xref: /linux/drivers/gpu/drm/i915/display/intel_cdclk.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 /*
2  * Copyright © 2006-2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/debugfs.h>
25 #include <linux/iopoll.h>
26 #include <linux/time.h>
27 
28 #include <drm/drm_fixed.h>
29 #include <drm/drm_print.h>
30 
31 #include "soc/intel_dram.h"
32 
33 #include "hsw_ips.h"
34 #include "i915_drv.h"
35 #include "i915_reg.h"
36 #include "intel_atomic.h"
37 #include "intel_audio.h"
38 #include "intel_cdclk.h"
39 #include "intel_crtc.h"
40 #include "intel_dbuf_bw.h"
41 #include "intel_de.h"
42 #include "intel_display_regs.h"
43 #include "intel_display_types.h"
44 #include "intel_display_utils.h"
45 #include "intel_mchbar_regs.h"
46 #include "intel_pci_config.h"
47 #include "intel_pcode.h"
48 #include "intel_plane.h"
49 #include "intel_psr.h"
50 #include "intel_vdsc.h"
51 #include "skl_watermark.h"
52 #include "skl_watermark_regs.h"
53 #include "vlv_clock.h"
54 #include "vlv_dsi.h"
55 #include "vlv_sideband.h"
56 
57 /**
58  * DOC: CDCLK / RAWCLK
59  *
60  * The display engine uses several different clocks to do its work. There
61  * are two main clocks involved that aren't directly related to the actual
62  * pixel clock or any symbol/bit clock of the actual output port. These
63  * are the core display clock (CDCLK) and RAWCLK.
64  *
65  * CDCLK clocks most of the display pipe logic, and thus its frequency
66  * must be high enough to support the rate at which pixels are flowing
67  * through the pipes. Downscaling must also be accounted as that increases
68  * the effective pixel rate.
69  *
70  * On several platforms the CDCLK frequency can be changed dynamically
71  * to minimize power consumption for a given display configuration.
72  * Typically changes to the CDCLK frequency require all the display pipes
73  * to be shut down while the frequency is being changed.
74  *
75  * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit.
76  * DMC will not change the active CDCLK frequency however, so that part
77  * will still be performed by the driver directly.
78  *
79  * There are multiple components involved in the generation of the CDCLK
80  * frequency:
81  *
82  * - We have the CDCLK PLL, which generates an output clock based on a
83  *   reference clock and a ratio parameter.
84  * - The CD2X Divider, which divides the output of the PLL based on a
85  *   divisor selected from a set of pre-defined choices.
86  * - The CD2X Squasher, which further divides the output based on a
87  *   waveform represented as a sequence of bits where each zero
88  *   "squashes out" a clock cycle.
89  * - And, finally, a fixed divider that divides the output frequency by 2.
90  *
91  * As such, the resulting CDCLK frequency can be calculated with the
92  * following formula:
93  *
94  *     cdclk = vco / cd2x_div / (sq_len / sq_div) / 2
95  *
96  * , where vco is the frequency generated by the PLL; cd2x_div
97  * represents the CD2X Divider; sq_len and sq_div are the bit length
98  * and the number of high bits for the CD2X Squasher waveform, respectively;
99  * and 2 represents the fixed divider.
100  *
101  * Note that some older platforms do not contain the CD2X Divider
102  * and/or CD2X Squasher, in which case we can ignore their respective
103  * factors in the formula above.
104  *
105  * Several methods exist to change the CDCLK frequency, which ones are
106  * supported depends on the platform:
107  *
108  * - Full PLL disable + re-enable with new VCO frequency. Pipes must be inactive.
109  * - CD2X divider update. Single pipe can be active as the divider update
110  *   can be synchronized with the pipe's start of vblank.
111  * - Crawl the PLL smoothly to the new VCO frequency. Pipes can be active.
112  * - Squash waveform update. Pipes can be active.
113  * - Crawl and squash can also be done back to back. Pipes can be active.
114  *
115  * RAWCLK is a fixed frequency clock, often used by various auxiliary
116  * blocks such as AUX CH or backlight PWM. Hence the only thing we
117  * really need to know about RAWCLK is its frequency so that various
118  * dividers can be programmed correctly.
119  */
120 
121 struct intel_cdclk_state {
122 	struct intel_global_state base;
123 
124 	/*
125 	 * Logical configuration of cdclk (used for all scaling,
126 	 * watermark, etc. calculations and checks). This is
127 	 * computed as if all enabled crtcs were active.
128 	 */
129 	struct intel_cdclk_config logical;
130 
131 	/*
132 	 * Actual configuration of cdclk, can be different from the
133 	 * logical configuration only when all crtc's are DPMS off.
134 	 */
135 	struct intel_cdclk_config actual;
136 
137 	/* minimum acceptable cdclk to satisfy DBUF bandwidth requirements */
138 	int dbuf_bw_min_cdclk;
139 	/* minimum acceptable cdclk for each pipe */
140 	int min_cdclk[I915_MAX_PIPES];
141 	/* minimum acceptable voltage level for each pipe */
142 	u8 min_voltage_level[I915_MAX_PIPES];
143 
144 	/* pipe to which cd2x update is synchronized */
145 	enum pipe pipe;
146 
147 	/* forced minimum cdclk for glk+ audio w/a */
148 	int force_min_cdclk;
149 
150 	/* bitmask of enabled pipes */
151 	u8 enabled_pipes;
152 
153 	/* bitmask of active pipes */
154 	u8 active_pipes;
155 
156 	/* update cdclk with pipes disabled */
157 	bool disable_pipes;
158 };
159 
160 struct intel_cdclk_funcs {
161 	void (*get_cdclk)(struct intel_display *display,
162 			  struct intel_cdclk_config *cdclk_config);
163 	void (*set_cdclk)(struct intel_display *display,
164 			  const struct intel_cdclk_config *cdclk_config,
165 			  enum pipe pipe);
166 	int (*modeset_calc_cdclk)(struct intel_atomic_state *state);
167 	u8 (*calc_voltage_level)(int cdclk);
168 };
169 
170 void intel_cdclk_get_cdclk(struct intel_display *display,
171 			   struct intel_cdclk_config *cdclk_config)
172 {
173 	display->funcs.cdclk->get_cdclk(display, cdclk_config);
174 }
175 
176 static void intel_cdclk_set_cdclk(struct intel_display *display,
177 				  const struct intel_cdclk_config *cdclk_config,
178 				  enum pipe pipe)
179 {
180 	display->funcs.cdclk->set_cdclk(display, cdclk_config, pipe);
181 }
182 
183 static int intel_cdclk_modeset_calc_cdclk(struct intel_atomic_state *state)
184 {
185 	struct intel_display *display = to_intel_display(state);
186 
187 	return display->funcs.cdclk->modeset_calc_cdclk(state);
188 }
189 
190 static u8 intel_cdclk_calc_voltage_level(struct intel_display *display,
191 					 int cdclk)
192 {
193 	return display->funcs.cdclk->calc_voltage_level(cdclk);
194 }
195 
196 static void fixed_133mhz_get_cdclk(struct intel_display *display,
197 				   struct intel_cdclk_config *cdclk_config)
198 {
199 	cdclk_config->cdclk = 133333;
200 }
201 
202 static void fixed_200mhz_get_cdclk(struct intel_display *display,
203 				   struct intel_cdclk_config *cdclk_config)
204 {
205 	cdclk_config->cdclk = 200000;
206 }
207 
208 static void fixed_266mhz_get_cdclk(struct intel_display *display,
209 				   struct intel_cdclk_config *cdclk_config)
210 {
211 	cdclk_config->cdclk = 266667;
212 }
213 
214 static void fixed_333mhz_get_cdclk(struct intel_display *display,
215 				   struct intel_cdclk_config *cdclk_config)
216 {
217 	cdclk_config->cdclk = 333333;
218 }
219 
220 static void fixed_400mhz_get_cdclk(struct intel_display *display,
221 				   struct intel_cdclk_config *cdclk_config)
222 {
223 	cdclk_config->cdclk = 400000;
224 }
225 
226 static void fixed_450mhz_get_cdclk(struct intel_display *display,
227 				   struct intel_cdclk_config *cdclk_config)
228 {
229 	cdclk_config->cdclk = 450000;
230 }
231 
232 static void i85x_get_cdclk(struct intel_display *display,
233 			   struct intel_cdclk_config *cdclk_config)
234 {
235 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
236 	u16 hpllcc = 0;
237 
238 	/*
239 	 * 852GM/852GMV only supports 133 MHz and the HPLLCC
240 	 * encoding is different :(
241 	 * FIXME is this the right way to detect 852GM/852GMV?
242 	 */
243 	if (pdev->revision == 0x1) {
244 		cdclk_config->cdclk = 133333;
245 		return;
246 	}
247 
248 	pci_bus_read_config_word(pdev->bus,
249 				 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
250 
251 	/* Assume that the hardware is in the high speed state.  This
252 	 * should be the default.
253 	 */
254 	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
255 	case GC_CLOCK_133_200:
256 	case GC_CLOCK_133_200_2:
257 	case GC_CLOCK_100_200:
258 		cdclk_config->cdclk = 200000;
259 		break;
260 	case GC_CLOCK_166_250:
261 		cdclk_config->cdclk = 250000;
262 		break;
263 	case GC_CLOCK_100_133:
264 		cdclk_config->cdclk = 133333;
265 		break;
266 	case GC_CLOCK_133_266:
267 	case GC_CLOCK_133_266_2:
268 	case GC_CLOCK_166_266:
269 		cdclk_config->cdclk = 266667;
270 		break;
271 	}
272 }
273 
274 static void i915gm_get_cdclk(struct intel_display *display,
275 			     struct intel_cdclk_config *cdclk_config)
276 {
277 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
278 	u16 gcfgc = 0;
279 
280 	pci_read_config_word(pdev, GCFGC, &gcfgc);
281 
282 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
283 		cdclk_config->cdclk = 133333;
284 		return;
285 	}
286 
287 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
288 	case GC_DISPLAY_CLOCK_333_320_MHZ:
289 		cdclk_config->cdclk = 333333;
290 		break;
291 	default:
292 	case GC_DISPLAY_CLOCK_190_200_MHZ:
293 		cdclk_config->cdclk = 190000;
294 		break;
295 	}
296 }
297 
298 static void i945gm_get_cdclk(struct intel_display *display,
299 			     struct intel_cdclk_config *cdclk_config)
300 {
301 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
302 	u16 gcfgc = 0;
303 
304 	pci_read_config_word(pdev, GCFGC, &gcfgc);
305 
306 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
307 		cdclk_config->cdclk = 133333;
308 		return;
309 	}
310 
311 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
312 	case GC_DISPLAY_CLOCK_333_320_MHZ:
313 		cdclk_config->cdclk = 320000;
314 		break;
315 	default:
316 	case GC_DISPLAY_CLOCK_190_200_MHZ:
317 		cdclk_config->cdclk = 200000;
318 		break;
319 	}
320 }
321 
322 static unsigned int intel_hpll_vco(struct intel_display *display)
323 {
324 	static const unsigned int blb_vco[8] = {
325 		[0] = 3200000,
326 		[1] = 4000000,
327 		[2] = 5333333,
328 		[3] = 4800000,
329 		[4] = 6400000,
330 	};
331 	static const unsigned int pnv_vco[8] = {
332 		[0] = 3200000,
333 		[1] = 4000000,
334 		[2] = 5333333,
335 		[3] = 4800000,
336 		[4] = 2666667,
337 	};
338 	static const unsigned int cl_vco[8] = {
339 		[0] = 3200000,
340 		[1] = 4000000,
341 		[2] = 5333333,
342 		[3] = 6400000,
343 		[4] = 3333333,
344 		[5] = 3566667,
345 		[6] = 4266667,
346 	};
347 	static const unsigned int elk_vco[8] = {
348 		[0] = 3200000,
349 		[1] = 4000000,
350 		[2] = 5333333,
351 		[3] = 4800000,
352 	};
353 	static const unsigned int ctg_vco[8] = {
354 		[0] = 3200000,
355 		[1] = 4000000,
356 		[2] = 5333333,
357 		[3] = 6400000,
358 		[4] = 2666667,
359 		[5] = 4266667,
360 	};
361 	const unsigned int *vco_table;
362 	unsigned int vco;
363 	u8 tmp = 0;
364 
365 	/* FIXME other chipsets? */
366 	if (display->platform.gm45)
367 		vco_table = ctg_vco;
368 	else if (display->platform.g45)
369 		vco_table = elk_vco;
370 	else if (display->platform.i965gm)
371 		vco_table = cl_vco;
372 	else if (display->platform.pineview)
373 		vco_table = pnv_vco;
374 	else if (display->platform.g33)
375 		vco_table = blb_vco;
376 	else
377 		return 0;
378 
379 	tmp = intel_de_read(display, display->platform.pineview ||
380 			    display->platform.mobile ? HPLLVCO_MOBILE : HPLLVCO);
381 
382 	vco = vco_table[tmp & 0x7];
383 	if (vco == 0)
384 		drm_err(display->drm, "Bad HPLL VCO (HPLLVCO=0x%02x)\n",
385 			tmp);
386 	else
387 		drm_dbg_kms(display->drm, "HPLL VCO %u kHz\n", vco);
388 
389 	return vco;
390 }
391 
392 static void g33_get_cdclk(struct intel_display *display,
393 			  struct intel_cdclk_config *cdclk_config)
394 {
395 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
396 	static const u8 div_3200[] = { 12, 10,  8,  7, 5, 16 };
397 	static const u8 div_4000[] = { 14, 12, 10,  8, 6, 20 };
398 	static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 };
399 	static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 };
400 	const u8 *div_table;
401 	unsigned int cdclk_sel;
402 	u16 tmp = 0;
403 
404 	cdclk_config->vco = intel_hpll_vco(display);
405 
406 	pci_read_config_word(pdev, GCFGC, &tmp);
407 
408 	cdclk_sel = (tmp >> 4) & 0x7;
409 
410 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
411 		goto fail;
412 
413 	switch (cdclk_config->vco) {
414 	case 3200000:
415 		div_table = div_3200;
416 		break;
417 	case 4000000:
418 		div_table = div_4000;
419 		break;
420 	case 4800000:
421 		div_table = div_4800;
422 		break;
423 	case 5333333:
424 		div_table = div_5333;
425 		break;
426 	default:
427 		goto fail;
428 	}
429 
430 	cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
431 						div_table[cdclk_sel]);
432 	return;
433 
434 fail:
435 	drm_err(display->drm,
436 		"Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n",
437 		cdclk_config->vco, tmp);
438 	cdclk_config->cdclk = 190476;
439 }
440 
441 static void pnv_get_cdclk(struct intel_display *display,
442 			  struct intel_cdclk_config *cdclk_config)
443 {
444 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
445 	u16 gcfgc = 0;
446 
447 	pci_read_config_word(pdev, GCFGC, &gcfgc);
448 
449 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
450 	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
451 		cdclk_config->cdclk = 266667;
452 		break;
453 	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
454 		cdclk_config->cdclk = 333333;
455 		break;
456 	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
457 		cdclk_config->cdclk = 444444;
458 		break;
459 	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
460 		cdclk_config->cdclk = 200000;
461 		break;
462 	default:
463 		drm_err(display->drm,
464 			"Unknown pnv display core clock 0x%04x\n", gcfgc);
465 		fallthrough;
466 	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
467 		cdclk_config->cdclk = 133333;
468 		break;
469 	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
470 		cdclk_config->cdclk = 166667;
471 		break;
472 	}
473 }
474 
475 static void i965gm_get_cdclk(struct intel_display *display,
476 			     struct intel_cdclk_config *cdclk_config)
477 {
478 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
479 	static const u8 div_3200[] = { 16, 10,  8 };
480 	static const u8 div_4000[] = { 20, 12, 10 };
481 	static const u8 div_5333[] = { 24, 16, 14 };
482 	const u8 *div_table;
483 	unsigned int cdclk_sel;
484 	u16 tmp = 0;
485 
486 	cdclk_config->vco = intel_hpll_vco(display);
487 
488 	pci_read_config_word(pdev, GCFGC, &tmp);
489 
490 	cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
491 
492 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
493 		goto fail;
494 
495 	switch (cdclk_config->vco) {
496 	case 3200000:
497 		div_table = div_3200;
498 		break;
499 	case 4000000:
500 		div_table = div_4000;
501 		break;
502 	case 5333333:
503 		div_table = div_5333;
504 		break;
505 	default:
506 		goto fail;
507 	}
508 
509 	cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
510 						div_table[cdclk_sel]);
511 	return;
512 
513 fail:
514 	drm_err(display->drm,
515 		"Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n",
516 		cdclk_config->vco, tmp);
517 	cdclk_config->cdclk = 200000;
518 }
519 
520 static void gm45_get_cdclk(struct intel_display *display,
521 			   struct intel_cdclk_config *cdclk_config)
522 {
523 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
524 	unsigned int cdclk_sel;
525 	u16 tmp = 0;
526 
527 	cdclk_config->vco = intel_hpll_vco(display);
528 
529 	pci_read_config_word(pdev, GCFGC, &tmp);
530 
531 	cdclk_sel = (tmp >> 12) & 0x1;
532 
533 	switch (cdclk_config->vco) {
534 	case 2666667:
535 	case 4000000:
536 	case 5333333:
537 		cdclk_config->cdclk = cdclk_sel ? 333333 : 222222;
538 		break;
539 	case 3200000:
540 		cdclk_config->cdclk = cdclk_sel ? 320000 : 228571;
541 		break;
542 	default:
543 		drm_err(display->drm,
544 			"Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n",
545 			cdclk_config->vco, tmp);
546 		cdclk_config->cdclk = 222222;
547 		break;
548 	}
549 }
550 
551 static void hsw_get_cdclk(struct intel_display *display,
552 			  struct intel_cdclk_config *cdclk_config)
553 {
554 	u32 lcpll = intel_de_read(display, LCPLL_CTL);
555 	u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
556 
557 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
558 		cdclk_config->cdclk = 800000;
559 	else if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT)
560 		cdclk_config->cdclk = 450000;
561 	else if (freq == LCPLL_CLK_FREQ_450)
562 		cdclk_config->cdclk = 450000;
563 	else if (display->platform.haswell_ult)
564 		cdclk_config->cdclk = 337500;
565 	else
566 		cdclk_config->cdclk = 540000;
567 }
568 
569 static int vlv_calc_cdclk(struct intel_display *display, int min_cdclk)
570 {
571 	int freq_320 = (vlv_clock_get_hpll_vco(display->drm) <<  1) % 320000 != 0 ?
572 		333333 : 320000;
573 
574 	/*
575 	 * We seem to get an unstable or solid color picture at 200MHz.
576 	 * Not sure what's wrong. For now use 200MHz only when all pipes
577 	 * are off.
578 	 */
579 	if (display->platform.valleyview && min_cdclk > freq_320)
580 		return 400000;
581 	else if (min_cdclk > 266667)
582 		return freq_320;
583 	else if (min_cdclk > 0)
584 		return 266667;
585 	else
586 		return 200000;
587 }
588 
589 static u8 vlv_calc_voltage_level(struct intel_display *display, int cdclk)
590 {
591 	if (display->platform.valleyview) {
592 		if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
593 			return 2;
594 		else if (cdclk >= 266667)
595 			return 1;
596 		else
597 			return 0;
598 	} else {
599 		/*
600 		 * Specs are full of misinformation, but testing on actual
601 		 * hardware has shown that we just need to write the desired
602 		 * CCK divider into the Punit register.
603 		 */
604 		return DIV_ROUND_CLOSEST(vlv_clock_get_hpll_vco(display->drm) << 1, cdclk) - 1;
605 	}
606 }
607 
608 static void vlv_get_cdclk(struct intel_display *display,
609 			  struct intel_cdclk_config *cdclk_config)
610 {
611 	u32 val;
612 
613 	cdclk_config->vco = vlv_clock_get_hpll_vco(display->drm);
614 	cdclk_config->cdclk = vlv_clock_get_cdclk(display->drm);
615 
616 	vlv_punit_get(display->drm);
617 	val = vlv_punit_read(display->drm, PUNIT_REG_DSPSSPM);
618 	vlv_punit_put(display->drm);
619 
620 	if (display->platform.valleyview)
621 		cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK) >>
622 			DSPFREQGUAR_SHIFT;
623 	else
624 		cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >>
625 			DSPFREQGUAR_SHIFT_CHV;
626 }
627 
628 static void vlv_program_pfi_credits(struct intel_display *display)
629 {
630 	unsigned int credits, default_credits;
631 
632 	if (display->platform.cherryview)
633 		default_credits = PFI_CREDIT(12);
634 	else
635 		default_credits = PFI_CREDIT(8);
636 
637 	if (display->cdclk.hw.cdclk >= vlv_clock_get_czclk(display->drm)) {
638 		/* CHV suggested value is 31 or 63 */
639 		if (display->platform.cherryview)
640 			credits = PFI_CREDIT_63;
641 		else
642 			credits = PFI_CREDIT(15);
643 	} else {
644 		credits = default_credits;
645 	}
646 
647 	/*
648 	 * WA - write default credits before re-programming
649 	 * FIXME: should we also set the resend bit here?
