xref: /linux/drivers/gpu/drm/i915/display/intel_bw.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/drm_atomic_state_helper.h>
7 
8 #include "i915_drv.h"
9 #include "i915_reg.h"
10 #include "i915_utils.h"
11 #include "intel_atomic.h"
12 #include "intel_bw.h"
13 #include "intel_cdclk.h"
14 #include "intel_display_core.h"
15 #include "intel_display_types.h"
16 #include "skl_watermark.h"
17 #include "intel_mchbar_regs.h"
18 #include "intel_pcode.h"
19 
20 /* Parameters for Qclk Geyserville (QGV) */
21 struct intel_qgv_point {
22 	u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
23 };
24 
25 #define DEPROGBWPCLIMIT		60
26 
27 struct intel_psf_gv_point {
28 	u8 clk; /* clock in multiples of 16.6666 MHz */
29 };
30 
31 struct intel_qgv_info {
32 	struct intel_qgv_point points[I915_NUM_QGV_POINTS];
33 	struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS];
34 	u8 num_points;
35 	u8 num_psf_points;
36 	u8 t_bl;
37 	u8 max_numchannels;
38 	u8 channel_width;
39 	u8 deinterleave;
40 };
41 
42 static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv,
43 					  struct intel_qgv_point *sp,
44 					  int point)
45 {
46 	u32 dclk_ratio, dclk_reference;
47 	u32 val;
48 
49 	val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC);
50 	dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val);
51 	if (val & DG1_QCLK_REFERENCE)
52 		dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */
53 	else
54 		dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */
55 	sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000);
56 
57 	val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
58 	if (val & DG1_GEAR_TYPE)
59 		sp->dclk *= 2;
60 
61 	if (sp->dclk == 0)
62 		return -EINVAL;
63 
64 	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR);
65 	sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val);
66 	sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val);
67 
68 	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH);
69 	sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val);
70 	sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val);
71 
72 	sp->t_rc = sp->t_rp + sp->t_ras;
73 
74 	return 0;
75 }
76 
77 static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
78 					 struct intel_qgv_point *sp,
79 					 int point)
80 {
81 	u32 val = 0, val2 = 0;
82 	u16 dclk;
83 	int ret;
84 
85 	ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
86 			     ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
87 			     &val, &val2);
88 	if (ret)
89 		return ret;
90 
91 	dclk = val & 0xffff;
92 	sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(dev_priv) >= 12 ? 500 : 0),
93 				1000);
94 	sp->t_rp = (val & 0xff0000) >> 16;
95 	sp->t_rcd = (val & 0xff000000) >> 24;
96 
97 	sp->t_rdpre = val2 & 0xff;
98 	sp->t_ras = (val2 & 0xff00) >> 8;
99 
100 	sp->t_rc = sp->t_rp + sp->t_ras;
101 
102 	return 0;
103 }
104 
105 static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv,
106 					    struct intel_psf_gv_point *points)
107 {
108 	u32 val = 0;
109 	int ret;
110 	int i;
111 
112 	ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
113 			     ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL);
114 	if (ret)
115 		return ret;
116 
117 	for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) {
118 		points[i].clk = val & 0xff;
119 		val >>= 8;
120 	}
121 
122 	return 0;
123 }
124 
125 static u16 icl_qgv_points_mask(struct drm_i915_private *i915)
126 {
127 	unsigned int num_psf_gv_points = i915->display.bw.max[0].num_psf_gv_points;
128 	unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points;
129 	u16 qgv_points = 0, psf_points = 0;
130 
131 	/*
132 	 * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects
133 	 * it with failure if we try masking any unadvertised points.
134 	 * So need to operate only with those returned from PCode.
