1 /* 2 * Copyright © 2006-2017 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/time.h> 25 26 #include "hsw_ips.h" 27 #include "i915_reg.h" 28 #include "intel_atomic.h" 29 #include "intel_atomic_plane.h" 30 #include "intel_audio.h" 31 #include "intel_bw.h" 32 #include "intel_cdclk.h" 33 #include "intel_crtc.h" 34 #include "intel_de.h" 35 #include "intel_dp.h" 36 #include "intel_display_types.h" 37 #include "intel_mchbar_regs.h" 38 #include "intel_pci_config.h" 39 #include "intel_pcode.h" 40 #include "intel_psr.h" 41 #include "intel_vdsc.h" 42 #include "vlv_sideband.h" 43 44 /** 45 * DOC: CDCLK / RAWCLK 46 * 47 * The display engine uses several different clocks to do its work. There 48 * are two main clocks involved that aren't directly related to the actual 49 * pixel clock or any symbol/bit clock of the actual output port. These 50 * are the core display clock (CDCLK) and RAWCLK. 51 * 52 * CDCLK clocks most of the display pipe logic, and thus its frequency 53 * must be high enough to support the rate at which pixels are flowing 54 * through the pipes. Downscaling must also be accounted as that increases 55 * the effective pixel rate. 56 * 57 * On several platforms the CDCLK frequency can be changed dynamically 58 * to minimize power consumption for a given display configuration. 59 * Typically changes to the CDCLK frequency require all the display pipes 60 * to be shut down while the frequency is being changed. 61 * 62 * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit. 63 * DMC will not change the active CDCLK frequency however, so that part 64 * will still be performed by the driver directly. 65 * 66 * Several methods exist to change the CDCLK frequency, which ones are 67 * supported depends on the platform: 68 * 69 * - Full PLL disable + re-enable with new VCO frequency. Pipes must be inactive. 70 * - CD2X divider update. Single pipe can be active as the divider update 71 * can be synchronized with the pipe's start of vblank. 72 * - Crawl the PLL smoothly to the new VCO frequency. Pipes can be active. 73 * - Squash waveform update. Pipes can be active. 74 * - Crawl and squash can also be done back to back. Pipes can be active. 75 * 76 * RAWCLK is a fixed frequency clock, often used by various auxiliary 77 * blocks such as AUX CH or backlight PWM. Hence the only thing we 78 * really need to know about RAWCLK is its frequency so that various 79 * dividers can be programmed correctly. 80 */ 81 82 struct intel_cdclk_funcs { 83 void (*get_cdclk)(struct drm_i915_private *i915, 84 struct intel_cdclk_config *cdclk_config); 85 void (*set_cdclk)(struct drm_i915_private *i915, 86 const struct intel_cdclk_config *cdclk_config, 87 enum pipe pipe); 88 int (*modeset_calc_cdclk)(struct intel_cdclk_state *state); 89 u8 (*calc_voltage_level)(int cdclk); 90 }; 91 92 void intel_cdclk_get_cdclk(struct drm_i915_private *dev_priv, 93 struct intel_cdclk_config *cdclk_config) 94 { 95 dev_priv->display.funcs.cdclk->get_cdclk(dev_priv, cdclk_config); 96 } 97 98 static void intel_cdclk_set_cdclk(struct drm_i915_private *dev_priv, 99 const struct intel_cdclk_config *cdclk_config, 100 enum pipe pipe) 101 { 102 dev_priv->display.funcs.cdclk->set_cdclk(dev_priv, cdclk_config, pipe); 103 } 104 105 static int intel_cdclk_modeset_calc_cdclk(struct drm_i915_private *dev_priv, 106 struct intel_cdclk_state *cdclk_config) 107 { 108 return dev_priv->display.funcs.cdclk->modeset_calc_cdclk(cdclk_config); 109 } 110 111 static u8 intel_cdclk_calc_voltage_level(struct drm_i915_private *dev_priv, 112 int cdclk) 113 { 114 return dev_priv->display.funcs.cdclk->calc_voltage_level(cdclk); 115 } 116 117 static void fixed_133mhz_get_cdclk(struct drm_i915_private *dev_priv, 118 struct intel_cdclk_config *cdclk_config) 119 { 120 cdclk_config->cdclk = 133333; 121 } 122 123 static void fixed_200mhz_get_cdclk(struct drm_i915_private *dev_priv, 124 struct intel_cdclk_config *cdclk_config) 125 { 126 cdclk_config->cdclk = 200000; 127 } 128 129 static void fixed_266mhz_get_cdclk(struct drm_i915_private *dev_priv, 130 struct intel_cdclk_config *cdclk_config) 131 { 132 cdclk_config->cdclk = 266667; 133 } 134 135 static void fixed_333mhz_get_cdclk(struct drm_i915_private *dev_priv, 136 struct intel_cdclk_config *cdclk_config) 137 { 138 cdclk_config->cdclk = 333333; 139 } 140 141 static void fixed_400mhz_get_cdclk(struct drm_i915_private *dev_priv, 142 struct intel_cdclk_config *cdclk_config) 143 { 144 cdclk_config->cdclk = 400000; 145 } 146 147 static void fixed_450mhz_get_cdclk(struct drm_i915_private *dev_priv, 148 struct intel_cdclk_config *cdclk_config) 149 { 150 cdclk_config->cdclk = 450000; 151 } 152 153 static void i85x_get_cdclk(struct drm_i915_private *dev_priv, 154 struct intel_cdclk_config *cdclk_config) 155 { 156 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 157 u16 hpllcc = 0; 158 159 /* 160 * 852GM/852GMV only supports 133 MHz and the HPLLCC 161 * encoding is different :( 162 * FIXME is this the right way to detect 852GM/852GMV? 163 */ 164 if (pdev->revision == 0x1) { 165 cdclk_config->cdclk = 133333; 166 return; 167 } 168 169 pci_bus_read_config_word(pdev->bus, 170 PCI_DEVFN(0, 3), HPLLCC, &hpllcc); 171 172 /* Assume that the hardware is in the high speed state. This 173 * should be the default. 174 */ 175 switch (hpllcc & GC_CLOCK_CONTROL_MASK) { 176 case GC_CLOCK_133_200: 177 case GC_CLOCK_133_200_2: 178 case GC_CLOCK_100_200: 179 cdclk_config->cdclk = 200000; 180 break; 181 case GC_CLOCK_166_250: 182 cdclk_config->cdclk = 250000; 183 break; 184 case GC_CLOCK_100_133: 185 cdclk_config->cdclk = 133333; 186 break; 187 case GC_CLOCK_133_266: 188 case GC_CLOCK_133_266_2: 189 case GC_CLOCK_166_266: 190 cdclk_config->cdclk = 266667; 191 break; 192 } 193 } 194 195 static void i915gm_get_cdclk(struct drm_i915_private *dev_priv, 196 struct intel_cdclk_config *cdclk_config) 197 { 198 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 199 u16 gcfgc = 0; 200 201 pci_read_config_word(pdev, GCFGC, &gcfgc); 202 203 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) { 204 cdclk_config->cdclk = 133333; 205 return; 206 } 207 208 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 209 case GC_DISPLAY_CLOCK_333_320_MHZ: 210 cdclk_config->cdclk = 333333; 211 break; 212 default: 213 case GC_DISPLAY_CLOCK_190_200_MHZ: 214 cdclk_config->cdclk = 190000; 215 break; 216 } 217 } 218 219 static void i945gm_get_cdclk(struct drm_i915_private *dev_priv, 220 struct intel_cdclk_config *cdclk_config) 221 { 222 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 223 u16 gcfgc = 0; 224 225 pci_read_config_word(pdev, GCFGC, &gcfgc); 226 227 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) { 228 cdclk_config->cdclk = 133333; 229 return; 230 } 231 232 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 233 case GC_DISPLAY_CLOCK_333_320_MHZ: 234 cdclk_config->cdclk = 320000; 235 break; 236 default: 237 case GC_DISPLAY_CLOCK_190_200_MHZ: 238 cdclk_config->cdclk = 200000; 239 break; 240 } 241 } 242 243 static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv) 244 { 245 static const unsigned int blb_vco[8] = { 246 [0] = 3200000, 247 [1] = 4000000, 248 [2] = 5333333, 249 [3] = 4800000, 250 [4] = 6400000, 251 }; 252 static const unsigned int pnv_vco[8] = { 253 [0] = 3200000, 254 [1] = 4000000, 255 [2] = 5333333, 256 [3] = 4800000, 257 [4] = 2666667, 258 }; 259 static const unsigned int cl_vco[8] = { 260 [0] = 3200000, 261 [1] = 4000000, 262 [2] = 5333333, 263 [3] = 6400000, 264 [4] = 3333333, 265 [5] = 3566667, 266 [6] = 4266667, 267 }; 268 static const unsigned int elk_vco[8] = { 269 [0] = 3200000, 270 [1] = 4000000, 271 [2] = 5333333, 272 [3] = 4800000, 273 }; 274 static const unsigned int ctg_vco[8] = { 275 [0] = 3200000, 276 [1] = 4000000, 277 [2] = 5333333, 278 [3] = 6400000, 279 [4] = 2666667, 280 [5] = 4266667, 281 }; 282 const unsigned int *vco_table; 283 unsigned int vco; 284 u8 tmp = 0; 285 286 /* FIXME other chipsets? */ 287 if (IS_GM45(dev_priv)) 288 vco_table = ctg_vco; 289 else if (IS_G45(dev_priv)) 290 vco_table = elk_vco; 291 else if (IS_I965GM(dev_priv)) 292 vco_table = cl_vco; 293 else if (IS_PINEVIEW(dev_priv)) 294 vco_table = pnv_vco; 295 else if (IS_G33(dev_priv)) 296 vco_table = blb_vco; 297 else 298 return 0; 299 300 tmp = intel_de_read(dev_priv, 301 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO); 302 303 vco = vco_table[tmp & 0x7]; 304 if (vco == 0) 305 drm_err(&dev_priv->drm, "Bad HPLL VCO (HPLLVCO=0x%02x)\n", 306 tmp); 307 else 308 drm_dbg_kms(&dev_priv->drm, "HPLL VCO %u kHz\n", vco); 309 310 return vco; 311 } 312 313 static void g33_get_cdclk(struct drm_i915_private *dev_priv, 314 struct intel_cdclk_config *cdclk_config) 315 { 316 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 317 static const u8 div_3200[] = { 12, 10, 8, 7, 5, 16 }; 318 static const u8 div_4000[] = { 14, 12, 10, 8, 6, 20 }; 319 static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 }; 320 static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 }; 321 const u8 *div_table; 322 unsigned int cdclk_sel; 323 u16 tmp = 0; 324 325 cdclk_config->vco = intel_hpll_vco(dev_priv); 326 327 pci_read_config_word(pdev, GCFGC, &tmp); 328 329 cdclk_sel = (tmp >> 4) & 0x7; 330 331 if (cdclk_sel >= ARRAY_SIZE(div_3200)) 332 goto fail; 333 334 switch (cdclk_config->vco) { 335 case 3200000: 336 div_table = div_3200; 337 break; 338 case 4000000: 339 div_table = div_4000; 340 break; 341 case 4800000: 342 div_table = div_4800; 343 break; 344 case 5333333: 345 div_table = div_5333; 346 break; 347 default: 348 goto fail; 349 } 350 351 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, 352 div_table[cdclk_sel]); 353 return; 354 355 fail: 356 drm_err(&dev_priv->drm, 357 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", 358 cdclk_config->vco, tmp); 359 cdclk_config->cdclk = 190476; 360 } 361 362 static void pnv_get_cdclk(struct drm_i915_private *dev_priv, 363 struct intel_cdclk_config *cdclk_config) 364 { 365 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 366 u16 gcfgc = 0; 367 368 pci_read_config_word(pdev, GCFGC, &gcfgc); 369 370 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 371 case GC_DISPLAY_CLOCK_267_MHZ_PNV: 372 cdclk_config->cdclk = 266667; 373 break; 374 case GC_DISPLAY_CLOCK_333_MHZ_PNV: 375 cdclk_config->cdclk = 333333; 376 break; 377 case GC_DISPLAY_CLOCK_444_MHZ_PNV: 378 cdclk_config->cdclk = 444444; 379 break; 380 case GC_DISPLAY_CLOCK_200_MHZ_PNV: 381 cdclk_config->cdclk = 200000; 382 break; 383 default: 384 drm_err(&dev_priv->drm, 385 "Unknown pnv display core clock 0x%04x\n", gcfgc); 386 fallthrough; 387 case GC_DISPLAY_CLOCK_133_MHZ_PNV: 388 cdclk_config->cdclk = 133333; 389 break; 390 case GC_DISPLAY_CLOCK_167_MHZ_PNV: 391 cdclk_config->cdclk = 166667; 392 break; 393 } 394 } 395 396 static void i965gm_get_cdclk(struct drm_i915_private *dev_priv, 397 struct intel_cdclk_config *cdclk_config) 398 { 399 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 400 static const u8 div_3200[] = { 16, 10, 8 }; 401 static const u8 div_4000[] = { 20, 12, 10 }; 402 static const u8 div_5333[] = { 24, 16, 14 }; 403 const u8 *div_table; 404 unsigned int cdclk_sel; 405 u16 tmp = 0; 406 407 cdclk_config->vco = intel_hpll_vco(dev_priv); 408 409 pci_read_config_word(pdev, GCFGC, &tmp); 410 411 cdclk_sel = ((tmp >> 8) & 0x1f) - 1; 412 413 if (cdclk_sel >= ARRAY_SIZE(div_3200)) 414 goto fail; 415 416 switch (cdclk_config->vco) { 417 case 3200000: 418 div_table = div_3200; 419 break; 420 case 4000000: 421 div_table = div_4000; 422 break; 423 case 5333333: 424 div_table = div_5333; 425 break; 426 default: 427 goto fail; 428 } 429 430 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, 431 div_table[cdclk_sel]); 432 return; 433 434 fail: 435 drm_err(&dev_priv->drm, 436 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", 437 cdclk_config->vco, tmp); 438 cdclk_config->cdclk = 200000; 439 } 440 441 static void gm45_get_cdclk(struct drm_i915_private *dev_priv, 442 struct intel_cdclk_config *cdclk_config) 443 { 444 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 445 unsigned int cdclk_sel; 446 u16 tmp = 0; 447 448 cdclk_config->vco = intel_hpll_vco(dev_priv); 449 450 pci_read_config_word(pdev, GCFGC, &tmp); 451 452 cdclk_sel = (tmp >> 12) & 0x1; 453 454 switch (cdclk_config->vco) { 455 case 2666667: 456 case 4000000: 457 case 5333333: 458 cdclk_config->cdclk = cdclk_sel ? 333333 : 222222; 459 break; 460 case 3200000: 461 cdclk_config->cdclk = cdclk_sel ? 320000 : 228571; 462 break; 463 default: 464 drm_err(&dev_priv->drm, 465 "Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", 466 cdclk_config->vco, tmp); 467 cdclk_config->cdclk = 222222; 468 break; 469 } 470 } 471 472 static void hsw_get_cdclk(struct drm_i915_private *dev_priv, 473 struct intel_cdclk_config *cdclk_config) 474 { 475 u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL); 476 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK; 477 478 if (lcpll & LCPLL_CD_SOURCE_FCLK) 479 cdclk_config->cdclk = 800000; 480 else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT) 481 cdclk_config->cdclk = 450000; 482 else if (freq == LCPLL_CLK_FREQ_450) 483 cdclk_config->cdclk = 450000; 484 else if (IS_HASWELL_ULT(dev_priv)) 485 cdclk_config->cdclk = 337500; 486 else 487 cdclk_config->cdclk = 540000; 488 } 489 490 static int vlv_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk) 491 { 492 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 493 333333 : 320000; 494 495 /* 496 * We seem to get an unstable or solid color picture at 200MHz. 497 * Not sure what's wrong. For now use 200MHz only when all pipes 498 * are off. 499 */ 500 if (IS_VALLEYVIEW(dev_priv) && min_cdclk > freq_320) 501 return 400000; 502 else if (min_cdclk > 266667) 503 return freq_320; 504 else if (min_cdclk > 0) 505 return 266667; 506 else 507 return 200000; 508 } 509 510 static u8 vlv_calc_voltage_level(struct drm_i915_private *dev_priv, int cdclk) 511 { 512 if (IS_VALLEYVIEW(dev_priv)) { 513 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */ 514 return 2; 515 else if (cdclk >= 266667) 516 return 1; 517 else 518 return 0; 519 } else { 520 /* 521 * Specs are full of misinformation, but testing on actual 522 * hardware has shown that we just need to write the desired 523 * CCK divider into the Punit register. 