650 	 */
651 	intel_de_write(display, GCI_CONTROL,
652 		       VGA_FAST_MODE_DISABLE | default_credits);
653 
654 	intel_de_write(display, GCI_CONTROL,
655 		       VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND);
656 
657 	/*
658 	 * FIXME is this guaranteed to clear
659 	 * immediately or should we poll for it?
660 	 */
661 	drm_WARN_ON(display->drm,
662 		    intel_de_read(display, GCI_CONTROL) & PFI_CREDIT_RESEND);
663 }
664 
665 static void vlv_set_cdclk(struct intel_display *display,
666 			  const struct intel_cdclk_config *cdclk_config,
667 			  enum pipe pipe)
668 {
669 	int cdclk = cdclk_config->cdclk;
670 	u32 val, cmd = cdclk_config->voltage_level;
671 	intel_wakeref_t wakeref;
672 	int ret;
673 
674 	switch (cdclk) {
675 	case 400000:
676 	case 333333:
677 	case 320000:
678 	case 266667:
679 	case 200000:
680 		break;
681 	default:
682 		MISSING_CASE(cdclk);
683 		return;
684 	}
685 
686 	/* There are cases where we can end up here with power domains
687 	 * off and a CDCLK frequency other than the minimum, like when
688 	 * issuing a modeset without actually changing any display after
689 	 * a system suspend.  So grab the display core domain, which covers
690 	 * the HW blocks needed for the following programming.
691 	 */
692 	wakeref = intel_display_power_get(display, POWER_DOMAIN_DISPLAY_CORE);
693 
694 	vlv_iosf_sb_get(display->drm,
695 			BIT(VLV_IOSF_SB_CCK) |
696 			BIT(VLV_IOSF_SB_BUNIT) |
697 			BIT(VLV_IOSF_SB_PUNIT));
698 
699 	val = vlv_punit_read(display->drm, PUNIT_REG_DSPSSPM);
700 	val &= ~DSPFREQGUAR_MASK;
701 	val |= (cmd << DSPFREQGUAR_SHIFT);
702 	vlv_punit_write(display->drm, PUNIT_REG_DSPSSPM, val);
703 
704 	ret = poll_timeout_us(val = vlv_punit_read(display->drm, PUNIT_REG_DSPSSPM),
705 			      (val & DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
706 			      500, 50 * 1000, false);
707 	if (ret)
708 		drm_err(display->drm, "timed out waiting for CDCLK change\n");
709 
710 	if (cdclk == 400000) {
711 		u32 divider;
712 
713 		divider = DIV_ROUND_CLOSEST(vlv_clock_get_hpll_vco(display->drm) << 1,
714 					    cdclk) - 1;
715 
716 		/* adjust cdclk divider */
717 		val = vlv_cck_read(display->drm, CCK_DISPLAY_CLOCK_CONTROL);
718 		val &= ~CCK_FREQUENCY_VALUES;
719 		val |= divider;
720 		vlv_cck_write(display->drm, CCK_DISPLAY_CLOCK_CONTROL, val);
721 
722 		ret = poll_timeout_us(val = vlv_cck_read(display->drm, CCK_DISPLAY_CLOCK_CONTROL),
723 				      (val & CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
724 				      500, 50 * 1000, false);
725 		if (ret)
726 			drm_err(display->drm, "timed out waiting for CDCLK change\n");
727 	}
728 
729 	/* adjust self-refresh exit latency value */
730 	val = vlv_bunit_read(display->drm, BUNIT_REG_BISOC);
731 	val &= ~0x7f;
732 
733 	/*
734 	 * For high bandwidth configs, we set a higher latency in the bunit
735 	 * so that the core display fetch happens in time to avoid underruns.
736 	 */
737 	if (cdclk == 400000)
738 		val |= 4500 / 250; /* 4.5 usec */
739 	else
740 		val |= 3000 / 250; /* 3.0 usec */
741 	vlv_bunit_write(display->drm, BUNIT_REG_BISOC, val);
742 
743 	vlv_iosf_sb_put(display->drm,
744 			BIT(VLV_IOSF_SB_CCK) |
745 			BIT(VLV_IOSF_SB_BUNIT) |
746 			BIT(VLV_IOSF_SB_PUNIT));
747 
748 	intel_update_cdclk(display);
749 
750 	vlv_program_pfi_credits(display);
751 
752 	intel_display_power_put(display, POWER_DOMAIN_DISPLAY_CORE, wakeref);
753 }
754 
755 static void chv_set_cdclk(struct intel_display *display,
756 			  const struct intel_cdclk_config *cdclk_config,
757 			  enum pipe pipe)
758 {
759 	int cdclk = cdclk_config->cdclk;
760 	u32 val, cmd = cdclk_config->voltage_level;
761 	intel_wakeref_t wakeref;
762 	int ret;
763 
764 	switch (cdclk) {
765 	case 333333:
766 	case 320000:
767 	case 266667:
768 	case 200000:
769 		break;
770 	default:
771 		MISSING_CASE(cdclk);
772 		return;
773 	}
774 
775 	/* There are cases where we can end up here with power domains
776 	 * off and a CDCLK frequency other than the minimum, like when
777 	 * issuing a modeset without actually changing any display after
778 	 * a system suspend.  So grab the display core domain, which covers
779 	 * the HW blocks needed for the following programming.
780 	 */
781 	wakeref = intel_display_power_get(display, POWER_DOMAIN_DISPLAY_CORE);
782 
783 	vlv_punit_get(display->drm);
784 	val = vlv_punit_read(display->drm, PUNIT_REG_DSPSSPM);
785 	val &= ~DSPFREQGUAR_MASK_CHV;
786 	val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
787 	vlv_punit_write(display->drm, PUNIT_REG_DSPSSPM, val);
788 
789 	ret = poll_timeout_us(val = vlv_punit_read(display->drm, PUNIT_REG_DSPSSPM),
790 			      (val & DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
791 			      500, 50 * 1000, false);
792 	if (ret)
793 		drm_err(display->drm, "timed out waiting for CDCLK change\n");
794 
795 	vlv_punit_put(display->drm);
796 
797 	intel_update_cdclk(display);
798 
799 	vlv_program_pfi_credits(display);
800 
801 	intel_display_power_put(display, POWER_DOMAIN_DISPLAY_CORE, wakeref);
802 }
803 
804 static int bdw_calc_cdclk(int min_cdclk)
805 {
806 	if (min_cdclk > 540000)
807 		return 675000;
808 	else if (min_cdclk > 450000)
809 		return 540000;
810 	else if (min_cdclk > 337500)
811 		return 450000;
812 	else
813 		return 337500;
814 }
815 
816 static u8 bdw_calc_voltage_level(int cdclk)
817 {
818 	switch (cdclk) {
819 	default:
820 	case 337500:
821 		return 2;
822 	case 450000:
823 		return 0;
824 	case 540000:
825 		return 1;
826 	case 675000:
827 		return 3;
828 	}
829 }
830 
831 static void bdw_get_cdclk(struct intel_display *display,
832 			  struct intel_cdclk_config *cdclk_config)
833 {
834 	u32 lcpll = intel_de_read(display, LCPLL_CTL);
835 	u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
836 
837 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
838 		cdclk_config->cdclk = 800000;
839 	else if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT)
840 		cdclk_config->cdclk = 450000;
841 	else if (freq == LCPLL_CLK_FREQ_450)
842 		cdclk_config->cdclk = 450000;
843 	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
844 		cdclk_config->cdclk = 540000;
845 	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
846 		cdclk_config->cdclk = 337500;
847 	else
848 		cdclk_config->cdclk = 675000;
849 
850 	/*
851 	 * Can't read this out :( Let's assume it's
852 	 * at least what the CDCLK frequency requires.
853 	 */
854 	cdclk_config->voltage_level =
855 		bdw_calc_voltage_level(cdclk_config->cdclk);
856 }
857 
858 static u32 bdw_cdclk_freq_sel(int cdclk)
859 {
860 	switch (cdclk) {
861 	default:
862 		MISSING_CASE(cdclk);
863 		fallthrough;
864 	case 337500:
865 		return LCPLL_CLK_FREQ_337_5_BDW;
866 	case 450000:
867 		return LCPLL_CLK_FREQ_450;
868 	case 540000:
869 		return LCPLL_CLK_FREQ_54O_BDW;
870 	case 675000:
871 		return LCPLL_CLK_FREQ_675_BDW;
872 	}
873 }
874 
875 static void bdw_set_cdclk(struct intel_display *display,
876 			  const struct intel_cdclk_config *cdclk_config,
877 			  enum pipe pipe)
878 {
879 	int cdclk = cdclk_config->cdclk;
880 	int ret;
881 
882 	if (drm_WARN(display->drm,
883 		     (intel_de_read(display, LCPLL_CTL) &
884 		      (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
885 		       LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
886 		       LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
887 		       LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
888 		     "trying to change cdclk frequency with cdclk not enabled\n"))
889 		return;
890 
891 	ret = intel_pcode_write(display->drm, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
892 	if (ret) {
893 		drm_err(display->drm,
894 			"failed to inform pcode about cdclk change\n");
895 		return;
896 	}
897 
898 	intel_de_rmw(display, LCPLL_CTL,
899 		     0, LCPLL_CD_SOURCE_FCLK);
900 
901 	/*
902 	 * According to the spec, it should be enough to poll for this 1 us.
903 	 * However, extensive testing shows that this can take longer.
904 	 */
905 	ret = intel_de_wait_for_set_us(display, LCPLL_CTL,
906 				       LCPLL_CD_SOURCE_FCLK_DONE, 100);
907 	if (ret)
908 		drm_err(display->drm, "Switching to FCLK failed\n");
909 
910 	intel_de_rmw(display, LCPLL_CTL,
911 		     LCPLL_CLK_FREQ_MASK, bdw_cdclk_freq_sel(cdclk));
912 
913 	intel_de_rmw(display, LCPLL_CTL,
914 		     LCPLL_CD_SOURCE_FCLK, 0);
915 
916 	ret = intel_de_wait_for_clear_us(display, LCPLL_CTL,
917 					 LCPLL_CD_SOURCE_FCLK_DONE, 1);
918 	if (ret)
919 		drm_err(display->drm, "Switching back to LCPLL failed\n");
920 
921 	intel_pcode_write(display->drm, HSW_PCODE_DE_WRITE_FREQ_REQ,
922 			  cdclk_config->voltage_level);
923 
924 	intel_de_write(display, CDCLK_FREQ,
925 		       DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
926 
927 	intel_update_cdclk(display);
928 }
929 
930 static int skl_calc_cdclk(int min_cdclk, int vco)
931 {
932 	if (vco == 8640000) {
933 		if (min_cdclk > 540000)
934 			return 617143;
935 		else if (min_cdclk > 432000)
936 			return 540000;
937 		else if (min_cdclk > 308571)
938 			return 432000;
939 		else
940 			return 308571;
941 	} else {
942 		if (min_cdclk > 540000)
943 			return 675000;
944 		else if (min_cdclk > 450000)
945 			return 540000;
946 		else if (min_cdclk > 337500)
947 			return 450000;
948 		else
949 			return 337500;
950 	}
951 }
952 
953 static u8 skl_calc_voltage_level(int cdclk)
954 {
955 	if (cdclk > 540000)
956 		return 3;
957 	else if (cdclk > 450000)
958 		return 2;
959 	else if (cdclk > 337500)
960 		return 1;
961 	else
962 		return 0;
963 }
964 
965 static void skl_dpll0_update(struct intel_display *display,
966 			     struct intel_cdclk_config *cdclk_config)
967 {
968 	u32 val;
969 
970 	cdclk_config->ref = 24000;
971 	cdclk_config->vco = 0;
972 
973 	val = intel_de_read(display, LCPLL1_CTL);
974 	if ((val & LCPLL_PLL_ENABLE) == 0)
975 		return;
976 
977 	if (drm_WARN_ON(display->drm, (val & LCPLL_PLL_LOCK) == 0))
978 		return;
979 
980 	val = intel_de_read(display, DPLL_CTRL1);
981 
982 	if (drm_WARN_ON(display->drm,
983 			(val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
984 				DPLL_CTRL1_SSC(SKL_DPLL0) |
985 				DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
986 			DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
987 		return;
988 
989 	switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
990 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
991 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
992 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
993 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
994 		cdclk_config->vco = 8100000;
995 		break;
996 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
997 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
998 		cdclk_config->vco = 8640000;
999 		break;
1000 	default:
1001 		MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
1002 		break;
1003 	}
1004 }
1005 
1006 static void skl_get_cdclk(struct intel_display *display,
1007 			  struct intel_cdclk_config *cdclk_config)
1008 {
1009 	u32 cdctl;
1010 
1011 	skl_dpll0_update(display, cdclk_config);
1012 
1013 	cdclk_config->cdclk = cdclk_config->bypass = cdclk_config->ref;
1014 
1015 	if (cdclk_config->vco == 0)
1016 		goto out;
1017 
1018 	cdctl = intel_de_read(display, CDCLK_CTL);
1019 
1020 	if (cdclk_config->vco == 8640000) {
1021 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
1022 		case CDCLK_FREQ_450_432:
1023 			cdclk_config->cdclk = 432000;
1024 			break;
1025 		case CDCLK_FREQ_337_308:
1026 			cdclk_config->cdclk = 308571;
1027 			break;
1028 		case CDCLK_FREQ_540:
1029 			cdclk_config->cdclk = 540000;
1030 			break;
1031 		case CDCLK_FREQ_675_617:
1032 			cdclk_config->cdclk = 617143;
1033 			break;
1034 		default:
1035 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
1036 			break;
1037 		}
1038 	} else {
1039 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
1040 		case CDCLK_FREQ_450_432:
1041 			cdclk_config->cdclk = 450000;
1042 			break;
1043 		case CDCLK_FREQ_337_308:
1044 			cdclk_config->cdclk = 337500;
1045 			break;
1046 		case CDCLK_FREQ_540:
1047 			cdclk_config->cdclk = 540000;
1048 			break;
1049 		case CDCLK_FREQ_675_617:
1050 			cdclk_config->cdclk = 675000;
1051 			break;
1052 		default:
1053 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
1054 			break;
1055 		}
1056 	}
1057 
1058  out:
1059 	/*
1060 	 * Can't read this out :( Let's assume it's
1061 	 * at least what the CDCLK frequency requires.
1062 	 */
1063 	cdclk_config->voltage_level =
1064 		skl_calc_voltage_level(cdclk_config->cdclk);
1065 }
1066 
1067 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
1068 static int skl_cdclk_decimal(int cdclk)
1069 {
1070 	return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
1071 }
1072 
1073 static void skl_set_preferred_cdclk_vco(struct intel_display *display, int vco)
1074 {
1075 	bool changed = display->cdclk.skl_preferred_vco_freq != vco;
1076 
1077 	display->cdclk.skl_preferred_vco_freq = vco;
1078 
1079 	if (changed)
1080 		intel_update_max_cdclk(display);
1081 }
1082 
1083 static u32 skl_dpll0_link_rate(struct intel_display *display, int vco)
1084 {
1085 	drm_WARN_ON(display->drm, vco != 8100000 && vco != 8640000);
1086 
1087 	/*
1088 	 * We always enable DPLL0 with the lowest link rate possible, but still
1089 	 * taking into account the VCO required to operate the eDP panel at the
1090 	 * desired frequency. The usual DP link rates operate with a VCO of
1091 	 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
1092 	 * The modeset code is responsible for the selection of the exact link
1093 	 * rate later on, with the constraint of choosing a frequency that
1094 	 * works with vco.
1095 	 */
1096 	if (vco == 8640000)
1097 		return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0);
1098 	else
1099 		return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0);
1100 }
1101 
1102 static void skl_dpll0_enable(struct intel_display *display, int vco)
1103 {
1104 	intel_de_rmw(display, DPLL_CTRL1,
1105 		     DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
1106 		     DPLL_CTRL1_SSC(SKL_DPLL0) |
1107 		     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0),
1108 		     DPLL_CTRL1_OVERRIDE(SKL_DPLL0) |
1109 		     skl_dpll0_link_rate(display, vco));
1110 	intel_de_posting_read(display, DPLL_CTRL1);
1111 
1112 	intel_de_rmw(display, LCPLL1_CTL,
1113 		     0, LCPLL_PLL_ENABLE);
1114 
1115 	if (intel_de_wait_for_set_ms(display, LCPLL1_CTL, LCPLL_PLL_LOCK, 5))
1116 		drm_err(display->drm, "DPLL0 not locked\n");
1117 
1118 	display->cdclk.hw.vco = vco;
1119 
1120 	/* We'll want to keep using the current vco from now on. */
1121 	skl_set_preferred_cdclk_vco(display, vco);
1122 }
1123 
1124 static void skl_dpll0_disable(struct intel_display *display)
1125 {
1126 	intel_de_rmw(display, LCPLL1_CTL,
1127 		     LCPLL_PLL_ENABLE, 0);
1128 
1129 	if (intel_de_wait_for_clear_ms(display, LCPLL1_CTL, LCPLL_PLL_LOCK, 1))
1130 		drm_err(display->drm, "Couldn't disable DPLL0\n");
1131 
1132 	display->cdclk.hw.vco = 0;
1133 }
1134 
1135 static u32 skl_cdclk_freq_sel(struct intel_display *display,
1136 			      int cdclk, int vco)
1137 {
1138 	switch (cdclk) {
1139 	default:
1140 		drm_WARN_ON(display->drm,
1141 			    cdclk != display->cdclk.hw.bypass);
1142 		drm_WARN_ON(display->drm, vco != 0);
1143 		fallthrough;
1144 	case 308571:
1145 	case 337500:
1146 		return CDCLK_FREQ_337_308;
1147 	case 450000:
1148 	case 432000:
1149 		return CDCLK_FREQ_450_432;
1150 	case 540000:
1151 		return CDCLK_FREQ_540;
1152 	case 617143:
1153 	case 675000:
1154 		return CDCLK_FREQ_675_617;
1155 	}
1156 }
1157 
1158 static void skl_set_cdclk(struct intel_display *display,
1159 			  const struct intel_cdclk_config *cdclk_config,
1160 			  enum pipe pipe)
1161 {
1162 	int cdclk = cdclk_config->cdclk;
1163 	int vco = cdclk_config->vco;
1164 	u32 freq_select, cdclk_ctl;
1165 	int ret;
1166 
1167 	/*
1168 	 * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are
1169 	 * unsupported on SKL. In theory this should never happen since only
1170 	 * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not
1171 	 * supported on SKL either, see the above WA. WARN whenever trying to
1172 	 * use the corresponding VCO freq as that always leads to using the
1173 	 * minimum 308MHz CDCLK.
1174 	 */
1175 	drm_WARN_ON_ONCE(display->drm,
1176 			 display->platform.skylake && vco == 8640000);
1177 
1178 	ret = intel_pcode_request(display->drm, SKL_PCODE_CDCLK_CONTROL,
1179 				  SKL_CDCLK_PREPARE_FOR_CHANGE,
1180 				  SKL_CDCLK_READY_FOR_CHANGE,
1181 				  SKL_CDCLK_READY_FOR_CHANGE, 3);
1182 	if (ret) {
1183 		drm_err(display->drm,
1184 			"Failed to inform PCU about cdclk change (%d)\n", ret);
1185 		return;
1186 	}
1187 
1188 	freq_select = skl_cdclk_freq_sel(display, cdclk, vco);
1189 
1190 	if (display->cdclk.hw.vco != 0 &&
1191 	    display->cdclk.hw.vco != vco)
1192 		skl_dpll0_disable(display);
1193 
1194 	cdclk_ctl = intel_de_read(display, CDCLK_CTL);
1195 
1196 	if (display->cdclk.hw.vco != vco) {
1197 		/* Wa Display #1183: skl,kbl,cfl */
1198 		cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1199 		cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1200 		intel_de_write(display, CDCLK_CTL, cdclk_ctl);
1201 	}
1202 
1203 	/* Wa Display #1183: skl,kbl,cfl */
1204 	cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE;
1205 	intel_de_write(display, CDCLK_CTL, cdclk_ctl);
1206 	intel_de_posting_read(display, CDCLK_CTL);
1207 
1208 	if (display->cdclk.hw.vco != vco)
1209 		skl_dpll0_enable(display, vco);
1210 
1211 	/* Wa Display #1183: skl,kbl,cfl */
1212 	cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1213 	intel_de_write(display, CDCLK_CTL, cdclk_ctl);
1214 
1215 	cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1216 	intel_de_write(display, CDCLK_CTL, cdclk_ctl);
1217 
1218 	/* Wa Display #1183: skl,kbl,cfl */
1219 	cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE;
1220 	intel_de_write(display, CDCLK_CTL, cdclk_ctl);
1221 	intel_de_posting_read(display, CDCLK_CTL);
1222 
1223 	/* inform PCU of the change */
1224 	intel_pcode_write(display->drm, SKL_PCODE_CDCLK_CONTROL,
1225 			  cdclk_config->voltage_level);
1226 
1227 	intel_update_cdclk(display);
1228 }
1229 
1230 static void skl_sanitize_cdclk(struct intel_display *display)
1231 {
1232 	u32 cdctl, expected;
1233 
1234 	/*
1235 	 * check if the pre-os initialized the display
1236 	 * There is SWF18 scratchpad register defined which is set by the
1237 	 * pre-os which can be used by the OS drivers to check the status
1238 	 */
1239 	if ((intel_de_read(display, SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
1240 		goto sanitize;
1241 
1242 	intel_update_cdclk(display);
1243 	intel_cdclk_dump_config(display, &display->cdclk.hw, "Current CDCLK");
1244 
1245 	/* Is PLL enabled and locked ? */
1246 	if (display->cdclk.hw.vco == 0 ||
1247 	    display->cdclk.hw.cdclk == display->cdclk.hw.bypass)
1248 		goto sanitize;
1249 
1250 	/* DPLL okay; verify the cdclock
1251 	 *
1252 	 * Noticed in some instances that the freq selection is correct but
1253 	 * decimal part is programmed wrong from BIOS where pre-os does not
1254 	 * enable display. Verify the same as well.
