xref: /linux/drivers/gpu/drm/i915/display/intel_cdclk.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * Copyright © 2006-2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/time.h>
25 
26 #include "hsw_ips.h"
27 #include "i915_reg.h"
28 #include "intel_atomic.h"
29 #include "intel_atomic_plane.h"
30 #include "intel_audio.h"
31 #include "intel_bw.h"
32 #include "intel_cdclk.h"
33 #include "intel_crtc.h"
34 #include "intel_de.h"
35 #include "intel_dp.h"
36 #include "intel_display_types.h"
37 #include "intel_mchbar_regs.h"
38 #include "intel_pci_config.h"
39 #include "intel_pcode.h"
40 #include "intel_psr.h"
41 #include "intel_vdsc.h"
42 #include "vlv_sideband.h"
43 
44 /**
45  * DOC: CDCLK / RAWCLK
46  *
47  * The display engine uses several different clocks to do its work. There
48  * are two main clocks involved that aren't directly related to the actual
49  * pixel clock or any symbol/bit clock of the actual output port. These
50  * are the core display clock (CDCLK) and RAWCLK.
51  *
52  * CDCLK clocks most of the display pipe logic, and thus its frequency
53  * must be high enough to support the rate at which pixels are flowing
54  * through the pipes. Downscaling must also be accounted as that increases
55  * the effective pixel rate.
56  *
57  * On several platforms the CDCLK frequency can be changed dynamically
58  * to minimize power consumption for a given display configuration.
59  * Typically changes to the CDCLK frequency require all the display pipes
60  * to be shut down while the frequency is being changed.
61  *
62  * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit.
63  * DMC will not change the active CDCLK frequency however, so that part
64  * will still be performed by the driver directly.
65  *
66  * Several methods exist to change the CDCLK frequency, which ones are
67  * supported depends on the platform:
68  *
69  * - Full PLL disable + re-enable with new VCO frequency. Pipes must be inactive.
70  * - CD2X divider update. Single pipe can be active as the divider update
71  *   can be synchronized with the pipe's start of vblank.
72  * - Crawl the PLL smoothly to the new VCO frequency. Pipes can be active.
73  * - Squash waveform update. Pipes can be active.
74  * - Crawl and squash can also be done back to back. Pipes can be active.
75  *
76  * RAWCLK is a fixed frequency clock, often used by various auxiliary
77  * blocks such as AUX CH or backlight PWM. Hence the only thing we
78  * really need to know about RAWCLK is its frequency so that various
79  * dividers can be programmed correctly.
80  */
81 
82 struct intel_cdclk_funcs {
83 	void (*get_cdclk)(struct drm_i915_private *i915,
84 			  struct intel_cdclk_config *cdclk_config);
85 	void (*set_cdclk)(struct drm_i915_private *i915,
86 			  const struct intel_cdclk_config *cdclk_config,
87 			  enum pipe pipe);
88 	int (*modeset_calc_cdclk)(struct intel_cdclk_state *state);
89 	u8 (*calc_voltage_level)(int cdclk);
90 };
91 
92 void intel_cdclk_get_cdclk(struct drm_i915_private *dev_priv,
93 			   struct intel_cdclk_config *cdclk_config)
94 {
95 	dev_priv->display.funcs.cdclk->get_cdclk(dev_priv, cdclk_config);
96 }
97 
98 static void intel_cdclk_set_cdclk(struct drm_i915_private *dev_priv,
99 				  const struct intel_cdclk_config *cdclk_config,
100 				  enum pipe pipe)
101 {
102 	dev_priv->display.funcs.cdclk->set_cdclk(dev_priv, cdclk_config, pipe);
103 }
104 
105 static int intel_cdclk_modeset_calc_cdclk(struct drm_i915_private *dev_priv,
106 					  struct intel_cdclk_state *cdclk_config)
107 {
108 	return dev_priv->display.funcs.cdclk->modeset_calc_cdclk(cdclk_config);
109 }
110 
111 static u8 intel_cdclk_calc_voltage_level(struct drm_i915_private *dev_priv,
112 					 int cdclk)
113 {
114 	return dev_priv->display.funcs.cdclk->calc_voltage_level(cdclk);
115 }
116 
117 static void fixed_133mhz_get_cdclk(struct drm_i915_private *dev_priv,
118 				   struct intel_cdclk_config *cdclk_config)
119 {
120 	cdclk_config->cdclk = 133333;
121 }
122 
123 static void fixed_200mhz_get_cdclk(struct drm_i915_private *dev_priv,
124 				   struct intel_cdclk_config *cdclk_config)
125 {
126 	cdclk_config->cdclk = 200000;
127 }
128 
129 static void fixed_266mhz_get_cdclk(struct drm_i915_private *dev_priv,
130 				   struct intel_cdclk_config *cdclk_config)
131 {
132 	cdclk_config->cdclk = 266667;
133 }
134 
135 static void fixed_333mhz_get_cdclk(struct drm_i915_private *dev_priv,
136 				   struct intel_cdclk_config *cdclk_config)
137 {
138 	cdclk_config->cdclk = 333333;
139 }
140 
141 static void fixed_400mhz_get_cdclk(struct drm_i915_private *dev_priv,
142 				   struct intel_cdclk_config *cdclk_config)
143 {
144 	cdclk_config->cdclk = 400000;
145 }
146 
147 static void fixed_450mhz_get_cdclk(struct drm_i915_private *dev_priv,
148 				   struct intel_cdclk_config *cdclk_config)
149 {
150 	cdclk_config->cdclk = 450000;
151 }
152 
153 static void i85x_get_cdclk(struct drm_i915_private *dev_priv,
154 			   struct intel_cdclk_config *cdclk_config)
155 {
156 	struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
157 	u16 hpllcc = 0;
158 
159 	/*
160 	 * 852GM/852GMV only supports 133 MHz and the HPLLCC
161 	 * encoding is different :(
162 	 * FIXME is this the right way to detect 852GM/852GMV?
163 	 */
164 	if (pdev->revision == 0x1) {
165 		cdclk_config->cdclk = 133333;
166 		return;
167 	}
168 
169 	pci_bus_read_config_word(pdev->bus,
170 				 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
171 
172 	/* Assume that the hardware is in the high speed state.  This
173 	 * should be the default.
174 	 */
175 	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
176 	case GC_CLOCK_133_200:
177 	case GC_CLOCK_133_200_2:
178 	case GC_CLOCK_100_200:
179 		cdclk_config->cdclk = 200000;
180 		break;
181 	case GC_CLOCK_166_250:
182 		cdclk_config->cdclk = 250000;
183 		break;
184 	case GC_CLOCK_100_133:
185 		cdclk_config->cdclk = 133333;
186 		break;
187 	case GC_CLOCK_133_266:
188 	case GC_CLOCK_133_266_2:
189 	case GC_CLOCK_166_266:
190 		cdclk_config->cdclk = 266667;
191 		break;
192 	}
193 }
194 
195 static void i915gm_get_cdclk(struct drm_i915_private *dev_priv,
196 			     struct intel_cdclk_config *cdclk_config)
197 {
198 	struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
199 	u16 gcfgc = 0;
200 
201 	pci_read_config_word(pdev, GCFGC, &gcfgc);
202 
203 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
204 		cdclk_config->cdclk = 133333;
205 		return;
206 	}
207 
208 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
209 	case GC_DISPLAY_CLOCK_333_320_MHZ:
210 		cdclk_config->cdclk = 333333;
211 		break;
212 	default:
213 	case GC_DISPLAY_CLOCK_190_200_MHZ:
214 		cdclk_config->cdclk = 190000;
215 		break;
216 	}
217 }
218 
219 static void i945gm_get_cdclk(struct drm_i915_private *dev_priv,
220 			     struct intel_cdclk_config *cdclk_config)
221 {
222 	struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
223 	u16 gcfgc = 0;
224 
225 	pci_read_config_word(pdev, GCFGC, &gcfgc);
226 
227 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
228 		cdclk_config->cdclk = 133333;
229 		return;
230 	}
231 
232 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
233 	case GC_DISPLAY_CLOCK_333_320_MHZ:
234 		cdclk_config->cdclk = 320000;
235 		break;
236 	default:
237 	case GC_DISPLAY_CLOCK_190_200_MHZ:
238 		cdclk_config->cdclk = 200000;
239 		break;
240 	}
241 }
242 
243 static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
244 {
245 	static const unsigned int blb_vco[8] = {
246 		[0] = 3200000,
247 		[1] = 4000000,
248 		[2] = 5333333,
249 		[3] = 4800000,
250 		[4] = 6400000,
251 	};
252 	static const unsigned int pnv_vco[8] = {
253 		[0] = 3200000,
254 		[1] = 4000000,
255 		[2] = 5333333,
256 		[3] = 4800000,
257 		[4] = 2666667,
258 	};
259 	static const unsigned int cl_vco[8] = {
260 		[0] = 3200000,
261 		[1] = 4000000,
262 		[2] = 5333333,
263 		[3] = 6400000,
264 		[4] = 3333333,
265 		[5] = 3566667,
266 		[6] = 4266667,
267 	};
268 	static const unsigned int elk_vco[8] = {
269 		[0] = 3200000,
270 		[1] = 4000000,
271 		[2] = 5333333,
272 		[3] = 4800000,
273 	};
274 	static const unsigned int ctg_vco[8] = {
275 		[0] = 3200000,
276 		[1] = 4000000,
277 		[2] = 5333333,
278 		[3] = 6400000,
279 		[4] = 2666667,
280 		[5] = 4266667,
281 	};
282 	const unsigned int *vco_table;
283 	unsigned int vco;
284 	u8 tmp = 0;
285 
286 	/* FIXME other chipsets? */
287 	if (IS_GM45(dev_priv))
288 		vco_table = ctg_vco;
289 	else if (IS_G45(dev_priv))
290 		vco_table = elk_vco;
291 	else if (IS_I965GM(dev_priv))
292 		vco_table = cl_vco;
293 	else if (IS_PINEVIEW(dev_priv))
294 		vco_table = pnv_vco;
295 	else if (IS_G33(dev_priv))
296 		vco_table = blb_vco;
297 	else
298 		return 0;
299 
300 	tmp = intel_de_read(dev_priv,
301 			    IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
302 
303 	vco = vco_table[tmp & 0x7];
304 	if (vco == 0)
305 		drm_err(&dev_priv->drm, "Bad HPLL VCO (HPLLVCO=0x%02x)\n",
306 			tmp);
307 	else
308 		drm_dbg_kms(&dev_priv->drm, "HPLL VCO %u kHz\n", vco);
309 
310 	return vco;
311 }
312 
313 static void g33_get_cdclk(struct drm_i915_private *dev_priv,
314 			  struct intel_cdclk_config *cdclk_config)
315 {
316 	struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
317 	static const u8 div_3200[] = { 12, 10,  8,  7, 5, 16 };
318 	static const u8 div_4000[] = { 14, 12, 10,  8, 6, 20 };
319 	static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 };
320 	static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 };
321 	const u8 *div_table;
322 	unsigned int cdclk_sel;
323 	u16 tmp = 0;
324 
325 	cdclk_config->vco = intel_hpll_vco(dev_priv);
326 
327 	pci_read_config_word(pdev, GCFGC, &tmp);
328 
329 	cdclk_sel = (tmp >> 4) & 0x7;
330 
331 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
332 		goto fail;
333 
334 	switch (cdclk_config->vco) {
335 	case 3200000:
336 		div_table = div_3200;
337 		break;
338 	case 4000000:
339 		div_table = div_4000;
340 		break;
341 	case 4800000:
342 		div_table = div_4800;
343 		break;
344 	case 5333333:
345 		div_table = div_5333;
346 		break;
347 	default:
348 		goto fail;
349 	}
350 
351 	cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
352 						div_table[cdclk_sel]);
353 	return;
354 
355 fail:
356 	drm_err(&dev_priv->drm,
357 		"Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n",
358 		cdclk_config->vco, tmp);
359 	cdclk_config->cdclk = 190476;
360 }
361 
362 static void pnv_get_cdclk(struct drm_i915_private *dev_priv,
363 			  struct intel_cdclk_config *cdclk_config)
364 {
365 	struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
366 	u16 gcfgc = 0;
367 
368 	pci_read_config_word(pdev, GCFGC, &gcfgc);
369 
370 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
371 	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
372 		cdclk_config->cdclk = 266667;
373 		break;
374 	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
375 		cdclk_config->cdclk = 333333;
376 		break;
377 	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
378 		cdclk_config->cdclk = 444444;
379 		break;
380 	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
381 		cdclk_config->cdclk = 200000;
382 		break;
383 	default:
384 		drm_err(&dev_priv->drm,
385 			"Unknown pnv display core clock 0x%04x\n", gcfgc);
386 		fallthrough;
387 	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
388 		cdclk_config->cdclk = 133333;
389 		break;
390 	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
391 		cdclk_config->cdclk = 166667;
392 		break;
393 	}
394 }
395 
396 static void i965gm_get_cdclk(struct drm_i915_private *dev_priv,
397 			     struct intel_cdclk_config *cdclk_config)
398 {
399 	struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
400 	static const u8 div_3200[] = { 16, 10,  8 };
401 	static const u8 div_4000[] = { 20, 12, 10 };
402 	static const u8 div_5333[] = { 24, 16, 14 };
403 	const u8 *div_table;
404 	unsigned int cdclk_sel;
405 	u16 tmp = 0;
406 
407 	cdclk_config->vco = intel_hpll_vco(dev_priv);
408 
409 	pci_read_config_word(pdev, GCFGC, &tmp);
410 
411 	cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
412 
413 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
414 		goto fail;
415 
416 	switch (cdclk_config->vco) {
417 	case 3200000:
418 		div_table = div_3200;
419 		break;
420 	case 4000000:
421 		div_table = div_4000;
422 		break;
423 	case 5333333:
424 		div_table = div_5333;
425 		break;
426 	default:
427 		goto fail;
428 	}
429 
430 	cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
431 						div_table[cdclk_sel]);
432 	return;
433 
434 fail:
435 	drm_err(&dev_priv->drm,
436 		"Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n",
437 		cdclk_config->vco, tmp);
438 	cdclk_config->cdclk = 200000;
439 }
440 
441 static void gm45_get_cdclk(struct drm_i915_private *dev_priv,
442 			   struct intel_cdclk_config *cdclk_config)
443 {
444 	struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
445 	unsigned int cdclk_sel;
446 	u16 tmp = 0;
447 
448 	cdclk_config->vco = intel_hpll_vco(dev_priv);
449 
450 	pci_read_config_word(pdev, GCFGC, &tmp);
451 
452 	cdclk_sel = (tmp >> 12) & 0x1;
453 
454 	switch (cdclk_config->vco) {
455 	case 2666667:
456 	case 4000000:
457 	case 5333333:
458 		cdclk_config->cdclk = cdclk_sel ? 333333 : 222222;
459 		break;
460 	case 3200000:
461 		cdclk_config->cdclk = cdclk_sel ? 320000 : 228571;
462 		break;
463 	default:
464 		drm_err(&dev_priv->drm,
465 			"Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n",
466 			cdclk_config->vco, tmp);
467 		cdclk_config->cdclk = 222222;
468 		break;
469 	}
470 }
471 
472 static void hsw_get_cdclk(struct drm_i915_private *dev_priv,
473 			  struct intel_cdclk_config *cdclk_config)
474 {
475 	u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL);
476 	u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
477 
478 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
479 		cdclk_config->cdclk = 800000;
480 	else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
481 		cdclk_config->cdclk = 450000;
482 	else if (freq == LCPLL_CLK_FREQ_450)
483 		cdclk_config->cdclk = 450000;
484 	else if (IS_HASWELL_ULT(dev_priv))
485 		cdclk_config->cdclk = 337500;
486 	else
487 		cdclk_config->cdclk = 540000;
488 }
489 
490 static int vlv_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk)
491 {
492 	int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ?
493 		333333 : 320000;
494 
495 	/*
496 	 * We seem to get an unstable or solid color picture at 200MHz.
497 	 * Not sure what's wrong. For now use 200MHz only when all pipes
498 	 * are off.
499 	 */
500 	if (IS_VALLEYVIEW(dev_priv) && min_cdclk > freq_320)
501 		return 400000;
502 	else if (min_cdclk > 266667)
503 		return freq_320;
504 	else if (min_cdclk > 0)
505 		return 266667;
506 	else
507 		return 200000;
508 }
509 
510 static u8 vlv_calc_voltage_level(struct drm_i915_private *dev_priv, int cdclk)
511 {
512 	if (IS_VALLEYVIEW(dev_priv)) {
513 		if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
514 			return 2;
515 		else if (cdclk >= 266667)
516 			return 1;
517 		else
518 			return 0;
519 	} else {
520 		/*
521 		 * Specs are full of misinformation, but testing on actual
522 		 * hardware has shown that we just need to write the desired
523 		 * CCK divider into the Punit register.
524 		 */
525 		return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
526 	}
527 }
528 
529 static void vlv_get_cdclk(struct drm_i915_private *dev_priv,
530 			  struct intel_cdclk_config *cdclk_config)
531 {
532 	u32 val;
533 
534 	vlv_iosf_sb_get(dev_priv,
535 			BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
536 
537 	cdclk_config->vco = vlv_get_hpll_vco(dev_priv);
538 	cdclk_config->cdclk = vlv_get_cck_clock(dev_priv, "cdclk",
539 						CCK_DISPLAY_CLOCK_CONTROL,
540 						cdclk_config->vco);
541 
542 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
543 
544 	vlv_iosf_sb_put(dev_priv,
545 			BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
546 
547 	if (IS_VALLEYVIEW(dev_priv))
548 		cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK) >>
549 			DSPFREQGUAR_SHIFT;
550 	else
551 		cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >>
552 			DSPFREQGUAR_SHIFT_CHV;
553 }
554 
555 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
556 {
557 	unsigned int credits, default_credits;
558 
559 	if (IS_CHERRYVIEW(dev_priv))
560 		default_credits = PFI_CREDIT(12);
561 	else
562 		default_credits = PFI_CREDIT(8);
563 
564 	if (dev_priv->display.cdclk.hw.cdclk >= dev_priv->czclk_freq) {
565 		/* CHV suggested value is 31 or 63 */
566 		if (IS_CHERRYVIEW(dev_priv))
567 			credits = PFI_CREDIT_63;
568 		else
569 			credits = PFI_CREDIT(15);
570 	} else {
571 		credits = default_credits;
572 	}
573 
574 	/*
575 	 * WA - write default credits before re-programming
576 	 * FIXME: should we also set the resend bit here?
