infoframe *a, 12469 const union hdmi_infoframe *b) 12470 { 12471 return memcmp(a, b, sizeof(*a)) == 0; 12472 } 12473 12474 static void 12475 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 12476 bool fastset, const char *name, 12477 const union hdmi_infoframe *a, 12478 const union hdmi_infoframe *b) 12479 { 12480 if (fastset) { 12481 if ((drm_debug & DRM_UT_KMS) == 0) 12482 return; 12483 12484 drm_dbg(DRM_UT_KMS, "fastset mismatch in %s infoframe", name); 12485 drm_dbg(DRM_UT_KMS, "expected:"); 12486 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 12487 drm_dbg(DRM_UT_KMS, "found"); 12488 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 12489 } else { 12490 drm_err("mismatch in %s infoframe", name); 12491 drm_err("expected:"); 12492 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 12493 drm_err("found"); 12494 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 12495 } 12496 } 12497 12498 static void __printf(3, 4) 12499 pipe_config_mismatch(bool fastset, const char *name, const char *format, ...) 12500 { 12501 struct va_format vaf; 12502 va_list args; 12503 12504 va_start(args, format); 12505 vaf.fmt = format; 12506 vaf.va = &args; 12507 12508 if (fastset) 12509 drm_dbg(DRM_UT_KMS, "fastset mismatch in %s %pV", name, &vaf); 12510 else 12511 drm_err("mismatch in %s %pV", name, &vaf); 12512 12513 va_end(args); 12514 } 12515 12516 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 12517 { 12518 if (i915_modparams.fastboot != -1) 12519 return i915_modparams.fastboot; 12520 12521 /* Enable fastboot by default on Skylake and newer */ 12522 if (INTEL_GEN(dev_priv) >= 9) 12523 return true; 12524 12525 /* Enable fastboot by default on VLV and CHV */ 12526 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 12527 return true; 12528 12529 /* Disabled by default on all others */ 12530 return false; 12531 } 12532 12533 static bool 12534 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 12535 const struct intel_crtc_state *pipe_config, 12536 bool fastset) 12537 { 12538 struct drm_i915_private *dev_priv = to_i915(current_config->base.crtc->dev); 12539 bool ret = true; 12540 bool fixup_inherited = fastset && 12541 (current_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED) && 12542 !(pipe_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED); 12543 12544 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 12545 DRM_DEBUG_KMS("initial modeset and fastboot not set\n"); 12546 ret = false; 12547 } 12548 12549 #define PIPE_CONF_CHECK_X(name) do { \ 12550 if (current_config->name != pipe_config->name) { \ 12551 pipe_config_mismatch(fastset, __stringify(name), \ 12552 "(expected 0x%08x, found 0x%08x)\n", \ 12553 current_config->name, \ 12554 pipe_config->name); \ 12555 ret = false; \ 12556 } \ 12557 } while (0) 12558 12559 #define PIPE_CONF_CHECK_I(name) do { \ 12560 if (current_config->name != pipe_config->name) { \ 12561 pipe_config_mismatch(fastset, __stringify(name), \ 12562 "(expected %i, found %i)\n", \ 12563 current_config->name, \ 12564 pipe_config->name); \ 12565 ret = false; \ 12566 } \ 12567 } while (0) 12568 12569 #define PIPE_CONF_CHECK_BOOL(name) do { \ 12570 if (current_config->name != pipe_config->name) { \ 12571 pipe_config_mismatch(fastset, __stringify(name), \ 12572 "(expected %s, found %s)\n", \ 12573 yesno(current_config->name), \ 12574 yesno(pipe_config->name)); \ 12575 ret = false; \ 12576 } \ 12577 } while (0) 12578 12579 /* 12580 * Checks state where we only read out the enabling, but not the entire 12581 * state itself (like full infoframes or ELD for audio). These states 12582 * require a full modeset on bootup to fix up. 12583 */ 12584 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 12585 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 12586 PIPE_CONF_CHECK_BOOL(name); \ 12587 } else { \ 12588 pipe_config_mismatch(fastset, __stringify(name), \ 12589 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)\n", \ 12590 yesno(current_config->name), \ 12591 yesno(pipe_config->name)); \ 12592 ret = false; \ 12593 } \ 12594 } while (0) 12595 12596 #define PIPE_CONF_CHECK_P(name) do { \ 12597 if (current_config->name != pipe_config->name) { \ 12598 pipe_config_mismatch(fastset, __stringify(name), \ 12599 "(expected %p, found %p)\n", \ 12600 current_config->name, \ 12601 pipe_config->name); \ 12602 ret = false; \ 12603 } \ 12604 } while (0) 12605 12606 #define PIPE_CONF_CHECK_M_N(name) do { \ 12607 if (!intel_compare_link_m_n(¤t_config->name, \ 12608 &pipe_config->name,\ 12609 !fastset)) { \ 12610 pipe_config_mismatch(fastset, __stringify(name), \ 12611 "(expected tu %i gmch %i/%i link %i/%i, " \ 12612 "found tu %i, gmch %i/%i link %i/%i)\n", \ 12613 current_config->name.tu, \ 12614 current_config->name.gmch_m, \ 12615 current_config->name.gmch_n, \ 12616 current_config->name.link_m, \ 12617 current_config->name.link_n, \ 12618 pipe_config->name.tu, \ 12619 pipe_config->name.gmch_m, \ 12620 pipe_config->name.gmch_n, \ 12621 pipe_config->name.link_m, \ 12622 pipe_config->name.link_n); \ 12623 ret = false; \ 12624 } \ 12625 } while (0) 12626 12627 /* This is required for BDW+ where there is only one set of registers for 12628 * switching between high and low RR. 12629 * This macro can be used whenever a comparison has to be made between one 12630 * hw state and multiple sw state variables. 12631 */ 12632 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 12633 if (!intel_compare_link_m_n(¤t_config->name, \ 12634 &pipe_config->name, !fastset) && \ 12635 !intel_compare_link_m_n(¤t_config->alt_name, \ 12636 &pipe_config->name, !fastset)) { \ 12637 pipe_config_mismatch(fastset, __stringify(name), \ 12638 "(expected tu %i gmch %i/%i link %i/%i, " \ 12639 "or tu %i gmch %i/%i link %i/%i, " \ 12640 "found tu %i, gmch %i/%i link %i/%i)\n", \ 12641 current_config->name.tu, \ 12642 current_config->name.gmch_m, \ 12643 current_config->name.gmch_n, \ 12644 current_config->name.link_m, \ 12645 current_config->name.link_n, \ 12646 current_config->alt_name.tu, \ 12647 current_config->alt_name.gmch_m, \ 12648 current_config->alt_name.gmch_n, \ 12649 current_config->alt_name.link_m, \ 12650 current_config->alt_name.link_n, \ 12651 pipe_config->name.tu, \ 12652 pipe_config->name.gmch_m, \ 12653 pipe_config->name.gmch_n, \ 12654 pipe_config->name.link_m, \ 12655 pipe_config->name.link_n); \ 12656 ret = false; \ 12657 } \ 12658 } while (0) 12659 12660 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 12661 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 12662 pipe_config_mismatch(fastset, __stringify(name), \ 12663 "(%x) (expected %i, found %i)\n", \ 12664 (mask), \ 12665 current_config->name & (mask), \ 12666 pipe_config->name & (mask)); \ 12667 ret = false; \ 12668 } \ 12669 } while (0) 12670 12671 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 12672 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 12673 pipe_config_mismatch(fastset, __stringify(name), \ 12674 "(expected %i, found %i)\n", \ 12675 current_config->name, \ 12676 pipe_config->name); \ 12677 ret = false; \ 12678 } \ 12679 } while (0) 12680 12681 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 12682 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 12683 &pipe_config->infoframes.name)) { \ 12684 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 12685 ¤t_config->infoframes.name, \ 12686 &pipe_config->infoframes.name); \ 12687 ret = false; \ 12688 } \ 12689 } while (0) 12690 12691 #define PIPE_CONF_QUIRK(quirk) \ 12692 ((current_config->quirks | pipe_config->quirks) & (quirk)) 12693 12694 PIPE_CONF_CHECK_I(cpu_transcoder); 12695 12696 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 12697 PIPE_CONF_CHECK_I(fdi_lanes); 12698 PIPE_CONF_CHECK_M_N(fdi_m_n); 12699 12700 PIPE_CONF_CHECK_I(lane_count); 12701 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 12702 12703 if (INTEL_GEN(dev_priv) < 8) { 12704 PIPE_CONF_CHECK_M_N(dp_m_n); 12705 12706 if (current_config->has_drrs) 12707 PIPE_CONF_CHECK_M_N(dp_m2_n2); 12708 } else 12709 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 12710 12711 PIPE_CONF_CHECK_X(output_types); 12712 12713 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay); 12714 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal); 12715 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start); 12716 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end); 12717 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start); 12718 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end); 12719 12720 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay); 12721 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal); 12722 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start); 12723 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end); 12724 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start); 12725 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end); 12726 12727 PIPE_CONF_CHECK_I(pixel_multiplier); 12728 PIPE_CONF_CHECK_I(output_format); 12729 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 12730 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 12731 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 12732 PIPE_CONF_CHECK_BOOL(limited_color_range); 12733 12734 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 12735 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 12736 PIPE_CONF_CHECK_BOOL(has_infoframe); 12737 12738 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 12739 12740 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 12741 DRM_MODE_FLAG_INTERLACE); 12742 12743 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 12744 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 12745 DRM_MODE_FLAG_PHSYNC); 12746 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 12747 DRM_MODE_FLAG_NHSYNC); 12748 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 12749 DRM_MODE_FLAG_PVSYNC); 12750 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 12751 DRM_MODE_FLAG_NVSYNC); 12752 } 12753 12754 PIPE_CONF_CHECK_X(gmch_pfit.control); 12755 /* pfit ratios are autocomputed by the hw on gen4+ */ 12756 if (INTEL_GEN(dev_priv) < 4) 12757 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 12758 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 12759 12760 /* 12761 * Changing the EDP transcoder input mux 12762 * (A_ONOFF vs. A_ON) requires a full modeset. 12763 */ 12764 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 12765 12766 if (!fastset) { 12767 PIPE_CONF_CHECK_I(pipe_src_w); 12768 PIPE_CONF_CHECK_I(pipe_src_h); 12769 12770 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 12771 if (current_config->pch_pfit.enabled) { 12772 PIPE_CONF_CHECK_X(pch_pfit.pos); 12773 PIPE_CONF_CHECK_X(pch_pfit.size); 12774 } 12775 12776 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 12777 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 12778 12779 PIPE_CONF_CHECK_X(gamma_mode); 12780 if (IS_CHERRYVIEW(dev_priv)) 12781 PIPE_CONF_CHECK_X(cgm_mode); 12782 else 12783 PIPE_CONF_CHECK_X(csc_mode); 12784 PIPE_CONF_CHECK_BOOL(gamma_enable); 12785 PIPE_CONF_CHECK_BOOL(csc_enable); 12786 } 12787 12788 PIPE_CONF_CHECK_BOOL(double_wide); 12789 12790 PIPE_CONF_CHECK_P(shared_dpll); 12791 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 12792 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 12793 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 12794 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 12795 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 12796 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 12797 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 12798 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 12799 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 12800 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 12801 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 12802 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 12803 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 12804 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 12805 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 12806 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 12807 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 12808 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 12809 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 12810 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 12811 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 12812 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 12813 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 12814 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 12815 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 12816 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 12817 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 12818 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 12819 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 12820 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 12821 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 12822 12823 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 12824 PIPE_CONF_CHECK_X(dsi_pll.div); 12825 12826 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) 12827 PIPE_CONF_CHECK_I(pipe_bpp); 12828 12829 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock); 12830 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 12831 12832 PIPE_CONF_CHECK_I(min_voltage_level); 12833 12834 PIPE_CONF_CHECK_X(infoframes.enable); 12835 PIPE_CONF_CHECK_X(infoframes.gcp); 12836 PIPE_CONF_CHECK_INFOFRAME(avi); 12837 PIPE_CONF_CHECK_INFOFRAME(spd); 12838 PIPE_CONF_CHECK_INFOFRAME(hdmi); 12839 PIPE_CONF_CHECK_INFOFRAME(drm); 12840 12841 #undef PIPE_CONF_CHECK_X 12842 #undef PIPE_CONF_CHECK_I 12843 #undef PIPE_CONF_CHECK_BOOL 12844 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 12845 #undef PIPE_CONF_CHECK_P 12846 #undef PIPE_CONF_CHECK_FLAGS 12847 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 12848 #undef PIPE_CONF_QUIRK 12849 12850 return ret; 12851 } 12852 12853 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 12854 const struct intel_crtc_state *pipe_config) 12855 { 12856 if (pipe_config->has_pch_encoder) { 12857 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 12858 &pipe_config->fdi_m_n); 12859 int dotclock = pipe_config->base.adjusted_mode.crtc_clock; 12860 12861 /* 12862 * FDI already provided one idea for the dotclock. 12863 * Yell if the encoder disagrees. 12864 */ 12865 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock), 12866 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 12867 fdi_dotclock, dotclock); 12868 } 12869 } 12870 12871 static void verify_wm_state(struct intel_crtc *crtc, 12872 struct intel_crtc_state *new_crtc_state) 12873 { 12874 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12875 struct skl_hw_state { 12876 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 12877 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 12878 struct skl_ddb_allocation ddb; 12879 struct skl_pipe_wm wm; 12880 } *hw; 12881 struct skl_ddb_allocation *sw_ddb; 12882 struct skl_pipe_wm *sw_wm; 12883 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 12884 const enum pipe pipe = crtc->pipe; 12885 int plane, level, max_level = ilk_wm_max_level(dev_priv); 12886 12887 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->base.active) 12888 return; 12889 12890 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 12891 if (!hw) 12892 return; 12893 12894 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 12895 sw_wm = &new_crtc_state->wm.skl.optimal; 12896 12897 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 12898 12899 skl_ddb_get_hw_state(dev_priv, &hw->ddb); 12900 sw_ddb = &dev_priv->wm.skl_hw.ddb; 12901 12902 if (INTEL_GEN(dev_priv) >= 11 && 12903 hw->ddb.enabled_slices != sw_ddb->enabled_slices) 12904 DRM_ERROR("mismatch in DBUF Slices (expected %u, got %u)\n", 12905 sw_ddb->enabled_slices, 12906 hw->ddb.enabled_slices); 12907 12908 /* planes */ 12909 for_each_universal_plane(dev_priv, pipe, plane) { 12910 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 12911 12912 hw_plane_wm = &hw->wm.planes[plane]; 12913 sw_plane_wm = &sw_wm->planes[plane]; 12914 12915 /* Watermarks */ 12916 for (level = 0; level <= max_level; level++) { 12917 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 12918 &sw_plane_wm->wm[level])) 12919 continue; 12920 12921 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 12922 pipe_name(pipe), plane + 1, level, 12923 sw_plane_wm->wm[level].plane_en, 12924 sw_plane_wm->wm[level].plane_res_b, 12925 sw_plane_wm->wm[level].plane_res_l, 12926 hw_plane_wm->wm[level].plane_en, 12927 hw_plane_wm->wm[level].plane_res_b, 12928 hw_plane_wm->wm[level].plane_res_l); 12929 } 12930 12931 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 12932 &sw_plane_wm->trans_wm)) { 12933 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 12934 pipe_name(pipe), plane + 1, 12935 sw_plane_wm->trans_wm.plane_en, 12936 sw_plane_wm->trans_wm.plane_res_b, 12937 sw_plane_wm->trans_wm.plane_res_l, 12938 hw_plane_wm->trans_wm.plane_en, 12939 hw_plane_wm->trans_wm.plane_res_b, 12940 hw_plane_wm->trans_wm.plane_res_l); 12941 } 12942 12943 /* DDB */ 12944 hw_ddb_entry = &hw->ddb_y[plane]; 12945 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane]; 12946 12947 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 12948 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n", 12949 pipe_name(pipe), plane + 1, 12950 sw_ddb_entry->start, sw_ddb_entry->end, 12951 hw_ddb_entry->start, hw_ddb_entry->end); 12952 } 12953 } 12954 12955 /* 12956 * cursor 12957 * If the cursor plane isn't active, we may not have updated it's ddb 12958 * allocation. In that case since the ddb allocation will be updated 12959 * once the plane becomes visible, we can skip this check 12960 */ 12961 if (1) { 12962 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 12963 12964 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR]; 12965 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR]; 12966 12967 /* Watermarks */ 12968 for (level = 0; level <= max_level; level++) { 12969 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 12970 &sw_plane_wm->wm[level])) 12971 continue; 12972 12973 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 12974 pipe_name(pipe), level, 12975 sw_plane_wm->wm[level].plane_en, 12976 sw_plane_wm->wm[level].plane_res_b, 12977 sw_plane_wm->wm[level].plane_res_l, 12978 hw_plane_wm->wm[level].plane_en, 12979 hw_plane_wm->wm[level].plane_res_b, 12980 hw_plane_wm->wm[level].plane_res_l); 12981 } 12982 12983 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 12984 &sw_plane_wm->trans_wm)) { 12985 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 12986 pipe_name(pipe), 12987 sw_plane_wm->trans_wm.plane_en, 12988 sw_plane_wm->trans_wm.plane_res_b, 12989 sw_plane_wm->trans_wm.plane_res_l, 12990 hw_plane_wm->trans_wm.plane_en, 12991 hw_plane_wm->trans_wm.plane_res_b, 12992 hw_plane_wm->trans_wm.plane_res_l); 12993 } 12994 12995 /* DDB */ 12996 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR]; 12997 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR]; 12998 12999 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 13000 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n", 13001 pipe_name(pipe), 13002 sw_ddb_entry->start, sw_ddb_entry->end, 13003 hw_ddb_entry->start, hw_ddb_entry->end); 13004 } 13005 } 13006 13007 kfree(hw); 13008 } 13009 13010 static void 13011 verify_connector_state(struct intel_atomic_state *state, 13012 struct intel_crtc *crtc) 13013 { 13014 struct drm_connector *connector; 13015 struct drm_connector_state *new_conn_state; 13016 int i; 13017 13018 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 13019 struct drm_encoder *encoder = connector->encoder; 13020 struct intel_crtc_state *crtc_state = NULL; 13021 13022 if (new_conn_state->crtc != &crtc->base) 13023 continue; 13024 13025 if (crtc) 13026 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 13027 13028 intel_connector_verify_state(crtc_state, new_conn_state); 13029 13030 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 13031 "connector's atomic encoder doesn't match legacy encoder\n"); 13032 } 13033 } 13034 13035 static void 13036 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 13037 { 13038 struct intel_encoder *encoder; 13039 struct drm_connector *connector; 13040 struct drm_connector_state *old_conn_state, *new_conn_state; 13041 int i; 13042 13043 for_each_intel_encoder(&dev_priv->drm, encoder) { 13044 bool enabled = false, found = false; 13045 enum pipe pipe; 13046 13047 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n", 13048 encoder->base.base.id, 13049 encoder->base.name); 13050 13051 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 13052 new_conn_state, i) { 13053 if (old_conn_state->best_encoder == &encoder->base) 13054 found = true; 13055 13056 if (new_conn_state->best_encoder != &encoder->base) 13057 continue; 13058 found = enabled = true; 13059 13060 I915_STATE_WARN(new_conn_state->crtc != 13061 encoder->base.crtc, 13062 "connector's crtc doesn't match encoder crtc\n"); 13063 } 13064 13065 if (!found) 13066 continue; 13067 13068 I915_STATE_WARN(!!encoder->base.crtc != enabled, 13069 "encoder's enabled state mismatch " 13070 "(expected %i, found %i)\n", 13071 !!encoder->base.crtc, enabled); 13072 13073 if (!encoder->base.crtc) { 13074 bool active; 13075 13076 active = encoder->get_hw_state(encoder, &pipe); 13077 I915_STATE_WARN(active, 13078 "encoder detached but still enabled on pipe %c.