1 /* 2 * Copyright © 2006-2017 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/debugfs.h> 25 #include <linux/iopoll.h> 26 #include <linux/time.h> 27 28 #include <drm/drm_fixed.h> 29 #include <drm/drm_print.h> 30 31 #include "soc/intel_dram.h" 32 33 #include "hsw_ips.h" 34 #include "i915_drv.h" 35 #include "i915_reg.h" 36 #include "intel_atomic.h" 37 #include "intel_audio.h" 38 #include "intel_cdclk.h" 39 #include "intel_crtc.h" 40 #include "intel_dbuf_bw.h" 41 #include "intel_de.h" 42 #include "intel_display_regs.h" 43 #include "intel_display_types.h" 44 #include "intel_display_utils.h" 45 #include "intel_mchbar_regs.h" 46 #include "intel_pci_config.h" 47 #include "intel_pcode.h" 48 #include "intel_plane.h" 49 #include "intel_psr.h" 50 #include "intel_vdsc.h" 51 #include "skl_watermark.h" 52 #include "skl_watermark_regs.h" 53 #include "vlv_clock.h" 54 #include "vlv_dsi.h" 55 #include "vlv_sideband.h" 56 57 /** 58 * DOC: CDCLK / RAWCLK 59 * 60 * The display engine uses several different clocks to do its work. There 61 * are two main clocks involved that aren't directly related to the actual 62 * pixel clock or any symbol/bit clock of the actual output port. These 63 * are the core display clock (CDCLK) and RAWCLK. 64 * 65 * CDCLK clocks most of the display pipe logic, and thus its frequency 66 * must be high enough to support the rate at which pixels are flowing 67 * through the pipes. Downscaling must also be accounted as that increases 68 * the effective pixel rate. 69 * 70 * On several platforms the CDCLK frequency can be changed dynamically 71 * to minimize power consumption for a given display configuration. 72 * Typically changes to the CDCLK frequency require all the display pipes 73 * to be shut down while the frequency is being changed. 74 * 75 * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit. 76 * DMC will not change the active CDCLK frequency however, so that part 77 * will still be performed by the driver directly. 78 * 79 * There are multiple components involved in the generation of the CDCLK 80 * frequency: 81 * 82 * - We have the CDCLK PLL, which generates an output clock based on a 83 * reference clock and a ratio parameter. 84 * - The CD2X Divider, which divides the output of the PLL based on a 85 * divisor selected from a set of pre-defined choices. 86 * - The CD2X Squasher, which further divides the output based on a 87 * waveform represented as a sequence of bits where each zero 88 * "squashes out" a clock cycle. 89 * - And, finally, a fixed divider that divides the output frequency by 2. 90 * 91 * As such, the resulting CDCLK frequency can be calculated with the 92 * following formula: 93 * 94 * cdclk = vco / cd2x_div / (sq_len / sq_div) / 2 95 * 96 * , where vco is the frequency generated by the PLL; cd2x_div 97 * represents the CD2X Divider; sq_len and sq_div are the bit length 98 * and the number of high bits for the CD2X Squasher waveform, respectively; 99 * and 2 represents the fixed divider. 100 * 101 * Note that some older platforms do not contain the CD2X Divider 102 * and/or CD2X Squasher, in which case we can ignore their respective 103 * factors in the formula above. 104 * 105 * Several methods exist to change the CDCLK frequency, which ones are 106 * supported depends on the platform: 107 * 108 * - Full PLL disable + re-enable with new VCO frequency. Pipes must be inactive. 109 * - CD2X divider update. Single pipe can be active as the divider update 110 * can be synchronized with the pipe's start of vblank. 111 * - Crawl the PLL smoothly to the new VCO frequency. Pipes can be active. 112 * - Squash waveform update. Pipes can be active. 113 * - Crawl and squash can also be done back to back. Pipes can be active. 114 * 115 * RAWCLK is a fixed frequency clock, often used by various auxiliary 116 * blocks such as AUX CH or backlight PWM. Hence the only thing we 117 * really need to know about RAWCLK is its frequency so that various 118 * dividers can be programmed correctly. 119 */ 120 121 struct intel_cdclk_state { 122 struct intel_global_state base; 123 124 /* 125 * Logical configuration of cdclk (used for all scaling, 126 * watermark, etc. calculations and checks). This is 127 * computed as if all enabled crtcs were active. 128 */ 129 struct intel_cdclk_config logical; 130 131 /* 132 * Actual configuration of cdclk, can be different from the 133 * logical configuration only when all crtc's are DPMS off. 134 */ 135 struct intel_cdclk_config actual; 136 137 /* minimum acceptable cdclk to satisfy DBUF bandwidth requirements */ 138 int dbuf_bw_min_cdclk; 139 /* minimum acceptable cdclk for each pipe */ 140 int min_cdclk[I915_MAX_PIPES]; 141 /* minimum acceptable voltage level for each pipe */ 142 u8 min_voltage_level[I915_MAX_PIPES]; 143 144 /* pipe to which cd2x update is synchronized */ 145 enum pipe pipe; 146 147 /* forced minimum cdclk for glk+ audio w/a */ 148 int force_min_cdclk; 149 150 /* bitmask of enabled pipes */ 151 u8 enabled_pipes; 152 153 /* bitmask of active pipes */ 154 u8 active_pipes; 155 156 /* update cdclk with pipes disabled */ 157 bool disable_pipes; 158 }; 159 160 struct intel_cdclk_funcs { 161 void (*get_cdclk)(struct intel_display *display, 162 struct intel_cdclk_config *cdclk_config); 163 void (*set_cdclk)(struct intel_display *display, 164 const struct intel_cdclk_config *cdclk_config, 165 enum pipe pipe); 166 int (*modeset_calc_cdclk)(struct intel_atomic_state *state); 167 u8 (*calc_voltage_level)(int cdclk); 168 }; 169 170 void intel_cdclk_get_cdclk(struct intel_display *display, 171 struct intel_cdclk_config *cdclk_config) 172 { 173 display->funcs.cdclk->get_cdclk(display, cdclk_config); 174 } 175 176 static void intel_cdclk_set_cdclk(struct intel_display *display, 177 const struct intel_cdclk_config *cdclk_config, 178 enum pipe pipe) 179 { 180 display->funcs.cdclk->set_cdclk(display, cdclk_config, pipe); 181 } 182 183 static int intel_cdclk_modeset_calc_cdclk(struct intel_atomic_state *state) 184 { 185 struct intel_display *display = to_intel_display(state); 186 187 return display->funcs.cdclk->modeset_calc_cdclk(state); 188 } 189 190 static u8 intel_cdclk_calc_voltage_level(struct intel_display *display, 191 int cdclk) 192 { 193 return display->funcs.cdclk->calc_voltage_level(cdclk); 194 } 195 196 static void fixed_133mhz_get_cdclk(struct intel_display *display, 197 struct intel_cdclk_config *cdclk_config) 198 { 199 cdclk_config->cdclk = 133333; 200 } 201 202 static void fixed_200mhz_get_cdclk(struct intel_display *display, 203 struct intel_cdclk_config *cdclk_config) 204 { 205 cdclk_config->cdclk = 200000; 206 } 207 208 static void fixed_266mhz_get_cdclk(struct intel_display *display, 209 struct intel_cdclk_config *cdclk_config) 210 { 211 cdclk_config->cdclk = 266667; 212 } 213 214 static void fixed_333mhz_get_cdclk(struct intel_display *display, 215 struct intel_cdclk_config *cdclk_config) 216 { 217 cdclk_config->cdclk = 333333; 218 } 219 220 static void fixed_400mhz_get_cdclk(struct intel_display *display, 221 struct intel_cdclk_config *cdclk_config) 222 { 223 cdclk_config->cdclk = 400000; 224 } 225 226 static void fixed_450mhz_get_cdclk(struct intel_display *display, 227 struct intel_cdclk_config *cdclk_config) 228 { 229 cdclk_config->cdclk = 450000; 230 } 231 232 static void i85x_get_cdclk(struct intel_display *display, 233 struct intel_cdclk_config *cdclk_config) 234 { 235 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 236 u16 hpllcc = 0; 237 238 /* 239 * 852GM/852GMV only supports 133 MHz and the HPLLCC 240 * encoding is different :( 241 * FIXME is this the right way to detect 852GM/852GMV? 242 */ 243 if (pdev->revision == 0x1) { 244 cdclk_config->cdclk = 133333; 245 return; 246 } 247 248 pci_bus_read_config_word(pdev->bus, 249 PCI_DEVFN(0, 3), HPLLCC, &hpllcc); 250 251 /* Assume that the hardware is in the high speed state. This 252 * should be the default. 253 */ 254 switch (hpllcc & GC_CLOCK_CONTROL_MASK) { 255 case GC_CLOCK_133_200: 256 case GC_CLOCK_133_200_2: 257 case GC_CLOCK_100_200: 258 cdclk_config->cdclk = 200000; 259 break; 260 case GC_CLOCK_166_250: 261 cdclk_config->cdclk = 250000; 262 break; 263 case GC_CLOCK_100_133: 264 cdclk_config->cdclk = 133333; 265 break; 266 case GC_CLOCK_133_266: 267 case GC_CLOCK_133_266_2: 268 case GC_CLOCK_166_266: 269 cdclk_config->cdclk = 266667; 270 break; 271 } 272 } 273 274 static void i915gm_get_cdclk(struct intel_display *display, 275 struct intel_cdclk_config *cdclk_config) 276 { 277 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 278 u16 gcfgc = 0; 279 280 pci_read_config_word(pdev, GCFGC, &gcfgc); 281 282 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) { 283 cdclk_config->cdclk = 133333; 284 return; 285 } 286 287 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 288 case GC_DISPLAY_CLOCK_333_320_MHZ: 289 cdclk_config->cdclk = 333333; 290 break; 291 default: 292 case GC_DISPLAY_CLOCK_190_200_MHZ: 293 cdclk_config->cdclk = 190000; 294 break; 295 } 296 } 297 298 static void i945gm_get_cdclk(struct intel_display *display, 299 struct intel_cdclk_config *cdclk_config) 300 { 301 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 302 u16 gcfgc = 0; 303 304 pci_read_config_word(pdev, GCFGC, &gcfgc); 305 306 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) { 307 cdclk_config->cdclk = 133333; 308 return; 309 } 310 311 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 312 case GC_DISPLAY_CLOCK_333_320_MHZ: 313 cdclk_config->cdclk = 320000; 314 break; 315 default: 316 case GC_DISPLAY_CLOCK_190_200_MHZ: 317 cdclk_config->cdclk = 200000; 318 break; 319 } 320 } 321 322 static unsigned int intel_hpll_vco(struct intel_display *display) 323 { 324 static const unsigned int blb_vco[8] = { 325 [0] = 3200000, 326 [1] = 4000000, 327 [2] = 5333333, 328 [3] = 4800000, 329 [4] = 6400000, 330 }; 331 static const unsigned int pnv_vco[8] = { 332 [0] = 3200000, 333 [1] = 4000000, 334 [2] = 5333333, 335 [3] = 4800000, 336 [4] = 2666667, 337 }; 338 static const unsigned int cl_vco[8] = { 339 [0] = 3200000, 340 [1] = 4000000, 341 [2] = 5333333, 342 [3] = 6400000, 343 [4] = 3333333, 344 [5] = 3566667, 345 [6] = 4266667, 346 }; 347 static const unsigned int elk_vco[8] = { 348 [0] = 3200000, 349 [1] = 4000000, 350 [2] = 5333333, 351 [3] = 4800000, 352 }; 353 static const unsigned int ctg_vco[8] = { 354 [0] = 3200000, 355 [1] = 4000000, 356 [2] = 5333333, 357 [3] = 6400000, 358 [4] = 2666667, 359 [5] = 4266667, 360 }; 361 const unsigned int *vco_table; 362 unsigned int vco; 363 u8 tmp = 0; 364 365 /* FIXME other chipsets? */ 366 if (display->platform.gm45) 367 vco_table = ctg_vco; 368 else if (display->platform.g45) 369 vco_table = elk_vco; 370 else if (display->platform.i965gm) 371 vco_table = cl_vco; 372 else if (display->platform.pineview) 373 vco_table = pnv_vco; 374 else if (display->platform.g33) 375 vco_table = blb_vco; 376 else 377 return 0; 378 379 tmp = intel_de_read(display, display->platform.pineview || 380 display->platform.mobile ? HPLLVCO_MOBILE : HPLLVCO); 381 382 vco = vco_table[tmp & 0x7]; 383 if (vco == 0) 384 drm_err(display->drm, "Bad HPLL VCO (HPLLVCO=0x%02x)\n", 385 tmp); 386 else 387 drm_dbg_kms(display->drm, "HPLL VCO %u kHz\n", vco); 388 389 return vco; 390 } 391 392 static void g33_get_cdclk(struct intel_display *display, 393 struct intel_cdclk_config *cdclk_config) 394 { 395 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 396 static const u8 div_3200[] = { 12, 10, 8, 7, 5, 16 }; 397 static const u8 div_4000[] = { 14, 12, 10, 8, 6, 20 }; 398 static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 }; 399 static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 }; 400 const u8 *div_table; 401 unsigned int cdclk_sel; 402 u16 tmp = 0; 403 404 cdclk_config->vco = intel_hpll_vco(display); 405 406 pci_read_config_word(pdev, GCFGC, &tmp); 407 408 cdclk_sel = (tmp >> 4) & 0x7; 409 410 if (cdclk_sel >= ARRAY_SIZE(div_3200)) 411 goto fail; 412 413 switch (cdclk_config->vco) { 414 case 3200000: 415 div_table = div_3200; 416 break; 417 case 4000000: 418 div_table = div_4000; 419 break; 420 case 4800000: 421 div_table = div_4800; 422 break; 423 case 5333333: 424 div_table = div_5333; 425 break; 426 default: 427 goto fail; 428 } 429 430 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, 431 div_table[cdclk_sel]); 432 return; 433 434 fail: 435 drm_err(display->drm, 436 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", 437 cdclk_config->vco, tmp); 438 cdclk_config->cdclk = 190476; 439 } 440 441 static void pnv_get_cdclk(struct intel_display *display, 442 struct intel_cdclk_config *cdclk_config) 443 { 444 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 445 u16 gcfgc = 0; 446 447 pci_read_config_word(pdev, GCFGC, &gcfgc); 448 449 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 450 case GC_DISPLAY_CLOCK_267_MHZ_PNV: 451 cdclk_config->cdclk = 266667; 452 break; 453 case GC_DISPLAY_CLOCK_333_MHZ_PNV: 454 cdclk_config->cdclk = 333333; 455 break; 456 case GC_DISPLAY_CLOCK_444_MHZ_PNV: 457 cdclk_config->cdclk = 444444; 458 break; 459 case GC_DISPLAY_CLOCK_200_MHZ_PNV: 460 cdclk_config->cdclk = 200000; 461 break; 462 default: 463 drm_err(display->drm, 464 "Unknown pnv display core clock 0x%04x\n", gcfgc); 465 fallthrough; 466 case GC_DISPLAY_CLOCK_133_MHZ_PNV: 467 cdclk_config->cdclk = 133333; 468 break; 469 case GC_DISPLAY_CLOCK_167_MHZ_PNV: 470 cdclk_config->cdclk = 166667; 471 break; 472 } 473 } 474 475 static void i965gm_get_cdclk(struct intel_display *display, 476 struct intel_cdclk_config *cdclk_config) 477 { 478 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 479 static const u8 div_3200[] = { 16, 10, 8 }; 480 static const u8 div_4000[] = { 20, 12, 10 }; 481 static const u8 div_5333[] = { 24, 16, 14 }; 482 const u8 *div_table; 483 unsigned int cdclk_sel; 484 u16 tmp = 0; 485 486 cdclk_config->vco = intel_hpll_vco(display); 487 488 pci_read_config_word(pdev, GCFGC, &tmp); 489 490 cdclk_sel = ((tmp >> 8) & 0x1f) - 1; 491 492 if (cdclk_sel >= ARRAY_SIZE(div_3200)) 493 goto fail; 494 495 switch (cdclk_config->vco) { 496 case 3200000: 497 div_table = div_3200; 498 break; 499 case 4000000: 500 div_table = div_4000; 501 break; 502 case 5333333: 503 div_table = div_5333; 504 break; 505 default: 506 goto fail; 507 } 508 509 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, 510 div_table[cdclk_sel]); 511 return; 512 513 fail: 514 drm_err(display->drm, 515 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", 516 cdclk_config->vco, tmp); 517 cdclk_config->cdclk = 200000; 518 } 519 520 static void gm45_get_cdclk(struct intel_display *display, 521 struct intel_cdclk_config *cdclk_config) 522 { 523 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 524 unsigned int cdclk_sel; 525 u16 tmp = 0; 526 527 cdclk_config->vco = intel_hpll_vco(display); 528 529 pci_read_config_word(pdev, GCFGC, &tmp); 530 531 cdclk_sel = (tmp >> 12) & 0x1; 532 533 switch (cdclk_config->vco) { 534 case 2666667: 535 case 4000000: 536 case 5333333: 537 cdclk_config->cdclk = cdclk_sel ? 333333 : 222222; 538 break; 539 case 3200000: 540 cdclk_config->cdclk = cdclk_sel ? 320000 : 228571; 541 break; 542 default: 543 drm_err(display->drm, 544 "Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", 545 cdclk_config->vco, tmp); 546 cdclk_config->cdclk = 222222; 547 break; 548 } 549 } 550 551 static void hsw_get_cdclk(struct intel_display *display, 552 struct intel_cdclk_config *cdclk_config) 553 { 554 u32 lcpll = intel_de_read(display, LCPLL_CTL); 555 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK; 556 557 if (lcpll & LCPLL_CD_SOURCE_FCLK) 558 cdclk_config->cdclk = 800000; 559 else if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT) 560 cdclk_config->cdclk = 450000; 561 else if (freq == LCPLL_CLK_FREQ_450) 562 cdclk_config->cdclk = 450000; 563 else if (display->platform.haswell_ult) 564 cdclk_config->cdclk = 337500; 565 else 566 cdclk_config->cdclk = 540000; 567 } 568 569 static int vlv_calc_cdclk(struct intel_display *display, int min_cdclk) 570 { 571 int freq_320 = (vlv_clock_get_hpll_vco(display->drm) << 1) % 320000 != 0 ? 572 333333 : 320000; 573 574 /* 575 * We seem to get an unstable or solid color picture at 200MHz. 576 * Not sure what's wrong. For now use 200MHz only when all pipes 577 * are off. 578 */ 579 if (display->platform.valleyview && min_cdclk > freq_320) 580 return 400000; 581 else if (min_cdclk > 266667) 582 return freq_320; 583 else if (min_cdclk > 0) 584 return 266667; 585 else 586 return 200000; 587 } 588 589 static u8 vlv_calc_voltage_level(struct intel_display *display, int cdclk) 590 { 591 if (display->platform.valleyview) { 592 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */ 593 return 2; 594 else if (cdclk >= 266667) 595 return 1; 596 else 597 return 0; 598 } else { 599 /* 600 * Specs are full of misinformation, but testing on actual 601 * hardware has shown that we just need to write the desired 602 * CCK divider into the Punit register. 