1255 	 */
1256 	cdctl = intel_de_read(display, CDCLK_CTL);
1257 	expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
1258 		skl_cdclk_decimal(display->cdclk.hw.cdclk);
1259 	if (cdctl == expected)
1260 		/* All well; nothing to sanitize */
1261 		return;
1262 
1263 sanitize:
1264 	drm_dbg_kms(display->drm, "Sanitizing cdclk programmed by pre-os\n");
1265 
1266 	/* force cdclk programming */
1267 	display->cdclk.hw.cdclk = 0;
1268 	/* force full PLL disable + enable */
1269 	display->cdclk.hw.vco = ~0;
1270 }
1271 
1272 static void skl_cdclk_init_hw(struct intel_display *display)
1273 {
1274 	struct intel_cdclk_config cdclk_config;
1275 
1276 	skl_sanitize_cdclk(display);
1277 
1278 	if (display->cdclk.hw.cdclk != 0 &&
1279 	    display->cdclk.hw.vco != 0) {
1280 		/*
1281 		 * Use the current vco as our initial
1282 		 * guess as to what the preferred vco is.
1283 		 */
1284 		if (display->cdclk.skl_preferred_vco_freq == 0)
1285 			skl_set_preferred_cdclk_vco(display,
1286 						    display->cdclk.hw.vco);
1287 		return;
1288 	}
1289 
1290 	cdclk_config = display->cdclk.hw;
1291 
1292 	cdclk_config.vco = display->cdclk.skl_preferred_vco_freq;
1293 	if (cdclk_config.vco == 0)
1294 		cdclk_config.vco = 8100000;
1295 	cdclk_config.cdclk = skl_calc_cdclk(0, cdclk_config.vco);
1296 	cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
1297 
1298 	skl_set_cdclk(display, &cdclk_config, INVALID_PIPE);
1299 }
1300 
1301 static void skl_cdclk_uninit_hw(struct intel_display *display)
1302 {
1303 	struct intel_cdclk_config cdclk_config = display->cdclk.hw;
1304 
1305 	cdclk_config.cdclk = cdclk_config.bypass;
1306 	cdclk_config.vco = 0;
1307 	cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
1308 
1309 	skl_set_cdclk(display, &cdclk_config, INVALID_PIPE);
1310 }
1311 
1312 struct intel_cdclk_vals {
1313 	u32 cdclk;
1314 	u16 refclk;
1315 	u16 waveform;
1316 	u8 ratio;
1317 };
1318 
1319 static const struct intel_cdclk_vals bxt_cdclk_table[] = {
1320 	{ .refclk = 19200, .cdclk = 144000, .ratio = 60 },
1321 	{ .refclk = 19200, .cdclk = 288000, .ratio = 60 },
1322 	{ .refclk = 19200, .cdclk = 384000, .ratio = 60 },
1323 	{ .refclk = 19200, .cdclk = 576000, .ratio = 60 },
1324 	{ .refclk = 19200, .cdclk = 624000, .ratio = 65 },
1325 	{}
1326 };
1327 
1328 static const struct intel_cdclk_vals glk_cdclk_table[] = {
1329 	{ .refclk = 19200, .cdclk =  79200, .ratio = 33 },
1330 	{ .refclk = 19200, .cdclk = 158400, .ratio = 33 },
1331 	{ .refclk = 19200, .cdclk = 316800, .ratio = 33 },
1332 	{}
1333 };
1334 
1335 static const struct intel_cdclk_vals icl_cdclk_table[] = {
1336 	{ .refclk = 19200, .cdclk = 172800, .ratio = 18 },
1337 	{ .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1338 	{ .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1339 	{ .refclk = 19200, .cdclk = 326400, .ratio = 68 },
1340 	{ .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1341 	{ .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1342 
1343 	{ .refclk = 24000, .cdclk = 180000, .ratio = 15 },
1344 	{ .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1345 	{ .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1346 	{ .refclk = 24000, .cdclk = 324000, .ratio = 54 },
1347 	{ .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1348 	{ .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1349 
1350 	{ .refclk = 38400, .cdclk = 172800, .ratio =  9 },
1351 	{ .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1352 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1353 	{ .refclk = 38400, .cdclk = 326400, .ratio = 34 },
1354 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1355 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1356 	{}
1357 };
1358 
1359 static const struct intel_cdclk_vals rkl_cdclk_table[] = {
1360 	{ .refclk = 19200, .cdclk = 172800, .ratio =  36 },
1361 	{ .refclk = 19200, .cdclk = 192000, .ratio =  40 },
1362 	{ .refclk = 19200, .cdclk = 307200, .ratio =  64 },
1363 	{ .refclk = 19200, .cdclk = 326400, .ratio = 136 },
1364 	{ .refclk = 19200, .cdclk = 556800, .ratio = 116 },
1365 	{ .refclk = 19200, .cdclk = 652800, .ratio = 136 },
1366 
1367 	{ .refclk = 24000, .cdclk = 180000, .ratio =  30 },
1368 	{ .refclk = 24000, .cdclk = 192000, .ratio =  32 },
1369 	{ .refclk = 24000, .cdclk = 312000, .ratio =  52 },
1370 	{ .refclk = 24000, .cdclk = 324000, .ratio = 108 },
1371 	{ .refclk = 24000, .cdclk = 552000, .ratio =  92 },
1372 	{ .refclk = 24000, .cdclk = 648000, .ratio = 108 },
1373 
1374 	{ .refclk = 38400, .cdclk = 172800, .ratio = 18 },
1375 	{ .refclk = 38400, .cdclk = 192000, .ratio = 20 },
1376 	{ .refclk = 38400, .cdclk = 307200, .ratio = 32 },
1377 	{ .refclk = 38400, .cdclk = 326400, .ratio = 68 },
1378 	{ .refclk = 38400, .cdclk = 556800, .ratio = 58 },
1379 	{ .refclk = 38400, .cdclk = 652800, .ratio = 68 },
1380 	{}
1381 };
1382 
1383 static const struct intel_cdclk_vals adlp_a_step_cdclk_table[] = {
1384 	{ .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1385 	{ .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1386 	{ .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1387 
1388 	{ .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1389 	{ .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1390 	{ .refclk = 24400, .cdclk = 648000, .ratio = 54 },
1391 
1392 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1393 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1394 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1395 	{}
1396 };
1397 
1398 static const struct intel_cdclk_vals adlp_cdclk_table[] = {
1399 	{ .refclk = 19200, .cdclk = 172800, .ratio = 27 },
1400 	{ .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1401 	{ .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1402 	{ .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1403 	{ .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1404 
1405 	{ .refclk = 24000, .cdclk = 176000, .ratio = 22 },
1406 	{ .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1407 	{ .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1408 	{ .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1409 	{ .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1410 
1411 	{ .refclk = 38400, .cdclk = 179200, .ratio = 14 },
1412 	{ .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1413 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1414 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1415 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1416 	{}
1417 };
1418 
1419 static const struct intel_cdclk_vals rplu_cdclk_table[] = {
1420 	{ .refclk = 19200, .cdclk = 172800, .ratio = 27 },
1421 	{ .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1422 	{ .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1423 	{ .refclk = 19200, .cdclk = 480000, .ratio = 50 },
1424 	{ .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1425 	{ .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1426 
1427 	{ .refclk = 24000, .cdclk = 176000, .ratio = 22 },
1428 	{ .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1429 	{ .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1430 	{ .refclk = 24000, .cdclk = 480000, .ratio = 40 },
1431 	{ .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1432 	{ .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1433 
1434 	{ .refclk = 38400, .cdclk = 179200, .ratio = 14 },
1435 	{ .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1436 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1437 	{ .refclk = 38400, .cdclk = 480000, .ratio = 25 },
1438 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1439 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1440 	{}
1441 };
1442 
1443 static const struct intel_cdclk_vals dg2_cdclk_table[] = {
1444 	{ .refclk = 38400, .cdclk = 163200, .ratio = 34, .waveform = 0x8888 },
1445 	{ .refclk = 38400, .cdclk = 204000, .ratio = 34, .waveform = 0x9248 },
1446 	{ .refclk = 38400, .cdclk = 244800, .ratio = 34, .waveform = 0xa4a4 },
1447 	{ .refclk = 38400, .cdclk = 285600, .ratio = 34, .waveform = 0xa54a },
1448 	{ .refclk = 38400, .cdclk = 326400, .ratio = 34, .waveform = 0xaaaa },
1449 	{ .refclk = 38400, .cdclk = 367200, .ratio = 34, .waveform = 0xad5a },
1450 	{ .refclk = 38400, .cdclk = 408000, .ratio = 34, .waveform = 0xb6b6 },
1451 	{ .refclk = 38400, .cdclk = 448800, .ratio = 34, .waveform = 0xdbb6 },
1452 	{ .refclk = 38400, .cdclk = 489600, .ratio = 34, .waveform = 0xeeee },
1453 	{ .refclk = 38400, .cdclk = 530400, .ratio = 34, .waveform = 0xf7de },
1454 	{ .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe },
1455 	{ .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe },
1456 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1457 	{}
1458 };
1459 
1460 static const struct intel_cdclk_vals mtl_cdclk_table[] = {
1461 	{ .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a },
1462 	{ .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 },
1463 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0x0000 },
1464 	{ .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0x0000 },
1465 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0x0000 },
1466 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0x0000 },
1467 	{}
1468 };
1469 
1470 static const struct intel_cdclk_vals xe2lpd_cdclk_table[] = {
1471 	{ .refclk = 38400, .cdclk = 153600, .ratio = 16, .waveform = 0xaaaa },
1472 	{ .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a },
1473 	{ .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 },
1474 	{ .refclk = 38400, .cdclk = 211200, .ratio = 16, .waveform = 0xdbb6 },
1475 	{ .refclk = 38400, .cdclk = 230400, .ratio = 16, .waveform = 0xeeee },
1476 	{ .refclk = 38400, .cdclk = 249600, .ratio = 16, .waveform = 0xf7de },
1477 	{ .refclk = 38400, .cdclk = 268800, .ratio = 16, .waveform = 0xfefe },
1478 	{ .refclk = 38400, .cdclk = 288000, .ratio = 16, .waveform = 0xfffe },
1479 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0xffff },
1480 	{ .refclk = 38400, .cdclk = 330000, .ratio = 25, .waveform = 0xdbb6 },
1481 	{ .refclk = 38400, .cdclk = 360000, .ratio = 25, .waveform = 0xeeee },
1482 	{ .refclk = 38400, .cdclk = 390000, .ratio = 25, .waveform = 0xf7de },
1483 	{ .refclk = 38400, .cdclk = 420000, .ratio = 25, .waveform = 0xfefe },
1484 	{ .refclk = 38400, .cdclk = 450000, .ratio = 25, .waveform = 0xfffe },
1485 	{ .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff },
1486 	{ .refclk = 38400, .cdclk = 487200, .ratio = 29, .waveform = 0xfefe },
1487 	{ .refclk = 38400, .cdclk = 522000, .ratio = 29, .waveform = 0xfffe },
1488 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff },
1489 	{ .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe },
1490 	{ .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe },
1491 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1492 	{}
1493 };
1494 
1495 /*
1496  * Xe2_HPD always uses the minimal cdclk table from Wa_15015413771
1497  */
1498 static const struct intel_cdclk_vals xe2hpd_cdclk_table[] = {
1499 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1500 	{}
1501 };
1502 
1503 static const struct intel_cdclk_vals xe3lpd_cdclk_table[] = {
1504 	{ .refclk = 38400, .cdclk = 153600, .ratio = 16, .waveform = 0xaaaa },
1505 	{ .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a },
1506 	{ .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 },
1507 	{ .refclk = 38400, .cdclk = 211200, .ratio = 16, .waveform = 0xdbb6 },
1508 	{ .refclk = 38400, .cdclk = 230400, .ratio = 16, .waveform = 0xeeee },
1509 	{ .refclk = 38400, .cdclk = 249600, .ratio = 16, .waveform = 0xf7de },
1510 	{ .refclk = 38400, .cdclk = 268800, .ratio = 16, .waveform = 0xfefe },
1511 	{ .refclk = 38400, .cdclk = 288000, .ratio = 16, .waveform = 0xfffe },
1512 	{ .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0xffff },
1513 	{ .refclk = 38400, .cdclk = 326400, .ratio = 17, .waveform = 0xffff },
1514 	{ .refclk = 38400, .cdclk = 345600, .ratio = 18, .waveform = 0xffff },
1515 	{ .refclk = 38400, .cdclk = 364800, .ratio = 19, .waveform = 0xffff },
1516 	{ .refclk = 38400, .cdclk = 384000, .ratio = 20, .waveform = 0xffff },
1517 	{ .refclk = 38400, .cdclk = 403200, .ratio = 21, .waveform = 0xffff },
1518 	{ .refclk = 38400, .cdclk = 422400, .ratio = 22, .waveform = 0xffff },
1519 	{ .refclk = 38400, .cdclk = 441600, .ratio = 23, .waveform = 0xffff },
1520 	{ .refclk = 38400, .cdclk = 460800, .ratio = 24, .waveform = 0xffff },
1521 	{ .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff },
1522 	{ .refclk = 38400, .cdclk = 499200, .ratio = 26, .waveform = 0xffff },
1523 	{ .refclk = 38400, .cdclk = 518400, .ratio = 27, .waveform = 0xffff },
1524 	{ .refclk = 38400, .cdclk = 537600, .ratio = 28, .waveform = 0xffff },
1525 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff },
1526 	{ .refclk = 38400, .cdclk = 576000, .ratio = 30, .waveform = 0xffff },
1527 	{ .refclk = 38400, .cdclk = 595200, .ratio = 31, .waveform = 0xffff },
1528 	{ .refclk = 38400, .cdclk = 614400, .ratio = 32, .waveform = 0xffff },
1529 	{ .refclk = 38400, .cdclk = 633600, .ratio = 33, .waveform = 0xffff },
1530 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1531 	{ .refclk = 38400, .cdclk = 672000, .ratio = 35, .waveform = 0xffff },
1532 	{ .refclk = 38400, .cdclk = 691200, .ratio = 36, .waveform = 0xffff },
1533 	{}
1534 };
1535 
1536 static const struct intel_cdclk_vals xe3p_lpd_cdclk_table[] = {
1537 	{ .refclk = 38400, .cdclk = 151200, .ratio = 21, .waveform = 0xa4a4 },
1538 	{ .refclk = 38400, .cdclk = 176400, .ratio = 21, .waveform = 0xaa54 },
1539 	{ .refclk = 38400, .cdclk = 201600, .ratio = 21, .waveform = 0xaaaa },
1540 	{ .refclk = 38400, .cdclk = 226800, .ratio = 21, .waveform = 0xad5a },
1541 	{ .refclk = 38400, .cdclk = 252000, .ratio = 21, .waveform = 0xb6b6 },
1542 	{ .refclk = 38400, .cdclk = 277200, .ratio = 21, .waveform = 0xdbb6 },
1543 	{ .refclk = 38400, .cdclk = 302400, .ratio = 21, .waveform = 0xeeee },
1544 	{ .refclk = 38400, .cdclk = 327600, .ratio = 21, .waveform = 0xf7de },
1545 	{ .refclk = 38400, .cdclk = 352800, .ratio = 21, .waveform = 0xfefe },
1546 	{ .refclk = 38400, .cdclk = 378000, .ratio = 21, .waveform = 0xfffe },
1547 	{ .refclk = 38400, .cdclk = 403200, .ratio = 21, .waveform = 0xffff },
1548 	{ .refclk = 38400, .cdclk = 422400, .ratio = 22, .waveform = 0xffff },
1549 	{ .refclk = 38400, .cdclk = 441600, .ratio = 23, .waveform = 0xffff },
1550 	{ .refclk = 38400, .cdclk = 460800, .ratio = 24, .waveform = 0xffff },
1551 	{ .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff },
1552 	{ .refclk = 38400, .cdclk = 499200, .ratio = 26, .waveform = 0xffff },
1553 	{ .refclk = 38400, .cdclk = 518400, .ratio = 27, .waveform = 0xffff },
1554 	{ .refclk = 38400, .cdclk = 537600, .ratio = 28, .waveform = 0xffff },
1555 	{ .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff },
1556 	{ .refclk = 38400, .cdclk = 576000, .ratio = 30, .waveform = 0xffff },
1557 	{ .refclk = 38400, .cdclk = 595200, .ratio = 31, .waveform = 0xffff },
1558 	{ .refclk = 38400, .cdclk = 614400, .ratio = 32, .waveform = 0xffff },
1559 	{ .refclk = 38400, .cdclk = 633600, .ratio = 33, .waveform = 0xffff },
1560 	{ .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1561 	{ .refclk = 38400, .cdclk = 672000, .ratio = 35, .waveform = 0xffff },
1562 	{ .refclk = 38400, .cdclk = 691200, .ratio = 36, .waveform = 0xffff },
1563 	{ .refclk = 38400, .cdclk = 710400, .ratio = 37, .waveform = 0xffff },
1564 	{ .refclk = 38400, .cdclk = 729600, .ratio = 38, .waveform = 0xffff },
1565 	{ .refclk = 38400, .cdclk = 748800, .ratio = 39, .waveform = 0xffff },
1566 	{ .refclk = 38400, .cdclk = 768000, .ratio = 40, .waveform = 0xffff },
1567 	{ .refclk = 38400, .cdclk = 787200, .ratio = 41, .waveform = 0xffff },
1568 	{}
1569 };
1570 
1571 static const int cdclk_squash_len = 16;
1572 
1573 static int cdclk_squash_divider(u16 waveform)
1574 {
1575 	return hweight16(waveform ?: 0xffff);
1576 }
1577 
1578 static int cdclk_divider(int cdclk, int vco, u16 waveform)
1579 {
1580 	/* 2 * cd2x divider */
1581 	return DIV_ROUND_CLOSEST(vco * cdclk_squash_divider(waveform),
1582 				 cdclk * cdclk_squash_len);
1583 }
1584 
1585 static int bxt_calc_cdclk(struct intel_display *display, int min_cdclk)
1586 {
1587 	const struct intel_cdclk_vals *table = display->cdclk.table;
1588 	int i;
1589 
1590 	for (i = 0; table[i].refclk; i++)
1591 		if (table[i].refclk == display->cdclk.hw.ref &&
1592 		    table[i].cdclk >= min_cdclk)
1593 			return table[i].cdclk;
1594 
1595 	drm_WARN(display->drm, 1,
1596 		 "Cannot satisfy minimum cdclk %d with refclk %u\n",
1597 		 min_cdclk, display->cdclk.hw.ref);
1598 	return display->cdclk.max_cdclk_freq;
1599 }
1600 
1601 static int bxt_calc_cdclk_pll_vco(struct intel_display *display, int cdclk)
1602 {
1603 	const struct intel_cdclk_vals *table = display->cdclk.table;
1604 	int i;
1605 
1606 	if (cdclk == display->cdclk.hw.bypass)
1607 		return 0;
1608 
1609 	for (i = 0; table[i].refclk; i++)
1610 		if (table[i].refclk == display->cdclk.hw.ref &&
1611 		    table[i].cdclk == cdclk)
1612 			return display->cdclk.hw.ref * table[i].ratio;
1613 
1614 	drm_WARN(display->drm, 1, "cdclk %d not valid for refclk %u\n",
1615 		 cdclk, display->cdclk.hw.ref);
1616 	return 0;
1617 }
1618 
1619 static u8 bxt_calc_voltage_level(int cdclk)
1620 {
1621 	return DIV_ROUND_UP(cdclk, 25000);
1622 }
1623 
1624 static u8 calc_voltage_level(int cdclk, int num_voltage_levels,
1625 			     const int voltage_level_max_cdclk[])
1626 {
1627 	int voltage_level;
1628 
1629 	for (voltage_level = 0; voltage_level < num_voltage_levels; voltage_level++) {
1630 		if (cdclk <= voltage_level_max_cdclk[voltage_level])
1631 			return voltage_level;
1632 	}
1633 
1634 	MISSING_CASE(cdclk);
1635 	return num_voltage_levels - 1;
1636 }
1637 
1638 static u8 icl_calc_voltage_level(int cdclk)
1639 {
1640 	static const int icl_voltage_level_max_cdclk[] = {
1641 		[0] = 312000,
1642 		[1] = 556800,
1643 		[2] = 652800,
1644 	};
1645 
1646 	return calc_voltage_level(cdclk,
1647 				  ARRAY_SIZE(icl_voltage_level_max_cdclk),
1648 				  icl_voltage_level_max_cdclk);
1649 }
1650 
1651 static u8 ehl_calc_voltage_level(int cdclk)
1652 {
1653 	static const int ehl_voltage_level_max_cdclk[] = {
1654 		[0] = 180000,
1655 		[1] = 312000,
1656 		[2] = 326400,
1657 		/*
1658 		 * Bspec lists the limit as 556.8 MHz, but some JSL
1659 		 * development boards (at least) boot with 652.8 MHz
1660 		 */
1661 		[3] = 652800,
1662 	};
1663 
1664 	return calc_voltage_level(cdclk,
1665 				  ARRAY_SIZE(ehl_voltage_level_max_cdclk),
1666 				  ehl_voltage_level_max_cdclk);
1667 }
1668 
1669 static u8 tgl_calc_voltage_level(int cdclk)
1670 {
1671 	static const int tgl_voltage_level_max_cdclk[] = {
1672 		[0] = 312000,
1673 		[1] = 326400,
1674 		[2] = 556800,
1675 		[3] = 652800,
1676 	};
1677 
1678 	return calc_voltage_level(cdclk,
1679 				  ARRAY_SIZE(tgl_voltage_level_max_cdclk),
1680 				  tgl_voltage_level_max_cdclk);
1681 }
1682 
1683 static u8 rplu_calc_voltage_level(int cdclk)
1684 {
1685 	static const int rplu_voltage_level_max_cdclk[] = {
1686 		[0] = 312000,
1687 		[1] = 480000,
1688 		[2] = 556800,
1689 		[3] = 652800,
1690 	};
1691 
1692 	return calc_voltage_level(cdclk,
1693 				  ARRAY_SIZE(rplu_voltage_level_max_cdclk),
1694 				  rplu_voltage_level_max_cdclk);
1695 }
1696 
1697 static u8 xe3lpd_calc_voltage_level(int cdclk)
1698 {
1699 	/*
1700 	 * Starting with xe3lpd power controller does not need the voltage
1701 	 * index when doing the modeset update. This function is best left
1702 	 * defined but returning 0 to the mask.