\n", 13079 pipe_name(pipe)); 13080 } 13081 } 13082 } 13083 13084 static void 13085 verify_crtc_state(struct intel_crtc *crtc, 13086 struct intel_crtc_state *old_crtc_state, 13087 struct intel_crtc_state *new_crtc_state) 13088 { 13089 struct drm_device *dev = crtc->base.dev; 13090 struct drm_i915_private *dev_priv = to_i915(dev); 13091 struct intel_encoder *encoder; 13092 struct intel_crtc_state *pipe_config; 13093 struct drm_atomic_state *state; 13094 bool active; 13095 13096 state = old_crtc_state->base.state; 13097 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->base); 13098 pipe_config = old_crtc_state; 13099 memset(pipe_config, 0, sizeof(*pipe_config)); 13100 pipe_config->base.crtc = &crtc->base; 13101 pipe_config->base.state = state; 13102 13103 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.base.id, crtc->base.name); 13104 13105 active = dev_priv->display.get_pipe_config(crtc, pipe_config); 13106 13107 /* we keep both pipes enabled on 830 */ 13108 if (IS_I830(dev_priv)) 13109 active = new_crtc_state->base.active; 13110 13111 I915_STATE_WARN(new_crtc_state->base.active != active, 13112 "crtc active state doesn't match with hw state " 13113 "(expected %i, found %i)\n", new_crtc_state->base.active, active); 13114 13115 I915_STATE_WARN(crtc->active != new_crtc_state->base.active, 13116 "transitional active state does not match atomic hw state " 13117 "(expected %i, found %i)\n", new_crtc_state->base.active, crtc->active); 13118 13119 for_each_encoder_on_crtc(dev, &crtc->base, encoder) { 13120 enum pipe pipe; 13121 13122 active = encoder->get_hw_state(encoder, &pipe); 13123 I915_STATE_WARN(active != new_crtc_state->base.active, 13124 "[ENCODER:%i] active %i with crtc active %i\n", 13125 encoder->base.base.id, active, new_crtc_state->base.active); 13126 13127 I915_STATE_WARN(active && crtc->pipe != pipe, 13128 "Encoder connected to wrong pipe %c\n", 13129 pipe_name(pipe)); 13130 13131 if (active) 13132 encoder->get_config(encoder, pipe_config); 13133 } 13134 13135 intel_crtc_compute_pixel_rate(pipe_config); 13136 13137 if (!new_crtc_state->base.active) 13138 return; 13139 13140 intel_pipe_config_sanity_check(dev_priv, pipe_config); 13141 13142 if (!intel_pipe_config_compare(new_crtc_state, 13143 pipe_config, false)) { 13144 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 13145 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 13146 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 13147 } 13148 } 13149 13150 static void 13151 intel_verify_planes(struct intel_atomic_state *state) 13152 { 13153 struct intel_plane *plane; 13154 const struct intel_plane_state *plane_state; 13155 int i; 13156 13157 for_each_new_intel_plane_in_state(state, plane, 13158 plane_state, i) 13159 assert_plane(plane, plane_state->slave || 13160 plane_state->base.visible); 13161 } 13162 13163 static void 13164 verify_single_dpll_state(struct drm_i915_private *dev_priv, 13165 struct intel_shared_dpll *pll, 13166 struct intel_crtc *crtc, 13167 struct intel_crtc_state *new_crtc_state) 13168 { 13169 struct intel_dpll_hw_state dpll_hw_state; 13170 unsigned int crtc_mask; 13171 bool active; 13172 13173 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 13174 13175 DRM_DEBUG_KMS("%s\n", pll->info->name); 13176 13177 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state); 13178 13179 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 13180 I915_STATE_WARN(!pll->on && pll->active_mask, 13181 "pll in active use but not on in sw tracking\n"); 13182 I915_STATE_WARN(pll->on && !pll->active_mask, 13183 "pll is on but not used by any active crtc\n"); 13184 I915_STATE_WARN(pll->on != active, 13185 "pll on state mismatch (expected %i, found %i)\n", 13186 pll->on, active); 13187 } 13188 13189 if (!crtc) { 13190 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask, 13191 "more active pll users than references: %x vs %x\n", 13192 pll->active_mask, pll->state.crtc_mask); 13193 13194 return; 13195 } 13196 13197 crtc_mask = drm_crtc_mask(&crtc->base); 13198 13199 if (new_crtc_state->base.active) 13200 I915_STATE_WARN(!(pll->active_mask & crtc_mask), 13201 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", 13202 pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask); 13203 else 13204 I915_STATE_WARN(pll->active_mask & crtc_mask, 13205 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", 13206 pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask); 13207 13208 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask), 13209 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", 13210 crtc_mask, pll->state.crtc_mask); 13211 13212 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 13213 &dpll_hw_state, 13214 sizeof(dpll_hw_state)), 13215 "pll hw state mismatch\n"); 13216 } 13217 13218 static void 13219 verify_shared_dpll_state(struct intel_crtc *crtc, 13220 struct intel_crtc_state *old_crtc_state, 13221 struct intel_crtc_state *new_crtc_state) 13222 { 13223 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13224 13225 if (new_crtc_state->shared_dpll) 13226 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 13227 13228 if (old_crtc_state->shared_dpll && 13229 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 13230 unsigned int crtc_mask = drm_crtc_mask(&crtc->base); 13231 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 13232 13233 I915_STATE_WARN(pll->active_mask & crtc_mask, 13234 "pll active mismatch (didn't expect pipe %c in active mask)\n", 13235 pipe_name(drm_crtc_index(&crtc->base))); 13236 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask, 13237 "pll enabled crtcs mismatch (found %x in enabled mask)\n", 13238 pipe_name(drm_crtc_index(&crtc->base))); 13239 } 13240 } 13241 13242 static void 13243 intel_modeset_verify_crtc(struct intel_crtc *crtc, 13244 struct intel_atomic_state *state, 13245 struct intel_crtc_state *old_crtc_state, 13246 struct intel_crtc_state *new_crtc_state) 13247 { 13248 if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 13249 return; 13250 13251 verify_wm_state(crtc, new_crtc_state); 13252 verify_connector_state(state, crtc); 13253 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 13254 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 13255 } 13256 13257 static void 13258 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 13259 { 13260 int i; 13261 13262 for (i = 0; i < dev_priv->num_shared_dpll; i++) 13263 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL); 13264 } 13265 13266 static void 13267 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 13268 struct intel_atomic_state *state) 13269 { 13270 verify_encoder_state(dev_priv, state); 13271 verify_connector_state(state, NULL); 13272 verify_disabled_dpll_state(dev_priv); 13273 } 13274 13275 static void update_scanline_offset(const struct intel_crtc_state *crtc_state) 13276 { 13277 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 13278 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13279 13280 /* 13281 * The scanline counter increments at the leading edge of hsync. 13282 * 13283 * On most platforms it starts counting from vtotal-1 on the 13284 * first active line. That means the scanline counter value is 13285 * always one less than what we would expect. Ie. just after 13286 * start of vblank, which also occurs at start of hsync (on the 13287 * last active line), the scanline counter will read vblank_start-1. 13288 * 13289 * On gen2 the scanline counter starts counting from 1 instead 13290 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 13291 * to keep the value positive), instead of adding one. 13292 * 13293 * On HSW+ the behaviour of the scanline counter depends on the output 13294 * type. For DP ports it behaves like most other platforms, but on HDMI 13295 * there's an extra 1 line difference. So we need to add two instead of 13296 * one to the value. 13297 * 13298 * On VLV/CHV DSI the scanline counter would appear to increment 13299 * approx. 1/3 of a scanline before start of vblank. Unfortunately 13300 * that means we can't tell whether we're in vblank or not while 13301 * we're on that particular line. We must still set scanline_offset 13302 * to 1 so that the vblank timestamps come out correct when we query 13303 * the scanline counter from within the vblank interrupt handler. 13304 * However if queried just before the start of vblank we'll get an 13305 * answer that's slightly in the future. 13306 */ 13307 if (IS_GEN(dev_priv, 2)) { 13308 const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; 13309 int vtotal; 13310 13311 vtotal = adjusted_mode->crtc_vtotal; 13312 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 13313 vtotal /= 2; 13314 13315 crtc->scanline_offset = vtotal - 1; 13316 } else if (HAS_DDI(dev_priv) && 13317 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 13318 crtc->scanline_offset = 2; 13319 } else 13320 crtc->scanline_offset = 1; 13321 } 13322 13323 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 13324 { 13325 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 13326 struct intel_crtc_state *new_crtc_state; 13327 struct intel_crtc *crtc; 13328 int i; 13329 13330 if (!dev_priv->display.crtc_compute_clock) 13331 return; 13332 13333 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 13334 if (!needs_modeset(new_crtc_state)) 13335 continue; 13336 13337 intel_release_shared_dplls(state, crtc); 13338 } 13339 } 13340 13341 /* 13342 * This implements the workaround described in the "notes" section of the mode 13343 * set sequence documentation. When going from no pipes or single pipe to 13344 * multiple pipes, and planes are enabled after the pipe, we need to wait at 13345 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 13346 */ 13347 static int haswell_mode_set_planes_workaround(struct intel_atomic_state *state) 13348 { 13349 struct intel_crtc_state *crtc_state; 13350 struct intel_crtc *crtc; 13351 struct intel_crtc_state *first_crtc_state = NULL; 13352 struct intel_crtc_state *other_crtc_state = NULL; 13353 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 13354 int i; 13355 13356 /* look at all crtc's that are going to be enabled in during modeset */ 13357 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 13358 if (!crtc_state->base.active || 13359 !needs_modeset(crtc_state)) 13360 continue; 13361 13362 if (first_crtc_state) { 13363 other_crtc_state = crtc_state; 13364 break; 13365 } else { 13366 first_crtc_state = crtc_state; 13367 first_pipe = crtc->pipe; 13368 } 13369 } 13370 13371 /* No workaround needed? */ 13372 if (!first_crtc_state) 13373 return 0; 13374 13375 /* w/a possibly needed, check how many crtc's are already enabled. */ 13376 for_each_intel_crtc(state->base.dev, crtc) { 13377 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 13378 if (IS_ERR(crtc_state)) 13379 return PTR_ERR(crtc_state); 13380 13381 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 13382 13383 if (!crtc_state->base.active || 13384 needs_modeset(crtc_state)) 13385 continue; 13386 13387 /* 2 or more enabled crtcs means no need for w/a */ 13388 if (enabled_pipe != INVALID_PIPE) 13389 return 0; 13390 13391 enabled_pipe = crtc->pipe; 13392 } 13393 13394 if (enabled_pipe != INVALID_PIPE) 13395 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 13396 else if (other_crtc_state) 13397 other_crtc_state->hsw_workaround_pipe = first_pipe; 13398 13399 return 0; 13400 } 13401 13402 static int intel_lock_all_pipes(struct intel_atomic_state *state) 13403 { 13404 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 13405 struct intel_crtc *crtc; 13406 13407 /* Add all pipes to the state */ 13408 for_each_intel_crtc(&dev_priv->drm, crtc) { 13409 struct intel_crtc_state *crtc_state; 13410 13411 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 13412 if (IS_ERR(crtc_state)) 13413 return PTR_ERR(crtc_state); 13414 } 13415 13416 return 0; 13417 } 13418 13419 static int intel_modeset_all_pipes(struct intel_atomic_state *state) 13420 { 13421 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 13422 struct intel_crtc *crtc; 13423 13424 /* 13425 * Add all pipes to the state, and force 13426 * a modeset on all the active ones. 13427 */ 13428 for_each_intel_crtc(&dev_priv->drm, crtc) { 13429 struct intel_crtc_state *crtc_state; 13430 int ret; 13431 13432 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 13433 if (IS_ERR(crtc_state)) 13434 return PTR_ERR(crtc_state); 13435 13436 if (!crtc_state->base.active || needs_modeset(crtc_state)) 13437 continue; 13438 13439 crtc_state->base.mode_changed = true; 13440 13441 ret = drm_atomic_add_affected_connectors(&state->base, 13442 &crtc->base); 13443 if (ret) 13444 return ret; 13445 13446 ret = drm_atomic_add_affected_planes(&state->base, 13447 &crtc->base); 13448 if (ret) 13449 return ret; 13450 } 13451 13452 return 0; 13453 } 13454 13455 static int intel_modeset_checks(struct intel_atomic_state *state) 13456 { 13457 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 13458 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 13459 struct intel_crtc *crtc; 13460 int ret = 0, i; 13461 13462 if (!check_digital_port_conflicts(state)) { 13463 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n"); 13464 return -EINVAL; 13465 } 13466 13467 /* keep the current setting */ 13468 if (!state->cdclk.force_min_cdclk_changed) 13469 state->cdclk.force_min_cdclk = dev_priv->cdclk.force_min_cdclk; 13470 13471 state->modeset = true; 13472 state->active_crtcs = dev_priv->active_crtcs; 13473 state->cdclk.logical = dev_priv->cdclk.logical; 13474 state->cdclk.actual = dev_priv->cdclk.actual; 13475 state->cdclk.pipe = INVALID_PIPE; 13476 13477 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 13478 new_crtc_state, i) { 13479 if (new_crtc_state->base.active) 13480 state->active_crtcs |= 1 << i; 13481 else 13482 state->active_crtcs &= ~(1 << i); 13483 13484 if (old_crtc_state->base.active != new_crtc_state->base.active) 13485 state->active_pipe_changes |= drm_crtc_mask(&crtc->base); 13486 } 13487 13488 /* 13489 * See if the config requires any additional preparation, e.g. 13490 * to adjust global state with pipes off. We need to do this 13491 * here so we can get the modeset_pipe updated config for the new 13492 * mode set on this crtc. For other crtcs we need to use the 13493 * adjusted_mode bits in the crtc directly. 13494 */ 13495 if (dev_priv->display.modeset_calc_cdclk) { 13496 enum pipe pipe; 13497 13498 ret = dev_priv->display.modeset_calc_cdclk(state); 13499 if (ret < 0) 13500 return ret; 13501 13502 /* 13503 * Writes to dev_priv->cdclk.logical must protected by 13504 * holding all the crtc locks, even if we don't end up 13505 * touching the hardware 13506 */ 13507 if (intel_cdclk_changed(&dev_priv->cdclk.logical, 13508 &state->cdclk.logical)) { 13509 ret = intel_lock_all_pipes(state); 13510 if (ret < 0) 13511 return ret; 13512 } 13513 13514 if (is_power_of_2(state->active_crtcs)) { 13515 struct intel_crtc *crtc; 13516 struct intel_crtc_state *crtc_state; 13517 13518 pipe = ilog2(state->active_crtcs); 13519 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 13520 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 13521 if (crtc_state && needs_modeset(crtc_state)) 13522 pipe = INVALID_PIPE; 13523 } else { 13524 pipe = INVALID_PIPE; 13525 } 13526 13527 /* All pipes must be switched off while we change the cdclk. */ 13528 if (pipe != INVALID_PIPE && 13529 intel_cdclk_needs_cd2x_update(dev_priv, 13530 &dev_priv->cdclk.actual, 13531 &state->cdclk.actual)) { 13532 ret = intel_lock_all_pipes(state); 13533 if (ret < 0) 13534 return ret; 13535 13536 state->cdclk.pipe = pipe; 13537 } else if (intel_cdclk_needs_modeset(&dev_priv->cdclk.actual, 13538 &state->cdclk.actual)) { 13539 ret = intel_modeset_all_pipes(state); 13540 if (ret < 0) 13541 return ret; 13542 13543 state->cdclk.pipe = INVALID_PIPE; 13544 } 13545 13546 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n", 13547 state->cdclk.logical.cdclk, 13548 state->cdclk.actual.cdclk); 13549 DRM_DEBUG_KMS("New voltage level calculated to be logical %u, actual %u\n", 13550 state->cdclk.logical.voltage_level, 13551 state->cdclk.actual.voltage_level); 13552 } 13553 13554 intel_modeset_clear_plls(state); 13555 13556 if (IS_HASWELL(dev_priv)) 13557 return haswell_mode_set_planes_workaround(state); 13558 13559 return 0; 13560 } 13561 13562 /* 13563 * Handle calculation of various watermark data at the end of the atomic check 13564 * phase. The code here should be run after the per-crtc and per-plane 'check' 13565 * handlers to ensure that all derived state has been updated. 13566 */ 13567 static int calc_watermark_data(struct intel_atomic_state *state) 13568 { 13569 struct drm_device *dev = state->base.dev; 13570 struct drm_i915_private *dev_priv = to_i915(dev); 13571 13572 /* Is there platform-specific watermark information to calculate? */ 13573 if (dev_priv->display.compute_global_watermarks) 13574 return dev_priv->display.compute_global_watermarks(state); 13575 13576 return 0; 13577 } 13578 13579 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 13580 struct intel_crtc_state *new_crtc_state) 13581 { 13582 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 13583 return; 13584 13585 new_crtc_state->base.mode_changed = false; 13586 new_crtc_state->update_pipe = true; 13587 13588 /* 13589 * If we're not doing the full modeset we want to 13590 * keep the current M/N values as they may be 13591 * sufficiently different to the computed values 13592 * to cause problems. 13593 * 13594 * FIXME: should really copy more fuzzy state here 13595 */ 13596 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 13597 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 13598 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 13599 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 13600 } 13601 13602 /** 13603 * intel_atomic_check - validate state object 13604 * @dev: drm device 13605 * @_state: state to validate 13606 */ 13607 static int intel_atomic_check(struct drm_device *dev, 13608 struct drm_atomic_state *_state) 13609 { 13610 struct drm_i915_private *dev_priv = to_i915(dev); 13611 struct intel_atomic_state *state = to_intel_atomic_state(_state); 13612 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 13613 struct intel_crtc *crtc; 13614 int ret, i; 13615 bool any_ms = state->cdclk.force_min_cdclk_changed; 13616 13617 /* Catch I915_MODE_FLAG_INHERITED */ 13618 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 13619 new_crtc_state, i) { 13620 if (new_crtc_state->base.mode.private_flags != 13621 old_crtc_state->base.mode.private_flags) 13622 new_crtc_state->base.mode_changed = true; 13623 } 13624 13625 ret = drm_atomic_helper_check_modeset(dev, &state->base); 13626 if (ret) 13627 goto fail; 13628 13629 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 13630 new_crtc_state, i) { 13631 if (!needs_modeset(new_crtc_state)) 13632 continue; 13633 13634 if (!new_crtc_state->base.enable) { 13635 any_ms = true; 13636 continue; 13637 } 13638 13639 ret = intel_modeset_pipe_config(new_crtc_state); 13640 if (ret) 13641 goto fail; 13642 13643 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 13644 13645 if (needs_modeset(new_crtc_state)) 13646 any_ms = true; 13647 } 13648 13649 ret = drm_dp_mst_atomic_check(&state->base); 13650 if (ret) 13651 goto fail; 13652 13653 if (any_ms) { 13654 ret = intel_modeset_checks(state); 13655 if (ret) 13656 goto fail; 13657 } else { 13658 state->cdclk.logical = dev_priv->cdclk.logical; 13659 } 13660 13661 ret = icl_add_linked_planes(state); 13662 if (ret) 13663 goto fail; 13664 13665 ret = drm_atomic_helper_check_planes(dev, &state->base); 13666 if (ret) 13667 goto fail; 13668 13669 intel_fbc_choose_crtc(dev_priv, state); 13670 ret = calc_watermark_data(state); 13671 if (ret) 13672 goto fail; 13673 13674 ret = intel_bw_atomic_check(state); 13675 if (ret) 13676 goto fail; 13677 13678 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 13679 new_crtc_state, i) { 13680 if (!needs_modeset(new_crtc_state) && 13681 !new_crtc_state->update_pipe) 13682 continue; 13683 13684 intel_dump_pipe_config(new_crtc_state, state, 13685 needs_modeset(new_crtc_state) ? 