524 */ 525 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; 526 } 527 } 528 529 static void vlv_get_cdclk(struct drm_i915_private *dev_priv, 530 struct intel_cdclk_config *cdclk_config) 531 { 532 u32 val; 533 534 vlv_iosf_sb_get(dev_priv, 535 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT)); 536 537 cdclk_config->vco = vlv_get_hpll_vco(dev_priv); 538 cdclk_config->cdclk = vlv_get_cck_clock(dev_priv, "cdclk", 539 CCK_DISPLAY_CLOCK_CONTROL, 540 cdclk_config->vco); 541 542 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 543 544 vlv_iosf_sb_put(dev_priv, 545 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT)); 546 547 if (IS_VALLEYVIEW(dev_priv)) 548 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK) >> 549 DSPFREQGUAR_SHIFT; 550 else 551 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >> 552 DSPFREQGUAR_SHIFT_CHV; 553 } 554 555 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv) 556 { 557 unsigned int credits, default_credits; 558 559 if (IS_CHERRYVIEW(dev_priv)) 560 default_credits = PFI_CREDIT(12); 561 else 562 default_credits = PFI_CREDIT(8); 563 564 if (dev_priv->display.cdclk.hw.cdclk >= dev_priv->czclk_freq) { 565 /* CHV suggested value is 31 or 63 */ 566 if (IS_CHERRYVIEW(dev_priv)) 567 credits = PFI_CREDIT_63; 568 else 569 credits = PFI_CREDIT(15); 570 } else { 571 credits = default_credits; 572 } 573 574 /* 575 * WA - write default credits before re-programming 576 * FIXME: should we also set the resend bit here? 577 */ 578 intel_de_write(dev_priv, GCI_CONTROL, 579 VGA_FAST_MODE_DISABLE | default_credits); 580 581 intel_de_write(dev_priv, GCI_CONTROL, 582 VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND); 583 584 /* 585 * FIXME is this guaranteed to clear 586 * immediately or should we poll for it? 587 */ 588 drm_WARN_ON(&dev_priv->drm, 589 intel_de_read(dev_priv, GCI_CONTROL) & PFI_CREDIT_RESEND); 590 } 591 592 static void vlv_set_cdclk(struct drm_i915_private *dev_priv, 593 const struct intel_cdclk_config *cdclk_config, 594 enum pipe pipe) 595 { 596 int cdclk = cdclk_config->cdclk; 597 u32 val, cmd = cdclk_config->voltage_level; 598 intel_wakeref_t wakeref; 599 600 switch (cdclk) { 601 case 400000: 602 case 333333: 603 case 320000: 604 case 266667: 605 case 200000: 606 break; 607 default: 608 MISSING_CASE(cdclk); 609 return; 610 } 611 612 /* There are cases where we can end up here with power domains 613 * off and a CDCLK frequency other than the minimum, like when 614 * issuing a modeset without actually changing any display after 615 * a system suspend. So grab the display core domain, which covers 616 * the HW blocks needed for the following programming. 617 */ 618 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE); 619 620 vlv_iosf_sb_get(dev_priv, 621 BIT(VLV_IOSF_SB_CCK) | 622 BIT(VLV_IOSF_SB_BUNIT) | 623 BIT(VLV_IOSF_SB_PUNIT)); 624 625 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 626 val &= ~DSPFREQGUAR_MASK; 627 val |= (cmd << DSPFREQGUAR_SHIFT); 628 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); 629 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & 630 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT), 631 50)) { 632 drm_err(&dev_priv->drm, 633 "timed out waiting for CDclk change\n"); 634 } 635 636 if (cdclk == 400000) { 637 u32 divider; 638 639 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, 640 cdclk) - 1; 641 642 /* adjust cdclk divider */ 643 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); 644 val &= ~CCK_FREQUENCY_VALUES; 645 val |= divider; 646 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val); 647 648 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) & 649 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT), 650 50)) 651 drm_err(&dev_priv->drm, 652 "timed out waiting for CDclk change\n"); 653 } 654 655 /* adjust self-refresh exit latency value */ 656 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC); 657 val &= ~0x7f; 658 659 /* 660 * For high bandwidth configs, we set a higher latency in the bunit 661 * so that the core display fetch happens in time to avoid underruns. 662 */ 663 if (cdclk == 400000) 664 val |= 4500 / 250; /* 4.5 usec */ 665 else 666 val |= 3000 / 250; /* 3.0 usec */ 667 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val); 668 669 vlv_iosf_sb_put(dev_priv, 670 BIT(VLV_IOSF_SB_CCK) | 671 BIT(VLV_IOSF_SB_BUNIT) | 672 BIT(VLV_IOSF_SB_PUNIT)); 673 674 intel_update_cdclk(dev_priv); 675 676 vlv_program_pfi_credits(dev_priv); 677 678 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); 679 } 680 681 static void chv_set_cdclk(struct drm_i915_private *dev_priv, 682 const struct intel_cdclk_config *cdclk_config, 683 enum pipe pipe) 684 { 685 int cdclk = cdclk_config->cdclk; 686 u32 val, cmd = cdclk_config->voltage_level; 687 intel_wakeref_t wakeref; 688 689 switch (cdclk) { 690 case 333333: 691 case 320000: 692 case 266667: 693 case 200000: 694 break; 695 default: 696 MISSING_CASE(cdclk); 697 return; 698 } 699 700 /* There are cases where we can end up here with power domains 701 * off and a CDCLK frequency other than the minimum, like when 702 * issuing a modeset without actually changing any display after 703 * a system suspend. So grab the display core domain, which covers 704 * the HW blocks needed for the following programming. 705 */ 706 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE); 707 708 vlv_punit_get(dev_priv); 709 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 710 val &= ~DSPFREQGUAR_MASK_CHV; 711 val |= (cmd << DSPFREQGUAR_SHIFT_CHV); 712 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); 713 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & 714 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV), 715 50)) { 716 drm_err(&dev_priv->drm, 717 "timed out waiting for CDclk change\n"); 718 } 719 720 vlv_punit_put(dev_priv); 721 722 intel_update_cdclk(dev_priv); 723 724 vlv_program_pfi_credits(dev_priv); 725 726 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); 727 } 728 729 static int bdw_calc_cdclk(int min_cdclk) 730 { 731 if (min_cdclk > 540000) 732 return 675000; 733 else if (min_cdclk > 450000) 734 return 540000; 735 else if (min_cdclk > 337500) 736 return 450000; 737 else 738 return 337500; 739 } 740 741 static u8 bdw_calc_voltage_level(int cdclk) 742 { 743 switch (cdclk) { 744 default: 745 case 337500: 746 return 2; 747 case 450000: 748 return 0; 749 case 540000: 750 return 1; 751 case 675000: 752 return 3; 753 } 754 } 755 756 static void bdw_get_cdclk(struct drm_i915_private *dev_priv, 757 struct intel_cdclk_config *cdclk_config) 758 { 759 u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL); 760 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK; 761 762 if (lcpll & LCPLL_CD_SOURCE_FCLK) 763 cdclk_config->cdclk = 800000; 764 else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT) 765 cdclk_config->cdclk = 450000; 766 else if (freq == LCPLL_CLK_FREQ_450) 767 cdclk_config->cdclk = 450000; 768 else if (freq == LCPLL_CLK_FREQ_54O_BDW) 769 cdclk_config->cdclk = 540000; 770 else if (freq == LCPLL_CLK_FREQ_337_5_BDW) 771 cdclk_config->cdclk = 337500; 772 else 773 cdclk_config->cdclk = 675000; 774 775 /* 776 * Can't read this out :( Let's assume it's 777 * at least what the CDCLK frequency requires. 778 */ 779 cdclk_config->voltage_level = 780 bdw_calc_voltage_level(cdclk_config->cdclk); 781 } 782 783 static u32 bdw_cdclk_freq_sel(int cdclk) 784 { 785 switch (cdclk) { 786 default: 787 MISSING_CASE(cdclk); 788 fallthrough; 789 case 337500: 790 return LCPLL_CLK_FREQ_337_5_BDW; 791 case 450000: 792 return LCPLL_CLK_FREQ_450; 793 case 540000: 794 return LCPLL_CLK_FREQ_54O_BDW; 795 case 675000: 796 return LCPLL_CLK_FREQ_675_BDW; 797 } 798 } 799 800 static void bdw_set_cdclk(struct drm_i915_private *dev_priv, 801 const struct intel_cdclk_config *cdclk_config, 802 enum pipe pipe) 803 { 804 int cdclk = cdclk_config->cdclk; 805 int ret; 806 807 if (drm_WARN(&dev_priv->drm, 808 (intel_de_read(dev_priv, LCPLL_CTL) & 809 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK | 810 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE | 811 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW | 812 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK, 813 "trying to change cdclk frequency with cdclk not enabled\n")) 814 return; 815 816 ret = snb_pcode_write(&dev_priv->uncore, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0); 817 if (ret) { 818 drm_err(&dev_priv->drm, 819 "failed to inform pcode about cdclk change\n"); 820 return; 821 } 822 823 intel_de_rmw(dev_priv, LCPLL_CTL, 824 0, LCPLL_CD_SOURCE_FCLK); 825 826 /* 827 * According to the spec, it should be enough to poll for this 1 us. 828 * However, extensive testing shows that this can take longer. 829 */ 830 if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) & 831 LCPLL_CD_SOURCE_FCLK_DONE, 100)) 832 drm_err(&dev_priv->drm, "Switching to FCLK failed\n"); 833 834 intel_de_rmw(dev_priv, LCPLL_CTL, 835 LCPLL_CLK_FREQ_MASK, bdw_cdclk_freq_sel(cdclk)); 836 837 intel_de_rmw(dev_priv, LCPLL_CTL, 838 LCPLL_CD_SOURCE_FCLK, 0); 839 840 if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) & 841 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) 842 drm_err(&dev_priv->drm, "Switching back to LCPLL failed\n"); 843 844 snb_pcode_write(&dev_priv->uncore, HSW_PCODE_DE_WRITE_FREQ_REQ, 845 cdclk_config->voltage_level); 846 847 intel_de_write(dev_priv, CDCLK_FREQ, 848 DIV_ROUND_CLOSEST(cdclk, 1000) - 1); 849 850 intel_update_cdclk(dev_priv); 851 } 852 853 static int skl_calc_cdclk(int min_cdclk, int vco) 854 { 855 if (vco == 8640000) { 856 if (min_cdclk > 540000) 857 return 617143; 858 else if (min_cdclk > 432000) 859 return 540000; 860 else if (min_cdclk > 308571) 861 return 432000; 862 else 863 return 308571; 864 } else { 865 if (min_cdclk > 540000) 866 return 675000; 867 else if (min_cdclk > 450000) 868 return 540000; 869 else if (min_cdclk > 337500) 870 return 450000; 871 else 872 return 337500; 873 } 874 } 875 876 static u8 skl_calc_voltage_level(int cdclk) 877 { 878 if (cdclk > 540000) 879 return 3; 880 else if (cdclk > 450000) 881 return 2; 882 else if (cdclk > 337500) 883 return 1; 884 else 885 return 0; 886 } 887 888 static void skl_dpll0_update(struct drm_i915_private *dev_priv, 889 struct intel_cdclk_config *cdclk_config) 890 { 891 u32 val; 892 893 cdclk_config->ref = 24000; 894 cdclk_config->vco = 0; 895 896 val = intel_de_read(dev_priv, LCPLL1_CTL); 897 if ((val & LCPLL_PLL_ENABLE) == 0) 898 return; 899 900 if (drm_WARN_ON(&dev_priv->drm, (val & LCPLL_PLL_LOCK) == 0)) 901 return; 902 903 val = intel_de_read(dev_priv, DPLL_CTRL1); 904 905 if (drm_WARN_ON(&dev_priv->drm, 906 (val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | 907 DPLL_CTRL1_SSC(SKL_DPLL0) | 908 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) != 909 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) 910 return; 911 912 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) { 913 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0): 914 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0): 915 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0): 916 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0): 917 cdclk_config->vco = 8100000; 918 break; 919 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0): 920 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0): 921 cdclk_config->vco = 8640000; 922 break; 923 default: 924 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)); 925 break; 926 } 927 } 928 929 static void skl_get_cdclk(struct drm_i915_private *dev_priv, 930 struct intel_cdclk_config *cdclk_config) 931 { 932 u32 cdctl; 933 934 skl_dpll0_update(dev_priv, cdclk_config); 935 936 cdclk_config->cdclk = cdclk_config->bypass = cdclk_config->ref; 937 938 if (cdclk_config->vco == 0) 939 goto out; 940 941 cdctl = intel_de_read(dev_priv, CDCLK_CTL); 942 943 if (cdclk_config->vco == 8640000) { 944 switch (cdctl & CDCLK_FREQ_SEL_MASK) { 945 case CDCLK_FREQ_450_432: 946 cdclk_config->cdclk = 432000; 947 break; 948 case CDCLK_FREQ_337_308: 949 cdclk_config->cdclk = 308571; 950 break; 951 case CDCLK_FREQ_540: 952 cdclk_config->cdclk = 540000; 953 break; 954 case CDCLK_FREQ_675_617: 955 cdclk_config->cdclk = 617143; 956 break; 957 default: 958 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); 959 break; 960 } 961 } else { 962 switch (cdctl & CDCLK_FREQ_SEL_MASK) { 963 case CDCLK_FREQ_450_432: 964 cdclk_config->cdclk = 450000; 965 break; 966 case CDCLK_FREQ_337_308: 967 cdclk_config->cdclk = 337500; 968 break; 969 case CDCLK_FREQ_540: 970 cdclk_config->cdclk = 540000; 971 break; 972 case CDCLK_FREQ_675_617: 973 cdclk_config->cdclk = 675000; 974 break; 975 default: 976 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); 977 break; 978 } 979 } 980 981 out: 982 /* 983 * Can't read this out :( Let's assume it's 984 * at least what the CDCLK frequency requires. 985 */ 986 cdclk_config->voltage_level = 987 skl_calc_voltage_level(cdclk_config->cdclk); 988 } 989 990 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */ 991 static int skl_cdclk_decimal(int cdclk) 992 { 993 return DIV_ROUND_CLOSEST(cdclk - 1000, 500); 994 } 995 996 static void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, 997 int vco) 998 { 999 bool changed = dev_priv->skl_preferred_vco_freq != vco; 1000 1001 dev_priv->skl_preferred_vco_freq = vco; 1002 1003 if (changed) 1004 intel_update_max_cdclk(dev_priv); 1005 } 1006 1007 static u32 skl_dpll0_link_rate(struct drm_i915_private *dev_priv, int vco) 1008 { 1009 drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000); 1010 1011 /* 1012 * We always enable DPLL0 with the lowest link rate possible, but still 1013 * taking into account the VCO required to operate the eDP panel at the 1014 * desired frequency. The usual DP link rates operate with a VCO of 1015 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640. 1016 * The modeset code is responsible for the selection of the exact link 1017 * rate later on, with the constraint of choosing a frequency that 1018 * works with vco. 1019 */ 1020 if (vco == 8640000) 1021 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0); 1022 else 1023 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0); 1024 } 1025 1026 static void skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco) 1027 { 1028 intel_de_rmw(dev_priv, DPLL_CTRL1, 1029 DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | 1030 DPLL_CTRL1_SSC(SKL_DPLL0) | 1031 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0), 1032 DPLL_CTRL1_OVERRIDE(SKL_DPLL0) | 1033 skl_dpll0_link_rate(dev_priv, vco)); 1034 intel_de_posting_read(dev_priv, DPLL_CTRL1); 1035 1036 intel_de_rmw(dev_priv, LCPLL1_CTL, 1037 0, LCPLL_PLL_ENABLE); 1038 1039 if (intel_de_wait_for_set(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 5)) 1040 drm_err(&dev_priv->drm, "DPLL0 not locked\n"); 1041 1042 dev_priv->display.cdclk.hw.vco = vco; 1043 1044 /* We'll want to keep using the current vco from now on. */ 1045 skl_set_preferred_cdclk_vco(dev_priv, vco); 1046 } 1047 1048 static void skl_dpll0_disable(struct drm_i915_private *dev_priv) 1049 { 1050 intel_de_rmw(dev_priv, LCPLL1_CTL, 1051 LCPLL_PLL_ENABLE, 0); 1052 1053 if (intel_de_wait_for_clear(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 1)) 1054 drm_err(&dev_priv->drm, "Couldn't disable DPLL0\n"); 1055 1056 dev_priv->display.cdclk.hw.vco = 0; 1057 } 1058 1059 static u32 skl_cdclk_freq_sel(struct drm_i915_private *dev_priv, 1060 int cdclk, int vco) 1061 { 1062 switch (cdclk) { 1063 default: 1064 drm_WARN_ON(&dev_priv->drm, 1065 cdclk != dev_priv->display.cdclk.hw.bypass); 1066 drm_WARN_ON(&dev_priv->drm, vco != 0); 1067 fallthrough; 1068 case 308571: 1069 case 337500: 1070 return CDCLK_FREQ_337_308; 1071 case 450000: 1072 case 432000: 1073 return CDCLK_FREQ_450_432; 1074 case 540000: 1075 return CDCLK_FREQ_540; 1076 case 617143: 1077 case 675000: 1078 return CDCLK_FREQ_675_617; 1079 } 1080 } 1081 1082 static void skl_set_cdclk(struct drm_i915_private *dev_priv, 1083 const struct intel_cdclk_config *cdclk_config, 1084 enum pipe pipe) 1085 { 1086 int cdclk = cdclk_config->cdclk; 1087 int vco = cdclk_config->vco; 1088 u32 freq_select, cdclk_ctl; 1089 int ret; 1090 1091 /* 1092 * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are 1093 * unsupported on SKL. In theory this should never happen since only 1094 * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not 1095 * supported on SKL either, see the above WA. WARN whenever trying to 1096 * use the corresponding VCO freq as that always leads to using the 1097 * minimum 308MHz CDCLK. 