1703 	 */
1704 	return 0;
1705 }
1706 
1707 static void icl_readout_refclk(struct intel_display *display,
1708 			       struct intel_cdclk_config *cdclk_config)
1709 {
1710 	u32 dssm = intel_de_read(display, SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK;
1711 
1712 	switch (dssm) {
1713 	default:
1714 		MISSING_CASE(dssm);
1715 		fallthrough;
1716 	case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz:
1717 		cdclk_config->ref = 24000;
1718 		break;
1719 	case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz:
1720 		cdclk_config->ref = 19200;
1721 		break;
1722 	case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz:
1723 		cdclk_config->ref = 38400;
1724 		break;
1725 	}
1726 }
1727 
1728 static void bxt_de_pll_readout(struct intel_display *display,
1729 			       struct intel_cdclk_config *cdclk_config)
1730 {
1731 	u32 val, ratio;
1732 
1733 	if (display->platform.dg2)
1734 		cdclk_config->ref = 38400;
1735 	else if (DISPLAY_VER(display) >= 11)
1736 		icl_readout_refclk(display, cdclk_config);
1737 	else
1738 		cdclk_config->ref = 19200;
1739 
1740 	val = intel_de_read(display, BXT_DE_PLL_ENABLE);
1741 	if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 ||
1742 	    (val & BXT_DE_PLL_LOCK) == 0) {
1743 		/*
1744 		 * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but
1745 		 * setting it to zero is a way to signal that.
1746 		 */
1747 		cdclk_config->vco = 0;
1748 		return;
1749 	}
1750 
1751 	/*
1752 	 * DISPLAY_VER >= 11 have the ratio directly in the PLL enable register,
1753 	 * gen9lp had it in a separate PLL control register.
1754 	 */
1755 	if (DISPLAY_VER(display) >= 11)
1756 		ratio = val & ICL_CDCLK_PLL_RATIO_MASK;
1757 	else
1758 		ratio = intel_de_read(display, BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
1759 
1760 	cdclk_config->vco = ratio * cdclk_config->ref;
1761 }
1762 
1763 static void bxt_get_cdclk(struct intel_display *display,
1764 			  struct intel_cdclk_config *cdclk_config)
1765 {
1766 	u32 squash_ctl = 0;
1767 	u32 divider;
1768 	int div;
1769 
1770 	bxt_de_pll_readout(display, cdclk_config);
1771 
1772 	if (DISPLAY_VER(display) >= 12)
1773 		cdclk_config->bypass = cdclk_config->ref / 2;
1774 	else if (DISPLAY_VER(display) >= 11)
1775 		cdclk_config->bypass = 50000;
1776 	else
1777 		cdclk_config->bypass = cdclk_config->ref;
1778 
1779 	if (cdclk_config->vco == 0) {
1780 		cdclk_config->cdclk = cdclk_config->bypass;
1781 		goto out;
1782 	}
1783 
1784 	divider = intel_de_read(display, CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
1785 
1786 	switch (divider) {
1787 	case BXT_CDCLK_CD2X_DIV_SEL_1:
1788 		div = 2;
1789 		break;
1790 	case BXT_CDCLK_CD2X_DIV_SEL_1_5:
1791 		div = 3;
1792 		break;
1793 	case BXT_CDCLK_CD2X_DIV_SEL_2:
1794 		div = 4;
1795 		break;
1796 	case BXT_CDCLK_CD2X_DIV_SEL_4:
1797 		div = 8;
1798 		break;
1799 	default:
1800 		MISSING_CASE(divider);
1801 		return;
1802 	}
1803 
1804 	if (HAS_CDCLK_SQUASH(display))
1805 		squash_ctl = intel_de_read(display, CDCLK_SQUASH_CTL);
1806 
1807 	if (squash_ctl & CDCLK_SQUASH_ENABLE) {
1808 		u16 waveform;
1809 		int size;
1810 
1811 		size = REG_FIELD_GET(CDCLK_SQUASH_WINDOW_SIZE_MASK, squash_ctl) + 1;
1812 		waveform = REG_FIELD_GET(CDCLK_SQUASH_WAVEFORM_MASK, squash_ctl) >> (16 - size);
1813 
1814 		cdclk_config->cdclk = DIV_ROUND_CLOSEST(hweight16(waveform) *
1815 							cdclk_config->vco, size * div);
1816 	} else {
1817 		cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div);
1818 	}
1819 
1820  out:
1821 	if (DISPLAY_VER(display) >= 20)
1822 		cdclk_config->joined_mbus = intel_de_read(display, MBUS_CTL) & MBUS_JOIN;
1823 	/*
1824 	 * Can't read this out :( Let's assume it's
1825 	 * at least what the CDCLK frequency requires.
1826 	 */
1827 	cdclk_config->voltage_level =
1828 		intel_cdclk_calc_voltage_level(display, cdclk_config->cdclk);
1829 }
1830 
1831 static void bxt_de_pll_disable(struct intel_display *display)
1832 {
1833 	intel_de_write(display, BXT_DE_PLL_ENABLE, 0);
1834 
1835 	/* Timeout 200us */
1836 	if (intel_de_wait_for_clear_ms(display,
1837 				       BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1838 		drm_err(display->drm, "timeout waiting for DE PLL unlock\n");
1839 
1840 	display->cdclk.hw.vco = 0;
1841 }
1842 
1843 static void bxt_de_pll_enable(struct intel_display *display, int vco)
1844 {
1845 	int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref);
1846 
1847 	intel_de_rmw(display, BXT_DE_PLL_CTL,
1848 		     BXT_DE_PLL_RATIO_MASK, BXT_DE_PLL_RATIO(ratio));
1849 
1850 	intel_de_write(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
1851 
1852 	/* Timeout 200us */
1853 	if (intel_de_wait_for_set_ms(display,
1854 				     BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1855 		drm_err(display->drm, "timeout waiting for DE PLL lock\n");
1856 
1857 	display->cdclk.hw.vco = vco;
1858 }
1859 
1860 static void icl_cdclk_pll_disable(struct intel_display *display)
1861 {
1862 	intel_de_rmw(display, BXT_DE_PLL_ENABLE,
1863 		     BXT_DE_PLL_PLL_ENABLE, 0);
1864 
1865 	/* Timeout 200us */
1866 	if (intel_de_wait_for_clear_ms(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1867 		drm_err(display->drm, "timeout waiting for CDCLK PLL unlock\n");
1868 
1869 	display->cdclk.hw.vco = 0;
1870 }
1871 
1872 static void icl_cdclk_pll_enable(struct intel_display *display, int vco)
1873 {
1874 	int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref);
1875 	u32 val;
1876 
1877 	val = ICL_CDCLK_PLL_RATIO(ratio);
1878 	intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1879 
1880 	val |= BXT_DE_PLL_PLL_ENABLE;
1881 	intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1882 
1883 	/* Timeout 200us */
1884 	if (intel_de_wait_for_set_ms(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1885 		drm_err(display->drm, "timeout waiting for CDCLK PLL lock\n");
1886 
1887 	display->cdclk.hw.vco = vco;
1888 }
1889 
1890 static void adlp_cdclk_pll_crawl(struct intel_display *display, int vco)
1891 {
1892 	int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref);
1893 	u32 val;
1894 
1895 	/* Write PLL ratio without disabling */
1896 	val = ICL_CDCLK_PLL_RATIO(ratio) | BXT_DE_PLL_PLL_ENABLE;
1897 	intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1898 
1899 	/* Submit freq change request */
1900 	val |= BXT_DE_PLL_FREQ_REQ;
1901 	intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1902 
1903 	/* Timeout 200us */
1904 	if (intel_de_wait_for_set_ms(display, BXT_DE_PLL_ENABLE,
1905 				     BXT_DE_PLL_LOCK | BXT_DE_PLL_FREQ_REQ_ACK, 1))
1906 		drm_err(display->drm, "timeout waiting for FREQ change request ack\n");
1907 
1908 	val &= ~BXT_DE_PLL_FREQ_REQ;
1909 	intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1910 
1911 	display->cdclk.hw.vco = vco;
1912 }
1913 
1914 static u32 bxt_cdclk_cd2x_pipe(struct intel_display *display, enum pipe pipe)
1915 {
1916 	if (DISPLAY_VER(display) >= 12) {
1917 		if (pipe == INVALID_PIPE)
1918 			return TGL_CDCLK_CD2X_PIPE_NONE;
1919 		else
1920 			return TGL_CDCLK_CD2X_PIPE(pipe);
1921 	} else if (DISPLAY_VER(display) >= 11) {
1922 		if (pipe == INVALID_PIPE)
1923 			return ICL_CDCLK_CD2X_PIPE_NONE;
1924 		else
1925 			return ICL_CDCLK_CD2X_PIPE(pipe);
1926 	} else {
1927 		if (pipe == INVALID_PIPE)
1928 			return BXT_CDCLK_CD2X_PIPE_NONE;
1929 		else
1930 			return BXT_CDCLK_CD2X_PIPE(pipe);
1931 	}
1932 }
1933 
1934 static u32 bxt_cdclk_cd2x_div_sel(struct intel_display *display,
1935 				  int cdclk, int vco, u16 waveform)
1936 {
1937 	/* cdclk = vco / 2 / div{1,1.5,2,4} */
1938 	switch (cdclk_divider(cdclk, vco, waveform)) {
1939 	default:
1940 		drm_WARN_ON(display->drm,
1941 			    cdclk != display->cdclk.hw.bypass);
1942 		drm_WARN_ON(display->drm, vco != 0);
1943 		fallthrough;
1944 	case 2:
1945 		return BXT_CDCLK_CD2X_DIV_SEL_1;
1946 	case 3:
1947 		return BXT_CDCLK_CD2X_DIV_SEL_1_5;
1948 	case 4:
1949 		return BXT_CDCLK_CD2X_DIV_SEL_2;
1950 	case 8:
1951 		return BXT_CDCLK_CD2X_DIV_SEL_4;
1952 	}
1953 }
1954 
1955 static u16 cdclk_squash_waveform(struct intel_display *display,
1956 				 int cdclk)
1957 {
1958 	const struct intel_cdclk_vals *table = display->cdclk.table;
1959 	int i;
1960 
1961 	if (cdclk == display->cdclk.hw.bypass)
1962 		return 0;
1963 
1964 	for (i = 0; table[i].refclk; i++)
1965 		if (table[i].refclk == display->cdclk.hw.ref &&
1966 		    table[i].cdclk == cdclk)
1967 			return table[i].waveform;
1968 
1969 	drm_WARN(display->drm, 1, "cdclk %d not valid for refclk %u\n",
1970 		 cdclk, display->cdclk.hw.ref);
1971 
1972 	return 0xffff;
1973 }
1974 
1975 static void icl_cdclk_pll_update(struct intel_display *display, int vco)
1976 {
1977 	if (display->cdclk.hw.vco != 0 &&
1978 	    display->cdclk.hw.vco != vco)
1979 		icl_cdclk_pll_disable(display);
1980 
1981 	if (display->cdclk.hw.vco != vco)
1982 		icl_cdclk_pll_enable(display, vco);
1983 }
1984 
1985 static void bxt_cdclk_pll_update(struct intel_display *display, int vco)
1986 {
1987 	if (display->cdclk.hw.vco != 0 &&
1988 	    display->cdclk.hw.vco != vco)
1989 		bxt_de_pll_disable(display);
1990 
1991 	if (display->cdclk.hw.vco != vco)
1992 		bxt_de_pll_enable(display, vco);
1993 }
1994 
1995 static void dg2_cdclk_squash_program(struct intel_display *display,
1996 				     u16 waveform)
1997 {
1998 	u32 squash_ctl = 0;
1999 
2000 	if (waveform)
2001 		squash_ctl = CDCLK_SQUASH_ENABLE |
2002 			     CDCLK_SQUASH_WINDOW_SIZE(0xf) | waveform;
2003 
2004 	intel_de_write(display, CDCLK_SQUASH_CTL, squash_ctl);
2005 }
2006 
2007 static bool cdclk_pll_is_unknown(unsigned int vco)
2008 {
2009 	/*
2010 	 * Ensure driver does not take the crawl path for the
2011 	 * case when the vco is set to ~0 in the
2012 	 * sanitize path.
2013 	 */
2014 	return vco == ~0;
2015 }
2016 
2017 static bool mdclk_source_is_cdclk_pll(struct intel_display *display)
2018 {
2019 	return DISPLAY_VER(display) >= 20;
2020 }
2021 
2022 static u32 xe2lpd_mdclk_source_sel(struct intel_display *display)
2023 {
2024 	if (mdclk_source_is_cdclk_pll(display))
2025 		return MDCLK_SOURCE_SEL_CDCLK_PLL;
2026 
2027 	return MDCLK_SOURCE_SEL_CD2XCLK;
2028 }
2029 
2030 int intel_mdclk_cdclk_ratio(struct intel_display *display,
2031 			    const struct intel_cdclk_config *cdclk_config)
2032 {
2033 	if (mdclk_source_is_cdclk_pll(display))
2034 		return DIV_ROUND_UP(cdclk_config->vco, cdclk_config->cdclk);
2035 
2036 	/* Otherwise, source for MDCLK is CD2XCLK. */
2037 	return 2;
2038 }
2039 
2040 static void xe2lpd_mdclk_cdclk_ratio_program(struct intel_display *display,
2041 					     const struct intel_cdclk_config *cdclk_config)
2042 {
2043 	intel_dbuf_mdclk_cdclk_ratio_update(display,
2044 					    intel_mdclk_cdclk_ratio(display, cdclk_config),
2045 					    cdclk_config->joined_mbus);
2046 }
2047 
2048 static bool cdclk_compute_crawl_and_squash_midpoint(struct intel_display *display,
2049 						    const struct intel_cdclk_config *old_cdclk_config,
2050 						    const struct intel_cdclk_config *new_cdclk_config,
2051 						    struct intel_cdclk_config *mid_cdclk_config)
2052 {
2053 	u16 old_waveform, new_waveform, mid_waveform;
2054 	int old_div, new_div, mid_div;
2055 
2056 	/* Return if PLL is in an unknown state, force a complete disable and re-enable. */
2057 	if (cdclk_pll_is_unknown(old_cdclk_config->vco))
2058 		return false;
2059 
2060 	/* Return if both Squash and Crawl are not present */
2061 	if (!HAS_CDCLK_CRAWL(display) || !HAS_CDCLK_SQUASH(display))
2062 		return false;
2063 
2064 	old_waveform = cdclk_squash_waveform(display, old_cdclk_config->cdclk);
2065 	new_waveform = cdclk_squash_waveform(display, new_cdclk_config->cdclk);
2066 
2067 	/* Return if Squash only or Crawl only is the desired action */
2068 	if (old_cdclk_config->vco == 0 || new_cdclk_config->vco == 0 ||
2069 	    old_cdclk_config->vco == new_cdclk_config->vco ||
2070 	    old_waveform == new_waveform)
2071 		return false;
2072 
2073 	old_div = cdclk_divider(old_cdclk_config->cdclk,
2074 				old_cdclk_config->vco, old_waveform);
2075 	new_div = cdclk_divider(new_cdclk_config->cdclk,
2076 				new_cdclk_config->vco, new_waveform);
2077 
2078 	/*
2079 	 * Should not happen currently. We might need more midpoint
2080 	 * transitions if we need to also change the cd2x divider.
2081 	 */
2082 	if (drm_WARN_ON(display->drm, old_div != new_div))
2083 		return false;
2084 
2085 	*mid_cdclk_config = *new_cdclk_config;
2086 
2087 	/*
2088 	 * Populate the mid_cdclk_config accordingly.
2089 	 * - If moving to a higher cdclk, the desired action is squashing.
2090 	 * The mid cdclk config should have the new (squash) waveform.
2091 	 * - If moving to a lower cdclk, the desired action is crawling.
2092 	 * The mid cdclk config should have the new vco.
2093 	 */
2094 
2095 	if (cdclk_squash_divider(new_waveform) > cdclk_squash_divider(old_waveform)) {
2096 		mid_cdclk_config->vco = old_cdclk_config->vco;
2097 		mid_div = old_div;
2098 		mid_waveform = new_waveform;
2099 	} else {
2100 		mid_cdclk_config->vco = new_cdclk_config->vco;
2101 		mid_div = new_div;
2102 		mid_waveform = old_waveform;
2103 	}
2104 
2105 	mid_cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_squash_divider(mid_waveform) *
2106 						    mid_cdclk_config->vco,
2107 						    cdclk_squash_len * mid_div);
2108 
2109 	/* make sure the mid clock came out sane */
2110 
2111 	drm_WARN_ON(display->drm, mid_cdclk_config->cdclk <
2112 		    min(old_cdclk_config->cdclk, new_cdclk_config->cdclk));
2113 	drm_WARN_ON(display->drm, mid_cdclk_config->cdclk >
2114 		    display->cdclk.max_cdclk_freq);
2115 	drm_WARN_ON(display->drm, cdclk_squash_waveform(display, mid_cdclk_config->cdclk) !=
2116 		    mid_waveform);
2117 
2118 	return true;
2119 }
2120 
2121 static bool pll_enable_wa_needed(struct intel_display *display)
2122 {
2123 	return (DISPLAY_VERx100(display) == 2000 ||
2124 		DISPLAY_VERx100(display) == 1400 ||
2125 		display->platform.dg2) &&
2126 		display->cdclk.hw.vco > 0;
2127 }
2128 
2129 static u32 bxt_cdclk_ctl(struct intel_display *display,
2130 			 const struct intel_cdclk_config *cdclk_config,
2131 			 enum pipe pipe)
2132 {
2133 	int cdclk = cdclk_config->cdclk;
2134 	int vco = cdclk_config->vco;
2135 	u16 waveform;
2136 	u32 val;
2137 
2138 	waveform = cdclk_squash_waveform(display, cdclk);
2139 
2140 	val = bxt_cdclk_cd2x_div_sel(display, cdclk, vco, waveform) |
2141 		bxt_cdclk_cd2x_pipe(display, pipe);
2142 
2143 	/*
2144 	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
2145 	 * enable otherwise.
