xref: /linux/drivers/gpu/drm/i915/display/intel_cdclk.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 /*
2  * Copyright © 2006-2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/debugfs.h>
25 #include <linux/time.h>
26 
27 #include <drm/drm_fixed.h>
28 
29 #include "soc/intel_dram.h"
30 
31 #include "hsw_ips.h"
32 #include "i915_reg.h"
33 #include "intel_atomic.h"
34 #include "intel_atomic_plane.h"
35 #include "intel_audio.h"
36 #include "intel_bw.h"
37 #include "intel_cdclk.h"
38 #include "intel_crtc.h"
39 #include "intel_de.h"
40 #include "intel_dp.h"
41 #include "intel_display_types.h"
42 #include "intel_mchbar_regs.h"
43 #include "intel_pci_config.h"
44 #include "intel_pcode.h"
45 #include "intel_psr.h"
46 #include "intel_vdsc.h"
47 #include "skl_watermark.h"
48 #include "skl_watermark_regs.h"
49 #include "vlv_sideband.h"
50 
51 /**
52  * DOC: CDCLK / RAWCLK
53  *
54  * The display engine uses several different clocks to do its work. There
55  * are two main clocks involved that aren't directly related to the actual
56  * pixel clock or any symbol/bit clock of the actual output port. These
57  * are the core display clock (CDCLK) and RAWCLK.
58  *
59  * CDCLK clocks most of the display pipe logic, and thus its frequency
60  * must be high enough to support the rate at which pixels are flowing
61  * through the pipes. Downscaling must also be accounted as that increases
62  * the effective pixel rate.
63  *
64  * On several platforms the CDCLK frequency can be changed dynamically
65  * to minimize power consumption for a given display configuration.
66  * Typically changes to the CDCLK frequency require all the display pipes
67  * to be shut down while the frequency is being changed.
68  *
69  * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit.
70  * DMC will not change the active CDCLK frequency however, so that part
71  * will still be performed by the driver directly.
72  *
73  * There are multiple components involved in the generation of the CDCLK
74  * frequency:
75  *
76  * - We have the CDCLK PLL, which generates an output clock based on a
77  *   reference clock and a ratio parameter.
78  * - The CD2X Divider, which divides the output of the PLL based on a
79  *   divisor selected from a set of pre-defined choices.
80  * - The CD2X Squasher, which further divides the output based on a
81  *   waveform represented as a sequence of bits where each zero
82  *   "squashes out" a clock cycle.
83  * - And, finally, a fixed divider that divides the output frequency by 2.
84  *
85  * As such, the resulting CDCLK frequency can be calculated with the
86  * following formula:
87  *
88  *     cdclk = vco / cd2x_div / (sq_len / sq_div) / 2
89  *
90  * , where vco is the frequency generated by the PLL; cd2x_div
91  * represents the CD2X Divider; sq_len and sq_div are the bit length
92  * and the number of high bits for the CD2X Squasher waveform, respectively;
93  * and 2 represents the fixed divider.
94  *
95  * Note that some older platforms do not contain the CD2X Divider
96  * and/or CD2X Squasher, in which case we can ignore their respective
97  * factors in the formula above.
98  *
99  * Several methods exist to change the CDCLK frequency, which ones are
100  * supported depends on the platform:
101  *
102  * - Full PLL disable + re-enable with new VCO frequency. Pipes must be inactive.
103  * - CD2X divider update. Single pipe can be active as the divider update
104  *   can be synchronized with the pipe's start of vblank.
105  * - Crawl the PLL smoothly to the new VCO frequency. Pipes can be active.
106  * - Squash waveform update. Pipes can be active.
107  * - Crawl and squash can also be done back to back. Pipes can be active.
108  *
109  * RAWCLK is a fixed frequency clock, often used by various auxiliary
110  * blocks such as AUX CH or backlight PWM. Hence the only thing we
111  * really need to know about RAWCLK is its frequency so that various
112  * dividers can be programmed correctly.
113  */
114 
115 struct intel_cdclk_funcs {
116 	void (*get_cdclk)(struct intel_display *display,
117 			  struct intel_cdclk_config *cdclk_config);
118 	void (*set_cdclk)(struct intel_display *display,
119 			  const struct intel_cdclk_config *cdclk_config,
120 			  enum pipe pipe);
121 	int (*modeset_calc_cdclk)(struct intel_atomic_state *state);
122 	u8 (*calc_voltage_level)(int cdclk);
123 };
124 
125 void intel_cdclk_get_cdclk(struct intel_display *display,
126 			   struct intel_cdclk_config *cdclk_config)
127 {
128 	display->funcs.cdclk->get_cdclk(display, cdclk_config);
129 }
130 
131 static void intel_cdclk_set_cdclk(struct intel_display *display,
132 				  const struct intel_cdclk_config *cdclk_config,
133 				  enum pipe pipe)
134 {
135 	display->funcs.cdclk->set_cdclk(display, cdclk_config, pipe);
136 }
137 
138 static int intel_cdclk_modeset_calc_cdclk(struct intel_atomic_state *state)
139 {
140 	struct intel_display *display = to_intel_display(state);
141 
142 	return display->funcs.cdclk->modeset_calc_cdclk(state);
143 }
144 
145 static u8 intel_cdclk_calc_voltage_level(struct intel_display *display,
146 					 int cdclk)
147 {
148 	return display->funcs.cdclk->calc_voltage_level(cdclk);
149 }
150 
151 static void fixed_133mhz_get_cdclk(struct intel_display *display,
152 				   struct intel_cdclk_config *cdclk_config)
153 {
154 	cdclk_config->cdclk = 133333;
155 }
156 
157 static void fixed_200mhz_get_cdclk(struct intel_display *display,
158 				   struct intel_cdclk_config *cdclk_config)
159 {
160 	cdclk_config->cdclk = 200000;
161 }
162 
163 static void fixed_266mhz_get_cdclk(struct intel_display *display,
164 				   struct intel_cdclk_config *cdclk_config)
165 {
166 	cdclk_config->cdclk = 266667;
167 }
168 
169 static void fixed_333mhz_get_cdclk(struct intel_display *display,
170 				   struct intel_cdclk_config *cdclk_config)
171 {
172 	cdclk_config->cdclk = 333333;
173 }
174 
175 static void fixed_400mhz_get_cdclk(struct intel_display *display,
176 				   struct intel_cdclk_config *cdclk_config)
177 {
178 	cdclk_config->cdclk = 400000;
179 }
180 
181 static void fixed_450mhz_get_cdclk(struct intel_display *display,
182 				   struct intel_cdclk_config *cdclk_config)
183 {
184 	cdclk_config->cdclk = 450000;
185 }
186 
187 static void i85x_get_cdclk(struct intel_display *display,
188 			   struct intel_cdclk_config *cdclk_config)
189 {
190 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
191 	u16 hpllcc = 0;
192 
193 	/*
194 	 * 852GM/852GMV only supports 133 MHz and the HPLLCC
195 	 * encoding is different :(
196 	 * FIXME is this the right way to detect 852GM/852GMV?
197 	 */
198 	if (pdev->revision == 0x1) {
199 		cdclk_config->cdclk = 133333;
200 		return;
201 	}
202 
203 	pci_bus_read_config_word(pdev->bus,
204 				 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
205 
206 	/* Assume that the hardware is in the high speed state.  This
207 	 * should be the default.
208 	 */
209 	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
210 	case GC_CLOCK_133_200:
211 	case GC_CLOCK_133_200_2:
212 	case GC_CLOCK_100_200:
213 		cdclk_config->cdclk = 200000;
214 		break;
215 	case GC_CLOCK_166_250:
216 		cdclk_config->cdclk = 250000;
217 		break;
218 	case GC_CLOCK_100_133:
219 		cdclk_config->cdclk = 133333;
220 		break;
221 	case GC_CLOCK_133_266:
222 	case GC_CLOCK_133_266_2:
223 	case GC_CLOCK_166_266:
224 		cdclk_config->cdclk = 266667;
225 		break;
226 	}
227 }
228 
229 static void i915gm_get_cdclk(struct intel_display *display,
230 			     struct intel_cdclk_config *cdclk_config)
231 {
232 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
233 	u16 gcfgc = 0;
234 
235 	pci_read_config_word(pdev, GCFGC, &gcfgc);
236 
237 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
238 		cdclk_config->cdclk = 133333;
239 		return;
240 	}
241 
242 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
243 	case GC_DISPLAY_CLOCK_333_320_MHZ:
244 		cdclk_config->cdclk = 333333;
245 		break;
246 	default:
247 	case GC_DISPLAY_CLOCK_190_200_MHZ:
248 		cdclk_config->cdclk = 190000;
249 		break;
250 	}
251 }
252 
253 static void i945gm_get_cdclk(struct intel_display *display,
254 			     struct intel_cdclk_config *cdclk_config)
255 {
256 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
257 	u16 gcfgc = 0;
258 
259 	pci_read_config_word(pdev, GCFGC, &gcfgc);
260 
261 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
262 		cdclk_config->cdclk = 133333;
263 		return;
264 	}
265 
266 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
267 	case GC_DISPLAY_CLOCK_333_320_MHZ:
268 		cdclk_config->cdclk = 320000;
269 		break;
270 	default:
271 	case GC_DISPLAY_CLOCK_190_200_MHZ:
272 		cdclk_config->cdclk = 200000;
273 		break;
274 	}
275 }
276 
277 static unsigned int intel_hpll_vco(struct intel_display *display)
278 {
279 	static const unsigned int blb_vco[8] = {
280 		[0] = 3200000,
281 		[1] = 4000000,
282 		[2] = 5333333,
283 		[3] = 4800000,
284 		[4] = 6400000,
285 	};
286 	static const unsigned int pnv_vco[8] = {
287 		[0] = 3200000,
288 		[1] = 4000000,
289 		[2] = 5333333,
290 		[3] = 4800000,
291 		[4] = 2666667,
292 	};
293 	static const unsigned int cl_vco[8] = {
294 		[0] = 3200000,
295 		[1] = 4000000,
296 		[2] = 5333333,
297 		[3] = 6400000,
298 		[4] = 3333333,
299 		[5] = 3566667,
300 		[6] = 4266667,
301 	};
302 	static const unsigned int elk_vco[8] = {
303 		[0] = 3200000,
304 		[1] = 4000000,
305 		[2] = 5333333,
306 		[3] = 4800000,
307 	};
308 	static const unsigned int ctg_vco[8] = {
309 		[0] = 3200000,
310 		[1] = 4000000,
311 		[2] = 5333333,
312 		[3] = 6400000,
313 		[4] = 2666667,
314 		[5] = 4266667,
315 	};
316 	struct drm_i915_private *dev_priv = to_i915(display->drm);
317 	const unsigned int *vco_table;
318 	unsigned int vco;
319 	u8 tmp = 0;
320 
321 	/* FIXME other chipsets? */
322 	if (IS_GM45(dev_priv))
323 		vco_table = ctg_vco;
324 	else if (IS_G45(dev_priv))
325 		vco_table = elk_vco;
326 	else if (IS_I965GM(dev_priv))
327 		vco_table = cl_vco;
328 	else if (IS_PINEVIEW(dev_priv))
329 		vco_table = pnv_vco;
330 	else if (IS_G33(dev_priv))
331 		vco_table = blb_vco;
332 	else
333 		return 0;
334 
335 	tmp = intel_de_read(display,
336 			    IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
337 
338 	vco = vco_table[tmp & 0x7];
339 	if (vco == 0)
340 		drm_err(display->drm, "Bad HPLL VCO (HPLLVCO=0x%02x)\n",
341 			tmp);
342 	else
343 		drm_dbg_kms(display->drm, "HPLL VCO %u kHz\n", vco);
344 
345 	return vco;
346 }
347 
348 static void g33_get_cdclk(struct intel_display *display,
349 			  struct intel_cdclk_config *cdclk_config)
350 {
351 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
352 	static const u8 div_3200[] = { 12, 10,  8,  7, 5, 16 };
353 	static const u8 div_4000[] = { 14, 12, 10,  8, 6, 20 };
354 	static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 };
355 	static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 };
356 	const u8 *div_table;
357 	unsigned int cdclk_sel;
358 	u16 tmp = 0;
359 
360 	cdclk_config->vco = intel_hpll_vco(display);
361 
362 	pci_read_config_word(pdev, GCFGC, &tmp);
363 
364 	cdclk_sel = (tmp >> 4) & 0x7;
365 
366 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
367 		goto fail;
368 
369 	switch (cdclk_config->vco) {
370 	case 3200000:
371 		div_table = div_3200;
372 		break;
373 	case 4000000:
374 		div_table = div_4000;
375 		break;
376 	case 4800000:
377 		div_table = div_4800;
378 		break;
379 	case 5333333:
380 		div_table = div_5333;
381 		break;
382 	default:
383 		goto fail;
384 	}
385 
386 	cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
387 						div_table[cdclk_sel]);
388 	return;
389 
390 fail:
391 	drm_err(display->drm,
392 		"Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n",
393 		cdclk_config->vco, tmp);
394 	cdclk_config->cdclk = 190476;
395 }
396 
397 static void pnv_get_cdclk(struct intel_display *display,
398 			  struct intel_cdclk_config *cdclk_config)
399 {
400 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
401 	u16 gcfgc = 0;
402 
403 	pci_read_config_word(pdev, GCFGC, &gcfgc);
404 
405 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
406 	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
407 		cdclk_config->cdclk = 266667;
408 		break;
409 	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
410 		cdclk_config->cdclk = 333333;
411 		break;
412 	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
413 		cdclk_config->cdclk = 444444;
414 		break;
415 	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
416 		cdclk_config->cdclk = 200000;
417 		break;
418 	default:
419 		drm_err(display->drm,
420 			"Unknown pnv display core clock 0x%04x\n", gcfgc);
421 		fallthrough;
422 	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
423 		cdclk_config->cdclk = 133333;
424 		break;
425 	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
426 		cdclk_config->cdclk = 166667;
427 		break;
428 	}
429 }
430 
431 static void i965gm_get_cdclk(struct intel_display *display,
432 			     struct intel_cdclk_config *cdclk_config)
433 {
434 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
435 	static const u8 div_3200[] = { 16, 10,  8 };
436 	static const u8 div_4000[] = { 20, 12, 10 };
437 	static const u8 div_5333[] = { 24, 16, 14 };
438 	const u8 *div_table;
439 	unsigned int cdclk_sel;
440 	u16 tmp = 0;
441 
442 	cdclk_config->vco = intel_hpll_vco(display);
443 
444 	pci_read_config_word(pdev, GCFGC, &tmp);
445 
446 	cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
447 
448 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
449 		goto fail;
450 
451 	switch (cdclk_config->vco) {
452 	case 3200000:
453 		div_table = div_3200;
454 		break;
455 	case 4000000:
456 		div_table = div_4000;
457 		break;
458 	case 5333333:
459 		div_table = div_5333;
460 		break;
461 	default:
462 		goto fail;
463 	}
464 
465 	cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
466 						div_table[cdclk_sel]);
467 	return;
468 
469 fail:
470 	drm_err(display->drm,
471 		"Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n",
472 		cdclk_config->vco, tmp);
473 	cdclk_config->cdclk = 200000;
474 }
475 
476 static void gm45_get_cdclk(struct intel_display *display,
477 			   struct intel_cdclk_config *cdclk_config)
478 {
479 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
480 	unsigned int cdclk_sel;
481 	u16 tmp = 0;
482 
483 	cdclk_config->vco = intel_hpll_vco(display);
484 
485 	pci_read_config_word(pdev, GCFGC, &tmp);
486 
487 	cdclk_sel = (tmp >> 12) & 0x1;
488 
489 	switch (cdclk_config->vco) {
490 	case 2666667:
491 	case 4000000:
492 	case 5333333:
493 		cdclk_config->cdclk = cdclk_sel ? 333333 : 222222;
494 		break;
495 	case 3200000:
496 		cdclk_config->cdclk = cdclk_sel ? 320000 : 228571;
497 		break;
498 	default:
499 		drm_err(display->drm,
500 			"Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n",
501 			cdclk_config->vco, tmp);
502 		cdclk_config->cdclk = 222222;
503 		break;
504 	}
505 }
506 
507 static void hsw_get_cdclk(struct intel_display *display,
508 			  struct intel_cdclk_config *cdclk_config)
509 {
510 	struct drm_i915_private *dev_priv = to_i915(display->drm);
511 	u32 lcpll = intel_de_read(display, LCPLL_CTL);
512 	u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
513 
514 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
515 		cdclk_config->cdclk = 800000;
516 	else if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT)
517 		cdclk_config->cdclk = 450000;
518 	else if (freq == LCPLL_CLK_FREQ_450)
519 		cdclk_config->cdclk = 450000;
520 	else if (IS_HASWELL_ULT(dev_priv))
521 		cdclk_config->cdclk = 337500;
522 	else
523 		cdclk_config->cdclk = 540000;
524 }
525 
526 static int vlv_calc_cdclk(struct intel_display *display, int min_cdclk)
527 {
528 	struct drm_i915_private *dev_priv = to_i915(display->drm);
529 	int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ?
530 		333333 : 320000;
531 
532 	/*
533 	 * We seem to get an unstable or solid color picture at 200MHz.
534 	 * Not sure what's wrong. For now use 200MHz only when all pipes
535 	 * are off.
536 	 */
537 	if (IS_VALLEYVIEW(dev_priv) && min_cdclk > freq_320)
538 		return 400000;
539 	else if (min_cdclk > 266667)
540 		return freq_320;
541 	else if (min_cdclk > 0)
542 		return 266667;
543 	else
544 		return 200000;
545 }
546 
547 static u8 vlv_calc_voltage_level(struct intel_display *display, int cdclk)
548 {
549 	struct drm_i915_private *dev_priv = to_i915(display->drm);
550 
551 	if (IS_VALLEYVIEW(dev_priv)) {
552 		if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
553 			return 2;
554 		else if (cdclk >= 266667)
555 			return 1;
556 		else
557 			return 0;
558 	} else {
559 		/*
560 		 * Specs are full of misinformation, but testing on actual
561 		 * hardware has shown that we just need to write the desired
562 		 * CCK divider into the Punit register.
563 		 */
564 		return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
565 	}
566 }
567 
568 static void vlv_get_cdclk(struct intel_display *display,
569 			  struct intel_cdclk_config *cdclk_config)
570 {
571 	struct drm_i915_private *dev_priv = to_i915(display->drm);
572 	u32 val;
573 
574 	vlv_iosf_sb_get(dev_priv,
575 			BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
576 
577 	cdclk_config->vco = vlv_get_hpll_vco(dev_priv);
578 	cdclk_config->cdclk = vlv_get_cck_clock(dev_priv, "cdclk",
579 						CCK_DISPLAY_CLOCK_CONTROL,
580 						cdclk_config->vco);
581 
582 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
583 
584 	vlv_iosf_sb_put(dev_priv,
585 			BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
586 
587 	if (IS_VALLEYVIEW(dev_priv))
588 		cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK) >>
589 			DSPFREQGUAR_SHIFT;
590 	else
591 		cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >>
592 			DSPFREQGUAR_SHIFT_CHV;
593 }
594 
595 static void vlv_program_pfi_credits(struct intel_display *display)
596 {
597 	struct drm_i915_private *dev_priv = to_i915(display->drm);
598 	unsigned int credits, default_credits;
599 
600 	if (IS_CHERRYVIEW(dev_priv))
601 		default_credits = PFI_CREDIT(12);
602 	else
603 		default_credits = PFI_CREDIT(8);
604 
605 	if (display->cdclk.hw.cdclk >= dev_priv->czclk_freq) {
606 		/* CHV suggested value is 31 or 63 */
607 		if (IS_CHERRYVIEW(dev_priv))
608 			credits = PFI_CREDIT_63;
609 		else
610 			credits = PFI_CREDIT(15);
611 	} else {
612 		credits = default_credits;
613 	}
614 
615 	/*
616 	 * WA - write default credits before re-programming
617 	 * FIXME: should we also set the resend bit here?