603 */ 604 return DIV_ROUND_CLOSEST(vlv_clock_get_hpll_vco(display->drm) << 1, cdclk) - 1; 605 } 606 } 607 608 static void vlv_get_cdclk(struct intel_display *display, 609 struct intel_cdclk_config *cdclk_config) 610 { 611 u32 val; 612 613 cdclk_config->vco = vlv_clock_get_hpll_vco(display->drm); 614 cdclk_config->cdclk = vlv_clock_get_cdclk(display->drm); 615 616 vlv_punit_get(display->drm); 617 val = vlv_punit_read(display->drm, PUNIT_REG_DSPSSPM); 618 vlv_punit_put(display->drm); 619 620 if (display->platform.valleyview) 621 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK) >> 622 DSPFREQGUAR_SHIFT; 623 else 624 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >> 625 DSPFREQGUAR_SHIFT_CHV; 626 } 627 628 static void vlv_program_pfi_credits(struct intel_display *display) 629 { 630 unsigned int credits, default_credits; 631 632 if (display->platform.cherryview) 633 default_credits = PFI_CREDIT(12); 634 else 635 default_credits = PFI_CREDIT(8); 636 637 if (display->cdclk.hw.cdclk >= vlv_clock_get_czclk(display->drm)) { 638 /* CHV suggested value is 31 or 63 */ 639 if (display->platform.cherryview) 640 credits = PFI_CREDIT_63; 641 else 642 credits = PFI_CREDIT(15); 643 } else { 644 credits = default_credits; 645 } 646 647 /* 648 * WA - write default credits before re-programming 649 * FIXME: should we also set the resend bit here? 650 */ 651 intel_de_write(display, GCI_CONTROL, 652 VGA_FAST_MODE_DISABLE | default_credits); 653 654 intel_de_write(display, GCI_CONTROL, 655 VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND); 656 657 /* 658 * FIXME is this guaranteed to clear 659 * immediately or should we poll for it? 660 */ 661 drm_WARN_ON(display->drm, 662 intel_de_read(display, GCI_CONTROL) & PFI_CREDIT_RESEND); 663 } 664 665 static void vlv_set_cdclk(struct intel_display *display, 666 const struct intel_cdclk_config *cdclk_config, 667 enum pipe pipe) 668 { 669 int cdclk = cdclk_config->cdclk; 670 u32 val, cmd = cdclk_config->voltage_level; 671 intel_wakeref_t wakeref; 672 int ret; 673 674 switch (cdclk) { 675 case 400000: 676 case 333333: 677 case 320000: 678 case 266667: 679 case 200000: 680 break; 681 default: 682 MISSING_CASE(cdclk); 683 return; 684 } 685 686 /* There are cases where we can end up here with power domains 687 * off and a CDCLK frequency other than the minimum, like when 688 * issuing a modeset without actually changing any display after 689 * a system suspend. So grab the display core domain, which covers 690 * the HW blocks needed for the following programming. 691 */ 692 wakeref = intel_display_power_get(display, POWER_DOMAIN_DISPLAY_CORE); 693 694 vlv_iosf_sb_get(display->drm, 695 BIT(VLV_IOSF_SB_CCK) | 696 BIT(VLV_IOSF_SB_BUNIT) | 697 BIT(VLV_IOSF_SB_PUNIT)); 698 699 val = vlv_punit_read(display->drm, PUNIT_REG_DSPSSPM); 700 val &= ~DSPFREQGUAR_MASK; 701 val |= (cmd << DSPFREQGUAR_SHIFT); 702 vlv_punit_write(display->drm, PUNIT_REG_DSPSSPM, val); 703 704 ret = poll_timeout_us(val = vlv_punit_read(display->drm, PUNIT_REG_DSPSSPM), 705 (val & DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT), 706 500, 50 * 1000, false); 707 if (ret) 708 drm_err(display->drm, "timed out waiting for CDCLK change\n"); 709 710 if (cdclk == 400000) { 711 u32 divider; 712 713 divider = DIV_ROUND_CLOSEST(vlv_clock_get_hpll_vco(display->drm) << 1, 714 cdclk) - 1; 715 716 /* adjust cdclk divider */ 717 val = vlv_cck_read(display->drm, CCK_DISPLAY_CLOCK_CONTROL); 718 val &= ~CCK_FREQUENCY_VALUES; 719 val |= divider; 720 vlv_cck_write(display->drm, CCK_DISPLAY_CLOCK_CONTROL, val); 721 722 ret = poll_timeout_us(val = vlv_cck_read(display->drm, CCK_DISPLAY_CLOCK_CONTROL), 723 (val & CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT), 724 500, 50 * 1000, false); 725 if (ret) 726 drm_err(display->drm, "timed out waiting for CDCLK change\n"); 727 } 728 729 /* adjust self-refresh exit latency value */ 730 val = vlv_bunit_read(display->drm, BUNIT_REG_BISOC); 731 val &= ~0x7f; 732 733 /* 734 * For high bandwidth configs, we set a higher latency in the bunit 735 * so that the core display fetch happens in time to avoid underruns. 736 */ 737 if (cdclk == 400000) 738 val |= 4500 / 250; /* 4.5 usec */ 739 else 740 val |= 3000 / 250; /* 3.0 usec */ 741 vlv_bunit_write(display->drm, BUNIT_REG_BISOC, val); 742 743 vlv_iosf_sb_put(display->drm, 744 BIT(VLV_IOSF_SB_CCK) | 745 BIT(VLV_IOSF_SB_BUNIT) | 746 BIT(VLV_IOSF_SB_PUNIT)); 747 748 intel_update_cdclk(display); 749 750 vlv_program_pfi_credits(display); 751 752 intel_display_power_put(display, POWER_DOMAIN_DISPLAY_CORE, wakeref); 753 } 754 755 static void chv_set_cdclk(struct intel_display *display, 756 const struct intel_cdclk_config *cdclk_config, 757 enum pipe pipe) 758 { 759 int cdclk = cdclk_config->cdclk; 760 u32 val, cmd = cdclk_config->voltage_level; 761 intel_wakeref_t wakeref; 762 int ret; 763 764 switch (cdclk) { 765 case 333333: 766 case 320000: 767 case 266667: 768 case 200000: 769 break; 770 default: 771 MISSING_CASE(cdclk); 772 return; 773 } 774 775 /* There are cases where we can end up here with power domains 776 * off and a CDCLK frequency other than the minimum, like when 777 * issuing a modeset without actually changing any display after 778 * a system suspend. So grab the display core domain, which covers 779 * the HW blocks needed for the following programming. 780 */ 781 wakeref = intel_display_power_get(display, POWER_DOMAIN_DISPLAY_CORE); 782 783 vlv_punit_get(display->drm); 784 val = vlv_punit_read(display->drm, PUNIT_REG_DSPSSPM); 785 val &= ~DSPFREQGUAR_MASK_CHV; 786 val |= (cmd << DSPFREQGUAR_SHIFT_CHV); 787 vlv_punit_write(display->drm, PUNIT_REG_DSPSSPM, val); 788 789 ret = poll_timeout_us(val = vlv_punit_read(display->drm, PUNIT_REG_DSPSSPM), 790 (val & DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV), 791 500, 50 * 1000, false); 792 if (ret) 793 drm_err(display->drm, "timed out waiting for CDCLK change\n"); 794 795 vlv_punit_put(display->drm); 796 797 intel_update_cdclk(display); 798 799 vlv_program_pfi_credits(display); 800 801 intel_display_power_put(display, POWER_DOMAIN_DISPLAY_CORE, wakeref); 802 } 803 804 static int bdw_calc_cdclk(int min_cdclk) 805 { 806 if (min_cdclk > 540000) 807 return 675000; 808 else if (min_cdclk > 450000) 809 return 540000; 810 else if (min_cdclk > 337500) 811 return 450000; 812 else 813 return 337500; 814 } 815 816 static u8 bdw_calc_voltage_level(int cdclk) 817 { 818 switch (cdclk) { 819 default: 820 case 337500: 821 return 2; 822 case 450000: 823 return 0; 824 case 540000: 825 return 1; 826 case 675000: 827 return 3; 828 } 829 } 830 831 static void bdw_get_cdclk(struct intel_display *display, 832 struct intel_cdclk_config *cdclk_config) 833 { 834 u32 lcpll = intel_de_read(display, LCPLL_CTL); 835 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK; 836 837 if (lcpll & LCPLL_CD_SOURCE_FCLK) 838 cdclk_config->cdclk = 800000; 839 else if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT) 840 cdclk_config->cdclk = 450000; 841 else if (freq == LCPLL_CLK_FREQ_450) 842 cdclk_config->cdclk = 450000; 843 else if (freq == LCPLL_CLK_FREQ_54O_BDW) 844 cdclk_config->cdclk = 540000; 845 else if (freq == LCPLL_CLK_FREQ_337_5_BDW) 846 cdclk_config->cdclk = 337500; 847 else 848 cdclk_config->cdclk = 675000; 849 850 /* 851 * Can't read this out :( Let's assume it's 852 * at least what the CDCLK frequency requires. 853 */ 854 cdclk_config->voltage_level = 855 bdw_calc_voltage_level(cdclk_config->cdclk); 856 } 857 858 static u32 bdw_cdclk_freq_sel(int cdclk) 859 { 860 switch (cdclk) { 861 default: 862 MISSING_CASE(cdclk); 863 fallthrough; 864 case 337500: 865 return LCPLL_CLK_FREQ_337_5_BDW; 866 case 450000: 867 return LCPLL_CLK_FREQ_450; 868 case 540000: 869 return LCPLL_CLK_FREQ_54O_BDW; 870 case 675000: 871 return LCPLL_CLK_FREQ_675_BDW; 872 } 873 } 874 875 static void bdw_set_cdclk(struct intel_display *display, 876 const struct intel_cdclk_config *cdclk_config, 877 enum pipe pipe) 878 { 879 int cdclk = cdclk_config->cdclk; 880 int ret; 881 882 if (drm_WARN(display->drm, 883 (intel_de_read(display, LCPLL_CTL) & 884 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK | 885 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE | 886 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW | 887 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK, 888 "trying to change cdclk frequency with cdclk not enabled\n")) 889 return; 890 891 ret = intel_pcode_write(display->drm, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0); 892 if (ret) { 893 drm_err(display->drm, 894 "failed to inform pcode about cdclk change\n"); 895 return; 896 } 897 898 intel_de_rmw(display, LCPLL_CTL, 899 0, LCPLL_CD_SOURCE_FCLK); 900 901 /* 902 * According to the spec, it should be enough to poll for this 1 us. 903 * However, extensive testing shows that this can take longer. 904 */ 905 ret = intel_de_wait_for_set_us(display, LCPLL_CTL, 906 LCPLL_CD_SOURCE_FCLK_DONE, 100); 907 if (ret) 908 drm_err(display->drm, "Switching to FCLK failed\n"); 909 910 intel_de_rmw(display, LCPLL_CTL, 911 LCPLL_CLK_FREQ_MASK, bdw_cdclk_freq_sel(cdclk)); 912 913 intel_de_rmw(display, LCPLL_CTL, 914 LCPLL_CD_SOURCE_FCLK, 0); 915 916 ret = intel_de_wait_for_clear_us(display, LCPLL_CTL, 917 LCPLL_CD_SOURCE_FCLK_DONE, 1); 918 if (ret) 919 drm_err(display->drm, "Switching back to LCPLL failed\n"); 920 921 intel_pcode_write(display->drm, HSW_PCODE_DE_WRITE_FREQ_REQ, 922 cdclk_config->voltage_level); 923 924 intel_de_write(display, CDCLK_FREQ, 925 DIV_ROUND_CLOSEST(cdclk, 1000) - 1); 926 927 intel_update_cdclk(display); 928 } 929 930 static int skl_calc_cdclk(int min_cdclk, int vco) 931 { 932 if (vco == 8640000) { 933 if (min_cdclk > 540000) 934 return 617143; 935 else if (min_cdclk > 432000) 936 return 540000; 937 else if (min_cdclk > 308571) 938 return 432000; 939 else 940 return 308571; 941 } else { 942 if (min_cdclk > 540000) 943 return 675000; 944 else if (min_cdclk > 450000) 945 return 540000; 946 else if (min_cdclk > 337500) 947 return 450000; 948 else 949 return 337500; 950 } 951 } 952 953 static u8 skl_calc_voltage_level(int cdclk) 954 { 955 if (cdclk > 540000) 956 return 3; 957 else if (cdclk > 450000) 958 return 2; 959 else if (cdclk > 337500) 960 return 1; 961 else 962 return 0; 963 } 964 965 static void skl_dpll0_update(struct intel_display *display, 966 struct intel_cdclk_config *cdclk_config) 967 { 968 u32 val; 969 970 cdclk_config->ref = 24000; 971 cdclk_config->vco = 0; 972 973 val = intel_de_read(display, LCPLL1_CTL); 974 if ((val & LCPLL_PLL_ENABLE) == 0) 975 return; 976 977 if (drm_WARN_ON(display->drm, (val & LCPLL_PLL_LOCK) == 0)) 978 return; 979 980 val = intel_de_read(display, DPLL_CTRL1); 981 982 if (drm_WARN_ON(display->drm, 983 (val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | 984 DPLL_CTRL1_SSC(SKL_DPLL0) | 985 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) != 986 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) 987 return; 988 989 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) { 990 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0): 991 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0): 992 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0): 993 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0): 994 cdclk_config->vco = 8100000; 995 break; 996 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0): 997 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0): 998 cdclk_config->vco = 8640000; 999 break; 1000 default: 1001 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)); 1002 break; 1003 } 1004 } 1005 1006 static void skl_get_cdclk(struct intel_display *display, 1007 struct intel_cdclk_config *cdclk_config) 1008 { 1009 u32 cdctl; 1010 1011 skl_dpll0_update(display, cdclk_config); 1012 1013 cdclk_config->cdclk = cdclk_config->bypass = cdclk_config->ref; 1014 1015 if (cdclk_config->vco == 0) 1016 goto out; 1017 1018 cdctl = intel_de_read(display, CDCLK_CTL); 1019 1020 if (cdclk_config->vco == 8640000) { 1021 switch (cdctl & CDCLK_FREQ_SEL_MASK) { 1022 case CDCLK_FREQ_450_432: 1023 cdclk_config->cdclk = 432000; 1024 break; 1025 case CDCLK_FREQ_337_308: 1026 cdclk_config->cdclk = 308571; 1027 break; 1028 case CDCLK_FREQ_540: 1029 cdclk_config->cdclk = 540000; 1030 break; 1031 case CDCLK_FREQ_675_617: 1032 cdclk_config->cdclk = 617143; 1033 break; 1034 default: 1035 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); 1036 break; 1037 } 1038 } else { 1039 switch (cdctl & CDCLK_FREQ_SEL_MASK) { 1040 case CDCLK_FREQ_450_432: 1041 cdclk_config->cdclk = 450000; 1042 break; 1043 case CDCLK_FREQ_337_308: 1044 cdclk_config->cdclk = 337500; 1045 break; 1046 case CDCLK_FREQ_540: 1047 cdclk_config->cdclk = 540000; 1048 break; 1049 case CDCLK_FREQ_675_617: 1050 cdclk_config->cdclk = 675000; 1051 break; 1052 default: 1053 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); 1054 break; 1055 } 1056 } 1057 1058 out: 1059 /* 1060 * Can't read this out :( Let's assume it's 1061 * at least what the CDCLK frequency requires. 1062 */ 1063 cdclk_config->voltage_level = 1064 skl_calc_voltage_level(cdclk_config->cdclk); 1065 } 1066 1067 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */ 1068 static int skl_cdclk_decimal(int cdclk) 1069 { 1070 return DIV_ROUND_CLOSEST(cdclk - 1000, 500); 1071 } 1072 1073 static void skl_set_preferred_cdclk_vco(struct intel_display *display, int vco) 1074 { 1075 bool changed = display->cdclk.skl_preferred_vco_freq != vco; 1076 1077 display->cdclk.skl_preferred_vco_freq = vco; 1078 1079 if (changed) 1080 intel_update_max_cdclk(display); 1081 } 1082 1083 static u32 skl_dpll0_link_rate(struct intel_display *display, int vco) 1084 { 1085 drm_WARN_ON(display->drm, vco != 8100000 && vco != 8640000); 1086 1087 /* 1088 * We always enable DPLL0 with the lowest link rate possible, but still 1089 * taking into account the VCO required to operate the eDP panel at the 1090 * desired frequency. The usual DP link rates operate with a VCO of 1091 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640. 1092 * The modeset code is responsible for the selection of the exact link 1093 * rate later on, with the constraint of choosing a frequency that 1094 * works with vco. 1095 */ 1096 if (vco == 8640000) 1097 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0); 1098 else 1099 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0); 1100 } 1101 1102 static void skl_dpll0_enable(struct intel_display *display, int vco) 1103 { 1104 intel_de_rmw(display, DPLL_CTRL1, 1105 DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | 1106 DPLL_CTRL1_SSC(SKL_DPLL0) | 1107 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0), 1108 DPLL_CTRL1_OVERRIDE(SKL_DPLL0) | 1109 skl_dpll0_link_rate(display, vco)); 1110 intel_de_posting_read(display, DPLL_CTRL1); 1111 1112 intel_de_rmw(display, LCPLL1_CTL, 1113 0, LCPLL_PLL_ENABLE); 1114 1115 if (intel_de_wait_for_set_ms(display, LCPLL1_CTL, LCPLL_PLL_LOCK, 5)) 1116 drm_err(display->drm, "DPLL0 not locked\n"); 1117 1118 display->cdclk.hw.vco = vco; 1119 1120 /* We'll want to keep using the current vco from now on. */ 1121 skl_set_preferred_cdclk_vco(display, vco); 1122 } 1123 1124 static void skl_dpll0_disable(struct intel_display *display) 1125 { 1126 intel_de_rmw(display, LCPLL1_CTL, 1127 LCPLL_PLL_ENABLE, 0); 1128 1129 if (intel_de_wait_for_clear_ms(display, LCPLL1_CTL, LCPLL_PLL_LOCK, 1)) 1130 drm_err(display->drm, "Couldn't disable DPLL0\n"); 1131 1132 display->cdclk.hw.vco = 0; 1133 } 1134 1135 static u32 skl_cdclk_freq_sel(struct intel_display *display, 1136 int cdclk, int vco) 1137 { 1138 switch (cdclk) { 1139 default: 1140 drm_WARN_ON(display->drm, 1141 cdclk != display->cdclk.hw.bypass); 1142 drm_WARN_ON(display->drm, vco != 0); 1143 fallthrough; 1144 case 308571: 1145 case 337500: 1146 return CDCLK_FREQ_337_308; 1147 case 450000: 1148 case 432000: 1149 return CDCLK_FREQ_450_432; 1150 case 540000: 1151 return CDCLK_FREQ_540; 1152 case 617143: 1153 case 675000: 1154 return CDCLK_FREQ_675_617; 1155 } 1156 } 1157 1158 static void skl_set_cdclk(struct intel_display *display, 1159 const struct intel_cdclk_config *cdclk_config, 1160 enum pipe pipe) 1161 { 1162 int cdclk = cdclk_config->cdclk; 1163 int vco = cdclk_config->vco; 1164 u32 freq_select, cdclk_ctl; 1165 int ret; 1166 1167 /* 1168 * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are 1169 * unsupported on SKL. In theory this should never happen since only 1170 * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not 1171 * supported on SKL either, see the above WA. WARN whenever trying to 1172 * use the corresponding VCO freq as that always leads to using the 1173 * minimum 308MHz CDCLK. 