577 	 */
578 	intel_de_write(dev_priv, GCI_CONTROL,
579 		       VGA_FAST_MODE_DISABLE | default_credits);
580 
581 	intel_de_write(dev_priv, GCI_CONTROL,
582 		       VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND);
583 
584 	/*
585 	 * FIXME is this guaranteed to clear
586 	 * immediately or should we poll for it?
587 	 */
588 	drm_WARN_ON(&dev_priv->drm,
589 		    intel_de_read(dev_priv, GCI_CONTROL) & PFI_CREDIT_RESEND);
590 }
591 
592 static void vlv_set_cdclk(struct drm_i915_private *dev_priv,
593 			  const struct intel_cdclk_config *cdclk_config,
594 			  enum pipe pipe)
595 {
596 	int cdclk = cdclk_config->cdclk;
597 	u32 val, cmd = cdclk_config->voltage_level;
598 	intel_wakeref_t wakeref;
599 
600 	switch (cdclk) {
601 	case 400000:
602 	case 333333:
603 	case 320000:
604 	case 266667:
605 	case 200000:
606 		break;
607 	default:
608 		MISSING_CASE(cdclk);
609 		return;
610 	}
611 
612 	/* There are cases where we can end up here with power domains
613 	 * off and a CDCLK frequency other than the minimum, like when
614 	 * issuing a modeset without actually changing any display after
615 	 * a system suspend.  So grab the display core domain, which covers
616 	 * the HW blocks needed for the following programming.
617 	 */
618 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
619 
620 	vlv_iosf_sb_get(dev_priv,
621 			BIT(VLV_IOSF_SB_CCK) |
622 			BIT(VLV_IOSF_SB_BUNIT) |
623 			BIT(VLV_IOSF_SB_PUNIT));
624 
625 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
626 	val &= ~DSPFREQGUAR_MASK;
627 	val |= (cmd << DSPFREQGUAR_SHIFT);
628 	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
629 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
630 		      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
631 		     50)) {
632 		drm_err(&dev_priv->drm,
633 			"timed out waiting for CDclk change\n");
634 	}
635 
636 	if (cdclk == 400000) {
637 		u32 divider;
638 
639 		divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1,
640 					    cdclk) - 1;
641 
642 		/* adjust cdclk divider */
643 		val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
644 		val &= ~CCK_FREQUENCY_VALUES;
645 		val |= divider;
646 		vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
647 
648 		if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
649 			      CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
650 			     50))
651 			drm_err(&dev_priv->drm,
652 				"timed out waiting for CDclk change\n");
653 	}
654 
655 	/* adjust self-refresh exit latency value */
656 	val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
657 	val &= ~0x7f;
658 
659 	/*
660 	 * For high bandwidth configs, we set a higher latency in the bunit
661 	 * so that the core display fetch happens in time to avoid underruns.
662 	 */
663 	if (cdclk == 400000)
664 		val |= 4500 / 250; /* 4.5 usec */
665 	else
666 		val |= 3000 / 250; /* 3.0 usec */
667 	vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
668 
669 	vlv_iosf_sb_put(dev_priv,
670 			BIT(VLV_IOSF_SB_CCK) |
671 			BIT(VLV_IOSF_SB_BUNIT) |
672 			BIT(VLV_IOSF_SB_PUNIT));
673 
674 	intel_update_cdclk(dev_priv);
675 
676 	vlv_program_pfi_credits(dev_priv);
677 
678 	intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
679 }
680 
681 static void chv_set_cdclk(struct drm_i915_private *dev_priv,
682 			  const struct intel_cdclk_config *cdclk_config,
683 			  enum pipe pipe)
684 {
685 	int cdclk = cdclk_config->cdclk;
686 	u32 val, cmd = cdclk_config->voltage_level;
687 	intel_wakeref_t wakeref;
688 
689 	switch (cdclk) {
690 	case 333333:
691 	case 320000:
692 	case 266667:
693 	case 200000:
694 		break;
695 	default:
696 		MISSING_CASE(cdclk);
697 		return;
698 	}
699 
700 	/* There are cases where we can end up here with power domains
701 	 * off and a CDCLK frequency other than the minimum, like when
702 	 * issuing a modeset without actually changing any display after
703 	 * a system suspend.  So grab the display core domain, which covers
704 	 * the HW blocks needed for the following programming.
705 	 */
706 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
707 
708 	vlv_punit_get(dev_priv);
709 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
710 	val &= ~DSPFREQGUAR_MASK_CHV;
711 	val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
712 	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
713 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
714 		      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
715 		     50)) {
716 		drm_err(&dev_priv->drm,
717 			"timed out waiting for CDclk change\n");
718 	}
719 
720 	vlv_punit_put(dev_priv);
721 
722 	intel_update_cdclk(dev_priv);
723 
724 	vlv_program_pfi_credits(dev_priv);
725 
726 	intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
727 }
728 
729 static int bdw_calc_cdclk(int min_cdclk)
730 {
731 	if (min_cdclk > 540000)
732 		return 675000;
733 	else if (min_cdclk > 450000)
734 		return 540000;
735 	else if (min_cdclk > 337500)
736 		return 450000;
737 	else
738 		return 337500;
739 }
740 
741 static u8 bdw_calc_voltage_level(int cdclk)
742 {
743 	switch (cdclk) {
744 	default:
745 	case 337500:
746 		return 2;
747 	case 450000:
748 		return 0;
749 	case 540000:
750 		return 1;
751 	case 675000:
752 		return 3;
753 	}
754 }
755 
756 static void bdw_get_cdclk(struct drm_i915_private *dev_priv,
757 			  struct intel_cdclk_config *cdclk_config)
758 {
759 	u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL);
760 	u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
761 
762 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
763 		cdclk_config->cdclk = 800000;
764 	else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
765 		cdclk_config->cdclk = 450000;
766 	else if (freq == LCPLL_CLK_FREQ_450)
767 		cdclk_config->cdclk = 450000;
768 	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
769 		cdclk_config->cdclk = 540000;
770 	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
771 		cdclk_config->cdclk = 337500;
772 	else
773 		cdclk_config->cdclk = 675000;
774 
775 	/*
776 	 * Can't read this out :( Let's assume it's
777 	 * at least what the CDCLK frequency requires.
778 	 */
779 	cdclk_config->voltage_level =
780 		bdw_calc_voltage_level(cdclk_config->cdclk);
781 }
782 
783 static u32 bdw_cdclk_freq_sel(int cdclk)
784 {
785 	switch (cdclk) {
786 	default:
787 		MISSING_CASE(cdclk);
788 		fallthrough;
789 	case 337500:
790 		return LCPLL_CLK_FREQ_337_5_BDW;
791 	case 450000:
792 		return LCPLL_CLK_FREQ_450;
793 	case 540000:
794 		return LCPLL_CLK_FREQ_54O_BDW;
795 	case 675000:
796 		return LCPLL_CLK_FREQ_675_BDW;
797 	}
798 }
799 
800 static void bdw_set_cdclk(struct drm_i915_private *dev_priv,
801 			  const struct intel_cdclk_config *cdclk_config,
802 			  enum pipe pipe)
803 {
804 	int cdclk = cdclk_config->cdclk;
805 	int ret;
806 
807 	if (drm_WARN(&dev_priv->drm,
808 		     (intel_de_read(dev_priv, LCPLL_CTL) &
809 		      (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
810 		       LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
811 		       LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
812 		       LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
813 		     "trying to change cdclk frequency with cdclk not enabled\n"))
814 		return;
815 
816 	ret = snb_pcode_write(&dev_priv->uncore, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
817 	if (ret) {
818 		drm_err(&dev_priv->drm,
819 			"failed to inform pcode about cdclk change\n");
820 		return;
821 	}
822 
823 	intel_de_rmw(dev_priv, LCPLL_CTL,
824 		     0, LCPLL_CD_SOURCE_FCLK);
825 
826 	/*
827 	 * According to the spec, it should be enough to poll for this 1 us.
828 	 * However, extensive testing shows that this can take longer.
829 	 */
830 	if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
831 			LCPLL_CD_SOURCE_FCLK_DONE, 100))
832 		drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
833 
834 	intel_de_rmw(dev_priv, LCPLL_CTL,
835 		     LCPLL_CLK_FREQ_MASK, bdw_cdclk_freq_sel(cdclk));
836 
837 	intel_de_rmw(dev_priv, LCPLL_CTL,
838 		     LCPLL_CD_SOURCE_FCLK, 0);
839 
840 	if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
841 			 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
842 		drm_err(&dev_priv->drm, "Switching back to LCPLL failed\n");
843 
844 	snb_pcode_write(&dev_priv->uncore, HSW_PCODE_DE_WRITE_FREQ_REQ,
845 			cdclk_config->voltage_level);
846 
847 	intel_de_write(dev_priv, CDCLK_FREQ,
848 		       DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
849 
850 	intel_update_cdclk(dev_priv);
851 }
852 
853 static int skl_calc_cdclk(int min_cdclk, int vco)
854 {
855 	if (vco == 8640000) {
856 		if (min_cdclk > 540000)
857 			return 617143;
858 		else if (min_cdclk > 432000)
859 			return 540000;
860 		else if (min_cdclk > 308571)
861 			return 432000;
862 		else
863 			return 308571;
864 	} else {
865 		if (min_cdclk > 540000)
866 			return 675000;
867 		else if (min_cdclk > 450000)
868 			return 540000;
869 		else if (min_cdclk > 337500)
870 			return 450000;
871 		else
872 			return 337500;
873 	}
874 }
875 
876 static u8 skl_calc_voltage_level(int cdclk)
877 {
878 	if (cdclk > 540000)
879 		return 3;
880 	else if (cdclk > 450000)
881 		return 2;
882 	else if (cdclk > 337500)
883 		return 1;
884 	else
885 		return 0;
886 }
887 
888 static void skl_dpll0_update(struct drm_i915_private *dev_priv,
889 			     struct intel_cdclk_config *cdclk_config)
890 {
891 	u32 val;
892 
893 	cdclk_config->ref = 24000;
894 	cdclk_config->vco = 0;
895 
896 	val = intel_de_read(dev_priv, LCPLL1_CTL);
897 	if ((val & LCPLL_PLL_ENABLE) == 0)
898 		return;
899 
900 	if (drm_WARN_ON(&dev_priv->drm, (val & LCPLL_PLL_LOCK) == 0))
901 		return;
902 
903 	val = intel_de_read(dev_priv, DPLL_CTRL1);
904 
905 	if (drm_WARN_ON(&dev_priv->drm,
906 			(val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
907 				DPLL_CTRL1_SSC(SKL_DPLL0) |
908 				DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
909 			DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
910 		return;
911 
912 	switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
913 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
914 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
915 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
916 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
917 		cdclk_config->vco = 8100000;
918 		break;
919 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
920 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
921 		cdclk_config->vco = 8640000;
922 		break;
923 	default:
924 		MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
925 		break;
926 	}
927 }
928 
929 static void skl_get_cdclk(struct drm_i915_private *dev_priv,
930 			  struct intel_cdclk_config *cdclk_config)
931 {
932 	u32 cdctl;
933 
934 	skl_dpll0_update(dev_priv, cdclk_config);
935 
936 	cdclk_config->cdclk = cdclk_config->bypass = cdclk_config->ref;
937 
938 	if (cdclk_config->vco == 0)
939 		goto out;
940 
941 	cdctl = intel_de_read(dev_priv, CDCLK_CTL);
942 
943 	if (cdclk_config->vco == 8640000) {
944 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
945 		case CDCLK_FREQ_450_432:
946 			cdclk_config->cdclk = 432000;
947 			break;
948 		case CDCLK_FREQ_337_308:
949 			cdclk_config->cdclk = 308571;
950 			break;
951 		case CDCLK_FREQ_540:
952 			cdclk_config->cdclk = 540000;
953 			break;
954 		case CDCLK_FREQ_675_617:
955 			cdclk_config->cdclk = 617143;
956 			break;
957 		default:
958 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
959 			break;
960 		}
961 	} else {
962 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
963 		case CDCLK_FREQ_450_432:
964 			cdclk_config->cdclk = 450000;
965 			break;
966 		case CDCLK_FREQ_337_308:
967 			cdclk_config->cdclk = 337500;
968 			break;
969 		case CDCLK_FREQ_540:
970 			cdclk_config->cdclk = 540000;
971 			break;
972 		case CDCLK_FREQ_675_617:
973 			cdclk_config->cdclk = 675000;
974 			break;
975 		default:
976 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
977 			break;
978 		}
979 	}
980 
981  out:
982 	/*
983 	 * Can't read this out :( Let's assume it's
984 	 * at least what the CDCLK frequency requires.
985 	 */
986 	cdclk_config->voltage_level =
987 		skl_calc_voltage_level(cdclk_config->cdclk);
988 }
989 
990 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
991 static int skl_cdclk_decimal(int cdclk)
992 {
993 	return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
994 }
995 
996 static void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv,
997 					int vco)
998 {
999 	bool changed = dev_priv->skl_preferred_vco_freq != vco;
1000 
1001 	dev_priv->skl_preferred_vco_freq = vco;
1002 
1003 	if (changed)
1004 		intel_update_max_cdclk(dev_priv);
1005 }
1006 
1007 static u32 skl_dpll0_link_rate(struct drm_i915_private *dev_priv, int vco)
1008 {
1009 	drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000);
1010 
1011 	/*
1012 	 * We always enable DPLL0 with the lowest link rate possible, but still
1013 	 * taking into account the VCO required to operate the eDP panel at the
1014 	 * desired frequency. The usual DP link rates operate with a VCO of
1015 	 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
1016 	 * The modeset code is responsible for the selection of the exact link
1017 	 * rate later on, with the constraint of choosing a frequency that
1018 	 * works with vco.
1019 	 */
1020 	if (vco == 8640000)
1021 		return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0);
1022 	else
1023 		return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0);
1024 }
1025 
1026 static void skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
1027 {
1028 	intel_de_rmw(dev_priv, DPLL_CTRL1,
1029 		     DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
1030 		     DPLL_CTRL1_SSC(SKL_DPLL0) |
1031 		     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0),
1032 		     DPLL_CTRL1_OVERRIDE(SKL_DPLL0) |
1033 		     skl_dpll0_link_rate(dev_priv, vco));
1034 	intel_de_posting_read(dev_priv, DPLL_CTRL1);
1035 
1036 	intel_de_rmw(dev_priv, LCPLL1_CTL,
1037 		     0, LCPLL_PLL_ENABLE);
1038 
1039 	if (intel_de_wait_for_set(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 5))
1040 		drm_err(&dev_priv->drm, "DPLL0 not locked\n");
1041 
1042 	dev_priv->display.cdclk.hw.vco = vco;
1043 
1044 	/* We'll want to keep using the current vco from now on. */
1045 	skl_set_preferred_cdclk_vco(dev_priv, vco);
1046 }
1047 
1048 static void skl_dpll0_disable(struct drm_i915_private *dev_priv)
1049 {
1050 	intel_de_rmw(dev_priv, LCPLL1_CTL,
1051 		     LCPLL_PLL_ENABLE, 0);
1052 
1053 	if (intel_de_wait_for_clear(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 1))
1054 		drm_err(&dev_priv->drm, "Couldn't disable DPLL0\n");
1055 
1056 	dev_priv->display.cdclk.hw.vco = 0;
1057 }
1058 
1059 static u32 skl_cdclk_freq_sel(struct drm_i915_private *dev_priv,
1060 			      int cdclk, int vco)
1061 {
1062 	switch (cdclk) {
1063 	default:
1064 		drm_WARN_ON(&dev_priv->drm,
1065 			    cdclk != dev_priv->display.cdclk.hw.bypass);
1066 		drm_WARN_ON(&dev_priv->drm, vco != 0);
1067 		fallthrough;
1068 	case 308571:
1069 	case 337500:
1070 		return CDCLK_FREQ_337_308;
1071 	case 450000:
1072 	case 432000:
1073 		return CDCLK_FREQ_450_432;
1074 	case 540000:
1075 		return CDCLK_FREQ_540;
1076 	case 617143:
1077 	case 675000:
1078 		return CDCLK_FREQ_675_617;
1079 	}
1080 }
1081 
1082 static void skl_set_cdclk(struct drm_i915_private *dev_priv,
1083 			  const struct intel_cdclk_config *cdclk_config,
1084 			  enum pipe pipe)
1085 {
1086 	int cdclk = cdclk_config->cdclk;
1087 	int vco = cdclk_config->vco;
1088 	u32 freq_select, cdclk_ctl;
1089 	int ret;
1090 
1091 	/*
1092 	 * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are
1093 	 * unsupported on SKL. In theory this should never happen since only
1094 	 * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not
1095 	 * supported on SKL either, see the above WA. WARN whenever trying to
1096 	 * use the corresponding VCO freq as that always leads to using the
1097 	 * minimum 308MHz CDCLK.