1098 */ 1099 drm_WARN_ON_ONCE(&dev_priv->drm, 1100 IS_SKYLAKE(dev_priv) && vco == 8640000); 1101 1102 ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL, 1103 SKL_CDCLK_PREPARE_FOR_CHANGE, 1104 SKL_CDCLK_READY_FOR_CHANGE, 1105 SKL_CDCLK_READY_FOR_CHANGE, 3); 1106 if (ret) { 1107 drm_err(&dev_priv->drm, 1108 "Failed to inform PCU about cdclk change (%d)\n", ret); 1109 return; 1110 } 1111 1112 freq_select = skl_cdclk_freq_sel(dev_priv, cdclk, vco); 1113 1114 if (dev_priv->display.cdclk.hw.vco != 0 && 1115 dev_priv->display.cdclk.hw.vco != vco) 1116 skl_dpll0_disable(dev_priv); 1117 1118 cdclk_ctl = intel_de_read(dev_priv, CDCLK_CTL); 1119 1120 if (dev_priv->display.cdclk.hw.vco != vco) { 1121 /* Wa Display #1183: skl,kbl,cfl */ 1122 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK); 1123 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk); 1124 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); 1125 } 1126 1127 /* Wa Display #1183: skl,kbl,cfl */ 1128 cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE; 1129 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); 1130 intel_de_posting_read(dev_priv, CDCLK_CTL); 1131 1132 if (dev_priv->display.cdclk.hw.vco != vco) 1133 skl_dpll0_enable(dev_priv, vco); 1134 1135 /* Wa Display #1183: skl,kbl,cfl */ 1136 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK); 1137 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); 1138 1139 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk); 1140 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); 1141 1142 /* Wa Display #1183: skl,kbl,cfl */ 1143 cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE; 1144 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); 1145 intel_de_posting_read(dev_priv, CDCLK_CTL); 1146 1147 /* inform PCU of the change */ 1148 snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL, 1149 cdclk_config->voltage_level); 1150 1151 intel_update_cdclk(dev_priv); 1152 } 1153 1154 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv) 1155 { 1156 u32 cdctl, expected; 1157 1158 /* 1159 * check if the pre-os initialized the display 1160 * There is SWF18 scratchpad register defined which is set by the 1161 * pre-os which can be used by the OS drivers to check the status 1162 */ 1163 if ((intel_de_read(dev_priv, SWF_ILK(0x18)) & 0x00FFFFFF) == 0) 1164 goto sanitize; 1165 1166 intel_update_cdclk(dev_priv); 1167 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK"); 1168 1169 /* Is PLL enabled and locked ? */ 1170 if (dev_priv->display.cdclk.hw.vco == 0 || 1171 dev_priv->display.cdclk.hw.cdclk == dev_priv->display.cdclk.hw.bypass) 1172 goto sanitize; 1173 1174 /* DPLL okay; verify the cdclock 1175 * 1176 * Noticed in some instances that the freq selection is correct but 1177 * decimal part is programmed wrong from BIOS where pre-os does not 1178 * enable display. Verify the same as well. 1179 */ 1180 cdctl = intel_de_read(dev_priv, CDCLK_CTL); 1181 expected = (cdctl & CDCLK_FREQ_SEL_MASK) | 1182 skl_cdclk_decimal(dev_priv->display.cdclk.hw.cdclk); 1183 if (cdctl == expected) 1184 /* All well; nothing to sanitize */ 1185 return; 1186 1187 sanitize: 1188 drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n"); 1189 1190 /* force cdclk programming */ 1191 dev_priv->display.cdclk.hw.cdclk = 0; 1192 /* force full PLL disable + enable */ 1193 dev_priv->display.cdclk.hw.vco = ~0; 1194 } 1195 1196 static void skl_cdclk_init_hw(struct drm_i915_private *dev_priv) 1197 { 1198 struct intel_cdclk_config cdclk_config; 1199 1200 skl_sanitize_cdclk(dev_priv); 1201 1202 if (dev_priv->display.cdclk.hw.cdclk != 0 && 1203 dev_priv->display.cdclk.hw.vco != 0) { 1204 /* 1205 * Use the current vco as our initial 1206 * guess as to what the preferred vco is. 1207 */ 1208 if (dev_priv->skl_preferred_vco_freq == 0) 1209 skl_set_preferred_cdclk_vco(dev_priv, 1210 dev_priv->display.cdclk.hw.vco); 1211 return; 1212 } 1213 1214 cdclk_config = dev_priv->display.cdclk.hw; 1215 1216 cdclk_config.vco = dev_priv->skl_preferred_vco_freq; 1217 if (cdclk_config.vco == 0) 1218 cdclk_config.vco = 8100000; 1219 cdclk_config.cdclk = skl_calc_cdclk(0, cdclk_config.vco); 1220 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk); 1221 1222 skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE); 1223 } 1224 1225 static void skl_cdclk_uninit_hw(struct drm_i915_private *dev_priv) 1226 { 1227 struct intel_cdclk_config cdclk_config = dev_priv->display.cdclk.hw; 1228 1229 cdclk_config.cdclk = cdclk_config.bypass; 1230 cdclk_config.vco = 0; 1231 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk); 1232 1233 skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE); 1234 } 1235 1236 struct intel_cdclk_vals { 1237 u32 cdclk; 1238 u16 refclk; 1239 u16 waveform; 1240 u8 ratio; 1241 }; 1242 1243 static const struct intel_cdclk_vals bxt_cdclk_table[] = { 1244 { .refclk = 19200, .cdclk = 144000, .ratio = 60 }, 1245 { .refclk = 19200, .cdclk = 288000, .ratio = 60 }, 1246 { .refclk = 19200, .cdclk = 384000, .ratio = 60 }, 1247 { .refclk = 19200, .cdclk = 576000, .ratio = 60 }, 1248 { .refclk = 19200, .cdclk = 624000, .ratio = 65 }, 1249 {} 1250 }; 1251 1252 static const struct intel_cdclk_vals glk_cdclk_table[] = { 1253 { .refclk = 19200, .cdclk = 79200, .ratio = 33 }, 1254 { .refclk = 19200, .cdclk = 158400, .ratio = 33 }, 1255 { .refclk = 19200, .cdclk = 316800, .ratio = 33 }, 1256 {} 1257 }; 1258 1259 static const struct intel_cdclk_vals icl_cdclk_table[] = { 1260 { .refclk = 19200, .cdclk = 172800, .ratio = 18 }, 1261 { .refclk = 19200, .cdclk = 192000, .ratio = 20 }, 1262 { .refclk = 19200, .cdclk = 307200, .ratio = 32 }, 1263 { .refclk = 19200, .cdclk = 326400, .ratio = 68 }, 1264 { .refclk = 19200, .cdclk = 556800, .ratio = 58 }, 1265 { .refclk = 19200, .cdclk = 652800, .ratio = 68 }, 1266 1267 { .refclk = 24000, .cdclk = 180000, .ratio = 15 }, 1268 { .refclk = 24000, .cdclk = 192000, .ratio = 16 }, 1269 { .refclk = 24000, .cdclk = 312000, .ratio = 26 }, 1270 { .refclk = 24000, .cdclk = 324000, .ratio = 54 }, 1271 { .refclk = 24000, .cdclk = 552000, .ratio = 46 }, 1272 { .refclk = 24000, .cdclk = 648000, .ratio = 54 }, 1273 1274 { .refclk = 38400, .cdclk = 172800, .ratio = 9 }, 1275 { .refclk = 38400, .cdclk = 192000, .ratio = 10 }, 1276 { .refclk = 38400, .cdclk = 307200, .ratio = 16 }, 1277 { .refclk = 38400, .cdclk = 326400, .ratio = 34 }, 1278 { .refclk = 38400, .cdclk = 556800, .ratio = 29 }, 1279 { .refclk = 38400, .cdclk = 652800, .ratio = 34 }, 1280 {} 1281 }; 1282 1283 static const struct intel_cdclk_vals rkl_cdclk_table[] = { 1284 { .refclk = 19200, .cdclk = 172800, .ratio = 36 }, 1285 { .refclk = 19200, .cdclk = 192000, .ratio = 40 }, 1286 { .refclk = 19200, .cdclk = 307200, .ratio = 64 }, 1287 { .refclk = 19200, .cdclk = 326400, .ratio = 136 }, 1288 { .refclk = 19200, .cdclk = 556800, .ratio = 116 }, 1289 { .refclk = 19200, .cdclk = 652800, .ratio = 136 }, 1290 1291 { .refclk = 24000, .cdclk = 180000, .ratio = 30 }, 1292 { .refclk = 24000, .cdclk = 192000, .ratio = 32 }, 1293 { .refclk = 24000, .cdclk = 312000, .ratio = 52 }, 1294 { .refclk = 24000, .cdclk = 324000, .ratio = 108 }, 1295 { .refclk = 24000, .cdclk = 552000, .ratio = 92 }, 1296 { .refclk = 24000, .cdclk = 648000, .ratio = 108 }, 1297 1298 { .refclk = 38400, .cdclk = 172800, .ratio = 18 }, 1299 { .refclk = 38400, .cdclk = 192000, .ratio = 20 }, 1300 { .refclk = 38400, .cdclk = 307200, .ratio = 32 }, 1301 { .refclk = 38400, .cdclk = 326400, .ratio = 68 }, 1302 { .refclk = 38400, .cdclk = 556800, .ratio = 58 }, 1303 { .refclk = 38400, .cdclk = 652800, .ratio = 68 }, 1304 {} 1305 }; 1306 1307 static const struct intel_cdclk_vals adlp_a_step_cdclk_table[] = { 1308 { .refclk = 19200, .cdclk = 307200, .ratio = 32 }, 1309 { .refclk = 19200, .cdclk = 556800, .ratio = 58 }, 1310 { .refclk = 19200, .cdclk = 652800, .ratio = 68 }, 1311 1312 { .refclk = 24000, .cdclk = 312000, .ratio = 26 }, 1313 { .refclk = 24000, .cdclk = 552000, .ratio = 46 }, 1314 { .refclk = 24400, .cdclk = 648000, .ratio = 54 }, 1315 1316 { .refclk = 38400, .cdclk = 307200, .ratio = 16 }, 1317 { .refclk = 38400, .cdclk = 556800, .ratio = 29 }, 1318 { .refclk = 38400, .cdclk = 652800, .ratio = 34 }, 1319 {} 1320 }; 1321 1322 static const struct intel_cdclk_vals adlp_cdclk_table[] = { 1323 { .refclk = 19200, .cdclk = 172800, .ratio = 27 }, 1324 { .refclk = 19200, .cdclk = 192000, .ratio = 20 }, 1325 { .refclk = 19200, .cdclk = 307200, .ratio = 32 }, 1326 { .refclk = 19200, .cdclk = 556800, .ratio = 58 }, 1327 { .refclk = 19200, .cdclk = 652800, .ratio = 68 }, 1328 1329 { .refclk = 24000, .cdclk = 176000, .ratio = 22 }, 1330 { .refclk = 24000, .cdclk = 192000, .ratio = 16 }, 1331 { .refclk = 24000, .cdclk = 312000, .ratio = 26 }, 1332 { .refclk = 24000, .cdclk = 552000, .ratio = 46 }, 1333 { .refclk = 24000, .cdclk = 648000, .ratio = 54 }, 1334 1335 { .refclk = 38400, .cdclk = 179200, .ratio = 14 }, 1336 { .refclk = 38400, .cdclk = 192000, .ratio = 10 }, 1337 { .refclk = 38400, .cdclk = 307200, .ratio = 16 }, 1338 { .refclk = 38400, .cdclk = 556800, .ratio = 29 }, 1339 { .refclk = 38400, .cdclk = 652800, .ratio = 34 }, 1340 {} 1341 }; 1342 1343 static const struct intel_cdclk_vals rplu_cdclk_table[] = { 1344 { .refclk = 19200, .cdclk = 172800, .ratio = 27 }, 1345 { .refclk = 19200, .cdclk = 192000, .ratio = 20 }, 1346 { .refclk = 19200, .cdclk = 307200, .ratio = 32 }, 1347 { .refclk = 19200, .cdclk = 480000, .ratio = 50 }, 1348 { .refclk = 19200, .cdclk = 556800, .ratio = 58 }, 1349 { .refclk = 19200, .cdclk = 652800, .ratio = 68 }, 1350 1351 { .refclk = 24000, .cdclk = 176000, .ratio = 22 }, 1352 { .refclk = 24000, .cdclk = 192000, .ratio = 16 }, 1353 { .refclk = 24000, .cdclk = 312000, .ratio = 26 }, 1354 { .refclk = 24000, .cdclk = 480000, .ratio = 40 }, 1355 { .refclk = 24000, .cdclk = 552000, .ratio = 46 }, 1356 { .refclk = 24000, .cdclk = 648000, .ratio = 54 }, 1357 1358 { .refclk = 38400, .cdclk = 179200, .ratio = 14 }, 1359 { .refclk = 38400, .cdclk = 192000, .ratio = 10 }, 1360 { .refclk = 38400, .cdclk = 307200, .ratio = 16 }, 1361 { .refclk = 38400, .cdclk = 480000, .ratio = 25 }, 1362 { .refclk = 38400, .cdclk = 556800, .ratio = 29 }, 1363 { .refclk = 38400, .cdclk = 652800, .ratio = 34 }, 1364 {} 1365 }; 1366 1367 static const struct intel_cdclk_vals dg2_cdclk_table[] = { 1368 { .refclk = 38400, .cdclk = 163200, .ratio = 34, .waveform = 0x8888 }, 1369 { .refclk = 38400, .cdclk = 204000, .ratio = 34, .waveform = 0x9248 }, 1370 { .refclk = 38400, .cdclk = 244800, .ratio = 34, .waveform = 0xa4a4 }, 1371 { .refclk = 38400, .cdclk = 285600, .ratio = 34, .waveform = 0xa54a }, 1372 { .refclk = 38400, .cdclk = 326400, .ratio = 34, .waveform = 0xaaaa }, 1373 { .refclk = 38400, .cdclk = 367200, .ratio = 34, .waveform = 0xad5a }, 1374 { .refclk = 38400, .cdclk = 408000, .ratio = 34, .waveform = 0xb6b6 }, 1375 { .refclk = 38400, .cdclk = 448800, .ratio = 34, .waveform = 0xdbb6 }, 1376 { .refclk = 38400, .cdclk = 489600, .ratio = 34, .waveform = 0xeeee }, 1377 { .refclk = 38400, .cdclk = 530400, .ratio = 34, .waveform = 0xf7de }, 1378 { .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe }, 1379 { .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe }, 1380 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff }, 1381 {} 1382 }; 1383 1384 static const struct intel_cdclk_vals mtl_cdclk_table[] = { 1385 { .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a }, 1386 { .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 }, 1387 { .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0x0000 }, 1388 { .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0x0000 }, 1389 { .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0x0000 }, 1390 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0x0000 }, 1391 {} 1392 }; 1393 1394 static const struct intel_cdclk_vals lnl_cdclk_table[] = { 1395 { .refclk = 38400, .cdclk = 153600, .ratio = 16, .waveform = 0xaaaa }, 1396 { .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a }, 1397 { .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 }, 1398 { .refclk = 38400, .cdclk = 211200, .ratio = 16, .waveform = 0xdbb6 }, 1399 { .refclk = 38400, .cdclk = 230400, .ratio = 16, .waveform = 0xeeee }, 1400 { .refclk = 38400, .cdclk = 249600, .ratio = 16, .waveform = 0xf7de }, 1401 { .refclk = 38400, .cdclk = 268800, .ratio = 16, .waveform = 0xfefe }, 1402 { .refclk = 38400, .cdclk = 288000, .ratio = 16, .waveform = 0xfffe }, 1403 { .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0xffff }, 1404 { .refclk = 38400, .cdclk = 330000, .ratio = 25, .waveform = 0xdbb6 }, 1405 { .refclk = 38400, .cdclk = 360000, .ratio = 25, .waveform = 0xeeee }, 1406 { .refclk = 38400, .cdclk = 390000, .ratio = 25, .waveform = 0xf7de }, 1407 { .refclk = 38400, .cdclk = 420000, .ratio = 25, .waveform = 0xfefe }, 1408 { .refclk = 38400, .cdclk = 450000, .ratio = 25, .waveform = 0xfffe }, 1409 { .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff }, 1410 { .refclk = 38400, .cdclk = 487200, .ratio = 29, .waveform = 0xfefe }, 1411 { .refclk = 38400, .cdclk = 522000, .ratio = 29, .waveform = 0xfffe }, 1412 { .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff }, 1413 { .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe }, 1414 { .