13686 "[modeset]" : "[fastset]"); 13687 } 13688 13689 return 0; 13690 13691 fail: 13692 if (ret == -EDEADLK) 13693 return ret; 13694 13695 /* 13696 * FIXME would probably be nice to know which crtc specifically 13697 * caused the failure, in cases where we can pinpoint it. 13698 */ 13699 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 13700 new_crtc_state, i) 13701 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 13702 13703 return ret; 13704 } 13705 13706 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 13707 { 13708 return drm_atomic_helper_prepare_planes(state->base.dev, 13709 &state->base); 13710 } 13711 13712 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) 13713 { 13714 struct drm_device *dev = crtc->base.dev; 13715 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; 13716 13717 if (!vblank->max_vblank_count) 13718 return (u32)drm_crtc_accurate_vblank_count(&crtc->base); 13719 13720 return crtc->base.funcs->get_vblank_counter(&crtc->base); 13721 } 13722 13723 static void intel_update_crtc(struct intel_crtc *crtc, 13724 struct intel_atomic_state *state, 13725 struct intel_crtc_state *old_crtc_state, 13726 struct intel_crtc_state *new_crtc_state) 13727 { 13728 struct drm_device *dev = state->base.dev; 13729 struct drm_i915_private *dev_priv = to_i915(dev); 13730 bool modeset = needs_modeset(new_crtc_state); 13731 struct intel_plane_state *new_plane_state = 13732 intel_atomic_get_new_plane_state(state, 13733 to_intel_plane(crtc->base.primary)); 13734 13735 if (modeset) { 13736 update_scanline_offset(new_crtc_state); 13737 dev_priv->display.crtc_enable(new_crtc_state, state); 13738 13739 /* vblanks work again, re-enable pipe CRC. */ 13740 intel_crtc_enable_pipe_crc(crtc); 13741 } else { 13742 intel_pre_plane_update(old_crtc_state, new_crtc_state); 13743 13744 if (new_crtc_state->update_pipe) 13745 intel_encoders_update_pipe(crtc, new_crtc_state, state); 13746 } 13747 13748 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 13749 intel_fbc_disable(crtc); 13750 else if (new_plane_state) 13751 intel_fbc_enable(crtc, new_crtc_state, new_plane_state); 13752 13753 intel_begin_crtc_commit(state, crtc); 13754 13755 if (INTEL_GEN(dev_priv) >= 9) 13756 skl_update_planes_on_crtc(state, crtc); 13757 else 13758 i9xx_update_planes_on_crtc(state, crtc); 13759 13760 intel_finish_crtc_commit(state, crtc); 13761 } 13762 13763 static void intel_update_crtcs(struct intel_atomic_state *state) 13764 { 13765 struct intel_crtc *crtc; 13766 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 13767 int i; 13768 13769 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 13770 if (!new_crtc_state->base.active) 13771 continue; 13772 13773 intel_update_crtc(crtc, state, old_crtc_state, 13774 new_crtc_state); 13775 } 13776 } 13777 13778 static void skl_update_crtcs(struct intel_atomic_state *state) 13779 { 13780 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 13781 struct intel_crtc *crtc; 13782 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 13783 unsigned int updated = 0; 13784 bool progress; 13785 enum pipe pipe; 13786 int i; 13787 u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices; 13788 u8 required_slices = state->wm_results.ddb.enabled_slices; 13789 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 13790 13791 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) 13792 /* ignore allocations for crtc's that have been turned off. */ 13793 if (new_crtc_state->base.active) 13794 entries[i] = old_crtc_state->wm.skl.ddb; 13795 13796 /* If 2nd DBuf slice required, enable it here */ 13797 if (INTEL_GEN(dev_priv) >= 11 && required_slices > hw_enabled_slices) 13798 icl_dbuf_slices_update(dev_priv, required_slices); 13799 13800 /* 13801 * Whenever the number of active pipes changes, we need to make sure we 13802 * update the pipes in the right order so that their ddb allocations 13803 * never overlap with eachother inbetween CRTC updates. Otherwise we'll 13804 * cause pipe underruns and other bad stuff. 13805 */ 13806 do { 13807 progress = false; 13808 13809 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 13810 bool vbl_wait = false; 13811 unsigned int cmask = drm_crtc_mask(&crtc->base); 13812 13813 pipe = crtc->pipe; 13814 13815 if (updated & cmask || !new_crtc_state->base.active) 13816 continue; 13817 13818 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 13819 entries, 13820 INTEL_INFO(dev_priv)->num_pipes, i)) 13821 continue; 13822 13823 updated |= cmask; 13824 entries[i] = new_crtc_state->wm.skl.ddb; 13825 13826 /* 13827 * If this is an already active pipe, it's DDB changed, 13828 * and this isn't the last pipe that needs updating 13829 * then we need to wait for a vblank to pass for the 13830 * new ddb allocation to take effect. 13831 */ 13832 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 13833 &old_crtc_state->wm.skl.ddb) && 13834 !new_crtc_state->base.active_changed && 13835 state->wm_results.dirty_pipes != updated) 13836 vbl_wait = true; 13837 13838 intel_update_crtc(crtc, state, old_crtc_state, 13839 new_crtc_state); 13840 13841 if (vbl_wait) 13842 intel_wait_for_vblank(dev_priv, pipe); 13843 13844 progress = true; 13845 } 13846 } while (progress); 13847 13848 /* If 2nd DBuf slice is no more required disable it */ 13849 if (INTEL_GEN(dev_priv) >= 11 && required_slices < hw_enabled_slices) 13850 icl_dbuf_slices_update(dev_priv, required_slices); 13851 } 13852 13853 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 13854 { 13855 struct intel_atomic_state *state, *next; 13856 struct llist_node *freed; 13857 13858 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 13859 llist_for_each_entry_safe(state, next, freed, freed) 13860 drm_atomic_state_put(&state->base); 13861 } 13862 13863 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 13864 { 13865 struct drm_i915_private *dev_priv = 13866 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 13867 13868 intel_atomic_helper_free_state(dev_priv); 13869 } 13870 13871 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 13872 { 13873 struct wait_queue_entry wait_fence, wait_reset; 13874 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 13875 13876 init_wait_entry(&wait_fence, 0); 13877 init_wait_entry(&wait_reset, 0); 13878 for (;;) { 13879 prepare_to_wait(&intel_state->commit_ready.wait, 13880 &wait_fence, TASK_UNINTERRUPTIBLE); 13881 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 13882 I915_RESET_MODESET), 13883 &wait_reset, TASK_UNINTERRUPTIBLE); 13884 13885 13886 if (i915_sw_fence_done(&intel_state->commit_ready) || 13887 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 13888 break; 13889 13890 schedule(); 13891 } 13892 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 13893 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 13894 I915_RESET_MODESET), 13895 &wait_reset); 13896 } 13897 13898 static void intel_atomic_cleanup_work(struct work_struct *work) 13899 { 13900 struct drm_atomic_state *state = 13901 container_of(work, struct drm_atomic_state, commit_work); 13902 struct drm_i915_private *i915 = to_i915(state->dev); 13903 13904 drm_atomic_helper_cleanup_planes(&i915->drm, state); 13905 drm_atomic_helper_commit_cleanup_done(state); 13906 drm_atomic_state_put(state); 13907 13908 intel_atomic_helper_free_state(i915); 13909 } 13910 13911 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 13912 { 13913 struct drm_device *dev = state->base.dev; 13914 struct drm_i915_private *dev_priv = to_i915(dev); 13915 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 13916 struct intel_crtc *crtc; 13917 u64 put_domains[I915_MAX_PIPES] = {}; 13918 intel_wakeref_t wakeref = 0; 13919 int i; 13920 13921 intel_atomic_commit_fence_wait(state); 13922 13923 drm_atomic_helper_wait_for_dependencies(&state->base); 13924 13925 if (state->modeset) 13926 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 13927 13928 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 13929 if (needs_modeset(new_crtc_state) || 13930 new_crtc_state->update_pipe) { 13931 13932 put_domains[crtc->pipe] = 13933 modeset_get_crtc_power_domains(new_crtc_state); 13934 } 13935 13936 if (!needs_modeset(new_crtc_state)) 13937 continue; 13938 13939 intel_pre_plane_update(old_crtc_state, new_crtc_state); 13940 13941 if (old_crtc_state->base.active) { 13942 intel_crtc_disable_planes(state, crtc); 13943 13944 /* 13945 * We need to disable pipe CRC before disabling the pipe, 13946 * or we race against vblank off. 13947 */ 13948 intel_crtc_disable_pipe_crc(crtc); 13949 13950 dev_priv->display.crtc_disable(old_crtc_state, state); 13951 crtc->active = false; 13952 intel_fbc_disable(crtc); 13953 intel_disable_shared_dpll(old_crtc_state); 13954 13955 /* 13956 * Underruns don't always raise 13957 * interrupts, so check manually. 13958 */ 13959 intel_check_cpu_fifo_underruns(dev_priv); 13960 intel_check_pch_fifo_underruns(dev_priv); 13961 13962 /* FIXME unify this for all platforms */ 13963 if (!new_crtc_state->base.active && 13964 !HAS_GMCH(dev_priv) && 13965 dev_priv->display.initial_watermarks) 13966 dev_priv->display.initial_watermarks(state, 13967 new_crtc_state); 13968 } 13969 } 13970 13971 /* FIXME: Eventually get rid of our crtc->config pointer */ 13972 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 13973 crtc->config = new_crtc_state; 13974 13975 if (state->modeset) { 13976 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 13977 13978 intel_set_cdclk_pre_plane_update(dev_priv, 13979 &state->cdclk.actual, 13980 &dev_priv->cdclk.actual, 13981 state->cdclk.pipe); 13982 13983 /* 13984 * SKL workaround: bspec recommends we disable the SAGV when we 13985 * have more then one pipe enabled 13986 */ 13987 if (!intel_can_enable_sagv(state)) 13988 intel_disable_sagv(dev_priv); 13989 13990 intel_modeset_verify_disabled(dev_priv, state); 13991 } 13992 13993 /* Complete the events for pipes that have now been disabled */ 13994 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 13995 bool modeset = needs_modeset(new_crtc_state); 13996 13997 /* Complete events for now disable pipes here. */ 13998 if (modeset && !new_crtc_state->base.active && new_crtc_state->base.event) { 13999 spin_lock_irq(&dev->event_lock); 14000 drm_crtc_send_vblank_event(&crtc->base, new_crtc_state->base.event); 14001 spin_unlock_irq(&dev->event_lock); 14002 14003 new_crtc_state->base.event = NULL; 14004 } 14005 } 14006 14007 if (state->modeset) 14008 intel_encoders_update_prepare(state); 14009 14010 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 14011 dev_priv->display.update_crtcs(state); 14012 14013 if (state->modeset) { 14014 intel_encoders_update_complete(state); 14015 14016 intel_set_cdclk_post_plane_update(dev_priv, 14017 &state->cdclk.actual, 14018 &dev_priv->cdclk.actual, 14019 state->cdclk.pipe); 14020 } 14021 14022 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 14023 * already, but still need the state for the delayed optimization. To 14024 * fix this: 14025 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 14026 * - schedule that vblank worker _before_ calling hw_done 14027 * - at the start of commit_tail, cancel it _synchrously 14028 * - switch over to the vblank wait helper in the core after that since 14029 * we don't need out special handling any more. 14030 */ 14031 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 14032 14033 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14034 if (new_crtc_state->base.active && 14035 !needs_modeset(new_crtc_state) && 14036 (new_crtc_state->base.color_mgmt_changed || 14037 new_crtc_state->update_pipe)) 14038 intel_color_load_luts(new_crtc_state); 14039 } 14040 14041 /* 14042 * Now that the vblank has passed, we can go ahead and program the 14043 * optimal watermarks on platforms that need two-step watermark 14044 * programming. 14045 * 14046 * TODO: Move this (and other cleanup) to an async worker eventually. 14047 */ 14048 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14049 if (dev_priv->display.optimize_watermarks) 14050 dev_priv->display.optimize_watermarks(state, 14051 new_crtc_state); 14052 } 14053 14054 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 14055 intel_post_plane_update(old_crtc_state); 14056 14057 if (put_domains[i]) 14058 modeset_put_power_domains(dev_priv, put_domains[i]); 14059 14060 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 14061 } 14062 14063 if (state->modeset) 14064 intel_verify_planes(state); 14065 14066 if (state->modeset && intel_can_enable_sagv(state)) 14067 intel_enable_sagv(dev_priv); 14068 14069 drm_atomic_helper_commit_hw_done(&state->base); 14070 14071 if (state->modeset) { 14072 /* As one of the primary mmio accessors, KMS has a high 14073 * likelihood of triggering bugs in unclaimed access. After we 14074 * finish modesetting, see if an error has been flagged, and if 14075 * so enable debugging for the next modeset - and hope we catch 14076 * the culprit. 14077 */ 14078 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 14079 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 14080 } 14081 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 14082 14083 /* 14084 * Defer the cleanup of the old state to a separate worker to not 14085 * impede the current task (userspace for blocking modesets) that 14086 * are executed inline. For out-of-line asynchronous modesets/flips, 14087 * deferring to a new worker seems overkill, but we would place a 14088 * schedule point (cond_resched()) here anyway to keep latencies 14089 * down. 14090 */ 14091 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 14092 queue_work(system_highpri_wq, &state->base.commit_work); 14093 } 14094 14095 static void intel_atomic_commit_work(struct work_struct *work) 14096 { 14097 struct intel_atomic_state *state = 14098 container_of(work, struct intel_atomic_state, base.commit_work); 14099 14100 intel_atomic_commit_tail(state); 14101 } 14102 14103 static int __i915_sw_fence_call 14104 intel_atomic_commit_ready(struct i915_sw_fence *fence, 14105 enum i915_sw_fence_notify notify) 14106 { 14107 struct intel_atomic_state *state = 14108 container_of(fence, struct intel_atomic_state, commit_ready); 14109 14110 switch (notify) { 14111 case FENCE_COMPLETE: 14112 /* we do blocking waits in the worker, nothing to do here */ 14113 break; 14114 case FENCE_FREE: 14115 { 14116 struct intel_atomic_helper *helper = 14117 &to_i915(state->base.dev)->atomic_helper; 14118 14119 if (llist_add(&state->freed, &helper->free_list)) 14120 schedule_work(&helper->free_work); 14121 break; 14122 } 14123 } 14124 14125 return NOTIFY_DONE; 14126 } 14127 14128 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 14129 { 14130 struct intel_plane_state *old_plane_state, *new_plane_state; 14131 struct intel_plane *plane; 14132 int i; 14133 14134 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 14135 new_plane_state, i) 14136 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->base.fb), 14137 to_intel_frontbuffer(new_plane_state->base.fb), 14138 plane->frontbuffer_bit); 14139 } 14140 14141 static int intel_atomic_commit(struct drm_device *dev, 14142 struct drm_atomic_state *_state, 14143 bool nonblock) 14144 { 14145 struct intel_atomic_state *state = to_intel_atomic_state(_state); 14146 struct drm_i915_private *dev_priv = to_i915(dev); 14147 int ret = 0; 14148 14149 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 14150 14151 drm_atomic_state_get(&state->base); 14152 i915_sw_fence_init(&state->commit_ready, 14153 intel_atomic_commit_ready); 14154 14155 /* 14156 * The intel_legacy_cursor_update() fast path takes care 14157 * of avoiding the vblank waits for simple cursor 14158 * movement and flips. For cursor on/off and size changes, 14159 * we want to perform the vblank waits so that watermark 14160 * updates happen during the correct frames. Gen9+ have 14161 * double buffered watermarks and so shouldn't need this. 14162 * 14163 * Unset state->legacy_cursor_update before the call to 14164 * drm_atomic_helper_setup_commit() because otherwise 14165 * drm_atomic_helper_wait_for_flip_done() is a noop and 14166 * we get FIFO underruns because we didn't wait 14167 * for vblank. 14168 * 14169 * FIXME doing watermarks and fb cleanup from a vblank worker 14170 * (assuming we had any) would solve these problems. 14171 */ 14172 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) { 14173 struct intel_crtc_state *new_crtc_state; 14174 struct intel_crtc *crtc; 14175 int i; 14176 14177 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 14178 if (new_crtc_state->wm.need_postvbl_update || 14179 new_crtc_state->update_wm_post) 14180 state->base.legacy_cursor_update = false; 14181 } 14182 14183 ret = intel_atomic_prepare_commit(state); 14184 if (ret) { 14185 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret); 14186 i915_sw_fence_commit(&state->commit_ready); 14187 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 14188 return ret; 14189 } 14190 14191 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 14192 if (!ret) 14193 ret = drm_atomic_helper_swap_state(&state->base, true); 14194 14195 if (ret) { 14196 i915_sw_fence_commit(&state->commit_ready); 14197 14198 drm_atomic_helper_cleanup_planes(dev, &state->base); 14199 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 14200 return ret; 14201 } 14202 dev_priv->wm.distrust_bios_wm = false; 14203 intel_shared_dpll_swap_state(state); 14204 intel_atomic_track_fbs(state); 14205 14206 if (state->modeset) { 14207 memcpy(dev_priv->min_cdclk, state->min_cdclk, 14208 sizeof(state->min_cdclk)); 14209 memcpy(dev_priv->min_voltage_level, state->min_voltage_level, 14210 sizeof(state->min_voltage_level)); 14211 dev_priv->active_crtcs = state->active_crtcs; 14212 dev_priv->cdclk.force_min_cdclk = state->cdclk.force_min_cdclk; 14213 14214 intel_cdclk_swap_state(state); 14215 } 14216 14217 drm_atomic_state_get(&state->base); 14218 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 14219 14220 i915_sw_fence_commit(&state->commit_ready); 14221 if (nonblock && state->modeset) { 14222 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 14223 } else if (nonblock) { 14224 queue_work(system_unbound_wq, &state->base.commit_work); 14225 } else { 14226 if (state->modeset) 14227 flush_workqueue(dev_priv->modeset_wq); 14228 intel_atomic_commit_tail(state); 14229 } 14230 14231 return 0; 14232 } 14233 14234 struct wait_rps_boost { 14235 struct wait_queue_entry wait; 14236 14237 struct drm_crtc *crtc; 14238 struct i915_request *request; 14239 }; 14240 14241 static int do_rps_boost(struct wait_queue_entry *_wait, 14242 unsigned mode, int sync, void *key) 14243 { 14244 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 14245 struct i915_request *rq = wait->request; 14246 14247 /* 14248 * If we missed the vblank, but the request is already running it 14249 * is reasonable to assume that it will complete before the next 14250 * vblank without our intervention, so leave RPS alone. 