1098 	 */
1099 	drm_WARN_ON_ONCE(&dev_priv->drm,
1100 			 IS_SKYLAKE(dev_priv) && vco == 8640000);
1101 
1102 	ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1103 				SKL_CDCLK_PREPARE_FOR_CHANGE,
1104 				SKL_CDCLK_READY_FOR_CHANGE,
1105 				SKL_CDCLK_READY_FOR_CHANGE, 3);
1106 	if (ret) {
1107 		drm_err(&dev_priv->drm,
1108 			"Failed to inform PCU about cdclk change (%d)\n", ret);
1109 		return;
1110 	}
1111 
1112 	freq_select = skl_cdclk_freq_sel(dev_priv, cdclk, vco);
1113 
1114 	if (dev_priv->display.cdclk.hw.vco != 0 &&
1115 	    dev_priv->display.cdclk.hw.vco != vco)
1116 		skl_dpll0_disable(dev_priv);
1117 
1118 	cdclk_ctl = intel_de_read(dev_priv, CDCLK_CTL);
1119 
1120 	if (dev_priv->display.cdclk.hw.vco != vco) {
1121 		/* Wa Display #1183: skl,kbl,cfl */
1122 		cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1123 		cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1124 		intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1125 	}
1126 
1127 	/* Wa Display #1183: skl,kbl,cfl */
1128 	cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE;
1129 	intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1130 	intel_de_posting_read(dev_priv, CDCLK_CTL);
1131 
1132 	if (dev_priv->display.cdclk.hw.vco != vco)
1133 		skl_dpll0_enable(dev_priv, vco);
1134 
1135 	/* Wa Display #1183: skl,kbl,cfl */
1136 	cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1137 	intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1138 
1139 	cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1140 	intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1141 
1142 	/* Wa Display #1183: skl,kbl,cfl */
1143 	cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE;
1144 	intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1145 	intel_de_posting_read(dev_priv, CDCLK_CTL);
1146 
1147 	/* inform PCU of the change */
1148 	snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1149 			cdclk_config->voltage_level);
1150 
1151 	intel_update_cdclk(dev_priv);
1152 }
1153 
1154 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
1155 {
1156 	u32 cdctl, expected;
1157 
1158 	/*
1159 	 * check if the pre-os initialized the display
1160 	 * There is SWF18 scratchpad register defined which is set by the
1161 	 * pre-os which can be used by the OS drivers to check the status
1162 	 */
1163 	if ((intel_de_read(dev_priv, SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
1164 		goto sanitize;
1165 
1166 	intel_update_cdclk(dev_priv);
1167 	intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1168 
1169 	/* Is PLL enabled and locked ? */
1170 	if (dev_priv->display.cdclk.hw.vco == 0 ||
1171 	    dev_priv->display.cdclk.hw.cdclk == dev_priv->display.cdclk.hw.bypass)
1172 		goto sanitize;
1173 
1174 	/* DPLL okay; verify the cdclock
1175 	 *
1176 	 * Noticed in some instances that the freq selection is correct but
1177 	 * decimal part is programmed wrong from BIOS where pre-os does not
1178 	 * enable display. Verify the same as well.
1179 	 */
1180 	cdctl = intel_de_read(dev_priv, CDCLK_CTL);
1181 	expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
1182 		skl_cdclk_decimal(dev_priv->display.cdclk.hw.cdclk);
1183 	if (cdctl == expected)
1184 		/* All well; nothing to sanitize */
1185 		return;
1186 
1187 sanitize:
1188 	drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n");
1189 
1190 	/* force cdclk programming */
1191 	dev_priv->display.cdclk.hw.cdclk = 0;
1192 	/* force full PLL disable + enable */
1193 	dev_priv->display.cdclk.hw.vco = ~0;
1194 }
1195 
1196 static void skl_cdclk_init_hw(struct drm_i915_private *dev_priv)
1197 {
1198 	struct intel_cdclk_config cdclk_config;
1199 
1200 	skl_sanitize_cdclk(dev_priv);
1201 
1202 	if (dev_priv->display.cdclk.hw.cdclk != 0 &&
1203 	    dev_priv->display.cdclk.hw.vco != 0) {
1204 		/*
1205 		 * Use the current vco as our initial
1206 		 * guess as to what the preferred vco is.
1207 		 */
1208 		if (dev_priv->skl_preferred_vco_freq == 0)
1209 			skl_set_preferred_cdclk_vco(dev_priv,
1210 						    dev_priv->display.cdclk.hw.vco);
1211 		return;
1212 	}
1213 
1214 	cdclk_config = dev_priv->display.cdclk.hw;
1215 
1216 	cdclk_config.vco = dev_priv->skl_preferred_vco_freq;
1217 	if (cdclk_config.vco == 0)
1218 		cdclk_config.vco = 8100000;
1219 	cdclk_config.cdclk = skl_calc_cdclk(0, cdclk_config.vco);
1220 	cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
1221 
1222 	skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
1223 }
1224 
1225 static void skl_cdclk_uninit_hw(struct drm_i915_private *dev_priv)
1226 {
1227 	struct intel_cdclk_config cdclk_config = dev_priv->display.cdclk.hw;
1228 
1229 	cdclk_config.cdclk = cdclk_config.bypass;
1230 	cdclk_config.vco = 0;
1231 	cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
1232 
1233 	skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
1234 }
1235 
1236 struct intel_cdclk_vals {
1237 	u32 cdclk;
1238 	u16 refclk;
1239 	u16 waveform;
1240 	u8 ratio;
1241 };
1242 
1243 static const struct intel_cdclk_vals bxt_cdclk_table[] = {
1244 	{ .refclk = 19200, .cdclk = 144000, .ratio = 60 },
1245 	{ .refclk = 19200, .cdclk = 288000, .ratio = 60 },
1246 	{ .refclk = 19200, .cdclk = 384000, .ratio = 60 },
1247 	{ .refclk = 19200, .cdclk = 576000, .ratio = 60 },
1248 	{ .refclk = 19200, .cdclk = 624000, .ratio = 65 },
1249 	{}
1250 };
1251 
1252 static const struct intel_cdclk_vals glk_cdclk_table[] = {
1253 	{ .refclk = 19200, .cdclk =  79200, .ratio = 33 },
1254 	{ .refclk = 19200, .cdclk = 158400, .ratio = 33 },
1255 	{ .refclk = 19200, .cdclk = 316800, .ratio = 33 },
1256 	{}
1257 };
1258 
1259 static const struct intel_cdclk_vals icl_cdclk_table[] = {
1260 	{ .refclk = 19200, .cdclk = 172800, .ratio = 18 },
1261 	{ .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1262 	{ .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1263 	{ .refclk = 19200, .cdclk = 326400, .ratio = 68 },
1264 	{ .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1265 	{ .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1266 
1267 	{ .refclk = 24000, .cdclk = 180000, .ratio = 15 },
1268 	{ .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1269 	{ .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1270 	{ .refclk = 24000, .cdclk = 324000, .ratio = 54 },
1271 	{ .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1272 	{ .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1273 
1274 	{ .refclk = 38400, .cdclk = 172800, .ratio =  9 },
1275 	{ .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1276 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1277 	{ .refclk = 38400, .cdclk = 326400, .ratio = 34 },
1278 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1279 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1280 	{}
1281 };
1282 
1283 static const struct intel_cdclk_vals rkl_cdclk_table[] = {
1284 	{ .refclk = 19200, .cdclk = 172800, .ratio =  36 },
1285 	{ .refclk = 19200, .cdclk = 192000, .ratio =  40 },
1286 	{ .refclk = 19200, .cdclk = 307200, .ratio =  64 },
1287 	{ .refclk = 19200, .cdclk = 326400, .ratio = 136 },
1288 	{ .refclk = 19200, .cdclk = 556800, .ratio = 116 },
1289 	{ .refclk = 19200, .cdclk = 652800, .ratio = 136 },
1290 
1291 	{ .refclk = 24000, .cdclk = 180000, .ratio =  30 },
1292 	{ .refclk = 24000, .cdclk = 192000, .ratio =  32 },
1293 	{ .refclk = 24000, .cdclk = 312000, .ratio =  52 },
1294 	{ .refclk = 24000, .cdclk = 324000, .ratio = 108 },
1295 	{ .refclk = 24000, .cdclk = 552000, .ratio =  92 },
1296 	{ .refclk = 24000, .cdclk = 648000, .ratio = 108 },
1297 
1298 	{ .refclk = 38400, .cdclk = 172800, .ratio = 18 },
1299 	{ .refclk = 38400, .cdclk = 192000, .ratio = 20 },
1300 	{ .refclk = 38400, .cdclk = 307200, .ratio = 32 },
1301 	{ .refclk = 38400, .cdclk = 326400, .ratio = 68 },
1302 	{ .refclk = 38400, .cdclk = 556800, .ratio = 58 },
1303 	{ .refclk = 38400, .cdclk = 652800, .ratio = 68 },
1304 	{}
1305 };
1306 
1307 static const struct intel_cdclk_vals adlp_a_step_cdclk_table[] = {
1308 	{ .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1309 	{ .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1310 	{ .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1311 
1312 	{ .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1313 	{ .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1314 	{ .refclk = 24400, .cdclk = 648000, .ratio = 54 },
1315 
1316 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1317 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1318 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1319 	{}
1320 };
1321 
1322 static const struct intel_cdclk_vals adlp_cdclk_table[] = {
1323 	{ .refclk = 19200, .cdclk = 172800, .ratio = 27 },
1324 	{ .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1325 	{ .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1326 	{ .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1327 	{ .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1328 
1329 	{ .refclk = 24000, .cdclk = 176000, .ratio = 22 },
1330 	{ .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1331 	{ .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1332 	{ .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1333 	{ .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1334 
1335 	{ .refclk = 38400, .cdclk = 179200, .ratio = 14 },
1336 	{ .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1337 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1338 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1339 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1340 	{}
1341 };
1342 
1343 static const struct intel_cdclk_vals rplu_cdclk_table[] = {
1344 	{ .refclk = 19200, .cdclk = 172800, .ratio = 27 },
1345 	{ .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1346 	{ .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1347 	{ .refclk = 19200, .cdclk = 480000, .ratio = 50 },
1348 	{ .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1349 	{ .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1350 
1351 	{ .refclk = 24000, .cdclk = 176000, .ratio = 22 },
1352 	{ .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1353 	{ .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1354 	{ .refclk = 24000, .cdclk = 480000, .ratio = 40 },
1355 	{ .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1356 	{ .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1357 
1358 	{ .refclk = 38400, .cdclk = 179200, .ratio = 14 },
1359 	{ .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1360 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1361 	{ .refclk = 38400, .cdclk = 480000, .ratio = 25 },
1362 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1363 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1364 	{}
1365 };
1366 
1367 static const struct intel_cdclk_vals dg2_cdclk_table[] = {
1368 	{ .refclk = 38400, .cdclk = 163200, .ratio = 34, .waveform = 0x8888 },
1369 	{ .refclk = 38400, .cdclk = 204000, .ratio = 34, .waveform = 0x9248 },
1370 	{ .refclk = 38400, .cdclk = 244800, .ratio = 34, .waveform = 0xa4a4 },
1371 	{ .refclk = 38400, .cdclk = 285600, .ratio = 34, .waveform = 0xa54a },
1372 	{ .refclk = 38400, .cdclk = 326400, .ratio = 34, .waveform = 0xaaaa },
1373 	{ .refclk = 38400, .cdclk = 367200, .ratio = 34, .waveform = 0xad5a },
1374 	{ .refclk = 38400, .cdclk = 408000, .ratio = 34, .waveform = 0xb6b6 },
1375 	{ .refclk = 38400, .cdclk = 448800, .ratio = 34, .waveform = 0xdbb6 },
1376 	{ .refclk = 38400, .cdclk = 489600, .ratio = 34, .waveform = 0xeeee },
1377 	{ .refclk = 38400, .cdclk = 530400, .ratio = 34, .waveform = 0xf7de },
1378 	{ .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe },
1379 	{ .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe },
1380 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1381 	{}
1382 };
1383 
1384 static const struct intel_cdclk_vals mtl_cdclk_table[] = {
1385 	{ .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a },
1386 	{ .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 },
1387 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0x0000 },
1388 	{ .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0x0000 },
1389 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0x0000 },
1390 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0x0000 },
1391 	{}
1392 };
1393 
1394 static const struct intel_cdclk_vals lnl_cdclk_table[] = {
1395 	{ .refclk = 38400, .cdclk = 153600, .ratio = 16, .waveform = 0xaaaa },
1396 	{ .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a },
1397 	{ .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 },
1398 	{ .refclk = 38400, .cdclk = 211200, .ratio = 16, .waveform = 0xdbb6 },
1399 	{ .refclk = 38400, .cdclk = 230400, .ratio = 16, .waveform = 0xeeee },
1400 	{ .refclk = 38400, .cdclk = 249600, .ratio = 16, .waveform = 0xf7de },
1401 	{ .refclk = 38400, .cdclk = 268800, .ratio = 16, .waveform = 0xfefe },
1402 	{ .refclk = 38400, .cdclk = 288000, .ratio = 16, .waveform = 0xfffe },
1403 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0xffff },
1404 	{ .refclk = 38400, .cdclk = 330000, .ratio = 25, .waveform = 0xdbb6 },
1405 	{ .refclk = 38400, .cdclk = 360000, .ratio = 25, .waveform = 0xeeee },
1406 	{ .refclk = 38400, .cdclk = 390000, .ratio = 25, .waveform = 0xf7de },
1407 	{ .refclk = 38400, .cdclk = 420000, .ratio = 25, .waveform = 0xfefe },
1408 	{ .refclk = 38400, .cdclk = 450000, .ratio = 25, .waveform = 0xfffe },
1409 	{ .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff },
1410 	{ .refclk = 38400, .cdclk = 487200, .ratio = 29, .waveform = 0xfefe },
1411 	{ .refclk = 38400, .cdclk = 522000, .ratio = 29, .waveform = 0xfffe },
1412 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff },
1413 	{ .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe },
1414 	{ .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe },
1415 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1416 	{}
1417 };
1418 
1419 static const int cdclk_squash_len = 16;
1420 
1421 static int cdclk_squash_divider(u16 waveform)
1422 {
1423 	return hweight16(waveform ?: 0xffff);
1424 }
1425 
1426 static int cdclk_divider(int cdclk, int vco, u16 waveform)
1427 {
1428 	/* 2 * cd2x divider */
1429 	return DIV_ROUND_CLOSEST(vco * cdclk_squash_divider(waveform),
1430 				 cdclk * cdclk_squash_len);
1431 }
1432 
1433 static int bxt_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk)
1434 {
1435 	const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1436 	int i;
1437 
1438 	for (i = 0; table[i].refclk; i++)
1439 		if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1440 		    table[i].cdclk >= min_cdclk)
1441 			return table[i].cdclk;
1442 
1443 	drm_WARN(&dev_priv->drm, 1,
1444 		 "Cannot satisfy minimum cdclk %d with refclk %u\n",
1445 		 min_cdclk, dev_priv->display.cdclk.hw.ref);
1446 	return 0;
1447 }
1448 
1449 static int bxt_calc_cdclk_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
1450 {
1451 	const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1452 	int i;
1453 
1454 	if (cdclk == dev_priv->display.cdclk.hw.bypass)
1455 		return 0;
1456 
1457 	for (i = 0; table[i].refclk; i++)
1458 		if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1459 		    table[i].cdclk == cdclk)
1460 			return dev_priv->display.cdclk.hw.ref * table[i].ratio;
1461 
1462 	drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n",
1463 		 cdclk, dev_priv->display.cdclk.hw.ref);
1464 	return 0;
1465 }
1466 
1467 static u8 bxt_calc_voltage_level(int cdclk)
1468 {
1469 	return DIV_ROUND_UP(cdclk, 25000);
1470 }
1471 
1472 static u8 calc_voltage_level(int cdclk, int num_voltage_levels,
1473 			     const int voltage_level_max_cdclk[])
1474 {
1475 	int voltage_level;
1476 
1477 	for (voltage_level = 0; voltage_level < num_voltage_levels; voltage_level++) {
1478 		if (cdclk <= voltage_level_max_cdclk[voltage_level])
1479 			return voltage_level;
1480 	}
1481 
1482 	MISSING_CASE(cdclk);
1483 	return num_voltage_levels - 1;
1484 }
1485 
1486 static u8 icl_calc_voltage_level(int cdclk)
1487 {
1488 	static const int icl_voltage_level_max_cdclk[] = {
1489 		[0] = 312000,
1490 		[1] = 556800,
1491 		[2] = 652800,
1492 	};
1493 
1494 	return calc_voltage_level(cdclk,
1495 				  ARRAY_SIZE(icl_voltage_level_max_cdclk),
1496 				  icl_voltage_level_max_cdclk);
1497 }
1498 
1499 static u8 ehl_calc_voltage_level(int cdclk)
1500 {
1501 	static const int ehl_voltage_level_max_cdclk[] = {
1502 		[0] = 180000,
1503 		[1] = 312000,
1504 		[2] = 326400,
1505 		/*
1506 		 * Bspec lists the limit as 556.8 MHz, but some JSL
1507 		 * development boards (at least) boot with 652.8 MHz
1508 		 */
1509 		[3] = 652800,
1510 	};
1511 
1512 	return calc_voltage_level(cdclk,
1513 				  ARRAY_SIZE(ehl_voltage_level_max_cdclk),
1514 				  ehl_voltage_level_max_cdclk);
1515 }
1516 
1517 static u8 tgl_calc_voltage_level(int cdclk)
1518 {
1519 	static const int tgl_voltage_level_max_cdclk[] = {
1520 		[0] = 312000,
1521 		[1] = 326400,
1522 		[2] = 556800,
1523 		[3] = 652800,
1524 	};
1525 
1526 	return calc_voltage_level(cdclk,
1527 				  ARRAY_SIZE(tgl_voltage_level_max_cdclk),
1528 				  tgl_voltage_level_max_cdclk);
1529 }
1530 
1531 static u8 rplu_calc_voltage_level(int cdclk)
1532 {
1533 	static const int rplu_voltage_level_max_cdclk[] = {
1534 		[0] = 312000,
1535 		[1] = 480000,
1536 		[2] = 556800,
1537 		[3] = 652800,
1538 	};
1539 
1540 	return calc_voltage_level(cdclk,
1541 				  ARRAY_SIZE(rplu_voltage_level_max_cdclk),
1542 				  rplu_voltage_level_max_cdclk);
1543 }
1544 
1545 static void icl_readout_refclk(struct drm_i915_private *dev_priv,
1546 			       struct intel_cdclk_config *cdclk_config)
1547 {
1548 	u32 dssm = intel_de_read(dev_priv, SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK;
1549 
1550 	switch (dssm) {
1551 	default:
1552 		MISSING_CASE(dssm);
1553 		fallthrough;
1554 	case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz:
1555 		cdclk_config->ref = 24000;
1556 		break;
1557 	case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz:
1558 		cdclk_config->ref = 19200;
1559 		break;
1560 	case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz:
1561 		cdclk_config->ref = 38400;
1562 		break;
1563 	}
1564 }
1565 
1566 static void bxt_de_pll_readout(struct drm_i915_private *dev_priv,
1567 			       struct intel_cdclk_config *cdclk_config)
1568 {
1569 	u32 val, ratio;
1570 
1571 	if (IS_DG2(dev_priv))
1572 		cdclk_config->ref = 38400;
1573 	else if (DISPLAY_VER(dev_priv) >= 11)
1574 		icl_readout_refclk(dev_priv, cdclk_config);
1575 	else
1576 		cdclk_config->ref = 19200;
1577 
1578 	val = intel_de_read(dev_priv, BXT_DE_PLL_ENABLE);
1579 	if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 ||
1580 	    (val & BXT_DE_PLL_LOCK) == 0) {
1581 		/*
1582 		 * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but
1583 		 * setting it to zero is a way to signal that.