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe }, 1415 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff }, 1416 {} 1417 }; 1418 1419 static const int cdclk_squash_len = 16; 1420 1421 static int cdclk_squash_divider(u16 waveform) 1422 { 1423 return hweight16(waveform ?: 0xffff); 1424 } 1425 1426 static int cdclk_divider(int cdclk, int vco, u16 waveform) 1427 { 1428 /* 2 * cd2x divider */ 1429 return DIV_ROUND_CLOSEST(vco * cdclk_squash_divider(waveform), 1430 cdclk * cdclk_squash_len); 1431 } 1432 1433 static int bxt_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk) 1434 { 1435 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table; 1436 int i; 1437 1438 for (i = 0; table[i].refclk; i++) 1439 if (table[i].refclk == dev_priv->display.cdclk.hw.ref && 1440 table[i].cdclk >= min_cdclk) 1441 return table[i].cdclk; 1442 1443 drm_WARN(&dev_priv->drm, 1, 1444 "Cannot satisfy minimum cdclk %d with refclk %u\n", 1445 min_cdclk, dev_priv->display.cdclk.hw.ref); 1446 return 0; 1447 } 1448 1449 static int bxt_calc_cdclk_pll_vco(struct drm_i915_private *dev_priv, int cdclk) 1450 { 1451 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table; 1452 int i; 1453 1454 if (cdclk == dev_priv->display.cdclk.hw.bypass) 1455 return 0; 1456 1457 for (i = 0; table[i].refclk; i++) 1458 if (table[i].refclk == dev_priv->display.cdclk.hw.ref && 1459 table[i].cdclk == cdclk) 1460 return dev_priv->display.cdclk.hw.ref * table[i].ratio; 1461 1462 drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n", 1463 cdclk, dev_priv->display.cdclk.hw.ref); 1464 return 0; 1465 } 1466 1467 static u8 bxt_calc_voltage_level(int cdclk) 1468 { 1469 return DIV_ROUND_UP(cdclk, 25000); 1470 } 1471 1472 static u8 calc_voltage_level(int cdclk, int num_voltage_levels, 1473 const int voltage_level_max_cdclk[]) 1474 { 1475 int voltage_level; 1476 1477 for (voltage_level = 0; voltage_level < num_voltage_levels; voltage_level++) { 1478 if (cdclk <= voltage_level_max_cdclk[voltage_level]) 1479 return voltage_level; 1480 } 1481 1482 MISSING_CASE(cdclk); 1483 return num_voltage_levels - 1; 1484 } 1485 1486 static u8 icl_calc_voltage_level(int cdclk) 1487 { 1488 static const int icl_voltage_level_max_cdclk[] = { 1489 [0] = 312000, 1490 [1] = 556800, 1491 [2] = 652800, 1492 }; 1493 1494 return calc_voltage_level(cdclk, 1495 ARRAY_SIZE(icl_voltage_level_max_cdclk), 1496 icl_voltage_level_max_cdclk); 1497 } 1498 1499 static u8 ehl_calc_voltage_level(int cdclk) 1500 { 1501 static const int ehl_voltage_level_max_cdclk[] = { 1502 [0] = 180000, 1503 [1] = 312000, 1504 [2] = 326400, 1505 /* 1506 * Bspec lists the limit as 556.8 MHz, but some JSL 1507 * development boards (at least) boot with 652.8 MHz 1508 */ 1509 [3] = 652800, 1510 }; 1511 1512 return calc_voltage_level(cdclk, 1513 ARRAY_SIZE(ehl_voltage_level_max_cdclk), 1514 ehl_voltage_level_max_cdclk); 1515 } 1516 1517 static u8 tgl_calc_voltage_level(int cdclk) 1518 { 1519 static const int tgl_voltage_level_max_cdclk[] = { 1520 [0] = 312000, 1521 [1] = 326400, 1522 [2] = 556800, 1523 [3] = 652800, 1524 }; 1525 1526 return calc_voltage_level(cdclk, 1527 ARRAY_SIZE(tgl_voltage_level_max_cdclk), 1528 tgl_voltage_level_max_cdclk); 1529 } 1530 1531 static u8 rplu_calc_voltage_level(int cdclk) 1532 { 1533 static const int rplu_voltage_level_max_cdclk[] = { 1534 [0] = 312000, 1535 [1] = 480000, 1536 [2] = 556800, 1537 [3] = 652800, 1538 }; 1539 1540 return calc_voltage_level(cdclk, 1541 ARRAY_SIZE(rplu_voltage_level_max_cdclk), 1542 rplu_voltage_level_max_cdclk); 1543 } 1544 1545 static void icl_readout_refclk(struct drm_i915_private *dev_priv, 1546 struct intel_cdclk_config *cdclk_config) 1547 { 1548 u32 dssm = intel_de_read(dev_priv, SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK; 1549 1550 switch (dssm) { 1551 default: 1552 MISSING_CASE(dssm); 1553 fallthrough; 1554 case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz: 1555 cdclk_config->ref = 24000; 1556 break; 1557 case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz: 1558 cdclk_config->ref = 19200; 1559 break; 1560 case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz: 1561 cdclk_config->ref = 38400; 1562 break; 1563 } 1564 } 1565 1566 static void bxt_de_pll_readout(struct drm_i915_private *dev_priv, 1567 struct intel_cdclk_config *cdclk_config) 1568 { 1569 u32 val, ratio; 1570 1571 if (IS_DG2(dev_priv)) 1572 cdclk_config->ref = 38400; 1573 else if (DISPLAY_VER(dev_priv) >= 11) 1574 icl_readout_refclk(dev_priv, cdclk_config); 1575 else 1576 cdclk_config->ref = 19200; 1577 1578 val = intel_de_read(dev_priv, BXT_DE_PLL_ENABLE); 1579 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 || 1580 (val & BXT_DE_PLL_LOCK) == 0) { 1581 /* 1582 * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but 1583 * setting it to zero is a way to signal that. 1584 */ 1585 cdclk_config->vco = 0; 1586 return; 1587 } 1588 1589 /* 1590 * DISPLAY_VER >= 11 have the ratio directly in the PLL enable register, 1591 * gen9lp had it in a separate PLL control register. 1592 */ 1593 if (DISPLAY_VER(dev_priv) >= 11) 1594 ratio = val & ICL_CDCLK_PLL_RATIO_MASK; 1595 else 1596 ratio = intel_de_read(dev_priv, BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK; 1597 1598 cdclk_config->vco = ratio * cdclk_config->ref; 1599 } 1600 1601 static void bxt_get_cdclk(struct drm_i915_private *dev_priv, 1602 struct intel_cdclk_config *cdclk_config) 1603 { 1604 u32 squash_ctl = 0; 1605 u32 divider; 1606 int div; 1607 1608 bxt_de_pll_readout(dev_priv, cdclk_config); 1609 1610 if (DISPLAY_VER(dev_priv) >= 12) 1611 cdclk_config->bypass = cdclk_config->ref / 2; 1612 else if (DISPLAY_VER(dev_priv) >= 11) 1613 cdclk_config->bypass = 50000; 1614 else 1615 cdclk_config->bypass = cdclk_config->ref; 1616 1617 if (cdclk_config->vco == 0) { 1618 cdclk_config->cdclk = cdclk_config->bypass; 1619 goto out; 1620 } 1621 1622 divider = intel_de_read(dev_priv, CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK; 1623 1624 switch (divider) { 1625 case BXT_CDCLK_CD2X_DIV_SEL_1: 1626 div = 2; 1627 break; 1628 case BXT_CDCLK_CD2X_DIV_SEL_1_5: 1629 div = 3; 1630 break; 1631 case BXT_CDCLK_CD2X_DIV_SEL_2: 1632 div = 4; 1633 break; 1634 case BXT_CDCLK_CD2X_DIV_SEL_4: 1635 div = 8; 1636 break; 1637 default: 1638 MISSING_CASE(divider); 1639 return; 1640 } 1641 1642 if (HAS_CDCLK_SQUASH(dev_priv)) 1643 squash_ctl = intel_de_read(dev_priv, CDCLK_SQUASH_CTL); 1644 1645 if (squash_ctl & CDCLK_SQUASH_ENABLE) { 1646 u16 waveform; 1647 int size; 1648 1649 size = REG_FIELD_GET(CDCLK_SQUASH_WINDOW_SIZE_MASK, squash_ctl) + 1; 1650 waveform = REG_FIELD_GET(CDCLK_SQUASH_WAVEFORM_MASK, squash_ctl) >> (16 - size); 1651 1652 cdclk_config->cdclk = DIV_ROUND_CLOSEST(hweight16(waveform) * 1653 cdclk_config->vco, size * div); 1654 } else { 1655 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div); 1656 } 1657 1658 out: 1659 /* 1660 * Can't read this out :( Let's assume it's 1661 * at least what the CDCLK frequency requires. 1662 */ 1663 cdclk_config->voltage_level = 1664 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config->cdclk); 1665 } 1666 1667 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv) 1668 { 1669 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, 0); 1670 1671 /* Timeout 200us */ 1672 if (intel_de_wait_for_clear(dev_priv, 1673 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1674 drm_err(&dev_priv->drm, "timeout waiting for DE PLL unlock\n"); 1675 1676 dev_priv->display.cdclk.hw.vco = 0; 1677 } 1678 1679 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco) 1680 { 1681 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref); 1682 1683 intel_de_rmw(dev_priv, BXT_DE_PLL_CTL, 1684 BXT_DE_PLL_RATIO_MASK, BXT_DE_PLL_RATIO(ratio)); 1685 1686 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE); 1687 1688 /* Timeout 200us */ 1689 if (intel_de_wait_for_set(dev_priv, 1690 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1691 drm_err(&dev_priv->drm, "timeout waiting for DE PLL lock\n"); 1692 1693 dev_priv->display.cdclk.hw.vco = vco; 1694 } 1695 1696 static void icl_cdclk_pll_disable(struct drm_i915_private *dev_priv) 1697 { 1698 intel_de_rmw(dev_priv, BXT_DE_PLL_ENABLE, 1699 BXT_DE_PLL_PLL_ENABLE, 0); 1700 1701 /* Timeout 200us */ 1702 if (intel_de_wait_for_clear(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1703 drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL unlock\n"); 1704 1705 dev_priv->display.cdclk.hw.vco = 0; 1706 } 1707 1708 static void icl_cdclk_pll_enable(struct drm_i915_private *dev_priv, int vco) 1709 { 1710 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref); 1711 u32 val; 1712 1713 val = ICL_CDCLK_PLL_RATIO(ratio); 1714 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val); 1715 1716 val |= BXT_DE_PLL_PLL_ENABLE; 1717 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val); 1718 1719 /* Timeout 200us */ 1720 if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1721 drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL lock\n"); 1722 1723 dev_priv->display.cdclk.hw.vco = vco; 1724 } 1725 1726 static void adlp_cdclk_pll_crawl(struct drm_i915_private *dev_priv, int vco) 1727 { 1728 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref); 1729 u32 val; 1730 1731 /* Write PLL ratio without disabling */ 1732 val = ICL_CDCLK_PLL_RATIO(ratio) | BXT_DE_PLL_PLL_ENABLE; 1733 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val); 1734 1735 /* Submit freq change request */ 1736 val |= BXT_DE_PLL_FREQ_REQ; 1737 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val); 1738 1739 /* Timeout 200us */ 1740 if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE, 1741 BXT_DE_PLL_LOCK | BXT_DE_PLL_FREQ_REQ_ACK, 1)) 1742 drm_err(&dev_priv->drm, "timeout waiting for FREQ change request ack\n"); 1743 1744 val &= ~BXT_DE_PLL_FREQ_REQ; 1745 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val); 1746 1747 dev_priv->display.cdclk.hw.vco = vco; 1748 } 1749 1750 static u32 bxt_cdclk_cd2x_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 1751 { 1752 if (DISPLAY_VER(dev_priv) >= 12) { 1753 if (pipe == INVALID_PIPE) 1754 return TGL_CDCLK_CD2X_PIPE_NONE; 1755 else 1756 return TGL_CDCLK_CD2X_PIPE(pipe); 1757 } else if (DISPLAY_VER(dev_priv) >= 11) { 1758 if (pipe == INVALID_PIPE) 1759 return ICL_CDCLK_CD2X_PIPE_NONE; 1760 else 1761 return ICL_CDCLK_CD2X_PIPE(pipe); 1762 } else { 1763 if (pipe == INVALID_PIPE) 1764 return BXT_CDCLK_CD2X_PIPE_NONE; 1765 else 1766 return BXT_CDCLK_CD2X_PIPE(pipe); 1767 } 1768 } 1769 1770 static u32 bxt_cdclk_cd2x_div_sel(struct drm_i915_private *dev_priv, 1771 int cdclk, int vco, u16 waveform) 1772 { 1773 /* cdclk = vco / 2 / div{1,1.5,2,4} */ 1774 switch (cdclk_divider(cdclk, vco, waveform)) { 1775 default: 1776 drm_WARN_ON(&dev_priv->drm, 1777 cdclk != dev_priv->display.cdclk.hw.bypass); 1778 drm_WARN_ON(&dev_priv->drm, vco != 0); 1779 fallthrough; 1780 case 2: 1781 return BXT_CDCLK_CD2X_DIV_SEL_1; 1782 case 3: 1783 return BXT_CDCLK_CD2X_DIV_SEL_1_5; 1784 case 4: 1785 return BXT_CDCLK_CD2X_DIV_SEL_2; 1786 case 8: 1787 return BXT_CDCLK_CD2X_DIV_SEL_4; 1788 } 1789 } 1790 1791 static u16 cdclk_squash_waveform(struct drm_i915_private *dev_priv, 1792 int cdclk) 1793 { 1794 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table; 1795 int i; 1796 1797 if (cdclk == dev_priv->display.cdclk.hw.bypass) 1798 return 0; 1799 1800 for (i = 0; table[i].refclk; i++) 1801 if (table[i].refclk == dev_priv->display.cdclk.hw.ref && 1802 table[i].cdclk == cdclk) 1803 return table[i].waveform; 1804 1805 drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n", 1806 cdclk, dev_priv->display.cdclk.hw.ref); 1807 1808 return 0xffff; 1809 } 1810 1811 static void icl_cdclk_pll_update(struct drm_i915_private *i915, int vco) 1812 { 1813 if (i915->display.cdclk.hw.vco != 0 && 1814 i915->display.cdclk.hw.vco != vco) 1815 icl_cdclk_pll_disable(i915); 1816 1817 if (i915->display.cdclk.hw.vco != vco) 1818 icl_cdclk_pll_enable(i915, vco); 1819 } 1820 1821 static void bxt_cdclk_pll_update(struct drm_i915_private *i915, int vco) 1822 { 1823 if (i915->display.cdclk.hw.vco != 0 && 1824 i915->display.cdclk.hw.vco != vco) 1825 bxt_de_pll_disable(i915); 1826 1827 if (i915->display.cdclk.hw.vco != vco) 1828 bxt_de_pll_enable(i915, vco); 1829 } 1830 1831 static void dg2_cdclk_squash_program(struct drm_i915_private *i915, 1832 u16 waveform) 1833 { 1834 u32 squash_ctl = 0; 1835 1836 if (waveform) 1837 squash_ctl = CDCLK_SQUASH_ENABLE | 1838 CDCLK_SQUASH_WINDOW_SIZE(0xf) | waveform; 1839 1840 intel_de_write(i915, CDCLK_SQUASH_CTL, squash_ctl); 1841 } 1842 1843 static bool cdclk_pll_is_unknown(unsigned int vco) 1844 { 1845 /* 1846 * Ensure driver does not take the crawl path for the 1847 * case when the vco is set to ~0 in the 1848 * sanitize path. 1849 */ 1850 return vco == ~0; 1851 } 1852 1853 static bool cdclk_compute_crawl_and_squash_midpoint(struct drm_i915_private *i915, 1854 const struct intel_cdclk_config *old_cdclk_config, 1855 const struct intel_cdclk_config *new_cdclk_config, 1856 struct intel_cdclk_config *mid_cdclk_config) 1857 { 1858 u16 old_waveform, new_waveform, mid_waveform; 1859 int old_div, new_div, mid_div; 1860 1861 /* Return if PLL is in an unknown state, force a complete disable and re-enable. */ 1862 if (cdclk_pll_is_unknown(old_cdclk_config->vco)) 1863 return false; 1864 1865 /* Return if both Squash and Crawl are not present */ 1866 if (!HAS_CDCLK_CRAWL(i915) || !HAS_CDCLK_SQUASH(i915)) 1867 return false; 1868 1869 old_waveform = cdclk_squash_waveform(i915, old_cdclk_config->cdclk); 1870 new_waveform = cdclk_squash_waveform(i915, new_cdclk_config->cdclk); 1871 1872 /* Return if Squash only or Crawl only is the desired action */ 1873 if (old_cdclk_config->vco == 0 || new_cdclk_config->vco == 0 || 1874 old_cdclk_config->vco == new_cdclk_config->vco || 1875 old_waveform == new_waveform) 1876 return false; 1877 1878 old_div = cdclk_divider(old_cdclk_config->cdclk, 1879 old_cdclk_config->vco, old_waveform); 1880 new_div = cdclk_divider(new_cdclk_config->cdclk, 1881 new_cdclk_config->vco, new_waveform); 1882 1883 /* 1884 * Should not happen currently. We might need more midpoint 1885 * transitions if we need to also change the cd2x divider. 1886 */ 1887 if (drm_WARN_ON(&i915->drm, old_div != new_div)) 1888 return false; 1889 1890 *mid_cdclk_config = *new_cdclk_config; 1891 1892 /* 1893 * Populate the mid_cdclk_config accordingly. 1894 * - If moving to a higher cdclk, the desired action is squashing. 1895 * The mid cdclk config should have the new (squash) waveform. 1896 * - If moving to a lower cdclk, the desired action is crawling. 1897 * The mid cdclk config should have the new vco. 1898 */ 1899 1900 if (cdclk_squash_divider(new_waveform) > cdclk_squash_divider(old_waveform)) { 1901 mid_cdclk_config->vco = old_cdclk_config->vco; 1902 mid_div = old_div; 1903 mid_waveform = new_waveform; 1904 } else { 1905 mid_cdclk_config->vco = new_cdclk_config->vco; 1906 mid_div = new_div; 1907 mid_waveform = old_waveform; 1908 } 1909 1910 mid_cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_squash_divider(mid_waveform) * 1911 mid_cdclk_config->vco, 1912 cdclk_squash_len * mid_div); 1913 1914 /* make sure the mid clock came out sane */ 1915 1916 drm_WARN_ON(&i915->drm, mid_cdclk_config->cdclk < 1917 min(old_cdclk_config->cdclk, new_cdclk_config->cdclk)); 1918 drm_WARN_ON(&i915->drm, mid_cdclk_config->cdclk > 1919 i915->display.cdclk.max_cdclk_freq); 1920 drm_WARN_ON(&i915->drm, cdclk_squash_waveform(i915, mid_cdclk_config->cdclk) != 1921 mid_waveform); 1922 1923 return true; 1924 } 1925 1926 static bool pll_enable_wa_needed(struct drm_i915_private *dev_priv) 1927 { 1928 return (DISPLAY_VER_FULL(dev_priv) == IP_VER(20, 0) || 1929 DISPLAY_VER_FULL(dev_priv) == IP_VER(14, 0) || 1930 IS_DG2(dev_priv)) && 1931 dev_priv->display.cdclk.hw.vco > 0; 1932 } 1933 1934 static u32 bxt_cdclk_ctl(struct drm_i915_private *i915, 1935 const struct intel_cdclk_config *cdclk_config, 1936 enum pipe pipe) 1937 { 1938 int cdclk = cdclk_config->cdclk; 1939 int vco = cdclk_config->vco; 1940 u16 waveform; 1941 u32 val; 1942 1943 waveform = cdclk_squash_waveform(i915, cdclk); 1944 1945 val = bxt_cdclk_cd2x_div_sel(i915, cdclk, vco, waveform) | 1946 bxt_cdclk_cd2x_pipe(i915, pipe); 1947 1948 /* 1949 * Disable SSA Precharge when CD clock frequency < 500 MHz, 1950 * enable otherwise. 