1174 */ 1175 drm_WARN_ON_ONCE(display->drm, 1176 display->platform.skylake && vco == 8640000); 1177 1178 ret = intel_pcode_request(display->drm, SKL_PCODE_CDCLK_CONTROL, 1179 SKL_CDCLK_PREPARE_FOR_CHANGE, 1180 SKL_CDCLK_READY_FOR_CHANGE, 1181 SKL_CDCLK_READY_FOR_CHANGE, 3); 1182 if (ret) { 1183 drm_err(display->drm, 1184 "Failed to inform PCU about cdclk change (%d)\n", ret); 1185 return; 1186 } 1187 1188 freq_select = skl_cdclk_freq_sel(display, cdclk, vco); 1189 1190 if (display->cdclk.hw.vco != 0 && 1191 display->cdclk.hw.vco != vco) 1192 skl_dpll0_disable(display); 1193 1194 cdclk_ctl = intel_de_read(display, CDCLK_CTL); 1195 1196 if (display->cdclk.hw.vco != vco) { 1197 /* Wa Display #1183: skl,kbl,cfl */ 1198 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK); 1199 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk); 1200 intel_de_write(display, CDCLK_CTL, cdclk_ctl); 1201 } 1202 1203 /* Wa Display #1183: skl,kbl,cfl */ 1204 cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE; 1205 intel_de_write(display, CDCLK_CTL, cdclk_ctl); 1206 intel_de_posting_read(display, CDCLK_CTL); 1207 1208 if (display->cdclk.hw.vco != vco) 1209 skl_dpll0_enable(display, vco); 1210 1211 /* Wa Display #1183: skl,kbl,cfl */ 1212 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK); 1213 intel_de_write(display, CDCLK_CTL, cdclk_ctl); 1214 1215 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk); 1216 intel_de_write(display, CDCLK_CTL, cdclk_ctl); 1217 1218 /* Wa Display #1183: skl,kbl,cfl */ 1219 cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE; 1220 intel_de_write(display, CDCLK_CTL, cdclk_ctl); 1221 intel_de_posting_read(display, CDCLK_CTL); 1222 1223 /* inform PCU of the change */ 1224 intel_pcode_write(display->drm, SKL_PCODE_CDCLK_CONTROL, 1225 cdclk_config->voltage_level); 1226 1227 intel_update_cdclk(display); 1228 } 1229 1230 static void skl_sanitize_cdclk(struct intel_display *display) 1231 { 1232 u32 cdctl, expected; 1233 1234 /* 1235 * check if the pre-os initialized the display 1236 * There is SWF18 scratchpad register defined which is set by the 1237 * pre-os which can be used by the OS drivers to check the status 1238 */ 1239 if ((intel_de_read(display, SWF_ILK(0x18)) & 0x00FFFFFF) == 0) 1240 goto sanitize; 1241 1242 intel_update_cdclk(display); 1243 intel_cdclk_dump_config(display, &display->cdclk.hw, "Current CDCLK"); 1244 1245 /* Is PLL enabled and locked ? */ 1246 if (display->cdclk.hw.vco == 0 || 1247 display->cdclk.hw.cdclk == display->cdclk.hw.bypass) 1248 goto sanitize; 1249 1250 /* DPLL okay; verify the cdclock 1251 * 1252 * Noticed in some instances that the freq selection is correct but 1253 * decimal part is programmed wrong from BIOS where pre-os does not 1254 * enable display. Verify the same as well. 1255 */ 1256 cdctl = intel_de_read(display, CDCLK_CTL); 1257 expected = (cdctl & CDCLK_FREQ_SEL_MASK) | 1258 skl_cdclk_decimal(display->cdclk.hw.cdclk); 1259 if (cdctl == expected) 1260 /* All well; nothing to sanitize */ 1261 return; 1262 1263 sanitize: 1264 drm_dbg_kms(display->drm, "Sanitizing cdclk programmed by pre-os\n"); 1265 1266 /* force cdclk programming */ 1267 display->cdclk.hw.cdclk = 0; 1268 /* force full PLL disable + enable */ 1269 display->cdclk.hw.vco = ~0; 1270 } 1271 1272 static void skl_cdclk_init_hw(struct intel_display *display) 1273 { 1274 struct intel_cdclk_config cdclk_config; 1275 1276 skl_sanitize_cdclk(display); 1277 1278 if (display->cdclk.hw.cdclk != 0 && 1279 display->cdclk.hw.vco != 0) { 1280 /* 1281 * Use the current vco as our initial 1282 * guess as to what the preferred vco is. 1283 */ 1284 if (display->cdclk.skl_preferred_vco_freq == 0) 1285 skl_set_preferred_cdclk_vco(display, 1286 display->cdclk.hw.vco); 1287 return; 1288 } 1289 1290 cdclk_config = display->cdclk.hw; 1291 1292 cdclk_config.vco = display->cdclk.skl_preferred_vco_freq; 1293 if (cdclk_config.vco == 0) 1294 cdclk_config.vco = 8100000; 1295 cdclk_config.cdclk = skl_calc_cdclk(0, cdclk_config.vco); 1296 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk); 1297 1298 skl_set_cdclk(display, &cdclk_config, INVALID_PIPE); 1299 } 1300 1301 static void skl_cdclk_uninit_hw(struct intel_display *display) 1302 { 1303 struct intel_cdclk_config cdclk_config = display->cdclk.hw; 1304 1305 cdclk_config.cdclk = cdclk_config.bypass; 1306 cdclk_config.vco = 0; 1307 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk); 1308 1309 skl_set_cdclk(display, &cdclk_config, INVALID_PIPE); 1310 } 1311 1312 struct intel_cdclk_vals { 1313 u32 cdclk; 1314 u16 refclk; 1315 u16 waveform; 1316 u8 ratio; 1317 }; 1318 1319 static const struct intel_cdclk_vals bxt_cdclk_table[] = { 1320 { .refclk = 19200, .cdclk = 144000, .ratio = 60 }, 1321 { .refclk = 19200, .cdclk = 288000, .ratio = 60 }, 1322 { .refclk = 19200, .cdclk = 384000, .ratio = 60 }, 1323 { .refclk = 19200, .cdclk = 576000, .ratio = 60 }, 1324 { .refclk = 19200, .cdclk = 624000, .ratio = 65 }, 1325 {} 1326 }; 1327 1328 static const struct intel_cdclk_vals glk_cdclk_table[] = { 1329 { .refclk = 19200, .cdclk = 79200, .ratio = 33 }, 1330 { .refclk = 19200, .cdclk = 158400, .ratio = 33 }, 1331 { .refclk = 19200, .cdclk = 316800, .ratio = 33 }, 1332 {} 1333 }; 1334 1335 static const struct intel_cdclk_vals icl_cdclk_table[] = { 1336 { .refclk = 19200, .cdclk = 172800, .ratio = 18 }, 1337 { .refclk = 19200, .cdclk = 192000, .ratio = 20 }, 1338 { .refclk = 19200, .cdclk = 307200, .ratio = 32 }, 1339 { .refclk = 19200, .cdclk = 326400, .ratio = 68 }, 1340 { .refclk = 19200, .cdclk = 556800, .ratio = 58 }, 1341 { .refclk = 19200, .cdclk = 652800, .ratio = 68 }, 1342 1343 { .refclk = 24000, .cdclk = 180000, .ratio = 15 }, 1344 { .refclk = 24000, .cdclk = 192000, .ratio = 16 }, 1345 { .refclk = 24000, .cdclk = 312000, .ratio = 26 }, 1346 { .refclk = 24000, .cdclk = 324000, .ratio = 54 }, 1347 { .refclk = 24000, .cdclk = 552000, .ratio = 46 }, 1348 { .refclk = 24000, .cdclk = 648000, .ratio = 54 }, 1349 1350 { .refclk = 38400, .cdclk = 172800, .ratio = 9 }, 1351 { .refclk = 38400, .cdclk = 192000, .ratio = 10 }, 1352 { .refclk = 38400, .cdclk = 307200, .ratio = 16 }, 1353 { .refclk = 38400, .cdclk = 326400, .ratio = 34 }, 1354 { .refclk = 38400, .cdclk = 556800, .ratio = 29 }, 1355 { .refclk = 38400, .cdclk = 652800, .ratio = 34 }, 1356 {} 1357 }; 1358 1359 static const struct intel_cdclk_vals rkl_cdclk_table[] = { 1360 { .refclk = 19200, .cdclk = 172800, .ratio = 36 }, 1361 { .refclk = 19200, .cdclk = 192000, .ratio = 40 }, 1362 { .refclk = 19200, .cdclk = 307200, .ratio = 64 }, 1363 { .refclk = 19200, .cdclk = 326400, .ratio = 136 }, 1364 { .refclk = 19200, .cdclk = 556800, .ratio = 116 }, 1365 { .refclk = 19200, .cdclk = 652800, .ratio = 136 }, 1366 1367 { .refclk = 24000, .cdclk = 180000, .ratio = 30 }, 1368 { .refclk = 24000, .cdclk = 192000, .ratio = 32 }, 1369 { .refclk = 24000, .cdclk = 312000, .ratio = 52 }, 1370 { .refclk = 24000, .cdclk = 324000, .ratio = 108 }, 1371 { .refclk = 24000, .cdclk = 552000, .ratio = 92 }, 1372 { .refclk = 24000, .cdclk = 648000, .ratio = 108 }, 1373 1374 { .refclk = 38400, .cdclk = 172800, .ratio = 18 }, 1375 { .refclk = 38400, .cdclk = 192000, .ratio = 20 }, 1376 { .refclk = 38400, .cdclk = 307200, .ratio = 32 }, 1377 { .refclk = 38400, .cdclk = 326400, .ratio = 68 }, 1378 { .refclk = 38400, .cdclk = 556800, .ratio = 58 }, 1379 { .refclk = 38400, .cdclk = 652800, .ratio = 68 }, 1380 {} 1381 }; 1382 1383 static const struct intel_cdclk_vals adlp_a_step_cdclk_table[] = { 1384 { .refclk = 19200, .cdclk = 307200, .ratio = 32 }, 1385 { .refclk = 19200, .cdclk = 556800, .ratio = 58 }, 1386 { .refclk = 19200, .cdclk = 652800, .ratio = 68 }, 1387 1388 { .refclk = 24000, .cdclk = 312000, .ratio = 26 }, 1389 { .refclk = 24000, .cdclk = 552000, .ratio = 46 }, 1390 { .refclk = 24400, .cdclk = 648000, .ratio = 54 }, 1391 1392 { .refclk = 38400, .cdclk = 307200, .ratio = 16 }, 1393 { .refclk = 38400, .cdclk = 556800, .ratio = 29 }, 1394 { .refclk = 38400, .cdclk = 652800, .ratio = 34 }, 1395 {} 1396 }; 1397 1398 static const struct intel_cdclk_vals adlp_cdclk_table[] = { 1399 { .refclk = 19200, .cdclk = 172800, .ratio = 27 }, 1400 { .refclk = 19200, .cdclk = 192000, .ratio = 20 }, 1401 { .refclk = 19200, .cdclk = 307200, .ratio = 32 }, 1402 { .refclk = 19200, .cdclk = 556800, .ratio = 58 }, 1403 { .refclk = 19200, .cdclk = 652800, .ratio = 68 }, 1404 1405 { .refclk = 24000, .cdclk = 176000, .ratio = 22 }, 1406 { .refclk = 24000, .cdclk = 192000, .ratio = 16 }, 1407 { .refclk = 24000, .cdclk = 312000, .ratio = 26 }, 1408 { .refclk = 24000, .cdclk = 552000, .ratio = 46 }, 1409 { .refclk = 24000, .cdclk = 648000, .ratio = 54 }, 1410 1411 { .refclk = 38400, .cdclk = 179200, .ratio = 14 }, 1412 { .refclk = 38400, .cdclk = 192000, .ratio = 10 }, 1413 { .refclk = 38400, .cdclk = 307200, .ratio = 16 }, 1414 { .refclk = 38400, .cdclk = 556800, .ratio = 29 }, 1415 { .refclk = 38400, .cdclk = 652800, .ratio = 34 }, 1416 {} 1417 }; 1418 1419 static const struct intel_cdclk_vals rplu_cdclk_table[] = { 1420 { .refclk = 19200, .cdclk = 172800, .ratio = 27 }, 1421 { .refclk = 19200, .cdclk = 192000, .ratio = 20 }, 1422 { .refclk = 19200, .cdclk = 307200, .ratio = 32 }, 1423 { .refclk = 19200, .cdclk = 480000, .ratio = 50 }, 1424 { .refclk = 19200, .cdclk = 556800, .ratio = 58 }, 1425 { .refclk = 19200, .cdclk = 652800, .ratio = 68 }, 1426 1427 { .refclk = 24000, .cdclk = 176000, .ratio = 22 }, 1428 { .refclk = 24000, .cdclk = 192000, .ratio = 16 }, 1429 { .refclk = 24000, .cdclk = 312000, .ratio = 26 }, 1430 { .refclk = 24000, .cdclk = 480000, .ratio = 40 }, 1431 { .refclk = 24000, .cdclk = 552000, .ratio = 46 }, 1432 { .refclk = 24000, .cdclk = 648000, .ratio = 54 }, 1433 1434 { .refclk = 38400, .cdclk = 179200, .ratio = 14 }, 1435 { .refclk = 38400, .cdclk = 192000, .ratio = 10 }, 1436 { .refclk = 38400, .cdclk = 307200, .ratio = 16 }, 1437 { .refclk = 38400, .cdclk = 480000, .ratio = 25 }, 1438 { .refclk = 38400, .cdclk = 556800, .ratio = 29 }, 1439 { .refclk = 38400, .cdclk = 652800, .ratio = 34 }, 1440 {} 1441 }; 1442 1443 static const struct intel_cdclk_vals dg2_cdclk_table[] = { 1444 { .refclk = 38400, .cdclk = 163200, .ratio = 34, .waveform = 0x8888 }, 1445 { .refclk = 38400, .cdclk = 204000, .ratio = 34, .waveform = 0x9248 }, 1446 { .refclk = 38400, .cdclk = 244800, .ratio = 34, .waveform = 0xa4a4 }, 1447 { .refclk = 38400, .cdclk = 285600, .ratio = 34, .waveform = 0xa54a }, 1448 { .refclk = 38400, .cdclk = 326400, .ratio = 34, .waveform = 0xaaaa }, 1449 { .refclk = 38400, .cdclk = 367200, .ratio = 34, .waveform = 0xad5a }, 1450 { .refclk = 38400, .cdclk = 408000, .ratio = 34, .waveform = 0xb6b6 }, 1451 { .refclk = 38400, .cdclk = 448800, .ratio = 34, .waveform = 0xdbb6 }, 1452 { .refclk = 38400, .cdclk = 489600, .ratio = 34, .waveform = 0xeeee }, 1453 { .refclk = 38400, .cdclk = 530400, .ratio = 34, .waveform = 0xf7de }, 1454 { .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe }, 1455 { .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe }, 1456 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff }, 1457 {} 1458 }; 1459 1460 static const struct intel_cdclk_vals mtl_cdclk_table[] = { 1461 { .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a }, 1462 { .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 }, 1463 { .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0x0000 }, 1464 { .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0x0000 }, 1465 { .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0x0000 }, 1466 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0x0000 }, 1467 {} 1468 }; 1469 1470 static const struct intel_cdclk_vals xe2lpd_cdclk_table[] = { 1471 { .refclk = 38400, .cdclk = 153600, .ratio = 16, .waveform = 0xaaaa }, 1472 { .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a }, 1473 { .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 }, 1474 { .refclk = 38400, .cdclk = 211200, .ratio = 16, .waveform = 0xdbb6 }, 1475 { .refclk = 38400, .cdclk = 230400, .ratio = 16, .waveform = 0xeeee }, 1476 { .refclk = 38400, .cdclk = 249600, .ratio = 16, .waveform = 0xf7de }, 1477 { .refclk = 38400, .cdclk = 268800, .ratio = 16, .waveform = 0xfefe }, 1478 { .refclk = 38400, .cdclk = 288000, .ratio = 16, .waveform = 0xfffe }, 1479 { .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0xffff }, 1480 { .refclk = 38400, .cdclk = 330000, .ratio = 25, .waveform = 0xdbb6 }, 1481 { .refclk = 38400, .cdclk = 360000, .ratio = 25, .waveform = 0xeeee }, 1482 { .refclk = 38400, .cdclk = 390000, .ratio = 25, .waveform = 0xf7de }, 1483 { .refclk = 38400, .cdclk = 420000, .ratio = 25, .waveform = 0xfefe }, 1484 { .refclk = 38400, .cdclk = 450000, .ratio = 25, .waveform = 0xfffe }, 1485 { .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff }, 1486 { .refclk = 38400, .cdclk = 487200, .ratio = 29, .waveform = 0xfefe }, 1487 { .refclk = 38400, .cdclk = 522000, .ratio = 29, .waveform = 0xfffe }, 1488 { .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff }, 1489 { .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe }, 1490 { .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe }, 1491 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff }, 1492 {} 1493 }; 1494 1495 /* 1496 * Xe2_HPD always uses the minimal cdclk table from Wa_15015413771 1497 */ 1498 static const struct intel_cdclk_vals xe2hpd_cdclk_table[] = { 1499 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff }, 1500 {} 1501 }; 1502 1503 static const struct intel_cdclk_vals xe3lpd_cdclk_table[] = { 1504 { .refclk = 38400, .cdclk = 153600, .ratio = 16, .waveform = 0xaaaa }, 1505 { .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a }, 1506 { .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 }, 1507 { .refclk = 38400, .cdclk = 211200, .ratio = 16, .waveform = 0xdbb6 }, 1508 { .refclk = 38400, .cdclk = 230400, .ratio = 16, .waveform = 0xeeee }, 1509 { .refclk = 38400, .cdclk = 249600, .ratio = 16, .waveform = 0xf7de }, 1510 { .refclk = 38400, .cdclk = 268800, .ratio = 16, .waveform = 0xfefe }, 1511 { .refclk = 38400, .cdclk = 288000, .ratio = 16, .waveform = 0xfffe }, 1512 { .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0xffff }, 1513 { .refclk = 38400, .cdclk = 326400, .ratio = 17, .waveform = 0xffff }, 1514 { .refclk = 38400, .cdclk = 345600, .ratio = 18, .waveform = 0xffff }, 1515 { .refclk = 38400, .cdclk = 364800, .ratio = 19, .waveform = 0xffff }, 1516 { .refclk = 38400, .cdclk = 384000, .ratio = 20, .waveform = 0xffff }, 1517 { .refclk = 38400, .cdclk = 403200, .ratio = 21, .waveform = 0xffff }, 1518 { .refclk = 38400, .cdclk = 422400, .ratio = 22, .waveform = 0xffff }, 1519 { .refclk = 38400, .cdclk = 441600, .ratio = 23, .waveform = 0xffff }, 1520 { .refclk = 38400, .cdclk = 460800, .ratio = 24, .waveform = 0xffff }, 1521 { .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff }, 1522 { .refclk = 38400, .cdclk = 499200, .ratio = 26, .waveform = 0xffff }, 1523 { .refclk = 38400, .cdclk = 518400, .ratio = 27, .waveform = 0xffff }, 1524 { .refclk = 38400, .cdclk = 537600, .ratio = 28, .waveform = 0xffff }, 1525 { .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff }, 1526 { .refclk = 38400, .cdclk = 576000, .ratio = 30, .waveform = 0xffff }, 1527 { .refclk = 38400, .cdclk = 595200, .ratio = 31, .waveform = 0xffff }, 1528 { .refclk = 38400, .cdclk = 614400, .ratio = 32, .waveform = 0xffff }, 1529 { .refclk = 38400, .cdclk = 633600, .ratio = 33, .waveform = 0xffff }, 1530 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff }, 1531 { .refclk = 38400, .cdclk = 672000, .ratio = 35, .waveform = 0xffff }, 1532 { .refclk = 38400, .cdclk = 691200, .ratio = 36, .waveform = 0xffff }, 1533 {} 1534 }; 1535 1536 static const struct intel_cdclk_vals xe3p_lpd_cdclk_table[] = { 1537 { .refclk = 38400, .cdclk = 151200, .ratio = 21, .waveform = 0xa4a4 }, 1538 { .refclk = 38400, .cdclk = 176400, .ratio = 21, .waveform = 0xaa54 }, 1539 { .refclk = 38400, .cdclk = 201600, .ratio = 21, .waveform = 0xaaaa }, 1540 { .refclk = 38400, .cdclk = 226800, .ratio = 21, .waveform = 0xad5a }, 1541 { .refclk = 38400, .cdclk = 252000, .ratio = 21, .waveform = 0xb6b6 }, 1542 { .refclk = 38400, .cdclk = 277200, .ratio = 21, .waveform = 0xdbb6 }, 1543 { .refclk = 38400, .cdclk = 302400, .ratio = 21, .waveform = 0xeeee }, 1544 { .refclk = 38400, .cdclk = 327600, .ratio = 21, .waveform = 0xf7de }, 1545 { .refclk = 38400, .cdclk = 352800, .ratio = 21, .waveform = 0xfefe }, 1546 { .refclk = 38400, .cdclk = 378000, .ratio = 21, .waveform = 0xfffe }, 1547 { .refclk = 38400, .cdclk = 403200, .ratio = 21, .waveform = 0xffff }, 1548 { .refclk = 38400, .cdclk = 422400, .ratio = 22, .waveform = 0xffff }, 1549 { .refclk = 38400, .cdclk = 441600, .ratio = 23, .waveform = 0xffff }, 1550 { .refclk = 38400, .cdclk = 460800, .ratio = 24, .waveform = 0xffff }, 1551 { .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff }, 1552 { .refclk = 38400, .cdclk = 499200, .ratio = 26, .waveform = 0xffff }, 1553 { .refclk = 38400, .cdclk = 518400, .ratio = 27, .waveform = 0xffff }, 1554 { .refclk = 38400, .cdclk = 537600, .ratio = 28, .waveform = 0xffff }, 1555 { .