1584 		 */
1585 		cdclk_config->vco = 0;
1586 		return;
1587 	}
1588 
1589 	/*
1590 	 * DISPLAY_VER >= 11 have the ratio directly in the PLL enable register,
1591 	 * gen9lp had it in a separate PLL control register.
1592 	 */
1593 	if (DISPLAY_VER(dev_priv) >= 11)
1594 		ratio = val & ICL_CDCLK_PLL_RATIO_MASK;
1595 	else
1596 		ratio = intel_de_read(dev_priv, BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
1597 
1598 	cdclk_config->vco = ratio * cdclk_config->ref;
1599 }
1600 
1601 static void bxt_get_cdclk(struct drm_i915_private *dev_priv,
1602 			  struct intel_cdclk_config *cdclk_config)
1603 {
1604 	u32 squash_ctl = 0;
1605 	u32 divider;
1606 	int div;
1607 
1608 	bxt_de_pll_readout(dev_priv, cdclk_config);
1609 
1610 	if (DISPLAY_VER(dev_priv) >= 12)
1611 		cdclk_config->bypass = cdclk_config->ref / 2;
1612 	else if (DISPLAY_VER(dev_priv) >= 11)
1613 		cdclk_config->bypass = 50000;
1614 	else
1615 		cdclk_config->bypass = cdclk_config->ref;
1616 
1617 	if (cdclk_config->vco == 0) {
1618 		cdclk_config->cdclk = cdclk_config->bypass;
1619 		goto out;
1620 	}
1621 
1622 	divider = intel_de_read(dev_priv, CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
1623 
1624 	switch (divider) {
1625 	case BXT_CDCLK_CD2X_DIV_SEL_1:
1626 		div = 2;
1627 		break;
1628 	case BXT_CDCLK_CD2X_DIV_SEL_1_5:
1629 		div = 3;
1630 		break;
1631 	case BXT_CDCLK_CD2X_DIV_SEL_2:
1632 		div = 4;
1633 		break;
1634 	case BXT_CDCLK_CD2X_DIV_SEL_4:
1635 		div = 8;
1636 		break;
1637 	default:
1638 		MISSING_CASE(divider);
1639 		return;
1640 	}
1641 
1642 	if (HAS_CDCLK_SQUASH(dev_priv))
1643 		squash_ctl = intel_de_read(dev_priv, CDCLK_SQUASH_CTL);
1644 
1645 	if (squash_ctl & CDCLK_SQUASH_ENABLE) {
1646 		u16 waveform;
1647 		int size;
1648 
1649 		size = REG_FIELD_GET(CDCLK_SQUASH_WINDOW_SIZE_MASK, squash_ctl) + 1;
1650 		waveform = REG_FIELD_GET(CDCLK_SQUASH_WAVEFORM_MASK, squash_ctl) >> (16 - size);
1651 
1652 		cdclk_config->cdclk = DIV_ROUND_CLOSEST(hweight16(waveform) *
1653 							cdclk_config->vco, size * div);
1654 	} else {
1655 		cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div);
1656 	}
1657 
1658  out:
1659 	/*
1660 	 * Can't read this out :( Let's assume it's
1661 	 * at least what the CDCLK frequency requires.
1662 	 */
1663 	cdclk_config->voltage_level =
1664 		intel_cdclk_calc_voltage_level(dev_priv, cdclk_config->cdclk);
1665 }
1666 
1667 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
1668 {
1669 	intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, 0);
1670 
1671 	/* Timeout 200us */
1672 	if (intel_de_wait_for_clear(dev_priv,
1673 				    BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1674 		drm_err(&dev_priv->drm, "timeout waiting for DE PLL unlock\n");
1675 
1676 	dev_priv->display.cdclk.hw.vco = 0;
1677 }
1678 
1679 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
1680 {
1681 	int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1682 
1683 	intel_de_rmw(dev_priv, BXT_DE_PLL_CTL,
1684 		     BXT_DE_PLL_RATIO_MASK, BXT_DE_PLL_RATIO(ratio));
1685 
1686 	intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
1687 
1688 	/* Timeout 200us */
1689 	if (intel_de_wait_for_set(dev_priv,
1690 				  BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1691 		drm_err(&dev_priv->drm, "timeout waiting for DE PLL lock\n");
1692 
1693 	dev_priv->display.cdclk.hw.vco = vco;
1694 }
1695 
1696 static void icl_cdclk_pll_disable(struct drm_i915_private *dev_priv)
1697 {
1698 	intel_de_rmw(dev_priv, BXT_DE_PLL_ENABLE,
1699 		     BXT_DE_PLL_PLL_ENABLE, 0);
1700 
1701 	/* Timeout 200us */
1702 	if (intel_de_wait_for_clear(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1703 		drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL unlock\n");
1704 
1705 	dev_priv->display.cdclk.hw.vco = 0;
1706 }
1707 
1708 static void icl_cdclk_pll_enable(struct drm_i915_private *dev_priv, int vco)
1709 {
1710 	int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1711 	u32 val;
1712 
1713 	val = ICL_CDCLK_PLL_RATIO(ratio);
1714 	intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1715 
1716 	val |= BXT_DE_PLL_PLL_ENABLE;
1717 	intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1718 
1719 	/* Timeout 200us */
1720 	if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1721 		drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL lock\n");
1722 
1723 	dev_priv->display.cdclk.hw.vco = vco;
1724 }
1725 
1726 static void adlp_cdclk_pll_crawl(struct drm_i915_private *dev_priv, int vco)
1727 {
1728 	int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1729 	u32 val;
1730 
1731 	/* Write PLL ratio without disabling */
1732 	val = ICL_CDCLK_PLL_RATIO(ratio) | BXT_DE_PLL_PLL_ENABLE;
1733 	intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1734 
1735 	/* Submit freq change request */
1736 	val |= BXT_DE_PLL_FREQ_REQ;
1737 	intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1738 
1739 	/* Timeout 200us */
1740 	if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE,
1741 				  BXT_DE_PLL_LOCK | BXT_DE_PLL_FREQ_REQ_ACK, 1))
1742 		drm_err(&dev_priv->drm, "timeout waiting for FREQ change request ack\n");
1743 
1744 	val &= ~BXT_DE_PLL_FREQ_REQ;
1745 	intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1746 
1747 	dev_priv->display.cdclk.hw.vco = vco;
1748 }
1749 
1750 static u32 bxt_cdclk_cd2x_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
1751 {
1752 	if (DISPLAY_VER(dev_priv) >= 12) {
1753 		if (pipe == INVALID_PIPE)
1754 			return TGL_CDCLK_CD2X_PIPE_NONE;
1755 		else
1756 			return TGL_CDCLK_CD2X_PIPE(pipe);
1757 	} else if (DISPLAY_VER(dev_priv) >= 11) {
1758 		if (pipe == INVALID_PIPE)
1759 			return ICL_CDCLK_CD2X_PIPE_NONE;
1760 		else
1761 			return ICL_CDCLK_CD2X_PIPE(pipe);
1762 	} else {
1763 		if (pipe == INVALID_PIPE)
1764 			return BXT_CDCLK_CD2X_PIPE_NONE;
1765 		else
1766 			return BXT_CDCLK_CD2X_PIPE(pipe);
1767 	}
1768 }
1769 
1770 static u32 bxt_cdclk_cd2x_div_sel(struct drm_i915_private *dev_priv,
1771 				  int cdclk, int vco, u16 waveform)
1772 {
1773 	/* cdclk = vco / 2 / div{1,1.5,2,4} */
1774 	switch (cdclk_divider(cdclk, vco, waveform)) {
1775 	default:
1776 		drm_WARN_ON(&dev_priv->drm,
1777 			    cdclk != dev_priv->display.cdclk.hw.bypass);
1778 		drm_WARN_ON(&dev_priv->drm, vco != 0);
1779 		fallthrough;
1780 	case 2:
1781 		return BXT_CDCLK_CD2X_DIV_SEL_1;
1782 	case 3:
1783 		return BXT_CDCLK_CD2X_DIV_SEL_1_5;
1784 	case 4:
1785 		return BXT_CDCLK_CD2X_DIV_SEL_2;
1786 	case 8:
1787 		return BXT_CDCLK_CD2X_DIV_SEL_4;
1788 	}
1789 }
1790 
1791 static u16 cdclk_squash_waveform(struct drm_i915_private *dev_priv,
1792 				 int cdclk)
1793 {
1794 	const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1795 	int i;
1796 
1797 	if (cdclk == dev_priv->display.cdclk.hw.bypass)
1798 		return 0;
1799 
1800 	for (i = 0; table[i].refclk; i++)
1801 		if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1802 		    table[i].cdclk == cdclk)
1803 			return table[i].waveform;
1804 
1805 	drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n",
1806 		 cdclk, dev_priv->display.cdclk.hw.ref);
1807 
1808 	return 0xffff;
1809 }
1810 
1811 static void icl_cdclk_pll_update(struct drm_i915_private *i915, int vco)
1812 {
1813 	if (i915->display.cdclk.hw.vco != 0 &&
1814 	    i915->display.cdclk.hw.vco != vco)
1815 		icl_cdclk_pll_disable(i915);
1816 
1817 	if (i915->display.cdclk.hw.vco != vco)
1818 		icl_cdclk_pll_enable(i915, vco);
1819 }
1820 
1821 static void bxt_cdclk_pll_update(struct drm_i915_private *i915, int vco)
1822 {
1823 	if (i915->display.cdclk.hw.vco != 0 &&
1824 	    i915->display.cdclk.hw.vco != vco)
1825 		bxt_de_pll_disable(i915);
1826 
1827 	if (i915->display.cdclk.hw.vco != vco)
1828 		bxt_de_pll_enable(i915, vco);
1829 }
1830 
1831 static void dg2_cdclk_squash_program(struct drm_i915_private *i915,
1832 				     u16 waveform)
1833 {
1834 	u32 squash_ctl = 0;
1835 
1836 	if (waveform)
1837 		squash_ctl = CDCLK_SQUASH_ENABLE |
1838 			     CDCLK_SQUASH_WINDOW_SIZE(0xf) | waveform;
1839 
1840 	intel_de_write(i915, CDCLK_SQUASH_CTL, squash_ctl);
1841 }
1842 
1843 static bool cdclk_pll_is_unknown(unsigned int vco)
1844 {
1845 	/*
1846 	 * Ensure driver does not take the crawl path for the
1847 	 * case when the vco is set to ~0 in the
1848 	 * sanitize path.
1849 	 */
1850 	return vco == ~0;
1851 }
1852 
1853 static bool cdclk_compute_crawl_and_squash_midpoint(struct drm_i915_private *i915,
1854 						    const struct intel_cdclk_config *old_cdclk_config,
1855 						    const struct intel_cdclk_config *new_cdclk_config,
1856 						    struct intel_cdclk_config *mid_cdclk_config)
1857 {
1858 	u16 old_waveform, new_waveform, mid_waveform;
1859 	int old_div, new_div, mid_div;
1860 
1861 	/* Return if PLL is in an unknown state, force a complete disable and re-enable. */
1862 	if (cdclk_pll_is_unknown(old_cdclk_config->vco))
1863 		return false;
1864 
1865 	/* Return if both Squash and Crawl are not present */
1866 	if (!HAS_CDCLK_CRAWL(i915) || !HAS_CDCLK_SQUASH(i915))
1867 		return false;
1868 
1869 	old_waveform = cdclk_squash_waveform(i915, old_cdclk_config->cdclk);
1870 	new_waveform = cdclk_squash_waveform(i915, new_cdclk_config->cdclk);
1871 
1872 	/* Return if Squash only or Crawl only is the desired action */
1873 	if (old_cdclk_config->vco == 0 || new_cdclk_config->vco == 0 ||
1874 	    old_cdclk_config->vco == new_cdclk_config->vco ||
1875 	    old_waveform == new_waveform)
1876 		return false;
1877 
1878 	old_div = cdclk_divider(old_cdclk_config->cdclk,
1879 				old_cdclk_config->vco, old_waveform);
1880 	new_div = cdclk_divider(new_cdclk_config->cdclk,
1881 				new_cdclk_config->vco, new_waveform);
1882 
1883 	/*
1884 	 * Should not happen currently. We might need more midpoint
1885 	 * transitions if we need to also change the cd2x divider.
1886 	 */
1887 	if (drm_WARN_ON(&i915->drm, old_div != new_div))
1888 		return false;
1889 
1890 	*mid_cdclk_config = *new_cdclk_config;
1891 
1892 	/*
1893 	 * Populate the mid_cdclk_config accordingly.
1894 	 * - If moving to a higher cdclk, the desired action is squashing.
1895 	 * The mid cdclk config should have the new (squash) waveform.
1896 	 * - If moving to a lower cdclk, the desired action is crawling.
1897 	 * The mid cdclk config should have the new vco.
1898 	 */
1899 
1900 	if (cdclk_squash_divider(new_waveform) > cdclk_squash_divider(old_waveform)) {
1901 		mid_cdclk_config->vco = old_cdclk_config->vco;
1902 		mid_div = old_div;
1903 		mid_waveform = new_waveform;
1904 	} else {
1905 		mid_cdclk_config->vco = new_cdclk_config->vco;
1906 		mid_div = new_div;
1907 		mid_waveform = old_waveform;
1908 	}
1909 
1910 	mid_cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_squash_divider(mid_waveform) *
1911 						    mid_cdclk_config->vco,
1912 						    cdclk_squash_len * mid_div);
1913 
1914 	/* make sure the mid clock came out sane */
1915 
1916 	drm_WARN_ON(&i915->drm, mid_cdclk_config->cdclk <
1917 		    min(old_cdclk_config->cdclk, new_cdclk_config->cdclk));
1918 	drm_WARN_ON(&i915->drm, mid_cdclk_config->cdclk >
1919 		    i915->display.cdclk.max_cdclk_freq);
1920 	drm_WARN_ON(&i915->drm, cdclk_squash_waveform(i915, mid_cdclk_config->cdclk) !=
1921 		    mid_waveform);
1922 
1923 	return true;
1924 }
1925 
1926 static bool pll_enable_wa_needed(struct drm_i915_private *dev_priv)
1927 {
1928 	return (DISPLAY_VER_FULL(dev_priv) == IP_VER(20, 0) ||
1929 		DISPLAY_VER_FULL(dev_priv) == IP_VER(14, 0) ||
1930 		IS_DG2(dev_priv)) &&
1931 		dev_priv->display.cdclk.hw.vco > 0;
1932 }
1933 
1934 static u32 bxt_cdclk_ctl(struct drm_i915_private *i915,
1935 			 const struct intel_cdclk_config *cdclk_config,
1936 			 enum pipe pipe)
1937 {
1938 	int cdclk = cdclk_config->cdclk;
1939 	int vco = cdclk_config->vco;
1940 	u16 waveform;
1941 	u32 val;
1942 
1943 	waveform = cdclk_squash_waveform(i915, cdclk);
1944 
1945 	val = bxt_cdclk_cd2x_div_sel(i915, cdclk, vco, waveform) |
1946 		bxt_cdclk_cd2x_pipe(i915, pipe);
1947 
1948 	/*
1949 	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
1950 	 * enable otherwise.
1951 	 */
1952 	if ((IS_GEMINILAKE(i915) || IS_BROXTON(i915)) &&
1953 	    cdclk >= 500000)
1954 		val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
1955 
1956 	if (DISPLAY_VER(i915) >= 20)
1957 		val |= MDCLK_SOURCE_SEL_CDCLK_PLL;
1958 	else
1959 		val |= skl_cdclk_decimal(cdclk);
1960 
1961 	return val;
1962 }
1963 
1964 static void _bxt_set_cdclk(struct drm_i915_private *dev_priv,
1965 			   const struct intel_cdclk_config *cdclk_config,
1966 			   enum pipe pipe)
1967 {
1968 	int cdclk = cdclk_config->cdclk;
1969 	int vco = cdclk_config->vco;
1970 	u16 waveform;
1971 
1972 	if (HAS_CDCLK_CRAWL(dev_priv) && dev_priv->display.cdclk.hw.vco > 0 && vco > 0 &&
1973 	    !cdclk_pll_is_unknown(dev_priv->display.cdclk.hw.vco)) {
1974 		if (dev_priv->display.cdclk.hw.vco != vco)
1975 			adlp_cdclk_pll_crawl(dev_priv, vco);
1976 	} else if (DISPLAY_VER(dev_priv) >= 11) {
1977 		/* wa_15010685871: dg2, mtl */
1978 		if (pll_enable_wa_needed(dev_priv))
1979 			dg2_cdclk_squash_program(dev_priv, 0);
1980 
1981 		icl_cdclk_pll_update(dev_priv, vco);
1982 	} else
1983 		bxt_cdclk_pll_update(dev_priv, vco);
1984 
1985 	waveform = cdclk_squash_waveform(dev_priv, cdclk);
1986 
1987 	if (HAS_CDCLK_SQUASH(dev_priv))
1988 		dg2_cdclk_squash_program(dev_priv, waveform);
1989 
1990 	intel_de_write(dev_priv, CDCLK_CTL, bxt_cdclk_ctl(dev_priv, cdclk_config, pipe));
1991 
1992 	if (pipe != INVALID_PIPE)
1993 		intel_crtc_wait_for_next_vblank(intel_crtc_for_pipe(dev_priv, pipe));
1994 }
1995 
1996 static void bxt_set_cdclk(struct drm_i915_private *dev_priv,
1997 			  const struct intel_cdclk_config *cdclk_config,
1998 			  enum pipe pipe)
1999 {
2000 	struct intel_cdclk_config mid_cdclk_config;
2001 	int cdclk = cdclk_config->cdclk;
2002 	int ret = 0;
2003 
2004 	/*
2005 	 * Inform power controller of upcoming frequency change.
2006 	 * Display versions 14 and beyond do not follow the PUnit
2007 	 * mailbox communication, skip
2008 	 * this step.