1951 */ 1952 if ((IS_GEMINILAKE(i915) || IS_BROXTON(i915)) && 1953 cdclk >= 500000) 1954 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; 1955 1956 if (DISPLAY_VER(i915) >= 20) 1957 val |= MDCLK_SOURCE_SEL_CDCLK_PLL; 1958 else 1959 val |= skl_cdclk_decimal(cdclk); 1960 1961 return val; 1962 } 1963 1964 static void _bxt_set_cdclk(struct drm_i915_private *dev_priv, 1965 const struct intel_cdclk_config *cdclk_config, 1966 enum pipe pipe) 1967 { 1968 int cdclk = cdclk_config->cdclk; 1969 int vco = cdclk_config->vco; 1970 u16 waveform; 1971 1972 if (HAS_CDCLK_CRAWL(dev_priv) && dev_priv->display.cdclk.hw.vco > 0 && vco > 0 && 1973 !cdclk_pll_is_unknown(dev_priv->display.cdclk.hw.vco)) { 1974 if (dev_priv->display.cdclk.hw.vco != vco) 1975 adlp_cdclk_pll_crawl(dev_priv, vco); 1976 } else if (DISPLAY_VER(dev_priv) >= 11) { 1977 /* wa_15010685871: dg2, mtl */ 1978 if (pll_enable_wa_needed(dev_priv)) 1979 dg2_cdclk_squash_program(dev_priv, 0); 1980 1981 icl_cdclk_pll_update(dev_priv, vco); 1982 } else 1983 bxt_cdclk_pll_update(dev_priv, vco); 1984 1985 waveform = cdclk_squash_waveform(dev_priv, cdclk); 1986 1987 if (HAS_CDCLK_SQUASH(dev_priv)) 1988 dg2_cdclk_squash_program(dev_priv, waveform); 1989 1990 intel_de_write(dev_priv, CDCLK_CTL, bxt_cdclk_ctl(dev_priv, cdclk_config, pipe)); 1991 1992 if (pipe != INVALID_PIPE) 1993 intel_crtc_wait_for_next_vblank(intel_crtc_for_pipe(dev_priv, pipe)); 1994 } 1995 1996 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, 1997 const struct intel_cdclk_config *cdclk_config, 1998 enum pipe pipe) 1999 { 2000 struct intel_cdclk_config mid_cdclk_config; 2001 int cdclk = cdclk_config->cdclk; 2002 int ret = 0; 2003 2004 /* 2005 * Inform power controller of upcoming frequency change. 2006 * Display versions 14 and beyond do not follow the PUnit 2007 * mailbox communication, skip 2008 * this step. 2009 */ 2010 if (DISPLAY_VER(dev_priv) >= 14 || IS_DG2(dev_priv)) 2011 /* NOOP */; 2012 else if (DISPLAY_VER(dev_priv) >= 11) 2013 ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL, 2014 SKL_CDCLK_PREPARE_FOR_CHANGE, 2015 SKL_CDCLK_READY_FOR_CHANGE, 2016 SKL_CDCLK_READY_FOR_CHANGE, 3); 2017 else 2018 /* 2019 * BSpec requires us to wait up to 150usec, but that leads to 2020 * timeouts; the 2ms used here is based on experiment. 2021 */ 2022 ret = snb_pcode_write_timeout(&dev_priv->uncore, 2023 HSW_PCODE_DE_WRITE_FREQ_REQ, 2024 0x80000000, 150, 2); 2025 2026 if (ret) { 2027 drm_err(&dev_priv->drm, 2028 "Failed to inform PCU about cdclk change (err %d, freq %d)\n", 2029 ret, cdclk); 2030 return; 2031 } 2032 2033 if (cdclk_compute_crawl_and_squash_midpoint(dev_priv, &dev_priv->display.cdclk.hw, 2034 cdclk_config, &mid_cdclk_config)) { 2035 _bxt_set_cdclk(dev_priv, &mid_cdclk_config, pipe); 2036 _bxt_set_cdclk(dev_priv, cdclk_config, pipe); 2037 } else { 2038 _bxt_set_cdclk(dev_priv, cdclk_config, pipe); 2039 } 2040 2041 if (DISPLAY_VER(dev_priv) >= 14) 2042 /* 2043 * NOOP - No Pcode communication needed for 2044 * Display versions 14 and beyond 2045 */; 2046 else if (DISPLAY_VER(dev_priv) >= 11 && !IS_DG2(dev_priv)) 2047 ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL, 2048 cdclk_config->voltage_level); 2049 if (DISPLAY_VER(dev_priv) < 11) { 2050 /* 2051 * The timeout isn't specified, the 2ms used here is based on 2052 * experiment. 2053 * FIXME: Waiting for the request completion could be delayed 2054 * until the next PCODE request based on BSpec. 2055 */ 2056 ret = snb_pcode_write_timeout(&dev_priv->uncore, 2057 HSW_PCODE_DE_WRITE_FREQ_REQ, 2058 cdclk_config->voltage_level, 2059 150, 2); 2060 } 2061 if (ret) { 2062 drm_err(&dev_priv->drm, 2063 "PCode CDCLK freq set failed, (err %d, freq %d)\n", 2064 ret, cdclk); 2065 return; 2066 } 2067 2068 intel_update_cdclk(dev_priv); 2069 2070 if (DISPLAY_VER(dev_priv) >= 11) 2071 /* 2072 * Can't read out the voltage level :( 2073 * Let's just assume everything is as expected. 2074 */ 2075 dev_priv->display.cdclk.hw.voltage_level = cdclk_config->voltage_level; 2076 } 2077 2078 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv) 2079 { 2080 u32 cdctl, expected; 2081 int cdclk, vco; 2082 2083 intel_update_cdclk(dev_priv); 2084 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK"); 2085 2086 if (dev_priv->display.cdclk.hw.vco == 0 || 2087 dev_priv->display.cdclk.hw.cdclk == dev_priv->display.cdclk.hw.bypass) 2088 goto sanitize; 2089 2090 /* Make sure this is a legal cdclk value for the platform */ 2091 cdclk = bxt_calc_cdclk(dev_priv, dev_priv->display.cdclk.hw.cdclk); 2092 if (cdclk != dev_priv->display.cdclk.hw.cdclk) 2093 goto sanitize; 2094 2095 /* Make sure the VCO is correct for the cdclk */ 2096 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk); 2097 if (vco != dev_priv->display.cdclk.hw.vco) 2098 goto sanitize; 2099 2100 /* 2101 * Some BIOS versions leave an incorrect decimal frequency value and 2102 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4, 2103 * so sanitize this register. 2104 */ 2105 cdctl = intel_de_read(dev_priv, CDCLK_CTL); 2106 expected = bxt_cdclk_ctl(dev_priv, &dev_priv->display.cdclk.hw, INVALID_PIPE); 2107 2108 /* 2109 * Let's ignore the pipe field, since BIOS could have configured the 2110 * dividers both synching to an active pipe, or asynchronously 2111 * (PIPE_NONE). 2112 */ 2113 cdctl &= ~bxt_cdclk_cd2x_pipe(dev_priv, INVALID_PIPE); 2114 expected &= ~bxt_cdclk_cd2x_pipe(dev_priv, INVALID_PIPE); 2115 2116 if (cdctl == expected) 2117 /* All well; nothing to sanitize */ 2118 return; 2119 2120 sanitize: 2121 drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n"); 2122 2123 /* force cdclk programming */ 2124 dev_priv->display.cdclk.hw.cdclk = 0; 2125 2126 /* force full PLL disable + enable */ 2127 dev_priv->display.cdclk.hw.vco = ~0; 2128 } 2129 2130 static void bxt_cdclk_init_hw(struct drm_i915_private *dev_priv) 2131 { 2132 struct intel_cdclk_config cdclk_config; 2133 2134 bxt_sanitize_cdclk(dev_priv); 2135 2136 if (dev_priv->display.cdclk.hw.cdclk != 0 && 2137 dev_priv->display.cdclk.hw.vco != 0) 2138 return; 2139 2140 cdclk_config = dev_priv->display.cdclk.hw; 2141 2142 /* 2143 * FIXME: 2144 * - The initial CDCLK needs to be read from VBT. 2145 * Need to make this change after VBT has changes for BXT. 2146 */ 2147 cdclk_config.cdclk = bxt_calc_cdclk(dev_priv, 0); 2148 cdclk_config.vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk_config.cdclk); 2149 cdclk_config.voltage_level = 2150 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk); 2151 2152 bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE); 2153 } 2154 2155 static void bxt_cdclk_uninit_hw(struct drm_i915_private *dev_priv) 2156 { 2157 struct intel_cdclk_config cdclk_config = dev_priv->display.cdclk.hw; 2158 2159 cdclk_config.cdclk = cdclk_config.bypass; 2160 cdclk_config.vco = 0; 2161 cdclk_config.voltage_level = 2162 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk); 2163 2164 bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE); 2165 } 2166 2167 /** 2168 * intel_cdclk_init_hw - Initialize CDCLK hardware 2169 * @i915: i915 device 2170 * 2171 * Initialize CDCLK. This consists mainly of initializing dev_priv->display.cdclk.hw and 2172 * sanitizing the state of the hardware if needed. This is generally done only 2173 * during the display core initialization sequence, after which the DMC will 2174 * take care of turning CDCLK off/on as needed. 2175 */ 2176 void intel_cdclk_init_hw(struct drm_i915_private *i915) 2177 { 2178 if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915)) 2179 bxt_cdclk_init_hw(i915); 2180 else if (DISPLAY_VER(i915) == 9) 2181 skl_cdclk_init_hw(i915); 2182 } 2183 2184 /** 2185 * intel_cdclk_uninit_hw - Uninitialize CDCLK hardware 2186 * @i915: i915 device 2187 * 2188 * Uninitialize CDCLK. This is done only during the display core 2189 * uninitialization sequence. 2190 */ 2191 void intel_cdclk_uninit_hw(struct drm_i915_private *i915) 2192 { 2193 if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915)) 2194 bxt_cdclk_uninit_hw(i915); 2195 else if (DISPLAY_VER(i915) == 9) 2196 skl_cdclk_uninit_hw(i915); 2197 } 2198 2199 static bool intel_cdclk_can_crawl_and_squash(struct drm_i915_private *i915, 2200 const struct intel_cdclk_config *a, 2201 const struct intel_cdclk_config *b) 2202 { 2203 u16 old_waveform; 2204 u16 new_waveform; 2205 2206 drm_WARN_ON(&i915->drm, cdclk_pll_is_unknown(a->vco)); 2207 2208 if (a->vco == 0 || b->vco == 0) 2209 return false; 2210 2211 if (!HAS_CDCLK_CRAWL(i915) || !HAS_CDCLK_SQUASH(i915)) 2212 return false; 2213 2214 old_waveform = cdclk_squash_waveform(i915, a->cdclk); 2215 new_waveform = cdclk_squash_waveform(i915, b->cdclk); 2216 2217 return a->vco != b->vco && 2218 old_waveform != new_waveform; 2219 } 2220 2221 static bool intel_cdclk_can_crawl(struct drm_i915_private *dev_priv, 2222 const struct intel_cdclk_config *a, 2223 const struct intel_cdclk_config *b) 2224 { 2225 int a_div, b_div; 2226 2227 if (!HAS_CDCLK_CRAWL(dev_priv)) 2228 return false; 2229 2230 /* 2231 * The vco and cd2x divider will change independently 2232 * from each, so we disallow cd2x change when crawling. 2233 */ 2234 a_div = DIV_ROUND_CLOSEST(a->vco, a->cdclk); 2235 b_div = DIV_ROUND_CLOSEST(b->vco, b->cdclk); 2236 2237 return a->vco != 0 && b->vco != 0 && 2238 a->vco != b->vco && 2239 a_div == b_div && 2240 a->ref == b->ref; 2241 } 2242 2243 static bool intel_cdclk_can_squash(struct drm_i915_private *dev_priv, 2244 const struct intel_cdclk_config *a, 2245 const struct intel_cdclk_config *b) 2246 { 2247 /* 2248 * FIXME should store a bit more state in intel_cdclk_config 2249 * to differentiate squasher vs. cd2x divider properly. For 2250 * the moment all platforms with squasher use a fixed cd2x 2251 * divider. 2252 */ 2253 if (!HAS_CDCLK_SQUASH(dev_priv)) 2254 return false; 2255 2256 return a->cdclk != b->cdclk && 2257 a->vco != 0 && 2258 a->vco == b->vco && 2259 a->ref == b->ref; 2260 } 2261 2262 /** 2263 * intel_cdclk_needs_modeset - Determine if changong between the CDCLK 2264 * configurations requires a modeset on all pipes 2265 * @a: first CDCLK configuration 2266 * @b: second CDCLK configuration 2267 * 2268 * Returns: 2269 * True if changing between the two CDCLK configurations 2270 * requires all pipes to be off, false if not. 2271 */ 2272 bool intel_cdclk_needs_modeset(const struct intel_cdclk_config *a, 2273 const struct intel_cdclk_config *b) 2274 { 2275 return a->cdclk != b->cdclk || 2276 a->vco != b->vco || 2277 a->ref != b->ref; 2278 } 2279 2280 /** 2281 * intel_cdclk_can_cd2x_update - Determine if changing between the two CDCLK 2282 * configurations requires only a cd2x divider update 2283 * @dev_priv: i915 device 2284 * @a: first CDCLK configuration 2285 * @b: second CDCLK configuration 2286 * 2287 * Returns: 2288 * True if changing between the two CDCLK configurations 2289 * can be done with just a cd2x divider update, false if not. 2290 */ 2291 static bool intel_cdclk_can_cd2x_update(struct drm_i915_private *dev_priv, 2292 const struct intel_cdclk_config *a, 2293 const struct intel_cdclk_config *b) 2294 { 2295 /* Older hw doesn't have the capability */ 2296 if (DISPLAY_VER(dev_priv) < 10 && !IS_BROXTON(dev_priv)) 2297 return false; 2298 2299 /* 2300 * FIXME should store a bit more state in intel_cdclk_config 2301 * to differentiate squasher vs. cd2x divider properly. For 2302 * the moment all platforms with squasher use a fixed cd2x 2303 * divider. 2304 */ 2305 if (HAS_CDCLK_SQUASH(dev_priv)) 2306 return false; 2307 2308 return a->cdclk != b->cdclk && 2309 a->vco != 0 && 2310 a->vco == b->vco && 2311 a->ref == b->ref; 2312 } 2313 2314 /** 2315 * intel_cdclk_changed - Determine if two CDCLK configurations are different 2316 * @a: first CDCLK configuration 2317 * @b: second CDCLK configuration 2318 * 2319 * Returns: 2320 * True if the CDCLK configurations don't match, false if they do. 2321 */ 2322 static bool intel_cdclk_changed(const struct intel_cdclk_config *a, 2323 const struct intel_cdclk_config *b) 2324 { 2325 return intel_cdclk_needs_modeset(a, b) || 2326 a->voltage_level != b->voltage_level; 2327 } 2328 2329 void intel_cdclk_dump_config(struct drm_i915_private *i915, 2330 const struct intel_cdclk_config *cdclk_config, 2331 const char *context) 2332 { 2333 drm_dbg_kms(&i915->drm, "%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n", 2334 context, cdclk_config->cdclk, cdclk_config->vco, 2335 cdclk_config->ref, cdclk_config->bypass, 2336 cdclk_config->voltage_level); 2337 } 2338 2339 static void intel_pcode_notify(struct drm_i915_private *i915, 2340 u8 voltage_level, 2341 u8 active_pipe_count, 2342 u16 cdclk, 2343 bool cdclk_update_valid, 2344 bool pipe_count_update_valid) 2345 { 2346 int ret; 2347 u32 update_mask = 0; 2348 2349 if (!IS_DG2(i915)) 2350 return; 2351 2352 update_mask = DISPLAY_TO_PCODE_UPDATE_MASK(cdclk, active_pipe_count, voltage_level); 2353 2354 if (cdclk_update_valid) 2355 update_mask |= DISPLAY_TO_PCODE_CDCLK_VALID; 2356 2357 if (pipe_count_update_valid) 2358 update_mask |= DISPLAY_TO_PCODE_PIPE_COUNT_VALID; 2359 2360 ret = skl_pcode_request(&i915->uncore, SKL_PCODE_CDCLK_CONTROL, 2361 SKL_CDCLK_PREPARE_FOR_CHANGE | 2362 update_mask, 2363 SKL_CDCLK_READY_FOR_CHANGE, 2364 SKL_CDCLK_READY_FOR_CHANGE, 3); 2365 if (ret) 2366 drm_err(&i915->drm, 2367 "Failed to inform PCU about display config (err %d)\n", 2368 ret); 2369 } 2370 2371 /** 2372 * intel_set_cdclk - Push the CDCLK configuration to the hardware 2373 * @dev_priv: i915 device 2374 * @cdclk_config: new CDCLK configuration 2375 * @pipe: pipe with which to synchronize the update 2376 * 2377 * Program the hardware based on the passed in CDCLK state, 2378 * if necessary. 2379 */ 2380 static void intel_set_cdclk(struct drm_i915_private *dev_priv, 2381 const struct intel_cdclk_config *cdclk_config, 2382 enum pipe pipe) 2383 { 2384 struct intel_encoder *encoder; 2385 2386 if (!intel_cdclk_changed(&dev_priv->display.cdclk.hw, cdclk_config)) 2387 return; 2388 2389 if (drm_WARN_ON_ONCE(&dev_priv->drm, !dev_priv->display.funcs.cdclk->set_cdclk)) 2390 return; 2391 2392 intel_cdclk_dump_config(dev_priv, cdclk_config, "Changing CDCLK to"); 2393 2394 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { 2395 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2396 2397 intel_psr_pause(intel_dp); 2398 } 2399 2400 intel_audio_cdclk_change_pre(dev_priv); 2401 2402 /* 2403 * Lock aux/gmbus while we change cdclk in case those 2404 * functions use cdclk. Not all platforms/ports do, 2405 * but we'll lock them all for simplicity. 2406 */ 2407 mutex_lock(&dev_priv->display.gmbus.mutex); 2408 for_each_intel_dp(&dev_priv->drm, encoder) { 2409 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2410 2411 mutex_lock_nest_lock(&intel_dp->aux.hw_mutex, 2412 &dev_priv->display.gmbus.mutex); 2413 } 2414 2415 intel_cdclk_set_cdclk(dev_priv, cdclk_config, pipe); 2416 2417 for_each_intel_dp(&dev_priv->drm, encoder) { 2418 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2419 2420 mutex_unlock(&intel_dp->aux.hw_mutex); 2421 } 2422 mutex_unlock(&dev_priv->display.gmbus.mutex); 2423 2424 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { 2425 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2426 2427 intel_psr_resume(intel_dp); 2428 } 2429 2430 intel_audio_cdclk_change_post(dev_priv); 2431 2432 if (drm_WARN(&dev_priv->drm, 2433 intel_cdclk_changed(&dev_priv->display.cdclk.hw, cdclk_config), 2434 "cdclk state doesn't match!