618 	 */
619 	intel_de_write(display, GCI_CONTROL,
620 		       VGA_FAST_MODE_DISABLE | default_credits);
621 
622 	intel_de_write(display, GCI_CONTROL,
623 		       VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND);
624 
625 	/*
626 	 * FIXME is this guaranteed to clear
627 	 * immediately or should we poll for it?
628 	 */
629 	drm_WARN_ON(display->drm,
630 		    intel_de_read(display, GCI_CONTROL) & PFI_CREDIT_RESEND);
631 }
632 
633 static void vlv_set_cdclk(struct intel_display *display,
634 			  const struct intel_cdclk_config *cdclk_config,
635 			  enum pipe pipe)
636 {
637 	struct drm_i915_private *dev_priv = to_i915(display->drm);
638 	int cdclk = cdclk_config->cdclk;
639 	u32 val, cmd = cdclk_config->voltage_level;
640 	intel_wakeref_t wakeref;
641 
642 	switch (cdclk) {
643 	case 400000:
644 	case 333333:
645 	case 320000:
646 	case 266667:
647 	case 200000:
648 		break;
649 	default:
650 		MISSING_CASE(cdclk);
651 		return;
652 	}
653 
654 	/* There are cases where we can end up here with power domains
655 	 * off and a CDCLK frequency other than the minimum, like when
656 	 * issuing a modeset without actually changing any display after
657 	 * a system suspend.  So grab the display core domain, which covers
658 	 * the HW blocks needed for the following programming.
659 	 */
660 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
661 
662 	vlv_iosf_sb_get(dev_priv,
663 			BIT(VLV_IOSF_SB_CCK) |
664 			BIT(VLV_IOSF_SB_BUNIT) |
665 			BIT(VLV_IOSF_SB_PUNIT));
666 
667 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
668 	val &= ~DSPFREQGUAR_MASK;
669 	val |= (cmd << DSPFREQGUAR_SHIFT);
670 	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
671 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
672 		      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
673 		     50)) {
674 		drm_err(display->drm,
675 			"timed out waiting for CDclk change\n");
676 	}
677 
678 	if (cdclk == 400000) {
679 		u32 divider;
680 
681 		divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1,
682 					    cdclk) - 1;
683 
684 		/* adjust cdclk divider */
685 		val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
686 		val &= ~CCK_FREQUENCY_VALUES;
687 		val |= divider;
688 		vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
689 
690 		if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
691 			      CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
692 			     50))
693 			drm_err(display->drm,
694 				"timed out waiting for CDclk change\n");
695 	}
696 
697 	/* adjust self-refresh exit latency value */
698 	val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
699 	val &= ~0x7f;
700 
701 	/*
702 	 * For high bandwidth configs, we set a higher latency in the bunit
703 	 * so that the core display fetch happens in time to avoid underruns.
704 	 */
705 	if (cdclk == 400000)
706 		val |= 4500 / 250; /* 4.5 usec */
707 	else
708 		val |= 3000 / 250; /* 3.0 usec */
709 	vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
710 
711 	vlv_iosf_sb_put(dev_priv,
712 			BIT(VLV_IOSF_SB_CCK) |
713 			BIT(VLV_IOSF_SB_BUNIT) |
714 			BIT(VLV_IOSF_SB_PUNIT));
715 
716 	intel_update_cdclk(display);
717 
718 	vlv_program_pfi_credits(display);
719 
720 	intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
721 }
722 
723 static void chv_set_cdclk(struct intel_display *display,
724 			  const struct intel_cdclk_config *cdclk_config,
725 			  enum pipe pipe)
726 {
727 	struct drm_i915_private *dev_priv = to_i915(display->drm);
728 	int cdclk = cdclk_config->cdclk;
729 	u32 val, cmd = cdclk_config->voltage_level;
730 	intel_wakeref_t wakeref;
731 
732 	switch (cdclk) {
733 	case 333333:
734 	case 320000:
735 	case 266667:
736 	case 200000:
737 		break;
738 	default:
739 		MISSING_CASE(cdclk);
740 		return;
741 	}
742 
743 	/* There are cases where we can end up here with power domains
744 	 * off and a CDCLK frequency other than the minimum, like when
745 	 * issuing a modeset without actually changing any display after
746 	 * a system suspend.  So grab the display core domain, which covers
747 	 * the HW blocks needed for the following programming.
748 	 */
749 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
750 
751 	vlv_punit_get(dev_priv);
752 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
753 	val &= ~DSPFREQGUAR_MASK_CHV;
754 	val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
755 	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
756 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
757 		      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
758 		     50)) {
759 		drm_err(display->drm,
760 			"timed out waiting for CDclk change\n");
761 	}
762 
763 	vlv_punit_put(dev_priv);
764 
765 	intel_update_cdclk(display);
766 
767 	vlv_program_pfi_credits(display);
768 
769 	intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
770 }
771 
772 static int bdw_calc_cdclk(int min_cdclk)
773 {
774 	if (min_cdclk > 540000)
775 		return 675000;
776 	else if (min_cdclk > 450000)
777 		return 540000;
778 	else if (min_cdclk > 337500)
779 		return 450000;
780 	else
781 		return 337500;
782 }
783 
784 static u8 bdw_calc_voltage_level(int cdclk)
785 {
786 	switch (cdclk) {
787 	default:
788 	case 337500:
789 		return 2;
790 	case 450000:
791 		return 0;
792 	case 540000:
793 		return 1;
794 	case 675000:
795 		return 3;
796 	}
797 }
798 
799 static void bdw_get_cdclk(struct intel_display *display,
800 			  struct intel_cdclk_config *cdclk_config)
801 {
802 	u32 lcpll = intel_de_read(display, LCPLL_CTL);
803 	u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
804 
805 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
806 		cdclk_config->cdclk = 800000;
807 	else if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT)
808 		cdclk_config->cdclk = 450000;
809 	else if (freq == LCPLL_CLK_FREQ_450)
810 		cdclk_config->cdclk = 450000;
811 	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
812 		cdclk_config->cdclk = 540000;
813 	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
814 		cdclk_config->cdclk = 337500;
815 	else
816 		cdclk_config->cdclk = 675000;
817 
818 	/*
819 	 * Can't read this out :( Let's assume it's
820 	 * at least what the CDCLK frequency requires.
821 	 */
822 	cdclk_config->voltage_level =
823 		bdw_calc_voltage_level(cdclk_config->cdclk);
824 }
825 
826 static u32 bdw_cdclk_freq_sel(int cdclk)
827 {
828 	switch (cdclk) {
829 	default:
830 		MISSING_CASE(cdclk);
831 		fallthrough;
832 	case 337500:
833 		return LCPLL_CLK_FREQ_337_5_BDW;
834 	case 450000:
835 		return LCPLL_CLK_FREQ_450;
836 	case 540000:
837 		return LCPLL_CLK_FREQ_54O_BDW;
838 	case 675000:
839 		return LCPLL_CLK_FREQ_675_BDW;
840 	}
841 }
842 
843 static void bdw_set_cdclk(struct intel_display *display,
844 			  const struct intel_cdclk_config *cdclk_config,
845 			  enum pipe pipe)
846 {
847 	struct drm_i915_private *dev_priv = to_i915(display->drm);
848 	int cdclk = cdclk_config->cdclk;
849 	int ret;
850 
851 	if (drm_WARN(display->drm,
852 		     (intel_de_read(display, LCPLL_CTL) &
853 		      (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
854 		       LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
855 		       LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
856 		       LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
857 		     "trying to change cdclk frequency with cdclk not enabled\n"))
858 		return;
859 
860 	ret = snb_pcode_write(&dev_priv->uncore, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
861 	if (ret) {
862 		drm_err(display->drm,
863 			"failed to inform pcode about cdclk change\n");
864 		return;
865 	}
866 
867 	intel_de_rmw(display, LCPLL_CTL,
868 		     0, LCPLL_CD_SOURCE_FCLK);
869 
870 	/*
871 	 * According to the spec, it should be enough to poll for this 1 us.
872 	 * However, extensive testing shows that this can take longer.
873 	 */
874 	if (wait_for_us(intel_de_read(display, LCPLL_CTL) &
875 			LCPLL_CD_SOURCE_FCLK_DONE, 100))
876 		drm_err(display->drm, "Switching to FCLK failed\n");
877 
878 	intel_de_rmw(display, LCPLL_CTL,
879 		     LCPLL_CLK_FREQ_MASK, bdw_cdclk_freq_sel(cdclk));
880 
881 	intel_de_rmw(display, LCPLL_CTL,
882 		     LCPLL_CD_SOURCE_FCLK, 0);
883 
884 	if (wait_for_us((intel_de_read(display, LCPLL_CTL) &
885 			 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
886 		drm_err(display->drm, "Switching back to LCPLL failed\n");
887 
888 	snb_pcode_write(&dev_priv->uncore, HSW_PCODE_DE_WRITE_FREQ_REQ,
889 			cdclk_config->voltage_level);
890 
891 	intel_de_write(display, CDCLK_FREQ,
892 		       DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
893 
894 	intel_update_cdclk(display);
895 }
896 
897 static int skl_calc_cdclk(int min_cdclk, int vco)
898 {
899 	if (vco == 8640000) {
900 		if (min_cdclk > 540000)
901 			return 617143;
902 		else if (min_cdclk > 432000)
903 			return 540000;
904 		else if (min_cdclk > 308571)
905 			return 432000;
906 		else
907 			return 308571;
908 	} else {
909 		if (min_cdclk > 540000)
910 			return 675000;
911 		else if (min_cdclk > 450000)
912 			return 540000;
913 		else if (min_cdclk > 337500)
914 			return 450000;
915 		else
916 			return 337500;
917 	}
918 }
919 
920 static u8 skl_calc_voltage_level(int cdclk)
921 {
922 	if (cdclk > 540000)
923 		return 3;
924 	else if (cdclk > 450000)
925 		return 2;
926 	else if (cdclk > 337500)
927 		return 1;
928 	else
929 		return 0;
930 }
931 
932 static void skl_dpll0_update(struct intel_display *display,
933 			     struct intel_cdclk_config *cdclk_config)
934 {
935 	u32 val;
936 
937 	cdclk_config->ref = 24000;
938 	cdclk_config->vco = 0;
939 
940 	val = intel_de_read(display, LCPLL1_CTL);
941 	if ((val & LCPLL_PLL_ENABLE) == 0)
942 		return;
943 
944 	if (drm_WARN_ON(display->drm, (val & LCPLL_PLL_LOCK) == 0))
945 		return;
946 
947 	val = intel_de_read(display, DPLL_CTRL1);
948 
949 	if (drm_WARN_ON(display->drm,
950 			(val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
951 				DPLL_CTRL1_SSC(SKL_DPLL0) |
952 				DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
953 			DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
954 		return;
955 
956 	switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
957 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
958 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
959 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
960 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
961 		cdclk_config->vco = 8100000;
962 		break;
963 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
964 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
965 		cdclk_config->vco = 8640000;
966 		break;
967 	default:
968 		MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
969 		break;
970 	}
971 }
972 
973 static void skl_get_cdclk(struct intel_display *display,
974 			  struct intel_cdclk_config *cdclk_config)
975 {
976 	u32 cdctl;
977 
978 	skl_dpll0_update(display, cdclk_config);
979 
980 	cdclk_config->cdclk = cdclk_config->bypass = cdclk_config->ref;
981 
982 	if (cdclk_config->vco == 0)
983 		goto out;
984 
985 	cdctl = intel_de_read(display, CDCLK_CTL);
986 
987 	if (cdclk_config->vco == 8640000) {
988 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
989 		case CDCLK_FREQ_450_432:
990 			cdclk_config->cdclk = 432000;
991 			break;
992 		case CDCLK_FREQ_337_308:
993 			cdclk_config->cdclk = 308571;
994 			break;
995 		case CDCLK_FREQ_540:
996 			cdclk_config->cdclk = 540000;
997 			break;
998 		case CDCLK_FREQ_675_617:
999 			cdclk_config->cdclk = 617143;
1000 			break;
1001 		default:
1002 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
1003 			break;
1004 		}
1005 	} else {
1006 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
1007 		case CDCLK_FREQ_450_432:
1008 			cdclk_config->cdclk = 450000;
1009 			break;
1010 		case CDCLK_FREQ_337_308:
1011 			cdclk_config->cdclk = 337500;
1012 			break;
1013 		case CDCLK_FREQ_540:
1014 			cdclk_config->cdclk = 540000;
1015 			break;
1016 		case CDCLK_FREQ_675_617:
1017 			cdclk_config->cdclk = 675000;
1018 			break;
1019 		default:
1020 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
1021 			break;
1022 		}
1023 	}
1024 
1025  out:
1026 	/*
1027 	 * Can't read this out :( Let's assume it's
1028 	 * at least what the CDCLK frequency requires.
1029 	 */
1030 	cdclk_config->voltage_level =
1031 		skl_calc_voltage_level(cdclk_config->cdclk);
1032 }
1033 
1034 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
1035 static int skl_cdclk_decimal(int cdclk)
1036 {
1037 	return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
1038 }
1039 
1040 static void skl_set_preferred_cdclk_vco(struct intel_display *display, int vco)
1041 {
1042 	bool changed = display->cdclk.skl_preferred_vco_freq != vco;
1043 
1044 	display->cdclk.skl_preferred_vco_freq = vco;
1045 
1046 	if (changed)
1047 		intel_update_max_cdclk(display);
1048 }
1049 
1050 static u32 skl_dpll0_link_rate(struct intel_display *display, int vco)
1051 {
1052 	drm_WARN_ON(display->drm, vco != 8100000 && vco != 8640000);
1053 
1054 	/*
1055 	 * We always enable DPLL0 with the lowest link rate possible, but still
1056 	 * taking into account the VCO required to operate the eDP panel at the
1057 	 * desired frequency. The usual DP link rates operate with a VCO of
1058 	 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
1059 	 * The modeset code is responsible for the selection of the exact link
1060 	 * rate later on, with the constraint of choosing a frequency that
1061 	 * works with vco.
1062 	 */
1063 	if (vco == 8640000)
1064 		return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0);
1065 	else
1066 		return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0);
1067 }
1068 
1069 static void skl_dpll0_enable(struct intel_display *display, int vco)
1070 {
1071 	intel_de_rmw(display, DPLL_CTRL1,
1072 		     DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
1073 		     DPLL_CTRL1_SSC(SKL_DPLL0) |
1074 		     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0),
1075 		     DPLL_CTRL1_OVERRIDE(SKL_DPLL0) |
1076 		     skl_dpll0_link_rate(display, vco));
1077 	intel_de_posting_read(display, DPLL_CTRL1);
1078 
1079 	intel_de_rmw(display, LCPLL1_CTL,
1080 		     0, LCPLL_PLL_ENABLE);
1081 
1082 	if (intel_de_wait_for_set(display, LCPLL1_CTL, LCPLL_PLL_LOCK, 5))
1083 		drm_err(display->drm, "DPLL0 not locked\n");
1084 
1085 	display->cdclk.hw.vco = vco;
1086 
1087 	/* We'll want to keep using the current vco from now on. */
1088 	skl_set_preferred_cdclk_vco(display, vco);
1089 }
1090 
1091 static void skl_dpll0_disable(struct intel_display *display)
1092 {
1093 	intel_de_rmw(display, LCPLL1_CTL,
1094 		     LCPLL_PLL_ENABLE, 0);
1095 
1096 	if (intel_de_wait_for_clear(display, LCPLL1_CTL, LCPLL_PLL_LOCK, 1))
1097 		drm_err(display->drm, "Couldn't disable DPLL0\n");
1098 
1099 	display->cdclk.hw.vco = 0;
1100 }
1101 
1102 static u32 skl_cdclk_freq_sel(struct intel_display *display,
1103 			      int cdclk, int vco)
1104 {
1105 	switch (cdclk) {
1106 	default:
1107 		drm_WARN_ON(display->drm,
1108 			    cdclk != display->cdclk.hw.bypass);
1109 		drm_WARN_ON(display->drm, vco != 0);
1110 		fallthrough;
1111 	case 308571:
1112 	case 337500:
1113 		return CDCLK_FREQ_337_308;
1114 	case 450000:
1115 	case 432000:
1116 		return CDCLK_FREQ_450_432;
1117 	case 540000:
1118 		return CDCLK_FREQ_540;
1119 	case 617143:
1120 	case 675000:
1121 		return CDCLK_FREQ_675_617;
1122 	}
1123 }
1124 
1125 static void skl_set_cdclk(struct intel_display *display,
1126 			  const struct intel_cdclk_config *cdclk_config,
1127 			  enum pipe pipe)
1128 {
1129 	struct drm_i915_private *dev_priv = to_i915(display->drm);
1130 	int cdclk = cdclk_config->cdclk;
1131 	int vco = cdclk_config->vco;
1132 	u32 freq_select, cdclk_ctl;
1133 	int ret;
1134 
1135 	/*
1136 	 * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are
1137 	 * unsupported on SKL. In theory this should never happen since only
1138 	 * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not
1139 	 * supported on SKL either, see the above WA. WARN whenever trying to
1140 	 * use the corresponding VCO freq as that always leads to using the
1141 	 * minimum 308MHz CDCLK.
1142 	 */
1143 	drm_WARN_ON_ONCE(display->drm,
1144 			 IS_SKYLAKE(dev_priv) && vco == 8640000);
1145 
1146 	ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1147 				SKL_CDCLK_PREPARE_FOR_CHANGE,
1148 				SKL_CDCLK_READY_FOR_CHANGE,
1149 				SKL_CDCLK_READY_FOR_CHANGE, 3);
1150 	if (ret) {
1151 		drm_err(display->drm,
1152 			"Failed to inform PCU about cdclk change (%d)\n", ret);
1153 		return;
1154 	}
1155 
1156 	freq_select = skl_cdclk_freq_sel(display, cdclk, vco);
1157 
1158 	if (display->cdclk.hw.vco != 0 &&
1159 	    display->cdclk.hw.vco != vco)
1160 		skl_dpll0_disable(display);
1161 
1162 	cdclk_ctl = intel_de_read(display, CDCLK_CTL);
1163 
1164 	if (display->cdclk.hw.vco != vco) {
1165 		/* Wa Display #1183: skl,kbl,cfl */
1166 		cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1167 		cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1168 		intel_de_write(display, CDCLK_CTL, cdclk_ctl);
1169 	}
1170 
1171 	/* Wa Display #1183: skl,kbl,cfl */
1172 	cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE;
1173 	intel_de_write(display, CDCLK_CTL, cdclk_ctl);
1174 	intel_de_posting_read(display, CDCLK_CTL);
1175 
1176 	if (display->cdclk.hw.vco != vco)
1177 		skl_dpll0_enable(display, vco);
1178 
1179 	/* Wa Display #1183: skl,kbl,cfl */
1180 	cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1181 	intel_de_write(display, CDCLK_CTL, cdclk_ctl);
1182 
1183 	cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1184 	intel_de_write(display, CDCLK_CTL, cdclk_ctl);
1185 
1186 	/* Wa Display #1183: skl,kbl,cfl */
1187 	cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE;
1188 	intel_de_write(display, CDCLK_CTL, cdclk_ctl);
1189 	intel_de_posting_read(display, CDCLK_CTL);
1190 
1191 	/* inform PCU of the change */
1192 	snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1193 			cdclk_config->voltage_level);
1194 
1195 	intel_update_cdclk(display);
1196 }
1197 
1198 static void skl_sanitize_cdclk(struct intel_display *display)
1199 {
1200 	u32 cdctl, expected;
1201 
1202 	/*
1203 	 * check if the pre-os initialized the display
1204 	 * There is SWF18 scratchpad register defined which is set by the
1205 	 * pre-os which can be used by the OS drivers to check the status
1206 	 */
1207 	if ((intel_de_read(display, SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
1208 		goto sanitize;
1209 
1210 	intel_update_cdclk(display);
1211 	intel_cdclk_dump_config(display, &display->cdclk.hw, "Current CDCLK");
1212 
1213 	/* Is PLL enabled and locked ? */
1214 	if (display->cdclk.hw.vco == 0 ||
1215 	    display->cdclk.hw.cdclk == display->cdclk.hw.bypass)
1216 		goto sanitize;
1217 
1218 	/* DPLL okay; verify the cdclock
1219 	 *
1220 	 * Noticed in some instances that the freq selection is correct but
1221 	 * decimal part is programmed wrong from BIOS where pre-os does not
1222 	 * enable display. Verify the same as well.