2009 	 */
2010 	if (DISPLAY_VER(dev_priv) >= 14 || IS_DG2(dev_priv))
2011 		/* NOOP */;
2012 	else if (DISPLAY_VER(dev_priv) >= 11)
2013 		ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
2014 					SKL_CDCLK_PREPARE_FOR_CHANGE,
2015 					SKL_CDCLK_READY_FOR_CHANGE,
2016 					SKL_CDCLK_READY_FOR_CHANGE, 3);
2017 	else
2018 		/*
2019 		 * BSpec requires us to wait up to 150usec, but that leads to
2020 		 * timeouts; the 2ms used here is based on experiment.
2021 		 */
2022 		ret = snb_pcode_write_timeout(&dev_priv->uncore,
2023 					      HSW_PCODE_DE_WRITE_FREQ_REQ,
2024 					      0x80000000, 150, 2);
2025 
2026 	if (ret) {
2027 		drm_err(&dev_priv->drm,
2028 			"Failed to inform PCU about cdclk change (err %d, freq %d)\n",
2029 			ret, cdclk);
2030 		return;
2031 	}
2032 
2033 	if (cdclk_compute_crawl_and_squash_midpoint(dev_priv, &dev_priv->display.cdclk.hw,
2034 						    cdclk_config, &mid_cdclk_config)) {
2035 		_bxt_set_cdclk(dev_priv, &mid_cdclk_config, pipe);
2036 		_bxt_set_cdclk(dev_priv, cdclk_config, pipe);
2037 	} else {
2038 		_bxt_set_cdclk(dev_priv, cdclk_config, pipe);
2039 	}
2040 
2041 	if (DISPLAY_VER(dev_priv) >= 14)
2042 		/*
2043 		 * NOOP - No Pcode communication needed for
2044 		 * Display versions 14 and beyond
2045 		 */;
2046 	else if (DISPLAY_VER(dev_priv) >= 11 && !IS_DG2(dev_priv))
2047 		ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
2048 				      cdclk_config->voltage_level);
2049 	if (DISPLAY_VER(dev_priv) < 11) {
2050 		/*
2051 		 * The timeout isn't specified, the 2ms used here is based on
2052 		 * experiment.
2053 		 * FIXME: Waiting for the request completion could be delayed
2054 		 * until the next PCODE request based on BSpec.
2055 		 */
2056 		ret = snb_pcode_write_timeout(&dev_priv->uncore,
2057 					      HSW_PCODE_DE_WRITE_FREQ_REQ,
2058 					      cdclk_config->voltage_level,
2059 					      150, 2);
2060 	}
2061 	if (ret) {
2062 		drm_err(&dev_priv->drm,
2063 			"PCode CDCLK freq set failed, (err %d, freq %d)\n",
2064 			ret, cdclk);
2065 		return;
2066 	}
2067 
2068 	intel_update_cdclk(dev_priv);
2069 
2070 	if (DISPLAY_VER(dev_priv) >= 11)
2071 		/*
2072 		 * Can't read out the voltage level :(
2073 		 * Let's just assume everything is as expected.
2074 		 */
2075 		dev_priv->display.cdclk.hw.voltage_level = cdclk_config->voltage_level;
2076 }
2077 
2078 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
2079 {
2080 	u32 cdctl, expected;
2081 	int cdclk, vco;
2082 
2083 	intel_update_cdclk(dev_priv);
2084 	intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
2085 
2086 	if (dev_priv->display.cdclk.hw.vco == 0 ||
2087 	    dev_priv->display.cdclk.hw.cdclk == dev_priv->display.cdclk.hw.bypass)
2088 		goto sanitize;
2089 
2090 	/* Make sure this is a legal cdclk value for the platform */
2091 	cdclk = bxt_calc_cdclk(dev_priv, dev_priv->display.cdclk.hw.cdclk);
2092 	if (cdclk != dev_priv->display.cdclk.hw.cdclk)
2093 		goto sanitize;
2094 
2095 	/* Make sure the VCO is correct for the cdclk */
2096 	vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
2097 	if (vco != dev_priv->display.cdclk.hw.vco)
2098 		goto sanitize;
2099 
2100 	/*
2101 	 * Some BIOS versions leave an incorrect decimal frequency value and
2102 	 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
2103 	 * so sanitize this register.
2104 	 */
2105 	cdctl = intel_de_read(dev_priv, CDCLK_CTL);
2106 	expected = bxt_cdclk_ctl(dev_priv, &dev_priv->display.cdclk.hw, INVALID_PIPE);
2107 
2108 	/*
2109 	 * Let's ignore the pipe field, since BIOS could have configured the
2110 	 * dividers both synching to an active pipe, or asynchronously
2111 	 * (PIPE_NONE).
2112 	 */
2113 	cdctl &= ~bxt_cdclk_cd2x_pipe(dev_priv, INVALID_PIPE);
2114 	expected &= ~bxt_cdclk_cd2x_pipe(dev_priv, INVALID_PIPE);
2115 
2116 	if (cdctl == expected)
2117 		/* All well; nothing to sanitize */
2118 		return;
2119 
2120 sanitize:
2121 	drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n");
2122 
2123 	/* force cdclk programming */
2124 	dev_priv->display.cdclk.hw.cdclk = 0;
2125 
2126 	/* force full PLL disable + enable */
2127 	dev_priv->display.cdclk.hw.vco = ~0;
2128 }
2129 
2130 static void bxt_cdclk_init_hw(struct drm_i915_private *dev_priv)
2131 {
2132 	struct intel_cdclk_config cdclk_config;
2133 
2134 	bxt_sanitize_cdclk(dev_priv);
2135 
2136 	if (dev_priv->display.cdclk.hw.cdclk != 0 &&
2137 	    dev_priv->display.cdclk.hw.vco != 0)
2138 		return;
2139 
2140 	cdclk_config = dev_priv->display.cdclk.hw;
2141 
2142 	/*
2143 	 * FIXME:
2144 	 * - The initial CDCLK needs to be read from VBT.
2145 	 *   Need to make this change after VBT has changes for BXT.
2146 	 */
2147 	cdclk_config.cdclk = bxt_calc_cdclk(dev_priv, 0);
2148 	cdclk_config.vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk_config.cdclk);
2149 	cdclk_config.voltage_level =
2150 		intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk);
2151 
2152 	bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
2153 }
2154 
2155 static void bxt_cdclk_uninit_hw(struct drm_i915_private *dev_priv)
2156 {
2157 	struct intel_cdclk_config cdclk_config = dev_priv->display.cdclk.hw;
2158 
2159 	cdclk_config.cdclk = cdclk_config.bypass;
2160 	cdclk_config.vco = 0;
2161 	cdclk_config.voltage_level =
2162 		intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk);
2163 
2164 	bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
2165 }
2166 
2167 /**
2168  * intel_cdclk_init_hw - Initialize CDCLK hardware
2169  * @i915: i915 device
2170  *
2171  * Initialize CDCLK. This consists mainly of initializing dev_priv->display.cdclk.hw and
2172  * sanitizing the state of the hardware if needed. This is generally done only
2173  * during the display core initialization sequence, after which the DMC will
2174  * take care of turning CDCLK off/on as needed.
2175  */
2176 void intel_cdclk_init_hw(struct drm_i915_private *i915)
2177 {
2178 	if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915))
2179 		bxt_cdclk_init_hw(i915);
2180 	else if (DISPLAY_VER(i915) == 9)
2181 		skl_cdclk_init_hw(i915);
2182 }
2183 
2184 /**
2185  * intel_cdclk_uninit_hw - Uninitialize CDCLK hardware
2186  * @i915: i915 device
2187  *
2188  * Uninitialize CDCLK. This is done only during the display core
2189  * uninitialization sequence.
2190  */
2191 void intel_cdclk_uninit_hw(struct drm_i915_private *i915)
2192 {
2193 	if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915))
2194 		bxt_cdclk_uninit_hw(i915);
2195 	else if (DISPLAY_VER(i915) == 9)
2196 		skl_cdclk_uninit_hw(i915);
2197 }
2198 
2199 static bool intel_cdclk_can_crawl_and_squash(struct drm_i915_private *i915,
2200 					     const struct intel_cdclk_config *a,
2201 					     const struct intel_cdclk_config *b)
2202 {
2203 	u16 old_waveform;
2204 	u16 new_waveform;
2205 
2206 	drm_WARN_ON(&i915->drm, cdclk_pll_is_unknown(a->vco));
2207 
2208 	if (a->vco == 0 || b->vco == 0)
2209 		return false;
2210 
2211 	if (!HAS_CDCLK_CRAWL(i915) || !HAS_CDCLK_SQUASH(i915))
2212 		return false;
2213 
2214 	old_waveform = cdclk_squash_waveform(i915, a->cdclk);
2215 	new_waveform = cdclk_squash_waveform(i915, b->cdclk);
2216 
2217 	return a->vco != b->vco &&
2218 	       old_waveform != new_waveform;
2219 }
2220 
2221 static bool intel_cdclk_can_crawl(struct drm_i915_private *dev_priv,
2222 				  const struct intel_cdclk_config *a,
2223 				  const struct intel_cdclk_config *b)
2224 {
2225 	int a_div, b_div;
2226 
2227 	if (!HAS_CDCLK_CRAWL(dev_priv))
2228 		return false;
2229 
2230 	/*
2231 	 * The vco and cd2x divider will change independently
2232 	 * from each, so we disallow cd2x change when crawling.
2233 	 */
2234 	a_div = DIV_ROUND_CLOSEST(a->vco, a->cdclk);
2235 	b_div = DIV_ROUND_CLOSEST(b->vco, b->cdclk);
2236 
2237 	return a->vco != 0 && b->vco != 0 &&
2238 		a->vco != b->vco &&
2239 		a_div == b_div &&
2240 		a->ref == b->ref;
2241 }
2242 
2243 static bool intel_cdclk_can_squash(struct drm_i915_private *dev_priv,
2244 				   const struct intel_cdclk_config *a,
2245 				   const struct intel_cdclk_config *b)
2246 {
2247 	/*
2248 	 * FIXME should store a bit more state in intel_cdclk_config
2249 	 * to differentiate squasher vs. cd2x divider properly. For
2250 	 * the moment all platforms with squasher use a fixed cd2x
2251 	 * divider.
2252 	 */
2253 	if (!HAS_CDCLK_SQUASH(dev_priv))
2254 		return false;
2255 
2256 	return a->cdclk != b->cdclk &&
2257 		a->vco != 0 &&
2258 		a->vco == b->vco &&
2259 		a->ref == b->ref;
2260 }
2261 
2262 /**
2263  * intel_cdclk_needs_modeset - Determine if changong between the CDCLK
2264  *                             configurations requires a modeset on all pipes
2265  * @a: first CDCLK configuration
2266  * @b: second CDCLK configuration
2267  *
2268  * Returns:
2269  * True if changing between the two CDCLK configurations
2270  * requires all pipes to be off, false if not.
2271  */
2272 bool intel_cdclk_needs_modeset(const struct intel_cdclk_config *a,
2273 			       const struct intel_cdclk_config *b)
2274 {
2275 	return a->cdclk != b->cdclk ||
2276 		a->vco != b->vco ||
2277 		a->ref != b->ref;
2278 }
2279 
2280 /**
2281  * intel_cdclk_can_cd2x_update - Determine if changing between the two CDCLK
2282  *                               configurations requires only a cd2x divider update
2283  * @dev_priv: i915 device
2284  * @a: first CDCLK configuration
2285  * @b: second CDCLK configuration
2286  *
2287  * Returns:
2288  * True if changing between the two CDCLK configurations
2289  * can be done with just a cd2x divider update, false if not.
2290  */
2291 static bool intel_cdclk_can_cd2x_update(struct drm_i915_private *dev_priv,
2292 					const struct intel_cdclk_config *a,
2293 					const struct intel_cdclk_config *b)
2294 {
2295 	/* Older hw doesn't have the capability */
2296 	if (DISPLAY_VER(dev_priv) < 10 && !IS_BROXTON(dev_priv))
2297 		return false;
2298 
2299 	/*
2300 	 * FIXME should store a bit more state in intel_cdclk_config
2301 	 * to differentiate squasher vs. cd2x divider properly. For
2302 	 * the moment all platforms with squasher use a fixed cd2x
2303 	 * divider.
2304 	 */
2305 	if (HAS_CDCLK_SQUASH(dev_priv))
2306 		return false;
2307 
2308 	return a->cdclk != b->cdclk &&
2309 		a->vco != 0 &&
2310 		a->vco == b->vco &&
2311 		a->ref == b->ref;
2312 }
2313 
2314 /**
2315  * intel_cdclk_changed - Determine if two CDCLK configurations are different
2316  * @a: first CDCLK configuration
2317  * @b: second CDCLK configuration
2318  *
2319  * Returns:
2320  * True if the CDCLK configurations don't match, false if they do.
2321  */
2322 static bool intel_cdclk_changed(const struct intel_cdclk_config *a,
2323 				const struct intel_cdclk_config *b)
2324 {
2325 	return intel_cdclk_needs_modeset(a, b) ||
2326 		a->voltage_level != b->voltage_level;
2327 }
2328 
2329 void intel_cdclk_dump_config(struct drm_i915_private *i915,
2330 			     const struct intel_cdclk_config *cdclk_config,
2331 			     const char *context)
2332 {
2333 	drm_dbg_kms(&i915->drm, "%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n",
2334 		    context, cdclk_config->cdclk, cdclk_config->vco,
2335 		    cdclk_config->ref, cdclk_config->bypass,
2336 		    cdclk_config->voltage_level);
2337 }
2338 
2339 static void intel_pcode_notify(struct drm_i915_private *i915,
2340 			       u8 voltage_level,
2341 			       u8 active_pipe_count,
2342 			       u16 cdclk,
2343 			       bool cdclk_update_valid,
2344 			       bool pipe_count_update_valid)
2345 {
2346 	int ret;
2347 	u32 update_mask = 0;
2348 
2349 	if (!IS_DG2(i915))
2350 		return;
2351 
2352 	update_mask = DISPLAY_TO_PCODE_UPDATE_MASK(cdclk, active_pipe_count, voltage_level);
2353 
2354 	if (cdclk_update_valid)
2355 		update_mask |= DISPLAY_TO_PCODE_CDCLK_VALID;
2356 
2357 	if (pipe_count_update_valid)
2358 		update_mask |= DISPLAY_TO_PCODE_PIPE_COUNT_VALID;
2359 
2360 	ret = skl_pcode_request(&i915->uncore, SKL_PCODE_CDCLK_CONTROL,
2361 				SKL_CDCLK_PREPARE_FOR_CHANGE |
2362 				update_mask,
2363 				SKL_CDCLK_READY_FOR_CHANGE,
2364 				SKL_CDCLK_READY_FOR_CHANGE, 3);
2365 	if (ret)
2366 		drm_err(&i915->drm,
2367 			"Failed to inform PCU about display config (err %d)\n",
2368 			ret);
2369 }
2370 
2371 /**
2372  * intel_set_cdclk - Push the CDCLK configuration to the hardware
2373  * @dev_priv: i915 device
2374  * @cdclk_config: new CDCLK configuration
2375  * @pipe: pipe with which to synchronize the update
2376  *
2377  * Program the hardware based on the passed in CDCLK state,
2378  * if necessary.
2379  */
2380 static void intel_set_cdclk(struct drm_i915_private *dev_priv,
2381 			    const struct intel_cdclk_config *cdclk_config,
2382 			    enum pipe pipe)
2383 {
2384 	struct intel_encoder *encoder;
2385 
2386 	if (!intel_cdclk_changed(&dev_priv->display.cdclk.hw, cdclk_config))
2387 		return;
2388 
2389 	if (drm_WARN_ON_ONCE(&dev_priv->drm, !dev_priv->display.funcs.cdclk->set_cdclk))
2390 		return;
2391 
2392 	intel_cdclk_dump_config(dev_priv, cdclk_config, "Changing CDCLK to");
2393 
2394 	for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2395 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2396 
2397 		intel_psr_pause(intel_dp);
2398 	}
2399 
2400 	intel_audio_cdclk_change_pre(dev_priv);
2401 
2402 	/*
2403 	 * Lock aux/gmbus while we change cdclk in case those
2404 	 * functions use cdclk. Not all platforms/ports do,
2405 	 * but we'll lock them all for simplicity.