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff }, 1556 { .refclk = 38400, .cdclk = 576000, .ratio = 30, .waveform = 0xffff }, 1557 { .refclk = 38400, .cdclk = 595200, .ratio = 31, .waveform = 0xffff }, 1558 { .refclk = 38400, .cdclk = 614400, .ratio = 32, .waveform = 0xffff }, 1559 { .refclk = 38400, .cdclk = 633600, .ratio = 33, .waveform = 0xffff }, 1560 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff }, 1561 { .refclk = 38400, .cdclk = 672000, .ratio = 35, .waveform = 0xffff }, 1562 { .refclk = 38400, .cdclk = 691200, .ratio = 36, .waveform = 0xffff }, 1563 { .refclk = 38400, .cdclk = 710400, .ratio = 37, .waveform = 0xffff }, 1564 { .refclk = 38400, .cdclk = 729600, .ratio = 38, .waveform = 0xffff }, 1565 { .refclk = 38400, .cdclk = 748800, .ratio = 39, .waveform = 0xffff }, 1566 { .refclk = 38400, .cdclk = 768000, .ratio = 40, .waveform = 0xffff }, 1567 { .refclk = 38400, .cdclk = 787200, .ratio = 41, .waveform = 0xffff }, 1568 {} 1569 }; 1570 1571 static const int cdclk_squash_len = 16; 1572 1573 static int cdclk_squash_divider(u16 waveform) 1574 { 1575 return hweight16(waveform ?: 0xffff); 1576 } 1577 1578 static int cdclk_divider(int cdclk, int vco, u16 waveform) 1579 { 1580 /* 2 * cd2x divider */ 1581 return DIV_ROUND_CLOSEST(vco * cdclk_squash_divider(waveform), 1582 cdclk * cdclk_squash_len); 1583 } 1584 1585 static int bxt_calc_cdclk(struct intel_display *display, int min_cdclk) 1586 { 1587 const struct intel_cdclk_vals *table = display->cdclk.table; 1588 int i; 1589 1590 for (i = 0; table[i].refclk; i++) 1591 if (table[i].refclk == display->cdclk.hw.ref && 1592 table[i].cdclk >= min_cdclk) 1593 return table[i].cdclk; 1594 1595 drm_WARN(display->drm, 1, 1596 "Cannot satisfy minimum cdclk %d with refclk %u\n", 1597 min_cdclk, display->cdclk.hw.ref); 1598 return display->cdclk.max_cdclk_freq; 1599 } 1600 1601 static int bxt_calc_cdclk_pll_vco(struct intel_display *display, int cdclk) 1602 { 1603 const struct intel_cdclk_vals *table = display->cdclk.table; 1604 int i; 1605 1606 if (cdclk == display->cdclk.hw.bypass) 1607 return 0; 1608 1609 for (i = 0; table[i].refclk; i++) 1610 if (table[i].refclk == display->cdclk.hw.ref && 1611 table[i].cdclk == cdclk) 1612 return display->cdclk.hw.ref * table[i].ratio; 1613 1614 drm_WARN(display->drm, 1, "cdclk %d not valid for refclk %u\n", 1615 cdclk, display->cdclk.hw.ref); 1616 return 0; 1617 } 1618 1619 static u8 bxt_calc_voltage_level(int cdclk) 1620 { 1621 return DIV_ROUND_UP(cdclk, 25000); 1622 } 1623 1624 static u8 calc_voltage_level(int cdclk, int num_voltage_levels, 1625 const int voltage_level_max_cdclk[]) 1626 { 1627 int voltage_level; 1628 1629 for (voltage_level = 0; voltage_level < num_voltage_levels; voltage_level++) { 1630 if (cdclk <= voltage_level_max_cdclk[voltage_level]) 1631 return voltage_level; 1632 } 1633 1634 MISSING_CASE(cdclk); 1635 return num_voltage_levels - 1; 1636 } 1637 1638 static u8 icl_calc_voltage_level(int cdclk) 1639 { 1640 static const int icl_voltage_level_max_cdclk[] = { 1641 [0] = 312000, 1642 [1] = 556800, 1643 [2] = 652800, 1644 }; 1645 1646 return calc_voltage_level(cdclk, 1647 ARRAY_SIZE(icl_voltage_level_max_cdclk), 1648 icl_voltage_level_max_cdclk); 1649 } 1650 1651 static u8 ehl_calc_voltage_level(int cdclk) 1652 { 1653 static const int ehl_voltage_level_max_cdclk[] = { 1654 [0] = 180000, 1655 [1] = 312000, 1656 [2] = 326400, 1657 /* 1658 * Bspec lists the limit as 556.8 MHz, but some JSL 1659 * development boards (at least) boot with 652.8 MHz 1660 */ 1661 [3] = 652800, 1662 }; 1663 1664 return calc_voltage_level(cdclk, 1665 ARRAY_SIZE(ehl_voltage_level_max_cdclk), 1666 ehl_voltage_level_max_cdclk); 1667 } 1668 1669 static u8 tgl_calc_voltage_level(int cdclk) 1670 { 1671 static const int tgl_voltage_level_max_cdclk[] = { 1672 [0] = 312000, 1673 [1] = 326400, 1674 [2] = 556800, 1675 [3] = 652800, 1676 }; 1677 1678 return calc_voltage_level(cdclk, 1679 ARRAY_SIZE(tgl_voltage_level_max_cdclk), 1680 tgl_voltage_level_max_cdclk); 1681 } 1682 1683 static u8 rplu_calc_voltage_level(int cdclk) 1684 { 1685 static const int rplu_voltage_level_max_cdclk[] = { 1686 [0] = 312000, 1687 [1] = 480000, 1688 [2] = 556800, 1689 [3] = 652800, 1690 }; 1691 1692 return calc_voltage_level(cdclk, 1693 ARRAY_SIZE(rplu_voltage_level_max_cdclk), 1694 rplu_voltage_level_max_cdclk); 1695 } 1696 1697 static u8 xe3lpd_calc_voltage_level(int cdclk) 1698 { 1699 /* 1700 * Starting with xe3lpd power controller does not need the voltage 1701 * index when doing the modeset update. This function is best left 1702 * defined but returning 0 to the mask. 1703 */ 1704 return 0; 1705 } 1706 1707 static void icl_readout_refclk(struct intel_display *display, 1708 struct intel_cdclk_config *cdclk_config) 1709 { 1710 u32 dssm = intel_de_read(display, SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK; 1711 1712 switch (dssm) { 1713 default: 1714 MISSING_CASE(dssm); 1715 fallthrough; 1716 case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz: 1717 cdclk_config->ref = 24000; 1718 break; 1719 case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz: 1720 cdclk_config->ref = 19200; 1721 break; 1722 case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz: 1723 cdclk_config->ref = 38400; 1724 break; 1725 } 1726 } 1727 1728 static void bxt_de_pll_readout(struct intel_display *display, 1729 struct intel_cdclk_config *cdclk_config) 1730 { 1731 u32 val, ratio; 1732 1733 if (display->platform.dg2) 1734 cdclk_config->ref = 38400; 1735 else if (DISPLAY_VER(display) >= 11) 1736 icl_readout_refclk(display, cdclk_config); 1737 else 1738 cdclk_config->ref = 19200; 1739 1740 val = intel_de_read(display, BXT_DE_PLL_ENABLE); 1741 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 || 1742 (val & BXT_DE_PLL_LOCK) == 0) { 1743 /* 1744 * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but 1745 * setting it to zero is a way to signal that. 1746 */ 1747 cdclk_config->vco = 0; 1748 return; 1749 } 1750 1751 /* 1752 * DISPLAY_VER >= 11 have the ratio directly in the PLL enable register, 1753 * gen9lp had it in a separate PLL control register. 1754 */ 1755 if (DISPLAY_VER(display) >= 11) 1756 ratio = val & ICL_CDCLK_PLL_RATIO_MASK; 1757 else 1758 ratio = intel_de_read(display, BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK; 1759 1760 cdclk_config->vco = ratio * cdclk_config->ref; 1761 } 1762 1763 static void bxt_get_cdclk(struct intel_display *display, 1764 struct intel_cdclk_config *cdclk_config) 1765 { 1766 u32 squash_ctl = 0; 1767 u32 divider; 1768 int div; 1769 1770 bxt_de_pll_readout(display, cdclk_config); 1771 1772 if (DISPLAY_VER(display) >= 12) 1773 cdclk_config->bypass = cdclk_config->ref / 2; 1774 else if (DISPLAY_VER(display) >= 11) 1775 cdclk_config->bypass = 50000; 1776 else 1777 cdclk_config->bypass = cdclk_config->ref; 1778 1779 if (cdclk_config->vco == 0) { 1780 cdclk_config->cdclk = cdclk_config->bypass; 1781 goto out; 1782 } 1783 1784 divider = intel_de_read(display, CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK; 1785 1786 switch (divider) { 1787 case BXT_CDCLK_CD2X_DIV_SEL_1: 1788 div = 2; 1789 break; 1790 case BXT_CDCLK_CD2X_DIV_SEL_1_5: 1791 div = 3; 1792 break; 1793 case BXT_CDCLK_CD2X_DIV_SEL_2: 1794 div = 4; 1795 break; 1796 case BXT_CDCLK_CD2X_DIV_SEL_4: 1797 div = 8; 1798 break; 1799 default: 1800 MISSING_CASE(divider); 1801 return; 1802 } 1803 1804 if (HAS_CDCLK_SQUASH(display)) 1805 squash_ctl = intel_de_read(display, CDCLK_SQUASH_CTL); 1806 1807 if (squash_ctl & CDCLK_SQUASH_ENABLE) { 1808 u16 waveform; 1809 int size; 1810 1811 size = REG_FIELD_GET(CDCLK_SQUASH_WINDOW_SIZE_MASK, squash_ctl) + 1; 1812 waveform = REG_FIELD_GET(CDCLK_SQUASH_WAVEFORM_MASK, squash_ctl) >> (16 - size); 1813 1814 cdclk_config->cdclk = DIV_ROUND_CLOSEST(hweight16(waveform) * 1815 cdclk_config->vco, size * div); 1816 } else { 1817 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div); 1818 } 1819 1820 out: 1821 if (DISPLAY_VER(display) >= 20) 1822 cdclk_config->joined_mbus = intel_de_read(display, MBUS_CTL) & MBUS_JOIN; 1823 /* 1824 * Can't read this out :( Let's assume it's 1825 * at least what the CDCLK frequency requires. 1826 */ 1827 cdclk_config->voltage_level = 1828 intel_cdclk_calc_voltage_level(display, cdclk_config->cdclk); 1829 } 1830 1831 static void bxt_de_pll_disable(struct intel_display *display) 1832 { 1833 intel_de_write(display, BXT_DE_PLL_ENABLE, 0); 1834 1835 /* Timeout 200us */ 1836 if (intel_de_wait_for_clear_ms(display, 1837 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1838 drm_err(display->drm, "timeout waiting for DE PLL unlock\n"); 1839 1840 display->cdclk.hw.vco = 0; 1841 } 1842 1843 static void bxt_de_pll_enable(struct intel_display *display, int vco) 1844 { 1845 int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref); 1846 1847 intel_de_rmw(display, BXT_DE_PLL_CTL, 1848 BXT_DE_PLL_RATIO_MASK, BXT_DE_PLL_RATIO(ratio)); 1849 1850 intel_de_write(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE); 1851 1852 /* Timeout 200us */ 1853 if (intel_de_wait_for_set_ms(display, 1854 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1855 drm_err(display->drm, "timeout waiting for DE PLL lock\n"); 1856 1857 display->cdclk.hw.vco = vco; 1858 } 1859 1860 static void icl_cdclk_pll_disable(struct intel_display *display) 1861 { 1862 intel_de_rmw(display, BXT_DE_PLL_ENABLE, 1863 BXT_DE_PLL_PLL_ENABLE, 0); 1864 1865 /* Timeout 200us */ 1866 if (intel_de_wait_for_clear_ms(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1867 drm_err(display->drm, "timeout waiting for CDCLK PLL unlock\n"); 1868 1869 display->cdclk.hw.vco = 0; 1870 } 1871 1872 static void icl_cdclk_pll_enable(struct intel_display *display, int vco) 1873 { 1874 int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref); 1875 u32 val; 1876 1877 val = ICL_CDCLK_PLL_RATIO(ratio); 1878 intel_de_write(display, BXT_DE_PLL_ENABLE, val); 1879 1880 val |= BXT_DE_PLL_PLL_ENABLE; 1881 intel_de_write(display, BXT_DE_PLL_ENABLE, val); 1882 1883 /* Timeout 200us */ 1884 if (intel_de_wait_for_set_ms(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1885 drm_err(display->drm, "timeout waiting for CDCLK PLL lock\n"); 1886 1887 display->cdclk.hw.vco = vco; 1888 } 1889 1890 static void adlp_cdclk_pll_crawl(struct intel_display *display, int vco) 1891 { 1892 int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref); 1893 u32 val; 1894 1895 /* Write PLL ratio without disabling */ 1896 val = ICL_CDCLK_PLL_RATIO(ratio) | BXT_DE_PLL_PLL_ENABLE; 1897 intel_de_write(display, BXT_DE_PLL_ENABLE, val); 1898 1899 /* Submit freq change request */ 1900 val |= BXT_DE_PLL_FREQ_REQ; 1901 intel_de_write(display, BXT_DE_PLL_ENABLE, val); 1902 1903 /* Timeout 200us */ 1904 if (intel_de_wait_for_set_ms(display, BXT_DE_PLL_ENABLE, 1905 BXT_DE_PLL_LOCK | BXT_DE_PLL_FREQ_REQ_ACK, 1)) 1906 drm_err(display->drm, "timeout waiting for FREQ change request ack\n"); 1907 1908 val &= ~BXT_DE_PLL_FREQ_REQ; 1909 intel_de_write(display, BXT_DE_PLL_ENABLE, val); 1910 1911 display->cdclk.hw.vco = vco; 1912 } 1913 1914 static u32 bxt_cdclk_cd2x_pipe(struct intel_display *display, enum pipe pipe) 1915 { 1916 if (DISPLAY_VER(display) >= 12) { 1917 if (pipe == INVALID_PIPE) 1918 return TGL_CDCLK_CD2X_PIPE_NONE; 1919 else 1920 return TGL_CDCLK_CD2X_PIPE(pipe); 1921 } else if (DISPLAY_VER(display) >= 11) { 1922 if (pipe == INVALID_PIPE) 1923 return ICL_CDCLK_CD2X_PIPE_NONE; 1924 else 1925 return ICL_CDCLK_CD2X_PIPE(pipe); 1926 } else { 1927 if (pipe == INVALID_PIPE) 1928 return BXT_CDCLK_CD2X_PIPE_NONE; 1929 else 1930 return BXT_CDCLK_CD2X_PIPE(pipe); 1931 } 1932 } 1933 1934 static u32 bxt_cdclk_cd2x_div_sel(struct intel_display *display, 1935 int cdclk, int vco, u16 waveform) 1936 { 1937 /* cdclk = vco / 2 / div{1,1.5,2,4} */ 1938 switch (cdclk_divider(cdclk, vco, waveform)) { 1939 default: 1940 drm_WARN_ON(display->drm, 1941 cdclk != display->cdclk.hw.bypass); 1942 drm_WARN_ON(display->drm, vco != 0); 1943 fallthrough; 1944 case 2: 1945 return BXT_CDCLK_CD2X_DIV_SEL_1; 1946 case 3: 1947 return BXT_CDCLK_CD2X_DIV_SEL_1_5; 1948 case 4: 1949 return BXT_CDCLK_CD2X_DIV_SEL_2; 1950 case 8: 1951 return BXT_CDCLK_CD2X_DIV_SEL_4; 1952 } 1953 } 1954 1955 static u16 cdclk_squash_waveform(struct intel_display *display, 1956 int cdclk) 1957 { 1958 const struct intel_cdclk_vals *table = display->cdclk.table; 1959 int i; 1960 1961 if (cdclk == display->cdclk.hw.bypass) 1962 return 0; 1963 1964 for (i = 0; table[i].refclk; i++) 1965 if (table[i].refclk == display->cdclk.hw.ref && 1966 table[i].cdclk == cdclk) 1967 return table[i].waveform; 1968 1969 drm_WARN(display->drm, 1, "cdclk %d not valid for refclk %u\n", 1970 cdclk, display->cdclk.hw.ref); 1971 1972 return 0xffff; 1973 } 1974 1975 static void icl_cdclk_pll_update(struct intel_display *display, int vco) 1976 { 1977 if (display->cdclk.hw.vco != 0 && 1978 display->cdclk.hw.vco != vco) 1979 icl_cdclk_pll_disable(display); 1980 1981 if (display->cdclk.hw.vco != vco) 1982 icl_cdclk_pll_enable(display, vco); 1983 } 1984 1985 static void bxt_cdclk_pll_update(struct intel_display *display, int vco) 1986 { 1987 if (display->cdclk.hw.vco != 0 && 1988 display->cdclk.hw.vco != vco) 1989 bxt_de_pll_disable(display); 1990 1991 if (display->cdclk.hw.vco != vco) 1992 bxt_de_pll_enable(display, vco); 1993 } 1994 1995 static void dg2_cdclk_squash_program(struct intel_display *display, 1996 u16 waveform) 1997 { 1998 u32 squash_ctl = 0; 1999 2000 if (waveform) 2001 squash_ctl = CDCLK_SQUASH_ENABLE | 2002 CDCLK_SQUASH_WINDOW_SIZE(0xf) | waveform; 2003 2004 intel_de_write(display, CDCLK_SQUASH_CTL, squash_ctl); 2005 } 2006 2007 static bool cdclk_pll_is_unknown(unsigned int vco) 2008 { 2009 /* 2010 * Ensure driver does not take the crawl path for the 2011 * case when the vco is set to ~0 in the 2012 * sanitize path. 2013 */ 2014 return vco == ~0; 2015 } 2016 2017 static bool mdclk_source_is_cdclk_pll(struct intel_display *display) 2018 { 2019 return DISPLAY_VER(display) >= 20; 2020 } 2021 2022 static u32 xe2lpd_mdclk_source_sel(struct intel_display *display) 2023 { 2024 if (mdclk_source_is_cdclk_pll(display)) 2025 return MDCLK_SOURCE_SEL_CDCLK_PLL; 2026 2027 return MDCLK_SOURCE_SEL_CD2XCLK; 2028 } 2029 2030 int intel_mdclk_cdclk_ratio(struct intel_display *display, 2031 const struct intel_cdclk_config *cdclk_config) 2032 { 2033 if (mdclk_source_is_cdclk_pll(display)) 2034 return DIV_ROUND_UP(cdclk_config->vco, cdclk_config->cdclk); 2035 2036 /* Otherwise, source for MDCLK is CD2XCLK. */ 2037 return 2; 2038 } 2039 2040 static void xe2lpd_mdclk_cdclk_ratio_program(struct intel_display *display, 2041 const struct intel_cdclk_config *cdclk_config) 2042 { 2043 intel_dbuf_mdclk_cdclk_ratio_update(display, 2044 intel_mdclk_cdclk_ratio(display, cdclk_config), 2045 cdclk_config->joined_mbus); 2046 } 2047 2048 static bool cdclk_compute_crawl_and_squash_midpoint(struct intel_display *display, 2049 const struct intel_cdclk_config *old_cdclk_config, 2050 const struct intel_cdclk_config *new_cdclk_config, 2051 struct intel_cdclk_config *mid_cdclk_config) 2052 { 2053 u16 old_waveform, new_waveform, mid_waveform; 2054 int old_div, new_div, mid_div; 2055 2056 /* Return if PLL is in an unknown state, force a complete disable and re-enable. */ 2057 if (cdclk_pll_is_unknown(old_cdclk_config->vco)) 2058 return false; 2059 2060 /* Return if both Squash and Crawl are not present */ 2061 if (!HAS_CDCLK_CRAWL(display) || !HAS_CDCLK_SQUASH(display)) 2062 return false; 2063 2064 old_waveform = cdclk_squash_waveform(display, old_cdclk_config->cdclk); 2065 new_waveform = cdclk_squash_waveform(display, new_cdclk_config->cdclk); 2066 2067 /* Return if Squash only or Crawl only is the desired action */ 2068 if (old_cdclk_config->vco == 0 || new_cdclk_config->vco == 0 || 2069 old_cdclk_config->vco == new_cdclk_config->vco || 2070 old_waveform == new_waveform) 2071 return false; 2072 2073 old_div = cdclk_divider(old_cdclk_config->cdclk, 2074 old_cdclk_config->vco, old_waveform); 2075 new_div = cdclk_divider(new_cdclk_config->cdclk, 2076 new_cdclk_config->vco, new_waveform); 2077 2078 /* 2079 * Should not happen currently. We might need more midpoint 2080 * transitions if we need to also change the cd2x divider. 2081 */ 2082 if (drm_WARN_ON(display->drm, old_div != new_div)) 2083 return false; 2084 2085 *mid_cdclk_config = *new_cdclk_config; 2086 2087 /* 2088 * Populate the mid_cdclk_config accordingly. 2089 * - If moving to a higher cdclk, the desired action is squashing. 2090 * The mid cdclk config should have the new (squash) waveform. 2091 * - If moving to a lower cdclk, the desired action is crawling. 