1223 	 */
1224 	cdctl = intel_de_read(display, CDCLK_CTL);
1225 	expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
1226 		skl_cdclk_decimal(display->cdclk.hw.cdclk);
1227 	if (cdctl == expected)
1228 		/* All well; nothing to sanitize */
1229 		return;
1230 
1231 sanitize:
1232 	drm_dbg_kms(display->drm, "Sanitizing cdclk programmed by pre-os\n");
1233 
1234 	/* force cdclk programming */
1235 	display->cdclk.hw.cdclk = 0;
1236 	/* force full PLL disable + enable */
1237 	display->cdclk.hw.vco = ~0;
1238 }
1239 
1240 static void skl_cdclk_init_hw(struct intel_display *display)
1241 {
1242 	struct intel_cdclk_config cdclk_config;
1243 
1244 	skl_sanitize_cdclk(display);
1245 
1246 	if (display->cdclk.hw.cdclk != 0 &&
1247 	    display->cdclk.hw.vco != 0) {
1248 		/*
1249 		 * Use the current vco as our initial
1250 		 * guess as to what the preferred vco is.
1251 		 */
1252 		if (display->cdclk.skl_preferred_vco_freq == 0)
1253 			skl_set_preferred_cdclk_vco(display,
1254 						    display->cdclk.hw.vco);
1255 		return;
1256 	}
1257 
1258 	cdclk_config = display->cdclk.hw;
1259 
1260 	cdclk_config.vco = display->cdclk.skl_preferred_vco_freq;
1261 	if (cdclk_config.vco == 0)
1262 		cdclk_config.vco = 8100000;
1263 	cdclk_config.cdclk = skl_calc_cdclk(0, cdclk_config.vco);
1264 	cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
1265 
1266 	skl_set_cdclk(display, &cdclk_config, INVALID_PIPE);
1267 }
1268 
1269 static void skl_cdclk_uninit_hw(struct intel_display *display)
1270 {
1271 	struct intel_cdclk_config cdclk_config = display->cdclk.hw;
1272 
1273 	cdclk_config.cdclk = cdclk_config.bypass;
1274 	cdclk_config.vco = 0;
1275 	cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
1276 
1277 	skl_set_cdclk(display, &cdclk_config, INVALID_PIPE);
1278 }
1279 
1280 struct intel_cdclk_vals {
1281 	u32 cdclk;
1282 	u16 refclk;
1283 	u16 waveform;
1284 	u8 ratio;
1285 };
1286 
1287 static const struct intel_cdclk_vals bxt_cdclk_table[] = {
1288 	{ .refclk = 19200, .cdclk = 144000, .ratio = 60 },
1289 	{ .refclk = 19200, .cdclk = 288000, .ratio = 60 },
1290 	{ .refclk = 19200, .cdclk = 384000, .ratio = 60 },
1291 	{ .refclk = 19200, .cdclk = 576000, .ratio = 60 },
1292 	{ .refclk = 19200, .cdclk = 624000, .ratio = 65 },
1293 	{}
1294 };
1295 
1296 static const struct intel_cdclk_vals glk_cdclk_table[] = {
1297 	{ .refclk = 19200, .cdclk =  79200, .ratio = 33 },
1298 	{ .refclk = 19200, .cdclk = 158400, .ratio = 33 },
1299 	{ .refclk = 19200, .cdclk = 316800, .ratio = 33 },
1300 	{}
1301 };
1302 
1303 static const struct intel_cdclk_vals icl_cdclk_table[] = {
1304 	{ .refclk = 19200, .cdclk = 172800, .ratio = 18 },
1305 	{ .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1306 	{ .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1307 	{ .refclk = 19200, .cdclk = 326400, .ratio = 68 },
1308 	{ .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1309 	{ .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1310 
1311 	{ .refclk = 24000, .cdclk = 180000, .ratio = 15 },
1312 	{ .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1313 	{ .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1314 	{ .refclk = 24000, .cdclk = 324000, .ratio = 54 },
1315 	{ .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1316 	{ .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1317 
1318 	{ .refclk = 38400, .cdclk = 172800, .ratio =  9 },
1319 	{ .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1320 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1321 	{ .refclk = 38400, .cdclk = 326400, .ratio = 34 },
1322 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1323 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1324 	{}
1325 };
1326 
1327 static const struct intel_cdclk_vals rkl_cdclk_table[] = {
1328 	{ .refclk = 19200, .cdclk = 172800, .ratio =  36 },
1329 	{ .refclk = 19200, .cdclk = 192000, .ratio =  40 },
1330 	{ .refclk = 19200, .cdclk = 307200, .ratio =  64 },
1331 	{ .refclk = 19200, .cdclk = 326400, .ratio = 136 },
1332 	{ .refclk = 19200, .cdclk = 556800, .ratio = 116 },
1333 	{ .refclk = 19200, .cdclk = 652800, .ratio = 136 },
1334 
1335 	{ .refclk = 24000, .cdclk = 180000, .ratio =  30 },
1336 	{ .refclk = 24000, .cdclk = 192000, .ratio =  32 },
1337 	{ .refclk = 24000, .cdclk = 312000, .ratio =  52 },
1338 	{ .refclk = 24000, .cdclk = 324000, .ratio = 108 },
1339 	{ .refclk = 24000, .cdclk = 552000, .ratio =  92 },
1340 	{ .refclk = 24000, .cdclk = 648000, .ratio = 108 },
1341 
1342 	{ .refclk = 38400, .cdclk = 172800, .ratio = 18 },
1343 	{ .refclk = 38400, .cdclk = 192000, .ratio = 20 },
1344 	{ .refclk = 38400, .cdclk = 307200, .ratio = 32 },
1345 	{ .refclk = 38400, .cdclk = 326400, .ratio = 68 },
1346 	{ .refclk = 38400, .cdclk = 556800, .ratio = 58 },
1347 	{ .refclk = 38400, .cdclk = 652800, .ratio = 68 },
1348 	{}
1349 };
1350 
1351 static const struct intel_cdclk_vals adlp_a_step_cdclk_table[] = {
1352 	{ .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1353 	{ .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1354 	{ .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1355 
1356 	{ .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1357 	{ .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1358 	{ .refclk = 24400, .cdclk = 648000, .ratio = 54 },
1359 
1360 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1361 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1362 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1363 	{}
1364 };
1365 
1366 static const struct intel_cdclk_vals adlp_cdclk_table[] = {
1367 	{ .refclk = 19200, .cdclk = 172800, .ratio = 27 },
1368 	{ .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1369 	{ .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1370 	{ .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1371 	{ .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1372 
1373 	{ .refclk = 24000, .cdclk = 176000, .ratio = 22 },
1374 	{ .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1375 	{ .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1376 	{ .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1377 	{ .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1378 
1379 	{ .refclk = 38400, .cdclk = 179200, .ratio = 14 },
1380 	{ .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1381 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1382 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1383 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1384 	{}
1385 };
1386 
1387 static const struct intel_cdclk_vals rplu_cdclk_table[] = {
1388 	{ .refclk = 19200, .cdclk = 172800, .ratio = 27 },
1389 	{ .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1390 	{ .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1391 	{ .refclk = 19200, .cdclk = 480000, .ratio = 50 },
1392 	{ .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1393 	{ .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1394 
1395 	{ .refclk = 24000, .cdclk = 176000, .ratio = 22 },
1396 	{ .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1397 	{ .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1398 	{ .refclk = 24000, .cdclk = 480000, .ratio = 40 },
1399 	{ .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1400 	{ .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1401 
1402 	{ .refclk = 38400, .cdclk = 179200, .ratio = 14 },
1403 	{ .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1404 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1405 	{ .refclk = 38400, .cdclk = 480000, .ratio = 25 },
1406 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1407 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1408 	{}
1409 };
1410 
1411 static const struct intel_cdclk_vals dg2_cdclk_table[] = {
1412 	{ .refclk = 38400, .cdclk = 163200, .ratio = 34, .waveform = 0x8888 },
1413 	{ .refclk = 38400, .cdclk = 204000, .ratio = 34, .waveform = 0x9248 },
1414 	{ .refclk = 38400, .cdclk = 244800, .ratio = 34, .waveform = 0xa4a4 },
1415 	{ .refclk = 38400, .cdclk = 285600, .ratio = 34, .waveform = 0xa54a },
1416 	{ .refclk = 38400, .cdclk = 326400, .ratio = 34, .waveform = 0xaaaa },
1417 	{ .refclk = 38400, .cdclk = 367200, .ratio = 34, .waveform = 0xad5a },
1418 	{ .refclk = 38400, .cdclk = 408000, .ratio = 34, .waveform = 0xb6b6 },
1419 	{ .refclk = 38400, .cdclk = 448800, .ratio = 34, .waveform = 0xdbb6 },
1420 	{ .refclk = 38400, .cdclk = 489600, .ratio = 34, .waveform = 0xeeee },
1421 	{ .refclk = 38400, .cdclk = 530400, .ratio = 34, .waveform = 0xf7de },
1422 	{ .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe },
1423 	{ .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe },
1424 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1425 	{}
1426 };
1427 
1428 static const struct intel_cdclk_vals mtl_cdclk_table[] = {
1429 	{ .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a },
1430 	{ .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 },
1431 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0x0000 },
1432 	{ .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0x0000 },
1433 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0x0000 },
1434 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0x0000 },
1435 	{}
1436 };
1437 
1438 static const struct intel_cdclk_vals xe2lpd_cdclk_table[] = {
1439 	{ .refclk = 38400, .cdclk = 153600, .ratio = 16, .waveform = 0xaaaa },
1440 	{ .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a },
1441 	{ .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 },
1442 	{ .refclk = 38400, .cdclk = 211200, .ratio = 16, .waveform = 0xdbb6 },
1443 	{ .refclk = 38400, .cdclk = 230400, .ratio = 16, .waveform = 0xeeee },
1444 	{ .refclk = 38400, .cdclk = 249600, .ratio = 16, .waveform = 0xf7de },
1445 	{ .refclk = 38400, .cdclk = 268800, .ratio = 16, .waveform = 0xfefe },
1446 	{ .refclk = 38400, .cdclk = 288000, .ratio = 16, .waveform = 0xfffe },
1447 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0xffff },
1448 	{ .refclk = 38400, .cdclk = 330000, .ratio = 25, .waveform = 0xdbb6 },
1449 	{ .refclk = 38400, .cdclk = 360000, .ratio = 25, .waveform = 0xeeee },
1450 	{ .refclk = 38400, .cdclk = 390000, .ratio = 25, .waveform = 0xf7de },
1451 	{ .refclk = 38400, .cdclk = 420000, .ratio = 25, .waveform = 0xfefe },
1452 	{ .refclk = 38400, .cdclk = 450000, .ratio = 25, .waveform = 0xfffe },
1453 	{ .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff },
1454 	{ .refclk = 38400, .cdclk = 487200, .ratio = 29, .waveform = 0xfefe },
1455 	{ .refclk = 38400, .cdclk = 522000, .ratio = 29, .waveform = 0xfffe },
1456 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff },
1457 	{ .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe },
1458 	{ .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe },
1459 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1460 	{}
1461 };
1462 
1463 /*
1464  * Xe2_HPD always uses the minimal cdclk table from Wa_15015413771
1465  */
1466 static const struct intel_cdclk_vals xe2hpd_cdclk_table[] = {
1467 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1468 	{}
1469 };
1470 
1471 static const struct intel_cdclk_vals xe3lpd_cdclk_table[] = {
1472 	{ .refclk = 38400, .cdclk = 153600, .ratio = 16, .waveform = 0xaaaa },
1473 	{ .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a },
1474 	{ .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 },
1475 	{ .refclk = 38400, .cdclk = 211200, .ratio = 16, .waveform = 0xdbb6 },
1476 	{ .refclk = 38400, .cdclk = 230400, .ratio = 16, .waveform = 0xeeee },
1477 	{ .refclk = 38400, .cdclk = 249600, .ratio = 16, .waveform = 0xf7de },
1478 	{ .refclk = 38400, .cdclk = 268800, .ratio = 16, .waveform = 0xfefe },
1479 	{ .refclk = 38400, .cdclk = 288000, .ratio = 16, .waveform = 0xfffe },
1480 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0xffff },
1481 	{ .refclk = 38400, .cdclk = 326400, .ratio = 17, .waveform = 0xffff },
1482 	{ .refclk = 38400, .cdclk = 345600, .ratio = 18, .waveform = 0xffff },
1483 	{ .refclk = 38400, .cdclk = 364800, .ratio = 19, .waveform = 0xffff },
1484 	{ .refclk = 38400, .cdclk = 384000, .ratio = 20, .waveform = 0xffff },
1485 	{ .refclk = 38400, .cdclk = 403200, .ratio = 21, .waveform = 0xffff },
1486 	{ .refclk = 38400, .cdclk = 422400, .ratio = 22, .waveform = 0xffff },
1487 	{ .refclk = 38400, .cdclk = 441600, .ratio = 23, .waveform = 0xffff },
1488 	{ .refclk = 38400, .cdclk = 460800, .ratio = 24, .waveform = 0xffff },
1489 	{ .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff },
1490 	{ .refclk = 38400, .cdclk = 499200, .ratio = 26, .waveform = 0xffff },
1491 	{ .refclk = 38400, .cdclk = 518400, .ratio = 27, .waveform = 0xffff },
1492 	{ .refclk = 38400, .cdclk = 537600, .ratio = 28, .waveform = 0xffff },
1493 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff },
1494 	{ .refclk = 38400, .cdclk = 576000, .ratio = 30, .waveform = 0xffff },
1495 	{ .refclk = 38400, .cdclk = 595200, .ratio = 31, .waveform = 0xffff },
1496 	{ .refclk = 38400, .cdclk = 614400, .ratio = 32, .waveform = 0xffff },
1497 	{ .refclk = 38400, .cdclk = 633600, .ratio = 33, .waveform = 0xffff },
1498 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1499 	{ .refclk = 38400, .cdclk = 672000, .ratio = 35, .waveform = 0xffff },
1500 	{ .refclk = 38400, .cdclk = 691200, .ratio = 36, .waveform = 0xffff },
1501 	{}
1502 };
1503 
1504 static const int cdclk_squash_len = 16;
1505 
1506 static int cdclk_squash_divider(u16 waveform)
1507 {
1508 	return hweight16(waveform ?: 0xffff);
1509 }
1510 
1511 static int cdclk_divider(int cdclk, int vco, u16 waveform)
1512 {
1513 	/* 2 * cd2x divider */
1514 	return DIV_ROUND_CLOSEST(vco * cdclk_squash_divider(waveform),
1515 				 cdclk * cdclk_squash_len);
1516 }
1517 
1518 static int bxt_calc_cdclk(struct intel_display *display, int min_cdclk)
1519 {
1520 	const struct intel_cdclk_vals *table = display->cdclk.table;
1521 	int i;
1522 
1523 	for (i = 0; table[i].refclk; i++)
1524 		if (table[i].refclk == display->cdclk.hw.ref &&
1525 		    table[i].cdclk >= min_cdclk)
1526 			return table[i].cdclk;
1527 
1528 	drm_WARN(display->drm, 1,
1529 		 "Cannot satisfy minimum cdclk %d with refclk %u\n",
1530 		 min_cdclk, display->cdclk.hw.ref);
1531 	return 0;
1532 }
1533 
1534 static int bxt_calc_cdclk_pll_vco(struct intel_display *display, int cdclk)
1535 {
1536 	const struct intel_cdclk_vals *table = display->cdclk.table;
1537 	int i;
1538 
1539 	if (cdclk == display->cdclk.hw.bypass)
1540 		return 0;
1541 
1542 	for (i = 0; table[i].refclk; i++)
1543 		if (table[i].refclk == display->cdclk.hw.ref &&
1544 		    table[i].cdclk == cdclk)
1545 			return display->cdclk.hw.ref * table[i].ratio;
1546 
1547 	drm_WARN(display->drm, 1, "cdclk %d not valid for refclk %u\n",
1548 		 cdclk, display->cdclk.hw.ref);
1549 	return 0;
1550 }
1551 
1552 static u8 bxt_calc_voltage_level(int cdclk)
1553 {
1554 	return DIV_ROUND_UP(cdclk, 25000);
1555 }
1556 
1557 static u8 calc_voltage_level(int cdclk, int num_voltage_levels,
1558 			     const int voltage_level_max_cdclk[])
1559 {
1560 	int voltage_level;
1561 
1562 	for (voltage_level = 0; voltage_level < num_voltage_levels; voltage_level++) {
1563 		if (cdclk <= voltage_level_max_cdclk[voltage_level])
1564 			return voltage_level;
1565 	}
1566 
1567 	MISSING_CASE(cdclk);
1568 	return num_voltage_levels - 1;
1569 }
1570 
1571 static u8 icl_calc_voltage_level(int cdclk)
1572 {
1573 	static const int icl_voltage_level_max_cdclk[] = {
1574 		[0] = 312000,
1575 		[1] = 556800,
1576 		[2] = 652800,
1577 	};
1578 
1579 	return calc_voltage_level(cdclk,
1580 				  ARRAY_SIZE(icl_voltage_level_max_cdclk),
1581 				  icl_voltage_level_max_cdclk);
1582 }
1583 
1584 static u8 ehl_calc_voltage_level(int cdclk)
1585 {
1586 	static const int ehl_voltage_level_max_cdclk[] = {
1587 		[0] = 180000,
1588 		[1] = 312000,
1589 		[2] = 326400,
1590 		/*
1591 		 * Bspec lists the limit as 556.8 MHz, but some JSL
1592 		 * development boards (at least) boot with 652.8 MHz
1593 		 */
1594 		[3] = 652800,
1595 	};
1596 
1597 	return calc_voltage_level(cdclk,
1598 				  ARRAY_SIZE(ehl_voltage_level_max_cdclk),
1599 				  ehl_voltage_level_max_cdclk);
1600 }
1601 
1602 static u8 tgl_calc_voltage_level(int cdclk)
1603 {
1604 	static const int tgl_voltage_level_max_cdclk[] = {
1605 		[0] = 312000,
1606 		[1] = 326400,
1607 		[2] = 556800,
1608 		[3] = 652800,
1609 	};
1610 
1611 	return calc_voltage_level(cdclk,
1612 				  ARRAY_SIZE(tgl_voltage_level_max_cdclk),
1613 				  tgl_voltage_level_max_cdclk);
1614 }
1615 
1616 static u8 rplu_calc_voltage_level(int cdclk)
1617 {
1618 	static const int rplu_voltage_level_max_cdclk[] = {
1619 		[0] = 312000,
1620 		[1] = 480000,
1621 		[2] = 556800,
1622 		[3] = 652800,
1623 	};
1624 
1625 	return calc_voltage_level(cdclk,
1626 				  ARRAY_SIZE(rplu_voltage_level_max_cdclk),
1627 				  rplu_voltage_level_max_cdclk);
1628 }
1629 
1630 static u8 xe3lpd_calc_voltage_level(int cdclk)
1631 {
1632 	/*
1633 	 * Starting with xe3lpd power controller does not need the voltage
1634 	 * index when doing the modeset update. This function is best left
1635 	 * defined but returning 0 to the mask.