14251 */ 14252 if (!i915_request_started(rq)) 14253 gen6_rps_boost(rq); 14254 i915_request_put(rq); 14255 14256 drm_crtc_vblank_put(wait->crtc); 14257 14258 list_del(&wait->wait.entry); 14259 kfree(wait); 14260 return 1; 14261 } 14262 14263 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 14264 struct dma_fence *fence) 14265 { 14266 struct wait_rps_boost *wait; 14267 14268 if (!dma_fence_is_i915(fence)) 14269 return; 14270 14271 if (INTEL_GEN(to_i915(crtc->dev)) < 6) 14272 return; 14273 14274 if (drm_crtc_vblank_get(crtc)) 14275 return; 14276 14277 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 14278 if (!wait) { 14279 drm_crtc_vblank_put(crtc); 14280 return; 14281 } 14282 14283 wait->request = to_request(dma_fence_get(fence)); 14284 wait->crtc = crtc; 14285 14286 wait->wait.func = do_rps_boost; 14287 wait->wait.flags = 0; 14288 14289 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 14290 } 14291 14292 static int intel_plane_pin_fb(struct intel_plane_state *plane_state) 14293 { 14294 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 14295 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 14296 struct drm_framebuffer *fb = plane_state->base.fb; 14297 struct i915_vma *vma; 14298 14299 if (plane->id == PLANE_CURSOR && 14300 INTEL_INFO(dev_priv)->display.cursor_needs_physical) { 14301 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 14302 const int align = intel_cursor_alignment(dev_priv); 14303 int err; 14304 14305 err = i915_gem_object_attach_phys(obj, align); 14306 if (err) 14307 return err; 14308 } 14309 14310 vma = intel_pin_and_fence_fb_obj(fb, 14311 &plane_state->view, 14312 intel_plane_uses_fence(plane_state), 14313 &plane_state->flags); 14314 if (IS_ERR(vma)) 14315 return PTR_ERR(vma); 14316 14317 plane_state->vma = vma; 14318 14319 return 0; 14320 } 14321 14322 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 14323 { 14324 struct i915_vma *vma; 14325 14326 vma = fetch_and_zero(&old_plane_state->vma); 14327 if (vma) 14328 intel_unpin_fb_vma(vma, old_plane_state->flags); 14329 } 14330 14331 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj) 14332 { 14333 struct i915_sched_attr attr = { 14334 .priority = I915_PRIORITY_DISPLAY, 14335 }; 14336 14337 i915_gem_object_wait_priority(obj, 0, &attr); 14338 } 14339 14340 /** 14341 * intel_prepare_plane_fb - Prepare fb for usage on plane 14342 * @plane: drm plane to prepare for 14343 * @new_state: the plane state being prepared 14344 * 14345 * Prepares a framebuffer for usage on a display plane. Generally this 14346 * involves pinning the underlying object and updating the frontbuffer tracking 14347 * bits. Some older platforms need special physical address handling for 14348 * cursor planes. 14349 * 14350 * Must be called with struct_mutex held. 14351 * 14352 * Returns 0 on success, negative error code on failure. 14353 */ 14354 int 14355 intel_prepare_plane_fb(struct drm_plane *plane, 14356 struct drm_plane_state *new_state) 14357 { 14358 struct intel_atomic_state *intel_state = 14359 to_intel_atomic_state(new_state->state); 14360 struct drm_i915_private *dev_priv = to_i915(plane->dev); 14361 struct drm_framebuffer *fb = new_state->fb; 14362 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 14363 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb); 14364 int ret; 14365 14366 if (old_obj) { 14367 struct intel_crtc_state *crtc_state = 14368 intel_atomic_get_new_crtc_state(intel_state, 14369 to_intel_crtc(plane->state->crtc)); 14370 14371 /* Big Hammer, we also need to ensure that any pending 14372 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 14373 * current scanout is retired before unpinning the old 14374 * framebuffer. Note that we rely on userspace rendering 14375 * into the buffer attached to the pipe they are waiting 14376 * on. If not, userspace generates a GPU hang with IPEHR 14377 * point to the MI_WAIT_FOR_EVENT. 14378 * 14379 * This should only fail upon a hung GPU, in which case we 14380 * can safely continue. 14381 */ 14382 if (needs_modeset(crtc_state)) { 14383 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready, 14384 old_obj->base.resv, NULL, 14385 false, 0, 14386 GFP_KERNEL); 14387 if (ret < 0) 14388 return ret; 14389 } 14390 } 14391 14392 if (new_state->fence) { /* explicit fencing */ 14393 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready, 14394 new_state->fence, 14395 I915_FENCE_TIMEOUT, 14396 GFP_KERNEL); 14397 if (ret < 0) 14398 return ret; 14399 } 14400 14401 if (!obj) 14402 return 0; 14403 14404 ret = i915_gem_object_pin_pages(obj); 14405 if (ret) 14406 return ret; 14407 14408 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex); 14409 if (ret) { 14410 i915_gem_object_unpin_pages(obj); 14411 return ret; 14412 } 14413 14414 ret = intel_plane_pin_fb(to_intel_plane_state(new_state)); 14415 14416 mutex_unlock(&dev_priv->drm.struct_mutex); 14417 i915_gem_object_unpin_pages(obj); 14418 if (ret) 14419 return ret; 14420 14421 fb_obj_bump_render_priority(obj); 14422 intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_DIRTYFB); 14423 14424 if (!new_state->fence) { /* implicit fencing */ 14425 struct dma_fence *fence; 14426 14427 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready, 14428 obj->base.resv, NULL, 14429 false, I915_FENCE_TIMEOUT, 14430 GFP_KERNEL); 14431 if (ret < 0) 14432 return ret; 14433 14434 fence = dma_resv_get_excl_rcu(obj->base.resv); 14435 if (fence) { 14436 add_rps_boost_after_vblank(new_state->crtc, fence); 14437 dma_fence_put(fence); 14438 } 14439 } else { 14440 add_rps_boost_after_vblank(new_state->crtc, new_state->fence); 14441 } 14442 14443 /* 14444 * We declare pageflips to be interactive and so merit a small bias 14445 * towards upclocking to deliver the frame on time. By only changing 14446 * the RPS thresholds to sample more regularly and aim for higher 14447 * clocks we can hopefully deliver low power workloads (like kodi) 14448 * that are not quite steady state without resorting to forcing 14449 * maximum clocks following a vblank miss (see do_rps_boost()). 14450 */ 14451 if (!intel_state->rps_interactive) { 14452 intel_rps_mark_interactive(dev_priv, true); 14453 intel_state->rps_interactive = true; 14454 } 14455 14456 return 0; 14457 } 14458 14459 /** 14460 * intel_cleanup_plane_fb - Cleans up an fb after plane use 14461 * @plane: drm plane to clean up for 14462 * @old_state: the state from the previous modeset 14463 * 14464 * Cleans up a framebuffer that has just been removed from a plane. 14465 * 14466 * Must be called with struct_mutex held. 14467 */ 14468 void 14469 intel_cleanup_plane_fb(struct drm_plane *plane, 14470 struct drm_plane_state *old_state) 14471 { 14472 struct intel_atomic_state *intel_state = 14473 to_intel_atomic_state(old_state->state); 14474 struct drm_i915_private *dev_priv = to_i915(plane->dev); 14475 14476 if (intel_state->rps_interactive) { 14477 intel_rps_mark_interactive(dev_priv, false); 14478 intel_state->rps_interactive = false; 14479 } 14480 14481 /* Should only be called after a successful intel_prepare_plane_fb()! */ 14482 mutex_lock(&dev_priv->drm.struct_mutex); 14483 intel_plane_unpin_fb(to_intel_plane_state(old_state)); 14484 mutex_unlock(&dev_priv->drm.struct_mutex); 14485 } 14486 14487 int 14488 skl_max_scale(const struct intel_crtc_state *crtc_state, 14489 u32 pixel_format) 14490 { 14491 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 14492 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14493 int max_scale, mult; 14494 int crtc_clock, max_dotclk, tmpclk1, tmpclk2; 14495 14496 if (!crtc_state->base.enable) 14497 return DRM_PLANE_HELPER_NO_SCALING; 14498 14499 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock; 14500 max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk; 14501 14502 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10) 14503 max_dotclk *= 2; 14504 14505 if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock)) 14506 return DRM_PLANE_HELPER_NO_SCALING; 14507 14508 /* 14509 * skl max scale is lower of: 14510 * close to 3 but not 3, -1 is for that purpose 14511 * or 14512 * cdclk/crtc_clock 14513 */ 14514 mult = is_planar_yuv_format(pixel_format) ? 2 : 3; 14515 tmpclk1 = (1 << 16) * mult - 1; 14516 tmpclk2 = (1 << 8) * ((max_dotclk << 8) / crtc_clock); 14517 max_scale = min(tmpclk1, tmpclk2); 14518 14519 return max_scale; 14520 } 14521 14522 static void intel_begin_crtc_commit(struct intel_atomic_state *state, 14523 struct intel_crtc *crtc) 14524 { 14525 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14526 struct intel_crtc_state *old_crtc_state = 14527 intel_atomic_get_old_crtc_state(state, crtc); 14528 struct intel_crtc_state *new_crtc_state = 14529 intel_atomic_get_new_crtc_state(state, crtc); 14530 bool modeset = needs_modeset(new_crtc_state); 14531 14532 /* Perform vblank evasion around commit operation */ 14533 intel_pipe_update_start(new_crtc_state); 14534 14535 if (modeset) 14536 goto out; 14537 14538 if (new_crtc_state->base.color_mgmt_changed || 14539 new_crtc_state->update_pipe) 14540 intel_color_commit(new_crtc_state); 14541 14542 if (new_crtc_state->update_pipe) 14543 intel_update_pipe_config(old_crtc_state, new_crtc_state); 14544 else if (INTEL_GEN(dev_priv) >= 9) 14545 skl_detach_scalers(new_crtc_state); 14546 14547 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 14548 bdw_set_pipemisc(new_crtc_state); 14549 14550 out: 14551 if (dev_priv->display.atomic_update_watermarks) 14552 dev_priv->display.atomic_update_watermarks(state, 14553 new_crtc_state); 14554 } 14555 14556 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 14557 struct intel_crtc_state *crtc_state) 14558 { 14559 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14560 14561 if (!IS_GEN(dev_priv, 2)) 14562 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 14563 14564 if (crtc_state->has_pch_encoder) { 14565 enum pipe pch_transcoder = 14566 intel_crtc_pch_transcoder(crtc); 14567 14568 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 14569 } 14570 } 14571 14572 static void intel_finish_crtc_commit(struct intel_atomic_state *state, 14573 struct intel_crtc *crtc) 14574 { 14575 struct intel_crtc_state *old_crtc_state = 14576 intel_atomic_get_old_crtc_state(state, crtc); 14577 struct intel_crtc_state *new_crtc_state = 14578 intel_atomic_get_new_crtc_state(state, crtc); 14579 14580 intel_pipe_update_end(new_crtc_state); 14581 14582 if (new_crtc_state->update_pipe && 14583 !needs_modeset(new_crtc_state) && 14584 old_crtc_state->base.mode.private_flags & I915_MODE_FLAG_INHERITED) 14585 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 14586 } 14587 14588 /** 14589 * intel_plane_destroy - destroy a plane 14590 * @plane: plane to destroy 14591 * 14592 * Common destruction function for all types of planes (primary, cursor, 14593 * sprite). 14594 */ 14595 void intel_plane_destroy(struct drm_plane *plane) 14596 { 14597 drm_plane_cleanup(plane); 14598 kfree(to_intel_plane(plane)); 14599 } 14600 14601 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane, 14602 u32 format, u64 modifier) 14603 { 14604 switch (modifier) { 14605 case DRM_FORMAT_MOD_LINEAR: 14606 case I915_FORMAT_MOD_X_TILED: 14607 break; 14608 default: 14609 return false; 14610 } 14611 14612 switch (format) { 14613 case DRM_FORMAT_C8: 14614 case DRM_FORMAT_RGB565: 14615 case DRM_FORMAT_XRGB1555: 14616 case DRM_FORMAT_XRGB8888: 14617 return modifier == DRM_FORMAT_MOD_LINEAR || 14618 modifier == I915_FORMAT_MOD_X_TILED; 14619 default: 14620 return false; 14621 } 14622 } 14623 14624 static bool i965_plane_format_mod_supported(struct drm_plane *_plane, 14625 u32 format, u64 modifier) 14626 { 14627 switch (modifier) { 14628 case DRM_FORMAT_MOD_LINEAR: 14629 case I915_FORMAT_MOD_X_TILED: 14630 break; 14631 default: 14632 return false; 14633 } 14634 14635 switch (format) { 14636 case DRM_FORMAT_C8: 14637 case DRM_FORMAT_RGB565: 14638 case DRM_FORMAT_XRGB8888: 14639 case DRM_FORMAT_XBGR8888: 14640 case DRM_FORMAT_XRGB2101010: 14641 case DRM_FORMAT_XBGR2101010: 14642 return modifier == DRM_FORMAT_MOD_LINEAR || 14643 modifier == I915_FORMAT_MOD_X_TILED; 14644 default: 14645 return false; 14646 } 14647 } 14648 14649 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane, 14650 u32 format, u64 modifier) 14651 { 14652 return modifier == DRM_FORMAT_MOD_LINEAR && 14653 format == DRM_FORMAT_ARGB8888; 14654 } 14655 14656 static const struct drm_plane_funcs i965_plane_funcs = { 14657 .update_plane = drm_atomic_helper_update_plane, 14658 .disable_plane = drm_atomic_helper_disable_plane, 14659 .destroy = intel_plane_destroy, 14660 .atomic_duplicate_state = intel_plane_duplicate_state, 14661 .atomic_destroy_state = intel_plane_destroy_state, 14662 .format_mod_supported = i965_plane_format_mod_supported, 14663 }; 14664 14665 static const struct drm_plane_funcs i8xx_plane_funcs = { 14666 .update_plane = drm_atomic_helper_update_plane, 14667 .disable_plane = drm_atomic_helper_disable_plane, 14668 .destroy = intel_plane_destroy, 14669 .atomic_duplicate_state = intel_plane_duplicate_state, 14670 .atomic_destroy_state = intel_plane_destroy_state, 14671 .format_mod_supported = i8xx_plane_format_mod_supported, 14672 }; 14673 14674 static int 14675 intel_legacy_cursor_update(struct drm_plane *plane, 14676 struct drm_crtc *crtc, 14677 struct drm_framebuffer *fb, 14678 int crtc_x, int crtc_y, 14679 unsigned int crtc_w, unsigned int crtc_h, 14680 u32 src_x, u32 src_y, 14681 u32 src_w, u32 src_h, 14682 struct drm_modeset_acquire_ctx *ctx) 14683 { 14684 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 14685 struct drm_plane_state *old_plane_state, *new_plane_state; 14686 struct intel_plane *intel_plane = to_intel_plane(plane); 14687 struct intel_crtc_state *crtc_state = 14688 to_intel_crtc_state(crtc->state); 14689 struct intel_crtc_state *new_crtc_state; 14690 int ret; 14691 14692 /* 14693 * When crtc is inactive or there is a modeset pending, 14694 * wait for it to complete in the slowpath 14695 */ 14696 if (!crtc_state->base.active || needs_modeset(crtc_state) || 14697 crtc_state->update_pipe) 14698 goto slow; 14699 14700 old_plane_state = plane->state; 14701 /* 14702 * Don't do an async update if there is an outstanding commit modifying 14703 * the plane. This prevents our async update's changes from getting 14704 * overridden by a previous synchronous update's state. 14705 */ 14706 if (old_plane_state->commit && 14707 !try_wait_for_completion(&old_plane_state->commit->hw_done)) 14708 goto slow; 14709 14710 /* 14711 * If any parameters change that may affect watermarks, 14712 * take the slowpath. Only changing fb or position should be 14713 * in the fastpath. 14714 */ 14715 if (old_plane_state->crtc != crtc || 14716 old_plane_state->src_w != src_w || 14717 old_plane_state->src_h != src_h || 14718 old_plane_state->crtc_w != crtc_w || 14719 old_plane_state->crtc_h != crtc_h || 14720 !old_plane_state->fb != !fb) 14721 goto slow; 14722 14723 new_plane_state = intel_plane_duplicate_state(plane); 14724 if (!new_plane_state) 14725 return -ENOMEM; 14726 14727 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(crtc)); 14728 if (!new_crtc_state) { 14729 ret = -ENOMEM; 14730 goto out_free; 14731 } 14732 14733 drm_atomic_set_fb_for_plane(new_plane_state, fb); 14734 14735 new_plane_state->src_x = src_x; 14736 new_plane_state->src_y = src_y; 14737 new_plane_state->src_w = src_w; 14738 new_plane_state->src_h = src_h; 14739 new_plane_state->crtc_x = crtc_x; 14740 new_plane_state->crtc_y = crtc_y; 14741 new_plane_state->crtc_w = crtc_w; 14742 new_plane_state->crtc_h = crtc_h; 14743 14744 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state, 14745 to_intel_plane_state(old_plane_state), 14746 to_intel_plane_state(new_plane_state)); 14747 if (ret) 14748 goto out_free; 14749 14750 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex); 14751 if (ret) 14752 goto out_free; 14753 14754 ret = intel_plane_pin_fb(to_intel_plane_state(new_plane_state)); 14755 if (ret) 14756 goto out_unlock; 14757 14758 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_FLIP); 14759 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->fb), 14760 to_intel_frontbuffer(fb), 14761 intel_plane->frontbuffer_bit); 14762 14763 /* Swap plane state */ 14764 plane->state = new_plane_state; 14765 14766 /* 14767 * We cannot swap crtc_state as it may be in use by an atomic commit or 14768 * page flip that's running simultaneously. If we swap crtc_state and 14769 * destroy the old state, we will cause a use-after-free there. 14770 * 14771 * Only update active_planes, which is needed for our internal 14772 * bookkeeping. Either value will do the right thing when updating 14773 * planes atomically. If the cursor was part of the atomic update then 14774 * we would have taken the slowpath. 14775 */ 14776 crtc_state->active_planes = new_crtc_state->active_planes; 14777 14778 if (plane->state->visible) 14779 intel_update_plane(intel_plane, crtc_state, 14780 to_intel_plane_state(plane->state)); 14781 else 14782 intel_disable_plane(intel_plane, crtc_state); 14783 14784 intel_plane_unpin_fb(to_intel_plane_state(old_plane_state)); 14785 14786 out_unlock: 14787 mutex_unlock(&dev_priv->drm.struct_mutex); 14788 out_free: 14789 if (new_crtc_state) 14790 intel_crtc_destroy_state(crtc, &new_crtc_state->base); 14791 if (ret) 14792 intel_plane_destroy_state(plane, new_plane_state); 14793 else 14794 intel_plane_destroy_state(plane, old_plane_state); 14795 return ret; 14796 14797 slow: 14798 return drm_atomic_helper_update_plane(plane, crtc, fb, 14799 crtc_x, crtc_y, crtc_w, crtc_h, 14800 src_x, src_y, src_w, src_h, ctx); 14801 } 14802 14803 static const struct drm_plane_funcs intel_cursor_plane_funcs = { 14804 .update_plane = intel_legacy_cursor_update, 14805 .disable_plane = drm_atomic_helper_disable_plane, 14806 .destroy = intel_plane_destroy, 14807 .atomic_duplicate_state = intel_plane_duplicate_state, 14808 .atomic_destroy_state = intel_plane_destroy_state, 14809 .format_mod_supported = intel_cursor_format_mod_supported, 14810 }; 14811 14812 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv, 14813 enum i9xx_plane_id i9xx_plane) 14814 { 14815 if (!HAS_FBC(dev_priv)) 14816 return false; 14817 14818 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 14819 return i9xx_plane == PLANE_A; /* tied to pipe A */ 14820 else if (IS_IVYBRIDGE(dev_priv)) 14821 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B || 14822 i9xx_plane == PLANE_C; 14823 else if (INTEL_GEN(dev_priv) >= 4) 14824 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B; 14825 else 14826 return i9xx_plane == PLANE_A; 14827 } 14828 14829 static struct intel_plane * 14830 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe) 14831 { 14832 struct intel_plane *plane; 14833 const struct drm_plane_funcs *plane_funcs; 14834 unsigned int supported_rotations; 14835 unsigned int possible_crtcs; 14836 const u64 *modifiers; 14837 const u32 *formats; 14838 int num_formats; 14839 int ret; 14840 14841 if (INTEL_GEN(dev_priv) >= 9) 14842 return skl_universal_plane_create(dev_priv, pipe, 14843 PLANE_PRIMARY); 14844 14845 plane = intel_plane_alloc(); 14846 if (IS_ERR(plane)) 14847 return plane; 14848 14849 plane->pipe = pipe; 14850 /* 14851 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS 14852 * port is hooked to pipe B. Hence we want plane A feeding pipe B. 14853 */ 14854 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4) 14855 plane->i9xx_plane = (enum i9xx_plane_id) !pipe; 14856 else 14857 plane->i9xx_plane = (enum i9xx_plane_id) pipe; 14858 plane->id = PLANE_PRIMARY; 14859 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id); 14860 14861 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane); 14862 if (plane->has_fbc) { 14863 struct intel_fbc *fbc = &dev_priv->fbc; 14864 14865 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit; 14866 } 14867 14868 if (INTEL_GEN(dev_priv) >= 4) { 14869 formats = i965_primary_formats; 14870 num_formats = ARRAY_SIZE(i965_primary_formats); 14871 modifiers = i9xx_format_modifiers; 14872 14873 plane->max_stride = i9xx_plane_max_stride; 14874 plane->update_plane = i9xx_update_plane; 14875 plane->disable_plane = i9xx_disable_plane; 14876 plane->get_hw_state = i9xx_plane_get_hw_state; 14877 plane->check_plane = i9xx_plane_check; 14878 14879 plane_funcs = &i965_plane_funcs; 