2092 * The mid cdclk config should have the new vco. 2093 */ 2094 2095 if (cdclk_squash_divider(new_waveform) > cdclk_squash_divider(old_waveform)) { 2096 mid_cdclk_config->vco = old_cdclk_config->vco; 2097 mid_div = old_div; 2098 mid_waveform = new_waveform; 2099 } else { 2100 mid_cdclk_config->vco = new_cdclk_config->vco; 2101 mid_div = new_div; 2102 mid_waveform = old_waveform; 2103 } 2104 2105 mid_cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_squash_divider(mid_waveform) * 2106 mid_cdclk_config->vco, 2107 cdclk_squash_len * mid_div); 2108 2109 /* make sure the mid clock came out sane */ 2110 2111 drm_WARN_ON(display->drm, mid_cdclk_config->cdclk < 2112 min(old_cdclk_config->cdclk, new_cdclk_config->cdclk)); 2113 drm_WARN_ON(display->drm, mid_cdclk_config->cdclk > 2114 display->cdclk.max_cdclk_freq); 2115 drm_WARN_ON(display->drm, cdclk_squash_waveform(display, mid_cdclk_config->cdclk) != 2116 mid_waveform); 2117 2118 return true; 2119 } 2120 2121 static bool pll_enable_wa_needed(struct intel_display *display) 2122 { 2123 return (DISPLAY_VERx100(display) == 2000 || 2124 DISPLAY_VERx100(display) == 1400 || 2125 display->platform.dg2) && 2126 display->cdclk.hw.vco > 0; 2127 } 2128 2129 static u32 bxt_cdclk_ctl(struct intel_display *display, 2130 const struct intel_cdclk_config *cdclk_config, 2131 enum pipe pipe) 2132 { 2133 int cdclk = cdclk_config->cdclk; 2134 int vco = cdclk_config->vco; 2135 u16 waveform; 2136 u32 val; 2137 2138 waveform = cdclk_squash_waveform(display, cdclk); 2139 2140 val = bxt_cdclk_cd2x_div_sel(display, cdclk, vco, waveform) | 2141 bxt_cdclk_cd2x_pipe(display, pipe); 2142 2143 /* 2144 * Disable SSA Precharge when CD clock frequency < 500 MHz, 2145 * enable otherwise. 2146 */ 2147 if ((display->platform.geminilake || display->platform.broxton) && 2148 cdclk >= 500000) 2149 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; 2150 2151 if (DISPLAY_VER(display) >= 20) 2152 val |= xe2lpd_mdclk_source_sel(display); 2153 else 2154 val |= skl_cdclk_decimal(cdclk); 2155 2156 return val; 2157 } 2158 2159 static void _bxt_set_cdclk(struct intel_display *display, 2160 const struct intel_cdclk_config *cdclk_config, 2161 enum pipe pipe) 2162 { 2163 int cdclk = cdclk_config->cdclk; 2164 int vco = cdclk_config->vco; 2165 2166 if (HAS_CDCLK_CRAWL(display) && display->cdclk.hw.vco > 0 && vco > 0 && 2167 !cdclk_pll_is_unknown(display->cdclk.hw.vco)) { 2168 if (display->cdclk.hw.vco != vco) 2169 adlp_cdclk_pll_crawl(display, vco); 2170 } else if (DISPLAY_VER(display) >= 11) { 2171 /* wa_15010685871: dg2, mtl */ 2172 if (pll_enable_wa_needed(display)) 2173 dg2_cdclk_squash_program(display, 0); 2174 2175 icl_cdclk_pll_update(display, vco); 2176 } else { 2177 bxt_cdclk_pll_update(display, vco); 2178 } 2179 2180 if (HAS_CDCLK_SQUASH(display)) { 2181 u16 waveform = cdclk_squash_waveform(display, cdclk); 2182 2183 dg2_cdclk_squash_program(display, waveform); 2184 } 2185 2186 intel_de_write(display, CDCLK_CTL, bxt_cdclk_ctl(display, cdclk_config, pipe)); 2187 2188 if (pipe != INVALID_PIPE) 2189 intel_crtc_wait_for_next_vblank(intel_crtc_for_pipe(display, pipe)); 2190 } 2191 2192 static void bxt_set_cdclk(struct intel_display *display, 2193 const struct intel_cdclk_config *cdclk_config, 2194 enum pipe pipe) 2195 { 2196 struct intel_cdclk_config mid_cdclk_config; 2197 int cdclk = cdclk_config->cdclk; 2198 int ret = 0; 2199 2200 /* 2201 * Inform power controller of upcoming frequency change. 2202 * Display versions 14 and beyond do not follow the PUnit 2203 * mailbox communication, skip 2204 * this step. 2205 */ 2206 if (DISPLAY_VER(display) >= 14 || display->platform.dg2) 2207 ; /* NOOP */ 2208 else if (DISPLAY_VER(display) >= 11) 2209 ret = intel_pcode_request(display->drm, SKL_PCODE_CDCLK_CONTROL, 2210 SKL_CDCLK_PREPARE_FOR_CHANGE, 2211 SKL_CDCLK_READY_FOR_CHANGE, 2212 SKL_CDCLK_READY_FOR_CHANGE, 3); 2213 else 2214 /* 2215 * BSpec requires us to wait up to 150usec, but that leads to 2216 * timeouts; the 2ms used here is based on experiment. 2217 */ 2218 ret = intel_pcode_write_timeout(display->drm, 2219 HSW_PCODE_DE_WRITE_FREQ_REQ, 2220 0x80000000, 2); 2221 2222 if (ret) { 2223 drm_err(display->drm, 2224 "Failed to inform PCU about cdclk change (err %d, freq %d)\n", 2225 ret, cdclk); 2226 return; 2227 } 2228 2229 if (DISPLAY_VER(display) >= 20 && cdclk < display->cdclk.hw.cdclk) 2230 xe2lpd_mdclk_cdclk_ratio_program(display, cdclk_config); 2231 2232 if (cdclk_compute_crawl_and_squash_midpoint(display, &display->cdclk.hw, 2233 cdclk_config, &mid_cdclk_config)) { 2234 _bxt_set_cdclk(display, &mid_cdclk_config, pipe); 2235 _bxt_set_cdclk(display, cdclk_config, pipe); 2236 } else { 2237 _bxt_set_cdclk(display, cdclk_config, pipe); 2238 } 2239 2240 if (DISPLAY_VER(display) >= 20 && cdclk > display->cdclk.hw.cdclk) 2241 xe2lpd_mdclk_cdclk_ratio_program(display, cdclk_config); 2242 2243 if (DISPLAY_VER(display) >= 14) 2244 /* 2245 * NOOP - No Pcode communication needed for 2246 * Display versions 14 and beyond 2247 */; 2248 else if (DISPLAY_VER(display) >= 11 && !display->platform.dg2) 2249 ret = intel_pcode_write(display->drm, SKL_PCODE_CDCLK_CONTROL, 2250 cdclk_config->voltage_level); 2251 if (DISPLAY_VER(display) < 11) { 2252 /* 2253 * The timeout isn't specified, the 2ms used here is based on 2254 * experiment. 2255 * FIXME: Waiting for the request completion could be delayed 2256 * until the next PCODE request based on BSpec. 2257 */ 2258 ret = intel_pcode_write_timeout(display->drm, 2259 HSW_PCODE_DE_WRITE_FREQ_REQ, 2260 cdclk_config->voltage_level, 2); 2261 } 2262 if (ret) { 2263 drm_err(display->drm, 2264 "PCode CDCLK freq set failed, (err %d, freq %d)\n", 2265 ret, cdclk); 2266 return; 2267 } 2268 2269 intel_update_cdclk(display); 2270 2271 if (DISPLAY_VER(display) >= 11) 2272 /* 2273 * Can't read out the voltage level :( 2274 * Let's just assume everything is as expected. 2275 */ 2276 display->cdclk.hw.voltage_level = cdclk_config->voltage_level; 2277 } 2278 2279 static void bxt_sanitize_cdclk(struct intel_display *display) 2280 { 2281 u32 cdctl, expected; 2282 int cdclk, vco; 2283 2284 intel_update_cdclk(display); 2285 intel_cdclk_dump_config(display, &display->cdclk.hw, "Current CDCLK"); 2286 2287 if (display->cdclk.hw.vco == 0 || 2288 display->cdclk.hw.cdclk == display->cdclk.hw.bypass) 2289 goto sanitize; 2290 2291 /* Make sure this is a legal cdclk value for the platform */ 2292 cdclk = bxt_calc_cdclk(display, display->cdclk.hw.cdclk); 2293 if (cdclk != display->cdclk.hw.cdclk) 2294 goto sanitize; 2295 2296 /* Make sure the VCO is correct for the cdclk */ 2297 vco = bxt_calc_cdclk_pll_vco(display, cdclk); 2298 if (vco != display->cdclk.hw.vco) 2299 goto sanitize; 2300 2301 /* 2302 * Some BIOS versions leave an incorrect decimal frequency value and 2303 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4, 2304 * so sanitize this register. 2305 */ 2306 cdctl = intel_de_read(display, CDCLK_CTL); 2307 expected = bxt_cdclk_ctl(display, &display->cdclk.hw, INVALID_PIPE); 2308 2309 /* 2310 * Let's ignore the pipe field, since BIOS could have configured the 2311 * dividers both syncing to an active pipe, or asynchronously 2312 * (PIPE_NONE). 2313 */ 2314 cdctl &= ~bxt_cdclk_cd2x_pipe(display, INVALID_PIPE); 2315 expected &= ~bxt_cdclk_cd2x_pipe(display, INVALID_PIPE); 2316 2317 if (cdctl == expected) 2318 /* All well; nothing to sanitize */ 2319 return; 2320 2321 sanitize: 2322 drm_dbg_kms(display->drm, "Sanitizing cdclk programmed by pre-os\n"); 2323 2324 /* force cdclk programming */ 2325 display->cdclk.hw.cdclk = 0; 2326 2327 /* force full PLL disable + enable */ 2328 display->cdclk.hw.vco = ~0; 2329 } 2330 2331 static void bxt_cdclk_init_hw(struct intel_display *display) 2332 { 2333 struct intel_cdclk_config cdclk_config; 2334 2335 bxt_sanitize_cdclk(display); 2336 2337 if (display->cdclk.hw.cdclk != 0 && 2338 display->cdclk.hw.vco != 0) 2339 return; 2340 2341 cdclk_config = display->cdclk.hw; 2342 2343 /* 2344 * FIXME: 2345 * - The initial CDCLK needs to be read from VBT. 2346 * Need to make this change after VBT has changes for BXT. 2347 */ 2348 cdclk_config.cdclk = bxt_calc_cdclk(display, 0); 2349 cdclk_config.vco = bxt_calc_cdclk_pll_vco(display, cdclk_config.cdclk); 2350 cdclk_config.voltage_level = 2351 intel_cdclk_calc_voltage_level(display, cdclk_config.cdclk); 2352 2353 bxt_set_cdclk(display, &cdclk_config, INVALID_PIPE); 2354 } 2355 2356 static void bxt_cdclk_uninit_hw(struct intel_display *display) 2357 { 2358 struct intel_cdclk_config cdclk_config = display->cdclk.hw; 2359 2360 cdclk_config.cdclk = cdclk_config.bypass; 2361 cdclk_config.vco = 0; 2362 cdclk_config.voltage_level = 2363 intel_cdclk_calc_voltage_level(display, cdclk_config.cdclk); 2364 2365 bxt_set_cdclk(display, &cdclk_config, INVALID_PIPE); 2366 } 2367 2368 /** 2369 * intel_cdclk_init_hw - Initialize CDCLK hardware 2370 * @display: display instance 2371 * 2372 * Initialize CDCLK. This consists mainly of initializing display->cdclk.hw and 2373 * sanitizing the state of the hardware if needed. This is generally done only 2374 * during the display core initialization sequence, after which the DMC will 2375 * take care of turning CDCLK off/on as needed. 2376 */ 2377 void intel_cdclk_init_hw(struct intel_display *display) 2378 { 2379 if (DISPLAY_VER(display) >= 10 || display->platform.broxton) 2380 bxt_cdclk_init_hw(display); 2381 else if (DISPLAY_VER(display) == 9) 2382 skl_cdclk_init_hw(display); 2383 } 2384 2385 /** 2386 * intel_cdclk_uninit_hw - Uninitialize CDCLK hardware 2387 * @display: display instance 2388 * 2389 * Uninitialize CDCLK. This is done only during the display core 2390 * uninitialization sequence. 2391 */ 2392 void intel_cdclk_uninit_hw(struct intel_display *display) 2393 { 2394 if (DISPLAY_VER(display) >= 10 || display->platform.broxton) 2395 bxt_cdclk_uninit_hw(display); 2396 else if (DISPLAY_VER(display) == 9) 2397 skl_cdclk_uninit_hw(display); 2398 } 2399 2400 static bool intel_cdclk_can_crawl_and_squash(struct intel_display *display, 2401 const struct intel_cdclk_config *a, 2402 const struct intel_cdclk_config *b) 2403 { 2404 u16 old_waveform; 2405 u16 new_waveform; 2406 2407 drm_WARN_ON(display->drm, cdclk_pll_is_unknown(a->vco)); 2408 2409 if (a->vco == 0 || b->vco == 0) 2410 return false; 2411 2412 if (!HAS_CDCLK_CRAWL(display) || !HAS_CDCLK_SQUASH(display)) 2413 return false; 2414 2415 old_waveform = cdclk_squash_waveform(display, a->cdclk); 2416 new_waveform = cdclk_squash_waveform(display, b->cdclk); 2417 2418 return a->vco != b->vco && 2419 old_waveform != new_waveform; 2420 } 2421 2422 static bool intel_cdclk_can_crawl(struct intel_display *display, 2423 const struct intel_cdclk_config *a, 2424 const struct intel_cdclk_config *b) 2425 { 2426 int a_div, b_div; 2427 2428 if (!HAS_CDCLK_CRAWL(display)) 2429 return false; 2430 2431 /* 2432 * The vco and cd2x divider will change independently 2433 * from each, so we disallow cd2x change when crawling. 2434 */ 2435 a_div = DIV_ROUND_CLOSEST(a->vco, a->cdclk); 2436 b_div = DIV_ROUND_CLOSEST(b->vco, b->cdclk); 2437 2438 return a->vco != 0 && b->vco != 0 && 2439 a->vco != b->vco && 2440 a_div == b_div && 2441 a->ref == b->ref; 2442 } 2443 2444 static bool intel_cdclk_can_squash(struct intel_display *display, 2445 const struct intel_cdclk_config *a, 2446 const struct intel_cdclk_config *b) 2447 { 2448 /* 2449 * FIXME should store a bit more state in intel_cdclk_config 2450 * to differentiate squasher vs. cd2x divider properly. For 2451 * the moment all platforms with squasher use a fixed cd2x 2452 * divider. 2453 */ 2454 if (!HAS_CDCLK_SQUASH(display)) 2455 return false; 2456 2457 return a->cdclk != b->cdclk && 2458 a->vco != 0 && 2459 a->vco == b->vco && 2460 a->ref == b->ref; 2461 } 2462 2463 /** 2464 * intel_cdclk_clock_changed - Check whether the clock changed 2465 * @a: first CDCLK configuration 2466 * @b: second CDCLK configuration 2467 * 2468 * Returns: 2469 * True if CDCLK changed in a way that requires re-programming and 2470 * False otherwise. 2471 */ 2472 bool intel_cdclk_clock_changed(const struct intel_cdclk_config *a, 2473 const struct intel_cdclk_config *b) 2474 { 2475 return a->cdclk != b->cdclk || 2476 a->vco != b->vco || 2477 a->ref != b->ref; 2478 } 2479 2480 /** 2481 * intel_cdclk_can_cd2x_update - Determine if changing between the two CDCLK 2482 * configurations requires only a cd2x divider update 2483 * @display: display instance 2484 * @a: first CDCLK configuration 2485 * @b: second CDCLK configuration 2486 * 2487 * Returns: 2488 * True if changing between the two CDCLK configurations 2489 * can be done with just a cd2x divider update, false if not. 2490 */ 2491 static bool intel_cdclk_can_cd2x_update(struct intel_display *display, 2492 const struct intel_cdclk_config *a, 2493 const struct intel_cdclk_config *b) 2494 { 2495 /* Older hw doesn't have the capability */ 2496 if (DISPLAY_VER(display) < 10 && !display->platform.broxton) 2497 return false; 2498 2499 /* 2500 * FIXME should store a bit more state in intel_cdclk_config 2501 * to differentiate squasher vs. cd2x divider properly. For 2502 * the moment all platforms with squasher use a fixed cd2x 2503 * divider. 2504 */ 2505 if (HAS_CDCLK_SQUASH(display)) 2506 return false; 2507 2508 return a->cdclk != b->cdclk && 2509 a->vco != 0 && 2510 a->vco == b->vco && 2511 a->ref == b->ref; 2512 } 2513 2514 /** 2515 * intel_cdclk_changed - Determine if two CDCLK configurations are different 2516 * @a: first CDCLK configuration 2517 * @b: second CDCLK configuration 2518 * 2519 * Returns: 2520 * True if the CDCLK configurations don't match, false if they do. 2521 */ 2522 static bool intel_cdclk_changed(const struct intel_cdclk_config *a, 2523 const struct intel_cdclk_config *b) 2524 { 2525 return intel_cdclk_clock_changed(a, b) || 2526 a->voltage_level != b->voltage_level; 2527 } 2528 2529 void intel_cdclk_dump_config(struct intel_display *display, 2530 const struct intel_cdclk_config *cdclk_config, 2531 const char *context) 2532 { 2533 drm_dbg_kms(display->drm, "%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n", 2534 context, cdclk_config->cdclk, cdclk_config->vco, 2535 cdclk_config->ref, cdclk_config->bypass, 2536 cdclk_config->voltage_level); 2537 } 2538 2539 static void intel_pcode_notify(struct intel_display *display, 2540 u8 voltage_level, 2541 u8 active_pipe_count, 2542 u16 cdclk, 2543 bool cdclk_update_valid, 2544 bool pipe_count_update_valid) 2545 { 2546 int ret; 2547 u32 update_mask = 0; 2548 2549 if (!display->platform.dg2) 2550 return; 2551 2552 update_mask = DISPLAY_TO_PCODE_UPDATE_MASK(cdclk, active_pipe_count, voltage_level); 2553 2554 if (cdclk_update_valid) 2555 update_mask |= DISPLAY_TO_PCODE_CDCLK_VALID; 2556 2557 if (pipe_count_update_valid) 2558 update_mask |= DISPLAY_TO_PCODE_PIPE_COUNT_VALID; 2559 2560 ret = intel_pcode_request(display->drm, SKL_PCODE_CDCLK_CONTROL, 2561 SKL_CDCLK_PREPARE_FOR_CHANGE | 2562 update_mask, 2563 SKL_CDCLK_READY_FOR_CHANGE, 2564 SKL_CDCLK_READY_FOR_CHANGE, 3); 2565 if (ret) 2566 drm_err(display->drm, 2567 "Failed to inform PCU about display config (err %d)\n", 2568 ret); 2569 } 2570 2571 static void intel_set_cdclk(struct intel_display *display, 2572 const struct intel_cdclk_config *cdclk_config, 2573 enum pipe pipe, const char *context) 2574 { 2575 struct intel_encoder *encoder; 2576 2577 if (!intel_cdclk_changed(&display->cdclk.hw, cdclk_config)) 2578 return; 2579 2580 if (drm_WARN_ON_ONCE(display->drm, !display->funcs.cdclk->set_cdclk)) 2581 return; 2582 2583 intel_cdclk_dump_config(display, cdclk_config, context); 2584 2585 for_each_intel_encoder_with_psr(display->drm, encoder) { 2586 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2587 2588 intel_psr_pause(intel_dp); 2589 } 2590 2591 intel_audio_cdclk_change_pre(display); 2592 2593 /* 2594 * Lock aux/gmbus while we change cdclk in case those 2595 * functions use cdclk. Not all platforms/ports do, 2596 * but we'll lock them all for simplicity. 2597 */ 2598 mutex_lock(&display->gmbus.mutex); 2599 for_each_intel_dp(display->drm, encoder) { 2600 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2601 2602 mutex_lock_nest_lock(&intel_dp->aux.hw_mutex, 2603 &display->gmbus.mutex); 2604 } 2605 2606 intel_cdclk_set_cdclk(display, cdclk_config, pipe); 2607 2608 for_each_intel_dp(display->drm, encoder) { 2609 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2610 2611 mutex_unlock(&intel_dp->aux.hw_mutex); 2612 } 2613 mutex_unlock(&display->gmbus.mutex); 2614 2615 for_each_intel_encoder_with_psr(display->drm, encoder) { 2616 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2617 2618 intel_psr_resume(intel_dp); 2619 } 2620 2621 intel_audio_cdclk_change_post(display); 2622 2623 if (drm_WARN(display->drm, 2624 intel_cdclk_changed(&display->cdclk.hw, cdclk_config), 2625 "cdclk state doesn't match!