2406 	 */
2407 	mutex_lock(&dev_priv->display.gmbus.mutex);
2408 	for_each_intel_dp(&dev_priv->drm, encoder) {
2409 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2410 
2411 		mutex_lock_nest_lock(&intel_dp->aux.hw_mutex,
2412 				     &dev_priv->display.gmbus.mutex);
2413 	}
2414 
2415 	intel_cdclk_set_cdclk(dev_priv, cdclk_config, pipe);
2416 
2417 	for_each_intel_dp(&dev_priv->drm, encoder) {
2418 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2419 
2420 		mutex_unlock(&intel_dp->aux.hw_mutex);
2421 	}
2422 	mutex_unlock(&dev_priv->display.gmbus.mutex);
2423 
2424 	for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2425 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2426 
2427 		intel_psr_resume(intel_dp);
2428 	}
2429 
2430 	intel_audio_cdclk_change_post(dev_priv);
2431 
2432 	if (drm_WARN(&dev_priv->drm,
2433 		     intel_cdclk_changed(&dev_priv->display.cdclk.hw, cdclk_config),
2434 		     "cdclk state doesn't match!\n")) {
2435 		intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "[hw state]");
2436 		intel_cdclk_dump_config(dev_priv, cdclk_config, "[sw state]");
2437 	}
2438 }
2439 
2440 static void intel_cdclk_pcode_pre_notify(struct intel_atomic_state *state)
2441 {
2442 	struct drm_i915_private *i915 = to_i915(state->base.dev);
2443 	const struct intel_cdclk_state *old_cdclk_state =
2444 		intel_atomic_get_old_cdclk_state(state);
2445 	const struct intel_cdclk_state *new_cdclk_state =
2446 		intel_atomic_get_new_cdclk_state(state);
2447 	unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0;
2448 	bool change_cdclk, update_pipe_count;
2449 
2450 	if (!intel_cdclk_changed(&old_cdclk_state->actual,
2451 				 &new_cdclk_state->actual) &&
2452 				 new_cdclk_state->active_pipes ==
2453 				 old_cdclk_state->active_pipes)
2454 		return;
2455 
2456 	/* According to "Sequence Before Frequency Change", voltage level set to 0x3 */
2457 	voltage_level = DISPLAY_TO_PCODE_VOLTAGE_MAX;
2458 
2459 	change_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk;
2460 	update_pipe_count = hweight8(new_cdclk_state->active_pipes) >
2461 			    hweight8(old_cdclk_state->active_pipes);
2462 
2463 	/*
2464 	 * According to "Sequence Before Frequency Change",
2465 	 * if CDCLK is increasing, set bits 25:16 to upcoming CDCLK,
2466 	 * if CDCLK is decreasing or not changing, set bits 25:16 to current CDCLK,
2467 	 * which basically means we choose the maximum of old and new CDCLK, if we know both
2468 	 */
2469 	if (change_cdclk)
2470 		cdclk = max(new_cdclk_state->actual.cdclk, old_cdclk_state->actual.cdclk);
2471 
2472 	/*
2473 	 * According to "Sequence For Pipe Count Change",
2474 	 * if pipe count is increasing, set bits 25:16 to upcoming pipe count
2475 	 * (power well is enabled)
2476 	 * no action if it is decreasing, before the change
2477 	 */
2478 	if (update_pipe_count)
2479 		num_active_pipes = hweight8(new_cdclk_state->active_pipes);
2480 
2481 	intel_pcode_notify(i915, voltage_level, num_active_pipes, cdclk,
2482 			   change_cdclk, update_pipe_count);
2483 }
2484 
2485 static void intel_cdclk_pcode_post_notify(struct intel_atomic_state *state)
2486 {
2487 	struct drm_i915_private *i915 = to_i915(state->base.dev);
2488 	const struct intel_cdclk_state *new_cdclk_state =
2489 		intel_atomic_get_new_cdclk_state(state);
2490 	const struct intel_cdclk_state *old_cdclk_state =
2491 		intel_atomic_get_old_cdclk_state(state);
2492 	unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0;
2493 	bool update_cdclk, update_pipe_count;
2494 
2495 	/* According to "Sequence After Frequency Change", set voltage to used level */
2496 	voltage_level = new_cdclk_state->actual.voltage_level;
2497 
2498 	update_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk;
2499 	update_pipe_count = hweight8(new_cdclk_state->active_pipes) <
2500 			    hweight8(old_cdclk_state->active_pipes);
2501 
2502 	/*
2503 	 * According to "Sequence After Frequency Change",
2504 	 * set bits 25:16 to current CDCLK
2505 	 */
2506 	if (update_cdclk)
2507 		cdclk = new_cdclk_state->actual.cdclk;
2508 
2509 	/*
2510 	 * According to "Sequence For Pipe Count Change",
2511 	 * if pipe count is decreasing, set bits 25:16 to current pipe count,
2512 	 * after the change(power well is disabled)
2513 	 * no action if it is increasing, after the change
2514 	 */
2515 	if (update_pipe_count)
2516 		num_active_pipes = hweight8(new_cdclk_state->active_pipes);
2517 
2518 	intel_pcode_notify(i915, voltage_level, num_active_pipes, cdclk,
2519 			   update_cdclk, update_pipe_count);
2520 }
2521 
2522 /**
2523  * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware
2524  * @state: intel atomic state
2525  *
2526  * Program the hardware before updating the HW plane state based on the
2527  * new CDCLK state, if necessary.
2528  */
2529 void
2530 intel_set_cdclk_pre_plane_update(struct intel_atomic_state *state)
2531 {
2532 	struct drm_i915_private *i915 = to_i915(state->base.dev);
2533 	const struct intel_cdclk_state *old_cdclk_state =
2534 		intel_atomic_get_old_cdclk_state(state);
2535 	const struct intel_cdclk_state *new_cdclk_state =
2536 		intel_atomic_get_new_cdclk_state(state);
2537 	enum pipe pipe = new_cdclk_state->pipe;
2538 
2539 	if (!intel_cdclk_changed(&old_cdclk_state->actual,
2540 				 &new_cdclk_state->actual))
2541 		return;
2542 
2543 	if (IS_DG2(i915))
2544 		intel_cdclk_pcode_pre_notify(state);
2545 
2546 	if (pipe == INVALID_PIPE ||
2547 	    old_cdclk_state->actual.cdclk <= new_cdclk_state->actual.cdclk) {
2548 		drm_WARN_ON(&i915->drm, !new_cdclk_state->base.changed);
2549 
2550 		intel_set_cdclk(i915, &new_cdclk_state->actual, pipe);
2551 	}
2552 }
2553 
2554 /**
2555  * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware
2556  * @state: intel atomic state
2557  *
2558  * Program the hardware after updating the HW plane state based on the
2559  * new CDCLK state, if necessary.
2560  */
2561 void
2562 intel_set_cdclk_post_plane_update(struct intel_atomic_state *state)
2563 {
2564 	struct drm_i915_private *i915 = to_i915(state->base.dev);
2565 	const struct intel_cdclk_state *old_cdclk_state =
2566 		intel_atomic_get_old_cdclk_state(state);
2567 	const struct intel_cdclk_state *new_cdclk_state =
2568 		intel_atomic_get_new_cdclk_state(state);
2569 	enum pipe pipe = new_cdclk_state->pipe;
2570 
2571 	if (!intel_cdclk_changed(&old_cdclk_state->actual,
2572 				 &new_cdclk_state->actual))
2573 		return;
2574 
2575 	if (IS_DG2(i915))
2576 		intel_cdclk_pcode_post_notify(state);
2577 
2578 	if (pipe != INVALID_PIPE &&
2579 	    old_cdclk_state->actual.cdclk > new_cdclk_state->actual.cdclk) {
2580 		drm_WARN_ON(&i915->drm, !new_cdclk_state->base.changed);
2581 
2582 		intel_set_cdclk(i915, &new_cdclk_state->actual, pipe);
2583 	}
2584 }
2585 
2586 static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state)
2587 {
2588 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
2589 	int pixel_rate = crtc_state->pixel_rate;
2590 
2591 	if (DISPLAY_VER(dev_priv) >= 10)
2592 		return DIV_ROUND_UP(pixel_rate, 2);
2593 	else if (DISPLAY_VER(dev_priv) == 9 ||
2594 		 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2595 		return pixel_rate;
2596 	else if (IS_CHERRYVIEW(dev_priv))
2597 		return DIV_ROUND_UP(pixel_rate * 100, 95);
2598 	else if (crtc_state->double_wide)
2599 		return DIV_ROUND_UP(pixel_rate * 100, 90 * 2);
2600 	else
2601 		return DIV_ROUND_UP(pixel_rate * 100, 90);
2602 }
2603 
2604 static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state)
2605 {
2606 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2607 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2608 	struct intel_plane *plane;
2609 	int min_cdclk = 0;
2610 
2611 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
2612 		min_cdclk = max(crtc_state->min_cdclk[plane->id], min_cdclk);
2613 
2614 	return min_cdclk;
2615 }
2616 
2617 static int intel_vdsc_min_cdclk(const struct intel_crtc_state *crtc_state)
2618 {
2619 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2620 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2621 	int num_vdsc_instances = intel_dsc_get_num_vdsc_instances(crtc_state);
2622 	int min_cdclk = 0;
2623 
2624 	/*
2625 	 * When we decide to use only one VDSC engine, since
2626 	 * each VDSC operates with 1 ppc throughput, pixel clock
2627 	 * cannot be higher than the VDSC clock (cdclk)
2628 	 * If there 2 VDSC engines, then pixel clock can't be higher than
2629 	 * VDSC clock(cdclk) * 2 and so on.
2630 	 */
2631 	min_cdclk = max_t(int, min_cdclk,
2632 			  DIV_ROUND_UP(crtc_state->pixel_rate, num_vdsc_instances));
2633 
2634 	if (crtc_state->bigjoiner_pipes) {
2635 		int pixel_clock = intel_dp_mode_to_fec_clock(crtc_state->hw.adjusted_mode.clock);
2636 
2637 		/*
2638 		 * According to Bigjoiner bw check:
2639 		 * compressed_bpp <= PPC * CDCLK * Big joiner Interface bits / Pixel clock
2640 		 *
2641 		 * We have already computed compressed_bpp, so now compute the min CDCLK that
2642 		 * is required to support this compressed_bpp.
2643 		 *
2644 		 * => CDCLK >= compressed_bpp * Pixel clock / (PPC * Bigjoiner Interface bits)
2645 		 *
2646 		 * Since PPC = 2 with bigjoiner
2647 		 * => CDCLK >= compressed_bpp * Pixel clock  / 2 * Bigjoiner Interface bits
2648 		 */
2649 		int bigjoiner_interface_bits = DISPLAY_VER(i915) >= 14 ? 36 : 24;
2650 		int min_cdclk_bj =
2651 			(to_bpp_int_roundup(crtc_state->dsc.compressed_bpp_x16) *
2652 			 pixel_clock) / (2 * bigjoiner_interface_bits);
2653 
2654 		min_cdclk = max(min_cdclk, min_cdclk_bj);
2655 	}
2656 
2657 	return min_cdclk;
2658 }
2659 
2660 int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state)
2661 {
2662 	struct drm_i915_private *dev_priv =
2663 		to_i915(crtc_state->uapi.crtc->dev);
2664 	int min_cdclk;
2665 
2666 	if (!crtc_state->hw.enable)
2667 		return 0;
2668 
2669 	min_cdclk = intel_pixel_rate_to_cdclk(crtc_state);
2670 
2671 	/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
2672 	if (IS_BROADWELL(dev_priv) && hsw_crtc_state_ips_capable(crtc_state))
2673 		min_cdclk = DIV_ROUND_UP(min_cdclk * 100, 95);
2674 
2675 	/* BSpec says "Do not use DisplayPort with CDCLK less than 432 MHz,
2676 	 * audio enabled, port width x4, and link rate HBR2 (5.4 GHz), or else
2677 	 * there may be audio corruption or screen corruption." This cdclk
2678 	 * restriction for GLK is 316.8 MHz.
2679 	 */
2680 	if (intel_crtc_has_dp_encoder(crtc_state) &&
2681 	    crtc_state->has_audio &&
2682 	    crtc_state->port_clock >= 540000 &&
2683 	    crtc_state->lane_count == 4) {
2684 		if (DISPLAY_VER(dev_priv) == 10) {
2685 			/* Display WA #1145: glk */
2686 			min_cdclk = max(316800, min_cdclk);
2687 		} else if (DISPLAY_VER(dev_priv) == 9 || IS_BROADWELL(dev_priv)) {
2688 			/* Display WA #1144: skl,bxt */
2689 			min_cdclk = max(432000, min_cdclk);
2690 		}
2691 	}
2692 
2693 	/*
2694 	 * According to BSpec, "The CD clock frequency must be at least twice
2695 	 * the frequency of the Azalia BCLK." and BCLK is 96 MHz by default.
2696 	 */
2697 	if (crtc_state->has_audio && DISPLAY_VER(dev_priv) >= 9)
2698 		min_cdclk = max(2 * 96000, min_cdclk);
2699 
2700 	/*
2701 	 * "For DP audio configuration, cdclk frequency shall be set to
2702 	 *  meet the following requirements:
2703 	 *  DP Link Frequency(MHz) | Cdclk frequency(MHz)
2704 	 *  270                    | 320 or higher
2705 	 *  162                    | 200 or higher"
2706 	 */
2707 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
2708 	    intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio)
2709 		min_cdclk = max(crtc_state->port_clock, min_cdclk);
2710 
2711 	/*
2712 	 * On Valleyview some DSI panels lose (v|h)sync when the clock is lower
2713 	 * than 320000KHz.
2714 	 */
2715 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
2716 	    IS_VALLEYVIEW(dev_priv))
2717 		min_cdclk = max(320000, min_cdclk);
2718 
2719 	/*
2720 	 * On Geminilake once the CDCLK gets as low as 79200
2721 	 * picture gets unstable, despite that values are
2722 	 * correct for DSI PLL and DE PLL.
2723 	 */
2724 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
2725 	    IS_GEMINILAKE(dev_priv))
2726 		min_cdclk = max(158400, min_cdclk);
2727 
2728 	/* Account for additional needs from the planes */
2729 	min_cdclk = max(intel_planes_min_cdclk(crtc_state), min_cdclk);
2730 
2731 	if (crtc_state->dsc.compression_enable)
2732 		min_cdclk = max(min_cdclk, intel_vdsc_min_cdclk(crtc_state));
2733 
2734 	/*
2735 	 * HACK. Currently for TGL/DG2 platforms we calculate
2736 	 * min_cdclk initially based on pixel_rate divided
2737 	 * by 2, accounting for also plane requirements,
2738 	 * however in some cases the lowest possible CDCLK
2739 	 * doesn't work and causing the underruns.
2740 	 * Explicitly stating here that this seems to be currently
2741 	 * rather a Hack, than final solution.
2742 	 */
2743 	if (IS_TIGERLAKE(dev_priv) || IS_DG2(dev_priv)) {
2744 		/*
2745 		 * Clamp to max_cdclk_freq in case pixel rate is higher,
2746 		 * in order not to break an 8K, but still leave W/A at place.
2747 		 */
2748 		min_cdclk = max_t(int, min_cdclk,
2749 				  min_t(int, crtc_state->pixel_rate,
2750 					dev_priv->display.cdclk.max_cdclk_freq));
2751 	}
2752 
2753 	return min_cdclk;
2754 }
2755 
2756 static int intel_compute_min_cdclk(struct intel_cdclk_state *cdclk_state)
2757 {
2758 	struct intel_atomic_state *state = cdclk_state->base.state;
2759 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2760 	const struct intel_bw_state *bw_state;
2761 	struct intel_crtc *crtc;
2762 	struct intel_crtc_state *crtc_state;
2763 	int min_cdclk, i;
2764 	enum pipe pipe;
2765 
2766 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2767 		int ret;
2768 
2769 		min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
2770 		if (min_cdclk < 0)
2771 			return min_cdclk;
2772 
2773 		if (cdclk_state->min_cdclk[crtc->pipe] == min_cdclk)
2774 			continue;
2775 
2776 		cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
2777 
2778 		ret = intel_atomic_lock_global_state(&cdclk_state->base);
2779 		if (ret)
2780 			return ret;
2781 	}
2782 
2783 	bw_state = intel_atomic_get_new_bw_state(state);
2784 	if (bw_state) {
2785 		min_cdclk = intel_bw_min_cdclk(dev_priv, bw_state);
2786 
2787 		if (cdclk_state->bw_min_cdclk != min_cdclk) {
2788 			int ret;
2789 
2790 			cdclk_state->bw_min_cdclk = min_cdclk;
2791 
2792 			ret = intel_atomic_lock_global_state(&cdclk_state->base);
2793 			if (ret)
2794 				return ret;
2795 		}
2796 	}
2797 
2798 	min_cdclk = max(cdclk_state->force_min_cdclk,
2799 			cdclk_state->bw_min_cdclk);
2800 	for_each_pipe(dev_priv, pipe)
2801 		min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
2802 
2803 	/*
2804 	 * Avoid glk_force_audio_cdclk() causing excessive screen
2805 	 * blinking when multiple pipes are active by making sure
2806 	 * CDCLK frequency is always high enough for audio. With a
2807 	 * single active pipe we can always change CDCLK frequency
2808 	 * by changing the cd2x divider (see glk_cdclk_table[]) and
2809 	 * thus a full modeset won't be needed then.
2810 	 */
2811 	if (IS_GEMINILAKE(dev_priv) && cdclk_state->active_pipes &&
2812 	    !is_power_of_2(cdclk_state->active_pipes))
2813 		min_cdclk = max(2 * 96000, min_cdclk);
2814 
2815 	if (min_cdclk > dev_priv->display.cdclk.max_cdclk_freq) {
2816 		drm_dbg_kms(&dev_priv->drm,
2817 			    "required cdclk (%d kHz) exceeds max (%d kHz)\n",
2818 			    min_cdclk, dev_priv->display.cdclk.max_cdclk_freq);
2819 		return -EINVAL;
2820 	}
2821 
2822 	return min_cdclk;
2823 }
2824 
2825 /*
2826  * Account for port clock min voltage level requirements.
2827  * This only really does something on DISPLA_VER >= 11 but can be
2828  * called on earlier platforms as well.
2829  *
2830  * Note that this functions assumes that 0 is
2831  * the lowest voltage value, and higher values
2832  * correspond to increasingly higher voltages.
2833  *
2834  * Should that relationship no longer hold on
2835  * future platforms this code will need to be
2836  * adjusted.
2837  */
2838 static int bxt_compute_min_voltage_level(struct intel_cdclk_state *cdclk_state)
2839 {
2840 	struct intel_atomic_state *state = cdclk_state->base.state;
2841 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2842 	struct intel_crtc *crtc;
2843 	struct intel_crtc_state *crtc_state;
2844 	u8 min_voltage_level;
2845 	int i;
2846 	enum pipe pipe;
2847 
2848 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2849 		int ret;
2850 
2851 		if (crtc_state->hw.enable)
2852 			min_voltage_level = crtc_state->min_voltage_level;
2853 		else
2854 			min_voltage_level = 0;
2855 
2856 		if (cdclk_state->min_voltage_level[crtc->pipe] == min_voltage_level)
2857 			continue;
2858 
2859 		cdclk_state->min_voltage_level[crtc->pipe] = min_voltage_level;
2860 
2861 		ret = intel_atomic_lock_global_state(&cdclk_state->base);
2862 		if (ret)
2863 			return ret;
2864 	}
2865 
2866 	min_voltage_level = 0;
2867 	for_each_pipe(dev_priv, pipe)
2868 		min_voltage_level = max(cdclk_state->min_voltage_level[pipe],
2869 					min_voltage_level);
2870 
2871 	return min_voltage_level;
2872 }
2873 
2874 static int vlv_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2875 {
2876 	struct intel_atomic_state *state = cdclk_state->base.state;
2877 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2878 	int min_cdclk, cdclk;
2879 
2880 	min_cdclk = intel_compute_min_cdclk(cdclk_state);
2881 	if (min_cdclk < 0)
2882 		return min_cdclk;
2883 
2884 	cdclk = vlv_calc_cdclk(dev_priv, min_cdclk);
2885 
2886 	cdclk_state->logical.cdclk = cdclk;
2887 	cdclk_state->logical.voltage_level =
2888 		vlv_calc_voltage_level(dev_priv, cdclk);
2889 
2890 	if (!cdclk_state->active_pipes) {
2891 		cdclk = vlv_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk);
2892 
2893 		cdclk_state->actual.cdclk = cdclk;
2894 		cdclk_state->actual.voltage_level =
2895 			vlv_calc_voltage_level(dev_priv, cdclk);
2896 	} else {
2897 		cdclk_state->actual = cdclk_state->logical;
2898 	}
2899 
2900 	return 0;
2901 }
2902 
2903 static int bdw_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2904 {
2905 	int min_cdclk, cdclk;
2906 
2907 	min_cdclk = intel_compute_min_cdclk(cdclk_state);
2908 	if (min_cdclk < 0)
2909 		return min_cdclk;
2910 
2911 	cdclk = bdw_calc_cdclk(min_cdclk);
2912 
2913 	cdclk_state->logical.cdclk = cdclk;
2914 	cdclk_state->logical.voltage_level =
2915 		bdw_calc_voltage_level(cdclk);
2916 
2917 	if (!cdclk_state->active_pipes) {
2918 		cdclk = bdw_calc_cdclk(cdclk_state->force_min_cdclk);
2919 
2920 		cdclk_state->actual.cdclk = cdclk;
2921 		cdclk_state->actual.voltage_level =
2922 			bdw_calc_voltage_level(cdclk);
2923 	} else {
2924 		cdclk_state->actual = cdclk_state->logical;
2925 	}
2926 
2927 	return 0;
2928 }
2929 
2930 static int skl_dpll0_vco(struct intel_cdclk_state *cdclk_state)
2931 {
2932 	struct intel_atomic_state *state = cdclk_state->base.state;
2933 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2934 	struct intel_crtc *crtc;
2935 	struct intel_crtc_state *crtc_state;
2936 	int vco, i;
2937 
2938 	vco = cdclk_state->logical.vco;
2939 	if (!vco)
2940 		vco = dev_priv->skl_preferred_vco_freq;
2941 
2942 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2943 		if (!crtc_state->hw.enable)
2944 			continue;
2945 
2946 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
2947 			continue;
2948 
2949 		/*
2950 		 * DPLL0 VCO may need to be adjusted to get the correct
2951 		 * clock for eDP. This will affect cdclk as well.