1636 	 */
1637 	return 0;
1638 }
1639 
1640 static void icl_readout_refclk(struct intel_display *display,
1641 			       struct intel_cdclk_config *cdclk_config)
1642 {
1643 	u32 dssm = intel_de_read(display, SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK;
1644 
1645 	switch (dssm) {
1646 	default:
1647 		MISSING_CASE(dssm);
1648 		fallthrough;
1649 	case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz:
1650 		cdclk_config->ref = 24000;
1651 		break;
1652 	case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz:
1653 		cdclk_config->ref = 19200;
1654 		break;
1655 	case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz:
1656 		cdclk_config->ref = 38400;
1657 		break;
1658 	}
1659 }
1660 
1661 static void bxt_de_pll_readout(struct intel_display *display,
1662 			       struct intel_cdclk_config *cdclk_config)
1663 {
1664 	struct drm_i915_private *dev_priv = to_i915(display->drm);
1665 	u32 val, ratio;
1666 
1667 	if (IS_DG2(dev_priv))
1668 		cdclk_config->ref = 38400;
1669 	else if (DISPLAY_VER(display) >= 11)
1670 		icl_readout_refclk(display, cdclk_config);
1671 	else
1672 		cdclk_config->ref = 19200;
1673 
1674 	val = intel_de_read(display, BXT_DE_PLL_ENABLE);
1675 	if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 ||
1676 	    (val & BXT_DE_PLL_LOCK) == 0) {
1677 		/*
1678 		 * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but
1679 		 * setting it to zero is a way to signal that.
1680 		 */
1681 		cdclk_config->vco = 0;
1682 		return;
1683 	}
1684 
1685 	/*
1686 	 * DISPLAY_VER >= 11 have the ratio directly in the PLL enable register,
1687 	 * gen9lp had it in a separate PLL control register.
1688 	 */
1689 	if (DISPLAY_VER(display) >= 11)
1690 		ratio = val & ICL_CDCLK_PLL_RATIO_MASK;
1691 	else
1692 		ratio = intel_de_read(display, BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
1693 
1694 	cdclk_config->vco = ratio * cdclk_config->ref;
1695 }
1696 
1697 static void bxt_get_cdclk(struct intel_display *display,
1698 			  struct intel_cdclk_config *cdclk_config)
1699 {
1700 	u32 squash_ctl = 0;
1701 	u32 divider;
1702 	int div;
1703 
1704 	bxt_de_pll_readout(display, cdclk_config);
1705 
1706 	if (DISPLAY_VER(display) >= 12)
1707 		cdclk_config->bypass = cdclk_config->ref / 2;
1708 	else if (DISPLAY_VER(display) >= 11)
1709 		cdclk_config->bypass = 50000;
1710 	else
1711 		cdclk_config->bypass = cdclk_config->ref;
1712 
1713 	if (cdclk_config->vco == 0) {
1714 		cdclk_config->cdclk = cdclk_config->bypass;
1715 		goto out;
1716 	}
1717 
1718 	divider = intel_de_read(display, CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
1719 
1720 	switch (divider) {
1721 	case BXT_CDCLK_CD2X_DIV_SEL_1:
1722 		div = 2;
1723 		break;
1724 	case BXT_CDCLK_CD2X_DIV_SEL_1_5:
1725 		div = 3;
1726 		break;
1727 	case BXT_CDCLK_CD2X_DIV_SEL_2:
1728 		div = 4;
1729 		break;
1730 	case BXT_CDCLK_CD2X_DIV_SEL_4:
1731 		div = 8;
1732 		break;
1733 	default:
1734 		MISSING_CASE(divider);
1735 		return;
1736 	}
1737 
1738 	if (HAS_CDCLK_SQUASH(display))
1739 		squash_ctl = intel_de_read(display, CDCLK_SQUASH_CTL);
1740 
1741 	if (squash_ctl & CDCLK_SQUASH_ENABLE) {
1742 		u16 waveform;
1743 		int size;
1744 
1745 		size = REG_FIELD_GET(CDCLK_SQUASH_WINDOW_SIZE_MASK, squash_ctl) + 1;
1746 		waveform = REG_FIELD_GET(CDCLK_SQUASH_WAVEFORM_MASK, squash_ctl) >> (16 - size);
1747 
1748 		cdclk_config->cdclk = DIV_ROUND_CLOSEST(hweight16(waveform) *
1749 							cdclk_config->vco, size * div);
1750 	} else {
1751 		cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div);
1752 	}
1753 
1754  out:
1755 	if (DISPLAY_VER(display) >= 20)
1756 		cdclk_config->joined_mbus = intel_de_read(display, MBUS_CTL) & MBUS_JOIN;
1757 	/*
1758 	 * Can't read this out :( Let's assume it's
1759 	 * at least what the CDCLK frequency requires.
1760 	 */
1761 	cdclk_config->voltage_level =
1762 		intel_cdclk_calc_voltage_level(display, cdclk_config->cdclk);
1763 }
1764 
1765 static void bxt_de_pll_disable(struct intel_display *display)
1766 {
1767 	intel_de_write(display, BXT_DE_PLL_ENABLE, 0);
1768 
1769 	/* Timeout 200us */
1770 	if (intel_de_wait_for_clear(display,
1771 				    BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1772 		drm_err(display->drm, "timeout waiting for DE PLL unlock\n");
1773 
1774 	display->cdclk.hw.vco = 0;
1775 }
1776 
1777 static void bxt_de_pll_enable(struct intel_display *display, int vco)
1778 {
1779 	int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref);
1780 
1781 	intel_de_rmw(display, BXT_DE_PLL_CTL,
1782 		     BXT_DE_PLL_RATIO_MASK, BXT_DE_PLL_RATIO(ratio));
1783 
1784 	intel_de_write(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
1785 
1786 	/* Timeout 200us */
1787 	if (intel_de_wait_for_set(display,
1788 				  BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1789 		drm_err(display->drm, "timeout waiting for DE PLL lock\n");
1790 
1791 	display->cdclk.hw.vco = vco;
1792 }
1793 
1794 static void icl_cdclk_pll_disable(struct intel_display *display)
1795 {
1796 	intel_de_rmw(display, BXT_DE_PLL_ENABLE,
1797 		     BXT_DE_PLL_PLL_ENABLE, 0);
1798 
1799 	/* Timeout 200us */
1800 	if (intel_de_wait_for_clear(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1801 		drm_err(display->drm, "timeout waiting for CDCLK PLL unlock\n");
1802 
1803 	display->cdclk.hw.vco = 0;
1804 }
1805 
1806 static void icl_cdclk_pll_enable(struct intel_display *display, int vco)
1807 {
1808 	int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref);
1809 	u32 val;
1810 
1811 	val = ICL_CDCLK_PLL_RATIO(ratio);
1812 	intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1813 
1814 	val |= BXT_DE_PLL_PLL_ENABLE;
1815 	intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1816 
1817 	/* Timeout 200us */
1818 	if (intel_de_wait_for_set(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1819 		drm_err(display->drm, "timeout waiting for CDCLK PLL lock\n");
1820 
1821 	display->cdclk.hw.vco = vco;
1822 }
1823 
1824 static void adlp_cdclk_pll_crawl(struct intel_display *display, int vco)
1825 {
1826 	int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref);
1827 	u32 val;
1828 
1829 	/* Write PLL ratio without disabling */
1830 	val = ICL_CDCLK_PLL_RATIO(ratio) | BXT_DE_PLL_PLL_ENABLE;
1831 	intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1832 
1833 	/* Submit freq change request */
1834 	val |= BXT_DE_PLL_FREQ_REQ;
1835 	intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1836 
1837 	/* Timeout 200us */
1838 	if (intel_de_wait_for_set(display, BXT_DE_PLL_ENABLE,
1839 				  BXT_DE_PLL_LOCK | BXT_DE_PLL_FREQ_REQ_ACK, 1))
1840 		drm_err(display->drm, "timeout waiting for FREQ change request ack\n");
1841 
1842 	val &= ~BXT_DE_PLL_FREQ_REQ;
1843 	intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1844 
1845 	display->cdclk.hw.vco = vco;
1846 }
1847 
1848 static u32 bxt_cdclk_cd2x_pipe(struct intel_display *display, enum pipe pipe)
1849 {
1850 	if (DISPLAY_VER(display) >= 12) {
1851 		if (pipe == INVALID_PIPE)
1852 			return TGL_CDCLK_CD2X_PIPE_NONE;
1853 		else
1854 			return TGL_CDCLK_CD2X_PIPE(pipe);
1855 	} else if (DISPLAY_VER(display) >= 11) {
1856 		if (pipe == INVALID_PIPE)
1857 			return ICL_CDCLK_CD2X_PIPE_NONE;
1858 		else
1859 			return ICL_CDCLK_CD2X_PIPE(pipe);
1860 	} else {
1861 		if (pipe == INVALID_PIPE)
1862 			return BXT_CDCLK_CD2X_PIPE_NONE;
1863 		else
1864 			return BXT_CDCLK_CD2X_PIPE(pipe);
1865 	}
1866 }
1867 
1868 static u32 bxt_cdclk_cd2x_div_sel(struct intel_display *display,
1869 				  int cdclk, int vco, u16 waveform)
1870 {
1871 	/* cdclk = vco / 2 / div{1,1.5,2,4} */
1872 	switch (cdclk_divider(cdclk, vco, waveform)) {
1873 	default:
1874 		drm_WARN_ON(display->drm,
1875 			    cdclk != display->cdclk.hw.bypass);
1876 		drm_WARN_ON(display->drm, vco != 0);
1877 		fallthrough;
1878 	case 2:
1879 		return BXT_CDCLK_CD2X_DIV_SEL_1;
1880 	case 3:
1881 		return BXT_CDCLK_CD2X_DIV_SEL_1_5;
1882 	case 4:
1883 		return BXT_CDCLK_CD2X_DIV_SEL_2;
1884 	case 8:
1885 		return BXT_CDCLK_CD2X_DIV_SEL_4;
1886 	}
1887 }
1888 
1889 static u16 cdclk_squash_waveform(struct intel_display *display,
1890 				 int cdclk)
1891 {
1892 	const struct intel_cdclk_vals *table = display->cdclk.table;
1893 	int i;
1894 
1895 	if (cdclk == display->cdclk.hw.bypass)
1896 		return 0;
1897 
1898 	for (i = 0; table[i].refclk; i++)
1899 		if (table[i].refclk == display->cdclk.hw.ref &&
1900 		    table[i].cdclk == cdclk)
1901 			return table[i].waveform;
1902 
1903 	drm_WARN(display->drm, 1, "cdclk %d not valid for refclk %u\n",
1904 		 cdclk, display->cdclk.hw.ref);
1905 
1906 	return 0xffff;
1907 }
1908 
1909 static void icl_cdclk_pll_update(struct intel_display *display, int vco)
1910 {
1911 	if (display->cdclk.hw.vco != 0 &&
1912 	    display->cdclk.hw.vco != vco)
1913 		icl_cdclk_pll_disable(display);
1914 
1915 	if (display->cdclk.hw.vco != vco)
1916 		icl_cdclk_pll_enable(display, vco);
1917 }
1918 
1919 static void bxt_cdclk_pll_update(struct intel_display *display, int vco)
1920 {
1921 	if (display->cdclk.hw.vco != 0 &&
1922 	    display->cdclk.hw.vco != vco)
1923 		bxt_de_pll_disable(display);
1924 
1925 	if (display->cdclk.hw.vco != vco)
1926 		bxt_de_pll_enable(display, vco);
1927 }
1928 
1929 static void dg2_cdclk_squash_program(struct intel_display *display,
1930 				     u16 waveform)
1931 {
1932 	u32 squash_ctl = 0;
1933 
1934 	if (waveform)
1935 		squash_ctl = CDCLK_SQUASH_ENABLE |
1936 			     CDCLK_SQUASH_WINDOW_SIZE(0xf) | waveform;
1937 
1938 	intel_de_write(display, CDCLK_SQUASH_CTL, squash_ctl);
1939 }
1940 
1941 static bool cdclk_pll_is_unknown(unsigned int vco)
1942 {
1943 	/*
1944 	 * Ensure driver does not take the crawl path for the
1945 	 * case when the vco is set to ~0 in the
1946 	 * sanitize path.
1947 	 */
1948 	return vco == ~0;
1949 }
1950 
1951 static bool mdclk_source_is_cdclk_pll(struct intel_display *display)
1952 {
1953 	return DISPLAY_VER(display) >= 20;
1954 }
1955 
1956 static u32 xe2lpd_mdclk_source_sel(struct intel_display *display)
1957 {
1958 	if (mdclk_source_is_cdclk_pll(display))
1959 		return MDCLK_SOURCE_SEL_CDCLK_PLL;
1960 
1961 	return MDCLK_SOURCE_SEL_CD2XCLK;
1962 }
1963 
1964 int intel_mdclk_cdclk_ratio(struct intel_display *display,
1965 			    const struct intel_cdclk_config *cdclk_config)
1966 {
1967 	if (mdclk_source_is_cdclk_pll(display))
1968 		return DIV_ROUND_UP(cdclk_config->vco, cdclk_config->cdclk);
1969 
1970 	/* Otherwise, source for MDCLK is CD2XCLK. */
1971 	return 2;
1972 }
1973 
1974 static void xe2lpd_mdclk_cdclk_ratio_program(struct intel_display *display,
1975 					     const struct intel_cdclk_config *cdclk_config)
1976 {
1977 	struct drm_i915_private *i915 = to_i915(display->drm);
1978 
1979 	intel_dbuf_mdclk_cdclk_ratio_update(i915,
1980 					    intel_mdclk_cdclk_ratio(display, cdclk_config),
1981 					    cdclk_config->joined_mbus);
1982 }
1983 
1984 static bool cdclk_compute_crawl_and_squash_midpoint(struct intel_display *display,
1985 						    const struct intel_cdclk_config *old_cdclk_config,
1986 						    const struct intel_cdclk_config *new_cdclk_config,
1987 						    struct intel_cdclk_config *mid_cdclk_config)
1988 {
1989 	u16 old_waveform, new_waveform, mid_waveform;
1990 	int old_div, new_div, mid_div;
1991 
1992 	/* Return if PLL is in an unknown state, force a complete disable and re-enable. */
1993 	if (cdclk_pll_is_unknown(old_cdclk_config->vco))
1994 		return false;
1995 
1996 	/* Return if both Squash and Crawl are not present */
1997 	if (!HAS_CDCLK_CRAWL(display) || !HAS_CDCLK_SQUASH(display))
1998 		return false;
1999 
2000 	old_waveform = cdclk_squash_waveform(display, old_cdclk_config->cdclk);
2001 	new_waveform = cdclk_squash_waveform(display, new_cdclk_config->cdclk);
2002 
2003 	/* Return if Squash only or Crawl only is the desired action */
2004 	if (old_cdclk_config->vco == 0 || new_cdclk_config->vco == 0 ||
2005 	    old_cdclk_config->vco == new_cdclk_config->vco ||
2006 	    old_waveform == new_waveform)
2007 		return false;
2008 
2009 	old_div = cdclk_divider(old_cdclk_config->cdclk,
2010 				old_cdclk_config->vco, old_waveform);
2011 	new_div = cdclk_divider(new_cdclk_config->cdclk,
2012 				new_cdclk_config->vco, new_waveform);
2013 
2014 	/*
2015 	 * Should not happen currently. We might need more midpoint
2016 	 * transitions if we need to also change the cd2x divider.
2017 	 */
2018 	if (drm_WARN_ON(display->drm, old_div != new_div))
2019 		return false;
2020 
2021 	*mid_cdclk_config = *new_cdclk_config;
2022 
2023 	/*
2024 	 * Populate the mid_cdclk_config accordingly.
2025 	 * - If moving to a higher cdclk, the desired action is squashing.
2026 	 * The mid cdclk config should have the new (squash) waveform.
2027 	 * - If moving to a lower cdclk, the desired action is crawling.
2028 	 * The mid cdclk config should have the new vco.
2029 	 */
2030 
2031 	if (cdclk_squash_divider(new_waveform) > cdclk_squash_divider(old_waveform)) {
2032 		mid_cdclk_config->vco = old_cdclk_config->vco;
2033 		mid_div = old_div;
2034 		mid_waveform = new_waveform;
2035 	} else {
2036 		mid_cdclk_config->vco = new_cdclk_config->vco;
2037 		mid_div = new_div;
2038 		mid_waveform = old_waveform;
2039 	}
2040 
2041 	mid_cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_squash_divider(mid_waveform) *
2042 						    mid_cdclk_config->vco,
2043 						    cdclk_squash_len * mid_div);
2044 
2045 	/* make sure the mid clock came out sane */
2046 
2047 	drm_WARN_ON(display->drm, mid_cdclk_config->cdclk <
2048 		    min(old_cdclk_config->cdclk, new_cdclk_config->cdclk));
2049 	drm_WARN_ON(display->drm, mid_cdclk_config->cdclk >
2050 		    display->cdclk.max_cdclk_freq);
2051 	drm_WARN_ON(display->drm, cdclk_squash_waveform(display, mid_cdclk_config->cdclk) !=
2052 		    mid_waveform);
2053 
2054 	return true;
2055 }
2056 
2057 static bool pll_enable_wa_needed(struct intel_display *display)
2058 {
2059 	struct drm_i915_private *dev_priv = to_i915(display->drm);
2060 
2061 	return (DISPLAY_VERx100(display) == 2000 ||
2062 		DISPLAY_VERx100(display) == 1400 ||
2063 		IS_DG2(dev_priv)) &&
2064 		display->cdclk.hw.vco > 0;
2065 }
2066 
2067 static u32 bxt_cdclk_ctl(struct intel_display *display,
2068 			 const struct intel_cdclk_config *cdclk_config,
2069 			 enum pipe pipe)
2070 {
2071 	struct drm_i915_private *i915 = to_i915(display->drm);
2072 	int cdclk = cdclk_config->cdclk;
2073 	int vco = cdclk_config->vco;
2074 	u16 waveform;
2075 	u32 val;
2076 
2077 	waveform = cdclk_squash_waveform(display, cdclk);
2078 
2079 	val = bxt_cdclk_cd2x_div_sel(display, cdclk, vco, waveform) |
2080 		bxt_cdclk_cd2x_pipe(display, pipe);
2081 
2082 	/*
2083 	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
2084 	 * enable otherwise.