2146 	 */
2147 	if ((display->platform.geminilake || display->platform.broxton) &&
2148 	    cdclk >= 500000)
2149 		val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
2150 
2151 	if (DISPLAY_VER(display) >= 20)
2152 		val |= xe2lpd_mdclk_source_sel(display);
2153 	else
2154 		val |= skl_cdclk_decimal(cdclk);
2155 
2156 	return val;
2157 }
2158 
2159 static void _bxt_set_cdclk(struct intel_display *display,
2160 			   const struct intel_cdclk_config *cdclk_config,
2161 			   enum pipe pipe)
2162 {
2163 	int cdclk = cdclk_config->cdclk;
2164 	int vco = cdclk_config->vco;
2165 
2166 	if (HAS_CDCLK_CRAWL(display) && display->cdclk.hw.vco > 0 && vco > 0 &&
2167 	    !cdclk_pll_is_unknown(display->cdclk.hw.vco)) {
2168 		if (display->cdclk.hw.vco != vco)
2169 			adlp_cdclk_pll_crawl(display, vco);
2170 	} else if (DISPLAY_VER(display) >= 11) {
2171 		/* wa_15010685871: dg2, mtl */
2172 		if (pll_enable_wa_needed(display))
2173 			dg2_cdclk_squash_program(display, 0);
2174 
2175 		icl_cdclk_pll_update(display, vco);
2176 	} else {
2177 		bxt_cdclk_pll_update(display, vco);
2178 	}
2179 
2180 	if (HAS_CDCLK_SQUASH(display)) {
2181 		u16 waveform = cdclk_squash_waveform(display, cdclk);
2182 
2183 		dg2_cdclk_squash_program(display, waveform);
2184 	}
2185 
2186 	intel_de_write(display, CDCLK_CTL, bxt_cdclk_ctl(display, cdclk_config, pipe));
2187 
2188 	if (pipe != INVALID_PIPE)
2189 		intel_crtc_wait_for_next_vblank(intel_crtc_for_pipe(display, pipe));
2190 }
2191 
2192 static void bxt_set_cdclk(struct intel_display *display,
2193 			  const struct intel_cdclk_config *cdclk_config,
2194 			  enum pipe pipe)
2195 {
2196 	struct intel_cdclk_config mid_cdclk_config;
2197 	int cdclk = cdclk_config->cdclk;
2198 	int ret = 0;
2199 
2200 	/*
2201 	 * Inform power controller of upcoming frequency change.
2202 	 * Display versions 14 and beyond do not follow the PUnit
2203 	 * mailbox communication, skip
2204 	 * this step.
2205 	 */
2206 	if (DISPLAY_VER(display) >= 14 || display->platform.dg2)
2207 		; /* NOOP */
2208 	else if (DISPLAY_VER(display) >= 11)
2209 		ret = intel_pcode_request(display->drm, SKL_PCODE_CDCLK_CONTROL,
2210 					  SKL_CDCLK_PREPARE_FOR_CHANGE,
2211 					  SKL_CDCLK_READY_FOR_CHANGE,
2212 					  SKL_CDCLK_READY_FOR_CHANGE, 3);
2213 	else
2214 		/*
2215 		 * BSpec requires us to wait up to 150usec, but that leads to
2216 		 * timeouts; the 2ms used here is based on experiment.
2217 		 */
2218 		ret = intel_pcode_write_timeout(display->drm,
2219 						HSW_PCODE_DE_WRITE_FREQ_REQ,
2220 						0x80000000, 2);
2221 
2222 	if (ret) {
2223 		drm_err(display->drm,
2224 			"Failed to inform PCU about cdclk change (err %d, freq %d)\n",
2225 			ret, cdclk);
2226 		return;
2227 	}
2228 
2229 	if (DISPLAY_VER(display) >= 20 && cdclk < display->cdclk.hw.cdclk)
2230 		xe2lpd_mdclk_cdclk_ratio_program(display, cdclk_config);
2231 
2232 	if (cdclk_compute_crawl_and_squash_midpoint(display, &display->cdclk.hw,
2233 						    cdclk_config, &mid_cdclk_config)) {
2234 		_bxt_set_cdclk(display, &mid_cdclk_config, pipe);
2235 		_bxt_set_cdclk(display, cdclk_config, pipe);
2236 	} else {
2237 		_bxt_set_cdclk(display, cdclk_config, pipe);
2238 	}
2239 
2240 	if (DISPLAY_VER(display) >= 20 && cdclk > display->cdclk.hw.cdclk)
2241 		xe2lpd_mdclk_cdclk_ratio_program(display, cdclk_config);
2242 
2243 	if (DISPLAY_VER(display) >= 14)
2244 		/*
2245 		 * NOOP - No Pcode communication needed for
2246 		 * Display versions 14 and beyond
2247 		 */;
2248 	else if (DISPLAY_VER(display) >= 11 && !display->platform.dg2)
2249 		ret = intel_pcode_write(display->drm, SKL_PCODE_CDCLK_CONTROL,
2250 					cdclk_config->voltage_level);
2251 	if (DISPLAY_VER(display) < 11) {
2252 		/*
2253 		 * The timeout isn't specified, the 2ms used here is based on
2254 		 * experiment.
2255 		 * FIXME: Waiting for the request completion could be delayed
2256 		 * until the next PCODE request based on BSpec.
2257 		 */
2258 		ret = intel_pcode_write_timeout(display->drm,
2259 						HSW_PCODE_DE_WRITE_FREQ_REQ,
2260 						cdclk_config->voltage_level, 2);
2261 	}
2262 	if (ret) {
2263 		drm_err(display->drm,
2264 			"PCode CDCLK freq set failed, (err %d, freq %d)\n",
2265 			ret, cdclk);
2266 		return;
2267 	}
2268 
2269 	intel_update_cdclk(display);
2270 
2271 	if (DISPLAY_VER(display) >= 11)
2272 		/*
2273 		 * Can't read out the voltage level :(
2274 		 * Let's just assume everything is as expected.
2275 		 */
2276 		display->cdclk.hw.voltage_level = cdclk_config->voltage_level;
2277 }
2278 
2279 static void bxt_sanitize_cdclk(struct intel_display *display)
2280 {
2281 	u32 cdctl, expected;
2282 	int cdclk, vco;
2283 
2284 	intel_update_cdclk(display);
2285 	intel_cdclk_dump_config(display, &display->cdclk.hw, "Current CDCLK");
2286 
2287 	if (display->cdclk.hw.vco == 0 ||
2288 	    display->cdclk.hw.cdclk == display->cdclk.hw.bypass)
2289 		goto sanitize;
2290 
2291 	/* Make sure this is a legal cdclk value for the platform */
2292 	cdclk = bxt_calc_cdclk(display, display->cdclk.hw.cdclk);
2293 	if (cdclk != display->cdclk.hw.cdclk)
2294 		goto sanitize;
2295 
2296 	/* Make sure the VCO is correct for the cdclk */
2297 	vco = bxt_calc_cdclk_pll_vco(display, cdclk);
2298 	if (vco != display->cdclk.hw.vco)
2299 		goto sanitize;
2300 
2301 	/*
2302 	 * Some BIOS versions leave an incorrect decimal frequency value and
2303 	 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
2304 	 * so sanitize this register.
2305 	 */
2306 	cdctl = intel_de_read(display, CDCLK_CTL);
2307 	expected = bxt_cdclk_ctl(display, &display->cdclk.hw, INVALID_PIPE);
2308 
2309 	/*
2310 	 * Let's ignore the pipe field, since BIOS could have configured the
2311 	 * dividers both syncing to an active pipe, or asynchronously
2312 	 * (PIPE_NONE).
2313 	 */
2314 	cdctl &= ~bxt_cdclk_cd2x_pipe(display, INVALID_PIPE);
2315 	expected &= ~bxt_cdclk_cd2x_pipe(display, INVALID_PIPE);
2316 
2317 	if (cdctl == expected)
2318 		/* All well; nothing to sanitize */
2319 		return;
2320 
2321 sanitize:
2322 	drm_dbg_kms(display->drm, "Sanitizing cdclk programmed by pre-os\n");
2323 
2324 	/* force cdclk programming */
2325 	display->cdclk.hw.cdclk = 0;
2326 
2327 	/* force full PLL disable + enable */
2328 	display->cdclk.hw.vco = ~0;
2329 }
2330 
2331 static void bxt_cdclk_init_hw(struct intel_display *display)
2332 {
2333 	struct intel_cdclk_config cdclk_config;
2334 
2335 	bxt_sanitize_cdclk(display);
2336 
2337 	if (display->cdclk.hw.cdclk != 0 &&
2338 	    display->cdclk.hw.vco != 0)
2339 		return;
2340 
2341 	cdclk_config = display->cdclk.hw;
2342 
2343 	/*
2344 	 * FIXME:
2345 	 * - The initial CDCLK needs to be read from VBT.
2346 	 *   Need to make this change after VBT has changes for BXT.
2347 	 */
2348 	cdclk_config.cdclk = bxt_calc_cdclk(display, 0);
2349 	cdclk_config.vco = bxt_calc_cdclk_pll_vco(display, cdclk_config.cdclk);
2350 	cdclk_config.voltage_level =
2351 		intel_cdclk_calc_voltage_level(display, cdclk_config.cdclk);
2352 
2353 	bxt_set_cdclk(display, &cdclk_config, INVALID_PIPE);
2354 }
2355 
2356 static void bxt_cdclk_uninit_hw(struct intel_display *display)
2357 {
2358 	struct intel_cdclk_config cdclk_config = display->cdclk.hw;
2359 
2360 	cdclk_config.cdclk = cdclk_config.bypass;
2361 	cdclk_config.vco = 0;
2362 	cdclk_config.voltage_level =
2363 		intel_cdclk_calc_voltage_level(display, cdclk_config.cdclk);
2364 
2365 	bxt_set_cdclk(display, &cdclk_config, INVALID_PIPE);
2366 }
2367 
2368 /**
2369  * intel_cdclk_init_hw - Initialize CDCLK hardware
2370  * @display: display instance
2371  *
2372  * Initialize CDCLK. This consists mainly of initializing display->cdclk.hw and
2373  * sanitizing the state of the hardware if needed. This is generally done only
2374  * during the display core initialization sequence, after which the DMC will
2375  * take care of turning CDCLK off/on as needed.
2376  */
2377 void intel_cdclk_init_hw(struct intel_display *display)
2378 {
2379 	if (DISPLAY_VER(display) >= 10 || display->platform.broxton)
2380 		bxt_cdclk_init_hw(display);
2381 	else if (DISPLAY_VER(display) == 9)
2382 		skl_cdclk_init_hw(display);
2383 }
2384 
2385 /**
2386  * intel_cdclk_uninit_hw - Uninitialize CDCLK hardware
2387  * @display: display instance
2388  *
2389  * Uninitialize CDCLK. This is done only during the display core
2390  * uninitialization sequence.
2391  */
2392 void intel_cdclk_uninit_hw(struct intel_display *display)
2393 {
2394 	if (DISPLAY_VER(display) >= 10 || display->platform.broxton)
2395 		bxt_cdclk_uninit_hw(display);
2396 	else if (DISPLAY_VER(display) == 9)
2397 		skl_cdclk_uninit_hw(display);
2398 }
2399 
2400 static bool intel_cdclk_can_crawl_and_squash(struct intel_display *display,
2401 					     const struct intel_cdclk_config *a,
2402 					     const struct intel_cdclk_config *b)
2403 {
2404 	u16 old_waveform;
2405 	u16 new_waveform;
2406 
2407 	drm_WARN_ON(display->drm, cdclk_pll_is_unknown(a->vco));
2408 
2409 	if (a->vco == 0 || b->vco == 0)
2410 		return false;
2411 
2412 	if (!HAS_CDCLK_CRAWL(display) || !HAS_CDCLK_SQUASH(display))
2413 		return false;
2414 
2415 	old_waveform = cdclk_squash_waveform(display, a->cdclk);
2416 	new_waveform = cdclk_squash_waveform(display, b->cdclk);
2417 
2418 	return a->vco != b->vco &&
2419 	       old_waveform != new_waveform;
2420 }
2421 
2422 static bool intel_cdclk_can_crawl(struct intel_display *display,
2423 				  const struct intel_cdclk_config *a,
2424 				  const struct intel_cdclk_config *b)
2425 {
2426 	int a_div, b_div;
2427 
2428 	if (!HAS_CDCLK_CRAWL(display))
2429 		return false;
2430 
2431 	/*
2432 	 * The vco and cd2x divider will change independently
2433 	 * from each, so we disallow cd2x change when crawling.
2434 	 */
2435 	a_div = DIV_ROUND_CLOSEST(a->vco, a->cdclk);
2436 	b_div = DIV_ROUND_CLOSEST(b->vco, b->cdclk);
2437 
2438 	return a->vco != 0 && b->vco != 0 &&
2439 		a->vco != b->vco &&
2440 		a_div == b_div &&
2441 		a->ref == b->ref;
2442 }
2443 
2444 static bool intel_cdclk_can_squash(struct intel_display *display,
2445 				   const struct intel_cdclk_config *a,
2446 				   const struct intel_cdclk_config *b)
2447 {
2448 	/*
2449 	 * FIXME should store a bit more state in intel_cdclk_config
2450 	 * to differentiate squasher vs. cd2x divider properly. For
2451 	 * the moment all platforms with squasher use a fixed cd2x
2452 	 * divider.
2453 	 */
2454 	if (!HAS_CDCLK_SQUASH(display))
2455 		return false;
2456 
2457 	return a->cdclk != b->cdclk &&
2458 		a->vco != 0 &&
2459 		a->vco == b->vco &&
2460 		a->ref == b->ref;
2461 }
2462 
2463 /**
2464  * intel_cdclk_clock_changed - Check whether the clock changed
2465  * @a: first CDCLK configuration
2466  * @b: second CDCLK configuration
2467  *
2468  * Returns:
2469  * True if CDCLK changed in a way that requires re-programming and
2470  * False otherwise.
2471  */
2472 bool intel_cdclk_clock_changed(const struct intel_cdclk_config *a,
2473 			       const struct intel_cdclk_config *b)
2474 {
2475 	return a->cdclk != b->cdclk ||
2476 		a->vco != b->vco ||
2477 		a->ref != b->ref;
2478 }
2479 
2480 /**
2481  * intel_cdclk_can_cd2x_update - Determine if changing between the two CDCLK
2482  *                               configurations requires only a cd2x divider update
2483  * @display: display instance
2484  * @a: first CDCLK configuration
2485  * @b: second CDCLK configuration
2486  *
2487  * Returns:
2488  * True if changing between the two CDCLK configurations
2489  * can be done with just a cd2x divider update, false if not.
2490  */
2491 static bool intel_cdclk_can_cd2x_update(struct intel_display *display,
2492 					const struct intel_cdclk_config *a,
2493 					const struct intel_cdclk_config *b)
2494 {
2495 	/* Older hw doesn't have the capability */
2496 	if (DISPLAY_VER(display) < 10 && !display->platform.broxton)
2497 		return false;
2498 
2499 	/*
2500 	 * FIXME should store a bit more state in intel_cdclk_config
2501 	 * to differentiate squasher vs. cd2x divider properly. For
2502 	 * the moment all platforms with squasher use a fixed cd2x
2503 	 * divider.
2504 	 */
2505 	if (HAS_CDCLK_SQUASH(display))
2506 		return false;
2507 
2508 	return a->cdclk != b->cdclk &&
2509 		a->vco != 0 &&
2510 		a->vco == b->vco &&
2511 		a->ref == b->ref;
2512 }
2513 
2514 /**
2515  * intel_cdclk_changed - Determine if two CDCLK configurations are different
2516  * @a: first CDCLK configuration
2517  * @b: second CDCLK configuration
2518  *
2519  * Returns:
2520  * True if the CDCLK configurations don't match, false if they do.
2521  */
2522 static bool intel_cdclk_changed(const struct intel_cdclk_config *a,
2523 				const struct intel_cdclk_config *b)
2524 {
2525 	return intel_cdclk_clock_changed(a, b) ||
2526 		a->voltage_level != b->voltage_level;
2527 }
2528 
2529 void intel_cdclk_dump_config(struct intel_display *display,
2530 			     const struct intel_cdclk_config *cdclk_config,
2531 			     const char *context)
2532 {
2533 	drm_dbg_kms(display->drm, "%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n",
2534 		    context, cdclk_config->cdclk, cdclk_config->vco,
2535 		    cdclk_config->ref, cdclk_config->bypass,
2536 		    cdclk_config->voltage_level);
2537 }
2538 
2539 static void intel_pcode_notify(struct intel_display *display,
2540 			       u8 voltage_level,
2541 			       u8 active_pipe_count,
2542 			       u16 cdclk,
2543 			       bool cdclk_update_valid,
2544 			       bool pipe_count_update_valid)
2545 {
2546 	int ret;
2547 	u32 update_mask = 0;
2548 
2549 	if (!display->platform.dg2)
2550 		return;
2551 
2552 	update_mask = DISPLAY_TO_PCODE_UPDATE_MASK(cdclk, active_pipe_count, voltage_level);
2553 
2554 	if (cdclk_update_valid)
2555 		update_mask |= DISPLAY_TO_PCODE_CDCLK_VALID;
2556 
2557 	if (pipe_count_update_valid)
2558 		update_mask |= DISPLAY_TO_PCODE_PIPE_COUNT_VALID;
2559 
2560 	ret = intel_pcode_request(display->drm, SKL_PCODE_CDCLK_CONTROL,
2561 				  SKL_CDCLK_PREPARE_FOR_CHANGE |
2562 				  update_mask,
2563 				  SKL_CDCLK_READY_FOR_CHANGE,
2564 				  SKL_CDCLK_READY_FOR_CHANGE, 3);
2565 	if (ret)
2566 		drm_err(display->drm,
2567 			"Failed to inform PCU about display config (err %d)\n",
2568 			ret);
2569 }
2570 
2571 static void intel_set_cdclk(struct intel_display *display,
2572 			    const struct intel_cdclk_config *cdclk_config,
2573 			    enum pipe pipe, const char *context)
2574 {
2575 	struct intel_encoder *encoder;
2576 
2577 	if (!intel_cdclk_changed(&display->cdclk.hw, cdclk_config))
2578 		return;
2579 
2580 	if (drm_WARN_ON_ONCE(display->drm, !display->funcs.cdclk->set_cdclk))
2581 		return;
2582 
2583 	intel_cdclk_dump_config(display, cdclk_config, context);
2584 
2585 	for_each_intel_encoder_with_psr(display->drm, encoder) {
2586 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2587 
2588 		intel_psr_pause(intel_dp);
2589 	}
2590 
2591 	intel_audio_cdclk_change_pre(display);
2592 
2593 	/*
2594 	 * Lock aux/gmbus while we change cdclk in case those
2595 	 * functions use cdclk. Not all platforms/ports do,
2596 	 * but we'll lock them all for simplicity.
2597 	 */
2598 	mutex_lock(&display->gmbus.mutex);
2599 	for_each_intel_dp(display->drm, encoder) {
2600 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2601 
2602 		mutex_lock_nest_lock(&intel_dp->aux.hw_mutex,
2603 				     &display->gmbus.mutex);
2604 	}
2605 
2606 	intel_cdclk_set_cdclk(display, cdclk_config, pipe);
2607 
2608 	for_each_intel_dp(display->drm, encoder) {
2609 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2610 
2611 		mutex_unlock(&intel_dp->aux.hw_mutex);
2612 	}
2613 	mutex_unlock(&display->gmbus.mutex);
2614 
2615 	for_each_intel_encoder_with_psr(display->drm, encoder) {
2616 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2617 
2618 		intel_psr_resume(intel_dp);
2619 	}
2620 
2621 	intel_audio_cdclk_change_post(display);
2622 
2623 	if (drm_WARN(display->drm,
2624 		     intel_cdclk_changed(&display->cdclk.hw, cdclk_config),
2625 		     "cdclk state doesn't match!\n")) {
2626 		intel_cdclk_dump_config(display, &display->cdclk.hw, "[hw state]");
2627 		intel_cdclk_dump_config(display, cdclk_config, "[sw state]");
2628 	}
2629 }
2630 
2631 static bool dg2_power_well_count(struct intel_display *display,
2632 				 const struct intel_cdclk_state *cdclk_state)
2633 {
2634 	return display->platform.dg2 ? hweight8(cdclk_state->active_pipes) : 0;
2635 }
2636 
2637 static void intel_cdclk_pcode_pre_notify(struct intel_atomic_state *state)
2638 {
2639 	struct intel_display *display = to_intel_display(state);
2640 	const struct intel_cdclk_state *old_cdclk_state =
2641 		intel_atomic_get_old_cdclk_state(state);
2642 	const struct intel_cdclk_state *new_cdclk_state =
2643 		intel_atomic_get_new_cdclk_state(state);
2644 	unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0;
2645 	bool change_cdclk, update_pipe_count;
2646 
2647 	if (!intel_cdclk_changed(&old_cdclk_state->actual,
2648 				 &new_cdclk_state->actual) &&
2649 	    dg2_power_well_count(display, old_cdclk_state) ==
2650 	    dg2_power_well_count(display, new_cdclk_state))
2651 		return;
2652 
2653 	/* According to "Sequence Before Frequency Change", voltage level set to 0x3 */
2654 	voltage_level = DISPLAY_TO_PCODE_VOLTAGE_MAX;
2655 
2656 	change_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk;
2657 	update_pipe_count = dg2_power_well_count(display, new_cdclk_state) >
2658 		dg2_power_well_count(display, old_cdclk_state);
2659 
2660 	/*
2661 	 * According to "Sequence Before Frequency Change",
2662 	 * if CDCLK is increasing, set bits 25:16 to upcoming CDCLK,
2663 	 * if CDCLK is decreasing or not changing, set bits 25:16 to current CDCLK,
2664 	 * which basically means we choose the maximum of old and new CDCLK, if we know both
2665 	 */
2666 	if (change_cdclk)
2667 		cdclk = max(new_cdclk_state->actual.cdclk, old_cdclk_state->actual.cdclk);
2668 
2669 	/*
2670 	 * According to "Sequence For Pipe Count Change",
2671 	 * if pipe count is increasing, set bits 25:16 to upcoming pipe count
2672 	 * (power well is enabled)
2673 	 * no action if it is decreasing, before the change
2674 	 */
2675 	if (update_pipe_count)
2676 		num_active_pipes = dg2_power_well_count(display, new_cdclk_state);
2677 
2678 	intel_pcode_notify(display, voltage_level, num_active_pipes, cdclk,
2679 			   change_cdclk, update_pipe_count);
2680 }
2681 
2682 static void intel_cdclk_pcode_post_notify(struct intel_atomic_state *state)
2683 {
2684 	struct intel_display *display = to_intel_display(state);
2685 	const struct intel_cdclk_state *new_cdclk_state =
2686 		intel_atomic_get_new_cdclk_state(state);
2687 	const struct intel_cdclk_state *old_cdclk_state =
2688 		intel_atomic_get_old_cdclk_state(state);
2689 	unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0;
2690 	bool update_cdclk, update_pipe_count;
2691 
2692 	/* According to "Sequence After Frequency Change", set voltage to used level */
2693 	voltage_level = new_cdclk_state->actual.voltage_level;
2694 
2695 	update_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk;
2696 	update_pipe_count = dg2_power_well_count(display, new_cdclk_state) <
2697 		dg2_power_well_count(display, old_cdclk_state);
2698 
2699 	/*
2700 	 * According to "Sequence After Frequency Change",
2701 	 * set bits 25:16 to current CDCLK
2702 	 */
2703 	if (update_cdclk)
2704 		cdclk = new_cdclk_state->actual.cdclk;
2705 
2706 	/*
2707 	 * According to "Sequence For Pipe Count Change",
2708 	 * if pipe count is decreasing, set bits 25:16 to current pipe count,
2709 	 * after the change(power well is disabled)
2710 	 * no action if it is increasing, after the change
2711 	 */
2712 	if (update_pipe_count)
2713 		num_active_pipes = dg2_power_well_count(display, new_cdclk_state);
2714 
2715 	intel_pcode_notify(display, voltage_level, num_active_pipes, cdclk,
2716 			   update_cdclk, update_pipe_count);
2717 }
2718 
2719 bool intel_cdclk_is_decreasing_later(struct intel_atomic_state *state)
2720 {
2721 	const struct intel_cdclk_state *old_cdclk_state =
2722 		intel_atomic_get_old_cdclk_state(state);
2723 	const struct intel_cdclk_state *new_cdclk_state =
2724 		intel_atomic_get_new_cdclk_state(state);
2725 
2726 	return new_cdclk_state && !new_cdclk_state->disable_pipes &&
2727 		new_cdclk_state->actual.cdclk < old_cdclk_state->actual.cdclk;
2728 }
2729 
2730 /**
2731  * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware
2732  * @state: intel atomic state
2733  *
2734  * Program the hardware before updating the HW plane state based on the
2735  * new CDCLK state, if necessary.