\n")) { 2626 intel_cdclk_dump_config(display, &display->cdclk.hw, "[hw state]"); 2627 intel_cdclk_dump_config(display, cdclk_config, "[sw state]"); 2628 } 2629 } 2630 2631 static bool dg2_power_well_count(struct intel_display *display, 2632 const struct intel_cdclk_state *cdclk_state) 2633 { 2634 return display->platform.dg2 ? hweight8(cdclk_state->active_pipes) : 0; 2635 } 2636 2637 static void intel_cdclk_pcode_pre_notify(struct intel_atomic_state *state) 2638 { 2639 struct intel_display *display = to_intel_display(state); 2640 const struct intel_cdclk_state *old_cdclk_state = 2641 intel_atomic_get_old_cdclk_state(state); 2642 const struct intel_cdclk_state *new_cdclk_state = 2643 intel_atomic_get_new_cdclk_state(state); 2644 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0; 2645 bool change_cdclk, update_pipe_count; 2646 2647 if (!intel_cdclk_changed(&old_cdclk_state->actual, 2648 &new_cdclk_state->actual) && 2649 dg2_power_well_count(display, old_cdclk_state) == 2650 dg2_power_well_count(display, new_cdclk_state)) 2651 return; 2652 2653 /* According to "Sequence Before Frequency Change", voltage level set to 0x3 */ 2654 voltage_level = DISPLAY_TO_PCODE_VOLTAGE_MAX; 2655 2656 change_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk; 2657 update_pipe_count = dg2_power_well_count(display, new_cdclk_state) > 2658 dg2_power_well_count(display, old_cdclk_state); 2659 2660 /* 2661 * According to "Sequence Before Frequency Change", 2662 * if CDCLK is increasing, set bits 25:16 to upcoming CDCLK, 2663 * if CDCLK is decreasing or not changing, set bits 25:16 to current CDCLK, 2664 * which basically means we choose the maximum of old and new CDCLK, if we know both 2665 */ 2666 if (change_cdclk) 2667 cdclk = max(new_cdclk_state->actual.cdclk, old_cdclk_state->actual.cdclk); 2668 2669 /* 2670 * According to "Sequence For Pipe Count Change", 2671 * if pipe count is increasing, set bits 25:16 to upcoming pipe count 2672 * (power well is enabled) 2673 * no action if it is decreasing, before the change 2674 */ 2675 if (update_pipe_count) 2676 num_active_pipes = dg2_power_well_count(display, new_cdclk_state); 2677 2678 intel_pcode_notify(display, voltage_level, num_active_pipes, cdclk, 2679 change_cdclk, update_pipe_count); 2680 } 2681 2682 static void intel_cdclk_pcode_post_notify(struct intel_atomic_state *state) 2683 { 2684 struct intel_display *display = to_intel_display(state); 2685 const struct intel_cdclk_state *new_cdclk_state = 2686 intel_atomic_get_new_cdclk_state(state); 2687 const struct intel_cdclk_state *old_cdclk_state = 2688 intel_atomic_get_old_cdclk_state(state); 2689 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0; 2690 bool update_cdclk, update_pipe_count; 2691 2692 /* According to "Sequence After Frequency Change", set voltage to used level */ 2693 voltage_level = new_cdclk_state->actual.voltage_level; 2694 2695 update_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk; 2696 update_pipe_count = dg2_power_well_count(display, new_cdclk_state) < 2697 dg2_power_well_count(display, old_cdclk_state); 2698 2699 /* 2700 * According to "Sequence After Frequency Change", 2701 * set bits 25:16 to current CDCLK 2702 */ 2703 if (update_cdclk) 2704 cdclk = new_cdclk_state->actual.cdclk; 2705 2706 /* 2707 * According to "Sequence For Pipe Count Change", 2708 * if pipe count is decreasing, set bits 25:16 to current pipe count, 2709 * after the change(power well is disabled) 2710 * no action if it is increasing, after the change 2711 */ 2712 if (update_pipe_count) 2713 num_active_pipes = dg2_power_well_count(display, new_cdclk_state); 2714 2715 intel_pcode_notify(display, voltage_level, num_active_pipes, cdclk, 2716 update_cdclk, update_pipe_count); 2717 } 2718 2719 bool intel_cdclk_is_decreasing_later(struct intel_atomic_state *state) 2720 { 2721 const struct intel_cdclk_state *old_cdclk_state = 2722 intel_atomic_get_old_cdclk_state(state); 2723 const struct intel_cdclk_state *new_cdclk_state = 2724 intel_atomic_get_new_cdclk_state(state); 2725 2726 return new_cdclk_state && !new_cdclk_state->disable_pipes && 2727 new_cdclk_state->actual.cdclk < old_cdclk_state->actual.cdclk; 2728 } 2729 2730 /** 2731 * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware 2732 * @state: intel atomic state 2733 * 2734 * Program the hardware before updating the HW plane state based on the 2735 * new CDCLK state, if necessary. 2736 */ 2737 void 2738 intel_set_cdclk_pre_plane_update(struct intel_atomic_state *state) 2739 { 2740 struct intel_display *display = to_intel_display(state); 2741 const struct intel_cdclk_state *old_cdclk_state = 2742 intel_atomic_get_old_cdclk_state(state); 2743 const struct intel_cdclk_state *new_cdclk_state = 2744 intel_atomic_get_new_cdclk_state(state); 2745 struct intel_cdclk_config cdclk_config; 2746 enum pipe pipe; 2747 2748 if (!new_cdclk_state) 2749 return; 2750 2751 if (!intel_cdclk_changed(&old_cdclk_state->actual, 2752 &new_cdclk_state->actual)) 2753 return; 2754 2755 if (display->platform.dg2) 2756 intel_cdclk_pcode_pre_notify(state); 2757 2758 if (new_cdclk_state->disable_pipes) { 2759 cdclk_config = new_cdclk_state->actual; 2760 pipe = INVALID_PIPE; 2761 } else { 2762 if (new_cdclk_state->actual.cdclk >= old_cdclk_state->actual.cdclk) { 2763 cdclk_config = new_cdclk_state->actual; 2764 pipe = new_cdclk_state->pipe; 2765 } else { 2766 cdclk_config = old_cdclk_state->actual; 2767 pipe = INVALID_PIPE; 2768 } 2769 2770 cdclk_config.voltage_level = max(new_cdclk_state->actual.voltage_level, 2771 old_cdclk_state->actual.voltage_level); 2772 } 2773 2774 /* 2775 * mbus joining will be changed later by 2776 * intel_dbuf_mbus_{pre,post}_ddb_update() 2777 */ 2778 cdclk_config.joined_mbus = old_cdclk_state->actual.joined_mbus; 2779 2780 drm_WARN_ON(display->drm, !new_cdclk_state->base.changed); 2781 2782 intel_set_cdclk(display, &cdclk_config, pipe, 2783 "Pre changing CDCLK to"); 2784 } 2785 2786 /** 2787 * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware 2788 * @state: intel atomic state 2789 * 2790 * Program the hardware after updating the HW plane state based on the 2791 * new CDCLK state, if necessary. 2792 */ 2793 void 2794 intel_set_cdclk_post_plane_update(struct intel_atomic_state *state) 2795 { 2796 struct intel_display *display = to_intel_display(state); 2797 const struct intel_cdclk_state *old_cdclk_state = 2798 intel_atomic_get_old_cdclk_state(state); 2799 const struct intel_cdclk_state *new_cdclk_state = 2800 intel_atomic_get_new_cdclk_state(state); 2801 enum pipe pipe; 2802 2803 if (!new_cdclk_state) 2804 return; 2805 2806 if (!intel_cdclk_changed(&old_cdclk_state->actual, 2807 &new_cdclk_state->actual)) 2808 return; 2809 2810 if (display->platform.dg2) 2811 intel_cdclk_pcode_post_notify(state); 2812 2813 if (!new_cdclk_state->disable_pipes && 2814 new_cdclk_state->actual.cdclk < old_cdclk_state->actual.cdclk) 2815 pipe = new_cdclk_state->pipe; 2816 else 2817 pipe = INVALID_PIPE; 2818 2819 drm_WARN_ON(display->drm, !new_cdclk_state->base.changed); 2820 2821 intel_set_cdclk(display, &new_cdclk_state->actual, pipe, 2822 "Post changing CDCLK to"); 2823 } 2824 2825 /* pixels per CDCLK */ 2826 static int intel_cdclk_ppc(struct intel_display *display, bool double_wide) 2827 { 2828 return DISPLAY_VER(display) >= 10 || double_wide ? 2 : 1; 2829 } 2830 2831 /* max pixel rate as % of CDCLK (not accounting for PPC) */ 2832 static int intel_cdclk_guardband(struct intel_display *display) 2833 { 2834 if (DISPLAY_VER(display) >= 9 || 2835 display->platform.broadwell || display->platform.haswell) 2836 return 100; 2837 else if (display->platform.cherryview) 2838 return 95; 2839 else 2840 return 90; 2841 } 2842 2843 static int _intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state, int pixel_rate) 2844 { 2845 struct intel_display *display = to_intel_display(crtc_state); 2846 int ppc = intel_cdclk_ppc(display, crtc_state->double_wide); 2847 int guardband = intel_cdclk_guardband(display); 2848 2849 return DIV_ROUND_UP(pixel_rate * 100, guardband * ppc); 2850 } 2851 2852 static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state) 2853 { 2854 return _intel_pixel_rate_to_cdclk(crtc_state, crtc_state->pixel_rate); 2855 } 2856 2857 static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state) 2858 { 2859 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2860 struct intel_display *display = to_intel_display(crtc); 2861 struct intel_plane *plane; 2862 int min_cdclk = 0; 2863 2864 for_each_intel_plane_on_crtc(display->drm, crtc, plane) 2865 min_cdclk = max(min_cdclk, crtc_state->plane_min_cdclk[plane->id]); 2866 2867 return min_cdclk; 2868 } 2869 2870 int intel_crtc_min_cdclk(const struct intel_crtc_state *crtc_state) 2871 { 2872 int min_cdclk; 2873 2874 if (!crtc_state->hw.enable) 2875 return 0; 2876 2877 min_cdclk = intel_pixel_rate_to_cdclk(crtc_state); 2878 min_cdclk = max(min_cdclk, intel_crtc_bw_min_cdclk(crtc_state)); 2879 min_cdclk = max(min_cdclk, intel_fbc_min_cdclk(crtc_state)); 2880 min_cdclk = max(min_cdclk, hsw_ips_min_cdclk(crtc_state)); 2881 min_cdclk = max(min_cdclk, intel_audio_min_cdclk(crtc_state)); 2882 min_cdclk = max(min_cdclk, vlv_dsi_min_cdclk(crtc_state)); 2883 min_cdclk = max(min_cdclk, intel_planes_min_cdclk(crtc_state)); 2884 min_cdclk = max(min_cdclk, intel_vdsc_min_cdclk(crtc_state)); 2885 2886 return min_cdclk; 2887 } 2888 2889 static int intel_cdclk_update_crtc_min_cdclk(struct intel_atomic_state *state, 2890 struct intel_crtc *crtc, 2891 int old_min_cdclk, int new_min_cdclk, 2892 bool *need_cdclk_calc) 2893 { 2894 struct intel_display *display = to_intel_display(state); 2895 struct intel_cdclk_state *cdclk_state; 2896 bool allow_cdclk_decrease = intel_any_crtc_needs_modeset(state); 2897 int ret; 2898 2899 if (new_min_cdclk == old_min_cdclk) 2900 return 0; 2901 2902 if (!allow_cdclk_decrease && new_min_cdclk < old_min_cdclk) 2903 return 0; 2904 2905 cdclk_state = intel_atomic_get_cdclk_state(state); 2906 if (IS_ERR(cdclk_state)) 2907 return PTR_ERR(cdclk_state); 2908 2909 old_min_cdclk = cdclk_state->min_cdclk[crtc->pipe]; 2910 2911 if (new_min_cdclk == old_min_cdclk) 2912 return 0; 2913 2914 if (!allow_cdclk_decrease && new_min_cdclk < old_min_cdclk) 2915 return 0; 2916 2917 cdclk_state->min_cdclk[crtc->pipe] = new_min_cdclk; 2918 2919 ret = intel_atomic_lock_global_state(&cdclk_state->base); 2920 if (ret) 2921 return ret; 2922 2923 *need_cdclk_calc = true; 2924 2925 drm_dbg_kms(display->drm, 2926 "[CRTC:%d:%s] min cdclk: %d kHz -> %d kHz\n", 2927 crtc->base.base.id, crtc->base.name, 2928 old_min_cdclk, new_min_cdclk); 2929 2930 return 0; 2931 } 2932 2933 int intel_cdclk_update_dbuf_bw_min_cdclk(struct intel_atomic_state *state, 2934 int old_min_cdclk, int new_min_cdclk, 2935 bool *need_cdclk_calc) 2936 { 2937 struct intel_display *display = to_intel_display(state); 2938 struct intel_cdclk_state *cdclk_state; 2939 bool allow_cdclk_decrease = intel_any_crtc_needs_modeset(state); 2940 int ret; 2941 2942 if (new_min_cdclk == old_min_cdclk) 2943 return 0; 2944 2945 if (!allow_cdclk_decrease && new_min_cdclk < old_min_cdclk) 2946 return 0; 2947 2948 cdclk_state = intel_atomic_get_cdclk_state(state); 2949 if (IS_ERR(cdclk_state)) 2950 return PTR_ERR(cdclk_state); 2951 2952 old_min_cdclk = cdclk_state->dbuf_bw_min_cdclk; 2953 2954 if (new_min_cdclk == old_min_cdclk) 2955 return 0; 2956 2957 if (!allow_cdclk_decrease && new_min_cdclk < old_min_cdclk) 2958 return 0; 2959 2960 cdclk_state->dbuf_bw_min_cdclk = new_min_cdclk; 2961 2962 ret = intel_atomic_lock_global_state(&cdclk_state->base); 2963 if (ret) 2964 return ret; 2965 2966 *need_cdclk_calc = true; 2967 2968 drm_dbg_kms(display->drm, 2969 "dbuf bandwidth min cdclk: %d kHz -> %d kHz\n", 2970 old_min_cdclk, new_min_cdclk); 2971 2972 return 0; 2973 } 2974 2975 static bool glk_cdclk_audio_wa_needed(struct intel_display *display, 2976 const struct intel_cdclk_state *cdclk_state) 2977 { 2978 return display->platform.geminilake && 2979 cdclk_state->enabled_pipes && 2980 !is_power_of_2(cdclk_state->enabled_pipes); 2981 } 2982 2983 static int intel_compute_min_cdclk(struct intel_atomic_state *state) 2984 { 2985 struct intel_display *display = to_intel_display(state); 2986 struct intel_cdclk_state *cdclk_state = 2987 intel_atomic_get_new_cdclk_state(state); 2988 enum pipe pipe; 2989 int min_cdclk; 2990 2991 min_cdclk = cdclk_state->force_min_cdclk; 2992 min_cdclk = max(min_cdclk, cdclk_state->dbuf_bw_min_cdclk); 2993 for_each_pipe(display, pipe) 2994 min_cdclk = max(min_cdclk, cdclk_state->min_cdclk[pipe]); 2995 2996 /* 2997 * Avoid glk_force_audio_cdclk() causing excessive screen 2998 * blinking when multiple pipes are active by making sure 2999 * CDCLK frequency is always high enough for audio. With a 3000 * single active pipe we can always change CDCLK frequency 3001 * by changing the cd2x divider (see glk_cdclk_table[]) and 3002 * thus a full modeset won't be needed then. 3003 */ 3004 if (glk_cdclk_audio_wa_needed(display, cdclk_state)) 3005 min_cdclk = max(min_cdclk, 2 * 96000); 3006 3007 if (min_cdclk > display->cdclk.max_cdclk_freq) { 3008 drm_dbg_kms(display->drm, 3009 "required cdclk (%d kHz) exceeds max (%d kHz)\n", 3010 min_cdclk, display->cdclk.max_cdclk_freq); 3011 return -EINVAL; 3012 } 3013 3014 return min_cdclk; 3015 } 3016 3017 /* 3018 * Account for port clock min voltage level requirements. 3019 * This only really does something on DISPLA_VER >= 11 but can be 3020 * called on earlier platforms as well. 3021 * 3022 * Note that this functions assumes that 0 is 3023 * the lowest voltage value, and higher values 3024 * correspond to increasingly higher voltages. 3025 * 3026 * Should that relationship no longer hold on 3027 * future platforms this code will need to be 3028 * adjusted. 3029 */ 3030 static int bxt_compute_min_voltage_level(struct intel_atomic_state *state) 3031 { 3032 struct intel_display *display = to_intel_display(state); 3033 struct intel_cdclk_state *cdclk_state = 3034 intel_atomic_get_new_cdclk_state(state); 3035 struct intel_crtc *crtc; 3036 struct intel_crtc_state *crtc_state; 3037 u8 min_voltage_level; 3038 int i; 3039 enum pipe pipe; 3040 3041 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 3042 int ret; 3043 3044 if (crtc_state->hw.enable) 3045 min_voltage_level = crtc_state->min_voltage_level; 3046 else 3047 min_voltage_level = 0; 3048 3049 if (cdclk_state->min_voltage_level[crtc->pipe] == min_voltage_level) 3050 continue; 3051 3052 cdclk_state->min_voltage_level[crtc->pipe] = min_voltage_level; 3053 3054 ret = intel_atomic_lock_global_state(&cdclk_state->base); 3055 if (ret) 3056 return ret; 3057 } 3058 3059 min_voltage_level = 0; 3060 for_each_pipe(display, pipe) 3061 min_voltage_level = max(min_voltage_level, 3062 cdclk_state->min_voltage_level[pipe]); 3063 3064 return min_voltage_level; 3065 } 3066 3067 static int vlv_modeset_calc_cdclk(struct intel_atomic_state *state) 3068 { 3069 struct intel_display *display = to_intel_display(state); 3070 struct intel_cdclk_state *cdclk_state = 3071 intel_atomic_get_new_cdclk_state(state); 3072 int min_cdclk, cdclk; 3073 3074 min_cdclk = intel_compute_min_cdclk(state); 3075 if (min_cdclk < 0) 3076 return min_cdclk; 3077 3078 cdclk = vlv_calc_cdclk(display, min_cdclk); 3079 3080 cdclk_state->logical.cdclk = cdclk; 3081 cdclk_state->logical.voltage_level = 3082 vlv_calc_voltage_level(display, cdclk); 3083 3084 if (!cdclk_state->active_pipes) { 3085 cdclk = vlv_calc_cdclk(display, cdclk_state->force_min_cdclk); 3086 3087 cdclk_state->actual.cdclk = cdclk; 3088 cdclk_state->actual.voltage_level = 3089 vlv_calc_voltage_level(display, cdclk); 3090 } else { 3091 cdclk_state->actual = cdclk_state->logical; 3092 } 3093 3094 return 0; 3095 } 3096 3097 static int bdw_modeset_calc_cdclk(struct intel_atomic_state *state) 3098 { 3099 struct intel_cdclk_state *cdclk_state = 3100 intel_atomic_get_new_cdclk_state(state); 3101 int min_cdclk, cdclk; 3102 3103 min_cdclk = intel_compute_min_cdclk(state); 3104 if (min_cdclk < 0) 3105 return min_cdclk; 3106 3107 cdclk = bdw_calc_cdclk(min_cdclk); 3108 3109 cdclk_state->logical.cdclk = cdclk; 3110 cdclk_state->logical.voltage_level = 3111 bdw_calc_voltage_level(cdclk); 3112 3113 if (!cdclk_state->active_pipes) { 3114 cdclk = bdw_calc_cdclk(cdclk_state->force_min_cdclk); 3115 3116 cdclk_state->actual.cdclk = cdclk; 3117 cdclk_state->actual.voltage_level = 3118 bdw_calc_voltage_level(cdclk); 3119 } else { 3120 cdclk_state->actual = cdclk_state->logical; 3121 } 3122 3123 return 0; 3124 } 3125 3126 static int skl_dpll0_vco(struct intel_atomic_state *state) 3127 { 3128 struct intel_display *display = to_intel_display(state); 3129 struct intel_cdclk_state *cdclk_state = 3130 intel_atomic_get_new_cdclk_state(state); 3131 struct intel_crtc *crtc; 3132 struct intel_crtc_state *crtc_state; 3133 int vco, i; 3134 3135 vco = cdclk_state->logical.vco; 3136 if (!vco) 3137 vco = display->cdclk.skl_preferred_vco_freq; 3138 3139 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 3140 if (!crtc_state->hw.enable) 3141 continue; 3142 3143 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) 3144 continue; 3145 3146 /* 3147 * DPLL0 VCO may need to be adjusted to get the correct 3148 * clock for eDP. This will affect cdclk as well. 3149 */ 3150 switch (crtc_state->port_clock / 2) { 3151 case 108000: 3152 case 216000: 3153 vco = 8640000; 3154 break; 3155 default: 3156 vco = 8100000; 3157 break; 3158 } 3159 } 3160 3161 return vco; 3162 } 3163 3164 static int skl_modeset_calc_cdclk(struct intel_atomic_state *state) 3165 { 3166 struct intel_cdclk_state *cdclk_state = 3167 intel_atomic_get_new_cdclk_state(state); 3168 int min_cdclk, cdclk, vco; 3169 3170 min_cdclk = intel_compute_min_cdclk(state); 3171 if (min_cdclk < 0) 3172 return min_cdclk; 3173 3174 vco = skl_dpll0_vco(state); 3175 3176 cdclk = skl_calc_cdclk(min_cdclk, vco); 3177 3178 cdclk_state->logical.vco = vco; 3179 cdclk_state->logical.cdclk = cdclk; 3180 cdclk_state->logical.voltage_level = 3181 skl_calc_voltage_level(cdclk); 3182 3183 if (!cdclk_state->active_pipes) { 3184 cdclk = skl_calc_cdclk(cdclk_state->force_min_cdclk, vco); 3185 3186 cdclk_state->actual.vco = vco; 3187 cdclk_state->actual.cdclk = cdclk; 3188 cdclk_state->actual.voltage_level = 3189 skl_calc_voltage_level(cdclk); 3190 } else { 3191 cdclk_state->actual = cdclk_state->logical; 3192 } 3193 3194 return 0; 3195 } 3196 3197 static int bxt_modeset_calc_cdclk(struct intel_atomic_state *state) 3198 { 3199 struct intel_display *display = to_intel_display(state); 3200 struct intel_cdclk_state *cdclk_state = 3201 intel_atomic_get_new_cdclk_state(state); 3202 int min_cdclk, min_voltage_level, cdclk, vco; 3203 3204 min_cdclk = intel_compute_min_cdclk(state); 3205 if (min_cdclk < 0) 3206 return min_cdclk; 3207 3208 min_voltage_level = bxt_compute_min_voltage_level(state); 3209 if (min_voltage_level < 0) 3210 return min_voltage_level; 3211 3212 cdclk = bxt_calc_cdclk(display, min_cdclk); 3213 vco = bxt_calc_cdclk_pll_vco(display, cdclk); 3214 3215 cdclk_state->logical.vco = vco; 3216 cdclk_state->logical.cdclk = cdclk; 3217 cdclk_state->logical.voltage_level = 3218 max_t(int, min_voltage_level, 3219 intel_cdclk_calc_voltage_level(display, cdclk)); 3220 3221 if (!cdclk_state->active_pipes) { 3222 cdclk = bxt_calc_cdclk(display, cdclk_state->force_min_cdclk); 3223 vco = bxt_calc_cdclk_pll_vco(display, cdclk); 3224 3225 cdclk_state->actual.vco = vco; 3226 cdclk_state->actual.cdclk = cdclk; 3227 cdclk_state->actual.voltage_level = 3228 intel_cdclk_calc_voltage_level(display, cdclk); 3229 } else { 3230 cdclk_state->actual = cdclk_state->logical; 3231 } 3232 3233 return 0; 3234 } 3235 3236 static int fixed_modeset_calc_cdclk(struct intel_atomic_state *state) 3237 { 3238 int min_cdclk; 3239 3240 /* 3241 * We can't change the cdclk frequency, but we still want to 3242 * check that the required minimum frequency doesn't exceed 3243 * the actual cdclk frequency. 