2952 		 */
2953 		switch (crtc_state->port_clock / 2) {
2954 		case 108000:
2955 		case 216000:
2956 			vco = 8640000;
2957 			break;
2958 		default:
2959 			vco = 8100000;
2960 			break;
2961 		}
2962 	}
2963 
2964 	return vco;
2965 }
2966 
2967 static int skl_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2968 {
2969 	int min_cdclk, cdclk, vco;
2970 
2971 	min_cdclk = intel_compute_min_cdclk(cdclk_state);
2972 	if (min_cdclk < 0)
2973 		return min_cdclk;
2974 
2975 	vco = skl_dpll0_vco(cdclk_state);
2976 
2977 	cdclk = skl_calc_cdclk(min_cdclk, vco);
2978 
2979 	cdclk_state->logical.vco = vco;
2980 	cdclk_state->logical.cdclk = cdclk;
2981 	cdclk_state->logical.voltage_level =
2982 		skl_calc_voltage_level(cdclk);
2983 
2984 	if (!cdclk_state->active_pipes) {
2985 		cdclk = skl_calc_cdclk(cdclk_state->force_min_cdclk, vco);
2986 
2987 		cdclk_state->actual.vco = vco;
2988 		cdclk_state->actual.cdclk = cdclk;
2989 		cdclk_state->actual.voltage_level =
2990 			skl_calc_voltage_level(cdclk);
2991 	} else {
2992 		cdclk_state->actual = cdclk_state->logical;
2993 	}
2994 
2995 	return 0;
2996 }
2997 
2998 static int bxt_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2999 {
3000 	struct intel_atomic_state *state = cdclk_state->base.state;
3001 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3002 	int min_cdclk, min_voltage_level, cdclk, vco;
3003 
3004 	min_cdclk = intel_compute_min_cdclk(cdclk_state);
3005 	if (min_cdclk < 0)
3006 		return min_cdclk;
3007 
3008 	min_voltage_level = bxt_compute_min_voltage_level(cdclk_state);
3009 	if (min_voltage_level < 0)
3010 		return min_voltage_level;
3011 
3012 	cdclk = bxt_calc_cdclk(dev_priv, min_cdclk);
3013 	vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
3014 
3015 	cdclk_state->logical.vco = vco;
3016 	cdclk_state->logical.cdclk = cdclk;
3017 	cdclk_state->logical.voltage_level =
3018 		max_t(int, min_voltage_level,
3019 		      intel_cdclk_calc_voltage_level(dev_priv, cdclk));
3020 
3021 	if (!cdclk_state->active_pipes) {
3022 		cdclk = bxt_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk);
3023 		vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
3024 
3025 		cdclk_state->actual.vco = vco;
3026 		cdclk_state->actual.cdclk = cdclk;
3027 		cdclk_state->actual.voltage_level =
3028 			intel_cdclk_calc_voltage_level(dev_priv, cdclk);
3029 	} else {
3030 		cdclk_state->actual = cdclk_state->logical;
3031 	}
3032 
3033 	return 0;
3034 }
3035 
3036 static int fixed_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
3037 {
3038 	int min_cdclk;
3039 
3040 	/*
3041 	 * We can't change the cdclk frequency, but we still want to
3042 	 * check that the required minimum frequency doesn't exceed
3043 	 * the actual cdclk frequency.
3044 	 */
3045 	min_cdclk = intel_compute_min_cdclk(cdclk_state);
3046 	if (min_cdclk < 0)
3047 		return min_cdclk;
3048 
3049 	return 0;
3050 }
3051 
3052 static struct intel_global_state *intel_cdclk_duplicate_state(struct intel_global_obj *obj)
3053 {
3054 	struct intel_cdclk_state *cdclk_state;
3055 
3056 	cdclk_state = kmemdup(obj->state, sizeof(*cdclk_state), GFP_KERNEL);
3057 	if (!cdclk_state)
3058 		return NULL;
3059 
3060 	cdclk_state->pipe = INVALID_PIPE;
3061 
3062 	return &cdclk_state->base;
3063 }
3064 
3065 static void intel_cdclk_destroy_state(struct intel_global_obj *obj,
3066 				      struct intel_global_state *state)
3067 {
3068 	kfree(state);
3069 }
3070 
3071 static const struct intel_global_state_funcs intel_cdclk_funcs = {
3072 	.atomic_duplicate_state = intel_cdclk_duplicate_state,
3073 	.atomic_destroy_state = intel_cdclk_destroy_state,
3074 };
3075 
3076 struct intel_cdclk_state *
3077 intel_atomic_get_cdclk_state(struct intel_atomic_state *state)
3078 {
3079 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3080 	struct intel_global_state *cdclk_state;
3081 
3082 	cdclk_state = intel_atomic_get_global_obj_state(state, &dev_priv->display.cdclk.obj);
3083 	if (IS_ERR(cdclk_state))
3084 		return ERR_CAST(cdclk_state);
3085 
3086 	return to_intel_cdclk_state(cdclk_state);
3087 }
3088 
3089 int intel_cdclk_atomic_check(struct intel_atomic_state *state,
3090 			     bool *need_cdclk_calc)
3091 {
3092 	const struct intel_cdclk_state *old_cdclk_state;
3093 	const struct intel_cdclk_state *new_cdclk_state;
3094 	struct intel_plane_state __maybe_unused *plane_state;
3095 	struct intel_plane *plane;
3096 	int ret;
3097 	int i;
3098 
3099 	/*
3100 	 * active_planes bitmask has been updated, and potentially affected
3101 	 * planes are part of the state. We can now compute the minimum cdclk
3102 	 * for each plane.
3103 	 */
3104 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
3105 		ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
3106 		if (ret)
3107 			return ret;
3108 	}
3109 
3110 	ret = intel_bw_calc_min_cdclk(state, need_cdclk_calc);
3111 	if (ret)
3112 		return ret;
3113 
3114 	old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3115 	new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
3116 
3117 	if (new_cdclk_state &&
3118 	    old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk)
3119 		*need_cdclk_calc = true;
3120 
3121 	return 0;
3122 }
3123 
3124 int intel_cdclk_init(struct drm_i915_private *dev_priv)
3125 {
3126 	struct intel_cdclk_state *cdclk_state;
3127 
3128 	cdclk_state = kzalloc(sizeof(*cdclk_state), GFP_KERNEL);
3129 	if (!cdclk_state)
3130 		return -ENOMEM;
3131 
3132 	intel_atomic_global_obj_init(dev_priv, &dev_priv->display.cdclk.obj,
3133 				     &cdclk_state->base, &intel_cdclk_funcs);
3134 
3135 	return 0;
3136 }
3137 
3138 static bool intel_cdclk_need_serialize(struct drm_i915_private *i915,
3139 				       const struct intel_cdclk_state *old_cdclk_state,
3140 				       const struct intel_cdclk_state *new_cdclk_state)
3141 {
3142 	bool power_well_cnt_changed = hweight8(old_cdclk_state->active_pipes) !=
3143 				      hweight8(new_cdclk_state->active_pipes);
3144 	bool cdclk_changed = intel_cdclk_changed(&old_cdclk_state->actual,
3145 						 &new_cdclk_state->actual);
3146 	/*
3147 	 * We need to poke hw for gen >= 12, because we notify PCode if
3148 	 * pipe power well count changes.
3149 	 */
3150 	return cdclk_changed || (IS_DG2(i915) && power_well_cnt_changed);
3151 }
3152 
3153 int intel_modeset_calc_cdclk(struct intel_atomic_state *state)
3154 {
3155 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3156 	const struct intel_cdclk_state *old_cdclk_state;
3157 	struct intel_cdclk_state *new_cdclk_state;
3158 	enum pipe pipe = INVALID_PIPE;
3159 	int ret;
3160 
3161 	new_cdclk_state = intel_atomic_get_cdclk_state(state);
3162 	if (IS_ERR(new_cdclk_state))
3163 		return PTR_ERR(new_cdclk_state);
3164 
3165 	old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3166 
3167 	new_cdclk_state->active_pipes =
3168 		intel_calc_active_pipes(state, old_cdclk_state->active_pipes);
3169 
3170 	ret = intel_cdclk_modeset_calc_cdclk(dev_priv, new_cdclk_state);
3171 	if (ret)
3172 		return ret;
3173 
3174 	if (intel_cdclk_need_serialize(dev_priv, old_cdclk_state, new_cdclk_state)) {
3175 		/*
3176 		 * Also serialize commits across all crtcs
3177 		 * if the actual hw needs to be poked.
3178 		 */
3179 		ret = intel_atomic_serialize_global_state(&new_cdclk_state->base);
3180 		if (ret)
3181 			return ret;
3182 	} else if (old_cdclk_state->active_pipes != new_cdclk_state->active_pipes ||
3183 		   old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk ||
3184 		   intel_cdclk_changed(&old_cdclk_state->logical,
3185 				       &new_cdclk_state->logical)) {
3186 		ret = intel_atomic_lock_global_state(&new_cdclk_state->base);
3187 		if (ret)
3188 			return ret;
3189 	} else {
3190 		return 0;
3191 	}
3192 
3193 	if (is_power_of_2(new_cdclk_state->active_pipes) &&
3194 	    intel_cdclk_can_cd2x_update(dev_priv,
3195 					&old_cdclk_state->actual,
3196 					&new_cdclk_state->actual)) {
3197 		struct intel_crtc *crtc;
3198 		struct intel_crtc_state *crtc_state;
3199 
3200 		pipe = ilog2(new_cdclk_state->active_pipes);
3201 		crtc = intel_crtc_for_pipe(dev_priv, pipe);
3202 
3203 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
3204 		if (IS_ERR(crtc_state))
3205 			return PTR_ERR(crtc_state);
3206 
3207 		if (intel_crtc_needs_modeset(crtc_state))
3208 			pipe = INVALID_PIPE;
3209 	}
3210 
3211 	if (intel_cdclk_can_crawl_and_squash(dev_priv,
3212 					     &old_cdclk_state->actual,
3213 					     &new_cdclk_state->actual)) {
3214 		drm_dbg_kms(&dev_priv->drm,
3215 			    "Can change cdclk via crawling and squashing\n");
3216 	} else if (intel_cdclk_can_squash(dev_priv,
3217 					&old_cdclk_state->actual,
3218 					&new_cdclk_state->actual)) {
3219 		drm_dbg_kms(&dev_priv->drm,
3220 			    "Can change cdclk via squashing\n");
3221 	} else if (intel_cdclk_can_crawl(dev_priv,
3222 					 &old_cdclk_state->actual,
3223 					 &new_cdclk_state->actual)) {
3224 		drm_dbg_kms(&dev_priv->drm,
3225 			    "Can change cdclk via crawling\n");
3226 	} else if (pipe != INVALID_PIPE) {
3227 		new_cdclk_state->pipe = pipe;
3228 
3229 		drm_dbg_kms(&dev_priv->drm,
3230 			    "Can change cdclk cd2x divider with pipe %c active\n",
3231 			    pipe_name(pipe));
3232 	} else if (intel_cdclk_needs_modeset(&old_cdclk_state->actual,
3233 					     &new_cdclk_state->actual)) {
3234 		/* All pipes must be switched off while we change the cdclk. */
3235 		ret = intel_modeset_all_pipes_late(state, "CDCLK change");
3236 		if (ret)
3237 			return ret;
3238 
3239 		drm_dbg_kms(&dev_priv->drm,
3240 			    "Modeset required for cdclk change\n");
3241 	}
3242 
3243 	drm_dbg_kms(&dev_priv->drm,
3244 		    "New cdclk calculated to be logical %u kHz, actual %u kHz\n",
3245 		    new_cdclk_state->logical.cdclk,
3246 		    new_cdclk_state->actual.cdclk);
3247 	drm_dbg_kms(&dev_priv->drm,
3248 		    "New voltage level calculated to be logical %u, actual %u\n",
3249 		    new_cdclk_state->logical.voltage_level,
3250 		    new_cdclk_state->actual.voltage_level);
3251 
3252 	return 0;
3253 }
3254 
3255 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
3256 {
3257 	int max_cdclk_freq = dev_priv->display.cdclk.max_cdclk_freq;
3258 
3259 	if (DISPLAY_VER(dev_priv) >= 10)
3260 		return 2 * max_cdclk_freq;
3261 	else if (DISPLAY_VER(dev_priv) == 9 ||
3262 		 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
3263 		return max_cdclk_freq;
3264 	else if (IS_CHERRYVIEW(dev_priv))
3265 		return max_cdclk_freq*95/100;
3266 	else if (DISPLAY_VER(dev_priv) < 4)
3267 		return 2*max_cdclk_freq*90/100;
3268 	else
3269 		return max_cdclk_freq*90/100;
3270 }
3271 
3272 /**
3273  * intel_update_max_cdclk - Determine the maximum support CDCLK frequency
3274  * @dev_priv: i915 device
3275  *
3276  * Determine the maximum CDCLK frequency the platform supports, and also
3277  * derive the maximum dot clock frequency the maximum CDCLK frequency
3278  * allows.
3279  */
3280 void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
3281 {
3282 	if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) {
3283 		if (dev_priv->display.cdclk.hw.ref == 24000)
3284 			dev_priv->display.cdclk.max_cdclk_freq = 552000;
3285 		else
3286 			dev_priv->display.cdclk.max_cdclk_freq = 556800;
3287 	} else if (DISPLAY_VER(dev_priv) >= 11) {
3288 		if (dev_priv->display.cdclk.hw.ref == 24000)
3289 			dev_priv->display.cdclk.max_cdclk_freq = 648000;
3290 		else
3291 			dev_priv->display.cdclk.max_cdclk_freq = 652800;
3292 	} else if (IS_GEMINILAKE(dev_priv)) {
3293 		dev_priv->display.cdclk.max_cdclk_freq = 316800;
3294 	} else if (IS_BROXTON(dev_priv)) {
3295 		dev_priv->display.cdclk.max_cdclk_freq = 624000;
3296 	} else if (DISPLAY_VER(dev_priv) == 9) {
3297 		u32 limit = intel_de_read(dev_priv, SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
3298 		int max_cdclk, vco;
3299 
3300 		vco = dev_priv->skl_preferred_vco_freq;
3301 		drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000);
3302 
3303 		/*
3304 		 * Use the lower (vco 8640) cdclk values as a
3305 		 * first guess. skl_calc_cdclk() will correct it
3306 		 * if the preferred vco is 8100 instead.
3307 		 */
3308 		if (limit == SKL_DFSM_CDCLK_LIMIT_675)
3309 			max_cdclk = 617143;
3310 		else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
3311 			max_cdclk = 540000;
3312 		else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
3313 			max_cdclk = 432000;
3314 		else
3315 			max_cdclk = 308571;
3316 
3317 		dev_priv->display.cdclk.max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
3318 	} else if (IS_BROADWELL(dev_priv))  {
3319 		/*
3320 		 * FIXME with extra cooling we can allow
3321 		 * 540 MHz for ULX and 675 Mhz for ULT.
3322 		 * How can we know if extra cooling is
3323 		 * available? PCI ID, VTB, something else?
3324 		 */
3325 		if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
3326 			dev_priv->display.cdclk.max_cdclk_freq = 450000;
3327 		else if (IS_BROADWELL_ULX(dev_priv))
3328 			dev_priv->display.cdclk.max_cdclk_freq = 450000;
3329 		else if (IS_BROADWELL_ULT(dev_priv))
3330 			dev_priv->display.cdclk.max_cdclk_freq = 540000;
3331 		else
3332 			dev_priv->display.cdclk.max_cdclk_freq = 675000;
3333 	} else if (IS_CHERRYVIEW(dev_priv)) {
3334 		dev_priv->display.cdclk.max_cdclk_freq = 320000;
3335 	} else if (IS_VALLEYVIEW(dev_priv)) {
3336 		dev_priv->display.cdclk.max_cdclk_freq = 400000;
3337 	} else {
3338 		/* otherwise assume cdclk is fixed */
3339 		dev_priv->display.cdclk.max_cdclk_freq = dev_priv->display.cdclk.hw.cdclk;
3340 	}
3341 
3342 	dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
3343 
3344 	drm_dbg(&dev_priv->drm, "Max CD clock rate: %d kHz\n",
3345 		dev_priv->display.cdclk.max_cdclk_freq);
3346 
3347 	drm_dbg(&dev_priv->drm, "Max dotclock rate: %d kHz\n",
3348 		dev_priv->max_dotclk_freq);
3349 }
3350 
3351 /**
3352  * intel_update_cdclk - Determine the current CDCLK frequency
3353  * @dev_priv: i915 device
3354  *
3355  * Determine the current CDCLK frequency.