2085 	 */
2086 	if ((IS_GEMINILAKE(i915) || IS_BROXTON(i915)) &&
2087 	    cdclk >= 500000)
2088 		val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
2089 
2090 	if (DISPLAY_VER(display) >= 20)
2091 		val |= xe2lpd_mdclk_source_sel(display);
2092 	else
2093 		val |= skl_cdclk_decimal(cdclk);
2094 
2095 	return val;
2096 }
2097 
2098 static void _bxt_set_cdclk(struct intel_display *display,
2099 			   const struct intel_cdclk_config *cdclk_config,
2100 			   enum pipe pipe)
2101 {
2102 	int cdclk = cdclk_config->cdclk;
2103 	int vco = cdclk_config->vco;
2104 
2105 	if (HAS_CDCLK_CRAWL(display) && display->cdclk.hw.vco > 0 && vco > 0 &&
2106 	    !cdclk_pll_is_unknown(display->cdclk.hw.vco)) {
2107 		if (display->cdclk.hw.vco != vco)
2108 			adlp_cdclk_pll_crawl(display, vco);
2109 	} else if (DISPLAY_VER(display) >= 11) {
2110 		/* wa_15010685871: dg2, mtl */
2111 		if (pll_enable_wa_needed(display))
2112 			dg2_cdclk_squash_program(display, 0);
2113 
2114 		icl_cdclk_pll_update(display, vco);
2115 	} else {
2116 		bxt_cdclk_pll_update(display, vco);
2117 	}
2118 
2119 	if (HAS_CDCLK_SQUASH(display)) {
2120 		u16 waveform = cdclk_squash_waveform(display, cdclk);
2121 
2122 		dg2_cdclk_squash_program(display, waveform);
2123 	}
2124 
2125 	intel_de_write(display, CDCLK_CTL, bxt_cdclk_ctl(display, cdclk_config, pipe));
2126 
2127 	if (pipe != INVALID_PIPE)
2128 		intel_crtc_wait_for_next_vblank(intel_crtc_for_pipe(display, pipe));
2129 }
2130 
2131 static void bxt_set_cdclk(struct intel_display *display,
2132 			  const struct intel_cdclk_config *cdclk_config,
2133 			  enum pipe pipe)
2134 {
2135 	struct drm_i915_private *dev_priv = to_i915(display->drm);
2136 	struct intel_cdclk_config mid_cdclk_config;
2137 	int cdclk = cdclk_config->cdclk;
2138 	int ret = 0;
2139 
2140 	/*
2141 	 * Inform power controller of upcoming frequency change.
2142 	 * Display versions 14 and beyond do not follow the PUnit
2143 	 * mailbox communication, skip
2144 	 * this step.
2145 	 */
2146 	if (DISPLAY_VER(display) >= 14 || IS_DG2(dev_priv))
2147 		/* NOOP */;
2148 	else if (DISPLAY_VER(display) >= 11)
2149 		ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
2150 					SKL_CDCLK_PREPARE_FOR_CHANGE,
2151 					SKL_CDCLK_READY_FOR_CHANGE,
2152 					SKL_CDCLK_READY_FOR_CHANGE, 3);
2153 	else
2154 		/*
2155 		 * BSpec requires us to wait up to 150usec, but that leads to
2156 		 * timeouts; the 2ms used here is based on experiment.
2157 		 */
2158 		ret = snb_pcode_write_timeout(&dev_priv->uncore,
2159 					      HSW_PCODE_DE_WRITE_FREQ_REQ,
2160 					      0x80000000, 150, 2);
2161 
2162 	if (ret) {
2163 		drm_err(display->drm,
2164 			"Failed to inform PCU about cdclk change (err %d, freq %d)\n",
2165 			ret, cdclk);
2166 		return;
2167 	}
2168 
2169 	if (DISPLAY_VER(display) >= 20 && cdclk < display->cdclk.hw.cdclk)
2170 		xe2lpd_mdclk_cdclk_ratio_program(display, cdclk_config);
2171 
2172 	if (cdclk_compute_crawl_and_squash_midpoint(display, &display->cdclk.hw,
2173 						    cdclk_config, &mid_cdclk_config)) {
2174 		_bxt_set_cdclk(display, &mid_cdclk_config, pipe);
2175 		_bxt_set_cdclk(display, cdclk_config, pipe);
2176 	} else {
2177 		_bxt_set_cdclk(display, cdclk_config, pipe);
2178 	}
2179 
2180 	if (DISPLAY_VER(display) >= 20 && cdclk > display->cdclk.hw.cdclk)
2181 		xe2lpd_mdclk_cdclk_ratio_program(display, cdclk_config);
2182 
2183 	if (DISPLAY_VER(display) >= 14)
2184 		/*
2185 		 * NOOP - No Pcode communication needed for
2186 		 * Display versions 14 and beyond
2187 		 */;
2188 	else if (DISPLAY_VER(display) >= 11 && !IS_DG2(dev_priv))
2189 		ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
2190 				      cdclk_config->voltage_level);
2191 	if (DISPLAY_VER(display) < 11) {
2192 		/*
2193 		 * The timeout isn't specified, the 2ms used here is based on
2194 		 * experiment.
2195 		 * FIXME: Waiting for the request completion could be delayed
2196 		 * until the next PCODE request based on BSpec.
2197 		 */
2198 		ret = snb_pcode_write_timeout(&dev_priv->uncore,
2199 					      HSW_PCODE_DE_WRITE_FREQ_REQ,
2200 					      cdclk_config->voltage_level,
2201 					      150, 2);
2202 	}
2203 	if (ret) {
2204 		drm_err(display->drm,
2205 			"PCode CDCLK freq set failed, (err %d, freq %d)\n",
2206 			ret, cdclk);
2207 		return;
2208 	}
2209 
2210 	intel_update_cdclk(display);
2211 
2212 	if (DISPLAY_VER(display) >= 11)
2213 		/*
2214 		 * Can't read out the voltage level :(
2215 		 * Let's just assume everything is as expected.
2216 		 */
2217 		display->cdclk.hw.voltage_level = cdclk_config->voltage_level;
2218 }
2219 
2220 static void bxt_sanitize_cdclk(struct intel_display *display)
2221 {
2222 	u32 cdctl, expected;
2223 	int cdclk, vco;
2224 
2225 	intel_update_cdclk(display);
2226 	intel_cdclk_dump_config(display, &display->cdclk.hw, "Current CDCLK");
2227 
2228 	if (display->cdclk.hw.vco == 0 ||
2229 	    display->cdclk.hw.cdclk == display->cdclk.hw.bypass)
2230 		goto sanitize;
2231 
2232 	/* Make sure this is a legal cdclk value for the platform */
2233 	cdclk = bxt_calc_cdclk(display, display->cdclk.hw.cdclk);
2234 	if (cdclk != display->cdclk.hw.cdclk)
2235 		goto sanitize;
2236 
2237 	/* Make sure the VCO is correct for the cdclk */
2238 	vco = bxt_calc_cdclk_pll_vco(display, cdclk);
2239 	if (vco != display->cdclk.hw.vco)
2240 		goto sanitize;
2241 
2242 	/*
2243 	 * Some BIOS versions leave an incorrect decimal frequency value and
2244 	 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
2245 	 * so sanitize this register.
2246 	 */
2247 	cdctl = intel_de_read(display, CDCLK_CTL);
2248 	expected = bxt_cdclk_ctl(display, &display->cdclk.hw, INVALID_PIPE);
2249 
2250 	/*
2251 	 * Let's ignore the pipe field, since BIOS could have configured the
2252 	 * dividers both synching to an active pipe, or asynchronously
2253 	 * (PIPE_NONE).
2254 	 */
2255 	cdctl &= ~bxt_cdclk_cd2x_pipe(display, INVALID_PIPE);
2256 	expected &= ~bxt_cdclk_cd2x_pipe(display, INVALID_PIPE);
2257 
2258 	if (cdctl == expected)
2259 		/* All well; nothing to sanitize */
2260 		return;
2261 
2262 sanitize:
2263 	drm_dbg_kms(display->drm, "Sanitizing cdclk programmed by pre-os\n");
2264 
2265 	/* force cdclk programming */
2266 	display->cdclk.hw.cdclk = 0;
2267 
2268 	/* force full PLL disable + enable */
2269 	display->cdclk.hw.vco = ~0;
2270 }
2271 
2272 static void bxt_cdclk_init_hw(struct intel_display *display)
2273 {
2274 	struct intel_cdclk_config cdclk_config;
2275 
2276 	bxt_sanitize_cdclk(display);
2277 
2278 	if (display->cdclk.hw.cdclk != 0 &&
2279 	    display->cdclk.hw.vco != 0)
2280 		return;
2281 
2282 	cdclk_config = display->cdclk.hw;
2283 
2284 	/*
2285 	 * FIXME:
2286 	 * - The initial CDCLK needs to be read from VBT.
2287 	 *   Need to make this change after VBT has changes for BXT.
2288 	 */
2289 	cdclk_config.cdclk = bxt_calc_cdclk(display, 0);
2290 	cdclk_config.vco = bxt_calc_cdclk_pll_vco(display, cdclk_config.cdclk);
2291 	cdclk_config.voltage_level =
2292 		intel_cdclk_calc_voltage_level(display, cdclk_config.cdclk);
2293 
2294 	bxt_set_cdclk(display, &cdclk_config, INVALID_PIPE);
2295 }
2296 
2297 static void bxt_cdclk_uninit_hw(struct intel_display *display)
2298 {
2299 	struct intel_cdclk_config cdclk_config = display->cdclk.hw;
2300 
2301 	cdclk_config.cdclk = cdclk_config.bypass;
2302 	cdclk_config.vco = 0;
2303 	cdclk_config.voltage_level =
2304 		intel_cdclk_calc_voltage_level(display, cdclk_config.cdclk);
2305 
2306 	bxt_set_cdclk(display, &cdclk_config, INVALID_PIPE);
2307 }
2308 
2309 /**
2310  * intel_cdclk_init_hw - Initialize CDCLK hardware
2311  * @display: display instance
2312  *
2313  * Initialize CDCLK. This consists mainly of initializing display->cdclk.hw and
2314  * sanitizing the state of the hardware if needed. This is generally done only
2315  * during the display core initialization sequence, after which the DMC will
2316  * take care of turning CDCLK off/on as needed.
2317  */
2318 void intel_cdclk_init_hw(struct intel_display *display)
2319 {
2320 	struct drm_i915_private *i915 = to_i915(display->drm);
2321 
2322 	if (DISPLAY_VER(display) >= 10 || IS_BROXTON(i915))
2323 		bxt_cdclk_init_hw(display);
2324 	else if (DISPLAY_VER(display) == 9)
2325 		skl_cdclk_init_hw(display);
2326 }
2327 
2328 /**
2329  * intel_cdclk_uninit_hw - Uninitialize CDCLK hardware
2330  * @display: display instance
2331  *
2332  * Uninitialize CDCLK. This is done only during the display core
2333  * uninitialization sequence.
2334  */
2335 void intel_cdclk_uninit_hw(struct intel_display *display)
2336 {
2337 	struct drm_i915_private *i915 = to_i915(display->drm);
2338 
2339 	if (DISPLAY_VER(display) >= 10 || IS_BROXTON(i915))
2340 		bxt_cdclk_uninit_hw(display);
2341 	else if (DISPLAY_VER(display) == 9)
2342 		skl_cdclk_uninit_hw(display);
2343 }
2344 
2345 static bool intel_cdclk_can_crawl_and_squash(struct intel_display *display,
2346 					     const struct intel_cdclk_config *a,
2347 					     const struct intel_cdclk_config *b)
2348 {
2349 	u16 old_waveform;
2350 	u16 new_waveform;
2351 
2352 	drm_WARN_ON(display->drm, cdclk_pll_is_unknown(a->vco));
2353 
2354 	if (a->vco == 0 || b->vco == 0)
2355 		return false;
2356 
2357 	if (!HAS_CDCLK_CRAWL(display) || !HAS_CDCLK_SQUASH(display))
2358 		return false;
2359 
2360 	old_waveform = cdclk_squash_waveform(display, a->cdclk);
2361 	new_waveform = cdclk_squash_waveform(display, b->cdclk);
2362 
2363 	return a->vco != b->vco &&
2364 	       old_waveform != new_waveform;
2365 }
2366 
2367 static bool intel_cdclk_can_crawl(struct intel_display *display,
2368 				  const struct intel_cdclk_config *a,
2369 				  const struct intel_cdclk_config *b)
2370 {
2371 	int a_div, b_div;
2372 
2373 	if (!HAS_CDCLK_CRAWL(display))
2374 		return false;
2375 
2376 	/*
2377 	 * The vco and cd2x divider will change independently
2378 	 * from each, so we disallow cd2x change when crawling.
2379 	 */
2380 	a_div = DIV_ROUND_CLOSEST(a->vco, a->cdclk);
2381 	b_div = DIV_ROUND_CLOSEST(b->vco, b->cdclk);
2382 
2383 	return a->vco != 0 && b->vco != 0 &&
2384 		a->vco != b->vco &&
2385 		a_div == b_div &&
2386 		a->ref == b->ref;
2387 }
2388 
2389 static bool intel_cdclk_can_squash(struct intel_display *display,
2390 				   const struct intel_cdclk_config *a,
2391 				   const struct intel_cdclk_config *b)
2392 {
2393 	/*
2394 	 * FIXME should store a bit more state in intel_cdclk_config
2395 	 * to differentiate squasher vs. cd2x divider properly. For
2396 	 * the moment all platforms with squasher use a fixed cd2x
2397 	 * divider.
2398 	 */
2399 	if (!HAS_CDCLK_SQUASH(display))
2400 		return false;
2401 
2402 	return a->cdclk != b->cdclk &&
2403 		a->vco != 0 &&
2404 		a->vco == b->vco &&
2405 		a->ref == b->ref;
2406 }
2407 
2408 /**
2409  * intel_cdclk_clock_changed - Check whether the clock changed
2410  * @a: first CDCLK configuration
2411  * @b: second CDCLK configuration
2412  *
2413  * Returns:
2414  * True if CDCLK changed in a way that requires re-programming and
2415  * False otherwise.
2416  */
2417 bool intel_cdclk_clock_changed(const struct intel_cdclk_config *a,
2418 			       const struct intel_cdclk_config *b)
2419 {
2420 	return a->cdclk != b->cdclk ||
2421 		a->vco != b->vco ||
2422 		a->ref != b->ref;
2423 }
2424 
2425 /**
2426  * intel_cdclk_can_cd2x_update - Determine if changing between the two CDCLK
2427  *                               configurations requires only a cd2x divider update
2428  * @display: display instance
2429  * @a: first CDCLK configuration
2430  * @b: second CDCLK configuration
2431  *
2432  * Returns:
2433  * True if changing between the two CDCLK configurations
2434  * can be done with just a cd2x divider update, false if not.
2435  */
2436 static bool intel_cdclk_can_cd2x_update(struct intel_display *display,
2437 					const struct intel_cdclk_config *a,
2438 					const struct intel_cdclk_config *b)
2439 {
2440 	struct drm_i915_private *dev_priv = to_i915(display->drm);
2441 
2442 	/* Older hw doesn't have the capability */
2443 	if (DISPLAY_VER(display) < 10 && !IS_BROXTON(dev_priv))
2444 		return false;
2445 
2446 	/*
2447 	 * FIXME should store a bit more state in intel_cdclk_config
2448 	 * to differentiate squasher vs. cd2x divider properly. For
2449 	 * the moment all platforms with squasher use a fixed cd2x
2450 	 * divider.
2451 	 */
2452 	if (HAS_CDCLK_SQUASH(display))
2453 		return false;
2454 
2455 	return a->cdclk != b->cdclk &&
2456 		a->vco != 0 &&
2457 		a->vco == b->vco &&
2458 		a->ref == b->ref;
2459 }
2460 
2461 /**
2462  * intel_cdclk_changed - Determine if two CDCLK configurations are different
2463  * @a: first CDCLK configuration
2464  * @b: second CDCLK configuration
2465  *
2466  * Returns:
2467  * True if the CDCLK configurations don't match, false if they do.
2468  */
2469 static bool intel_cdclk_changed(const struct intel_cdclk_config *a,
2470 				const struct intel_cdclk_config *b)
2471 {
2472 	return intel_cdclk_clock_changed(a, b) ||
2473 		a->voltage_level != b->voltage_level;
2474 }
2475 
2476 void intel_cdclk_dump_config(struct intel_display *display,
2477 			     const struct intel_cdclk_config *cdclk_config,
2478 			     const char *context)
2479 {
2480 	drm_dbg_kms(display->drm, "%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n",
2481 		    context, cdclk_config->cdclk, cdclk_config->vco,
2482 		    cdclk_config->ref, cdclk_config->bypass,
2483 		    cdclk_config->voltage_level);
2484 }
2485 
2486 static void intel_pcode_notify(struct intel_display *display,
2487 			       u8 voltage_level,
2488 			       u8 active_pipe_count,
2489 			       u16 cdclk,
2490 			       bool cdclk_update_valid,
2491 			       bool pipe_count_update_valid)
2492 {
2493 	struct drm_i915_private *i915 = to_i915(display->drm);
2494 	int ret;
2495 	u32 update_mask = 0;
2496 
2497 	if (!IS_DG2(i915))
2498 		return;
2499 
2500 	update_mask = DISPLAY_TO_PCODE_UPDATE_MASK(cdclk, active_pipe_count, voltage_level);
2501 
2502 	if (cdclk_update_valid)
2503 		update_mask |= DISPLAY_TO_PCODE_CDCLK_VALID;
2504 
2505 	if (pipe_count_update_valid)
2506 		update_mask |= DISPLAY_TO_PCODE_PIPE_COUNT_VALID;
2507 
2508 	ret = skl_pcode_request(&i915->uncore, SKL_PCODE_CDCLK_CONTROL,
2509 				SKL_CDCLK_PREPARE_FOR_CHANGE |
2510 				update_mask,
2511 				SKL_CDCLK_READY_FOR_CHANGE,
2512 				SKL_CDCLK_READY_FOR_CHANGE, 3);
2513 	if (ret)
2514 		drm_err(display->drm,
2515 			"Failed to inform PCU about display config (err %d)\n",
2516 			ret);
2517 }
2518 
2519 static void intel_set_cdclk(struct intel_display *display,
2520 			    const struct intel_cdclk_config *cdclk_config,
2521 			    enum pipe pipe, const char *context)
2522 {
2523 	struct drm_i915_private *dev_priv = to_i915(display->drm);
2524 	struct intel_encoder *encoder;
2525 
2526 	if (!intel_cdclk_changed(&display->cdclk.hw, cdclk_config))
2527 		return;
2528 
2529 	if (drm_WARN_ON_ONCE(display->drm, !display->funcs.cdclk->set_cdclk))
2530 		return;
2531 
2532 	intel_cdclk_dump_config(display, cdclk_config, context);
2533 
2534 	for_each_intel_encoder_with_psr(display->drm, encoder) {
2535 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2536 
2537 		intel_psr_pause(intel_dp);
2538 	}
2539 
2540 	intel_audio_cdclk_change_pre(dev_priv);
2541 
2542 	/*
2543 	 * Lock aux/gmbus while we change cdclk in case those
2544 	 * functions use cdclk. Not all platforms/ports do,
2545 	 * but we'll lock them all for simplicity.