2736  */
2737 void
2738 intel_set_cdclk_pre_plane_update(struct intel_atomic_state *state)
2739 {
2740 	struct intel_display *display = to_intel_display(state);
2741 	const struct intel_cdclk_state *old_cdclk_state =
2742 		intel_atomic_get_old_cdclk_state(state);
2743 	const struct intel_cdclk_state *new_cdclk_state =
2744 		intel_atomic_get_new_cdclk_state(state);
2745 	struct intel_cdclk_config cdclk_config;
2746 	enum pipe pipe;
2747 
2748 	if (!new_cdclk_state)
2749 		return;
2750 
2751 	if (!intel_cdclk_changed(&old_cdclk_state->actual,
2752 				 &new_cdclk_state->actual))
2753 		return;
2754 
2755 	if (display->platform.dg2)
2756 		intel_cdclk_pcode_pre_notify(state);
2757 
2758 	if (new_cdclk_state->disable_pipes) {
2759 		cdclk_config = new_cdclk_state->actual;
2760 		pipe = INVALID_PIPE;
2761 	} else {
2762 		if (new_cdclk_state->actual.cdclk >= old_cdclk_state->actual.cdclk) {
2763 			cdclk_config = new_cdclk_state->actual;
2764 			pipe = new_cdclk_state->pipe;
2765 		} else {
2766 			cdclk_config = old_cdclk_state->actual;
2767 			pipe = INVALID_PIPE;
2768 		}
2769 
2770 		cdclk_config.voltage_level = max(new_cdclk_state->actual.voltage_level,
2771 						 old_cdclk_state->actual.voltage_level);
2772 	}
2773 
2774 	/*
2775 	 * mbus joining will be changed later by
2776 	 * intel_dbuf_mbus_{pre,post}_ddb_update()
2777 	 */
2778 	cdclk_config.joined_mbus = old_cdclk_state->actual.joined_mbus;
2779 
2780 	drm_WARN_ON(display->drm, !new_cdclk_state->base.changed);
2781 
2782 	intel_set_cdclk(display, &cdclk_config, pipe,
2783 			"Pre changing CDCLK to");
2784 }
2785 
2786 /**
2787  * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware
2788  * @state: intel atomic state
2789  *
2790  * Program the hardware after updating the HW plane state based on the
2791  * new CDCLK state, if necessary.
2792  */
2793 void
2794 intel_set_cdclk_post_plane_update(struct intel_atomic_state *state)
2795 {
2796 	struct intel_display *display = to_intel_display(state);
2797 	const struct intel_cdclk_state *old_cdclk_state =
2798 		intel_atomic_get_old_cdclk_state(state);
2799 	const struct intel_cdclk_state *new_cdclk_state =
2800 		intel_atomic_get_new_cdclk_state(state);
2801 	enum pipe pipe;
2802 
2803 	if (!new_cdclk_state)
2804 		return;
2805 
2806 	if (!intel_cdclk_changed(&old_cdclk_state->actual,
2807 				 &new_cdclk_state->actual))
2808 		return;
2809 
2810 	if (display->platform.dg2)
2811 		intel_cdclk_pcode_post_notify(state);
2812 
2813 	if (!new_cdclk_state->disable_pipes &&
2814 	    new_cdclk_state->actual.cdclk < old_cdclk_state->actual.cdclk)
2815 		pipe = new_cdclk_state->pipe;
2816 	else
2817 		pipe = INVALID_PIPE;
2818 
2819 	drm_WARN_ON(display->drm, !new_cdclk_state->base.changed);
2820 
2821 	intel_set_cdclk(display, &new_cdclk_state->actual, pipe,
2822 			"Post changing CDCLK to");
2823 }
2824 
2825 /* pixels per CDCLK */
2826 static int intel_cdclk_ppc(struct intel_display *display, bool double_wide)
2827 {
2828 	return DISPLAY_VER(display) >= 10 || double_wide ? 2 : 1;
2829 }
2830 
2831 /* max pixel rate as % of CDCLK (not accounting for PPC) */
2832 static int intel_cdclk_guardband(struct intel_display *display)
2833 {
2834 	if (DISPLAY_VER(display) >= 9 ||
2835 	    display->platform.broadwell || display->platform.haswell)
2836 		return 100;
2837 	else if (display->platform.cherryview)
2838 		return 95;
2839 	else
2840 		return 90;
2841 }
2842 
2843 static int _intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state, int pixel_rate)
2844 {
2845 	struct intel_display *display = to_intel_display(crtc_state);
2846 	int ppc = intel_cdclk_ppc(display, crtc_state->double_wide);
2847 	int guardband = intel_cdclk_guardband(display);
2848 
2849 	return DIV_ROUND_UP(pixel_rate * 100, guardband * ppc);
2850 }
2851 
2852 static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state)
2853 {
2854 	return _intel_pixel_rate_to_cdclk(crtc_state, crtc_state->pixel_rate);
2855 }
2856 
2857 static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state)
2858 {
2859 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2860 	struct intel_display *display = to_intel_display(crtc);
2861 	struct intel_plane *plane;
2862 	int min_cdclk = 0;
2863 
2864 	for_each_intel_plane_on_crtc(display->drm, crtc, plane)
2865 		min_cdclk = max(min_cdclk, crtc_state->plane_min_cdclk[plane->id]);
2866 
2867 	return min_cdclk;
2868 }
2869 
2870 int intel_crtc_min_cdclk(const struct intel_crtc_state *crtc_state)
2871 {
2872 	int min_cdclk;
2873 
2874 	if (!crtc_state->hw.enable)
2875 		return 0;
2876 
2877 	min_cdclk = intel_pixel_rate_to_cdclk(crtc_state);
2878 	min_cdclk = max(min_cdclk, intel_crtc_bw_min_cdclk(crtc_state));
2879 	min_cdclk = max(min_cdclk, intel_fbc_min_cdclk(crtc_state));
2880 	min_cdclk = max(min_cdclk, hsw_ips_min_cdclk(crtc_state));
2881 	min_cdclk = max(min_cdclk, intel_audio_min_cdclk(crtc_state));
2882 	min_cdclk = max(min_cdclk, vlv_dsi_min_cdclk(crtc_state));
2883 	min_cdclk = max(min_cdclk, intel_planes_min_cdclk(crtc_state));
2884 	min_cdclk = max(min_cdclk, intel_vdsc_min_cdclk(crtc_state));
2885 
2886 	return min_cdclk;
2887 }
2888 
2889 static int intel_cdclk_update_crtc_min_cdclk(struct intel_atomic_state *state,
2890 					     struct intel_crtc *crtc,
2891 					     int old_min_cdclk, int new_min_cdclk,
2892 					     bool *need_cdclk_calc)
2893 {
2894 	struct intel_display *display = to_intel_display(state);
2895 	struct intel_cdclk_state *cdclk_state;
2896 	bool allow_cdclk_decrease = intel_any_crtc_needs_modeset(state);
2897 	int ret;
2898 
2899 	if (new_min_cdclk == old_min_cdclk)
2900 		return 0;
2901 
2902 	if (!allow_cdclk_decrease && new_min_cdclk < old_min_cdclk)
2903 		return 0;
2904 
2905 	cdclk_state = intel_atomic_get_cdclk_state(state);
2906 	if (IS_ERR(cdclk_state))
2907 		return PTR_ERR(cdclk_state);
2908 
2909 	old_min_cdclk = cdclk_state->min_cdclk[crtc->pipe];
2910 
2911 	if (new_min_cdclk == old_min_cdclk)
2912 		return 0;
2913 
2914 	if (!allow_cdclk_decrease && new_min_cdclk < old_min_cdclk)
2915 		return 0;
2916 
2917 	cdclk_state->min_cdclk[crtc->pipe] = new_min_cdclk;
2918 
2919 	ret = intel_atomic_lock_global_state(&cdclk_state->base);
2920 	if (ret)
2921 		return ret;
2922 
2923 	*need_cdclk_calc = true;
2924 
2925 	drm_dbg_kms(display->drm,
2926 		    "[CRTC:%d:%s] min cdclk: %d kHz -> %d kHz\n",
2927 		    crtc->base.base.id, crtc->base.name,
2928 		    old_min_cdclk, new_min_cdclk);
2929 
2930 	return 0;
2931 }
2932 
2933 int intel_cdclk_update_dbuf_bw_min_cdclk(struct intel_atomic_state *state,
2934 					 int old_min_cdclk, int new_min_cdclk,
2935 					 bool *need_cdclk_calc)
2936 {
2937 	struct intel_display *display = to_intel_display(state);
2938 	struct intel_cdclk_state *cdclk_state;
2939 	bool allow_cdclk_decrease = intel_any_crtc_needs_modeset(state);
2940 	int ret;
2941 
2942 	if (new_min_cdclk == old_min_cdclk)
2943 		return 0;
2944 
2945 	if (!allow_cdclk_decrease && new_min_cdclk < old_min_cdclk)
2946 		return 0;
2947 
2948 	cdclk_state = intel_atomic_get_cdclk_state(state);
2949 	if (IS_ERR(cdclk_state))
2950 		return PTR_ERR(cdclk_state);
2951 
2952 	old_min_cdclk = cdclk_state->dbuf_bw_min_cdclk;
2953 
2954 	if (new_min_cdclk == old_min_cdclk)
2955 		return 0;
2956 
2957 	if (!allow_cdclk_decrease && new_min_cdclk < old_min_cdclk)
2958 		return 0;
2959 
2960 	cdclk_state->dbuf_bw_min_cdclk = new_min_cdclk;
2961 
2962 	ret = intel_atomic_lock_global_state(&cdclk_state->base);
2963 	if (ret)
2964 		return ret;
2965 
2966 	*need_cdclk_calc = true;
2967 
2968 	drm_dbg_kms(display->drm,
2969 		    "dbuf bandwidth min cdclk: %d kHz -> %d kHz\n",
2970 		    old_min_cdclk, new_min_cdclk);
2971 
2972 	return 0;
2973 }
2974 
2975 static bool glk_cdclk_audio_wa_needed(struct intel_display *display,
2976 				      const struct intel_cdclk_state *cdclk_state)
2977 {
2978 	return display->platform.geminilake &&
2979 		cdclk_state->enabled_pipes &&
2980 		!is_power_of_2(cdclk_state->enabled_pipes);
2981 }
2982 
2983 static int intel_compute_min_cdclk(struct intel_atomic_state *state)
2984 {
2985 	struct intel_display *display = to_intel_display(state);
2986 	struct intel_cdclk_state *cdclk_state =
2987 		intel_atomic_get_new_cdclk_state(state);
2988 	enum pipe pipe;
2989 	int min_cdclk;
2990 
2991 	min_cdclk = cdclk_state->force_min_cdclk;
2992 	min_cdclk = max(min_cdclk, cdclk_state->dbuf_bw_min_cdclk);
2993 	for_each_pipe(display, pipe)
2994 		min_cdclk = max(min_cdclk, cdclk_state->min_cdclk[pipe]);
2995 
2996 	/*
2997 	 * Avoid glk_force_audio_cdclk() causing excessive screen
2998 	 * blinking when multiple pipes are active by making sure
2999 	 * CDCLK frequency is always high enough for audio. With a
3000 	 * single active pipe we can always change CDCLK frequency
3001 	 * by changing the cd2x divider (see glk_cdclk_table[]) and
3002 	 * thus a full modeset won't be needed then.
3003 	 */
3004 	if (glk_cdclk_audio_wa_needed(display, cdclk_state))
3005 		min_cdclk = max(min_cdclk, 2 * 96000);
3006 
3007 	if (min_cdclk > display->cdclk.max_cdclk_freq) {
3008 		drm_dbg_kms(display->drm,
3009 			    "required cdclk (%d kHz) exceeds max (%d kHz)\n",
3010 			    min_cdclk, display->cdclk.max_cdclk_freq);
3011 		return -EINVAL;
3012 	}
3013 
3014 	return min_cdclk;
3015 }
3016 
3017 /*
3018  * Account for port clock min voltage level requirements.
3019  * This only really does something on DISPLA_VER >= 11 but can be
3020  * called on earlier platforms as well.
3021  *
3022  * Note that this functions assumes that 0 is
3023  * the lowest voltage value, and higher values
3024  * correspond to increasingly higher voltages.
3025  *
3026  * Should that relationship no longer hold on
3027  * future platforms this code will need to be
3028  * adjusted.
3029  */
3030 static int bxt_compute_min_voltage_level(struct intel_atomic_state *state)
3031 {
3032 	struct intel_display *display = to_intel_display(state);
3033 	struct intel_cdclk_state *cdclk_state =
3034 		intel_atomic_get_new_cdclk_state(state);
3035 	struct intel_crtc *crtc;
3036 	struct intel_crtc_state *crtc_state;
3037 	u8 min_voltage_level;
3038 	int i;
3039 	enum pipe pipe;
3040 
3041 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
3042 		int ret;
3043 
3044 		if (crtc_state->hw.enable)
3045 			min_voltage_level = crtc_state->min_voltage_level;
3046 		else
3047 			min_voltage_level = 0;
3048 
3049 		if (cdclk_state->min_voltage_level[crtc->pipe] == min_voltage_level)
3050 			continue;
3051 
3052 		cdclk_state->min_voltage_level[crtc->pipe] = min_voltage_level;
3053 
3054 		ret = intel_atomic_lock_global_state(&cdclk_state->base);
3055 		if (ret)
3056 			return ret;
3057 	}
3058 
3059 	min_voltage_level = 0;
3060 	for_each_pipe(display, pipe)
3061 		min_voltage_level = max(min_voltage_level,
3062 					cdclk_state->min_voltage_level[pipe]);
3063 
3064 	return min_voltage_level;
3065 }
3066 
3067 static int vlv_modeset_calc_cdclk(struct intel_atomic_state *state)
3068 {
3069 	struct intel_display *display = to_intel_display(state);
3070 	struct intel_cdclk_state *cdclk_state =
3071 		intel_atomic_get_new_cdclk_state(state);
3072 	int min_cdclk, cdclk;
3073 
3074 	min_cdclk = intel_compute_min_cdclk(state);
3075 	if (min_cdclk < 0)
3076 		return min_cdclk;
3077 
3078 	cdclk = vlv_calc_cdclk(display, min_cdclk);
3079 
3080 	cdclk_state->logical.cdclk = cdclk;
3081 	cdclk_state->logical.voltage_level =
3082 		vlv_calc_voltage_level(display, cdclk);
3083 
3084 	if (!cdclk_state->active_pipes) {
3085 		cdclk = vlv_calc_cdclk(display, cdclk_state->force_min_cdclk);
3086 
3087 		cdclk_state->actual.cdclk = cdclk;
3088 		cdclk_state->actual.voltage_level =
3089 			vlv_calc_voltage_level(display, cdclk);
3090 	} else {
3091 		cdclk_state->actual = cdclk_state->logical;
3092 	}
3093 
3094 	return 0;
3095 }
3096 
3097 static int bdw_modeset_calc_cdclk(struct intel_atomic_state *state)
3098 {
3099 	struct intel_cdclk_state *cdclk_state =
3100 		intel_atomic_get_new_cdclk_state(state);
3101 	int min_cdclk, cdclk;
3102 
3103 	min_cdclk = intel_compute_min_cdclk(state);
3104 	if (min_cdclk < 0)
3105 		return min_cdclk;
3106 
3107 	cdclk = bdw_calc_cdclk(min_cdclk);
3108 
3109 	cdclk_state->logical.cdclk = cdclk;
3110 	cdclk_state->logical.voltage_level =
3111 		bdw_calc_voltage_level(cdclk);
3112 
3113 	if (!cdclk_state->active_pipes) {
3114 		cdclk = bdw_calc_cdclk(cdclk_state->force_min_cdclk);
3115 
3116 		cdclk_state->actual.cdclk = cdclk;
3117 		cdclk_state->actual.voltage_level =
3118 			bdw_calc_voltage_level(cdclk);
3119 	} else {
3120 		cdclk_state->actual = cdclk_state->logical;
3121 	}
3122 
3123 	return 0;
3124 }
3125 
3126 static int skl_dpll0_vco(struct intel_atomic_state *state)
3127 {
3128 	struct intel_display *display = to_intel_display(state);
3129 	struct intel_cdclk_state *cdclk_state =
3130 		intel_atomic_get_new_cdclk_state(state);
3131 	struct intel_crtc *crtc;
3132 	struct intel_crtc_state *crtc_state;
3133 	int vco, i;
3134 
3135 	vco = cdclk_state->logical.vco;
3136 	if (!vco)
3137 		vco = display->cdclk.skl_preferred_vco_freq;
3138 
3139 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
3140 		if (!crtc_state->hw.enable)
3141 			continue;
3142 
3143 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
3144 			continue;
3145 
3146 		/*
3147 		 * DPLL0 VCO may need to be adjusted to get the correct
3148 		 * clock for eDP. This will affect cdclk as well.