3244 */ 3245 min_cdclk = intel_compute_min_cdclk(state); 3246 if (min_cdclk < 0) 3247 return min_cdclk; 3248 3249 return 0; 3250 } 3251 3252 static struct intel_global_state *intel_cdclk_duplicate_state(struct intel_global_obj *obj) 3253 { 3254 struct intel_cdclk_state *cdclk_state; 3255 3256 cdclk_state = kmemdup(obj->state, sizeof(*cdclk_state), GFP_KERNEL); 3257 if (!cdclk_state) 3258 return NULL; 3259 3260 cdclk_state->pipe = INVALID_PIPE; 3261 cdclk_state->disable_pipes = false; 3262 3263 return &cdclk_state->base; 3264 } 3265 3266 static void intel_cdclk_destroy_state(struct intel_global_obj *obj, 3267 struct intel_global_state *state) 3268 { 3269 kfree(state); 3270 } 3271 3272 static const struct intel_global_state_funcs intel_cdclk_funcs = { 3273 .atomic_duplicate_state = intel_cdclk_duplicate_state, 3274 .atomic_destroy_state = intel_cdclk_destroy_state, 3275 }; 3276 3277 struct intel_cdclk_state * 3278 intel_atomic_get_cdclk_state(struct intel_atomic_state *state) 3279 { 3280 struct intel_display *display = to_intel_display(state); 3281 struct intel_global_state *cdclk_state; 3282 3283 cdclk_state = intel_atomic_get_global_obj_state(state, &display->cdclk.obj); 3284 if (IS_ERR(cdclk_state)) 3285 return ERR_CAST(cdclk_state); 3286 3287 return to_intel_cdclk_state(cdclk_state); 3288 } 3289 3290 static int intel_cdclk_modeset_checks(struct intel_atomic_state *state, 3291 bool *need_cdclk_calc) 3292 { 3293 struct intel_display *display = to_intel_display(state); 3294 const struct intel_cdclk_state *old_cdclk_state; 3295 struct intel_cdclk_state *new_cdclk_state; 3296 int ret; 3297 3298 if (!intel_any_crtc_enable_changed(state) && 3299 !intel_any_crtc_active_changed(state)) 3300 return 0; 3301 3302 new_cdclk_state = intel_atomic_get_cdclk_state(state); 3303 if (IS_ERR(new_cdclk_state)) 3304 return PTR_ERR(new_cdclk_state); 3305 3306 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 3307 3308 new_cdclk_state->enabled_pipes = 3309 intel_calc_enabled_pipes(state, old_cdclk_state->enabled_pipes); 3310 3311 new_cdclk_state->active_pipes = 3312 intel_calc_active_pipes(state, old_cdclk_state->active_pipes); 3313 3314 ret = intel_atomic_lock_global_state(&new_cdclk_state->base); 3315 if (ret) 3316 return ret; 3317 3318 if (!old_cdclk_state->active_pipes != !new_cdclk_state->active_pipes) 3319 *need_cdclk_calc = true; 3320 3321 if (glk_cdclk_audio_wa_needed(display, old_cdclk_state) != 3322 glk_cdclk_audio_wa_needed(display, new_cdclk_state)) 3323 *need_cdclk_calc = true; 3324 3325 if (dg2_power_well_count(display, old_cdclk_state) != 3326 dg2_power_well_count(display, new_cdclk_state)) 3327 *need_cdclk_calc = true; 3328 3329 return 0; 3330 } 3331 3332 static int intel_crtcs_calc_min_cdclk(struct intel_atomic_state *state, 3333 bool *need_cdclk_calc) 3334 { 3335 const struct intel_crtc_state *old_crtc_state; 3336 const struct intel_crtc_state *new_crtc_state; 3337 struct intel_crtc *crtc; 3338 int i, ret; 3339 3340 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 3341 new_crtc_state, i) { 3342 ret = intel_cdclk_update_crtc_min_cdclk(state, crtc, 3343 old_crtc_state->min_cdclk, 3344 new_crtc_state->min_cdclk, 3345 need_cdclk_calc); 3346 if (ret) 3347 return ret; 3348 } 3349 3350 return 0; 3351 } 3352 3353 int intel_cdclk_state_set_joined_mbus(struct intel_atomic_state *state, bool joined_mbus) 3354 { 3355 struct intel_cdclk_state *cdclk_state; 3356 3357 cdclk_state = intel_atomic_get_cdclk_state(state); 3358 if (IS_ERR(cdclk_state)) 3359 return PTR_ERR(cdclk_state); 3360 3361 cdclk_state->actual.joined_mbus = joined_mbus; 3362 cdclk_state->logical.joined_mbus = joined_mbus; 3363 3364 return intel_atomic_lock_global_state(&cdclk_state->base); 3365 } 3366 3367 int intel_cdclk_init(struct intel_display *display) 3368 { 3369 struct intel_cdclk_state *cdclk_state; 3370 3371 cdclk_state = kzalloc(sizeof(*cdclk_state), GFP_KERNEL); 3372 if (!cdclk_state) 3373 return -ENOMEM; 3374 3375 intel_atomic_global_obj_init(display, &display->cdclk.obj, 3376 &cdclk_state->base, &intel_cdclk_funcs); 3377 3378 return 0; 3379 } 3380 3381 static bool intel_cdclk_need_serialize(struct intel_display *display, 3382 const struct intel_cdclk_state *old_cdclk_state, 3383 const struct intel_cdclk_state *new_cdclk_state) 3384 { 3385 /* 3386 * We need to poke hw for DG2, because we notify PCode if 3387 * pipe power well count changes. 3388 */ 3389 return intel_cdclk_changed(&old_cdclk_state->actual, 3390 &new_cdclk_state->actual) || 3391 dg2_power_well_count(display, old_cdclk_state) != 3392 dg2_power_well_count(display, new_cdclk_state); 3393 } 3394 3395 static int intel_modeset_calc_cdclk(struct intel_atomic_state *state) 3396 { 3397 struct intel_display *display = to_intel_display(state); 3398 const struct intel_cdclk_state *old_cdclk_state; 3399 struct intel_cdclk_state *new_cdclk_state; 3400 enum pipe pipe = INVALID_PIPE; 3401 int ret; 3402 3403 new_cdclk_state = intel_atomic_get_cdclk_state(state); 3404 if (IS_ERR(new_cdclk_state)) 3405 return PTR_ERR(new_cdclk_state); 3406 3407 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 3408 3409 ret = intel_cdclk_modeset_calc_cdclk(state); 3410 if (ret) 3411 return ret; 3412 3413 if (intel_cdclk_need_serialize(display, old_cdclk_state, new_cdclk_state)) { 3414 /* 3415 * Also serialize commits across all crtcs 3416 * if the actual hw needs to be poked. 3417 */ 3418 ret = intel_atomic_serialize_global_state(&new_cdclk_state->base); 3419 if (ret) 3420 return ret; 3421 } else if (intel_cdclk_changed(&old_cdclk_state->logical, 3422 &new_cdclk_state->logical)) { 3423 ret = intel_atomic_lock_global_state(&new_cdclk_state->base); 3424 if (ret) 3425 return ret; 3426 } else { 3427 return 0; 3428 } 3429 3430 if (is_power_of_2(new_cdclk_state->active_pipes) && 3431 intel_cdclk_can_cd2x_update(display, 3432 &old_cdclk_state->actual, 3433 &new_cdclk_state->actual)) { 3434 struct intel_crtc *crtc; 3435 struct intel_crtc_state *crtc_state; 3436 3437 pipe = ilog2(new_cdclk_state->active_pipes); 3438 crtc = intel_crtc_for_pipe(display, pipe); 3439 3440 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 3441 if (IS_ERR(crtc_state)) 3442 return PTR_ERR(crtc_state); 3443 3444 if (intel_crtc_needs_modeset(crtc_state)) 3445 pipe = INVALID_PIPE; 3446 } 3447 3448 if (intel_cdclk_can_crawl_and_squash(display, 3449 &old_cdclk_state->actual, 3450 &new_cdclk_state->actual)) { 3451 drm_dbg_kms(display->drm, 3452 "Can change cdclk via crawling and squashing\n"); 3453 } else if (intel_cdclk_can_squash(display, 3454 &old_cdclk_state->actual, 3455 &new_cdclk_state->actual)) { 3456 drm_dbg_kms(display->drm, 3457 "Can change cdclk via squashing\n"); 3458 } else if (intel_cdclk_can_crawl(display, 3459 &old_cdclk_state->actual, 3460 &new_cdclk_state->actual)) { 3461 drm_dbg_kms(display->drm, 3462 "Can change cdclk via crawling\n"); 3463 } else if (pipe != INVALID_PIPE) { 3464 new_cdclk_state->pipe = pipe; 3465 3466 drm_dbg_kms(display->drm, 3467 "Can change cdclk cd2x divider with pipe %c active\n", 3468 pipe_name(pipe)); 3469 } else if (intel_cdclk_clock_changed(&old_cdclk_state->actual, 3470 &new_cdclk_state->actual)) { 3471 /* All pipes must be switched off while we change the cdclk. */ 3472 ret = intel_modeset_all_pipes_late(state, "CDCLK change"); 3473 if (ret) 3474 return ret; 3475 3476 new_cdclk_state->disable_pipes = true; 3477 3478 drm_dbg_kms(display->drm, 3479 "Modeset required for cdclk change\n"); 3480 } 3481 3482 if (intel_mdclk_cdclk_ratio(display, &old_cdclk_state->actual) != 3483 intel_mdclk_cdclk_ratio(display, &new_cdclk_state->actual)) { 3484 int ratio = intel_mdclk_cdclk_ratio(display, &new_cdclk_state->actual); 3485 3486 ret = intel_dbuf_state_set_mdclk_cdclk_ratio(state, ratio); 3487 if (ret) 3488 return ret; 3489 } 3490 3491 drm_dbg_kms(display->drm, 3492 "New cdclk calculated to be logical %u kHz, actual %u kHz\n", 3493 new_cdclk_state->logical.cdclk, 3494 new_cdclk_state->actual.cdclk); 3495 drm_dbg_kms(display->drm, 3496 "New voltage level calculated to be logical %u, actual %u\n", 3497 new_cdclk_state->logical.voltage_level, 3498 new_cdclk_state->actual.voltage_level); 3499 3500 return 0; 3501 } 3502 3503 int intel_cdclk_atomic_check(struct intel_atomic_state *state) 3504 { 3505 const struct intel_cdclk_state *old_cdclk_state; 3506 struct intel_cdclk_state *new_cdclk_state; 3507 bool need_cdclk_calc = false; 3508 int ret; 3509 3510 ret = intel_cdclk_modeset_checks(state, &need_cdclk_calc); 3511 if (ret) 3512 return ret; 3513 3514 ret = intel_crtcs_calc_min_cdclk(state, &need_cdclk_calc); 3515 if (ret) 3516 return ret; 3517 3518 ret = intel_dbuf_bw_calc_min_cdclk(state, &need_cdclk_calc); 3519 if (ret) 3520 return ret; 3521 3522 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 3523 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 3524 3525 if (new_cdclk_state && 3526 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) { 3527 ret = intel_atomic_lock_global_state(&new_cdclk_state->base); 3528 if (ret) 3529 return ret; 3530 3531 need_cdclk_calc = true; 3532 } 3533 3534 if (need_cdclk_calc) { 3535 ret = intel_modeset_calc_cdclk(state); 3536 if (ret) 3537 return ret; 3538 } 3539 3540 return 0; 3541 } 3542 3543 void intel_cdclk_update_hw_state(struct intel_display *display) 3544 { 3545 const struct intel_dbuf_bw_state *dbuf_bw_state = 3546 to_intel_dbuf_bw_state(display->dbuf_bw.obj.state); 3547 struct intel_cdclk_state *cdclk_state = 3548 to_intel_cdclk_state(display->cdclk.obj.state); 3549 struct intel_crtc *crtc; 3550 3551 cdclk_state->enabled_pipes = 0; 3552 cdclk_state->active_pipes = 0; 3553 3554 for_each_intel_crtc(display->drm, crtc) { 3555 const struct intel_crtc_state *crtc_state = 3556 to_intel_crtc_state(crtc->base.state); 3557 enum pipe pipe = crtc->pipe; 3558 3559 if (crtc_state->hw.enable) 3560 cdclk_state->enabled_pipes |= BIT(pipe); 3561 if (crtc_state->hw.active) 3562 cdclk_state->active_pipes |= BIT(pipe); 3563 3564 cdclk_state->min_cdclk[pipe] = crtc_state->min_cdclk; 3565 cdclk_state->min_voltage_level[pipe] = crtc_state->min_voltage_level; 3566 } 3567 3568 cdclk_state->dbuf_bw_min_cdclk = intel_dbuf_bw_min_cdclk(display, dbuf_bw_state); 3569 } 3570 3571 void intel_cdclk_crtc_disable_noatomic(struct intel_crtc *crtc) 3572 { 3573 struct intel_display *display = to_intel_display(crtc); 3574 3575 intel_cdclk_update_hw_state(display); 3576 } 3577 3578 static int intel_compute_max_dotclk(struct intel_display *display) 3579 { 3580 int ppc = intel_cdclk_ppc(display, HAS_DOUBLE_WIDE(display)); 3581 int guardband = intel_cdclk_guardband(display); 3582 int max_cdclk_freq = display->cdclk.max_cdclk_freq; 3583 3584 return ppc * max_cdclk_freq * guardband / 100; 3585 } 3586 3587 /** 3588 * intel_update_max_cdclk - Determine the maximum support CDCLK frequency 3589 * @display: display instance 3590 * 3591 * Determine the maximum CDCLK frequency the platform supports, and also 3592 * derive the maximum dot clock frequency the maximum CDCLK frequency 3593 * allows. 3594 */ 3595 void intel_update_max_cdclk(struct intel_display *display) 3596 { 3597 if (DISPLAY_VER(display) >= 35) { 3598 display->cdclk.max_cdclk_freq = 787200; 3599 } else if (DISPLAY_VERx100(display) >= 3002) { 3600 display->cdclk.max_cdclk_freq = 480000; 3601 } else if (DISPLAY_VER(display) >= 30) { 3602 display->cdclk.max_cdclk_freq = 691200; 3603 } else if (display->platform.jasperlake || display->platform.elkhartlake) { 3604 if (display->cdclk.hw.ref == 24000) 3605 display->cdclk.max_cdclk_freq = 552000; 3606 else 3607 display->cdclk.max_cdclk_freq = 556800; 3608 } else if (DISPLAY_VER(display) >= 11) { 3609 if (display->cdclk.hw.ref == 24000) 3610 display->cdclk.max_cdclk_freq = 648000; 3611 else 3612 display->cdclk.max_cdclk_freq = 652800; 3613 } else if (display->platform.geminilake) { 3614 display->cdclk.max_cdclk_freq = 316800; 3615 } else if (display->platform.broxton) { 3616 display->cdclk.max_cdclk_freq = 624000; 3617 } else if (DISPLAY_VER(display) == 9) { 3618 u32 limit = intel_de_read(display, SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK; 3619 int max_cdclk, vco; 3620 3621 vco = display->cdclk.skl_preferred_vco_freq; 3622 drm_WARN_ON(display->drm, vco != 8100000 && vco != 8640000); 3623 3624 /* 3625 * Use the lower (vco 8640) cdclk values as a 3626 * first guess. skl_calc_cdclk() will correct it 3627 * if the preferred vco is 8100 instead. 3628 */ 3629 if (limit == SKL_DFSM_CDCLK_LIMIT_675) 3630 max_cdclk = 617143; 3631 else if (limit == SKL_DFSM_CDCLK_LIMIT_540) 3632 max_cdclk = 540000; 3633 else if (limit == SKL_DFSM_CDCLK_LIMIT_450) 3634 max_cdclk = 432000; 3635 else 3636 max_cdclk = 308571; 3637 3638 display->cdclk.max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco); 3639 } else if (display->platform.broadwell) { 3640 /* 3641 * FIXME with extra cooling we can allow 3642 * 540 MHz for ULX and 675 Mhz for ULT. 3643 * How can we know if extra cooling is 3644 * available? PCI ID, VTB, something else? 3645 */ 3646 if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT) 3647 display->cdclk.max_cdclk_freq = 450000; 3648 else if (display->platform.broadwell_ulx) 3649 display->cdclk.max_cdclk_freq = 450000; 3650 else if (display->platform.broadwell_ult) 3651 display->cdclk.max_cdclk_freq = 540000; 3652 else 3653 display->cdclk.max_cdclk_freq = 675000; 3654 } else if (display->platform.cherryview) { 3655 display->cdclk.max_cdclk_freq = 320000; 3656 } else if (display->platform.valleyview) { 3657 display->cdclk.max_cdclk_freq = 400000; 3658 } else { 3659 /* otherwise assume cdclk is fixed */ 3660 display->cdclk.max_cdclk_freq = display->cdclk.hw.cdclk; 3661 } 3662 3663 display->cdclk.max_dotclk_freq = intel_compute_max_dotclk(display); 3664 3665 drm_dbg(display->drm, "Max CD clock rate: %d kHz\n", 3666 display->cdclk.max_cdclk_freq); 3667 3668 drm_dbg(display->drm, "Max dotclock rate: %d kHz\n", 3669 display->cdclk.max_dotclk_freq); 3670 } 3671 3672 /** 3673 * intel_update_cdclk - Determine the current CDCLK frequency 3674 * @display: display instance 3675 * 3676 * Determine the current CDCLK frequency. 3677 */ 3678 void intel_update_cdclk(struct intel_display *display) 3679 { 3680 intel_cdclk_get_cdclk(display, &display->cdclk.hw); 3681 3682 /* 3683 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq): 3684 * Programmng [sic] note: bit[9:2] should be programmed to the number 3685 * of cdclk that generates 4MHz reference clock freq which is used to 3686 * generate GMBus clock. This will vary with the cdclk freq. 3687 */ 3688 if (display->platform.valleyview || display->platform.cherryview) 3689 intel_de_write(display, GMBUSFREQ_VLV, 3690 DIV_ROUND_UP(display->cdclk.hw.cdclk, 1000)); 3691 } 3692 3693 static int dg1_rawclk(struct intel_display *display) 3694 { 3695 /* 3696 * DG1 always uses a 38.4 MHz rawclk. The bspec tells us 3697 * "Program Numerator=2, Denominator=4, Divider=37 decimal." 