14880 } else { 14881 formats = i8xx_primary_formats; 14882 num_formats = ARRAY_SIZE(i8xx_primary_formats); 14883 modifiers = i9xx_format_modifiers; 14884 14885 plane->max_stride = i9xx_plane_max_stride; 14886 plane->update_plane = i9xx_update_plane; 14887 plane->disable_plane = i9xx_disable_plane; 14888 plane->get_hw_state = i9xx_plane_get_hw_state; 14889 plane->check_plane = i9xx_plane_check; 14890 14891 plane_funcs = &i8xx_plane_funcs; 14892 } 14893 14894 possible_crtcs = BIT(pipe); 14895 14896 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 14897 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 14898 possible_crtcs, plane_funcs, 14899 formats, num_formats, modifiers, 14900 DRM_PLANE_TYPE_PRIMARY, 14901 "primary %c", pipe_name(pipe)); 14902 else 14903 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 14904 possible_crtcs, plane_funcs, 14905 formats, num_formats, modifiers, 14906 DRM_PLANE_TYPE_PRIMARY, 14907 "plane %c", 14908 plane_name(plane->i9xx_plane)); 14909 if (ret) 14910 goto fail; 14911 14912 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 14913 supported_rotations = 14914 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 | 14915 DRM_MODE_REFLECT_X; 14916 } else if (INTEL_GEN(dev_priv) >= 4) { 14917 supported_rotations = 14918 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180; 14919 } else { 14920 supported_rotations = DRM_MODE_ROTATE_0; 14921 } 14922 14923 if (INTEL_GEN(dev_priv) >= 4) 14924 drm_plane_create_rotation_property(&plane->base, 14925 DRM_MODE_ROTATE_0, 14926 supported_rotations); 14927 14928 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs); 14929 14930 return plane; 14931 14932 fail: 14933 intel_plane_free(plane); 14934 14935 return ERR_PTR(ret); 14936 } 14937 14938 static struct intel_plane * 14939 intel_cursor_plane_create(struct drm_i915_private *dev_priv, 14940 enum pipe pipe) 14941 { 14942 unsigned int possible_crtcs; 14943 struct intel_plane *cursor; 14944 int ret; 14945 14946 cursor = intel_plane_alloc(); 14947 if (IS_ERR(cursor)) 14948 return cursor; 14949 14950 cursor->pipe = pipe; 14951 cursor->i9xx_plane = (enum i9xx_plane_id) pipe; 14952 cursor->id = PLANE_CURSOR; 14953 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id); 14954 14955 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) { 14956 cursor->max_stride = i845_cursor_max_stride; 14957 cursor->update_plane = i845_update_cursor; 14958 cursor->disable_plane = i845_disable_cursor; 14959 cursor->get_hw_state = i845_cursor_get_hw_state; 14960 cursor->check_plane = i845_check_cursor; 14961 } else { 14962 cursor->max_stride = i9xx_cursor_max_stride; 14963 cursor->update_plane = i9xx_update_cursor; 14964 cursor->disable_plane = i9xx_disable_cursor; 14965 cursor->get_hw_state = i9xx_cursor_get_hw_state; 14966 cursor->check_plane = i9xx_check_cursor; 14967 } 14968 14969 cursor->cursor.base = ~0; 14970 cursor->cursor.cntl = ~0; 14971 14972 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv)) 14973 cursor->cursor.size = ~0; 14974 14975 possible_crtcs = BIT(pipe); 14976 14977 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base, 14978 possible_crtcs, &intel_cursor_plane_funcs, 14979 intel_cursor_formats, 14980 ARRAY_SIZE(intel_cursor_formats), 14981 cursor_format_modifiers, 14982 DRM_PLANE_TYPE_CURSOR, 14983 "cursor %c", pipe_name(pipe)); 14984 if (ret) 14985 goto fail; 14986 14987 if (INTEL_GEN(dev_priv) >= 4) 14988 drm_plane_create_rotation_property(&cursor->base, 14989 DRM_MODE_ROTATE_0, 14990 DRM_MODE_ROTATE_0 | 14991 DRM_MODE_ROTATE_180); 14992 14993 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs); 14994 14995 return cursor; 14996 14997 fail: 14998 intel_plane_free(cursor); 14999 15000 return ERR_PTR(ret); 15001 } 15002 15003 static void intel_crtc_init_scalers(struct intel_crtc *crtc, 15004 struct intel_crtc_state *crtc_state) 15005 { 15006 struct intel_crtc_scaler_state *scaler_state = 15007 &crtc_state->scaler_state; 15008 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 15009 int i; 15010 15011 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[crtc->pipe]; 15012 if (!crtc->num_scalers) 15013 return; 15014 15015 for (i = 0; i < crtc->num_scalers; i++) { 15016 struct intel_scaler *scaler = &scaler_state->scalers[i]; 15017 15018 scaler->in_use = 0; 15019 scaler->mode = 0; 15020 } 15021 15022 scaler_state->scaler_id = -1; 15023 } 15024 15025 #define INTEL_CRTC_FUNCS \ 15026 .gamma_set = drm_atomic_helper_legacy_gamma_set, \ 15027 .set_config = drm_atomic_helper_set_config, \ 15028 .destroy = intel_crtc_destroy, \ 15029 .page_flip = drm_atomic_helper_page_flip, \ 15030 .atomic_duplicate_state = intel_crtc_duplicate_state, \ 15031 .atomic_destroy_state = intel_crtc_destroy_state, \ 15032 .set_crc_source = intel_crtc_set_crc_source, \ 15033 .verify_crc_source = intel_crtc_verify_crc_source, \ 15034 .get_crc_sources = intel_crtc_get_crc_sources 15035 15036 static const struct drm_crtc_funcs bdw_crtc_funcs = { 15037 INTEL_CRTC_FUNCS, 15038 15039 .get_vblank_counter = g4x_get_vblank_counter, 15040 .enable_vblank = bdw_enable_vblank, 15041 .disable_vblank = bdw_disable_vblank, 15042 }; 15043 15044 static const struct drm_crtc_funcs ilk_crtc_funcs = { 15045 INTEL_CRTC_FUNCS, 15046 15047 .get_vblank_counter = g4x_get_vblank_counter, 15048 .enable_vblank = ilk_enable_vblank, 15049 .disable_vblank = ilk_disable_vblank, 15050 }; 15051 15052 static const struct drm_crtc_funcs g4x_crtc_funcs = { 15053 INTEL_CRTC_FUNCS, 15054 15055 .get_vblank_counter = g4x_get_vblank_counter, 15056 .enable_vblank = i965_enable_vblank, 15057 .disable_vblank = i965_disable_vblank, 15058 }; 15059 15060 static const struct drm_crtc_funcs i965_crtc_funcs = { 15061 INTEL_CRTC_FUNCS, 15062 15063 .get_vblank_counter = i915_get_vblank_counter, 15064 .enable_vblank = i965_enable_vblank, 15065 .disable_vblank = i965_disable_vblank, 15066 }; 15067 15068 static const struct drm_crtc_funcs i945gm_crtc_funcs = { 15069 INTEL_CRTC_FUNCS, 15070 15071 .get_vblank_counter = i915_get_vblank_counter, 15072 .enable_vblank = i945gm_enable_vblank, 15073 .disable_vblank = i945gm_disable_vblank, 15074 }; 15075 15076 static const struct drm_crtc_funcs i915_crtc_funcs = { 15077 INTEL_CRTC_FUNCS, 15078 15079 .get_vblank_counter = i915_get_vblank_counter, 15080 .enable_vblank = i8xx_enable_vblank, 15081 .disable_vblank = i8xx_disable_vblank, 15082 }; 15083 15084 static const struct drm_crtc_funcs i8xx_crtc_funcs = { 15085 INTEL_CRTC_FUNCS, 15086 15087 /* no hw vblank counter */ 15088 .enable_vblank = i8xx_enable_vblank, 15089 .disable_vblank = i8xx_disable_vblank, 15090 }; 15091 15092 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) 15093 { 15094 const struct drm_crtc_funcs *funcs; 15095 struct intel_crtc *intel_crtc; 15096 struct intel_crtc_state *crtc_state = NULL; 15097 struct intel_plane *primary = NULL; 15098 struct intel_plane *cursor = NULL; 15099 int sprite, ret; 15100 15101 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL); 15102 if (!intel_crtc) 15103 return -ENOMEM; 15104 15105 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL); 15106 if (!crtc_state) { 15107 ret = -ENOMEM; 15108 goto fail; 15109 } 15110 __drm_atomic_helper_crtc_reset(&intel_crtc->base, &crtc_state->base); 15111 intel_crtc->config = crtc_state; 15112 15113 primary = intel_primary_plane_create(dev_priv, pipe); 15114 if (IS_ERR(primary)) { 15115 ret = PTR_ERR(primary); 15116 goto fail; 15117 } 15118 intel_crtc->plane_ids_mask |= BIT(primary->id); 15119 15120 for_each_sprite(dev_priv, pipe, sprite) { 15121 struct intel_plane *plane; 15122 15123 plane = intel_sprite_plane_create(dev_priv, pipe, sprite); 15124 if (IS_ERR(plane)) { 15125 ret = PTR_ERR(plane); 15126 goto fail; 15127 } 15128 intel_crtc->plane_ids_mask |= BIT(plane->id); 15129 } 15130 15131 cursor = intel_cursor_plane_create(dev_priv, pipe); 15132 if (IS_ERR(cursor)) { 15133 ret = PTR_ERR(cursor); 15134 goto fail; 15135 } 15136 intel_crtc->plane_ids_mask |= BIT(cursor->id); 15137 15138 if (HAS_GMCH(dev_priv)) { 15139 if (IS_CHERRYVIEW(dev_priv) || 15140 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) 15141 funcs = &g4x_crtc_funcs; 15142 else if (IS_GEN(dev_priv, 4)) 15143 funcs = &i965_crtc_funcs; 15144 else if (IS_I945GM(dev_priv)) 15145 funcs = &i945gm_crtc_funcs; 15146 else if (IS_GEN(dev_priv, 3)) 15147 funcs = &i915_crtc_funcs; 15148 else 15149 funcs = &i8xx_crtc_funcs; 15150 } else { 15151 if (INTEL_GEN(dev_priv) >= 8) 15152 funcs = &bdw_crtc_funcs; 15153 else 15154 funcs = &ilk_crtc_funcs; 15155 } 15156 15157 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base, 15158 &primary->base, &cursor->base, 15159 funcs, "pipe %c", pipe_name(pipe)); 15160 if (ret) 15161 goto fail; 15162 15163 intel_crtc->pipe = pipe; 15164 15165 /* initialize shared scalers */ 15166 intel_crtc_init_scalers(intel_crtc, crtc_state); 15167 15168 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) || 15169 dev_priv->pipe_to_crtc_mapping[pipe] != NULL); 15170 dev_priv->pipe_to_crtc_mapping[pipe] = intel_crtc; 15171 15172 if (INTEL_GEN(dev_priv) < 9) { 15173 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane; 15174 15175 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 15176 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL); 15177 dev_priv->plane_to_crtc_mapping[i9xx_plane] = intel_crtc; 15178 } 15179 15180 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs); 15181 15182 intel_color_init(intel_crtc); 15183 15184 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe); 15185 15186 return 0; 15187 15188 fail: 15189 /* 15190 * drm_mode_config_cleanup() will free up any 15191 * crtcs/planes already initialized. 15192 */ 15193 kfree(crtc_state); 15194 kfree(intel_crtc); 15195 15196 return ret; 15197 } 15198 15199 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 15200 struct drm_file *file) 15201 { 15202 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 15203 struct drm_crtc *drmmode_crtc; 15204 struct intel_crtc *crtc; 15205 15206 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 15207 if (!drmmode_crtc) 15208 return -ENOENT; 15209 15210 crtc = to_intel_crtc(drmmode_crtc); 15211 pipe_from_crtc_id->pipe = crtc->pipe; 15212 15213 return 0; 15214 } 15215 15216 static int intel_encoder_clones(struct intel_encoder *encoder) 15217 { 15218 struct drm_device *dev = encoder->base.dev; 15219 struct intel_encoder *source_encoder; 15220 int index_mask = 0; 15221 int entry = 0; 15222 15223 for_each_intel_encoder(dev, source_encoder) { 15224 if (encoders_cloneable(encoder, source_encoder)) 15225 index_mask |= (1 << entry); 15226 15227 entry++; 15228 } 15229 15230 return index_mask; 15231 } 15232 15233 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 15234 { 15235 if (!IS_MOBILE(dev_priv)) 15236 return false; 15237 15238 if ((I915_READ(DP_A) & DP_DETECTED) == 0) 15239 return false; 15240 15241 if (IS_GEN(dev_priv, 5) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE)) 15242 return false; 15243 15244 return true; 15245 } 15246 15247 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 15248 { 15249 if (INTEL_GEN(dev_priv) >= 9) 15250 return false; 15251 15252 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 15253 return false; 15254 15255 if (HAS_PCH_LPT_H(dev_priv) && 15256 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 15257 return false; 15258 15259 /* DDI E can't be used if DDI A requires 4 lanes */ 15260 if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 15261 return false; 15262 15263 if (!dev_priv->vbt.int_crt_support) 15264 return false; 15265 15266 return true; 15267 } 15268 15269 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv) 15270 { 15271 int pps_num; 15272 int pps_idx; 15273 15274 if (HAS_DDI(dev_priv)) 15275 return; 15276 /* 15277 * This w/a is needed at least on CPT/PPT, but to be sure apply it 15278 * everywhere where registers can be write protected. 15279 */ 15280 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 15281 pps_num = 2; 15282 else 15283 pps_num = 1; 15284 15285 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) { 15286 u32 val = I915_READ(PP_CONTROL(pps_idx)); 15287 15288 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS; 15289 I915_WRITE(PP_CONTROL(pps_idx), val); 15290 } 15291 } 15292 15293 static void intel_pps_init(struct drm_i915_private *dev_priv) 15294 { 15295 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv)) 15296 dev_priv->pps_mmio_base = PCH_PPS_BASE; 15297 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 15298 dev_priv->pps_mmio_base = VLV_PPS_BASE; 15299 else 15300 dev_priv->pps_mmio_base = PPS_BASE; 15301 15302 intel_pps_unlock_regs_wa(dev_priv); 15303 } 15304 15305 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 15306 { 15307 struct intel_encoder *encoder; 15308 bool dpd_is_edp = false; 15309 15310 intel_pps_init(dev_priv); 15311 15312 if (!HAS_DISPLAY(dev_priv)) 15313 return; 15314 15315 if (INTEL_GEN(dev_priv) >= 12) { 15316 /* TODO: initialize TC ports as well */ 15317 intel_ddi_init(dev_priv, PORT_A); 15318 intel_ddi_init(dev_priv, PORT_B); 15319 icl_dsi_init(dev_priv); 15320 } else if (IS_ELKHARTLAKE(dev_priv)) { 15321 intel_ddi_init(dev_priv, PORT_A); 15322 intel_ddi_init(dev_priv, PORT_B); 15323 intel_ddi_init(dev_priv, PORT_C); 15324 intel_ddi_init(dev_priv, PORT_D); 15325 icl_dsi_init(dev_priv); 15326 } else if (IS_GEN(dev_priv, 11)) { 15327 intel_ddi_init(dev_priv, PORT_A); 15328 intel_ddi_init(dev_priv, PORT_B); 15329 intel_ddi_init(dev_priv, PORT_C); 15330 intel_ddi_init(dev_priv, PORT_D); 15331 intel_ddi_init(dev_priv, PORT_E); 15332 /* 15333 * On some ICL SKUs port F is not present. No strap bits for 15334 * this, so rely on VBT. 15335 * Work around broken VBTs on SKUs known to have no port F. 15336 */ 15337 if (IS_ICL_WITH_PORT_F(dev_priv) && 15338 intel_bios_is_port_present(dev_priv, PORT_F)) 15339 intel_ddi_init(dev_priv, PORT_F); 15340 15341 icl_dsi_init(dev_priv); 15342 } else if (IS_GEN9_LP(dev_priv)) { 15343 /* 15344 * FIXME: Broxton doesn't support port detection via the 15345 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to 15346 * detect the ports. 15347 */ 15348 intel_ddi_init(dev_priv, PORT_A); 15349 intel_ddi_init(dev_priv, PORT_B); 15350 intel_ddi_init(dev_priv, PORT_C); 15351 15352 vlv_dsi_init(dev_priv); 15353 } else if (HAS_DDI(dev_priv)) { 15354 int found; 15355 15356 if (intel_ddi_crt_present(dev_priv)) 15357 intel_crt_init(dev_priv); 15358 15359 /* 15360 * Haswell uses DDI functions to detect digital outputs. 15361 * On SKL pre-D0 the strap isn't connected, so we assume 15362 * it's there. 15363 */ 15364 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 15365 /* WaIgnoreDDIAStrap: skl */ 15366 if (found || IS_GEN9_BC(dev_priv)) 15367 intel_ddi_init(dev_priv, PORT_A); 15368 15369 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP 15370 * register */ 15371 found = I915_READ(SFUSE_STRAP); 15372 15373 if (found & SFUSE_STRAP_DDIB_DETECTED) 15374 intel_ddi_init(dev_priv, PORT_B); 15375 if (found & SFUSE_STRAP_DDIC_DETECTED) 15376 intel_ddi_init(dev_priv, PORT_C); 15377 if (found & SFUSE_STRAP_DDID_DETECTED) 15378 intel_ddi_init(dev_priv, PORT_D); 15379 if (found & SFUSE_STRAP_DDIF_DETECTED) 15380 intel_ddi_init(dev_priv, PORT_F); 15381 /* 15382 * On SKL we don't have a way to detect DDI-E so we rely on VBT. 15383 */ 15384 if (IS_GEN9_BC(dev_priv) && 15385 intel_bios_is_port_present(dev_priv, PORT_E)) 15386 intel_ddi_init(dev_priv, PORT_E); 15387 15388 } else if (HAS_PCH_SPLIT(dev_priv)) { 15389 int found; 15390 15391 /* 15392 * intel_edp_init_connector() depends on this completing first, 15393 * to prevent the registration of both eDP and LVDS and the 15394 * incorrect sharing of the PPS. 15395 */ 15396 intel_lvds_init(dev_priv); 15397 intel_crt_init(dev_priv); 15398 15399 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 15400 15401 if (ilk_has_edp_a(dev_priv)) 15402 intel_dp_init(dev_priv, DP_A, PORT_A); 15403 15404 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) { 15405 /* PCH SDVOB multiplex with HDMIB */ 15406 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 15407 if (!found) 15408 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 15409 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) 15410 intel_dp_init(dev_priv, PCH_DP_B, PORT_B); 15411 } 15412 15413 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED) 15414 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 15415 15416 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED) 15417 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 15418 15419 if (I915_READ(PCH_DP_C) & DP_DETECTED) 15420 intel_dp_init(dev_priv, PCH_DP_C, PORT_C); 15421 15422 if (I915_READ(PCH_DP_D) & DP_DETECTED) 15423 intel_dp_init(dev_priv, PCH_DP_D, PORT_D); 15424 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 15425 bool has_edp, has_port; 15426 15427 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 15428 intel_crt_init(dev_priv); 15429 15430 /* 15431 * The DP_DETECTED bit is the latched state of the DDC 15432 * SDA pin at boot. However since eDP doesn't require DDC 15433 * (no way to plug in a DP->HDMI dongle) the DDC pins for 15434 * eDP ports may have been muxed to an alternate function. 15435 * Thus we can't rely on the DP_DETECTED bit alone to detect 15436 * eDP ports. Consult the VBT as well as DP_DETECTED to 15437 * detect eDP ports. 15438 * 15439 * Sadly the straps seem to be missing sometimes even for HDMI 15440 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 15441 * and VBT for the presence of the port. Additionally we can't 15442 * trust the port type the VBT declares as we've seen at least 15443 * HDMI ports that the VBT claim are DP or eDP. 15444 */ 15445 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 15446 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 15447 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port) 15448 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B); 15449 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 15450 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 15451 15452 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 15453 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 15454 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port) 15455 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C); 15456 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 15457 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 15458 15459 if (IS_CHERRYVIEW(dev_priv)) { 15460 /* 15461 * eDP not supported on port D, 15462 * so no need to worry about it 15463 */ 15464 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 15465 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port) 15466 intel_dp_init(dev_priv, CHV_DP_D, PORT_D); 15467 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port) 15468 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 15469 } 15470 15471 vlv_dsi_init(dev_priv); 15472 } else if (IS_PINEVIEW(dev_priv)) { 15473 intel_lvds_init(dev_priv); 15474 intel_crt_init(dev_priv); 15475 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) { 15476 bool found = false; 15477 15478 if (IS_MOBILE(dev_priv)) 15479 intel_lvds_init(dev_priv); 15480 15481 intel_crt_init(dev_priv); 15482 15483 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { 15484 DRM_DEBUG_KMS("probing SDVOB\n"); 15485 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 15486 if (!found && IS_G4X(dev_priv)) { 15487 DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); 15488 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 15489 } 15490 15491 if (!found && IS_G4X(dev_priv)) 15492 intel_dp_init(dev_priv, DP_B, PORT_B); 15493 } 15494 15495 /* Before G4X SDVOC doesn't have its own detect register */ 15496 15497 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { 15498 DRM_DEBUG_KMS("probing SDVOC\n"); 15499 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 15500 } 15501 15502 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) { 15503 15504 if (IS_G4X(dev_priv)) { 15505 DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); 15506 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 15507 } 15508 if (IS_G4X(dev_priv)) 15509 intel_dp_init(dev_priv, DP_C, PORT_C); 15510 } 15511 15512 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED)) 15513 intel_dp_init(dev_priv, DP_D, PORT_D); 15514 15515 if (SUPPORTS_TV(dev_priv)) 15516 intel_tv_init(dev_priv); 15517 } else if (IS_GEN(dev_priv, 2)) { 15518 if (IS_I85X(dev_priv)) 15519 intel_lvds_init(dev_priv); 15520 15521 intel_crt_init(dev_priv); 15522 intel_dvo_init(dev_priv); 15523 } 15524 15525 intel_psr_init(dev_priv); 15526 15527 for_each_intel_encoder(&dev_priv->drm, encoder) { 15528 encoder->base.possible_crtcs = encoder->crtc_mask; 15529 encoder->base.possible_clones = 15530 intel_encoder_clones(encoder); 15531 } 15532 15533 intel_init_pch_refclk(dev_priv); 15534 15535 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 15536 } 15537 15538 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 15539 { 15540 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 15541 15542 drm_framebuffer_cleanup(fb); 15543 intel_frontbuffer_put(intel_fb->frontbuffer); 15544 15545 kfree(intel_fb); 15546 } 15547 15548 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 15549 struct drm_file *file, 15550 unsigned int *handle) 15551 { 15552 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 15553 15554 if (obj->userptr.mm) { 15555 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n"); 15556 return -EINVAL; 15557 } 15558 15559 return drm_gem_handle_create(file, &obj->base, handle); 15560 } 15561 15562 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 15563 struct drm_file *file, 15564 unsigned flags, unsigned color, 15565 struct drm_clip_rect *clips, 15566 unsigned num_clips) 15567 { 15568 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 15569 15570 i915_gem_object_flush_if_display(obj); 15571 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 15572 15573 return 0; 15574 } 15575 15576 static const struct drm_framebuffer_funcs intel_fb_funcs = { 15577 .destroy = intel_user_framebuffer_destroy, 15578 .create_handle = intel_user_framebuffer_create_handle, 15579 .dirty = intel_user_framebuffer_dirty, 15580 }; 15581 15582 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 15583 struct drm_i915_gem_object *obj, 15584 struct drm_mode_fb_cmd2 *mode_cmd) 15585 { 15586 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 15587 struct drm_framebuffer *fb = &intel_fb->base; 15588 u32 max_stride; 15589 unsigned int tiling, stride; 15590 int ret = -EINVAL; 15591 int i; 15592 15593 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 15594 if (!intel_fb->frontbuffer) 15595 return -ENOMEM; 15596 15597 i915_gem_object_lock(obj); 15598 tiling = i915_gem_object_get_tiling(obj); 15599 stride = i915_gem_object_get_stride(obj); 15600 i915_gem_object_unlock(obj); 15601 15602 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 15603 /* 15604 * If there's a fence, enforce that 15605 * the fb modifier and tiling mode match. 