\n")) { 2435 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "[hw state]"); 2436 intel_cdclk_dump_config(dev_priv, cdclk_config, "[sw state]"); 2437 } 2438 } 2439 2440 static void intel_cdclk_pcode_pre_notify(struct intel_atomic_state *state) 2441 { 2442 struct drm_i915_private *i915 = to_i915(state->base.dev); 2443 const struct intel_cdclk_state *old_cdclk_state = 2444 intel_atomic_get_old_cdclk_state(state); 2445 const struct intel_cdclk_state *new_cdclk_state = 2446 intel_atomic_get_new_cdclk_state(state); 2447 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0; 2448 bool change_cdclk, update_pipe_count; 2449 2450 if (!intel_cdclk_changed(&old_cdclk_state->actual, 2451 &new_cdclk_state->actual) && 2452 new_cdclk_state->active_pipes == 2453 old_cdclk_state->active_pipes) 2454 return; 2455 2456 /* According to "Sequence Before Frequency Change", voltage level set to 0x3 */ 2457 voltage_level = DISPLAY_TO_PCODE_VOLTAGE_MAX; 2458 2459 change_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk; 2460 update_pipe_count = hweight8(new_cdclk_state->active_pipes) > 2461 hweight8(old_cdclk_state->active_pipes); 2462 2463 /* 2464 * According to "Sequence Before Frequency Change", 2465 * if CDCLK is increasing, set bits 25:16 to upcoming CDCLK, 2466 * if CDCLK is decreasing or not changing, set bits 25:16 to current CDCLK, 2467 * which basically means we choose the maximum of old and new CDCLK, if we know both 2468 */ 2469 if (change_cdclk) 2470 cdclk = max(new_cdclk_state->actual.cdclk, old_cdclk_state->actual.cdclk); 2471 2472 /* 2473 * According to "Sequence For Pipe Count Change", 2474 * if pipe count is increasing, set bits 25:16 to upcoming pipe count 2475 * (power well is enabled) 2476 * no action if it is decreasing, before the change 2477 */ 2478 if (update_pipe_count) 2479 num_active_pipes = hweight8(new_cdclk_state->active_pipes); 2480 2481 intel_pcode_notify(i915, voltage_level, num_active_pipes, cdclk, 2482 change_cdclk, update_pipe_count); 2483 } 2484 2485 static void intel_cdclk_pcode_post_notify(struct intel_atomic_state *state) 2486 { 2487 struct drm_i915_private *i915 = to_i915(state->base.dev); 2488 const struct intel_cdclk_state *new_cdclk_state = 2489 intel_atomic_get_new_cdclk_state(state); 2490 const struct intel_cdclk_state *old_cdclk_state = 2491 intel_atomic_get_old_cdclk_state(state); 2492 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0; 2493 bool update_cdclk, update_pipe_count; 2494 2495 /* According to "Sequence After Frequency Change", set voltage to used level */ 2496 voltage_level = new_cdclk_state->actual.voltage_level; 2497 2498 update_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk; 2499 update_pipe_count = hweight8(new_cdclk_state->active_pipes) < 2500 hweight8(old_cdclk_state->active_pipes); 2501 2502 /* 2503 * According to "Sequence After Frequency Change", 2504 * set bits 25:16 to current CDCLK 2505 */ 2506 if (update_cdclk) 2507 cdclk = new_cdclk_state->actual.cdclk; 2508 2509 /* 2510 * According to "Sequence For Pipe Count Change", 2511 * if pipe count is decreasing, set bits 25:16 to current pipe count, 2512 * after the change(power well is disabled) 2513 * no action if it is increasing, after the change 2514 */ 2515 if (update_pipe_count) 2516 num_active_pipes = hweight8(new_cdclk_state->active_pipes); 2517 2518 intel_pcode_notify(i915, voltage_level, num_active_pipes, cdclk, 2519 update_cdclk, update_pipe_count); 2520 } 2521 2522 /** 2523 * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware 2524 * @state: intel atomic state 2525 * 2526 * Program the hardware before updating the HW plane state based on the 2527 * new CDCLK state, if necessary. 2528 */ 2529 void 2530 intel_set_cdclk_pre_plane_update(struct intel_atomic_state *state) 2531 { 2532 struct drm_i915_private *i915 = to_i915(state->base.dev); 2533 const struct intel_cdclk_state *old_cdclk_state = 2534 intel_atomic_get_old_cdclk_state(state); 2535 const struct intel_cdclk_state *new_cdclk_state = 2536 intel_atomic_get_new_cdclk_state(state); 2537 enum pipe pipe = new_cdclk_state->pipe; 2538 2539 if (!intel_cdclk_changed(&old_cdclk_state->actual, 2540 &new_cdclk_state->actual)) 2541 return; 2542 2543 if (IS_DG2(i915)) 2544 intel_cdclk_pcode_pre_notify(state); 2545 2546 if (pipe == INVALID_PIPE || 2547 old_cdclk_state->actual.cdclk <= new_cdclk_state->actual.cdclk) { 2548 drm_WARN_ON(&i915->drm, !new_cdclk_state->base.changed); 2549 2550 intel_set_cdclk(i915, &new_cdclk_state->actual, pipe); 2551 } 2552 } 2553 2554 /** 2555 * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware 2556 * @state: intel atomic state 2557 * 2558 * Program the hardware after updating the HW plane state based on the 2559 * new CDCLK state, if necessary. 2560 */ 2561 void 2562 intel_set_cdclk_post_plane_update(struct intel_atomic_state *state) 2563 { 2564 struct drm_i915_private *i915 = to_i915(state->base.dev); 2565 const struct intel_cdclk_state *old_cdclk_state = 2566 intel_atomic_get_old_cdclk_state(state); 2567 const struct intel_cdclk_state *new_cdclk_state = 2568 intel_atomic_get_new_cdclk_state(state); 2569 enum pipe pipe = new_cdclk_state->pipe; 2570 2571 if (!intel_cdclk_changed(&old_cdclk_state->actual, 2572 &new_cdclk_state->actual)) 2573 return; 2574 2575 if (IS_DG2(i915)) 2576 intel_cdclk_pcode_post_notify(state); 2577 2578 if (pipe != INVALID_PIPE && 2579 old_cdclk_state->actual.cdclk > new_cdclk_state->actual.cdclk) { 2580 drm_WARN_ON(&i915->drm, !new_cdclk_state->base.changed); 2581 2582 intel_set_cdclk(i915, &new_cdclk_state->actual, pipe); 2583 } 2584 } 2585 2586 static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state) 2587 { 2588 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2589 int pixel_rate = crtc_state->pixel_rate; 2590 2591 if (DISPLAY_VER(dev_priv) >= 10) 2592 return DIV_ROUND_UP(pixel_rate, 2); 2593 else if (DISPLAY_VER(dev_priv) == 9 || 2594 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 2595 return pixel_rate; 2596 else if (IS_CHERRYVIEW(dev_priv)) 2597 return DIV_ROUND_UP(pixel_rate * 100, 95); 2598 else if (crtc_state->double_wide) 2599 return DIV_ROUND_UP(pixel_rate * 100, 90 * 2); 2600 else 2601 return DIV_ROUND_UP(pixel_rate * 100, 90); 2602 } 2603 2604 static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state) 2605 { 2606 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2607 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2608 struct intel_plane *plane; 2609 int min_cdclk = 0; 2610 2611 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 2612 min_cdclk = max(crtc_state->min_cdclk[plane->id], min_cdclk); 2613 2614 return min_cdclk; 2615 } 2616 2617 static int intel_vdsc_min_cdclk(const struct intel_crtc_state *crtc_state) 2618 { 2619 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2620 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2621 int num_vdsc_instances = intel_dsc_get_num_vdsc_instances(crtc_state); 2622 int min_cdclk = 0; 2623 2624 /* 2625 * When we decide to use only one VDSC engine, since 2626 * each VDSC operates with 1 ppc throughput, pixel clock 2627 * cannot be higher than the VDSC clock (cdclk) 2628 * If there 2 VDSC engines, then pixel clock can't be higher than 2629 * VDSC clock(cdclk) * 2 and so on. 2630 */ 2631 min_cdclk = max_t(int, min_cdclk, 2632 DIV_ROUND_UP(crtc_state->pixel_rate, num_vdsc_instances)); 2633 2634 if (crtc_state->bigjoiner_pipes) { 2635 int pixel_clock = intel_dp_mode_to_fec_clock(crtc_state->hw.adjusted_mode.clock); 2636 2637 /* 2638 * According to Bigjoiner bw check: 2639 * compressed_bpp <= PPC * CDCLK * Big joiner Interface bits / Pixel clock 2640 * 2641 * We have already computed compressed_bpp, so now compute the min CDCLK that 2642 * is required to support this compressed_bpp. 2643 * 2644 * => CDCLK >= compressed_bpp * Pixel clock / (PPC * Bigjoiner Interface bits) 2645 * 2646 * Since PPC = 2 with bigjoiner 2647 * => CDCLK >= compressed_bpp * Pixel clock / 2 * Bigjoiner Interface bits 2648 */ 2649 int bigjoiner_interface_bits = DISPLAY_VER(i915) >= 14 ? 36 : 24; 2650 int min_cdclk_bj = 2651 (to_bpp_int_roundup(crtc_state->dsc.compressed_bpp_x16) * 2652 pixel_clock) / (2 * bigjoiner_interface_bits); 2653 2654 min_cdclk = max(min_cdclk, min_cdclk_bj); 2655 } 2656 2657 return min_cdclk; 2658 } 2659 2660 int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state) 2661 { 2662 struct drm_i915_private *dev_priv = 2663 to_i915(crtc_state->uapi.crtc->dev); 2664 int min_cdclk; 2665 2666 if (!crtc_state->hw.enable) 2667 return 0; 2668 2669 min_cdclk = intel_pixel_rate_to_cdclk(crtc_state); 2670 2671 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 2672 if (IS_BROADWELL(dev_priv) && hsw_crtc_state_ips_capable(crtc_state)) 2673 min_cdclk = DIV_ROUND_UP(min_cdclk * 100, 95); 2674 2675 /* BSpec says "Do not use DisplayPort with CDCLK less than 432 MHz, 2676 * audio enabled, port width x4, and link rate HBR2 (5.4 GHz), or else 2677 * there may be audio corruption or screen corruption." This cdclk 2678 * restriction for GLK is 316.8 MHz. 2679 */ 2680 if (intel_crtc_has_dp_encoder(crtc_state) && 2681 crtc_state->has_audio && 2682 crtc_state->port_clock >= 540000 && 2683 crtc_state->lane_count == 4) { 2684 if (DISPLAY_VER(dev_priv) == 10) { 2685 /* Display WA #1145: glk */ 2686 min_cdclk = max(316800, min_cdclk); 2687 } else if (DISPLAY_VER(dev_priv) == 9 || IS_BROADWELL(dev_priv)) { 2688 /* Display WA #1144: skl,bxt */ 2689 min_cdclk = max(432000, min_cdclk); 2690 } 2691 } 2692 2693 /* 2694 * According to BSpec, "The CD clock frequency must be at least twice 2695 * the frequency of the Azalia BCLK." and BCLK is 96 MHz by default. 2696 */ 2697 if (crtc_state->has_audio && DISPLAY_VER(dev_priv) >= 9) 2698 min_cdclk = max(2 * 96000, min_cdclk); 2699 2700 /* 2701 * "For DP audio configuration, cdclk frequency shall be set to 2702 * meet the following requirements: 2703 * DP Link Frequency(MHz) | Cdclk frequency(MHz) 2704 * 270 | 320 or higher 2705 * 162 | 200 or higher" 2706 */ 2707 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 2708 intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio) 2709 min_cdclk = max(crtc_state->port_clock, min_cdclk); 2710 2711 /* 2712 * On Valleyview some DSI panels lose (v|h)sync when the clock is lower 2713 * than 320000KHz. 2714 */ 2715 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) && 2716 IS_VALLEYVIEW(dev_priv)) 2717 min_cdclk = max(320000, min_cdclk); 2718 2719 /* 2720 * On Geminilake once the CDCLK gets as low as 79200 2721 * picture gets unstable, despite that values are 2722 * correct for DSI PLL and DE PLL. 2723 */ 2724 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) && 2725 IS_GEMINILAKE(dev_priv)) 2726 min_cdclk = max(158400, min_cdclk); 2727 2728 /* Account for additional needs from the planes */ 2729 min_cdclk = max(intel_planes_min_cdclk(crtc_state), min_cdclk); 2730 2731 if (crtc_state->dsc.compression_enable) 2732 min_cdclk = max(min_cdclk, intel_vdsc_min_cdclk(crtc_state)); 2733 2734 /* 2735 * HACK. Currently for TGL/DG2 platforms we calculate 2736 * min_cdclk initially based on pixel_rate divided 2737 * by 2, accounting for also plane requirements, 2738 * however in some cases the lowest possible CDCLK 2739 * doesn't work and causing the underruns. 2740 * Explicitly stating here that this seems to be currently 2741 * rather a Hack, than final solution. 2742 */ 2743 if (IS_TIGERLAKE(dev_priv) || IS_DG2(dev_priv)) { 2744 /* 2745 * Clamp to max_cdclk_freq in case pixel rate is higher, 2746 * in order not to break an 8K, but still leave W/A at place. 2747 */ 2748 min_cdclk = max_t(int, min_cdclk, 2749 min_t(int, crtc_state->pixel_rate, 2750 dev_priv->display.cdclk.max_cdclk_freq)); 2751 } 2752 2753 return min_cdclk; 2754 } 2755 2756 static int intel_compute_min_cdclk(struct intel_cdclk_state *cdclk_state) 2757 { 2758 struct intel_atomic_state *state = cdclk_state->base.state; 2759 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2760 const struct intel_bw_state *bw_state; 2761 struct intel_crtc *crtc; 2762 struct intel_crtc_state *crtc_state; 2763 int min_cdclk, i; 2764 enum pipe pipe; 2765 2766 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 2767 int ret; 2768 2769 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 2770 if (min_cdclk < 0) 2771 return min_cdclk; 2772 2773 if (cdclk_state->min_cdclk[crtc->pipe] == min_cdclk) 2774 continue; 2775 2776 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 2777 2778 ret = intel_atomic_lock_global_state(&cdclk_state->base); 2779 if (ret) 2780 return ret; 2781 } 2782 2783 bw_state = intel_atomic_get_new_bw_state(state); 2784 if (bw_state) { 2785 min_cdclk = intel_bw_min_cdclk(dev_priv, bw_state); 2786 2787 if (cdclk_state->bw_min_cdclk != min_cdclk) { 2788 int ret; 2789 2790 cdclk_state->bw_min_cdclk = min_cdclk; 2791 2792 ret = intel_atomic_lock_global_state(&cdclk_state->base); 2793 if (ret) 2794 return ret; 2795 } 2796 } 2797 2798 min_cdclk = max(cdclk_state->force_min_cdclk, 2799 cdclk_state->bw_min_cdclk); 2800 for_each_pipe(dev_priv, pipe) 2801 min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk); 2802 2803 /* 2804 * Avoid glk_force_audio_cdclk() causing excessive screen 2805 * blinking when multiple pipes are active by making sure 2806 * CDCLK frequency is always high enough for audio. With a 2807 * single active pipe we can always change CDCLK frequency 2808 * by changing the cd2x divider (see glk_cdclk_table[]) and 2809 * thus a full modeset won't be needed then. 2810 */ 2811 if (IS_GEMINILAKE(dev_priv) && cdclk_state->active_pipes && 2812 !is_power_of_2(cdclk_state->active_pipes)) 2813 min_cdclk = max(2 * 96000, min_cdclk); 2814 2815 if (min_cdclk > dev_priv->display.cdclk.max_cdclk_freq) { 2816 drm_dbg_kms(&dev_priv->drm, 2817 "required cdclk (%d kHz) exceeds max (%d kHz)\n", 2818 min_cdclk, dev_priv->display.cdclk.max_cdclk_freq); 2819 return -EINVAL; 2820 } 2821 2822 return min_cdclk; 2823 } 2824 2825 /* 2826 * Account for port clock min voltage level requirements. 2827 * This only really does something on DISPLA_VER >= 11 but can be 2828 * called on earlier platforms as well. 2829 * 2830 * Note that this functions assumes that 0 is 2831 * the lowest voltage value, and higher values 2832 * correspond to increasingly higher voltages. 2833 * 2834 * Should that relationship no longer hold on 2835 * future platforms this code will need to be 2836 * adjusted. 