3149 		 */
3150 		switch (crtc_state->port_clock / 2) {
3151 		case 108000:
3152 		case 216000:
3153 			vco = 8640000;
3154 			break;
3155 		default:
3156 			vco = 8100000;
3157 			break;
3158 		}
3159 	}
3160 
3161 	return vco;
3162 }
3163 
3164 static int skl_modeset_calc_cdclk(struct intel_atomic_state *state)
3165 {
3166 	struct intel_cdclk_state *cdclk_state =
3167 		intel_atomic_get_new_cdclk_state(state);
3168 	int min_cdclk, cdclk, vco;
3169 
3170 	min_cdclk = intel_compute_min_cdclk(state);
3171 	if (min_cdclk < 0)
3172 		return min_cdclk;
3173 
3174 	vco = skl_dpll0_vco(state);
3175 
3176 	cdclk = skl_calc_cdclk(min_cdclk, vco);
3177 
3178 	cdclk_state->logical.vco = vco;
3179 	cdclk_state->logical.cdclk = cdclk;
3180 	cdclk_state->logical.voltage_level =
3181 		skl_calc_voltage_level(cdclk);
3182 
3183 	if (!cdclk_state->active_pipes) {
3184 		cdclk = skl_calc_cdclk(cdclk_state->force_min_cdclk, vco);
3185 
3186 		cdclk_state->actual.vco = vco;
3187 		cdclk_state->actual.cdclk = cdclk;
3188 		cdclk_state->actual.voltage_level =
3189 			skl_calc_voltage_level(cdclk);
3190 	} else {
3191 		cdclk_state->actual = cdclk_state->logical;
3192 	}
3193 
3194 	return 0;
3195 }
3196 
3197 static int bxt_modeset_calc_cdclk(struct intel_atomic_state *state)
3198 {
3199 	struct intel_display *display = to_intel_display(state);
3200 	struct intel_cdclk_state *cdclk_state =
3201 		intel_atomic_get_new_cdclk_state(state);
3202 	int min_cdclk, min_voltage_level, cdclk, vco;
3203 
3204 	min_cdclk = intel_compute_min_cdclk(state);
3205 	if (min_cdclk < 0)
3206 		return min_cdclk;
3207 
3208 	min_voltage_level = bxt_compute_min_voltage_level(state);
3209 	if (min_voltage_level < 0)
3210 		return min_voltage_level;
3211 
3212 	cdclk = bxt_calc_cdclk(display, min_cdclk);
3213 	vco = bxt_calc_cdclk_pll_vco(display, cdclk);
3214 
3215 	cdclk_state->logical.vco = vco;
3216 	cdclk_state->logical.cdclk = cdclk;
3217 	cdclk_state->logical.voltage_level =
3218 		max_t(int, min_voltage_level,
3219 		      intel_cdclk_calc_voltage_level(display, cdclk));
3220 
3221 	if (!cdclk_state->active_pipes) {
3222 		cdclk = bxt_calc_cdclk(display, cdclk_state->force_min_cdclk);
3223 		vco = bxt_calc_cdclk_pll_vco(display, cdclk);
3224 
3225 		cdclk_state->actual.vco = vco;
3226 		cdclk_state->actual.cdclk = cdclk;
3227 		cdclk_state->actual.voltage_level =
3228 			intel_cdclk_calc_voltage_level(display, cdclk);
3229 	} else {
3230 		cdclk_state->actual = cdclk_state->logical;
3231 	}
3232 
3233 	return 0;
3234 }
3235 
3236 static int fixed_modeset_calc_cdclk(struct intel_atomic_state *state)
3237 {
3238 	int min_cdclk;
3239 
3240 	/*
3241 	 * We can't change the cdclk frequency, but we still want to
3242 	 * check that the required minimum frequency doesn't exceed
3243 	 * the actual cdclk frequency.
3244 	 */
3245 	min_cdclk = intel_compute_min_cdclk(state);
3246 	if (min_cdclk < 0)
3247 		return min_cdclk;
3248 
3249 	return 0;
3250 }
3251 
3252 static struct intel_global_state *intel_cdclk_duplicate_state(struct intel_global_obj *obj)
3253 {
3254 	struct intel_cdclk_state *cdclk_state;
3255 
3256 	cdclk_state = kmemdup(obj->state, sizeof(*cdclk_state), GFP_KERNEL);
3257 	if (!cdclk_state)
3258 		return NULL;
3259 
3260 	cdclk_state->pipe = INVALID_PIPE;
3261 	cdclk_state->disable_pipes = false;
3262 
3263 	return &cdclk_state->base;
3264 }
3265 
3266 static void intel_cdclk_destroy_state(struct intel_global_obj *obj,
3267 				      struct intel_global_state *state)
3268 {
3269 	kfree(state);
3270 }
3271 
3272 static const struct intel_global_state_funcs intel_cdclk_funcs = {
3273 	.atomic_duplicate_state = intel_cdclk_duplicate_state,
3274 	.atomic_destroy_state = intel_cdclk_destroy_state,
3275 };
3276 
3277 struct intel_cdclk_state *
3278 intel_atomic_get_cdclk_state(struct intel_atomic_state *state)
3279 {
3280 	struct intel_display *display = to_intel_display(state);
3281 	struct intel_global_state *cdclk_state;
3282 
3283 	cdclk_state = intel_atomic_get_global_obj_state(state, &display->cdclk.obj);
3284 	if (IS_ERR(cdclk_state))
3285 		return ERR_CAST(cdclk_state);
3286 
3287 	return to_intel_cdclk_state(cdclk_state);
3288 }
3289 
3290 static int intel_cdclk_modeset_checks(struct intel_atomic_state *state,
3291 				      bool *need_cdclk_calc)
3292 {
3293 	struct intel_display *display = to_intel_display(state);
3294 	const struct intel_cdclk_state *old_cdclk_state;
3295 	struct intel_cdclk_state *new_cdclk_state;
3296 	int ret;
3297 
3298 	if (!intel_any_crtc_enable_changed(state) &&
3299 	    !intel_any_crtc_active_changed(state))
3300 		return 0;
3301 
3302 	new_cdclk_state = intel_atomic_get_cdclk_state(state);
3303 	if (IS_ERR(new_cdclk_state))
3304 		return PTR_ERR(new_cdclk_state);
3305 
3306 	old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3307 
3308 	new_cdclk_state->enabled_pipes =
3309 		intel_calc_enabled_pipes(state, old_cdclk_state->enabled_pipes);
3310 
3311 	new_cdclk_state->active_pipes =
3312 		intel_calc_active_pipes(state, old_cdclk_state->active_pipes);
3313 
3314 	ret = intel_atomic_lock_global_state(&new_cdclk_state->base);
3315 	if (ret)
3316 		return ret;
3317 
3318 	if (!old_cdclk_state->active_pipes != !new_cdclk_state->active_pipes)
3319 		*need_cdclk_calc = true;
3320 
3321 	if (glk_cdclk_audio_wa_needed(display, old_cdclk_state) !=
3322 	    glk_cdclk_audio_wa_needed(display, new_cdclk_state))
3323 		*need_cdclk_calc = true;
3324 
3325 	if (dg2_power_well_count(display, old_cdclk_state) !=
3326 	    dg2_power_well_count(display, new_cdclk_state))
3327 		*need_cdclk_calc = true;
3328 
3329 	return 0;
3330 }
3331 
3332 static int intel_crtcs_calc_min_cdclk(struct intel_atomic_state *state,
3333 				      bool *need_cdclk_calc)
3334 {
3335 	const struct intel_crtc_state *old_crtc_state;
3336 	const struct intel_crtc_state *new_crtc_state;
3337 	struct intel_crtc *crtc;
3338 	int i, ret;
3339 
3340 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
3341 					    new_crtc_state, i) {
3342 		ret = intel_cdclk_update_crtc_min_cdclk(state, crtc,
3343 							old_crtc_state->min_cdclk,
3344 							new_crtc_state->min_cdclk,
3345 							need_cdclk_calc);
3346 		if (ret)
3347 			return ret;
3348 	}
3349 
3350 	return 0;
3351 }
3352 
3353 int intel_cdclk_state_set_joined_mbus(struct intel_atomic_state *state, bool joined_mbus)
3354 {
3355 	struct intel_cdclk_state *cdclk_state;
3356 
3357 	cdclk_state = intel_atomic_get_cdclk_state(state);
3358 	if (IS_ERR(cdclk_state))
3359 		return PTR_ERR(cdclk_state);
3360 
3361 	cdclk_state->actual.joined_mbus = joined_mbus;
3362 	cdclk_state->logical.joined_mbus = joined_mbus;
3363 
3364 	return intel_atomic_lock_global_state(&cdclk_state->base);
3365 }
3366 
3367 int intel_cdclk_init(struct intel_display *display)
3368 {
3369 	struct intel_cdclk_state *cdclk_state;
3370 
3371 	cdclk_state = kzalloc(sizeof(*cdclk_state), GFP_KERNEL);
3372 	if (!cdclk_state)
3373 		return -ENOMEM;
3374 
3375 	intel_atomic_global_obj_init(display, &display->cdclk.obj,
3376 				     &cdclk_state->base, &intel_cdclk_funcs);
3377 
3378 	return 0;
3379 }
3380 
3381 static bool intel_cdclk_need_serialize(struct intel_display *display,
3382 				       const struct intel_cdclk_state *old_cdclk_state,
3383 				       const struct intel_cdclk_state *new_cdclk_state)
3384 {
3385 	/*
3386 	 * We need to poke hw for DG2, because we notify PCode if
3387 	 * pipe power well count changes.
3388 	 */
3389 	return intel_cdclk_changed(&old_cdclk_state->actual,
3390 				   &new_cdclk_state->actual) ||
3391 		dg2_power_well_count(display, old_cdclk_state) !=
3392 		dg2_power_well_count(display, new_cdclk_state);
3393 }
3394 
3395 static int intel_modeset_calc_cdclk(struct intel_atomic_state *state)
3396 {
3397 	struct intel_display *display = to_intel_display(state);
3398 	const struct intel_cdclk_state *old_cdclk_state;
3399 	struct intel_cdclk_state *new_cdclk_state;
3400 	enum pipe pipe = INVALID_PIPE;
3401 	int ret;
3402 
3403 	new_cdclk_state = intel_atomic_get_cdclk_state(state);
3404 	if (IS_ERR(new_cdclk_state))
3405 		return PTR_ERR(new_cdclk_state);
3406 
3407 	old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3408 
3409 	ret = intel_cdclk_modeset_calc_cdclk(state);
3410 	if (ret)
3411 		return ret;
3412 
3413 	if (intel_cdclk_need_serialize(display, old_cdclk_state, new_cdclk_state)) {
3414 		/*
3415 		 * Also serialize commits across all crtcs
3416 		 * if the actual hw needs to be poked.
3417 		 */
3418 		ret = intel_atomic_serialize_global_state(&new_cdclk_state->base);
3419 		if (ret)
3420 			return ret;
3421 	} else if (intel_cdclk_changed(&old_cdclk_state->logical,
3422 				       &new_cdclk_state->logical)) {
3423 		ret = intel_atomic_lock_global_state(&new_cdclk_state->base);
3424 		if (ret)
3425 			return ret;
3426 	} else {
3427 		return 0;
3428 	}
3429 
3430 	if (is_power_of_2(new_cdclk_state->active_pipes) &&
3431 	    intel_cdclk_can_cd2x_update(display,
3432 					&old_cdclk_state->actual,
3433 					&new_cdclk_state->actual)) {
3434 		struct intel_crtc *crtc;
3435 		struct intel_crtc_state *crtc_state;
3436 
3437 		pipe = ilog2(new_cdclk_state->active_pipes);
3438 		crtc = intel_crtc_for_pipe(display, pipe);
3439 
3440 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
3441 		if (IS_ERR(crtc_state))
3442 			return PTR_ERR(crtc_state);
3443 
3444 		if (intel_crtc_needs_modeset(crtc_state))
3445 			pipe = INVALID_PIPE;
3446 	}
3447 
3448 	if (intel_cdclk_can_crawl_and_squash(display,
3449 					     &old_cdclk_state->actual,
3450 					     &new_cdclk_state->actual)) {
3451 		drm_dbg_kms(display->drm,
3452 			    "Can change cdclk via crawling and squashing\n");
3453 	} else if (intel_cdclk_can_squash(display,
3454 					&old_cdclk_state->actual,
3455 					&new_cdclk_state->actual)) {
3456 		drm_dbg_kms(display->drm,
3457 			    "Can change cdclk via squashing\n");
3458 	} else if (intel_cdclk_can_crawl(display,
3459 					 &old_cdclk_state->actual,
3460 					 &new_cdclk_state->actual)) {
3461 		drm_dbg_kms(display->drm,
3462 			    "Can change cdclk via crawling\n");
3463 	} else if (pipe != INVALID_PIPE) {
3464 		new_cdclk_state->pipe = pipe;
3465 
3466 		drm_dbg_kms(display->drm,
3467 			    "Can change cdclk cd2x divider with pipe %c active\n",
3468 			    pipe_name(pipe));
3469 	} else if (intel_cdclk_clock_changed(&old_cdclk_state->actual,
3470 					     &new_cdclk_state->actual)) {
3471 		/* All pipes must be switched off while we change the cdclk. */
3472 		ret = intel_modeset_all_pipes_late(state, "CDCLK change");
3473 		if (ret)
3474 			return ret;
3475 
3476 		new_cdclk_state->disable_pipes = true;
3477 
3478 		drm_dbg_kms(display->drm,
3479 			    "Modeset required for cdclk change\n");
3480 	}
3481 
3482 	if (intel_mdclk_cdclk_ratio(display, &old_cdclk_state->actual) !=
3483 	    intel_mdclk_cdclk_ratio(display, &new_cdclk_state->actual)) {
3484 		int ratio = intel_mdclk_cdclk_ratio(display, &new_cdclk_state->actual);
3485 
3486 		ret = intel_dbuf_state_set_mdclk_cdclk_ratio(state, ratio);
3487 		if (ret)
3488 			return ret;
3489 	}
3490 
3491 	drm_dbg_kms(display->drm,
3492 		    "New cdclk calculated to be logical %u kHz, actual %u kHz\n",
3493 		    new_cdclk_state->logical.cdclk,
3494 		    new_cdclk_state->actual.cdclk);
3495 	drm_dbg_kms(display->drm,
3496 		    "New voltage level calculated to be logical %u, actual %u\n",
3497 		    new_cdclk_state->logical.voltage_level,
3498 		    new_cdclk_state->actual.voltage_level);
3499 
3500 	return 0;
3501 }
3502 
3503 int intel_cdclk_atomic_check(struct intel_atomic_state *state)
3504 {
3505 	const struct intel_cdclk_state *old_cdclk_state;
3506 	struct intel_cdclk_state *new_cdclk_state;
3507 	bool need_cdclk_calc = false;
3508 	int ret;
3509 
3510 	ret = intel_cdclk_modeset_checks(state, &need_cdclk_calc);
3511 	if (ret)
3512 		return ret;
3513 
3514 	ret = intel_crtcs_calc_min_cdclk(state, &need_cdclk_calc);
3515 	if (ret)
3516 		return ret;
3517 
3518 	ret = intel_dbuf_bw_calc_min_cdclk(state, &need_cdclk_calc);
3519 	if (ret)
3520 		return ret;
3521 
3522 	old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3523 	new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
3524 
3525 	if (new_cdclk_state &&
3526 	    old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) {
3527 		ret = intel_atomic_lock_global_state(&new_cdclk_state->base);
3528 		if (ret)
3529 			return ret;
3530 
3531 		need_cdclk_calc = true;
3532 	}
3533 
3534 	if (need_cdclk_calc) {
3535 		ret = intel_modeset_calc_cdclk(state);
3536 		if (ret)
3537 			return ret;
3538 	}
3539 
3540 	return 0;
3541 }
3542 
3543 void intel_cdclk_update_hw_state(struct intel_display *display)
3544 {
3545 	const struct intel_dbuf_bw_state *dbuf_bw_state =
3546 		to_intel_dbuf_bw_state(display->dbuf_bw.obj.state);
3547 	struct intel_cdclk_state *cdclk_state =
3548 		to_intel_cdclk_state(display->cdclk.obj.state);
3549 	struct intel_crtc *crtc;
3550 
3551 	cdclk_state->enabled_pipes = 0;
3552 	cdclk_state->active_pipes = 0;
3553 
3554 	for_each_intel_crtc(display->drm, crtc) {
3555 		const struct intel_crtc_state *crtc_state =
3556 			to_intel_crtc_state(crtc->base.state);
3557 		enum pipe pipe = crtc->pipe;
3558 
3559 		if (crtc_state->hw.enable)
3560 			cdclk_state->enabled_pipes |= BIT(pipe);
3561 		if (crtc_state->hw.active)
3562 			cdclk_state->active_pipes |= BIT(pipe);
3563 
3564 		cdclk_state->min_cdclk[pipe] = crtc_state->min_cdclk;
3565 		cdclk_state->min_voltage_level[pipe] = crtc_state->min_voltage_level;
3566 	}
3567 
3568 	cdclk_state->dbuf_bw_min_cdclk = intel_dbuf_bw_min_cdclk(display, dbuf_bw_state);
3569 }
3570 
3571 void intel_cdclk_crtc_disable_noatomic(struct intel_crtc *crtc)
3572 {
3573 	struct intel_display *display = to_intel_display(crtc);
3574 
3575 	intel_cdclk_update_hw_state(display);
3576 }
3577 
3578 static int intel_compute_max_dotclk(struct intel_display *display)
3579 {
3580 	int ppc = intel_cdclk_ppc(display, HAS_DOUBLE_WIDE(display));
3581 	int guardband = intel_cdclk_guardband(display);
3582 	int max_cdclk_freq = display->cdclk.max_cdclk_freq;
3583 
3584 	return ppc * max_cdclk_freq * guardband / 100;
3585 }
3586 
3587 /**
3588  * intel_update_max_cdclk - Determine the maximum support CDCLK frequency
3589  * @display: display instance
3590  *
3591  * Determine the maximum CDCLK frequency the platform supports, and also
3592  * derive the maximum dot clock frequency the maximum CDCLK frequency
3593  * allows.
3594  */
3595 void intel_update_max_cdclk(struct intel_display *display)
3596 {
3597 	if (DISPLAY_VER(display) >= 35) {
3598 		display->cdclk.max_cdclk_freq = 787200;
3599 	} else if (DISPLAY_VERx100(display) >= 3002) {
3600 		display->cdclk.max_cdclk_freq = 480000;
3601 	} else if (DISPLAY_VER(display) >= 30) {
3602 		display->cdclk.max_cdclk_freq = 691200;
3603 	} else if (display->platform.jasperlake || display->platform.elkhartlake) {
3604 		if (display->cdclk.hw.ref == 24000)
3605 			display->cdclk.max_cdclk_freq = 552000;
3606 		else
3607 			display->cdclk.max_cdclk_freq = 556800;
3608 	} else if (DISPLAY_VER(display) >= 11) {
3609 		if (display->cdclk.hw.ref == 24000)
3610 			display->cdclk.max_cdclk_freq = 648000;
3611 		else
3612 			display->cdclk.max_cdclk_freq = 652800;
3613 	} else if (display->platform.geminilake) {
3614 		display->cdclk.max_cdclk_freq = 316800;
3615 	} else if (display->platform.broxton) {
3616 		display->cdclk.max_cdclk_freq = 624000;
3617 	} else if (DISPLAY_VER(display) == 9) {
3618 		u32 limit = intel_de_read(display, SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
3619 		int max_cdclk, vco;
3620 
3621 		vco = display->cdclk.skl_preferred_vco_freq;
3622 		drm_WARN_ON(display->drm, vco != 8100000 && vco != 8640000);
3623 
3624 		/*
3625 		 * Use the lower (vco 8640) cdclk values as a
3626 		 * first guess. skl_calc_cdclk() will correct it
3627 		 * if the preferred vco is 8100 instead.
3628 		 */
3629 		if (limit == SKL_DFSM_CDCLK_LIMIT_675)
3630 			max_cdclk = 617143;
3631 		else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
3632 			max_cdclk = 540000;
3633 		else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
3634 			max_cdclk = 432000;
3635 		else
3636 			max_cdclk = 308571;
3637 
3638 		display->cdclk.max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
3639 	} else if (display->platform.broadwell)  {
3640 		/*
3641 		 * FIXME with extra cooling we can allow
3642 		 * 540 MHz for ULX and 675 Mhz for ULT.
3643 		 * How can we know if extra cooling is
3644 		 * available? PCI ID, VTB, something else?
3645 		 */
3646 		if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT)
3647 			display->cdclk.max_cdclk_freq = 450000;
3648 		else if (display->platform.broadwell_ulx)
3649 			display->cdclk.max_cdclk_freq = 450000;
3650 		else if (display->platform.broadwell_ult)
3651 			display->cdclk.max_cdclk_freq = 540000;
3652 		else
3653 			display->cdclk.max_cdclk_freq = 675000;
3654 	} else if (display->platform.cherryview) {
3655 		display->cdclk.max_cdclk_freq = 320000;
3656 	} else if (display->platform.valleyview) {
3657 		display->cdclk.max_cdclk_freq = 400000;
3658 	} else {
3659 		/* otherwise assume cdclk is fixed */
3660 		display->cdclk.max_cdclk_freq = display->cdclk.hw.cdclk;
3661 	}
3662 
3663 	display->cdclk.max_dotclk_freq = intel_compute_max_dotclk(display);
3664 
3665 	drm_dbg(display->drm, "Max CD clock rate: %d kHz\n",
3666 		display->cdclk.max_cdclk_freq);
3667 
3668 	drm_dbg(display->drm, "Max dotclock rate: %d kHz\n",
3669 		display->cdclk.max_dotclk_freq);
3670 }
3671 
3672 /**
3673  * intel_update_cdclk - Determine the current CDCLK frequency
3674  * @display: display instance
3675  *
3676  * Determine the current CDCLK frequency.
3677  */
3678 void intel_update_cdclk(struct intel_display *display)
3679 {
3680 	intel_cdclk_get_cdclk(display, &display->cdclk.hw);
3681 
3682 	/*
3683 	 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
3684 	 * Programmng [sic] note: bit[9:2] should be programmed to the number
3685 	 * of cdclk that generates 4MHz reference clock freq which is used to
3686 	 * generate GMBus clock. This will vary with the cdclk freq.
3687 	 */
3688 	if (display->platform.valleyview || display->platform.cherryview)
3689 		intel_de_write(display, GMBUSFREQ_VLV,
3690 			       DIV_ROUND_UP(display->cdclk.hw.cdclk, 1000));
3691 }
3692 
3693 static int dg1_rawclk(struct intel_display *display)
3694 {
3695 	/*
3696 	 * DG1 always uses a 38.4 MHz rawclk.  The bspec tells us
3697 	 * "Program Numerator=2, Denominator=4, Divider=37 decimal."