15606 */ 15607 if (tiling != I915_TILING_NONE && 15608 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 15609 DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n"); 15610 goto err; 15611 } 15612 } else { 15613 if (tiling == I915_TILING_X) { 15614 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 15615 } else if (tiling == I915_TILING_Y) { 15616 DRM_DEBUG_KMS("No Y tiling for legacy addfb\n"); 15617 goto err; 15618 } 15619 } 15620 15621 if (!drm_any_plane_has_format(&dev_priv->drm, 15622 mode_cmd->pixel_format, 15623 mode_cmd->modifier[0])) { 15624 struct drm_format_name_buf format_name; 15625 15626 DRM_DEBUG_KMS("unsupported pixel format %s / modifier 0x%llx\n", 15627 drm_get_format_name(mode_cmd->pixel_format, 15628 &format_name), 15629 mode_cmd->modifier[0]); 15630 goto err; 15631 } 15632 15633 /* 15634 * gen2/3 display engine uses the fence if present, 15635 * so the tiling mode must match the fb modifier exactly. 15636 */ 15637 if (INTEL_GEN(dev_priv) < 4 && 15638 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 15639 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n"); 15640 goto err; 15641 } 15642 15643 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 15644 mode_cmd->modifier[0]); 15645 if (mode_cmd->pitches[0] > max_stride) { 15646 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n", 15647 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 15648 "tiled" : "linear", 15649 mode_cmd->pitches[0], max_stride); 15650 goto err; 15651 } 15652 15653 /* 15654 * If there's a fence, enforce that 15655 * the fb pitch and fence stride match. 15656 */ 15657 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 15658 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n", 15659 mode_cmd->pitches[0], stride); 15660 goto err; 15661 } 15662 15663 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 15664 if (mode_cmd->offsets[0] != 0) 15665 goto err; 15666 15667 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 15668 15669 for (i = 0; i < fb->format->num_planes; i++) { 15670 u32 stride_alignment; 15671 15672 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 15673 DRM_DEBUG_KMS("bad plane %d handle\n", i); 15674 goto err; 15675 } 15676 15677 stride_alignment = intel_fb_stride_alignment(fb, i); 15678 15679 /* 15680 * Display WA #0531: skl,bxt,kbl,glk 15681 * 15682 * Render decompression and plane width > 3840 15683 * combined with horizontal panning requires the 15684 * plane stride to be a multiple of 4. We'll just 15685 * require the entire fb to accommodate that to avoid 15686 * potential runtime errors at plane configuration time. 15687 */ 15688 if (IS_GEN(dev_priv, 9) && i == 0 && fb->width > 3840 && 15689 is_ccs_modifier(fb->modifier)) 15690 stride_alignment *= 4; 15691 15692 if (fb->pitches[i] & (stride_alignment - 1)) { 15693 DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n", 15694 i, fb->pitches[i], stride_alignment); 15695 goto err; 15696 } 15697 15698 fb->obj[i] = &obj->base; 15699 } 15700 15701 ret = intel_fill_fb_info(dev_priv, fb); 15702 if (ret) 15703 goto err; 15704 15705 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 15706 if (ret) { 15707 DRM_ERROR("framebuffer init failed %d\n", ret); 15708 goto err; 15709 } 15710 15711 return 0; 15712 15713 err: 15714 intel_frontbuffer_put(intel_fb->frontbuffer); 15715 return ret; 15716 } 15717 15718 static struct drm_framebuffer * 15719 intel_user_framebuffer_create(struct drm_device *dev, 15720 struct drm_file *filp, 15721 const struct drm_mode_fb_cmd2 *user_mode_cmd) 15722 { 15723 struct drm_framebuffer *fb; 15724 struct drm_i915_gem_object *obj; 15725 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 15726 15727 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 15728 if (!obj) 15729 return ERR_PTR(-ENOENT); 15730 15731 fb = intel_framebuffer_create(obj, &mode_cmd); 15732 i915_gem_object_put(obj); 15733 15734 return fb; 15735 } 15736 15737 static void intel_atomic_state_free(struct drm_atomic_state *state) 15738 { 15739 struct intel_atomic_state *intel_state = to_intel_atomic_state(state); 15740 15741 drm_atomic_state_default_release(state); 15742 15743 i915_sw_fence_fini(&intel_state->commit_ready); 15744 15745 kfree(state); 15746 } 15747 15748 static enum drm_mode_status 15749 intel_mode_valid(struct drm_device *dev, 15750 const struct drm_display_mode *mode) 15751 { 15752 struct drm_i915_private *dev_priv = to_i915(dev); 15753 int hdisplay_max, htotal_max; 15754 int vdisplay_max, vtotal_max; 15755 15756 /* 15757 * Can't reject DBLSCAN here because Xorg ddxen can add piles 15758 * of DBLSCAN modes to the output's mode list when they detect 15759 * the scaling mode property on the connector. And they don't 15760 * ask the kernel to validate those modes in any way until 15761 * modeset time at which point the client gets a protocol error. 15762 * So in order to not upset those clients we silently ignore the 15763 * DBLSCAN flag on such connectors. For other connectors we will 15764 * reject modes with the DBLSCAN flag in encoder->compute_config(). 15765 * And we always reject DBLSCAN modes in connector->mode_valid() 15766 * as we never want such modes on the connector's mode list. 15767 */ 15768 15769 if (mode->vscan > 1) 15770 return MODE_NO_VSCAN; 15771 15772 if (mode->flags & DRM_MODE_FLAG_HSKEW) 15773 return MODE_H_ILLEGAL; 15774 15775 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 15776 DRM_MODE_FLAG_NCSYNC | 15777 DRM_MODE_FLAG_PCSYNC)) 15778 return MODE_HSYNC; 15779 15780 if (mode->flags & (DRM_MODE_FLAG_BCAST | 15781 DRM_MODE_FLAG_PIXMUX | 15782 DRM_MODE_FLAG_CLKDIV2)) 15783 return MODE_BAD; 15784 15785 if (INTEL_GEN(dev_priv) >= 9 || 15786 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 15787 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 15788 vdisplay_max = 4096; 15789 htotal_max = 8192; 15790 vtotal_max = 8192; 15791 } else if (INTEL_GEN(dev_priv) >= 3) { 15792 hdisplay_max = 4096; 15793 vdisplay_max = 4096; 15794 htotal_max = 8192; 15795 vtotal_max = 8192; 15796 } else { 15797 hdisplay_max = 2048; 15798 vdisplay_max = 2048; 15799 htotal_max = 4096; 15800 vtotal_max = 4096; 15801 } 15802 15803 if (mode->hdisplay > hdisplay_max || 15804 mode->hsync_start > htotal_max || 15805 mode->hsync_end > htotal_max || 15806 mode->htotal > htotal_max) 15807 return MODE_H_ILLEGAL; 15808 15809 if (mode->vdisplay > vdisplay_max || 15810 mode->vsync_start > vtotal_max || 15811 mode->vsync_end > vtotal_max || 15812 mode->vtotal > vtotal_max) 15813 return MODE_V_ILLEGAL; 15814 15815 return MODE_OK; 15816 } 15817 15818 static const struct drm_mode_config_funcs intel_mode_funcs = { 15819 .fb_create = intel_user_framebuffer_create, 15820 .get_format_info = intel_get_format_info, 15821 .output_poll_changed = intel_fbdev_output_poll_changed, 15822 .mode_valid = intel_mode_valid, 15823 .atomic_check = intel_atomic_check, 15824 .atomic_commit = intel_atomic_commit, 15825 .atomic_state_alloc = intel_atomic_state_alloc, 15826 .atomic_state_clear = intel_atomic_state_clear, 15827 .atomic_state_free = intel_atomic_state_free, 15828 }; 15829 15830 /** 15831 * intel_init_display_hooks - initialize the display modesetting hooks 15832 * @dev_priv: device private 15833 */ 15834 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 15835 { 15836 intel_init_cdclk_hooks(dev_priv); 15837 15838 if (INTEL_GEN(dev_priv) >= 9) { 15839 dev_priv->display.get_pipe_config = haswell_get_pipe_config; 15840 dev_priv->display.get_initial_plane_config = 15841 skylake_get_initial_plane_config; 15842 dev_priv->display.crtc_compute_clock = 15843 haswell_crtc_compute_clock; 15844 dev_priv->display.crtc_enable = haswell_crtc_enable; 15845 dev_priv->display.crtc_disable = haswell_crtc_disable; 15846 } else if (HAS_DDI(dev_priv)) { 15847 dev_priv->display.get_pipe_config = haswell_get_pipe_config; 15848 dev_priv->display.get_initial_plane_config = 15849 i9xx_get_initial_plane_config; 15850 dev_priv->display.crtc_compute_clock = 15851 haswell_crtc_compute_clock; 15852 dev_priv->display.crtc_enable = haswell_crtc_enable; 15853 dev_priv->display.crtc_disable = haswell_crtc_disable; 15854 } else if (HAS_PCH_SPLIT(dev_priv)) { 15855 dev_priv->display.get_pipe_config = ironlake_get_pipe_config; 15856 dev_priv->display.get_initial_plane_config = 15857 i9xx_get_initial_plane_config; 15858 dev_priv->display.crtc_compute_clock = 15859 ironlake_crtc_compute_clock; 15860 dev_priv->display.crtc_enable = ironlake_crtc_enable; 15861 dev_priv->display.crtc_disable = ironlake_crtc_disable; 15862 } else if (IS_CHERRYVIEW(dev_priv)) { 15863 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 15864 dev_priv->display.get_initial_plane_config = 15865 i9xx_get_initial_plane_config; 15866 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; 15867 dev_priv->display.crtc_enable = valleyview_crtc_enable; 15868 dev_priv->display.crtc_disable = i9xx_crtc_disable; 15869 } else if (IS_VALLEYVIEW(dev_priv)) { 15870 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 15871 dev_priv->display.get_initial_plane_config = 15872 i9xx_get_initial_plane_config; 15873 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; 15874 dev_priv->display.crtc_enable = valleyview_crtc_enable; 15875 dev_priv->display.crtc_disable = i9xx_crtc_disable; 15876 } else if (IS_G4X(dev_priv)) { 15877 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 15878 dev_priv->display.get_initial_plane_config = 15879 i9xx_get_initial_plane_config; 15880 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; 15881 dev_priv->display.crtc_enable = i9xx_crtc_enable; 15882 dev_priv->display.crtc_disable = i9xx_crtc_disable; 15883 } else if (IS_PINEVIEW(dev_priv)) { 15884 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 15885 dev_priv->display.get_initial_plane_config = 15886 i9xx_get_initial_plane_config; 15887 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; 15888 dev_priv->display.crtc_enable = i9xx_crtc_enable; 15889 dev_priv->display.crtc_disable = i9xx_crtc_disable; 15890 } else if (!IS_GEN(dev_priv, 2)) { 15891 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 15892 dev_priv->display.get_initial_plane_config = 15893 i9xx_get_initial_plane_config; 15894 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; 15895 dev_priv->display.crtc_enable = i9xx_crtc_enable; 15896 dev_priv->display.crtc_disable = i9xx_crtc_disable; 15897 } else { 15898 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 15899 dev_priv->display.get_initial_plane_config = 15900 i9xx_get_initial_plane_config; 15901 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; 15902 dev_priv->display.crtc_enable = i9xx_crtc_enable; 15903 dev_priv->display.crtc_disable = i9xx_crtc_disable; 15904 } 15905 15906 if (IS_GEN(dev_priv, 5)) { 15907 dev_priv->display.fdi_link_train = ironlake_fdi_link_train; 15908 } else if (IS_GEN(dev_priv, 6)) { 15909 dev_priv->display.fdi_link_train = gen6_fdi_link_train; 15910 } else if (IS_IVYBRIDGE(dev_priv)) { 15911 /* FIXME: detect B0+ stepping and use auto training */ 15912 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; 15913 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 15914 dev_priv->display.fdi_link_train = hsw_fdi_link_train; 15915 } 15916 15917 if (INTEL_GEN(dev_priv) >= 9) 15918 dev_priv->display.update_crtcs = skl_update_crtcs; 15919 else 15920 dev_priv->display.update_crtcs = intel_update_crtcs; 15921 } 15922 15923 static i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 15924 { 15925 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 15926 return VLV_VGACNTRL; 15927 else if (INTEL_GEN(dev_priv) >= 5) 15928 return CPU_VGACNTRL; 15929 else 15930 return VGACNTRL; 15931 } 15932 15933 /* Disable the VGA plane that we never use */ 15934 static void i915_disable_vga(struct drm_i915_private *dev_priv) 15935 { 15936 struct pci_dev *pdev = dev_priv->drm.pdev; 15937 u8 sr1; 15938 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv); 15939 15940 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */ 15941 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO); 15942 outb(SR01, VGA_SR_INDEX); 15943 sr1 = inb(VGA_SR_DATA); 15944 outb(sr1 | 1<<5, VGA_SR_DATA); 15945 vga_put(pdev, VGA_RSRC_LEGACY_IO); 15946 udelay(300); 15947 15948 I915_WRITE(vga_reg, VGA_DISP_DISABLE); 15949 POSTING_READ(vga_reg); 15950 } 15951 15952 void intel_modeset_init_hw(struct drm_device *dev) 15953 { 15954 struct drm_i915_private *dev_priv = to_i915(dev); 15955 15956 intel_update_cdclk(dev_priv); 15957 intel_dump_cdclk_state(&dev_priv->cdclk.hw, "Current CDCLK"); 15958 dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw; 15959 } 15960 15961 /* 15962 * Calculate what we think the watermarks should be for the state we've read 15963 * out of the hardware and then immediately program those watermarks so that 15964 * we ensure the hardware settings match our internal state. 15965 * 15966 * We can calculate what we think WM's should be by creating a duplicate of the 15967 * current state (which was constructed during hardware readout) and running it 15968 * through the atomic check code to calculate new watermark values in the 15969 * state object. 15970 */ 15971 static void sanitize_watermarks(struct drm_device *dev) 15972 { 15973 struct drm_i915_private *dev_priv = to_i915(dev); 15974 struct drm_atomic_state *state; 15975 struct intel_atomic_state *intel_state; 15976 struct intel_crtc *crtc; 15977 struct intel_crtc_state *crtc_state; 15978 struct drm_modeset_acquire_ctx ctx; 15979 int ret; 15980 int i; 15981 15982 /* Only supported on platforms that use atomic watermark design */ 15983 if (!dev_priv->display.optimize_watermarks) 15984 return; 15985 15986 /* 15987 * We need to hold connection_mutex before calling duplicate_state so 15988 * that the connector loop is protected. 15989 */ 15990 drm_modeset_acquire_init(&ctx, 0); 15991 retry: 15992 ret = drm_modeset_lock_all_ctx(dev, &ctx); 15993 if (ret == -EDEADLK) { 15994 drm_modeset_backoff(&ctx); 15995 goto retry; 15996 } else if (WARN_ON(ret)) { 15997 goto fail; 15998 } 15999 16000 state = drm_atomic_helper_duplicate_state(dev, &ctx); 16001 if (WARN_ON(IS_ERR(state))) 16002 goto fail; 16003 16004 intel_state = to_intel_atomic_state(state); 16005 16006 /* 16007 * Hardware readout is the only time we don't want to calculate 16008 * intermediate watermarks (since we don't trust the current 16009 * watermarks). 16010 */ 16011 if (!HAS_GMCH(dev_priv)) 16012 intel_state->skip_intermediate_wm = true; 16013 16014 ret = intel_atomic_check(dev, state); 16015 if (ret) { 16016 /* 16017 * If we fail here, it means that the hardware appears to be 16018 * programmed in a way that shouldn't be possible, given our 16019 * understanding of watermark requirements. This might mean a 16020 * mistake in the hardware readout code or a mistake in the 16021 * watermark calculations for a given platform. Raise a WARN 16022 * so that this is noticeable. 16023 * 16024 * If this actually happens, we'll have to just leave the 16025 * BIOS-programmed watermarks untouched and hope for the best. 16026 */ 16027 WARN(true, "Could not determine valid watermarks for inherited state\n"); 16028 goto put_state; 16029 } 16030 16031 /* Write calculated watermark values back */ 16032 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 16033 crtc_state->wm.need_postvbl_update = true; 16034 dev_priv->display.optimize_watermarks(intel_state, crtc_state); 16035 16036 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 16037 } 16038 16039 put_state: 16040 drm_atomic_state_put(state); 16041 fail: 16042 drm_modeset_drop_locks(&ctx); 16043 drm_modeset_acquire_fini(&ctx); 16044 } 16045 16046 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 16047 { 16048 if (IS_GEN(dev_priv, 5)) { 16049 u32 fdi_pll_clk = 16050 I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 16051 16052 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 16053 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) { 16054 dev_priv->fdi_pll_freq = 270000; 16055 } else { 16056 return; 16057 } 16058 16059 DRM_DEBUG_DRIVER("FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 16060 } 16061 16062 static int intel_initial_commit(struct drm_device *dev) 16063 { 16064 struct drm_atomic_state *state = NULL; 16065 struct drm_modeset_acquire_ctx ctx; 16066 struct drm_crtc *crtc; 16067 struct drm_crtc_state *crtc_state; 16068 int ret = 0; 16069 16070 state = drm_atomic_state_alloc(dev); 16071 if (!state) 16072 return -ENOMEM; 16073 16074 drm_modeset_acquire_init(&ctx, 0); 16075 16076 retry: 16077 state->acquire_ctx = &ctx; 16078 16079 drm_for_each_crtc(crtc, dev) { 16080 crtc_state = drm_atomic_get_crtc_state(state, crtc); 16081 if (IS_ERR(crtc_state)) { 16082 ret = PTR_ERR(crtc_state); 16083 goto out; 16084 } 16085 16086 if (crtc_state->active) { 16087 ret = drm_atomic_add_affected_planes(state, crtc); 16088 if (ret) 16089 goto out; 16090 16091 /* 16092 * FIXME hack to force a LUT update to avoid the 16093 * plane update forcing the pipe gamma on without 16094 * having a proper LUT loaded. Remove once we 16095 * have readout for pipe gamma enable. 