2837 */ 2838 static int bxt_compute_min_voltage_level(struct intel_cdclk_state *cdclk_state) 2839 { 2840 struct intel_atomic_state *state = cdclk_state->base.state; 2841 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2842 struct intel_crtc *crtc; 2843 struct intel_crtc_state *crtc_state; 2844 u8 min_voltage_level; 2845 int i; 2846 enum pipe pipe; 2847 2848 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 2849 int ret; 2850 2851 if (crtc_state->hw.enable) 2852 min_voltage_level = crtc_state->min_voltage_level; 2853 else 2854 min_voltage_level = 0; 2855 2856 if (cdclk_state->min_voltage_level[crtc->pipe] == min_voltage_level) 2857 continue; 2858 2859 cdclk_state->min_voltage_level[crtc->pipe] = min_voltage_level; 2860 2861 ret = intel_atomic_lock_global_state(&cdclk_state->base); 2862 if (ret) 2863 return ret; 2864 } 2865 2866 min_voltage_level = 0; 2867 for_each_pipe(dev_priv, pipe) 2868 min_voltage_level = max(cdclk_state->min_voltage_level[pipe], 2869 min_voltage_level); 2870 2871 return min_voltage_level; 2872 } 2873 2874 static int vlv_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) 2875 { 2876 struct intel_atomic_state *state = cdclk_state->base.state; 2877 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2878 int min_cdclk, cdclk; 2879 2880 min_cdclk = intel_compute_min_cdclk(cdclk_state); 2881 if (min_cdclk < 0) 2882 return min_cdclk; 2883 2884 cdclk = vlv_calc_cdclk(dev_priv, min_cdclk); 2885 2886 cdclk_state->logical.cdclk = cdclk; 2887 cdclk_state->logical.voltage_level = 2888 vlv_calc_voltage_level(dev_priv, cdclk); 2889 2890 if (!cdclk_state->active_pipes) { 2891 cdclk = vlv_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk); 2892 2893 cdclk_state->actual.cdclk = cdclk; 2894 cdclk_state->actual.voltage_level = 2895 vlv_calc_voltage_level(dev_priv, cdclk); 2896 } else { 2897 cdclk_state->actual = cdclk_state->logical; 2898 } 2899 2900 return 0; 2901 } 2902 2903 static int bdw_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) 2904 { 2905 int min_cdclk, cdclk; 2906 2907 min_cdclk = intel_compute_min_cdclk(cdclk_state); 2908 if (min_cdclk < 0) 2909 return min_cdclk; 2910 2911 cdclk = bdw_calc_cdclk(min_cdclk); 2912 2913 cdclk_state->logical.cdclk = cdclk; 2914 cdclk_state->logical.voltage_level = 2915 bdw_calc_voltage_level(cdclk); 2916 2917 if (!cdclk_state->active_pipes) { 2918 cdclk = bdw_calc_cdclk(cdclk_state->force_min_cdclk); 2919 2920 cdclk_state->actual.cdclk = cdclk; 2921 cdclk_state->actual.voltage_level = 2922 bdw_calc_voltage_level(cdclk); 2923 } else { 2924 cdclk_state->actual = cdclk_state->logical; 2925 } 2926 2927 return 0; 2928 } 2929 2930 static int skl_dpll0_vco(struct intel_cdclk_state *cdclk_state) 2931 { 2932 struct intel_atomic_state *state = cdclk_state->base.state; 2933 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2934 struct intel_crtc *crtc; 2935 struct intel_crtc_state *crtc_state; 2936 int vco, i; 2937 2938 vco = cdclk_state->logical.vco; 2939 if (!vco) 2940 vco = dev_priv->skl_preferred_vco_freq; 2941 2942 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 2943 if (!crtc_state->hw.enable) 2944 continue; 2945 2946 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) 2947 continue; 2948 2949 /* 2950 * DPLL0 VCO may need to be adjusted to get the correct 2951 * clock for eDP. This will affect cdclk as well. 2952 */ 2953 switch (crtc_state->port_clock / 2) { 2954 case 108000: 2955 case 216000: 2956 vco = 8640000; 2957 break; 2958 default: 2959 vco = 8100000; 2960 break; 2961 } 2962 } 2963 2964 return vco; 2965 } 2966 2967 static int skl_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) 2968 { 2969 int min_cdclk, cdclk, vco; 2970 2971 min_cdclk = intel_compute_min_cdclk(cdclk_state); 2972 if (min_cdclk < 0) 2973 return min_cdclk; 2974 2975 vco = skl_dpll0_vco(cdclk_state); 2976 2977 cdclk = skl_calc_cdclk(min_cdclk, vco); 2978 2979 cdclk_state->logical.vco = vco; 2980 cdclk_state->logical.cdclk = cdclk; 2981 cdclk_state->logical.voltage_level = 2982 skl_calc_voltage_level(cdclk); 2983 2984 if (!cdclk_state->active_pipes) { 2985 cdclk = skl_calc_cdclk(cdclk_state->force_min_cdclk, vco); 2986 2987 cdclk_state->actual.vco = vco; 2988 cdclk_state->actual.cdclk = cdclk; 2989 cdclk_state->actual.voltage_level = 2990 skl_calc_voltage_level(cdclk); 2991 } else { 2992 cdclk_state->actual = cdclk_state->logical; 2993 } 2994 2995 return 0; 2996 } 2997 2998 static int bxt_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) 2999 { 3000 struct intel_atomic_state *state = cdclk_state->base.state; 3001 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 3002 int min_cdclk, min_voltage_level, cdclk, vco; 3003 3004 min_cdclk = intel_compute_min_cdclk(cdclk_state); 3005 if (min_cdclk < 0) 3006 return min_cdclk; 3007 3008 min_voltage_level = bxt_compute_min_voltage_level(cdclk_state); 3009 if (min_voltage_level < 0) 3010 return min_voltage_level; 3011 3012 cdclk = bxt_calc_cdclk(dev_priv, min_cdclk); 3013 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk); 3014 3015 cdclk_state->logical.vco = vco; 3016 cdclk_state->logical.cdclk = cdclk; 3017 cdclk_state->logical.voltage_level = 3018 max_t(int, min_voltage_level, 3019 intel_cdclk_calc_voltage_level(dev_priv, cdclk)); 3020 3021 if (!cdclk_state->active_pipes) { 3022 cdclk = bxt_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk); 3023 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk); 3024 3025 cdclk_state->actual.vco = vco; 3026 cdclk_state->actual.cdclk = cdclk; 3027 cdclk_state->actual.voltage_level = 3028 intel_cdclk_calc_voltage_level(dev_priv, cdclk); 3029 } else { 3030 cdclk_state->actual = cdclk_state->logical; 3031 } 3032 3033 return 0; 3034 } 3035 3036 static int fixed_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) 3037 { 3038 int min_cdclk; 3039 3040 /* 3041 * We can't change the cdclk frequency, but we still want to 3042 * check that the required minimum frequency doesn't exceed 3043 * the actual cdclk frequency. 3044 */ 3045 min_cdclk = intel_compute_min_cdclk(cdclk_state); 3046 if (min_cdclk < 0) 3047 return min_cdclk; 3048 3049 return 0; 3050 } 3051 3052 static struct intel_global_state *intel_cdclk_duplicate_state(struct intel_global_obj *obj) 3053 { 3054 struct intel_cdclk_state *cdclk_state; 3055 3056 cdclk_state = kmemdup(obj->state, sizeof(*cdclk_state), GFP_KERNEL); 3057 if (!cdclk_state) 3058 return NULL; 3059 3060 cdclk_state->pipe = INVALID_PIPE; 3061 3062 return &cdclk_state->base; 3063 } 3064 3065 static void intel_cdclk_destroy_state(struct intel_global_obj *obj, 3066 struct intel_global_state *state) 3067 { 3068 kfree(state); 3069 } 3070 3071 static const struct intel_global_state_funcs intel_cdclk_funcs = { 3072 .atomic_duplicate_state = intel_cdclk_duplicate_state, 3073 .atomic_destroy_state = intel_cdclk_destroy_state, 3074 }; 3075 3076 struct intel_cdclk_state * 3077 intel_atomic_get_cdclk_state(struct intel_atomic_state *state) 3078 { 3079 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 3080 struct intel_global_state *cdclk_state; 3081 3082 cdclk_state = intel_atomic_get_global_obj_state(state, &dev_priv->display.cdclk.obj); 3083 if (IS_ERR(cdclk_state)) 3084 return ERR_CAST(cdclk_state); 3085 3086 return to_intel_cdclk_state(cdclk_state); 3087 } 3088 3089 int intel_cdclk_atomic_check(struct intel_atomic_state *state, 3090 bool *need_cdclk_calc) 3091 { 3092 const struct intel_cdclk_state *old_cdclk_state; 3093 const struct intel_cdclk_state *new_cdclk_state; 3094 struct intel_plane_state __maybe_unused *plane_state; 3095 struct intel_plane *plane; 3096 int ret; 3097 int i; 3098 3099 /* 3100 * active_planes bitmask has been updated, and potentially affected 3101 * planes are part of the state. We can now compute the minimum cdclk 3102 * for each plane. 3103 */ 3104 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 3105 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 3106 if (ret) 3107 return ret; 3108 } 3109 3110 ret = intel_bw_calc_min_cdclk(state, need_cdclk_calc); 3111 if (ret) 3112 return ret; 3113 3114 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 3115 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 3116 3117 if (new_cdclk_state && 3118 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 3119 *need_cdclk_calc = true; 3120 3121 return 0; 3122 } 3123 3124 int intel_cdclk_init(struct drm_i915_private *dev_priv) 3125 { 3126 struct intel_cdclk_state *cdclk_state; 3127 3128 cdclk_state = kzalloc(sizeof(*cdclk_state), GFP_KERNEL); 3129 if (!cdclk_state) 3130 return -ENOMEM; 3131 3132 intel_atomic_global_obj_init(dev_priv, &dev_priv->display.cdclk.obj, 3133 &cdclk_state->base, &intel_cdclk_funcs); 3134 3135 return 0; 3136 } 3137 3138 static bool intel_cdclk_need_serialize(struct drm_i915_private *i915, 3139 const struct intel_cdclk_state *old_cdclk_state, 3140 const struct intel_cdclk_state *new_cdclk_state) 3141 { 3142 bool power_well_cnt_changed = hweight8(old_cdclk_state->active_pipes) != 3143 hweight8(new_cdclk_state->active_pipes); 3144 bool cdclk_changed = intel_cdclk_changed(&old_cdclk_state->actual, 3145 &new_cdclk_state->actual); 3146 /* 3147 * We need to poke hw for gen >= 12, because we notify PCode if 3148 * pipe power well count changes. 3149 */ 3150 return cdclk_changed || (IS_DG2(i915) && power_well_cnt_changed); 3151 } 3152 3153 int intel_modeset_calc_cdclk(struct intel_atomic_state *state) 3154 { 3155 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 3156 const struct intel_cdclk_state *old_cdclk_state; 3157 struct intel_cdclk_state *new_cdclk_state; 3158 enum pipe pipe = INVALID_PIPE; 3159 int ret; 3160 3161 new_cdclk_state = intel_atomic_get_cdclk_state(state); 3162 if (IS_ERR(new_cdclk_state)) 3163 return PTR_ERR(new_cdclk_state); 3164 3165 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 3166 3167 new_cdclk_state->active_pipes = 3168 intel_calc_active_pipes(state, old_cdclk_state->active_pipes); 3169 3170 ret = intel_cdclk_modeset_calc_cdclk(dev_priv, new_cdclk_state); 3171 if (ret) 3172 return ret; 3173 3174 if (intel_cdclk_need_serialize(dev_priv, old_cdclk_state, new_cdclk_state)) { 3175 /* 3176 * Also serialize commits across all crtcs 3177 * if the actual hw needs to be poked. 3178 */ 3179 ret = intel_atomic_serialize_global_state(&new_cdclk_state->base); 3180 if (ret) 3181 return ret; 3182 } else if (old_cdclk_state->active_pipes != new_cdclk_state->active_pipes || 3183 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk || 3184 intel_cdclk_changed(&old_cdclk_state->logical, 3185 &new_cdclk_state->logical)) { 3186 ret = intel_atomic_lock_global_state(&new_cdclk_state->base); 3187 if (ret) 3188 return ret; 3189 } else { 3190 return 0; 3191 } 3192 3193 if (is_power_of_2(new_cdclk_state->active_pipes) && 3194 intel_cdclk_can_cd2x_update(dev_priv, 3195 &old_cdclk_state->actual, 3196 &new_cdclk_state->actual)) { 3197 struct intel_crtc *crtc; 3198 struct intel_crtc_state *crtc_state; 3199 3200 pipe = ilog2(new_cdclk_state->active_pipes); 3201 crtc = intel_crtc_for_pipe(dev_priv, pipe); 3202 3203 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 3204 if (IS_ERR(crtc_state)) 3205 return PTR_ERR(crtc_state); 3206 3207 if (intel_crtc_needs_modeset(crtc_state)) 3208 pipe = INVALID_PIPE; 3209 } 3210 3211 if (intel_cdclk_can_crawl_and_squash(dev_priv, 3212 &old_cdclk_state->actual, 3213 &new_cdclk_state->actual)) { 3214 drm_dbg_kms(&dev_priv->drm, 3215 "Can change cdclk via crawling and squashing\n"); 3216 } else if (intel_cdclk_can_squash(dev_priv, 3217 &old_cdclk_state->actual, 3218 &new_cdclk_state->actual)) { 3219 drm_dbg_kms(&dev_priv->drm, 3220 "Can change cdclk via squashing\n"); 3221 } else if (intel_cdclk_can_crawl(dev_priv, 3222 &old_cdclk_state->actual, 3223 &new_cdclk_state->actual)) { 3224 drm_dbg_kms(&dev_priv->drm, 3225 "Can change cdclk via crawling\n"); 3226 } else if (pipe != INVALID_PIPE) { 3227 new_cdclk_state->pipe = pipe; 3228 3229 drm_dbg_kms(&dev_priv->drm, 3230 "Can change cdclk cd2x divider with pipe %c active\n", 3231 pipe_name(pipe)); 3232 } else if (intel_cdclk_needs_modeset(&old_cdclk_state->actual, 3233 &new_cdclk_state->actual)) { 3234 /* All pipes must be switched off while we change the cdclk. */ 3235 ret = intel_modeset_all_pipes_late(state, "CDCLK change"); 3236 if (ret) 3237 return ret; 3238 3239 drm_dbg_kms(&dev_priv->drm, 3240 "Modeset required for cdclk change\n"); 3241 } 3242 3243 drm_dbg_kms(&dev_priv->drm, 3244 "New cdclk calculated to be logical %u kHz, actual %u kHz\n", 3245 new_cdclk_state->logical.cdclk, 3246 new_cdclk_state->actual.cdclk); 3247 drm_dbg_kms(&dev_priv->drm, 3248 "New voltage level calculated to be logical %u, actual %u\n", 3249 new_cdclk_state->logical.voltage_level, 3250 new_cdclk_state->actual.voltage_level); 3251 3252 return 0; 3253 } 3254 3255 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv) 3256 { 3257 int max_cdclk_freq = dev_priv->display.cdclk.max_cdclk_freq; 3258 3259 if (DISPLAY_VER(dev_priv) >= 10) 3260 return 2 * max_cdclk_freq; 3261 else if (DISPLAY_VER(dev_priv) == 9 || 3262 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 3263 return max_cdclk_freq; 3264 else if (IS_CHERRYVIEW(dev_priv)) 3265 return max_cdclk_freq*95/100; 3266 else if (DISPLAY_VER(dev_priv) < 4) 3267 return 2*max_cdclk_freq*90/100; 3268 else 3269 return max_cdclk_freq*90/100; 3270 } 3271 3272 /** 3273 * intel_update_max_cdclk - Determine the maximum support CDCLK frequency 3274 * @dev_priv: i915 device 3275 * 3276 * Determine the maximum CDCLK frequency the platform supports, and also 3277 * derive the maximum dot clock frequency the maximum CDCLK frequency 3278 * allows. 3279 */ 3280 void intel_update_max_cdclk(struct drm_i915_private *dev_priv) 3281 { 3282 if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) { 3283 if (dev_priv->display.cdclk.hw.ref == 24000) 3284 dev_priv->display.cdclk.max_cdclk_freq = 552000; 3285 else 3286 dev_priv->display.cdclk.max_cdclk_freq = 556800; 3287 } else if (DISPLAY_VER(dev_priv) >= 11) { 3288 if (dev_priv->display.cdclk.hw.ref == 24000) 3289 dev_priv->display.cdclk.max_cdclk_freq = 648000; 3290 else 3291 dev_priv->display.cdclk.max_cdclk_freq = 652800; 3292 } else if (IS_GEMINILAKE(dev_priv)) { 3293 dev_priv->display.cdclk.max_cdclk_freq = 316800; 3294 } else if (IS_BROXTON(dev_priv)) { 3295 dev_priv->display.cdclk.max_cdclk_freq = 624000; 3296 } else if (DISPLAY_VER(dev_priv) == 9) { 3297 u32 limit = intel_de_read(dev_priv, SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK; 3298 int max_cdclk, vco; 3299 3300 vco = dev_priv->skl_preferred_vco_freq; 3301 drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000); 3302 3303 /* 3304 * Use the lower (vco 8640) cdclk values as a 3305 * first guess. skl_calc_cdclk() will correct it 3306 * if the preferred vco is 8100 instead. 3307 */ 3308 if (limit == SKL_DFSM_CDCLK_LIMIT_675) 3309 max_cdclk = 617143; 3310 else if (limit == SKL_DFSM_CDCLK_LIMIT_540) 3311 max_cdclk = 540000; 3312 else if (limit == SKL_DFSM_CDCLK_LIMIT_450) 3313 max_cdclk = 432000; 3314 else 3315 max_cdclk = 308571; 3316 3317 dev_priv->display.cdclk.max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco); 3318 } else if (IS_BROADWELL(dev_priv)) { 3319 /* 3320 * FIXME with extra cooling we can allow 3321 * 540 MHz for ULX and 675 Mhz for ULT. 3322 * How can we know if extra cooling is 3323 * available? PCI ID, VTB, something else? 3324 */ 3325 if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT) 3326 dev_priv->display.cdclk.max_cdclk_freq = 450000; 3327 else if (IS_BROADWELL_ULX(dev_priv)) 3328 dev_priv->display.cdclk.max_cdclk_freq = 450000; 3329 else if (IS_BROADWELL_ULT(dev_priv)) 3330 dev_priv->display.cdclk.max_cdclk_freq = 540000; 3331 else 3332 dev_priv->display.cdclk.max_cdclk_freq = 675000; 3333 } else if (IS_CHERRYVIEW(dev_priv)) { 3334 dev_priv->display.cdclk.max_cdclk_freq = 320000; 3335 } else if (IS_VALLEYVIEW(dev_priv)) { 3336 dev_priv->display.cdclk.max_cdclk_freq = 400000; 3337 } else { 3338 /* otherwise assume cdclk is fixed */ 3339 dev_priv->display.cdclk.max_cdclk_freq = dev_priv->display.cdclk.hw.cdclk; 3340 } 3341 3342 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv); 3343 3344 drm_dbg(&dev_priv->drm, "Max CD clock rate: %d kHz\n", 3345 dev_priv->display.cdclk.max_cdclk_freq); 3346 3347 drm_dbg(&dev_priv->drm, "Max dotclock rate: %d kHz\n", 3348 dev_priv->max_dotclk_freq); 3349 } 3350 3351 /** 3352 * intel_update_cdclk - Determine the current CDCLK frequency 3353 * @dev_priv: i915 device 3354 * 3355 * Determine the current CDCLK frequency. 