2546 	 */
2547 	mutex_lock(&display->gmbus.mutex);
2548 	for_each_intel_dp(display->drm, encoder) {
2549 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2550 
2551 		mutex_lock_nest_lock(&intel_dp->aux.hw_mutex,
2552 				     &display->gmbus.mutex);
2553 	}
2554 
2555 	intel_cdclk_set_cdclk(display, cdclk_config, pipe);
2556 
2557 	for_each_intel_dp(display->drm, encoder) {
2558 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2559 
2560 		mutex_unlock(&intel_dp->aux.hw_mutex);
2561 	}
2562 	mutex_unlock(&display->gmbus.mutex);
2563 
2564 	for_each_intel_encoder_with_psr(display->drm, encoder) {
2565 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2566 
2567 		intel_psr_resume(intel_dp);
2568 	}
2569 
2570 	intel_audio_cdclk_change_post(dev_priv);
2571 
2572 	if (drm_WARN(display->drm,
2573 		     intel_cdclk_changed(&display->cdclk.hw, cdclk_config),
2574 		     "cdclk state doesn't match!\n")) {
2575 		intel_cdclk_dump_config(display, &display->cdclk.hw, "[hw state]");
2576 		intel_cdclk_dump_config(display, cdclk_config, "[sw state]");
2577 	}
2578 }
2579 
2580 static void intel_cdclk_pcode_pre_notify(struct intel_atomic_state *state)
2581 {
2582 	struct intel_display *display = to_intel_display(state);
2583 	const struct intel_cdclk_state *old_cdclk_state =
2584 		intel_atomic_get_old_cdclk_state(state);
2585 	const struct intel_cdclk_state *new_cdclk_state =
2586 		intel_atomic_get_new_cdclk_state(state);
2587 	unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0;
2588 	bool change_cdclk, update_pipe_count;
2589 
2590 	if (!intel_cdclk_changed(&old_cdclk_state->actual,
2591 				 &new_cdclk_state->actual) &&
2592 				 new_cdclk_state->active_pipes ==
2593 				 old_cdclk_state->active_pipes)
2594 		return;
2595 
2596 	/* According to "Sequence Before Frequency Change", voltage level set to 0x3 */
2597 	voltage_level = DISPLAY_TO_PCODE_VOLTAGE_MAX;
2598 
2599 	change_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk;
2600 	update_pipe_count = hweight8(new_cdclk_state->active_pipes) >
2601 			    hweight8(old_cdclk_state->active_pipes);
2602 
2603 	/*
2604 	 * According to "Sequence Before Frequency Change",
2605 	 * if CDCLK is increasing, set bits 25:16 to upcoming CDCLK,
2606 	 * if CDCLK is decreasing or not changing, set bits 25:16 to current CDCLK,
2607 	 * which basically means we choose the maximum of old and new CDCLK, if we know both
2608 	 */
2609 	if (change_cdclk)
2610 		cdclk = max(new_cdclk_state->actual.cdclk, old_cdclk_state->actual.cdclk);
2611 
2612 	/*
2613 	 * According to "Sequence For Pipe Count Change",
2614 	 * if pipe count is increasing, set bits 25:16 to upcoming pipe count
2615 	 * (power well is enabled)
2616 	 * no action if it is decreasing, before the change
2617 	 */
2618 	if (update_pipe_count)
2619 		num_active_pipes = hweight8(new_cdclk_state->active_pipes);
2620 
2621 	intel_pcode_notify(display, voltage_level, num_active_pipes, cdclk,
2622 			   change_cdclk, update_pipe_count);
2623 }
2624 
2625 static void intel_cdclk_pcode_post_notify(struct intel_atomic_state *state)
2626 {
2627 	struct intel_display *display = to_intel_display(state);
2628 	const struct intel_cdclk_state *new_cdclk_state =
2629 		intel_atomic_get_new_cdclk_state(state);
2630 	const struct intel_cdclk_state *old_cdclk_state =
2631 		intel_atomic_get_old_cdclk_state(state);
2632 	unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0;
2633 	bool update_cdclk, update_pipe_count;
2634 
2635 	/* According to "Sequence After Frequency Change", set voltage to used level */
2636 	voltage_level = new_cdclk_state->actual.voltage_level;
2637 
2638 	update_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk;
2639 	update_pipe_count = hweight8(new_cdclk_state->active_pipes) <
2640 			    hweight8(old_cdclk_state->active_pipes);
2641 
2642 	/*
2643 	 * According to "Sequence After Frequency Change",
2644 	 * set bits 25:16 to current CDCLK
2645 	 */
2646 	if (update_cdclk)
2647 		cdclk = new_cdclk_state->actual.cdclk;
2648 
2649 	/*
2650 	 * According to "Sequence For Pipe Count Change",
2651 	 * if pipe count is decreasing, set bits 25:16 to current pipe count,
2652 	 * after the change(power well is disabled)
2653 	 * no action if it is increasing, after the change
2654 	 */
2655 	if (update_pipe_count)
2656 		num_active_pipes = hweight8(new_cdclk_state->active_pipes);
2657 
2658 	intel_pcode_notify(display, voltage_level, num_active_pipes, cdclk,
2659 			   update_cdclk, update_pipe_count);
2660 }
2661 
2662 bool intel_cdclk_is_decreasing_later(struct intel_atomic_state *state)
2663 {
2664 	const struct intel_cdclk_state *old_cdclk_state =
2665 		intel_atomic_get_old_cdclk_state(state);
2666 	const struct intel_cdclk_state *new_cdclk_state =
2667 		intel_atomic_get_new_cdclk_state(state);
2668 
2669 	return new_cdclk_state && !new_cdclk_state->disable_pipes &&
2670 		new_cdclk_state->actual.cdclk < old_cdclk_state->actual.cdclk;
2671 }
2672 
2673 /**
2674  * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware
2675  * @state: intel atomic state
2676  *
2677  * Program the hardware before updating the HW plane state based on the
2678  * new CDCLK state, if necessary.
2679  */
2680 void
2681 intel_set_cdclk_pre_plane_update(struct intel_atomic_state *state)
2682 {
2683 	struct intel_display *display = to_intel_display(state);
2684 	struct drm_i915_private *i915 = to_i915(display->drm);
2685 	const struct intel_cdclk_state *old_cdclk_state =
2686 		intel_atomic_get_old_cdclk_state(state);
2687 	const struct intel_cdclk_state *new_cdclk_state =
2688 		intel_atomic_get_new_cdclk_state(state);
2689 	struct intel_cdclk_config cdclk_config;
2690 	enum pipe pipe;
2691 
2692 	if (!intel_cdclk_changed(&old_cdclk_state->actual,
2693 				 &new_cdclk_state->actual))
2694 		return;
2695 
2696 	if (IS_DG2(i915))
2697 		intel_cdclk_pcode_pre_notify(state);
2698 
2699 	if (new_cdclk_state->disable_pipes) {
2700 		cdclk_config = new_cdclk_state->actual;
2701 		pipe = INVALID_PIPE;
2702 	} else {
2703 		if (new_cdclk_state->actual.cdclk >= old_cdclk_state->actual.cdclk) {
2704 			cdclk_config = new_cdclk_state->actual;
2705 			pipe = new_cdclk_state->pipe;
2706 		} else {
2707 			cdclk_config = old_cdclk_state->actual;
2708 			pipe = INVALID_PIPE;
2709 		}
2710 
2711 		cdclk_config.voltage_level = max(new_cdclk_state->actual.voltage_level,
2712 						 old_cdclk_state->actual.voltage_level);
2713 	}
2714 
2715 	/*
2716 	 * mbus joining will be changed later by
2717 	 * intel_dbuf_mbus_{pre,post}_ddb_update()
2718 	 */
2719 	cdclk_config.joined_mbus = old_cdclk_state->actual.joined_mbus;
2720 
2721 	drm_WARN_ON(display->drm, !new_cdclk_state->base.changed);
2722 
2723 	intel_set_cdclk(display, &cdclk_config, pipe,
2724 			"Pre changing CDCLK to");
2725 }
2726 
2727 /**
2728  * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware
2729  * @state: intel atomic state
2730  *
2731  * Program the hardware after updating the HW plane state based on the
2732  * new CDCLK state, if necessary.
2733  */
2734 void
2735 intel_set_cdclk_post_plane_update(struct intel_atomic_state *state)
2736 {
2737 	struct intel_display *display = to_intel_display(state);
2738 	struct drm_i915_private *i915 = to_i915(display->drm);
2739 	const struct intel_cdclk_state *old_cdclk_state =
2740 		intel_atomic_get_old_cdclk_state(state);
2741 	const struct intel_cdclk_state *new_cdclk_state =
2742 		intel_atomic_get_new_cdclk_state(state);
2743 	enum pipe pipe;
2744 
2745 	if (!intel_cdclk_changed(&old_cdclk_state->actual,
2746 				 &new_cdclk_state->actual))
2747 		return;
2748 
2749 	if (IS_DG2(i915))
2750 		intel_cdclk_pcode_post_notify(state);
2751 
2752 	if (!new_cdclk_state->disable_pipes &&
2753 	    new_cdclk_state->actual.cdclk < old_cdclk_state->actual.cdclk)
2754 		pipe = new_cdclk_state->pipe;
2755 	else
2756 		pipe = INVALID_PIPE;
2757 
2758 	drm_WARN_ON(display->drm, !new_cdclk_state->base.changed);
2759 
2760 	intel_set_cdclk(display, &new_cdclk_state->actual, pipe,
2761 			"Post changing CDCLK to");
2762 }
2763 
2764 static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state)
2765 {
2766 	struct intel_display *display = to_intel_display(crtc_state);
2767 	struct drm_i915_private *dev_priv = to_i915(display->drm);
2768 	int pixel_rate = crtc_state->pixel_rate;
2769 
2770 	if (DISPLAY_VER(display) >= 10)
2771 		return DIV_ROUND_UP(pixel_rate, 2);
2772 	else if (DISPLAY_VER(display) == 9 ||
2773 		 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2774 		return pixel_rate;
2775 	else if (IS_CHERRYVIEW(dev_priv))
2776 		return DIV_ROUND_UP(pixel_rate * 100, 95);
2777 	else if (crtc_state->double_wide)
2778 		return DIV_ROUND_UP(pixel_rate * 100, 90 * 2);
2779 	else
2780 		return DIV_ROUND_UP(pixel_rate * 100, 90);
2781 }
2782 
2783 static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state)
2784 {
2785 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2786 	struct intel_display *display = to_intel_display(crtc);
2787 	struct intel_plane *plane;
2788 	int min_cdclk = 0;
2789 
2790 	for_each_intel_plane_on_crtc(display->drm, crtc, plane)
2791 		min_cdclk = max(crtc_state->min_cdclk[plane->id], min_cdclk);
2792 
2793 	return min_cdclk;
2794 }
2795 
2796 static int intel_vdsc_min_cdclk(const struct intel_crtc_state *crtc_state)
2797 {
2798 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2799 	struct intel_display *display = to_intel_display(crtc);
2800 	int num_vdsc_instances = intel_dsc_get_num_vdsc_instances(crtc_state);
2801 	int min_cdclk = 0;
2802 
2803 	/*
2804 	 * When we decide to use only one VDSC engine, since
2805 	 * each VDSC operates with 1 ppc throughput, pixel clock
2806 	 * cannot be higher than the VDSC clock (cdclk)
2807 	 * If there 2 VDSC engines, then pixel clock can't be higher than
2808 	 * VDSC clock(cdclk) * 2 and so on.
2809 	 */
2810 	min_cdclk = max_t(int, min_cdclk,
2811 			  DIV_ROUND_UP(crtc_state->pixel_rate, num_vdsc_instances));
2812 
2813 	if (crtc_state->joiner_pipes) {
2814 		int pixel_clock = intel_dp_mode_to_fec_clock(crtc_state->hw.adjusted_mode.clock);
2815 
2816 		/*
2817 		 * According to Bigjoiner bw check:
2818 		 * compressed_bpp <= PPC * CDCLK * Big joiner Interface bits / Pixel clock
2819 		 *
2820 		 * We have already computed compressed_bpp, so now compute the min CDCLK that
2821 		 * is required to support this compressed_bpp.
2822 		 *
2823 		 * => CDCLK >= compressed_bpp * Pixel clock / (PPC * Bigjoiner Interface bits)
2824 		 *
2825 		 * Since PPC = 2 with bigjoiner
2826 		 * => CDCLK >= compressed_bpp * Pixel clock  / 2 * Bigjoiner Interface bits
2827 		 */
2828 		int bigjoiner_interface_bits = DISPLAY_VER(display) >= 14 ? 36 : 24;
2829 		int min_cdclk_bj =
2830 			(fxp_q4_to_int_roundup(crtc_state->dsc.compressed_bpp_x16) *
2831 			 pixel_clock) / (2 * bigjoiner_interface_bits);
2832 
2833 		min_cdclk = max(min_cdclk, min_cdclk_bj);
2834 	}
2835 
2836 	return min_cdclk;
2837 }
2838 
2839 int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state)
2840 {
2841 	struct intel_display *display = to_intel_display(crtc_state);
2842 	struct drm_i915_private *dev_priv = to_i915(display->drm);
2843 	int min_cdclk;
2844 
2845 	if (!crtc_state->hw.enable)
2846 		return 0;
2847 
2848 	min_cdclk = intel_pixel_rate_to_cdclk(crtc_state);
2849 
2850 	/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
2851 	if (IS_BROADWELL(dev_priv) && hsw_crtc_state_ips_capable(crtc_state))
2852 		min_cdclk = DIV_ROUND_UP(min_cdclk * 100, 95);
2853 
2854 	/* BSpec says "Do not use DisplayPort with CDCLK less than 432 MHz,
2855 	 * audio enabled, port width x4, and link rate HBR2 (5.4 GHz), or else
2856 	 * there may be audio corruption or screen corruption." This cdclk
2857 	 * restriction for GLK is 316.8 MHz.
2858 	 */
2859 	if (intel_crtc_has_dp_encoder(crtc_state) &&
2860 	    crtc_state->has_audio &&
2861 	    crtc_state->port_clock >= 540000 &&
2862 	    crtc_state->lane_count == 4) {
2863 		if (DISPLAY_VER(display) == 10) {
2864 			/* Display WA #1145: glk */
2865 			min_cdclk = max(316800, min_cdclk);
2866 		} else if (DISPLAY_VER(display) == 9 || IS_BROADWELL(dev_priv)) {
2867 			/* Display WA #1144: skl,bxt */
2868 			min_cdclk = max(432000, min_cdclk);
2869 		}
2870 	}
2871 
2872 	/*
2873 	 * According to BSpec, "The CD clock frequency must be at least twice
2874 	 * the frequency of the Azalia BCLK." and BCLK is 96 MHz by default.
2875 	 */
2876 	if (crtc_state->has_audio && DISPLAY_VER(display) >= 9)
2877 		min_cdclk = max(2 * 96000, min_cdclk);
2878 
2879 	/*
2880 	 * "For DP audio configuration, cdclk frequency shall be set to
2881 	 *  meet the following requirements:
2882 	 *  DP Link Frequency(MHz) | Cdclk frequency(MHz)
2883 	 *  270                    | 320 or higher
2884 	 *  162                    | 200 or higher"
2885 	 */
2886 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
2887 	    intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio)
2888 		min_cdclk = max(crtc_state->port_clock, min_cdclk);
2889 
2890 	/*
2891 	 * On Valleyview some DSI panels lose (v|h)sync when the clock is lower
2892 	 * than 320000KHz.
2893 	 */
2894 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
2895 	    IS_VALLEYVIEW(dev_priv))
2896 		min_cdclk = max(320000, min_cdclk);
2897 
2898 	/*
2899 	 * On Geminilake once the CDCLK gets as low as 79200
2900 	 * picture gets unstable, despite that values are
2901 	 * correct for DSI PLL and DE PLL.
2902 	 */
2903 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
2904 	    IS_GEMINILAKE(dev_priv))
2905 		min_cdclk = max(158400, min_cdclk);
2906 
2907 	/* Account for additional needs from the planes */
2908 	min_cdclk = max(intel_planes_min_cdclk(crtc_state), min_cdclk);
2909 
2910 	if (crtc_state->dsc.compression_enable)
2911 		min_cdclk = max(min_cdclk, intel_vdsc_min_cdclk(crtc_state));
2912 
2913 	return min_cdclk;
2914 }
2915 
2916 static int intel_compute_min_cdclk(struct intel_atomic_state *state)
2917 {
2918 	struct intel_display *display = to_intel_display(state);
2919 	struct drm_i915_private *dev_priv = to_i915(display->drm);
2920 	struct intel_cdclk_state *cdclk_state =
2921 		intel_atomic_get_new_cdclk_state(state);
2922 	const struct intel_bw_state *bw_state;
2923 	struct intel_crtc *crtc;
2924 	struct intel_crtc_state *crtc_state;
2925 	int min_cdclk, i;
2926 	enum pipe pipe;
2927 
2928 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2929 		int ret;
2930 
2931 		min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
2932 		if (min_cdclk < 0)
2933 			return min_cdclk;
2934 
2935 		if (cdclk_state->min_cdclk[crtc->pipe] == min_cdclk)
2936 			continue;
2937 
2938 		cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
2939 
2940 		ret = intel_atomic_lock_global_state(&cdclk_state->base);
2941 		if (ret)
2942 			return ret;
2943 	}
2944 
2945 	bw_state = intel_atomic_get_new_bw_state(state);
2946 	if (bw_state) {
2947 		min_cdclk = intel_bw_min_cdclk(dev_priv, bw_state);
2948 
2949 		if (cdclk_state->bw_min_cdclk != min_cdclk) {
2950 			int ret;
2951 
2952 			cdclk_state->bw_min_cdclk = min_cdclk;
2953 
2954 			ret = intel_atomic_lock_global_state(&cdclk_state->base);
2955 			if (ret)
2956 				return ret;
2957 		}
2958 	}
2959 
2960 	min_cdclk = max(cdclk_state->force_min_cdclk,
2961 			cdclk_state->bw_min_cdclk);
2962 	for_each_pipe(display, pipe)
2963 		min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
2964 
2965 	/*
2966 	 * Avoid glk_force_audio_cdclk() causing excessive screen
2967 	 * blinking when multiple pipes are active by making sure
2968 	 * CDCLK frequency is always high enough for audio. With a
2969 	 * single active pipe we can always change CDCLK frequency
2970 	 * by changing the cd2x divider (see glk_cdclk_table[]) and
2971 	 * thus a full modeset won't be needed then.
2972 	 */
2973 	if (IS_GEMINILAKE(dev_priv) && cdclk_state->active_pipes &&
2974 	    !is_power_of_2(cdclk_state->active_pipes))
2975 		min_cdclk = max(2 * 96000, min_cdclk);
2976 
2977 	if (min_cdclk > display->cdclk.max_cdclk_freq) {
2978 		drm_dbg_kms(display->drm,
2979 			    "required cdclk (%d kHz) exceeds max (%d kHz)\n",
2980 			    min_cdclk, display->cdclk.max_cdclk_freq);
2981 		return -EINVAL;
2982 	}
2983 
2984 	return min_cdclk;
2985 }
2986 
2987 /*
2988  * Account for port clock min voltage level requirements.
2989  * This only really does something on DISPLA_VER >= 11 but can be
2990  * called on earlier platforms as well.
2991  *
2992  * Note that this functions assumes that 0 is
2993  * the lowest voltage value, and higher values
2994  * correspond to increasingly higher voltages.
2995  *
2996  * Should that relationship no longer hold on
2997  * future platforms this code will need to be
2998  * adjusted.