3356  */
3357 void intel_update_cdclk(struct drm_i915_private *dev_priv)
3358 {
3359 	intel_cdclk_get_cdclk(dev_priv, &dev_priv->display.cdclk.hw);
3360 
3361 	/*
3362 	 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
3363 	 * Programmng [sic] note: bit[9:2] should be programmed to the number
3364 	 * of cdclk that generates 4MHz reference clock freq which is used to
3365 	 * generate GMBus clock. This will vary with the cdclk freq.
3366 	 */
3367 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3368 		intel_de_write(dev_priv, GMBUSFREQ_VLV,
3369 			       DIV_ROUND_UP(dev_priv->display.cdclk.hw.cdclk, 1000));
3370 }
3371 
3372 static int dg1_rawclk(struct drm_i915_private *dev_priv)
3373 {
3374 	/*
3375 	 * DG1 always uses a 38.4 MHz rawclk.  The bspec tells us
3376 	 * "Program Numerator=2, Denominator=4, Divider=37 decimal."
3377 	 */
3378 	intel_de_write(dev_priv, PCH_RAWCLK_FREQ,
3379 		       CNP_RAWCLK_DEN(4) | CNP_RAWCLK_DIV(37) | ICP_RAWCLK_NUM(2));
3380 
3381 	return 38400;
3382 }
3383 
3384 static int cnp_rawclk(struct drm_i915_private *dev_priv)
3385 {
3386 	u32 rawclk;
3387 	int divider, fraction;
3388 
3389 	if (intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) {
3390 		/* 24 MHz */
3391 		divider = 24000;
3392 		fraction = 0;
3393 	} else {
3394 		/* 19.2 MHz */
3395 		divider = 19000;
3396 		fraction = 200;
3397 	}
3398 
3399 	rawclk = CNP_RAWCLK_DIV(divider / 1000);
3400 	if (fraction) {
3401 		int numerator = 1;
3402 
3403 		rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000,
3404 							   fraction) - 1);
3405 		if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3406 			rawclk |= ICP_RAWCLK_NUM(numerator);
3407 	}
3408 
3409 	intel_de_write(dev_priv, PCH_RAWCLK_FREQ, rawclk);
3410 	return divider + fraction;
3411 }
3412 
3413 static int pch_rawclk(struct drm_i915_private *dev_priv)
3414 {
3415 	return (intel_de_read(dev_priv, PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
3416 }
3417 
3418 static int vlv_hrawclk(struct drm_i915_private *dev_priv)
3419 {
3420 	/* RAWCLK_FREQ_VLV register updated from power well code */
3421 	return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
3422 				      CCK_DISPLAY_REF_CLOCK_CONTROL);
3423 }
3424 
3425 static int i9xx_hrawclk(struct drm_i915_private *dev_priv)
3426 {
3427 	u32 clkcfg;
3428 
3429 	/*
3430 	 * hrawclock is 1/4 the FSB frequency
3431 	 *
3432 	 * Note that this only reads the state of the FSB
3433 	 * straps, not the actual FSB frequency. Some BIOSen
3434 	 * let you configure each independently. Ideally we'd
3435 	 * read out the actual FSB frequency but sadly we
3436 	 * don't know which registers have that information,
3437 	 * and all the relevant docs have gone to bit heaven :(
3438 	 */
3439 	clkcfg = intel_de_read(dev_priv, CLKCFG) & CLKCFG_FSB_MASK;
3440 
3441 	if (IS_MOBILE(dev_priv)) {
3442 		switch (clkcfg) {
3443 		case CLKCFG_FSB_400:
3444 			return 100000;
3445 		case CLKCFG_FSB_533:
3446 			return 133333;
3447 		case CLKCFG_FSB_667:
3448 			return 166667;
3449 		case CLKCFG_FSB_800:
3450 			return 200000;
3451 		case CLKCFG_FSB_1067:
3452 			return 266667;
3453 		case CLKCFG_FSB_1333:
3454 			return 333333;
3455 		default:
3456 			MISSING_CASE(clkcfg);
3457 			return 133333;
3458 		}
3459 	} else {
3460 		switch (clkcfg) {
3461 		case CLKCFG_FSB_400_ALT:
3462 			return 100000;
3463 		case CLKCFG_FSB_533:
3464 			return 133333;
3465 		case CLKCFG_FSB_667:
3466 			return 166667;
3467 		case CLKCFG_FSB_800:
3468 			return 200000;
3469 		case CLKCFG_FSB_1067_ALT:
3470 			return 266667;
3471 		case CLKCFG_FSB_1333_ALT:
3472 			return 333333;
3473 		case CLKCFG_FSB_1600_ALT:
3474 			return 400000;
3475 		default:
3476 			return 133333;
3477 		}
3478 	}
3479 }
3480 
3481 /**
3482  * intel_read_rawclk - Determine the current RAWCLK frequency
3483  * @dev_priv: i915 device
3484  *
3485  * Determine the current RAWCLK frequency. RAWCLK is a fixed
3486  * frequency clock so this needs to done only once.
3487  */
3488 u32 intel_read_rawclk(struct drm_i915_private *dev_priv)
3489 {
3490 	u32 freq;
3491 
3492 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_MTL)
3493 		/*
3494 		 * MTL always uses a 38.4 MHz rawclk.  The bspec tells us
3495 		 * "RAWCLK_FREQ defaults to the values for 38.4 and does
3496 		 * not need to be programmed."
3497 		 */
3498 		freq = 38400;
3499 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
3500 		freq = dg1_rawclk(dev_priv);
3501 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3502 		freq = cnp_rawclk(dev_priv);
3503 	else if (HAS_PCH_SPLIT(dev_priv))
3504 		freq = pch_rawclk(dev_priv);
3505 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3506 		freq = vlv_hrawclk(dev_priv);
3507 	else if (DISPLAY_VER(dev_priv) >= 3)
3508 		freq = i9xx_hrawclk(dev_priv);
3509 	else
3510 		/* no rawclk on other platforms, or no need to know it */
3511 		return 0;
3512 
3513 	return freq;
3514 }
3515 
3516 static int i915_cdclk_info_show(struct seq_file *m, void *unused)
3517 {
3518 	struct drm_i915_private *i915 = m->private;
3519 
3520 	seq_printf(m, "Current CD clock frequency: %d kHz\n", i915->display.cdclk.hw.cdclk);
3521 	seq_printf(m, "Max CD clock frequency: %d kHz\n", i915->display.cdclk.max_cdclk_freq);
3522 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", i915->max_dotclk_freq);
3523 
3524 	return 0;
3525 }
3526 
3527 DEFINE_SHOW_ATTRIBUTE(i915_cdclk_info);
3528 
3529 void intel_cdclk_debugfs_register(struct drm_i915_private *i915)
3530 {
3531 	struct drm_minor *minor = i915->drm.primary;
3532 
3533 	debugfs_create_file("i915_cdclk_info", 0444, minor->debugfs_root,
3534 			    i915, &i915_cdclk_info_fops);
3535 }
3536 
3537 static const struct intel_cdclk_funcs mtl_cdclk_funcs = {
3538 	.get_cdclk = bxt_get_cdclk,
3539 	.set_cdclk = bxt_set_cdclk,
3540 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3541 	.calc_voltage_level = rplu_calc_voltage_level,
3542 };
3543 
3544 static const struct intel_cdclk_funcs rplu_cdclk_funcs = {
3545 	.get_cdclk = bxt_get_cdclk,
3546 	.set_cdclk = bxt_set_cdclk,
3547 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3548 	.calc_voltage_level = rplu_calc_voltage_level,
3549 };
3550 
3551 static const struct intel_cdclk_funcs tgl_cdclk_funcs = {
3552 	.get_cdclk = bxt_get_cdclk,
3553 	.set_cdclk = bxt_set_cdclk,
3554 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3555 	.calc_voltage_level = tgl_calc_voltage_level,
3556 };
3557 
3558 static const struct intel_cdclk_funcs ehl_cdclk_funcs = {
3559 	.get_cdclk = bxt_get_cdclk,
3560 	.set_cdclk = bxt_set_cdclk,
3561 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3562 	.calc_voltage_level = ehl_calc_voltage_level,
3563 };
3564 
3565 static const struct intel_cdclk_funcs icl_cdclk_funcs = {
3566 	.get_cdclk = bxt_get_cdclk,
3567 	.set_cdclk = bxt_set_cdclk,
3568 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3569 	.calc_voltage_level = icl_calc_voltage_level,
3570 };
3571 
3572 static const struct intel_cdclk_funcs bxt_cdclk_funcs = {
3573 	.get_cdclk = bxt_get_cdclk,
3574 	.set_cdclk = bxt_set_cdclk,
3575 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3576 	.calc_voltage_level = bxt_calc_voltage_level,
3577 };
3578 
3579 static const struct intel_cdclk_funcs skl_cdclk_funcs = {
3580 	.get_cdclk = skl_get_cdclk,
3581 	.set_cdclk = skl_set_cdclk,
3582 	.modeset_calc_cdclk = skl_modeset_calc_cdclk,
3583 };
3584 
3585 static const struct intel_cdclk_funcs bdw_cdclk_funcs = {
3586 	.get_cdclk = bdw_get_cdclk,
3587 	.set_cdclk = bdw_set_cdclk,
3588 	.modeset_calc_cdclk = bdw_modeset_calc_cdclk,
3589 };
3590 
3591 static const struct intel_cdclk_funcs chv_cdclk_funcs = {
3592 	.get_cdclk = vlv_get_cdclk,
3593 	.set_cdclk = chv_set_cdclk,
3594 	.modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3595 };
3596 
3597 static const struct intel_cdclk_funcs vlv_cdclk_funcs = {
3598 	.get_cdclk = vlv_get_cdclk,
3599 	.set_cdclk = vlv_set_cdclk,
3600 	.modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3601 };
3602 
3603 static const struct intel_cdclk_funcs hsw_cdclk_funcs = {
3604 	.get_cdclk = hsw_get_cdclk,
3605 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3606 };
3607 
3608 /* SNB, IVB, 965G, 945G */
3609 static const struct intel_cdclk_funcs fixed_400mhz_cdclk_funcs = {
3610 	.get_cdclk = fixed_400mhz_get_cdclk,
3611 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3612 };
3613 
3614 static const struct intel_cdclk_funcs ilk_cdclk_funcs = {
3615 	.get_cdclk = fixed_450mhz_get_cdclk,
3616 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3617 };
3618 
3619 static const struct intel_cdclk_funcs gm45_cdclk_funcs = {
3620 	.get_cdclk = gm45_get_cdclk,
3621 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3622 };
3623 
3624 /* G45 uses G33 */
3625 
3626 static const struct intel_cdclk_funcs i965gm_cdclk_funcs = {
3627 	.get_cdclk = i965gm_get_cdclk,
3628 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3629 };
3630 
3631 /* i965G uses fixed 400 */
3632 
3633 static const struct intel_cdclk_funcs pnv_cdclk_funcs = {
3634 	.get_cdclk = pnv_get_cdclk,
3635 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3636 };
3637 
3638 static const struct intel_cdclk_funcs g33_cdclk_funcs = {
3639 	.get_cdclk = g33_get_cdclk,
3640 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3641 };
3642 
3643 static const struct intel_cdclk_funcs i945gm_cdclk_funcs = {
3644 	.get_cdclk = i945gm_get_cdclk,
3645 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3646 };
3647 
3648 /* i945G uses fixed 400 */
3649 
3650 static const struct intel_cdclk_funcs i915gm_cdclk_funcs = {
3651 	.get_cdclk = i915gm_get_cdclk,
3652 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3653 };
3654 
3655 static const struct intel_cdclk_funcs i915g_cdclk_funcs = {
3656 	.get_cdclk = fixed_333mhz_get_cdclk,
3657 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3658 };
3659 
3660 static const struct intel_cdclk_funcs i865g_cdclk_funcs = {
3661 	.get_cdclk = fixed_266mhz_get_cdclk,
3662 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3663 };
3664 
3665 static const struct intel_cdclk_funcs i85x_cdclk_funcs = {
3666 	.get_cdclk = i85x_get_cdclk,
3667 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3668 };
3669 
3670 static const struct intel_cdclk_funcs i845g_cdclk_funcs = {
3671 	.get_cdclk = fixed_200mhz_get_cdclk,
3672 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3673 };
3674 
3675 static const struct intel_cdclk_funcs i830_cdclk_funcs = {
3676 	.get_cdclk = fixed_133mhz_get_cdclk,
3677 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3678 };
3679 
3680 /**
3681  * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks
3682  * @dev_priv: i915 device
3683  */
3684 void intel_init_cdclk_hooks(struct drm_i915_private *dev_priv)
3685 {
3686 	if (DISPLAY_VER(dev_priv) >= 20) {
3687 		dev_priv->display.funcs.cdclk = &mtl_cdclk_funcs;
3688 		dev_priv->display.cdclk.table = lnl_cdclk_table;
3689 	} else if (DISPLAY_VER(dev_priv) >= 14) {
3690 		dev_priv->display.funcs.cdclk = &mtl_cdclk_funcs;
3691 		dev_priv->display.cdclk.table = mtl_cdclk_table;
3692 	} else if (IS_DG2(dev_priv)) {
3693 		dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3694 		dev_priv->display.cdclk.table = dg2_cdclk_table;
3695 	} else if (IS_ALDERLAKE_P(dev_priv)) {
3696 		/* Wa_22011320316:adl-p[a0] */
3697 		if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) {
3698 			dev_priv->display.cdclk.table = adlp_a_step_cdclk_table;
3699 			dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3700 		} else if (IS_RAPTORLAKE_U(dev_priv)) {
3701 			dev_priv->display.cdclk.table = rplu_cdclk_table;
3702 			dev_priv->display.funcs.cdclk = &rplu_cdclk_funcs;
3703 		} else {
3704 			dev_priv->display.cdclk.table = adlp_cdclk_table;
3705 			dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3706 		}
3707 	} else if (IS_ROCKETLAKE(dev_priv)) {
3708 		dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3709 		dev_priv->display.cdclk.table = rkl_cdclk_table;
3710 	} else if (DISPLAY_VER(dev_priv) >= 12) {
3711 		dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3712 		dev_priv->display.cdclk.table = icl_cdclk_table;
3713 	} else if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) {
3714 		dev_priv->display.funcs.cdclk = &ehl_cdclk_funcs;
3715 		dev_priv->display.cdclk.table = icl_cdclk_table;
3716 	} else if (DISPLAY_VER(dev_priv) >= 11) {
3717 		dev_priv->display.funcs.cdclk = &icl_cdclk_funcs;
3718 		dev_priv->display.cdclk.table = icl_cdclk_table;
3719 	} else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
3720 		dev_priv->display.funcs.cdclk = &bxt_cdclk_funcs;
3721 		if (IS_GEMINILAKE(dev_priv))
3722 			dev_priv->display.cdclk.table = glk_cdclk_table;
3723 		else
3724 			dev_priv->display.cdclk.table = bxt_cdclk_table;
3725 	} else if (DISPLAY_VER(dev_priv) == 9) {
3726 		dev_priv->display.funcs.cdclk = &skl_cdclk_funcs;
3727 	} else if (IS_BROADWELL(dev_priv)) {
3728 		dev_priv->display.funcs.cdclk = &bdw_cdclk_funcs;
3729 	} else if (IS_HASWELL(dev_priv)) {
3730 		dev_priv->display.funcs.cdclk = &hsw_cdclk_funcs;
3731 	} else if (IS_CHERRYVIEW(dev_priv)) {
3732 		dev_priv->display.funcs.cdclk = &chv_cdclk_funcs;
3733 	} else if (IS_VALLEYVIEW(dev_priv)) {
3734 		dev_priv->display.funcs.cdclk = &vlv_cdclk_funcs;
3735 	} else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
3736 		dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3737 	} else if (IS_IRONLAKE(dev_priv)) {
3738 		dev_priv->display.funcs.cdclk = &ilk_cdclk_funcs;
3739 	} else if (IS_GM45(dev_priv)) {
3740 		dev_priv->display.funcs.cdclk = &gm45_cdclk_funcs;
3741 	} else if (IS_G45(dev_priv)) {
3742 		dev_priv->display.funcs.cdclk = &g33_cdclk_funcs;
3743 	} else if (IS_I965GM(dev_priv)) {
3744 		dev_priv->display.funcs.cdclk = &i965gm_cdclk_funcs;
3745 	} else if (IS_I965G(dev_priv)) {
3746 		dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3747 	} else if (IS_PINEVIEW(dev_priv)) {
3748 		dev_priv->display.funcs.cdclk = &pnv_cdclk_funcs;
3749 	} else if (IS_G33(dev_priv)) {
3750 		dev_priv->display.funcs.cdclk = &g33_cdclk_funcs;
3751 	} else if (IS_I945GM(dev_priv)) {
3752 		dev_priv->display.funcs.cdclk = &i945gm_cdclk_funcs;
3753 	} else if (IS_I945G(dev_priv)) {
3754 		dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3755 	} else if (IS_I915GM(dev_priv)) {
3756 		dev_priv->display.funcs.cdclk = &i915gm_cdclk_funcs;
3757 	} else if (IS_I915G(dev_priv)) {
3758 		dev_priv->display.funcs.cdclk = &i915g_cdclk_funcs;
3759 	} else if (IS_I865G(dev_priv)) {
3760 		dev_priv->display.funcs.cdclk = &i865g_cdclk_funcs;
3761 	} else if (IS_I85X(dev_priv)) {
3762 		dev_priv->display.funcs.cdclk = &i85x_cdclk_funcs;
3763 	} else if (IS_I845G(dev_priv)) {
3764 		dev_priv->display.funcs.cdclk = &i845g_cdclk_funcs;
3765 	} else if (IS_I830(dev_priv)) {
3766 		dev_priv->display.funcs.cdclk = &i830_cdclk_funcs;
3767 	}
3768 
3769 	if (drm_WARN(&dev_priv->drm, !dev_priv->display.funcs.cdclk,
3770 		     "Unknown platform. Assuming i830\n"))
3771 		dev_priv->display.funcs.cdclk = &i830_cdclk_funcs;
3772 }
3773