3698 	 */
3699 	intel_de_write(display, PCH_RAWCLK_FREQ,
3700 		       CNP_RAWCLK_DEN(4) | CNP_RAWCLK_DIV(37) | ICP_RAWCLK_NUM(2));
3701 
3702 	return 38400;
3703 }
3704 
3705 static int cnp_rawclk(struct intel_display *display)
3706 {
3707 	int divider, fraction;
3708 	u32 rawclk;
3709 
3710 	if (intel_de_read(display, SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) {
3711 		/* 24 MHz */
3712 		divider = 24000;
3713 		fraction = 0;
3714 	} else {
3715 		/* 19.2 MHz */
3716 		divider = 19000;
3717 		fraction = 200;
3718 	}
3719 
3720 	rawclk = CNP_RAWCLK_DIV(divider / 1000);
3721 	if (fraction) {
3722 		int numerator = 1;
3723 
3724 		rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000,
3725 							   fraction) - 1);
3726 		if (INTEL_PCH_TYPE(display) >= PCH_ICP)
3727 			rawclk |= ICP_RAWCLK_NUM(numerator);
3728 	}
3729 
3730 	intel_de_write(display, PCH_RAWCLK_FREQ, rawclk);
3731 	return divider + fraction;
3732 }
3733 
3734 static int pch_rawclk(struct intel_display *display)
3735 {
3736 	return (intel_de_read(display, PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
3737 }
3738 
3739 static int i9xx_hrawclk(struct intel_display *display)
3740 {
3741 	struct drm_i915_private *i915 = to_i915(display->drm);
3742 
3743 	/* hrawclock is 1/4 the FSB frequency */
3744 	return DIV_ROUND_CLOSEST(intel_fsb_freq(i915), 4);
3745 }
3746 
3747 /**
3748  * intel_read_rawclk - Determine the current RAWCLK frequency
3749  * @display: display instance
3750  *
3751  * Determine the current RAWCLK frequency. RAWCLK is a fixed
3752  * frequency clock so this needs to done only once.
3753  */
3754 u32 intel_read_rawclk(struct intel_display *display)
3755 {
3756 	u32 freq;
3757 
3758 	if (INTEL_PCH_TYPE(display) >= PCH_MTL)
3759 		/*
3760 		 * MTL always uses a 38.4 MHz rawclk.  The bspec tells us
3761 		 * "RAWCLK_FREQ defaults to the values for 38.4 and does
3762 		 * not need to be programmed."
3763 		 */
3764 		freq = 38400;
3765 	else if (INTEL_PCH_TYPE(display) >= PCH_DG1)
3766 		freq = dg1_rawclk(display);
3767 	else if (INTEL_PCH_TYPE(display) >= PCH_CNP)
3768 		freq = cnp_rawclk(display);
3769 	else if (HAS_PCH_SPLIT(display))
3770 		freq = pch_rawclk(display);
3771 	else if (display->platform.valleyview || display->platform.cherryview)
3772 		freq = vlv_clock_get_hrawclk(display->drm);
3773 	else if (DISPLAY_VER(display) >= 3)
3774 		freq = i9xx_hrawclk(display);
3775 	else
3776 		/* no rawclk on other platforms, or no need to know it */
3777 		return 0;
3778 
3779 	return freq;
3780 }
3781 
3782 static int i915_cdclk_info_show(struct seq_file *m, void *unused)
3783 {
3784 	struct intel_display *display = m->private;
3785 
3786 	seq_printf(m, "Current CD clock frequency: %d kHz\n", display->cdclk.hw.cdclk);
3787 	seq_printf(m, "Max CD clock frequency: %d kHz\n", display->cdclk.max_cdclk_freq);
3788 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", display->cdclk.max_dotclk_freq);
3789 
3790 	return 0;
3791 }
3792 
3793 DEFINE_SHOW_ATTRIBUTE(i915_cdclk_info);
3794 
3795 void intel_cdclk_debugfs_register(struct intel_display *display)
3796 {
3797 	debugfs_create_file("i915_cdclk_info", 0444, display->drm->debugfs_root,
3798 			    display, &i915_cdclk_info_fops);
3799 }
3800 
3801 static const struct intel_cdclk_funcs xe3lpd_cdclk_funcs = {
3802 	.get_cdclk = bxt_get_cdclk,
3803 	.set_cdclk = bxt_set_cdclk,
3804 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3805 	.calc_voltage_level = xe3lpd_calc_voltage_level,
3806 };
3807 
3808 static const struct intel_cdclk_funcs rplu_cdclk_funcs = {
3809 	.get_cdclk = bxt_get_cdclk,
3810 	.set_cdclk = bxt_set_cdclk,
3811 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3812 	.calc_voltage_level = rplu_calc_voltage_level,
3813 };
3814 
3815 static const struct intel_cdclk_funcs tgl_cdclk_funcs = {
3816 	.get_cdclk = bxt_get_cdclk,
3817 	.set_cdclk = bxt_set_cdclk,
3818 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3819 	.calc_voltage_level = tgl_calc_voltage_level,
3820 };
3821 
3822 static const struct intel_cdclk_funcs ehl_cdclk_funcs = {
3823 	.get_cdclk = bxt_get_cdclk,
3824 	.set_cdclk = bxt_set_cdclk,
3825 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3826 	.calc_voltage_level = ehl_calc_voltage_level,
3827 };
3828 
3829 static const struct intel_cdclk_funcs icl_cdclk_funcs = {
3830 	.get_cdclk = bxt_get_cdclk,
3831 	.set_cdclk = bxt_set_cdclk,
3832 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3833 	.calc_voltage_level = icl_calc_voltage_level,
3834 };
3835 
3836 static const struct intel_cdclk_funcs bxt_cdclk_funcs = {
3837 	.get_cdclk = bxt_get_cdclk,
3838 	.set_cdclk = bxt_set_cdclk,
3839 	.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3840 	.calc_voltage_level = bxt_calc_voltage_level,
3841 };
3842 
3843 static const struct intel_cdclk_funcs skl_cdclk_funcs = {
3844 	.get_cdclk = skl_get_cdclk,
3845 	.set_cdclk = skl_set_cdclk,
3846 	.modeset_calc_cdclk = skl_modeset_calc_cdclk,
3847 };
3848 
3849 static const struct intel_cdclk_funcs bdw_cdclk_funcs = {
3850 	.get_cdclk = bdw_get_cdclk,
3851 	.set_cdclk = bdw_set_cdclk,
3852 	.modeset_calc_cdclk = bdw_modeset_calc_cdclk,
3853 };
3854 
3855 static const struct intel_cdclk_funcs chv_cdclk_funcs = {
3856 	.get_cdclk = vlv_get_cdclk,
3857 	.set_cdclk = chv_set_cdclk,
3858 	.modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3859 };
3860 
3861 static const struct intel_cdclk_funcs vlv_cdclk_funcs = {
3862 	.get_cdclk = vlv_get_cdclk,
3863 	.set_cdclk = vlv_set_cdclk,
3864 	.modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3865 };
3866 
3867 static const struct intel_cdclk_funcs hsw_cdclk_funcs = {
3868 	.get_cdclk = hsw_get_cdclk,
3869 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3870 };
3871 
3872 /* SNB, IVB, 965G, 945G */
3873 static const struct intel_cdclk_funcs fixed_400mhz_cdclk_funcs = {
3874 	.get_cdclk = fixed_400mhz_get_cdclk,
3875 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3876 };
3877 
3878 static const struct intel_cdclk_funcs ilk_cdclk_funcs = {
3879 	.get_cdclk = fixed_450mhz_get_cdclk,
3880 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3881 };
3882 
3883 static const struct intel_cdclk_funcs gm45_cdclk_funcs = {
3884 	.get_cdclk = gm45_get_cdclk,
3885 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3886 };
3887 
3888 /* G45 uses G33 */
3889 
3890 static const struct intel_cdclk_funcs i965gm_cdclk_funcs = {
3891 	.get_cdclk = i965gm_get_cdclk,
3892 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3893 };
3894 
3895 /* i965G uses fixed 400 */
3896 
3897 static const struct intel_cdclk_funcs pnv_cdclk_funcs = {
3898 	.get_cdclk = pnv_get_cdclk,
3899 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3900 };
3901 
3902 static const struct intel_cdclk_funcs g33_cdclk_funcs = {
3903 	.get_cdclk = g33_get_cdclk,
3904 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3905 };
3906 
3907 static const struct intel_cdclk_funcs i945gm_cdclk_funcs = {
3908 	.get_cdclk = i945gm_get_cdclk,
3909 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3910 };
3911 
3912 /* i945G uses fixed 400 */
3913 
3914 static const struct intel_cdclk_funcs i915gm_cdclk_funcs = {
3915 	.get_cdclk = i915gm_get_cdclk,
3916 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3917 };
3918 
3919 static const struct intel_cdclk_funcs i915g_cdclk_funcs = {
3920 	.get_cdclk = fixed_333mhz_get_cdclk,
3921 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3922 };
3923 
3924 static const struct intel_cdclk_funcs i865g_cdclk_funcs = {
3925 	.get_cdclk = fixed_266mhz_get_cdclk,
3926 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3927 };
3928 
3929 static const struct intel_cdclk_funcs i85x_cdclk_funcs = {
3930 	.get_cdclk = i85x_get_cdclk,
3931 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3932 };
3933 
3934 static const struct intel_cdclk_funcs i845g_cdclk_funcs = {
3935 	.get_cdclk = fixed_200mhz_get_cdclk,
3936 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3937 };
3938 
3939 static const struct intel_cdclk_funcs i830_cdclk_funcs = {
3940 	.get_cdclk = fixed_133mhz_get_cdclk,
3941 	.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3942 };
3943 
3944 /**
3945  * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks
3946  * @display: display instance
3947  */
3948 void intel_init_cdclk_hooks(struct intel_display *display)
3949 {
3950 	if (DISPLAY_VER(display) >= 35) {
3951 		display->funcs.cdclk = &xe3lpd_cdclk_funcs;
3952 		display->cdclk.table = xe3p_lpd_cdclk_table;
3953 	} else if (DISPLAY_VER(display) >= 30) {
3954 		display->funcs.cdclk = &xe3lpd_cdclk_funcs;
3955 		display->cdclk.table = xe3lpd_cdclk_table;
3956 	} else if (DISPLAY_VER(display) >= 20) {
3957 		display->funcs.cdclk = &rplu_cdclk_funcs;
3958 		display->cdclk.table = xe2lpd_cdclk_table;
3959 	} else if (DISPLAY_VERx100(display) >= 1401) {
3960 		display->funcs.cdclk = &rplu_cdclk_funcs;
3961 		display->cdclk.table = xe2hpd_cdclk_table;
3962 	} else if (DISPLAY_VER(display) >= 14) {
3963 		display->funcs.cdclk = &rplu_cdclk_funcs;
3964 		display->cdclk.table = mtl_cdclk_table;
3965 	} else if (display->platform.dg2) {
3966 		display->funcs.cdclk = &tgl_cdclk_funcs;
3967 		display->cdclk.table = dg2_cdclk_table;
3968 	} else if (display->platform.alderlake_p) {
3969 		/* Wa_22011320316:adl-p[a0] */
3970 		if (display->platform.alderlake_p && IS_DISPLAY_STEP(display, STEP_A0, STEP_B0)) {
3971 			display->cdclk.table = adlp_a_step_cdclk_table;
3972 			display->funcs.cdclk = &tgl_cdclk_funcs;
3973 		} else if (display->platform.alderlake_p_raptorlake_u) {
3974 			display->cdclk.table = rplu_cdclk_table;
3975 			display->funcs.cdclk = &rplu_cdclk_funcs;
3976 		} else {
3977 			display->cdclk.table = adlp_cdclk_table;
3978 			display->funcs.cdclk = &tgl_cdclk_funcs;
3979 		}
3980 	} else if (display->platform.rocketlake) {
3981 		display->funcs.cdclk = &tgl_cdclk_funcs;
3982 		display->cdclk.table = rkl_cdclk_table;
3983 	} else if (DISPLAY_VER(display) >= 12) {
3984 		display->funcs.cdclk = &tgl_cdclk_funcs;
3985 		display->cdclk.table = icl_cdclk_table;
3986 	} else if (display->platform.jasperlake || display->platform.elkhartlake) {
3987 		display->funcs.cdclk = &ehl_cdclk_funcs;
3988 		display->cdclk.table = icl_cdclk_table;
3989 	} else if (DISPLAY_VER(display) >= 11) {
3990 		display->funcs.cdclk = &icl_cdclk_funcs;
3991 		display->cdclk.table = icl_cdclk_table;
3992 	} else if (display->platform.geminilake || display->platform.broxton) {
3993 		display->funcs.cdclk = &bxt_cdclk_funcs;
3994 		if (display->platform.geminilake)
3995 			display->cdclk.table = glk_cdclk_table;
3996 		else
3997 			display->cdclk.table = bxt_cdclk_table;
3998 	} else if (DISPLAY_VER(display) == 9) {
3999 		display->funcs.cdclk = &skl_cdclk_funcs;
4000 	} else if (display->platform.broadwell) {
4001 		display->funcs.cdclk = &bdw_cdclk_funcs;
4002 	} else if (display->platform.haswell) {
4003 		display->funcs.cdclk = &hsw_cdclk_funcs;
4004 	} else if (display->platform.cherryview) {
4005 		display->funcs.cdclk = &chv_cdclk_funcs;
4006 	} else if (display->platform.valleyview) {
4007 		display->funcs.cdclk = &vlv_cdclk_funcs;
4008 	} else if (display->platform.sandybridge || display->platform.ivybridge) {
4009 		display->funcs.cdclk = &fixed_400mhz_cdclk_funcs;
4010 	} else if (display->platform.ironlake) {
4011 		display->funcs.cdclk = &ilk_cdclk_funcs;
4012 	} else if (display->platform.gm45) {
4013 		display->funcs.cdclk = &gm45_cdclk_funcs;
4014 	} else if (display->platform.g45) {
4015 		display->funcs.cdclk = &g33_cdclk_funcs;
4016 	} else if (display->platform.i965gm) {
4017 		display->funcs.cdclk = &i965gm_cdclk_funcs;
4018 	} else if (display->platform.i965g) {
4019 		display->funcs.cdclk = &fixed_400mhz_cdclk_funcs;
4020 	} else if (display->platform.pineview) {
4021 		display->funcs.cdclk = &pnv_cdclk_funcs;
4022 	} else if (display->platform.g33) {
4023 		display->funcs.cdclk = &g33_cdclk_funcs;
4024 	} else if (display->platform.i945gm) {
4025 		display->funcs.cdclk = &i945gm_cdclk_funcs;
4026 	} else if (display->platform.i945g) {
4027 		display->funcs.cdclk = &fixed_400mhz_cdclk_funcs;
4028 	} else if (display->platform.i915gm) {
4029 		display->funcs.cdclk = &i915gm_cdclk_funcs;
4030 	} else if (display->platform.i915g) {
4031 		display->funcs.cdclk = &i915g_cdclk_funcs;
4032 	} else if (display->platform.i865g) {
4033 		display->funcs.cdclk = &i865g_cdclk_funcs;
4034 	} else if (display->platform.i85x) {
4035 		display->funcs.cdclk = &i85x_cdclk_funcs;
4036 	} else if (display->platform.i845g) {
4037 		display->funcs.cdclk = &i845g_cdclk_funcs;
4038 	} else if (display->platform.i830) {
4039 		display->funcs.cdclk = &i830_cdclk_funcs;
4040 	}
4041 
4042 	if (drm_WARN(display->drm, !display->funcs.cdclk,
4043 		     "Unknown platform. Assuming i830\n"))
4044 		display->funcs.cdclk = &i830_cdclk_funcs;
4045 }
4046 
4047 int intel_cdclk_logical(const struct intel_cdclk_state *cdclk_state)
4048 {
4049 	return cdclk_state->logical.cdclk;
4050 }
4051 
4052 int intel_cdclk_actual(const struct intel_cdclk_state *cdclk_state)
4053 {
4054 	return cdclk_state->actual.cdclk;
4055 }
4056 
4057 int intel_cdclk_actual_voltage_level(const struct intel_cdclk_state *cdclk_state)
4058 {
4059 	return cdclk_state->actual.voltage_level;
4060 }
4061 
4062 int intel_cdclk_min_cdclk(const struct intel_cdclk_state *cdclk_state, enum pipe pipe)
4063 {
4064 	return cdclk_state->min_cdclk[pipe];
4065 }
4066 
4067 bool intel_cdclk_pmdemand_needs_update(struct intel_atomic_state *state)
4068 {
4069 	const struct intel_cdclk_state *new_cdclk_state, *old_cdclk_state;
4070 
4071 	new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
4072 	old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
4073 
4074 	if (new_cdclk_state &&
4075 	    (new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk ||
4076 	     new_cdclk_state->actual.voltage_level != old_cdclk_state->actual.voltage_level))
4077 		return true;
4078 
4079 	return false;
4080 }
4081 
4082 void intel_cdclk_force_min_cdclk(struct intel_cdclk_state *cdclk_state, int force_min_cdclk)
4083 {
4084 	cdclk_state->force_min_cdclk = force_min_cdclk;
4085 }
4086 
4087 void intel_cdclk_read_hw(struct intel_display *display)
4088 {
4089 	struct intel_cdclk_state *cdclk_state;
4090 
4091 	cdclk_state = to_intel_cdclk_state(display->cdclk.obj.state);
4092 
4093 	intel_update_cdclk(display);
4094 	intel_cdclk_dump_config(display, &display->cdclk.hw, "Current CDCLK");
4095 	cdclk_state->actual = display->cdclk.hw;
4096 	cdclk_state->logical = display->cdclk.hw;
4097 }
4098 
4099 static int calc_cdclk(const struct intel_crtc_state *crtc_state, int min_cdclk)
4100 {
4101 	struct intel_display *display = to_intel_display(crtc_state);
4102 
4103 	if (DISPLAY_VER(display) >= 10 || display->platform.broxton) {
4104 		return bxt_calc_cdclk(display, min_cdclk);
4105 	} else if (DISPLAY_VER(display) == 9) {
4106 		int vco;
4107 
4108 		vco = display->cdclk.skl_preferred_vco_freq;
4109 		if (vco == 0)
4110 			vco = 8100000;
4111 
4112 		return skl_calc_cdclk(min_cdclk, vco);
4113 	} else if (display->platform.broadwell) {
4114 		return bdw_calc_cdclk(min_cdclk);
4115 	} else if (display->platform.cherryview || display->platform.valleyview) {
4116 		return vlv_calc_cdclk(display, min_cdclk);
4117 	} else {
4118 		return display->cdclk.max_cdclk_freq;
4119 	}
4120 }
4121 
4122 static unsigned int _intel_cdclk_prefill_adj(const struct intel_crtc_state *crtc_state,
4123 					     int clock, int min_cdclk)
4124 {
4125 	struct intel_display *display = to_intel_display(crtc_state);
4126 	int ppc = intel_cdclk_ppc(display, crtc_state->double_wide);
4127 	int cdclk = calc_cdclk(crtc_state, min_cdclk);
4128 
4129 	return min(0x10000, DIV_ROUND_UP_ULL((u64)clock << 16, ppc * cdclk));
4130 }
4131 
4132 unsigned int intel_cdclk_prefill_adjustment(const struct intel_crtc_state *crtc_state)
4133 {
4134 	/* FIXME use the actual min_cdclk for the pipe here */
4135 	return intel_cdclk_prefill_adjustment_worst(crtc_state);
4136 }
4137 
4138 unsigned int intel_cdclk_prefill_adjustment_worst(const struct intel_crtc_state *crtc_state)
4139 {
4140 	int clock = crtc_state->hw.pipe_mode.crtc_clock;
4141 	int min_cdclk;
4142 
4143 	/*
4144 	 * FIXME could perhaps consider a few more of the factors
4145 	 * that go the per-crtc min_cdclk. Namely anything that
4146 	 * only changes during full modesets.
4147 	 *
4148 	 * FIXME this assumes 1:1 scaling, but the other _worst() stuff
4149 	 * assumes max downscaling, so the final result will be
4150 	 * unrealistically bad. Figure out where the actual maximum value
4151 	 * lies and use that to compute a more realistic worst case
4152 	 * estimate...
4153 	 */
4154 	min_cdclk = _intel_pixel_rate_to_cdclk(crtc_state, clock);
4155 
4156 	return _intel_cdclk_prefill_adj(crtc_state, clock, min_cdclk);
4157 }
4158 
4159 int intel_cdclk_min_cdclk_for_prefill(const struct intel_crtc_state *crtc_state,
4160 				      unsigned int prefill_lines_unadjusted,
4161 				      unsigned int prefill_lines_available)
4162 {
4163 	struct intel_display *display = to_intel_display(crtc_state);
4164 	const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
4165 	int ppc = intel_cdclk_ppc(display, crtc_state->double_wide);
4166 
4167 	return DIV_ROUND_UP_ULL(mul_u32_u32(pipe_mode->crtc_clock, prefill_lines_unadjusted),
4168 				ppc * prefill_lines_available);
4169 }
4170