2999  */
3000 static int bxt_compute_min_voltage_level(struct intel_atomic_state *state)
3001 {
3002 	struct intel_display *display = to_intel_display(state);
3003 	struct intel_cdclk_state *cdclk_state =
3004 		intel_atomic_get_new_cdclk_state(state);
3005 	struct intel_crtc *crtc;
3006 	struct intel_crtc_state *crtc_state;
3007 	u8 min_voltage_level;
3008 	int i;
3009 	enum pipe pipe;
3010 
3011 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
3012 		int ret;
3013 
3014 		if (crtc_state->hw.enable)
3015 			min_voltage_level = crtc_state->min_voltage_level;
3016 		else
3017 			min_voltage_level = 0;
3018 
3019 		if (cdclk_state->min_voltage_level[crtc->pipe] == min_voltage_level)
3020 			continue;
3021 
3022 		cdclk_state->min_voltage_level[crtc->pipe] = min_voltage_level;
3023 
3024 		ret = intel_atomic_lock_global_state(&cdclk_state->base);
3025 		if (ret)
3026 			return ret;
3027 	}
3028 
3029 	min_voltage_level = 0;
3030 	for_each_pipe(display, pipe)
3031 		min_voltage_level = max(cdclk_state->min_voltage_level[pipe],
3032 					min_voltage_level);
3033 
3034 	return min_voltage_level;
3035 }
3036 
3037 static int vlv_modeset_calc_cdclk(struct intel_atomic_state *state)
3038 {
3039 	struct intel_display *display = to_intel_display(state);
3040 	struct intel_cdclk_state *cdclk_state =
3041 		intel_atomic_get_new_cdclk_state(state);
3042 	int min_cdclk, cdclk;
3043 
3044 	min_cdclk = intel_compute_min_cdclk(state);
3045 	if (min_cdclk < 0)
3046 		return min_cdclk;
3047 
3048 	cdclk = vlv_calc_cdclk(display, min_cdclk);
3049 
3050 	cdclk_state->logical.cdclk = cdclk;
3051 	cdclk_state->logical.voltage_level =
3052 		vlv_calc_voltage_level(display, cdclk);
3053 
3054 	if (!cdclk_state->active_pipes) {
3055 		cdclk = vlv_calc_cdclk(display, cdclk_state->force_min_cdclk);
3056 
3057 		cdclk_state->actual.cdclk = cdclk;
3058 		cdclk_state->actual.voltage_level =
3059 			vlv_calc_voltage_level(display, cdclk);
3060 	} else {
3061 		cdclk_state->actual = cdclk_state->logical;
3062 	}
3063 
3064 	return 0;
3065 }
3066 
3067 static int bdw_modeset_calc_cdclk(struct intel_atomic_state *state)
3068 {
3069 	struct intel_cdclk_state *cdclk_state =
3070 		intel_atomic_get_new_cdclk_state(state);
3071 	int min_cdclk, cdclk;
3072 
3073 	min_cdclk = intel_compute_min_cdclk(state);
3074 	if (min_cdclk < 0)
3075 		return min_cdclk;
3076 
3077 	cdclk = bdw_calc_cdclk(min_cdclk);
3078 
3079 	cdclk_state->logical.cdclk = cdclk;
3080 	cdclk_state->logical.voltage_level =
3081 		bdw_calc_voltage_level(cdclk);
3082 
3083 	if (!cdclk_state->active_pipes) {
3084 		cdclk = bdw_calc_cdclk(cdclk_state->force_min_cdclk);
3085 
3086 		cdclk_state->actual.cdclk = cdclk;
3087 		cdclk_state->actual.voltage_level =
3088 			bdw_calc_voltage_level(cdclk);
3089 	} else {
3090 		cdclk_state->actual = cdclk_state->logical;
3091 	}
3092 
3093 	return 0;
3094 }
3095 
3096 static int skl_dpll0_vco(struct intel_atomic_state *state)
3097 {
3098 	struct intel_display *display = to_intel_display(state);
3099 	struct intel_cdclk_state *cdclk_state =
3100 		intel_atomic_get_new_cdclk_state(state);
3101 	struct intel_crtc *crtc;
3102 	struct intel_crtc_state *crtc_state;
3103 	int vco, i;
3104 
3105 	vco = cdclk_state->logical.vco;
3106 	if (!vco)
3107 		vco = display->cdclk.skl_preferred_vco_freq;
3108 
3109 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
3110 		if (!crtc_state->hw.enable)
3111 			continue;
3112 
3113 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
3114 			continue;
3115 
3116 		/*
3117 		 * DPLL0 VCO may need to be adjusted to get the correct
3118 		 * clock for eDP. This will affect cdclk as well.
3119 		 */
3120 		switch (crtc_state->port_clock / 2) {
3121 		case 108000:
3122 		case 216000:
3123 			vco = 8640000;
3124 			break;
3125 		default:
3126 			vco = 8100000;
3127 			break;
3128 		}
3129 	}
3130 
3131 	return vco;
3132 }
3133 
3134 static int skl_modeset_calc_cdclk(struct intel_atomic_state *state)
3135 {
3136 	struct intel_cdclk_state *cdclk_state =
3137 		intel_atomic_get_new_cdclk_state(state);
3138 	int min_cdclk, cdclk, vco;
3139 
3140 	min_cdclk = intel_compute_min_cdclk(state);
3141 	if (min_cdclk < 0)
3142 		return min_cdclk;
3143 
3144 	vco = skl_dpll0_vco(state);
3145 
3146 	cdclk = skl_calc_cdclk(min_cdclk, vco);
3147 
3148 	cdclk_state->logical.vco = vco;
3149 	cdclk_state->logical.cdclk = cdclk;
3150 	cdclk_state->logical.voltage_level =
3151 		skl_calc_voltage_level(cdclk);
3152 
3153 	if (!cdclk_state->active_pipes) {
3154 		cdclk = skl_calc_cdclk(cdclk_state->force_min_cdclk, vco);
3155 
3156 		cdclk_state->actual.vco = vco;
3157 		cdclk_state->actual.cdclk = cdclk;
3158 		cdclk_state->actual.voltage_level =
3159 			skl_calc_voltage_level(cdclk);
3160 	} else {
3161 		cdclk_state->actual = cdclk_state->logical;
3162 	}
3163 
3164 	return 0;
3165 }
3166 
3167 static int bxt_modeset_calc_cdclk(struct intel_atomic_state *state)
3168 {
3169 	struct intel_display *display = to_intel_display(state);
3170 	struct intel_cdclk_state *cdclk_state =
3171 		intel_atomic_get_new_cdclk_state(state);
3172 	int min_cdclk, min_voltage_level, cdclk, vco;
3173 
3174 	min_cdclk = intel_compute_min_cdclk(state);
3175 	if (min_cdclk < 0)
3176 		return min_cdclk;
3177 
3178 	min_voltage_level = bxt_compute_min_voltage_level(state);
3179 	if (min_voltage_level < 0)
3180 		return min_voltage_level;
3181 
3182 	cdclk = bxt_calc_cdclk(display, min_cdclk);
3183 	vco = bxt_calc_cdclk_pll_vco(display, cdclk);
3184 
3185 	cdclk_state->logical.vco = vco;
3186 	cdclk_state->logical.cdclk = cdclk;
3187 	cdclk_state->logical.voltage_level =
3188 		max_t(int, min_voltage_level,
3189 		      intel_cdclk_calc_voltage_level(display, cdclk));
3190 
3191 	if (!cdclk_state->active_pipes) {
3192 		cdclk = bxt_calc_cdclk(display, cdclk_state->force_min_cdclk);
3193 		vco = bxt_calc_cdclk_pll_vco(display, cdclk);
3194 
3195 		cdclk_state->actual.vco = vco;
3196 		cdclk_state->actual.cdclk = cdclk;
3197 		cdclk_state->actual.voltage_level =
3198 			intel_cdclk_calc_voltage_level(display, cdclk);
3199 	} else {
3200 		cdclk_state->actual = cdclk_state->logical;
3201 	}
3202 
3203 	return 0;
3204 }
3205 
3206 static int fixed_modeset_calc_cdclk(struct intel_atomic_state *state)
3207 {
3208 	int min_cdclk;
3209 
3210 	/*
3211 	 * We can't change the cdclk frequency, but we still want to
3212 	 * check that the required minimum frequency doesn't exceed
3213 	 * the actual cdclk frequency.
3214 	 */
3215 	min_cdclk = intel_compute_min_cdclk(state);
3216 	if (min_cdclk < 0)
3217 		return min_cdclk;
3218 
3219 	return 0;
3220 }
3221 
3222 static struct intel_global_state *intel_cdclk_duplicate_state(struct intel_global_obj *obj)
3223 {
3224 	struct intel_cdclk_state *cdclk_state;
3225 
3226 	cdclk_state = kmemdup(obj->state, sizeof(*cdclk_state), GFP_KERNEL);
3227 	if (!cdclk_state)
3228 		return NULL;
3229 
3230 	cdclk_state->pipe = INVALID_PIPE;
3231 	cdclk_state->disable_pipes = false;
3232 
3233 	return &cdclk_state->base;
3234 }
3235 
3236 static void intel_cdclk_destroy_state(struct intel_global_obj *obj,
3237 				      struct intel_global_state *state)
3238 {
3239 	kfree(state);
3240 }
3241 
3242 static const struct intel_global_state_funcs intel_cdclk_funcs = {
3243 	.atomic_duplicate_state = intel_cdclk_duplicate_state,
3244 	.atomic_destroy_state = intel_cdclk_destroy_state,
3245 };
3246 
3247 struct intel_cdclk_state *
3248 intel_atomic_get_cdclk_state(struct intel_atomic_state *state)
3249 {
3250 	struct intel_display *display = to_intel_display(state);
3251 	struct intel_global_state *cdclk_state;
3252 
3253 	cdclk_state = intel_atomic_get_global_obj_state(state, &display->cdclk.obj);
3254 	if (IS_ERR(cdclk_state))
3255 		return ERR_CAST(cdclk_state);
3256 
3257 	return to_intel_cdclk_state(cdclk_state);
3258 }
3259 
3260 int intel_cdclk_atomic_check(struct intel_atomic_state *state,
3261 			     bool *need_cdclk_calc)
3262 {
3263 	const struct intel_cdclk_state *old_cdclk_state;
3264 	const struct intel_cdclk_state *new_cdclk_state;
3265 	struct intel_plane_state __maybe_unused *plane_state;
3266 	struct intel_plane *plane;
3267 	int ret;
3268 	int i;
3269 
3270 	/*
3271 	 * active_planes bitmask has been updated, and potentially affected
3272 	 * planes are part of the state. We can now compute the minimum cdclk
3273 	 * for each plane.
3274 	 */
3275 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
3276 		ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
3277 		if (ret)
3278 			return ret;
3279 	}
3280 
3281 	ret = intel_bw_calc_min_cdclk(state, need_cdclk_calc);
3282 	if (ret)
3283 		return ret;
3284 
3285 	old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3286 	new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
3287 
3288 	if (new_cdclk_state &&
3289 	    old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk)
3290 		*need_cdclk_calc = true;
3291 
3292 	return 0;
3293 }
3294 
3295 int intel_cdclk_state_set_joined_mbus(struct intel_atomic_state *state, bool joined_mbus)
3296 {
3297 	struct intel_cdclk_state *cdclk_state;
3298 
3299 	cdclk_state = intel_atomic_get_cdclk_state(state);
3300 	if (IS_ERR(cdclk_state))
3301 		return PTR_ERR(cdclk_state);
3302 
3303 	cdclk_state->actual.joined_mbus = joined_mbus;
3304 	cdclk_state->logical.joined_mbus = joined_mbus;
3305 
3306 	return intel_atomic_lock_global_state(&cdclk_state->base);
3307 }
3308 
3309 int intel_cdclk_init(struct intel_display *display)
3310 {
3311 	struct drm_i915_private *dev_priv = to_i915(display->drm);
3312 	struct intel_cdclk_state *cdclk_state;
3313 
3314 	cdclk_state = kzalloc(sizeof(*cdclk_state), GFP_KERNEL);
3315 	if (!cdclk_state)
3316 		return -ENOMEM;
3317 
3318 	intel_atomic_global_obj_init(dev_priv, &display->cdclk.obj,
3319 				     &cdclk_state->base, &intel_cdclk_funcs);
3320 
3321 	return 0;
3322 }
3323 
3324 static bool intel_cdclk_need_serialize(struct intel_display *display,
3325 				       const struct intel_cdclk_state *old_cdclk_state,
3326 				       const struct intel_cdclk_state *new_cdclk_state)
3327 {
3328 	struct drm_i915_private *i915 = to_i915(display->drm);
3329 	bool power_well_cnt_changed = hweight8(old_cdclk_state->active_pipes) !=
3330 				      hweight8(new_cdclk_state->active_pipes);
3331 	bool cdclk_changed = intel_cdclk_changed(&old_cdclk_state->actual,
3332 						 &new_cdclk_state->actual);
3333 	/*
3334 	 * We need to poke hw for gen >= 12, because we notify PCode if
3335 	 * pipe power well count changes.
3336 	 */
3337 	return cdclk_changed || (IS_DG2(i915) && power_well_cnt_changed);
3338 }
3339 
3340 int intel_modeset_calc_cdclk(struct intel_atomic_state *state)
3341 {
3342 	struct intel_display *display = to_intel_display(state);
3343 	const struct intel_cdclk_state *old_cdclk_state;
3344 	struct intel_cdclk_state *new_cdclk_state;
3345 	enum pipe pipe = INVALID_PIPE;
3346 	int ret;
3347 
3348 	new_cdclk_state = intel_atomic_get_cdclk_state(state);
3349 	if (IS_ERR(new_cdclk_state))
3350 		return PTR_ERR(new_cdclk_state);
3351 
3352 	old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3353 
3354 	new_cdclk_state->active_pipes =
3355 		intel_calc_active_pipes(state, old_cdclk_state->active_pipes);
3356 
3357 	ret = intel_cdclk_modeset_calc_cdclk(state);
3358 	if (ret)
3359 		return ret;
3360 
3361 	if (intel_cdclk_need_serialize(display, old_cdclk_state, new_cdclk_state)) {
3362 		/*
3363 		 * Also serialize commits across all crtcs
3364 		 * if the actual hw needs to be poked.
3365 		 */
3366 		ret = intel_atomic_serialize_global_state(&new_cdclk_state->base);
3367 		if (ret)
3368 			return ret;
3369 	} else if (old_cdclk_state->active_pipes != new_cdclk_state->active_pipes ||
3370 		   old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk ||
3371 		   intel_cdclk_changed(&old_cdclk_state->logical,
3372 				       &new_cdclk_state->logical)) {
3373 		ret = intel_atomic_lock_global_state(&new_cdclk_state->base);
3374 		if (ret)
3375 			return ret;
3376 	} else {
3377 		return 0;
3378 	}
3379 
3380 	if (is_power_of_2(new_cdclk_state->active_pipes) &&
3381 	    intel_cdclk_can_cd2x_update(display,
3382 					&old_cdclk_state->actual,
3383 					&new_cdclk_state->actual)) {
3384 		struct intel_crtc *crtc;
3385 		struct intel_crtc_state *crtc_state;
3386 
3387 		pipe = ilog2(new_cdclk_state->active_pipes);
3388 		crtc = intel_crtc_for_pipe(display, pipe);
3389 
3390 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
3391 		if (IS_ERR(crtc_state))
3392 			return PTR_ERR(crtc_state);
3393 
3394 		if (intel_crtc_needs_modeset(crtc_state))
3395 			pipe = INVALID_PIPE;
3396 	}
3397 
3398 	if (intel_cdclk_can_crawl_and_squash(display,
3399 					     &old_cdclk_state->actual,
3400 					     &new_cdclk_state->actual)) {
3401 		drm_dbg_kms(display->drm,
3402 			    "Can change cdclk via crawling and squashing\n");
3403 	} else if (intel_cdclk_can_squash(display,
3404 					&old_cdclk_state->actual,
3405 					&new_cdclk_state->actual)) {
3406 		drm_dbg_kms(display->drm,
3407 			    "Can change cdclk via squashing\n");
3408 	} else if (intel_cdclk_can_crawl(display,
3409 					 &old_cdclk_state->actual,
3410 					 &new_cdclk_state->actual)) {
3411 		drm_dbg_kms(display->drm,
3412 			    "Can change cdclk via crawling\n");
3413 	} else if (pipe != INVALID_PIPE) {
3414 		new_cdclk_state->pipe = pipe;
3415 
3416 		drm_dbg_kms(display->drm,
3417 			    "Can change cdclk cd2x divider with pipe %c active\n",
3418 			    pipe_name(pipe));
3419 	} else if (intel_cdclk_clock_changed(&old_cdclk_state->actual,
3420 					     &new_cdclk_state->actual)) {
3421 		/* All pipes must be switched off while we change the cdclk. */
3422 		ret = intel_modeset_all_pipes_late(state, "CDCLK change");
3423 		if (ret)
3424 			return ret;
3425 
3426 		new_cdclk_state->disable_pipes = true;
3427 
3428 		drm_dbg_kms(display->drm,
3429 			    "Modeset required for cdclk change\n");
3430 	}
3431 
3432 	if (intel_mdclk_cdclk_ratio(display, &old_cdclk_state->actual) !=
3433 	    intel_mdclk_cdclk_ratio(display, &new_cdclk_state->actual)) {
3434 		int ratio = intel_mdclk_cdclk_ratio(display, &new_cdclk_state->actual);
3435 
3436 		ret = intel_dbuf_state_set_mdclk_cdclk_ratio(state, ratio);
3437 		if (ret)
3438 			return ret;
3439 	}
3440 
3441 	drm_dbg_kms(display->drm,
3442 		    "New cdclk calculated to be logical %u kHz, actual %u kHz\n",
3443 		    new_cdclk_state->logical.cdclk,
3444 		    new_cdclk_state->actual.cdclk);
3445 	drm_dbg_kms(display->drm,
3446 		    "New voltage level calculated to be logical %u, actual %u\n",
3447 		    new_cdclk_state->logical.voltage_level,
3448 		    new_cdclk_state->actual.voltage_level);
3449 
3450 	return 0;
3451 }
3452 
3453 static int intel_compute_max_dotclk(struct intel_display *display)
3454 {
3455 	struct drm_i915_private *dev_priv = to_i915(display->drm);
3456 	int max_cdclk_freq = display->cdclk.max_cdclk_freq;
3457 
3458 	if (DISPLAY_VER(display) >= 10)
3459 		return 2 * max_cdclk_freq;
3460 	else if (DISPLAY_VER(display) == 9 ||
3461 		 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
3462 		return max_cdclk_freq;
3463 	else if (IS_CHERRYVIEW(dev_priv))
3464 		return max_cdclk_freq*95/100;
3465 	else if (DISPLAY_VER(display) < 4)
3466 		return 2*max_cdclk_freq*90/100;
3467 	else
3468 		return max_cdclk_freq*90/100;
3469 }
3470 
3471 /**
3472  * intel_update_max_cdclk - Determine the maximum support CDCLK frequency
3473  * @display: display instance
3474  *
3475  * Determine the maximum CDCLK frequency the platform supports, and also
3476  * derive the maximum dot clock frequency the maximum CDCLK frequency
3477  * allows.
3478  */
3479 void intel_update_max_cdclk(struct intel_display *display)
3480 {
3481 	struct drm_i915_private *dev_priv = to_i915(display->drm);
3482 
3483 	if (DISPLAY_VER(display) >= 30) {
3484 		display->cdclk.max_cdclk_freq = 691200;
3485 	} else if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) {
3486 		if (display->cdclk.hw.ref == 24000)
3487 			display->cdclk.max_cdclk_freq = 552000;
3488 		else
3489 			display->cdclk.max_cdclk_freq = 556800;
3490 	} else if (DISPLAY_VER(display) >= 11) {
3491 		if (display->cdclk.hw.ref == 24000)
3492 			display->cdclk.max_cdclk_freq = 648000;
3493 		else
3494 			display->cdclk.max_cdclk_freq = 652800;
3495 	} else if (IS_GEMINILAKE(dev_priv)) {
3496 		display->cdclk.max_cdclk_freq = 316800;
3497 	} else if (IS_BROXTON(dev_priv)) {
3498 		display->cdclk.max_cdclk_freq = 624000;
3499 	} else if (DISPLAY_VER(display) == 9) {
3500 		u32 limit = intel_de_read(display, SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
3501 		int max_cdclk, vco;
3502 
3503 		vco = display->cdclk.skl_preferred_vco_freq;
3504 		drm_WARN_ON(display->drm, vco != 8100000 && vco != 8640000);
3505 
3506 		/*
3507 		 * Use the lower (vco 8640) cdclk values as a
3508 		 * first guess. skl_calc_cdclk() will correct it
3509 		 * if the preferred vco is 8100 instead.