16096 */ 16097 crtc_state->color_mgmt_changed = true; 16098 } 16099 } 16100 16101 ret = drm_atomic_commit(state); 16102 16103 out: 16104 if (ret == -EDEADLK) { 16105 drm_atomic_state_clear(state); 16106 drm_modeset_backoff(&ctx); 16107 goto retry; 16108 } 16109 16110 drm_atomic_state_put(state); 16111 16112 drm_modeset_drop_locks(&ctx); 16113 drm_modeset_acquire_fini(&ctx); 16114 16115 return ret; 16116 } 16117 16118 int intel_modeset_init(struct drm_device *dev) 16119 { 16120 struct drm_i915_private *dev_priv = to_i915(dev); 16121 enum pipe pipe; 16122 struct intel_crtc *crtc; 16123 int ret; 16124 16125 dev_priv->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 16126 16127 drm_mode_config_init(dev); 16128 16129 ret = intel_bw_init(dev_priv); 16130 if (ret) 16131 return ret; 16132 16133 dev->mode_config.min_width = 0; 16134 dev->mode_config.min_height = 0; 16135 16136 dev->mode_config.preferred_depth = 24; 16137 dev->mode_config.prefer_shadow = 1; 16138 16139 dev->mode_config.allow_fb_modifiers = true; 16140 16141 dev->mode_config.funcs = &intel_mode_funcs; 16142 16143 init_llist_head(&dev_priv->atomic_helper.free_list); 16144 INIT_WORK(&dev_priv->atomic_helper.free_work, 16145 intel_atomic_helper_free_state_worker); 16146 16147 intel_init_quirks(dev_priv); 16148 16149 intel_fbc_init(dev_priv); 16150 16151 intel_init_pm(dev_priv); 16152 16153 /* 16154 * There may be no VBT; and if the BIOS enabled SSC we can 16155 * just keep using it to avoid unnecessary flicker. Whereas if the 16156 * BIOS isn't using it, don't assume it will work even if the VBT 16157 * indicates as much. 16158 */ 16159 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 16160 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) & 16161 DREF_SSC1_ENABLE); 16162 16163 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 16164 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n", 16165 bios_lvds_use_ssc ? "en" : "dis", 16166 dev_priv->vbt.lvds_use_ssc ? "en" : "dis"); 16167 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 16168 } 16169 } 16170 16171 /* 16172 * Maximum framebuffer dimensions, chosen to match 16173 * the maximum render engine surface size on gen4+. 16174 */ 16175 if (INTEL_GEN(dev_priv) >= 7) { 16176 dev->mode_config.max_width = 16384; 16177 dev->mode_config.max_height = 16384; 16178 } else if (INTEL_GEN(dev_priv) >= 4) { 16179 dev->mode_config.max_width = 8192; 16180 dev->mode_config.max_height = 8192; 16181 } else if (IS_GEN(dev_priv, 3)) { 16182 dev->mode_config.max_width = 4096; 16183 dev->mode_config.max_height = 4096; 16184 } else { 16185 dev->mode_config.max_width = 2048; 16186 dev->mode_config.max_height = 2048; 16187 } 16188 16189 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) { 16190 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512; 16191 dev->mode_config.cursor_height = 1023; 16192 } else if (IS_GEN(dev_priv, 2)) { 16193 dev->mode_config.cursor_width = 64; 16194 dev->mode_config.cursor_height = 64; 16195 } else { 16196 dev->mode_config.cursor_width = 256; 16197 dev->mode_config.cursor_height = 256; 16198 } 16199 16200 DRM_DEBUG_KMS("%d display pipe%s available.\n", 16201 INTEL_INFO(dev_priv)->num_pipes, 16202 INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : ""); 16203 16204 for_each_pipe(dev_priv, pipe) { 16205 ret = intel_crtc_init(dev_priv, pipe); 16206 if (ret) { 16207 drm_mode_config_cleanup(dev); 16208 return ret; 16209 } 16210 } 16211 16212 intel_shared_dpll_init(dev); 16213 intel_update_fdi_pll_freq(dev_priv); 16214 16215 intel_update_czclk(dev_priv); 16216 intel_modeset_init_hw(dev); 16217 16218 intel_hdcp_component_init(dev_priv); 16219 16220 if (dev_priv->max_cdclk_freq == 0) 16221 intel_update_max_cdclk(dev_priv); 16222 16223 /* Just disable it once at startup */ 16224 i915_disable_vga(dev_priv); 16225 intel_setup_outputs(dev_priv); 16226 16227 drm_modeset_lock_all(dev); 16228 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 16229 drm_modeset_unlock_all(dev); 16230 16231 for_each_intel_crtc(dev, crtc) { 16232 struct intel_initial_plane_config plane_config = {}; 16233 16234 if (!crtc->active) 16235 continue; 16236 16237 /* 16238 * Note that reserving the BIOS fb up front prevents us 16239 * from stuffing other stolen allocations like the ring 16240 * on top. This prevents some ugliness at boot time, and 16241 * can even allow for smooth boot transitions if the BIOS 16242 * fb is large enough for the active pipe configuration. 16243 */ 16244 dev_priv->display.get_initial_plane_config(crtc, 16245 &plane_config); 16246 16247 /* 16248 * If the fb is shared between multiple heads, we'll 16249 * just get the first one. 16250 */ 16251 intel_find_initial_plane_obj(crtc, &plane_config); 16252 } 16253 16254 /* 16255 * Make sure hardware watermarks really match the state we read out. 16256 * Note that we need to do this after reconstructing the BIOS fb's 16257 * since the watermark calculation done here will use pstate->fb. 16258 */ 16259 if (!HAS_GMCH(dev_priv)) 16260 sanitize_watermarks(dev); 16261 16262 /* 16263 * Force all active planes to recompute their states. So that on 16264 * mode_setcrtc after probe, all the intel_plane_state variables 16265 * are already calculated and there is no assert_plane warnings 16266 * during bootup. 16267 */ 16268 ret = intel_initial_commit(dev); 16269 if (ret) 16270 DRM_DEBUG_KMS("Initial commit in probe failed.\n"); 16271 16272 return 0; 16273 } 16274 16275 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 16276 { 16277 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 16278 /* 640x480@60Hz, ~25175 kHz */ 16279 struct dpll clock = { 16280 .m1 = 18, 16281 .m2 = 7, 16282 .p1 = 13, 16283 .p2 = 4, 16284 .n = 2, 16285 }; 16286 u32 dpll, fp; 16287 int i; 16288 16289 WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154); 16290 16291 DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 16292 pipe_name(pipe), clock.vco, clock.dot); 16293 16294 fp = i9xx_dpll_compute_fp(&clock); 16295 dpll = DPLL_DVO_2X_MODE | 16296 DPLL_VGA_MODE_DIS | 16297 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 16298 PLL_P2_DIVIDE_BY_4 | 16299 PLL_REF_INPUT_DREFCLK | 16300 DPLL_VCO_ENABLE; 16301 16302 I915_WRITE(FP0(pipe), fp); 16303 I915_WRITE(FP1(pipe), fp); 16304 16305 I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 16306 I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 16307 I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 16308 I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 16309 I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 16310 I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 16311 I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 16312 16313 /* 16314 * Apparently we need to have VGA mode enabled prior to changing 16315 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 16316 * dividers, even though the register value does change. 16317 */ 16318 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 16319 I915_WRITE(DPLL(pipe), dpll); 16320 16321 /* Wait for the clocks to stabilize. */ 16322 POSTING_READ(DPLL(pipe)); 16323 udelay(150); 16324 16325 /* The pixel multiplier can only be updated once the 16326 * DPLL is enabled and the clocks are stable. 16327 * 16328 * So write it again. 16329 */ 16330 I915_WRITE(DPLL(pipe), dpll); 16331 16332 /* We do this three times for luck */ 16333 for (i = 0; i < 3 ; i++) { 16334 I915_WRITE(DPLL(pipe), dpll); 16335 POSTING_READ(DPLL(pipe)); 16336 udelay(150); /* wait for warmup */ 16337 } 16338 16339 I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 16340 POSTING_READ(PIPECONF(pipe)); 16341 16342 intel_wait_for_pipe_scanline_moving(crtc); 16343 } 16344 16345 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 16346 { 16347 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 16348 16349 DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n", 16350 pipe_name(pipe)); 16351 16352 WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE); 16353 WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE); 16354 WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE); 16355 WARN_ON(I915_READ(CURCNTR(PIPE_A)) & MCURSOR_MODE); 16356 WARN_ON(I915_READ(CURCNTR(PIPE_B)) & MCURSOR_MODE); 16357 16358 I915_WRITE(PIPECONF(pipe), 0); 16359 POSTING_READ(PIPECONF(pipe)); 16360 16361 intel_wait_for_pipe_scanline_stopped(crtc); 16362 16363 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS); 16364 POSTING_READ(DPLL(pipe)); 16365 } 16366 16367 static void 16368 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 16369 { 16370 struct intel_crtc *crtc; 16371 16372 if (INTEL_GEN(dev_priv) >= 4) 16373 return; 16374 16375 for_each_intel_crtc(&dev_priv->drm, crtc) { 16376 struct intel_plane *plane = 16377 to_intel_plane(crtc->base.primary); 16378 struct intel_crtc *plane_crtc; 16379 enum pipe pipe; 16380 16381 if (!plane->get_hw_state(plane, &pipe)) 16382 continue; 16383 16384 if (pipe == crtc->pipe) 16385 continue; 16386 16387 DRM_DEBUG_KMS("[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 16388 plane->base.base.id, plane->base.name); 16389 16390 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 16391 intel_plane_disable_noatomic(plane_crtc, plane); 16392 } 16393 } 16394 16395 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 16396 { 16397 struct drm_device *dev = crtc->base.dev; 16398 struct intel_encoder *encoder; 16399 16400 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 16401 return true; 16402 16403 return false; 16404 } 16405 16406 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 16407 { 16408 struct drm_device *dev = encoder->base.dev; 16409 struct intel_connector *connector; 16410 16411 for_each_connector_on_encoder(dev, &encoder->base, connector) 16412 return connector; 16413 16414 return NULL; 16415 } 16416 16417 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 16418 enum pipe pch_transcoder) 16419 { 16420 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 16421 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 16422 } 16423 16424 static void intel_sanitize_crtc(struct intel_crtc *crtc, 16425 struct drm_modeset_acquire_ctx *ctx) 16426 { 16427 struct drm_device *dev = crtc->base.dev; 16428 struct drm_i915_private *dev_priv = to_i915(dev); 16429 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 16430 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 16431 16432 /* Clear any frame start delays used for debugging left by the BIOS */ 16433 if (crtc->active && !transcoder_is_dsi(cpu_transcoder)) { 16434 i915_reg_t reg = PIPECONF(cpu_transcoder); 16435 16436 I915_WRITE(reg, 16437 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK); 16438 } 16439 16440 if (crtc_state->base.active) { 16441 struct intel_plane *plane; 16442 16443 /* Disable everything but the primary plane */ 16444 for_each_intel_plane_on_crtc(dev, crtc, plane) { 16445 const struct intel_plane_state *plane_state = 16446 to_intel_plane_state(plane->base.state); 16447 16448 if (plane_state->base.visible && 16449 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 16450 intel_plane_disable_noatomic(crtc, plane); 16451 } 16452 16453 /* 16454 * Disable any background color set by the BIOS, but enable the 16455 * gamma and CSC to match how we program our planes. 16456 */ 16457 if (INTEL_GEN(dev_priv) >= 9) 16458 I915_WRITE(SKL_BOTTOM_COLOR(crtc->pipe), 16459 SKL_BOTTOM_COLOR_GAMMA_ENABLE | 16460 SKL_BOTTOM_COLOR_CSC_ENABLE); 16461 } 16462 16463 /* Adjust the state of the output pipe according to whether we 16464 * have active connectors/encoders. */ 16465 if (crtc_state->base.active && !intel_crtc_has_encoders(crtc)) 16466 intel_crtc_disable_noatomic(&crtc->base, ctx); 16467 16468 if (crtc_state->base.active || HAS_GMCH(dev_priv)) { 16469 /* 16470 * We start out with underrun reporting disabled to avoid races. 16471 * For correct bookkeeping mark this on active crtcs. 16472 * 16473 * Also on gmch platforms we dont have any hardware bits to 16474 * disable the underrun reporting. Which means we need to start 16475 * out with underrun reporting disabled also on inactive pipes, 16476 * since otherwise we'll complain about the garbage we read when 16477 * e.g. coming up after runtime pm. 16478 * 16479 * No protection against concurrent access is required - at 16480 * worst a fifo underrun happens which also sets this to false. 16481 */ 16482 crtc->cpu_fifo_underrun_disabled = true; 16483 /* 16484 * We track the PCH trancoder underrun reporting state 16485 * within the crtc. With crtc for pipe A housing the underrun 16486 * reporting state for PCH transcoder A, crtc for pipe B housing 16487 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 16488 * and marking underrun reporting as disabled for the non-existing 16489 * PCH transcoders B and C would prevent enabling the south 16490 * error interrupt (see cpt_can_enable_serr_int()). 16491 */ 16492 if (has_pch_trancoder(dev_priv, crtc->pipe)) 16493 crtc->pch_fifo_underrun_disabled = true; 16494 } 16495 } 16496 16497 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 16498 { 16499 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 16500 16501 /* 16502 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 16503 * the hardware when a high res displays plugged in. DPLL P 16504 * divider is zero, and the pipe timings are bonkers. We'll 16505 * try to disable everything in that case. 16506 * 16507 * FIXME would be nice to be able to sanitize this state 16508 * without several WARNs, but for now let's take the easy 16509 * road. 16510 */ 16511 return IS_GEN(dev_priv, 6) && 16512 crtc_state->base.active && 16513 crtc_state->shared_dpll && 16514 crtc_state->port_clock == 0; 16515 } 16516 16517 static void intel_sanitize_encoder(struct intel_encoder *encoder) 16518 { 16519 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 16520 struct intel_connector *connector; 16521 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 16522 struct intel_crtc_state *crtc_state = crtc ? 16523 to_intel_crtc_state(crtc->base.state) : NULL; 16524 16525 /* We need to check both for a crtc link (meaning that the 16526 * encoder is active and trying to read from a pipe) and the 16527 * pipe itself being active. */ 16528 bool has_active_crtc = crtc_state && 16529 crtc_state->base.active; 16530 16531 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 16532 DRM_DEBUG_KMS("BIOS has misprogrammed the hardware. Disabling pipe %c\n", 16533 pipe_name(crtc->pipe)); 16534 has_active_crtc = false; 16535 } 16536 16537 connector = intel_encoder_find_connector(encoder); 16538 if (connector && !has_active_crtc) { 16539 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n", 16540 encoder->base.base.id, 16541 encoder->base.name); 16542 16543 /* Connector is active, but has no active pipe. This is 16544 * fallout from our resume register restoring. Disable 16545 * the encoder manually again. */ 16546 if (crtc_state) { 16547 struct drm_encoder *best_encoder; 16548 16549 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n", 16550 encoder->base.base.id, 16551 encoder->base.name); 16552 16553 /* avoid oopsing in case the hooks consult best_encoder */ 16554 best_encoder = connector->base.state->best_encoder; 16555 connector->base.state->best_encoder = &encoder->base; 16556 16557 if (encoder->disable) 16558 encoder->disable(encoder, crtc_state, 16559 connector->base.state); 16560 if (encoder->post_disable) 16561 encoder->post_disable(encoder, crtc_state, 16562 connector->base.state); 16563 16564 connector->base.state->best_encoder = best_encoder; 16565 } 16566 encoder->base.crtc = NULL; 16567 16568 /* Inconsistent output/port/pipe state happens presumably due to 16569 * a bug in one of the get_hw_state functions. Or someplace else 16570 * in our code, like the register restore mess on resume. Clamp 16571 * things to off as a safer default. */ 16572 16573 connector->base.dpms = DRM_MODE_DPMS_OFF; 16574 connector->base.encoder = NULL; 16575 } 16576 16577 /* notify opregion of the sanitized encoder state */ 16578 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 16579 16580 if (INTEL_GEN(dev_priv) >= 11) 16581 icl_sanitize_encoder_pll_mapping(encoder); 16582 } 16583 16584 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv) 16585 { 16586 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv); 16587 16588 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) { 16589 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n"); 16590 i915_disable_vga(dev_priv); 16591 } 16592 } 16593 16594 void i915_redisable_vga(struct drm_i915_private *dev_priv) 16595 { 16596 intel_wakeref_t wakeref; 16597 16598 /* 16599 * This function can be called both from intel_modeset_setup_hw_state or 16600 * at a very early point in our resume sequence, where the power well 16601 * structures are not yet restored. Since this function is at a very 16602 * paranoid "someone might have enabled VGA while we were not looking" 16603 * level, just check if the power well is enabled instead of trying to 16604 * follow the "don't touch the power well if we don't need it" policy 16605 * the rest of the driver uses. 16606 */ 16607 wakeref = intel_display_power_get_if_enabled(dev_priv, 16608 POWER_DOMAIN_VGA); 16609 if (!wakeref) 16610 return; 16611 16612 i915_redisable_vga_power_on(dev_priv); 16613 16614 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA, wakeref); 16615 } 16616 16617 /* FIXME read out full plane state for all planes */ 16618 static void readout_plane_state(struct drm_i915_private *dev_priv) 16619 { 16620 struct intel_plane *plane; 16621 struct intel_crtc *crtc; 16622 16623 for_each_intel_plane(&dev_priv->drm, plane) { 16624 struct intel_plane_state *plane_state = 16625 to_intel_plane_state(plane->base.state); 16626 struct intel_crtc_state *crtc_state; 16627 enum pipe pipe = PIPE_A; 16628 bool visible; 16629 16630 visible = plane->get_hw_state(plane, &pipe); 16631 16632 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 16633 crtc_state = to_intel_crtc_state(crtc->base.state); 16634 16635 intel_set_plane_visible(crtc_state, plane_state, visible); 16636 16637 DRM_DEBUG_KMS("[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 16638 plane->base.base.id, plane->base.name, 16639 enableddisabled(visible), pipe_name(pipe)); 16640 } 16641 16642 for_each_intel_crtc(&dev_priv->drm, crtc) { 16643 struct intel_crtc_state *crtc_state = 16644 to_intel_crtc_state(crtc->base.state); 16645 16646 fixup_active_planes(crtc_state); 16647 } 16648 } 16649 16650 static void intel_modeset_readout_hw_state(struct drm_device *dev) 16651 { 16652 struct drm_i915_private *dev_priv = to_i915(dev); 16653 enum pipe pipe; 16654 struct intel_crtc *crtc; 16655 struct intel_encoder *encoder; 16656 struct intel_connector *connector; 16657 struct drm_connector_list_iter conn_iter; 16658 int i; 16659 16660 dev_priv->active_crtcs = 0; 16661 16662 for_each_intel_crtc(dev, crtc) { 16663 struct intel_crtc_state *crtc_state = 16664 to_intel_crtc_state(crtc->base.state); 16665 16666 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base); 16667 memset(crtc_state, 0, sizeof(*crtc_state)); 16668 __drm_atomic_helper_crtc_reset(&crtc->base, &crtc_state->base); 16669 16670 crtc_state->base.active = crtc_state->base.enable = 16671 dev_priv->display.get_pipe_config(crtc, crtc_state); 16672 16673 crtc->base.enabled = crtc_state->base.enable; 16674 crtc->active = crtc_state->base.active; 16675 16676 if (crtc_state->base.active) 16677 dev_priv->active_crtcs |= 1 << crtc->pipe; 16678 16679 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n", 16680 crtc->base.base.id, crtc->base.name, 16681 enableddisabled(crtc_state->base.active)); 16682 } 16683 16684 readout_plane_state(dev_priv); 16685 16686 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 16687 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; 16688 16689 pll->on = pll->info->funcs->get_hw_state(dev_priv, pll, 16690 &pll->state.hw_state); 16691 16692 if (IS_ELKHARTLAKE(dev_priv) && pll->on && 16693 pll->info->id == DPLL_ID_EHL_DPLL4) { 16694 pll->wakeref = intel_display_power_get(dev_priv, 16695 POWER_DOMAIN_DPLL_DC_OFF); 16696 } 16697 16698 pll->state.crtc_mask = 0; 16699 for_each_intel_crtc(dev, crtc) { 16700 struct intel_crtc_state *crtc_state = 16701 to_intel_crtc_state(crtc->base.state); 16702 16703 if (crtc_state->base.active && 16704 crtc_state->shared_dpll == pll) 16705 pll->state.crtc_mask |= 1 << crtc->pipe; 16706 } 16707 pll->active_mask = pll->state.crtc_mask; 16708 16709 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n", 16710 pll->info->name, pll->state.crtc_mask, pll->on); 16711 } 16712 16713 for_each_intel_encoder(dev, encoder) { 16714 pipe = 0; 16715 16716 if (encoder->get_hw_state(encoder, &pipe)) { 16717 struct intel_crtc_state *crtc_state; 16718 16719 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 16720 crtc_state = to_intel_crtc_state(crtc->base.state); 16721 16722 encoder->base.crtc = &crtc->base; 16723 encoder->get_config(encoder, crtc_state); 16724 } else { 16725 encoder->base.crtc = NULL; 16726 } 16727 16728 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 16729 encoder->base.base.id, encoder->base.name, 16730 enableddisabled(encoder->base.crtc), 16731 pipe_name(pipe)); 16732 } 16733 16734 drm_connector_list_iter_begin(dev, &conn_iter); 16735 for_each_intel_connector_iter(connector, &conn_iter) { 16736 if (connector->get_hw_state(connector)) { 16737 connector->base.dpms = DRM_MODE_DPMS_ON; 16738 16739 encoder = connector->encoder; 16740 connector->base.encoder = &encoder->base; 16741 16742 if (encoder->base.crtc && 16743 encoder->base.crtc->state->active) { 16744 /* 16745 * This has to be done during hardware readout 16746 * because anything calling .crtc_disable may 16747 * rely on the connector_mask being accurate. 