3356 */ 3357 void intel_update_cdclk(struct drm_i915_private *dev_priv) 3358 { 3359 intel_cdclk_get_cdclk(dev_priv, &dev_priv->display.cdclk.hw); 3360 3361 /* 3362 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq): 3363 * Programmng [sic] note: bit[9:2] should be programmed to the number 3364 * of cdclk that generates 4MHz reference clock freq which is used to 3365 * generate GMBus clock. This will vary with the cdclk freq. 3366 */ 3367 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3368 intel_de_write(dev_priv, GMBUSFREQ_VLV, 3369 DIV_ROUND_UP(dev_priv->display.cdclk.hw.cdclk, 1000)); 3370 } 3371 3372 static int dg1_rawclk(struct drm_i915_private *dev_priv) 3373 { 3374 /* 3375 * DG1 always uses a 38.4 MHz rawclk. The bspec tells us 3376 * "Program Numerator=2, Denominator=4, Divider=37 decimal." 3377 */ 3378 intel_de_write(dev_priv, PCH_RAWCLK_FREQ, 3379 CNP_RAWCLK_DEN(4) | CNP_RAWCLK_DIV(37) | ICP_RAWCLK_NUM(2)); 3380 3381 return 38400; 3382 } 3383 3384 static int cnp_rawclk(struct drm_i915_private *dev_priv) 3385 { 3386 u32 rawclk; 3387 int divider, fraction; 3388 3389 if (intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) { 3390 /* 24 MHz */ 3391 divider = 24000; 3392 fraction = 0; 3393 } else { 3394 /* 19.2 MHz */ 3395 divider = 19000; 3396 fraction = 200; 3397 } 3398 3399 rawclk = CNP_RAWCLK_DIV(divider / 1000); 3400 if (fraction) { 3401 int numerator = 1; 3402 3403 rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000, 3404 fraction) - 1); 3405 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3406 rawclk |= ICP_RAWCLK_NUM(numerator); 3407 } 3408 3409 intel_de_write(dev_priv, PCH_RAWCLK_FREQ, rawclk); 3410 return divider + fraction; 3411 } 3412 3413 static int pch_rawclk(struct drm_i915_private *dev_priv) 3414 { 3415 return (intel_de_read(dev_priv, PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000; 3416 } 3417 3418 static int vlv_hrawclk(struct drm_i915_private *dev_priv) 3419 { 3420 /* RAWCLK_FREQ_VLV register updated from power well code */ 3421 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk", 3422 CCK_DISPLAY_REF_CLOCK_CONTROL); 3423 } 3424 3425 static int i9xx_hrawclk(struct drm_i915_private *dev_priv) 3426 { 3427 u32 clkcfg; 3428 3429 /* 3430 * hrawclock is 1/4 the FSB frequency 3431 * 3432 * Note that this only reads the state of the FSB 3433 * straps, not the actual FSB frequency. Some BIOSen 3434 * let you configure each independently. Ideally we'd 3435 * read out the actual FSB frequency but sadly we 3436 * don't know which registers have that information, 3437 * and all the relevant docs have gone to bit heaven :( 3438 */ 3439 clkcfg = intel_de_read(dev_priv, CLKCFG) & CLKCFG_FSB_MASK; 3440 3441 if (IS_MOBILE(dev_priv)) { 3442 switch (clkcfg) { 3443 case CLKCFG_FSB_400: 3444 return 100000; 3445 case CLKCFG_FSB_533: 3446 return 133333; 3447 case CLKCFG_FSB_667: 3448 return 166667; 3449 case CLKCFG_FSB_800: 3450 return 200000; 3451 case CLKCFG_FSB_1067: 3452 return 266667; 3453 case CLKCFG_FSB_1333: 3454 return 333333; 3455 default: 3456 MISSING_CASE(clkcfg); 3457 return 133333; 3458 } 3459 } else { 3460 switch (clkcfg) { 3461 case CLKCFG_FSB_400_ALT: 3462 return 100000; 3463 case CLKCFG_FSB_533: 3464 return 133333; 3465 case CLKCFG_FSB_667: 3466 return 166667; 3467 case CLKCFG_FSB_800: 3468 return 200000; 3469 case CLKCFG_FSB_1067_ALT: 3470 return 266667; 3471 case CLKCFG_FSB_1333_ALT: 3472 return 333333; 3473 case CLKCFG_FSB_1600_ALT: 3474 return 400000; 3475 default: 3476 return 133333; 3477 } 3478 } 3479 } 3480 3481 /** 3482 * intel_read_rawclk - Determine the current RAWCLK frequency 3483 * @dev_priv: i915 device 3484 * 3485 * Determine the current RAWCLK frequency. RAWCLK is a fixed 3486 * frequency clock so this needs to done only once. 3487 */ 3488 u32 intel_read_rawclk(struct drm_i915_private *dev_priv) 3489 { 3490 u32 freq; 3491 3492 if (INTEL_PCH_TYPE(dev_priv) >= PCH_MTL) 3493 /* 3494 * MTL always uses a 38.4 MHz rawclk. The bspec tells us 3495 * "RAWCLK_FREQ defaults to the values for 38.4 and does 3496 * not need to be programmed." 3497 */ 3498 freq = 38400; 3499 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) 3500 freq = dg1_rawclk(dev_priv); 3501 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 3502 freq = cnp_rawclk(dev_priv); 3503 else if (HAS_PCH_SPLIT(dev_priv)) 3504 freq = pch_rawclk(dev_priv); 3505 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3506 freq = vlv_hrawclk(dev_priv); 3507 else if (DISPLAY_VER(dev_priv) >= 3) 3508 freq = i9xx_hrawclk(dev_priv); 3509 else 3510 /* no rawclk on other platforms, or no need to know it */ 3511 return 0; 3512 3513 return freq; 3514 } 3515 3516 static int i915_cdclk_info_show(struct seq_file *m, void *unused) 3517 { 3518 struct drm_i915_private *i915 = m->private; 3519 3520 seq_printf(m, "Current CD clock frequency: %d kHz\n", i915->display.cdclk.hw.cdclk); 3521 seq_printf(m, "Max CD clock frequency: %d kHz\n", i915->display.cdclk.max_cdclk_freq); 3522 seq_printf(m, "Max pixel clock frequency: %d kHz\n", i915->max_dotclk_freq); 3523 3524 return 0; 3525 } 3526 3527 DEFINE_SHOW_ATTRIBUTE(i915_cdclk_info); 3528 3529 void intel_cdclk_debugfs_register(struct drm_i915_private *i915) 3530 { 3531 struct drm_minor *minor = i915->drm.primary; 3532 3533 debugfs_create_file("i915_cdclk_info", 0444, minor->debugfs_root, 3534 i915, &i915_cdclk_info_fops); 3535 } 3536 3537 static const struct intel_cdclk_funcs mtl_cdclk_funcs = { 3538 .get_cdclk = bxt_get_cdclk, 3539 .set_cdclk = bxt_set_cdclk, 3540 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3541 .calc_voltage_level = rplu_calc_voltage_level, 3542 }; 3543 3544 static const struct intel_cdclk_funcs rplu_cdclk_funcs = { 3545 .get_cdclk = bxt_get_cdclk, 3546 .set_cdclk = bxt_set_cdclk, 3547 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3548 .calc_voltage_level = rplu_calc_voltage_level, 3549 }; 3550 3551 static const struct intel_cdclk_funcs tgl_cdclk_funcs = { 3552 .get_cdclk = bxt_get_cdclk, 3553 .set_cdclk = bxt_set_cdclk, 3554 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3555 .calc_voltage_level = tgl_calc_voltage_level, 3556 }; 3557 3558 static const struct intel_cdclk_funcs ehl_cdclk_funcs = { 3559 .get_cdclk = bxt_get_cdclk, 3560 .set_cdclk = bxt_set_cdclk, 3561 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3562 .calc_voltage_level = ehl_calc_voltage_level, 3563 }; 3564 3565 static const struct intel_cdclk_funcs icl_cdclk_funcs = { 3566 .get_cdclk = bxt_get_cdclk, 3567 .set_cdclk = bxt_set_cdclk, 3568 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3569 .calc_voltage_level = icl_calc_voltage_level, 3570 }; 3571 3572 static const struct intel_cdclk_funcs bxt_cdclk_funcs = { 3573 .get_cdclk = bxt_get_cdclk, 3574 .set_cdclk = bxt_set_cdclk, 3575 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3576 .calc_voltage_level = bxt_calc_voltage_level, 3577 }; 3578 3579 static const struct intel_cdclk_funcs skl_cdclk_funcs = { 3580 .get_cdclk = skl_get_cdclk, 3581 .set_cdclk = skl_set_cdclk, 3582 .modeset_calc_cdclk = skl_modeset_calc_cdclk, 3583 }; 3584 3585 static const struct intel_cdclk_funcs bdw_cdclk_funcs = { 3586 .get_cdclk = bdw_get_cdclk, 3587 .set_cdclk = bdw_set_cdclk, 3588 .modeset_calc_cdclk = bdw_modeset_calc_cdclk, 3589 }; 3590 3591 static const struct intel_cdclk_funcs chv_cdclk_funcs = { 3592 .get_cdclk = vlv_get_cdclk, 3593 .set_cdclk = chv_set_cdclk, 3594 .modeset_calc_cdclk = vlv_modeset_calc_cdclk, 3595 }; 3596 3597 static const struct intel_cdclk_funcs vlv_cdclk_funcs = { 3598 .get_cdclk = vlv_get_cdclk, 3599 .set_cdclk = vlv_set_cdclk, 3600 .modeset_calc_cdclk = vlv_modeset_calc_cdclk, 3601 }; 3602 3603 static const struct intel_cdclk_funcs hsw_cdclk_funcs = { 3604 .get_cdclk = hsw_get_cdclk, 3605 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3606 }; 3607 3608 /* SNB, IVB, 965G, 945G */ 3609 static const struct intel_cdclk_funcs fixed_400mhz_cdclk_funcs = { 3610 .get_cdclk = fixed_400mhz_get_cdclk, 3611 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3612 }; 3613 3614 static const struct intel_cdclk_funcs ilk_cdclk_funcs = { 3615 .get_cdclk = fixed_450mhz_get_cdclk, 3616 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3617 }; 3618 3619 static const struct intel_cdclk_funcs gm45_cdclk_funcs = { 3620 .get_cdclk = gm45_get_cdclk, 3621 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3622 }; 3623 3624 /* G45 uses G33 */ 3625 3626 static const struct intel_cdclk_funcs i965gm_cdclk_funcs = { 3627 .get_cdclk = i965gm_get_cdclk, 3628 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3629 }; 3630 3631 /* i965G uses fixed 400 */ 3632 3633 static const struct intel_cdclk_funcs pnv_cdclk_funcs = { 3634 .get_cdclk = pnv_get_cdclk, 3635 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3636 }; 3637 3638 static const struct intel_cdclk_funcs g33_cdclk_funcs = { 3639 .get_cdclk = g33_get_cdclk, 3640 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3641 }; 3642 3643 static const struct intel_cdclk_funcs i945gm_cdclk_funcs = { 3644 .get_cdclk = i945gm_get_cdclk, 3645 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3646 }; 3647 3648 /* i945G uses fixed 400 */ 3649 3650 static const struct intel_cdclk_funcs i915gm_cdclk_funcs = { 3651 .get_cdclk = i915gm_get_cdclk, 3652 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3653 }; 3654 3655 static const struct intel_cdclk_funcs i915g_cdclk_funcs = { 3656 .get_cdclk = fixed_333mhz_get_cdclk, 3657 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3658 }; 3659 3660 static const struct intel_cdclk_funcs i865g_cdclk_funcs = { 3661 .get_cdclk = fixed_266mhz_get_cdclk, 3662 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3663 }; 3664 3665 static const struct intel_cdclk_funcs i85x_cdclk_funcs = { 3666 .get_cdclk = i85x_get_cdclk, 3667 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3668 }; 3669 3670 static const struct intel_cdclk_funcs i845g_cdclk_funcs = { 3671 .get_cdclk = fixed_200mhz_get_cdclk, 3672 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3673 }; 3674 3675 static const struct intel_cdclk_funcs i830_cdclk_funcs = { 3676 .get_cdclk = fixed_133mhz_get_cdclk, 3677 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3678 }; 3679 3680 /** 3681 * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks 3682 * @dev_priv: i915 device 3683 */ 3684 void intel_init_cdclk_hooks(struct drm_i915_private *dev_priv) 3685 { 3686 if (DISPLAY_VER(dev_priv) >= 20) { 3687 dev_priv->display.funcs.cdclk = &mtl_cdclk_funcs; 3688 dev_priv->display.cdclk.table = lnl_cdclk_table; 3689 } else if (DISPLAY_VER(dev_priv) >= 14) { 3690 dev_priv->display.funcs.cdclk = &mtl_cdclk_funcs; 3691 dev_priv->display.cdclk.table = mtl_cdclk_table; 3692 } else if (IS_DG2(dev_priv)) { 3693 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs; 3694 dev_priv->display.cdclk.table = dg2_cdclk_table; 3695 } else if (IS_ALDERLAKE_P(dev_priv)) { 3696 /* Wa_22011320316:adl-p[a0] */ 3697 if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) { 3698 dev_priv->display.cdclk.table = adlp_a_step_cdclk_table; 3699 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs; 3700 } else if (IS_RAPTORLAKE_U(dev_priv)) { 3701 dev_priv->display.cdclk.table = rplu_cdclk_table; 3702 dev_priv->display.funcs.cdclk = &rplu_cdclk_funcs; 3703 } else { 3704 dev_priv->display.cdclk.table = adlp_cdclk_table; 3705 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs; 3706 } 3707 } else if (IS_ROCKETLAKE(dev_priv)) { 3708 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs; 3709 dev_priv->display.cdclk.table = rkl_cdclk_table; 3710 } else if (DISPLAY_VER(dev_priv) >= 12) { 3711 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs; 3712 dev_priv->display.cdclk.table = icl_cdclk_table; 3713 } else if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) { 3714 dev_priv->display.funcs.cdclk = &ehl_cdclk_funcs; 3715 dev_priv->display.cdclk.table = icl_cdclk_table; 3716 } else if (DISPLAY_VER(dev_priv) >= 11) { 3717 dev_priv->display.funcs.cdclk = &icl_cdclk_funcs; 3718 dev_priv->display.cdclk.table = icl_cdclk_table; 3719 } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { 3720 dev_priv->display.funcs.cdclk = &bxt_cdclk_funcs; 3721 if (IS_GEMINILAKE(dev_priv)) 3722 dev_priv->display.cdclk.table = glk_cdclk_table; 3723 else 3724 dev_priv->display.cdclk.table = bxt_cdclk_table; 3725 } else if (DISPLAY_VER(dev_priv) == 9) { 3726 dev_priv->display.funcs.cdclk = &skl_cdclk_funcs; 3727 } else if (IS_BROADWELL(dev_priv)) { 3728 dev_priv->display.funcs.cdclk = &bdw_cdclk_funcs; 3729 } else if (IS_HASWELL(dev_priv)) { 3730 dev_priv->display.funcs.cdclk = &hsw_cdclk_funcs; 3731 } else if (IS_CHERRYVIEW(dev_priv)) { 3732 dev_priv->display.funcs.cdclk = &chv_cdclk_funcs; 3733 } else if (IS_VALLEYVIEW(dev_priv)) { 3734 dev_priv->display.funcs.cdclk = &vlv_cdclk_funcs; 3735 } else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) { 3736 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs; 3737 } else if (IS_IRONLAKE(dev_priv)) { 3738 dev_priv->display.funcs.cdclk = &ilk_cdclk_funcs; 3739 } else if (IS_GM45(dev_priv)) { 3740 dev_priv->display.funcs.cdclk = &gm45_cdclk_funcs; 3741 } else if (IS_G45(dev_priv)) { 3742 dev_priv->display.funcs.cdclk = &g33_cdclk_funcs; 3743 } else if (IS_I965GM(dev_priv)) { 3744 dev_priv->display.funcs.cdclk = &i965gm_cdclk_funcs; 3745 } else if (IS_I965G(dev_priv)) { 3746 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs; 3747 } else if (IS_PINEVIEW(dev_priv)) { 3748 dev_priv->display.funcs.cdclk = &pnv_cdclk_funcs; 3749 } else if (IS_G33(dev_priv)) { 3750 dev_priv->display.funcs.cdclk = &g33_cdclk_funcs; 3751 } else if (IS_I945GM(dev_priv)) { 3752 dev_priv->display.funcs.cdclk = &i945gm_cdclk_funcs; 3753 } else if (IS_I945G(dev_priv)) { 3754 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs; 3755 } else if (IS_I915GM(dev_priv)) { 3756 dev_priv->display.funcs.cdclk = &i915gm_cdclk_funcs; 3757 } else if (IS_I915G(dev_priv)) { 3758 dev_priv->display.funcs.cdclk = &i915g_cdclk_funcs; 3759 } else if (IS_I865G(dev_priv)) { 3760 dev_priv->display.funcs.cdclk = &i865g_cdclk_funcs; 3761 } else if (IS_I85X(dev_priv)) { 3762 dev_priv->display.funcs.cdclk = &i85x_cdclk_funcs; 3763 } else if (IS_I845G(dev_priv)) { 3764 dev_priv->display.funcs.cdclk = &i845g_cdclk_funcs; 3765 } else if (IS_I830(dev_priv)) { 3766 dev_priv->display.funcs.cdclk = &i830_cdclk_funcs; 3767 } 3768 3769 if (drm_WARN(&dev_priv->drm, !dev_priv->display.funcs.cdclk, 3770 "Unknown platform. Assuming i830\n")) 3771 dev_priv->display.funcs.cdclk = &i830_cdclk_funcs; 3772 } 3773