3510 		 */
3511 		if (limit == SKL_DFSM_CDCLK_LIMIT_675)
3512 			max_cdclk = 617143;
3513 		else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
3514 			max_cdclk = 540000;
3515 		else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
3516 			max_cdclk = 432000;
3517 		else
3518 			max_cdclk = 308571;
3519 
3520 		display->cdclk.max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
3521 	} else if (IS_BROADWELL(dev_priv))  {
3522 		/*
3523 		 * FIXME with extra cooling we can allow
3524 		 * 540 MHz for ULX and 675 Mhz for ULT.
3525 		 * How can we know if extra cooling is
3526 		 * available? PCI ID, VTB, something else?
3527 		 */
3528 		if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT)
3529 			display->cdclk.max_cdclk_freq = 450000;
3530 		else if (IS_BROADWELL_ULX(dev_priv))
3531 			display->cdclk.max_cdclk_freq = 450000;
3532 		else if (IS_BROADWELL_ULT(dev_priv))
3533 			display->cdclk.max_cdclk_freq = 540000;
3534 		else
3535 			display->cdclk.max_cdclk_freq = 675000;
3536 	} else if (IS_CHERRYVIEW(dev_priv)) {
3537 		display->cdclk.max_cdclk_freq = 320000;
3538 	} else if (IS_VALLEYVIEW(dev_priv)) {
3539 		display->cdclk.max_cdclk_freq = 400000;
3540 	} else {
3541 		/* otherwise assume cdclk is fixed */
3542 		display->cdclk.max_cdclk_freq = display->cdclk.hw.cdclk;
3543 	}
3544 
3545 	display->cdclk.max_dotclk_freq = intel_compute_max_dotclk(display);
3546 
3547 	drm_dbg(display->drm, "Max CD clock rate: %d kHz\n",
3548 		display->cdclk.max_cdclk_freq);
3549 
3550 	drm_dbg(display->drm, "Max dotclock rate: %d kHz\n",
3551 		display->cdclk.max_dotclk_freq);
3552 }
3553 
3554 /**
3555  * intel_update_cdclk - Determine the current CDCLK frequency
3556  * @display: display instance
3557  *
3558  * Determine the current CDCLK frequency.
3559  */
3560 void intel_update_cdclk(struct intel_display *display)
3561 {
3562 	struct drm_i915_private *dev_priv = to_i915(display->drm);
3563 
3564 	intel_cdclk_get_cdclk(display, &display->cdclk.hw);
3565 
3566 	/*
3567 	 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
3568 	 * Programmng [sic] note: bit[9:2] should be programmed to the number
3569 	 * of cdclk that generates 4MHz reference clock freq which is used to
3570 	 * generate GMBus clock. This will vary with the cdclk freq.
3571 	 */
3572 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3573 		intel_de_write(display, GMBUSFREQ_VLV,
3574 			       DIV_ROUND_UP(display->cdclk.hw.cdclk, 1000));
3575 }
3576 
3577 static int dg1_rawclk(struct intel_display *display)
3578 {
3579 	/*
3580 	 * DG1 always uses a 38.4 MHz rawclk.  The bspec tells us
3581 	 * "Program Numerator=2, Denominator=4, Divider=37 decimal."
3582 	 */
3583 	intel_de_write(display, PCH_RAWCLK_FREQ,
3584 		       CNP_RAWCLK_DEN(4) | CNP_RAWCLK_DIV(37) | ICP_RAWCLK_NUM(2));
3585 
3586 	return 38400;
3587 }
3588 
3589 static int cnp_rawclk(struct intel_display *display)
3590 {
3591 	struct drm_i915_private *dev_priv = to_i915(display->drm);
3592 	int divider, fraction;
3593 	u32 rawclk;
3594 
3595 	if (intel_de_read(display, SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) {
3596 		/* 24 MHz */
3597 		divider = 24000;
3598 		fraction = 0;
3599 	} else {
3600 		/* 19.2 MHz */
3601 		divider = 19000;
3602 		fraction = 200;
3603 	}
3604 
3605 	rawclk = CNP_RAWCLK_DIV(divider / 1000);
3606 	if (fraction) {
3607 		int numerator = 1;
3608 
3609 		rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000,
3610 							   fraction) - 1);
3611 		if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3612 			rawclk |= ICP_RAWCLK_NUM(numerator);
3613 	}
3614 
3615 	intel_de_write(display, PCH_RAWCLK_FREQ, rawclk);
3616 	return divider + fraction;
3617 }
3618 
3619 static int pch_rawclk(struct intel_display *display)
3620 {
3621 	return (intel_de_read(display, PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
3622 }
3623 
3624 static int vlv_hrawclk(struct intel_display *display)
3625 {
3626 	struct drm_i915_private *dev_priv = to_i915(display->drm);
3627 
3628 	/* RAWCLK_FREQ_VLV register updated from power well code */
3629 	return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
3630 				      CCK_DISPLAY_REF_CLOCK_CONTROL);
3631 }
3632 
3633 static int i9xx_hrawclk(struct intel_display *display)
3634 {
3635 	struct drm_i915_private *i915 = to_i915(display->drm);
3636 
3637 	/* hrawclock is 1/4 the FSB frequency */
3638 	return DIV_ROUND_CLOSEST(i9xx_fsb_freq(i915), 4);
3639 }
3640 
3641 /**
3642  * intel_read_rawclk - Determine the current RAWCLK frequency
3643  * @display: display instance
3644  *
3645  * Determine the current RAWCLK frequency. RAWCLK is a fixed
3646  * frequency clock so this needs to done only once.
3647  */
3648 u32 intel_read_rawclk(struct intel_display *display)
3649 {
3650 	struct drm_i915_private *dev_priv = to_i915(display->drm);
3651 	u32 freq;
3652 
3653 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_MTL)
3654 		/*
3655 		 * MTL always uses a 38.4 MHz rawclk.  The bspec tells us
3656 		 * "RAWCLK_FREQ defaults to the values for 38.4 and does
3657 		 * not need to be programmed."
3658 		 */
3659 		freq = 38400;
3660 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
3661 		freq = dg1_rawclk(display);
3662 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3663 		freq = cnp_rawclk(display);
3664 	else if (HAS_PCH_SPLIT(dev_priv))
3665 		freq = pch_rawclk(display);
3666 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3667 		freq = vlv_hrawclk(display);
3668 	else if (DISPLAY_VER(display) >= 3)
3669 		freq = i9xx_hrawclk(display);
3670 	else
3671 		/* no rawclk on other platforms, or no need to know it */
3672 		return 0;
3673 
3674 	return freq;
3675 }
3676 
3677 static int i915_cdclk_info_show(struct seq_file *m, void *unused)
3678 {
3679 	struct intel_display *display = m->private;
3680 
3681 	seq_printf(m, "Current CD clock frequency: %d kHz\n", display->cdclk.hw.cdclk);
3682 	seq_printf(m, "Max CD clock frequency: %d kHz\n", display->cdclk.max_cdclk_freq);
3683 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", display->cdclk.max_dotclk_freq);
3684 
3685 	return 0;
3686 }
3687 
3688 DEFINE_SHOW_ATTRIBUTE(i915_cdclk_info);
3689 
3690 void intel_cdclk_debugfs_register(struct intel_display *display)
3691 {
3692 	struct drm_minor *minor = display->drm->primary;
3693 
3694 	debugfs_create_file("i915_cdclk_info", 0444, minor->debugfs_root,
3695 			    display, &i915_cdclk_info_fops);
3696 }
3697 
3698 static const struct intel_cdclk_funcs xe3lpd_cdclk_funcs = {
3699 	.get_cdclk = bxt_get_cdclk,
3700 	.set_cdclk = bxt_set_cdclk,
3701 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3702 	.calc_voltage_level = xe3lpd_calc_voltage_level,
3703 };
3704 
3705 static const struct intel_cdclk_funcs rplu_cdclk_funcs = {
3706 	.get_cdclk = bxt_get_cdclk,
3707 	.set_cdclk = bxt_set_cdclk,
3708 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3709 	.calc_voltage_level = rplu_calc_voltage_level,
3710 };
3711 
3712 static const struct intel_cdclk_funcs tgl_cdclk_funcs = {
3713 	.get_cdclk = bxt_get_cdclk,
3714 	.set_cdclk = bxt_set_cdclk,
3715 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3716 	.calc_voltage_level = tgl_calc_voltage_level,
3717 };
3718 
3719 static const struct intel_cdclk_funcs ehl_cdclk_funcs = {
3720 	.get_cdclk = bxt_get_cdclk,
3721 	.set_cdclk = bxt_set_cdclk,
3722 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3723 	.calc_voltage_level = ehl_calc_voltage_level,
3724 };
3725 
3726 static const struct intel_cdclk_funcs icl_cdclk_funcs = {
3727 	.get_cdclk = bxt_get_cdclk,
3728 	.set_cdclk = bxt_set_cdclk,
3729 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3730 	.calc_voltage_level = icl_calc_voltage_level,
3731 };
3732 
3733 static const struct intel_cdclk_funcs bxt_cdclk_funcs = {
3734 	.get_cdclk = bxt_get_cdclk,
3735 	.set_cdclk = bxt_set_cdclk,
3736 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3737 	.calc_voltage_level = bxt_calc_voltage_level,
3738 };
3739 
3740 static const struct intel_cdclk_funcs skl_cdclk_funcs = {
3741 	.get_cdclk = skl_get_cdclk,
3742 	.set_cdclk = skl_set_cdclk,
3743 	.modeset_calc_cdclk = skl_modeset_calc_cdclk,
3744 };
3745 
3746 static const struct intel_cdclk_funcs bdw_cdclk_funcs = {
3747 	.get_cdclk = bdw_get_cdclk,
3748 	.set_cdclk = bdw_set_cdclk,
3749 	.modeset_calc_cdclk = bdw_modeset_calc_cdclk,
3750 };
3751 
3752 static const struct intel_cdclk_funcs chv_cdclk_funcs = {
3753 	.get_cdclk = vlv_get_cdclk,
3754 	.set_cdclk = chv_set_cdclk,
3755 	.modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3756 };
3757 
3758 static const struct intel_cdclk_funcs vlv_cdclk_funcs = {
3759 	.get_cdclk = vlv_get_cdclk,
3760 	.set_cdclk = vlv_set_cdclk,
3761 	.modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3762 };
3763 
3764 static const struct intel_cdclk_funcs hsw_cdclk_funcs = {
3765 	.get_cdclk = hsw_get_cdclk,
3766 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3767 };
3768 
3769 /* SNB, IVB, 965G, 945G */
3770 static const struct intel_cdclk_funcs fixed_400mhz_cdclk_funcs = {
3771 	.get_cdclk = fixed_400mhz_get_cdclk,
3772 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3773 };
3774 
3775 static const struct intel_cdclk_funcs ilk_cdclk_funcs = {
3776 	.get_cdclk = fixed_450mhz_get_cdclk,
3777 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3778 };
3779 
3780 static const struct intel_cdclk_funcs gm45_cdclk_funcs = {
3781 	.get_cdclk = gm45_get_cdclk,
3782 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3783 };
3784 
3785 /* G45 uses G33 */
3786 
3787 static const struct intel_cdclk_funcs i965gm_cdclk_funcs = {
3788 	.get_cdclk = i965gm_get_cdclk,
3789 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3790 };
3791 
3792 /* i965G uses fixed 400 */
3793 
3794 static const struct intel_cdclk_funcs pnv_cdclk_funcs = {
3795 	.get_cdclk = pnv_get_cdclk,
3796 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3797 };
3798 
3799 static const struct intel_cdclk_funcs g33_cdclk_funcs = {
3800 	.get_cdclk = g33_get_cdclk,
3801 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3802 };
3803 
3804 static const struct intel_cdclk_funcs i945gm_cdclk_funcs = {
3805 	.get_cdclk = i945gm_get_cdclk,
3806 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3807 };
3808 
3809 /* i945G uses fixed 400 */
3810 
3811 static const struct intel_cdclk_funcs i915gm_cdclk_funcs = {
3812 	.get_cdclk = i915gm_get_cdclk,
3813 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3814 };
3815 
3816 static const struct intel_cdclk_funcs i915g_cdclk_funcs = {
3817 	.get_cdclk = fixed_333mhz_get_cdclk,
3818 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3819 };
3820 
3821 static const struct intel_cdclk_funcs i865g_cdclk_funcs = {
3822 	.get_cdclk = fixed_266mhz_get_cdclk,
3823 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3824 };
3825 
3826 static const struct intel_cdclk_funcs i85x_cdclk_funcs = {
3827 	.get_cdclk = i85x_get_cdclk,
3828 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3829 };
3830 
3831 static const struct intel_cdclk_funcs i845g_cdclk_funcs = {
3832 	.get_cdclk = fixed_200mhz_get_cdclk,
3833 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3834 };
3835 
3836 static const struct intel_cdclk_funcs i830_cdclk_funcs = {
3837 	.get_cdclk = fixed_133mhz_get_cdclk,
3838 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3839 };
3840 
3841 /**
3842  * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks
3843  * @display: display instance
3844  */
3845 void intel_init_cdclk_hooks(struct intel_display *display)
3846 {
3847 	struct drm_i915_private *dev_priv = to_i915(display->drm);
3848 
3849 	if (DISPLAY_VER(display) >= 30) {
3850 		display->funcs.cdclk = &xe3lpd_cdclk_funcs;
3851 		display->cdclk.table = xe3lpd_cdclk_table;
3852 	} else if (DISPLAY_VER(display) >= 20) {
3853 		display->funcs.cdclk = &rplu_cdclk_funcs;
3854 		display->cdclk.table = xe2lpd_cdclk_table;
3855 	} else if (DISPLAY_VERx100(display) >= 1401) {
3856 		display->funcs.cdclk = &rplu_cdclk_funcs;
3857 		display->cdclk.table = xe2hpd_cdclk_table;
3858 	} else if (DISPLAY_VER(display) >= 14) {
3859 		display->funcs.cdclk = &rplu_cdclk_funcs;
3860 		display->cdclk.table = mtl_cdclk_table;
3861 	} else if (IS_DG2(dev_priv)) {
3862 		display->funcs.cdclk = &tgl_cdclk_funcs;
3863 		display->cdclk.table = dg2_cdclk_table;
3864 	} else if (IS_ALDERLAKE_P(dev_priv)) {
3865 		/* Wa_22011320316:adl-p[a0] */
3866 		if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) {
3867 			display->cdclk.table = adlp_a_step_cdclk_table;
3868 			display->funcs.cdclk = &tgl_cdclk_funcs;
3869 		} else if (IS_RAPTORLAKE_U(dev_priv)) {
3870 			display->cdclk.table = rplu_cdclk_table;
3871 			display->funcs.cdclk = &rplu_cdclk_funcs;
3872 		} else {
3873 			display->cdclk.table = adlp_cdclk_table;
3874 			display->funcs.cdclk = &tgl_cdclk_funcs;
3875 		}
3876 	} else if (IS_ROCKETLAKE(dev_priv)) {
3877 		display->funcs.cdclk = &tgl_cdclk_funcs;
3878 		display->cdclk.table = rkl_cdclk_table;
3879 	} else if (DISPLAY_VER(display) >= 12) {
3880 		display->funcs.cdclk = &tgl_cdclk_funcs;
3881 		display->cdclk.table = icl_cdclk_table;
3882 	} else if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) {
3883 		display->funcs.cdclk = &ehl_cdclk_funcs;
3884 		display->cdclk.table = icl_cdclk_table;
3885 	} else if (DISPLAY_VER(display) >= 11) {
3886 		display->funcs.cdclk = &icl_cdclk_funcs;
3887 		display->cdclk.table = icl_cdclk_table;
3888 	} else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
3889 		display->funcs.cdclk = &bxt_cdclk_funcs;
3890 		if (IS_GEMINILAKE(dev_priv))
3891 			display->cdclk.table = glk_cdclk_table;
3892 		else
3893 			display->cdclk.table = bxt_cdclk_table;
3894 	} else if (DISPLAY_VER(display) == 9) {
3895 		display->funcs.cdclk = &skl_cdclk_funcs;
3896 	} else if (IS_BROADWELL(dev_priv)) {
3897 		display->funcs.cdclk = &bdw_cdclk_funcs;
3898 	} else if (IS_HASWELL(dev_priv)) {
3899 		display->funcs.cdclk = &hsw_cdclk_funcs;
3900 	} else if (IS_CHERRYVIEW(dev_priv)) {
3901 		display->funcs.cdclk = &chv_cdclk_funcs;
3902 	} else if (IS_VALLEYVIEW(dev_priv)) {
3903 		display->funcs.cdclk = &vlv_cdclk_funcs;
3904 	} else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
3905 		display->funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3906 	} else if (IS_IRONLAKE(dev_priv)) {
3907 		display->funcs.cdclk = &ilk_cdclk_funcs;
3908 	} else if (IS_GM45(dev_priv)) {
3909 		display->funcs.cdclk = &gm45_cdclk_funcs;
3910 	} else if (IS_G45(dev_priv)) {
3911 		display->funcs.cdclk = &g33_cdclk_funcs;
3912 	} else if (IS_I965GM(dev_priv)) {
3913 		display->funcs.cdclk = &i965gm_cdclk_funcs;
3914 	} else if (IS_I965G(dev_priv)) {
3915 		display->funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3916 	} else if (IS_PINEVIEW(dev_priv)) {
3917 		display->funcs.cdclk = &pnv_cdclk_funcs;
3918 	} else if (IS_G33(dev_priv)) {
3919 		display->funcs.cdclk = &g33_cdclk_funcs;
3920 	} else if (IS_I945GM(dev_priv)) {
3921 		display->funcs.cdclk = &i945gm_cdclk_funcs;
3922 	} else if (IS_I945G(dev_priv)) {
3923 		display->funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3924 	} else if (IS_I915GM(dev_priv)) {
3925 		display->funcs.cdclk = &i915gm_cdclk_funcs;
3926 	} else if (IS_I915G(dev_priv)) {
3927 		display->funcs.cdclk = &i915g_cdclk_funcs;
3928 	} else if (IS_I865G(dev_priv)) {
3929 		display->funcs.cdclk = &i865g_cdclk_funcs;
3930 	} else if (IS_I85X(dev_priv)) {
3931 		display->funcs.cdclk = &i85x_cdclk_funcs;
3932 	} else if (IS_I845G(dev_priv)) {
3933 		display->funcs.cdclk = &i845g_cdclk_funcs;
3934 	} else if (IS_I830(dev_priv)) {
3935 		display->funcs.cdclk = &i830_cdclk_funcs;
3936 	}
3937 
3938 	if (drm_WARN(display->drm, !display->funcs.cdclk,
3939 		     "Unknown platform. Assuming i830\n"))
3940 		display->funcs.cdclk = &i830_cdclk_funcs;
3941 }
3942