3698 */ 3699 intel_de_write(display, PCH_RAWCLK_FREQ, 3700 CNP_RAWCLK_DEN(4) | CNP_RAWCLK_DIV(37) | ICP_RAWCLK_NUM(2)); 3701 3702 return 38400; 3703 } 3704 3705 static int cnp_rawclk(struct intel_display *display) 3706 { 3707 int divider, fraction; 3708 u32 rawclk; 3709 3710 if (intel_de_read(display, SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) { 3711 /* 24 MHz */ 3712 divider = 24000; 3713 fraction = 0; 3714 } else { 3715 /* 19.2 MHz */ 3716 divider = 19000; 3717 fraction = 200; 3718 } 3719 3720 rawclk = CNP_RAWCLK_DIV(divider / 1000); 3721 if (fraction) { 3722 int numerator = 1; 3723 3724 rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000, 3725 fraction) - 1); 3726 if (INTEL_PCH_TYPE(display) >= PCH_ICP) 3727 rawclk |= ICP_RAWCLK_NUM(numerator); 3728 } 3729 3730 intel_de_write(display, PCH_RAWCLK_FREQ, rawclk); 3731 return divider + fraction; 3732 } 3733 3734 static int pch_rawclk(struct intel_display *display) 3735 { 3736 return (intel_de_read(display, PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000; 3737 } 3738 3739 static int i9xx_hrawclk(struct intel_display *display) 3740 { 3741 struct drm_i915_private *i915 = to_i915(display->drm); 3742 3743 /* hrawclock is 1/4 the FSB frequency */ 3744 return DIV_ROUND_CLOSEST(intel_fsb_freq(i915), 4); 3745 } 3746 3747 /** 3748 * intel_read_rawclk - Determine the current RAWCLK frequency 3749 * @display: display instance 3750 * 3751 * Determine the current RAWCLK frequency. RAWCLK is a fixed 3752 * frequency clock so this needs to done only once. 3753 */ 3754 u32 intel_read_rawclk(struct intel_display *display) 3755 { 3756 u32 freq; 3757 3758 if (INTEL_PCH_TYPE(display) >= PCH_MTL) 3759 /* 3760 * MTL always uses a 38.4 MHz rawclk. The bspec tells us 3761 * "RAWCLK_FREQ defaults to the values for 38.4 and does 3762 * not need to be programmed." 3763 */ 3764 freq = 38400; 3765 else if (INTEL_PCH_TYPE(display) >= PCH_DG1) 3766 freq = dg1_rawclk(display); 3767 else if (INTEL_PCH_TYPE(display) >= PCH_CNP) 3768 freq = cnp_rawclk(display); 3769 else if (HAS_PCH_SPLIT(display)) 3770 freq = pch_rawclk(display); 3771 else if (display->platform.valleyview || display->platform.cherryview) 3772 freq = vlv_clock_get_hrawclk(display->drm); 3773 else if (DISPLAY_VER(display) >= 3) 3774 freq = i9xx_hrawclk(display); 3775 else 3776 /* no rawclk on other platforms, or no need to know it */ 3777 return 0; 3778 3779 return freq; 3780 } 3781 3782 static int i915_cdclk_info_show(struct seq_file *m, void *unused) 3783 { 3784 struct intel_display *display = m->private; 3785 3786 seq_printf(m, "Current CD clock frequency: %d kHz\n", display->cdclk.hw.cdclk); 3787 seq_printf(m, "Max CD clock frequency: %d kHz\n", display->cdclk.max_cdclk_freq); 3788 seq_printf(m, "Max pixel clock frequency: %d kHz\n", display->cdclk.max_dotclk_freq); 3789 3790 return 0; 3791 } 3792 3793 DEFINE_SHOW_ATTRIBUTE(i915_cdclk_info); 3794 3795 void intel_cdclk_debugfs_register(struct intel_display *display) 3796 { 3797 debugfs_create_file("i915_cdclk_info", 0444, display->drm->debugfs_root, 3798 display, &i915_cdclk_info_fops); 3799 } 3800 3801 static const struct intel_cdclk_funcs xe3lpd_cdclk_funcs = { 3802 .get_cdclk = bxt_get_cdclk, 3803 .set_cdclk = bxt_set_cdclk, 3804 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3805 .calc_voltage_level = xe3lpd_calc_voltage_level, 3806 }; 3807 3808 static const struct intel_cdclk_funcs rplu_cdclk_funcs = { 3809 .get_cdclk = bxt_get_cdclk, 3810 .set_cdclk = bxt_set_cdclk, 3811 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3812 .calc_voltage_level = rplu_calc_voltage_level, 3813 }; 3814 3815 static const struct intel_cdclk_funcs tgl_cdclk_funcs = { 3816 .get_cdclk = bxt_get_cdclk, 3817 .set_cdclk = bxt_set_cdclk, 3818 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3819 .calc_voltage_level = tgl_calc_voltage_level, 3820 }; 3821 3822 static const struct intel_cdclk_funcs ehl_cdclk_funcs = { 3823 .get_cdclk = bxt_get_cdclk, 3824 .set_cdclk = bxt_set_cdclk, 3825 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3826 .calc_voltage_level = ehl_calc_voltage_level, 3827 }; 3828 3829 static const struct intel_cdclk_funcs icl_cdclk_funcs = { 3830 .get_cdclk = bxt_get_cdclk, 3831 .set_cdclk = bxt_set_cdclk, 3832 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3833 .calc_voltage_level = icl_calc_voltage_level, 3834 }; 3835 3836 static const struct intel_cdclk_funcs bxt_cdclk_funcs = { 3837 .get_cdclk = bxt_get_cdclk, 3838 .set_cdclk = bxt_set_cdclk, 3839 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3840 .calc_voltage_level = bxt_calc_voltage_level, 3841 }; 3842 3843 static const struct intel_cdclk_funcs skl_cdclk_funcs = { 3844 .get_cdclk = skl_get_cdclk, 3845 .set_cdclk = skl_set_cdclk, 3846 .modeset_calc_cdclk = skl_modeset_calc_cdclk, 3847 }; 3848 3849 static const struct intel_cdclk_funcs bdw_cdclk_funcs = { 3850 .get_cdclk = bdw_get_cdclk, 3851 .set_cdclk = bdw_set_cdclk, 3852 .modeset_calc_cdclk = bdw_modeset_calc_cdclk, 3853 }; 3854 3855 static const struct intel_cdclk_funcs chv_cdclk_funcs = { 3856 .get_cdclk = vlv_get_cdclk, 3857 .set_cdclk = chv_set_cdclk, 3858 .modeset_calc_cdclk = vlv_modeset_calc_cdclk, 3859 }; 3860 3861 static const struct intel_cdclk_funcs vlv_cdclk_funcs = { 3862 .get_cdclk = vlv_get_cdclk, 3863 .set_cdclk = vlv_set_cdclk, 3864 .modeset_calc_cdclk = vlv_modeset_calc_cdclk, 3865 }; 3866 3867 static const struct intel_cdclk_funcs hsw_cdclk_funcs = { 3868 .get_cdclk = hsw_get_cdclk, 3869 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3870 }; 3871 3872 /* SNB, IVB, 965G, 945G */ 3873 static const struct intel_cdclk_funcs fixed_400mhz_cdclk_funcs = { 3874 .get_cdclk = fixed_400mhz_get_cdclk, 3875 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3876 }; 3877 3878 static const struct intel_cdclk_funcs ilk_cdclk_funcs = { 3879 .get_cdclk = fixed_450mhz_get_cdclk, 3880 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3881 }; 3882 3883 static const struct intel_cdclk_funcs gm45_cdclk_funcs = { 3884 .get_cdclk = gm45_get_cdclk, 3885 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3886 }; 3887 3888 /* G45 uses G33 */ 3889 3890 static const struct intel_cdclk_funcs i965gm_cdclk_funcs = { 3891 .get_cdclk = i965gm_get_cdclk, 3892 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3893 }; 3894 3895 /* i965G uses fixed 400 */ 3896 3897 static const struct intel_cdclk_funcs pnv_cdclk_funcs = { 3898 .get_cdclk = pnv_get_cdclk, 3899 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3900 }; 3901 3902 static const struct intel_cdclk_funcs g33_cdclk_funcs = { 3903 .get_cdclk = g33_get_cdclk, 3904 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3905 }; 3906 3907 static const struct intel_cdclk_funcs i945gm_cdclk_funcs = { 3908 .get_cdclk = i945gm_get_cdclk, 3909 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3910 }; 3911 3912 /* i945G uses fixed 400 */ 3913 3914 static const struct intel_cdclk_funcs i915gm_cdclk_funcs = { 3915 .get_cdclk = i915gm_get_cdclk, 3916 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3917 }; 3918 3919 static const struct intel_cdclk_funcs i915g_cdclk_funcs = { 3920 .get_cdclk = fixed_333mhz_get_cdclk, 3921 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3922 }; 3923 3924 static const struct intel_cdclk_funcs i865g_cdclk_funcs = { 3925 .get_cdclk = fixed_266mhz_get_cdclk, 3926 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3927 }; 3928 3929 static const struct intel_cdclk_funcs i85x_cdclk_funcs = { 3930 .get_cdclk = i85x_get_cdclk, 3931 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3932 }; 3933 3934 static const struct intel_cdclk_funcs i845g_cdclk_funcs = { 3935 .get_cdclk = fixed_200mhz_get_cdclk, 3936 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3937 }; 3938 3939 static const struct intel_cdclk_funcs i830_cdclk_funcs = { 3940 .get_cdclk = fixed_133mhz_get_cdclk, 3941 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3942 }; 3943 3944 /** 3945 * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks 3946 * @display: display instance 3947 */ 3948 void intel_init_cdclk_hooks(struct intel_display *display) 3949 { 3950 if (DISPLAY_VER(display) >= 35) { 3951 display->funcs.cdclk = &xe3lpd_cdclk_funcs; 3952 display->cdclk.table = xe3p_lpd_cdclk_table; 3953 } else if (DISPLAY_VER(display) >= 30) { 3954 display->funcs.cdclk = &xe3lpd_cdclk_funcs; 3955 display->cdclk.table = xe3lpd_cdclk_table; 3956 } else if (DISPLAY_VER(display) >= 20) { 3957 display->funcs.cdclk = &rplu_cdclk_funcs; 3958 display->cdclk.table = xe2lpd_cdclk_table; 3959 } else if (DISPLAY_VERx100(display) >= 1401) { 3960 display->funcs.cdclk = &rplu_cdclk_funcs; 3961 display->cdclk.table = xe2hpd_cdclk_table; 3962 } else if (DISPLAY_VER(display) >= 14) { 3963 display->funcs.cdclk = &rplu_cdclk_funcs; 3964 display->cdclk.table = mtl_cdclk_table; 3965 } else if (display->platform.dg2) { 3966 display->funcs.cdclk = &tgl_cdclk_funcs; 3967 display->cdclk.table = dg2_cdclk_table; 3968 } else if (display->platform.alderlake_p) { 3969 /* Wa_22011320316:adl-p[a0] */ 3970 if (display->platform.alderlake_p && IS_DISPLAY_STEP(display, STEP_A0, STEP_B0)) { 3971 display->cdclk.table = adlp_a_step_cdclk_table; 3972 display->funcs.cdclk = &tgl_cdclk_funcs; 3973 } else if (display->platform.alderlake_p_raptorlake_u) { 3974 display->cdclk.table = rplu_cdclk_table; 3975 display->funcs.cdclk = &rplu_cdclk_funcs; 3976 } else { 3977 display->cdclk.table = adlp_cdclk_table; 3978 display->funcs.cdclk = &tgl_cdclk_funcs; 3979 } 3980 } else if (display->platform.rocketlake) { 3981 display->funcs.cdclk = &tgl_cdclk_funcs; 3982 display->cdclk.table = rkl_cdclk_table; 3983 } else if (DISPLAY_VER(display) >= 12) { 3984 display->funcs.cdclk = &tgl_cdclk_funcs; 3985 display->cdclk.table = icl_cdclk_table; 3986 } else if (display->platform.jasperlake || display->platform.elkhartlake) { 3987 display->funcs.cdclk = &ehl_cdclk_funcs; 3988 display->cdclk.table = icl_cdclk_table; 3989 } else if (DISPLAY_VER(display) >= 11) { 3990 display->funcs.cdclk = &icl_cdclk_funcs; 3991 display->cdclk.table = icl_cdclk_table; 3992 } else if (display->platform.geminilake || display->platform.broxton) { 3993 display->funcs.cdclk = &bxt_cdclk_funcs; 3994 if (display->platform.geminilake) 3995 display->cdclk.table = glk_cdclk_table; 3996 else 3997 display->cdclk.table = bxt_cdclk_table; 3998 } else if (DISPLAY_VER(display) == 9) { 3999 display->funcs.cdclk = &skl_cdclk_funcs; 4000 } else if (display->platform.broadwell) { 4001 display->funcs.cdclk = &bdw_cdclk_funcs; 4002 } else if (display->platform.haswell) { 4003 display->funcs.cdclk = &hsw_cdclk_funcs; 4004 } else if (display->platform.cherryview) { 4005 display->funcs.cdclk = &chv_cdclk_funcs; 4006 } else if (display->platform.valleyview) { 4007 display->funcs.cdclk = &vlv_cdclk_funcs; 4008 } else if (display->platform.sandybridge || display->platform.ivybridge) { 4009 display->funcs.cdclk = &fixed_400mhz_cdclk_funcs; 4010 } else if (display->platform.ironlake) { 4011 display->funcs.cdclk = &ilk_cdclk_funcs; 4012 } else if (display->platform.gm45) { 4013 display->funcs.cdclk = &gm45_cdclk_funcs; 4014 } else if (display->platform.g45) { 4015 display->funcs.cdclk = &g33_cdclk_funcs; 4016 } else if (display->platform.i965gm) { 4017 display->funcs.cdclk = &i965gm_cdclk_funcs; 4018 } else if (display->platform.i965g) { 4019 display->funcs.cdclk = &fixed_400mhz_cdclk_funcs; 4020 } else if (display->platform.pineview) { 4021 display->funcs.cdclk = &pnv_cdclk_funcs; 4022 } else if (display->platform.g33) { 4023 display->funcs.cdclk = &g33_cdclk_funcs; 4024 } else if (display->platform.i945gm) { 4025 display->funcs.cdclk = &i945gm_cdclk_funcs; 4026 } else if (display->platform.i945g) { 4027 display->funcs.cdclk = &fixed_400mhz_cdclk_funcs; 4028 } else if (display->platform.i915gm) { 4029 display->funcs.cdclk = &i915gm_cdclk_funcs; 4030 } else if (display->platform.i915g) { 4031 display->funcs.cdclk = &i915g_cdclk_funcs; 4032 } else if (display->platform.i865g) { 4033 display->funcs.cdclk = &i865g_cdclk_funcs; 4034 } else if (display->platform.i85x) { 4035 display->funcs.cdclk = &i85x_cdclk_funcs; 4036 } else if (display->platform.i845g) { 4037 display->funcs.cdclk = &i845g_cdclk_funcs; 4038 } else if (display->platform.i830) { 4039 display->funcs.cdclk = &i830_cdclk_funcs; 4040 } 4041 4042 if (drm_WARN(display->drm, !display->funcs.cdclk, 4043 "Unknown platform. Assuming i830\n")) 4044 display->funcs.cdclk = &i830_cdclk_funcs; 4045 } 4046 4047 int intel_cdclk_logical(const struct intel_cdclk_state *cdclk_state) 4048 { 4049 return cdclk_state->logical.cdclk; 4050 } 4051 4052 int intel_cdclk_actual(const struct intel_cdclk_state *cdclk_state) 4053 { 4054 return cdclk_state->actual.cdclk; 4055 } 4056 4057 int intel_cdclk_actual_voltage_level(const struct intel_cdclk_state *cdclk_state) 4058 { 4059 return cdclk_state->actual.voltage_level; 4060 } 4061 4062 int intel_cdclk_min_cdclk(const struct intel_cdclk_state *cdclk_state, enum pipe pipe) 4063 { 4064 return cdclk_state->min_cdclk[pipe]; 4065 } 4066 4067 bool intel_cdclk_pmdemand_needs_update(struct intel_atomic_state *state) 4068 { 4069 const struct intel_cdclk_state *new_cdclk_state, *old_cdclk_state; 4070 4071 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 4072 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 4073 4074 if (new_cdclk_state && 4075 (new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk || 4076 new_cdclk_state->actual.voltage_level != old_cdclk_state->actual.voltage_level)) 4077 return true; 4078 4079 return false; 4080 } 4081 4082 void intel_cdclk_force_min_cdclk(struct intel_cdclk_state *cdclk_state, int force_min_cdclk) 4083 { 4084 cdclk_state->force_min_cdclk = force_min_cdclk; 4085 } 4086 4087 void intel_cdclk_read_hw(struct intel_display *display) 4088 { 4089 struct intel_cdclk_state *cdclk_state; 4090 4091 cdclk_state = to_intel_cdclk_state(display->cdclk.obj.state); 4092 4093 intel_update_cdclk(display); 4094 intel_cdclk_dump_config(display, &display->cdclk.hw, "Current CDCLK"); 4095 cdclk_state->actual = display->cdclk.hw; 4096 cdclk_state->logical = display->cdclk.hw; 4097 } 4098 4099 static int calc_cdclk(const struct intel_crtc_state *crtc_state, int min_cdclk) 4100 { 4101 struct intel_display *display = to_intel_display(crtc_state); 4102 4103 if (DISPLAY_VER(display) >= 10 || display->platform.broxton) { 4104 return bxt_calc_cdclk(display, min_cdclk); 4105 } else if (DISPLAY_VER(display) == 9) { 4106 int vco; 4107 4108 vco = display->cdclk.skl_preferred_vco_freq; 4109 if (vco == 0) 4110 vco = 8100000; 4111 4112 return skl_calc_cdclk(min_cdclk, vco); 4113 } else if (display->platform.broadwell) { 4114 return bdw_calc_cdclk(min_cdclk); 4115 } else if (display->platform.cherryview || display->platform.valleyview) { 4116 return vlv_calc_cdclk(display, min_cdclk); 4117 } else { 4118 return display->cdclk.max_cdclk_freq; 4119 } 4120 } 4121 4122 static unsigned int _intel_cdclk_prefill_adj(const struct intel_crtc_state *crtc_state, 4123 int clock, int min_cdclk) 4124 { 4125 struct intel_display *display = to_intel_display(crtc_state); 4126 int ppc = intel_cdclk_ppc(display, crtc_state->double_wide); 4127 int cdclk = calc_cdclk(crtc_state, min_cdclk); 4128 4129 return min(0x10000, DIV_ROUND_UP_ULL((u64)clock << 16, ppc * cdclk)); 4130 } 4131 4132 unsigned int intel_cdclk_prefill_adjustment(const struct intel_crtc_state *crtc_state) 4133 { 4134 /* FIXME use the actual min_cdclk for the pipe here */ 4135 return intel_cdclk_prefill_adjustment_worst(crtc_state); 4136 } 4137 4138 unsigned int intel_cdclk_prefill_adjustment_worst(const struct intel_crtc_state *crtc_state) 4139 { 4140 int clock = crtc_state->hw.pipe_mode.crtc_clock; 4141 int min_cdclk; 4142 4143 /* 4144 * FIXME could perhaps consider a few more of the factors 4145 * that go the per-crtc min_cdclk. Namely anything that 4146 * only changes during full modesets. 4147 * 4148 * FIXME this assumes 1:1 scaling, but the other _worst() stuff 4149 * assumes max downscaling, so the final result will be 4150 * unrealistically bad. Figure out where the actual maximum value 4151 * lies and use that to compute a more realistic worst case 4152 * estimate... 4153 */ 4154 min_cdclk = _intel_pixel_rate_to_cdclk(crtc_state, clock); 4155 4156 return _intel_cdclk_prefill_adj(crtc_state, clock, min_cdclk); 4157 } 4158 4159 int intel_cdclk_min_cdclk_for_prefill(const struct intel_crtc_state *crtc_state, 4160 unsigned int prefill_lines_unadjusted, 4161 unsigned int prefill_lines_available) 4162 { 4163 struct intel_display *display = to_intel_display(crtc_state); 4164 const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 4165 int ppc = intel_cdclk_ppc(display, crtc_state->double_wide); 4166 4167 return DIV_ROUND_UP_ULL(mul_u32_u32(pipe_mode->crtc_clock, prefill_lines_unadjusted), 4168 ppc * prefill_lines_available); 4169 } 4170