16748 */ 16749 encoder->base.crtc->state->connector_mask |= 16750 drm_connector_mask(&connector->base); 16751 encoder->base.crtc->state->encoder_mask |= 16752 drm_encoder_mask(&encoder->base); 16753 } 16754 16755 } else { 16756 connector->base.dpms = DRM_MODE_DPMS_OFF; 16757 connector->base.encoder = NULL; 16758 } 16759 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n", 16760 connector->base.base.id, connector->base.name, 16761 enableddisabled(connector->base.encoder)); 16762 } 16763 drm_connector_list_iter_end(&conn_iter); 16764 16765 for_each_intel_crtc(dev, crtc) { 16766 struct intel_bw_state *bw_state = 16767 to_intel_bw_state(dev_priv->bw_obj.state); 16768 struct intel_crtc_state *crtc_state = 16769 to_intel_crtc_state(crtc->base.state); 16770 struct intel_plane *plane; 16771 int min_cdclk = 0; 16772 16773 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode)); 16774 if (crtc_state->base.active) { 16775 intel_mode_from_pipe_config(&crtc->base.mode, crtc_state); 16776 crtc->base.mode.hdisplay = crtc_state->pipe_src_w; 16777 crtc->base.mode.vdisplay = crtc_state->pipe_src_h; 16778 intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state); 16779 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode)); 16780 16781 /* 16782 * The initial mode needs to be set in order to keep 16783 * the atomic core happy. It wants a valid mode if the 16784 * crtc's enabled, so we do the above call. 16785 * 16786 * But we don't set all the derived state fully, hence 16787 * set a flag to indicate that a full recalculation is 16788 * needed on the next commit. 16789 */ 16790 crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED; 16791 16792 intel_crtc_compute_pixel_rate(crtc_state); 16793 16794 if (dev_priv->display.modeset_calc_cdclk) { 16795 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 16796 if (WARN_ON(min_cdclk < 0)) 16797 min_cdclk = 0; 16798 } 16799 16800 drm_calc_timestamping_constants(&crtc->base, 16801 &crtc_state->base.adjusted_mode); 16802 update_scanline_offset(crtc_state); 16803 } 16804 16805 dev_priv->min_cdclk[crtc->pipe] = min_cdclk; 16806 dev_priv->min_voltage_level[crtc->pipe] = 16807 crtc_state->min_voltage_level; 16808 16809 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 16810 const struct intel_plane_state *plane_state = 16811 to_intel_plane_state(plane->base.state); 16812 16813 /* 16814 * FIXME don't have the fb yet, so can't 16815 * use intel_plane_data_rate() :( 16816 */ 16817 if (plane_state->base.visible) 16818 crtc_state->data_rate[plane->id] = 16819 4 * crtc_state->pixel_rate; 16820 } 16821 16822 intel_bw_crtc_update(bw_state, crtc_state); 16823 16824 intel_pipe_config_sanity_check(dev_priv, crtc_state); 16825 } 16826 } 16827 16828 static void 16829 get_encoder_power_domains(struct drm_i915_private *dev_priv) 16830 { 16831 struct intel_encoder *encoder; 16832 16833 for_each_intel_encoder(&dev_priv->drm, encoder) { 16834 struct intel_crtc_state *crtc_state; 16835 16836 if (!encoder->get_power_domains) 16837 continue; 16838 16839 /* 16840 * MST-primary and inactive encoders don't have a crtc state 16841 * and neither of these require any power domain references. 16842 */ 16843 if (!encoder->base.crtc) 16844 continue; 16845 16846 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 16847 encoder->get_power_domains(encoder, crtc_state); 16848 } 16849 } 16850 16851 static void intel_early_display_was(struct drm_i915_private *dev_priv) 16852 { 16853 /* Display WA #1185 WaDisableDARBFClkGating:cnl,glk */ 16854 if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) 16855 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) | 16856 DARBF_GATING_DIS); 16857 16858 if (IS_HASWELL(dev_priv)) { 16859 /* 16860 * WaRsPkgCStateDisplayPMReq:hsw 16861 * System hang if this isn't done before disabling all planes! 16862 */ 16863 I915_WRITE(CHICKEN_PAR1_1, 16864 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 16865 } 16866 } 16867 16868 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 16869 enum port port, i915_reg_t hdmi_reg) 16870 { 16871 u32 val = I915_READ(hdmi_reg); 16872 16873 if (val & SDVO_ENABLE || 16874 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 16875 return; 16876 16877 DRM_DEBUG_KMS("Sanitizing transcoder select for HDMI %c\n", 16878 port_name(port)); 16879 16880 val &= ~SDVO_PIPE_SEL_MASK; 16881 val |= SDVO_PIPE_SEL(PIPE_A); 16882 16883 I915_WRITE(hdmi_reg, val); 16884 } 16885 16886 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 16887 enum port port, i915_reg_t dp_reg) 16888 { 16889 u32 val = I915_READ(dp_reg); 16890 16891 if (val & DP_PORT_EN || 16892 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 16893 return; 16894 16895 DRM_DEBUG_KMS("Sanitizing transcoder select for DP %c\n", 16896 port_name(port)); 16897 16898 val &= ~DP_PIPE_SEL_MASK; 16899 val |= DP_PIPE_SEL(PIPE_A); 16900 16901 I915_WRITE(dp_reg, val); 16902 } 16903 16904 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 16905 { 16906 /* 16907 * The BIOS may select transcoder B on some of the PCH 16908 * ports even it doesn't enable the port. This would trip 16909 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 16910 * Sanitize the transcoder select bits to prevent that. We 16911 * assume that the BIOS never actually enabled the port, 16912 * because if it did we'd actually have to toggle the port 16913 * on and back off to make the transcoder A select stick 16914 * (see. intel_dp_link_down(), intel_disable_hdmi(), 16915 * intel_disable_sdvo()). 16916 */ 16917 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 16918 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 16919 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 16920 16921 /* PCH SDVOB multiplex with HDMIB */ 16922 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 16923 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 16924 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 16925 } 16926 16927 /* Scan out the current hw modeset state, 16928 * and sanitizes it to the current state 16929 */ 16930 static void 16931 intel_modeset_setup_hw_state(struct drm_device *dev, 16932 struct drm_modeset_acquire_ctx *ctx) 16933 { 16934 struct drm_i915_private *dev_priv = to_i915(dev); 16935 struct intel_crtc_state *crtc_state; 16936 struct intel_encoder *encoder; 16937 struct intel_crtc *crtc; 16938 intel_wakeref_t wakeref; 16939 int i; 16940 16941 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 16942 16943 intel_early_display_was(dev_priv); 16944 intel_modeset_readout_hw_state(dev); 16945 16946 /* HW state is read out, now we need to sanitize this mess. */ 16947 16948 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 16949 for_each_intel_encoder(dev, encoder) { 16950 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 16951 16952 /* We need to sanitize only the MST primary port. */ 16953 if (encoder->type != INTEL_OUTPUT_DP_MST && 16954 intel_phy_is_tc(dev_priv, phy)) 16955 intel_tc_port_sanitize(enc_to_dig_port(&encoder->base)); 16956 } 16957 16958 get_encoder_power_domains(dev_priv); 16959 16960 if (HAS_PCH_IBX(dev_priv)) 16961 ibx_sanitize_pch_ports(dev_priv); 16962 16963 /* 16964 * intel_sanitize_plane_mapping() may need to do vblank 16965 * waits, so we need vblank interrupts restored beforehand. 16966 */ 16967 for_each_intel_crtc(&dev_priv->drm, crtc) { 16968 crtc_state = to_intel_crtc_state(crtc->base.state); 16969 16970 drm_crtc_vblank_reset(&crtc->base); 16971 16972 if (crtc_state->base.active) 16973 intel_crtc_vblank_on(crtc_state); 16974 } 16975 16976 intel_sanitize_plane_mapping(dev_priv); 16977 16978 for_each_intel_encoder(dev, encoder) 16979 intel_sanitize_encoder(encoder); 16980 16981 for_each_intel_crtc(&dev_priv->drm, crtc) { 16982 crtc_state = to_intel_crtc_state(crtc->base.state); 16983 intel_sanitize_crtc(crtc, ctx); 16984 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 16985 } 16986 16987 intel_modeset_update_connector_atomic_state(dev); 16988 16989 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 16990 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; 16991 16992 if (!pll->on || pll->active_mask) 16993 continue; 16994 16995 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", 16996 pll->info->name); 16997 16998 pll->info->funcs->disable(dev_priv, pll); 16999 pll->on = false; 17000 } 17001 17002 if (IS_G4X(dev_priv)) { 17003 g4x_wm_get_hw_state(dev_priv); 17004 g4x_wm_sanitize(dev_priv); 17005 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 17006 vlv_wm_get_hw_state(dev_priv); 17007 vlv_wm_sanitize(dev_priv); 17008 } else if (INTEL_GEN(dev_priv) >= 9) { 17009 skl_wm_get_hw_state(dev_priv); 17010 } else if (HAS_PCH_SPLIT(dev_priv)) { 17011 ilk_wm_get_hw_state(dev_priv); 17012 } 17013 17014 for_each_intel_crtc(dev, crtc) { 17015 u64 put_domains; 17016 17017 crtc_state = to_intel_crtc_state(crtc->base.state); 17018 put_domains = modeset_get_crtc_power_domains(crtc_state); 17019 if (WARN_ON(put_domains)) 17020 modeset_put_power_domains(dev_priv, put_domains); 17021 } 17022 17023 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 17024 17025 intel_fbc_init_pipe_state(dev_priv); 17026 } 17027 17028 void intel_display_resume(struct drm_device *dev) 17029 { 17030 struct drm_i915_private *dev_priv = to_i915(dev); 17031 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 17032 struct drm_modeset_acquire_ctx ctx; 17033 int ret; 17034 17035 dev_priv->modeset_restore_state = NULL; 17036 if (state) 17037 state->acquire_ctx = &ctx; 17038 17039 drm_modeset_acquire_init(&ctx, 0); 17040 17041 while (1) { 17042 ret = drm_modeset_lock_all_ctx(dev, &ctx); 17043 if (ret != -EDEADLK) 17044 break; 17045 17046 drm_modeset_backoff(&ctx); 17047 } 17048 17049 if (!ret) 17050 ret = __intel_display_resume(dev, state, &ctx); 17051 17052 intel_enable_ipc(dev_priv); 17053 drm_modeset_drop_locks(&ctx); 17054 drm_modeset_acquire_fini(&ctx); 17055 17056 if (ret) 17057 DRM_ERROR("Restoring old state failed with %i\n", ret); 17058 if (state) 17059 drm_atomic_state_put(state); 17060 } 17061 17062 static void intel_hpd_poll_fini(struct drm_device *dev) 17063 { 17064 struct intel_connector *connector; 17065 struct drm_connector_list_iter conn_iter; 17066 17067 /* Kill all the work that may have been queued by hpd. */ 17068 drm_connector_list_iter_begin(dev, &conn_iter); 17069 for_each_intel_connector_iter(connector, &conn_iter) { 17070 if (connector->modeset_retry_work.func) 17071 cancel_work_sync(&connector->modeset_retry_work); 17072 if (connector->hdcp.shim) { 17073 cancel_delayed_work_sync(&connector->hdcp.check_work); 17074 cancel_work_sync(&connector->hdcp.prop_work); 17075 } 17076 } 17077 drm_connector_list_iter_end(&conn_iter); 17078 } 17079 17080 void intel_modeset_driver_remove(struct drm_device *dev) 17081 { 17082 struct drm_i915_private *dev_priv = to_i915(dev); 17083 17084 flush_workqueue(dev_priv->modeset_wq); 17085 17086 flush_work(&dev_priv->atomic_helper.free_work); 17087 WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list)); 17088 17089 /* 17090 * Interrupts and polling as the first thing to avoid creating havoc. 17091 * Too much stuff here (turning of connectors, ...) would 17092 * experience fancy races otherwise. 17093 */ 17094 intel_irq_uninstall(dev_priv); 17095 17096 /* 17097 * Due to the hpd irq storm handling the hotplug work can re-arm the 17098 * poll handlers. Hence disable polling after hpd handling is shut down. 17099 */ 17100 intel_hpd_poll_fini(dev); 17101 17102 /* poll work can call into fbdev, hence clean that up afterwards */ 17103 intel_fbdev_fini(dev_priv); 17104 17105 intel_unregister_dsm_handler(); 17106 17107 intel_fbc_global_disable(dev_priv); 17108 17109 /* flush any delayed tasks or pending work */ 17110 flush_scheduled_work(); 17111 17112 intel_hdcp_component_fini(dev_priv); 17113 17114 drm_mode_config_cleanup(dev); 17115 17116 intel_overlay_cleanup(dev_priv); 17117 17118 intel_gmbus_teardown(dev_priv); 17119 17120 destroy_workqueue(dev_priv->modeset_wq); 17121 17122 intel_fbc_cleanup_cfb(dev_priv); 17123 } 17124 17125 /* 17126 * set vga decode state - true == enable VGA decode 17127 */ 17128 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state) 17129 { 17130 unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL; 17131 u16 gmch_ctrl; 17132 17133 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) { 17134 DRM_ERROR("failed to read control word\n"); 17135 return -EIO; 17136 } 17137 17138 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state) 17139 return 0; 17140 17141 if (state) 17142 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; 17143 else 17144 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; 17145 17146 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) { 17147 DRM_ERROR("failed to write control word\n"); 17148 return -EIO; 17149 } 17150 17151 return 0; 17152 } 17153 17154 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 17155 17156 struct intel_display_error_state { 17157 17158 u32 power_well_driver; 17159 17160 struct intel_cursor_error_state { 17161 u32 control; 17162 u32 position; 17163 u32 base; 17164 u32 size; 17165 } cursor[I915_MAX_PIPES]; 17166 17167 struct intel_pipe_error_state { 17168 bool power_domain_on; 17169 u32 source; 17170 u32 stat; 17171 } pipe[I915_MAX_PIPES]; 17172 17173 struct intel_plane_error_state { 17174 u32 control; 17175 u32 stride; 17176 u32 size; 17177 u32 pos; 17178 u32 addr; 17179 u32 surface; 17180 u32 tile_offset; 17181 } plane[I915_MAX_PIPES]; 17182 17183 struct intel_transcoder_error_state { 17184 bool available; 17185 bool power_domain_on; 17186 enum transcoder cpu_transcoder; 17187 17188 u32 conf; 17189 17190 u32 htotal; 17191 u32 hblank; 17192 u32 hsync; 17193 u32 vtotal; 17194 u32 vblank; 17195 u32 vsync; 17196 } transcoder[5]; 17197 }; 17198 17199 struct intel_display_error_state * 17200 intel_display_capture_error_state(struct drm_i915_private *dev_priv) 17201 { 17202 struct intel_display_error_state *error; 17203 int transcoders[] = { 17204 TRANSCODER_A, 17205 TRANSCODER_B, 17206 TRANSCODER_C, 17207 TRANSCODER_D, 17208 TRANSCODER_EDP, 17209 }; 17210 int i; 17211 17212 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder)); 17213 17214 if (!HAS_DISPLAY(dev_priv)) 17215 return NULL; 17216 17217 error = kzalloc(sizeof(*error), GFP_ATOMIC); 17218 if (error == NULL) 17219 return NULL; 17220 17221 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 17222 error->power_well_driver = I915_READ(HSW_PWR_WELL_CTL2); 17223 17224 for_each_pipe(dev_priv, i) { 17225 error->pipe[i].power_domain_on = 17226 __intel_display_power_is_enabled(dev_priv, 17227 POWER_DOMAIN_PIPE(i)); 17228 if (!error->pipe[i].power_domain_on) 17229 continue; 17230 17231 error->cursor[i].control = I915_READ(CURCNTR(i)); 17232 error->cursor[i].position = I915_READ(CURPOS(i)); 17233 error->cursor[i].base = I915_READ(CURBASE(i)); 17234 17235 error->plane[i].control = I915_READ(DSPCNTR(i)); 17236 error->plane[i].stride = I915_READ(DSPSTRIDE(i)); 17237 if (INTEL_GEN(dev_priv) <= 3) { 17238 error->plane[i].size = I915_READ(DSPSIZE(i)); 17239 error->plane[i].pos = I915_READ(DSPPOS(i)); 17240 } 17241 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 17242 error->plane[i].addr = I915_READ(DSPADDR(i)); 17243 if (INTEL_GEN(dev_priv) >= 4) { 17244 error->plane[i].surface = I915_READ(DSPSURF(i)); 17245 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i)); 17246 } 17247 17248 error->pipe[i].source = I915_READ(PIPESRC(i)); 17249 17250 if (HAS_GMCH(dev_priv)) 17251 error->pipe[i].stat = I915_READ(PIPESTAT(i)); 17252 } 17253 17254 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 17255 enum transcoder cpu_transcoder = transcoders[i]; 17256 17257 if (!INTEL_INFO(dev_priv)->trans_offsets[cpu_transcoder]) 17258 continue; 17259 17260 error->transcoder[i].available = true; 17261 error->transcoder[i].power_domain_on = 17262 __intel_display_power_is_enabled(dev_priv, 17263 POWER_DOMAIN_TRANSCODER(cpu_transcoder)); 17264 if (!error->transcoder[i].power_domain_on) 17265 continue; 17266 17267 error->transcoder[i].cpu_transcoder = cpu_transcoder; 17268 17269 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder)); 17270 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder)); 17271 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder)); 17272 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder)); 17273 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder)); 17274 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder)); 17275 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder)); 17276 } 17277 17278 return error; 17279 } 17280 17281 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) 17282 17283 void 17284 intel_display_print_error_state(struct drm_i915_error_state_buf *m, 17285 struct intel_display_error_state *error) 17286 { 17287 struct drm_i915_private *dev_priv = m->i915; 17288 int i; 17289 17290 if (!error) 17291 return; 17292 17293 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes); 17294 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 17295 err_printf(m, "PWR_WELL_CTL2: %08x\n", 17296 error->power_well_driver); 17297 for_each_pipe(dev_priv, i) { 17298 err_printf(m, "Pipe [%d]:\n", i); 17299 err_printf(m, " Power: %s\n", 17300 onoff(error->pipe[i].power_domain_on)); 17301 err_printf(m, " SRC: %08x\n", error->pipe[i].source); 17302 err_printf(m, " STAT: %08x\n", error->pipe[i].stat); 17303 17304 err_printf(m, "Plane [%d]:\n", i); 17305 err_printf(m, " CNTR: %08x\n", error->plane[i].control); 17306 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); 17307 if (INTEL_GEN(dev_priv) <= 3) { 17308 err_printf(m, " SIZE: %08x\n", error->plane[i].size); 17309 err_printf(m, " POS: %08x\n", error->plane[i].pos); 17310 } 17311 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 17312 err_printf(m, " ADDR: %08x\n", error->plane[i].addr); 17313 if (INTEL_GEN(dev_priv) >= 4) { 17314 err_printf(m, " SURF: %08x\n", error->plane[i].surface); 17315 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); 17316 } 17317 17318 err_printf(m, "Cursor [%d]:\n", i); 17319 err_printf(m, " CNTR: %08x\n", error->cursor[i].control); 17320 err_printf(m, " POS: %08x\n", error->cursor[i].position); 17321 err_printf(m, " BASE: %08x\n", error->cursor[i].base); 17322 } 17323 17324 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 17325 if (!error->transcoder[i].available) 17326 continue; 17327 17328 err_printf(m, "CPU transcoder: %s\n", 17329 transcoder_name(error->transcoder[i].cpu_transcoder)); 17330 err_printf(m, " Power: %s\n", 17331 onoff(error->transcoder[i].power_domain_on)); 17332 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); 17333 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); 17334 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); 17335 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); 17336 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); 17337 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); 17338 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); 17339 } 17340 } 17341 17342 #endif 17343