135 	 */
136 	if (num_qgv_points > 0)
137 		qgv_points = GENMASK(num_qgv_points - 1, 0);
138 
139 	if (num_psf_gv_points > 0)
140 		psf_points = GENMASK(num_psf_gv_points - 1, 0);
141 
142 	return ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points);
143 }
144 
145 static bool is_sagv_enabled(struct drm_i915_private *i915, u16 points_mask)
146 {
147 	return !is_power_of_2(~points_mask & icl_qgv_points_mask(i915) &
148 			      ICL_PCODE_REQ_QGV_PT_MASK);
149 }
150 
151 int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
152 				  u32 points_mask)
153 {
154 	int ret;
155 
156 	if (DISPLAY_VER(dev_priv) >= 14)
157 		return 0;
158 
159 	/* bspec says to keep retrying for at least 1 ms */
160 	ret = skl_pcode_request(&dev_priv->uncore, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
161 				points_mask,
162 				ICL_PCODE_REP_QGV_MASK | ADLS_PCODE_REP_PSF_MASK,
163 				ICL_PCODE_REP_QGV_SAFE | ADLS_PCODE_REP_PSF_SAFE,
164 				1);
165 
166 	if (ret < 0) {
167 		drm_err(&dev_priv->drm,
168 			"Failed to disable qgv points (0x%x) points: 0x%x\n",
169 			ret, points_mask);
170 		return ret;
171 	}
172 
173 	dev_priv->display.sagv.status = is_sagv_enabled(dev_priv, points_mask) ?
174 		I915_SAGV_ENABLED : I915_SAGV_DISABLED;
175 
176 	return 0;
177 }
178 
179 static int mtl_read_qgv_point_info(struct drm_i915_private *dev_priv,
180 				   struct intel_qgv_point *sp, int point)
181 {
182 	u32 val, val2;
183 	u16 dclk;
184 
185 	val = intel_uncore_read(&dev_priv->uncore,
186 				MTL_MEM_SS_INFO_QGV_POINT_LOW(point));
187 	val2 = intel_uncore_read(&dev_priv->uncore,
188 				 MTL_MEM_SS_INFO_QGV_POINT_HIGH(point));
189 	dclk = REG_FIELD_GET(MTL_DCLK_MASK, val);
190 	sp->dclk = DIV_ROUND_CLOSEST(16667 * dclk, 1000);
191 	sp->t_rp = REG_FIELD_GET(MTL_TRP_MASK, val);
192 	sp->t_rcd = REG_FIELD_GET(MTL_TRCD_MASK, val);
193 
194 	sp->t_rdpre = REG_FIELD_GET(MTL_TRDPRE_MASK, val2);
195 	sp->t_ras = REG_FIELD_GET(MTL_TRAS_MASK, val2);
196 
197 	sp->t_rc = sp->t_rp + sp->t_ras;
198 
199 	return 0;
200 }
201 
202 static int
203 intel_read_qgv_point_info(struct drm_i915_private *dev_priv,
204 			  struct intel_qgv_point *sp,
205 			  int point)
206 {
207 	if (DISPLAY_VER(dev_priv) >= 14)
208 		return mtl_read_qgv_point_info(dev_priv, sp, point);
209 	else if (IS_DG1(dev_priv))
210 		return dg1_mchbar_read_qgv_point_info(dev_priv, sp, point);
211 	else
212 		return icl_pcode_read_qgv_point_info(dev_priv, sp, point);
213 }
214 
215 static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
216 			      struct intel_qgv_info *qi,
217 			      bool is_y_tile)
218 {
219 	const struct dram_info *dram_info = &dev_priv->dram_info;
220 	int i, ret;
221 
222 	qi->num_points = dram_info->num_qgv_points;
223 	qi->num_psf_points = dram_info->num_psf_gv_points;
224 
225 	if (DISPLAY_VER(dev_priv) >= 14) {
226 		switch (dram_info->type) {
227 		case INTEL_DRAM_DDR4:
228 			qi->t_bl = 4;
229 			qi->max_numchannels = 2;
230 			qi->channel_width = 64;
231 			qi->deinterleave = 2;
232 			break;
233 		case INTEL_DRAM_DDR5:
234 			qi->t_bl = 8;
235 			qi->max_numchannels = 4;
236 			qi->channel_width = 32;
237 			qi->deinterleave = 2;
238 			break;
239 		case INTEL_DRAM_LPDDR4:
240 		case INTEL_DRAM_LPDDR5:
241 			qi->t_bl = 16;
242 			qi->max_numchannels = 8;
243 			qi->channel_width = 16;
244 			qi->deinterleave = 4;
245 			break;
246 		case INTEL_DRAM_GDDR:
247 			qi->channel_width = 32;
248 			break;
249 		default:
250 			MISSING_CASE(dram_info->type);
251 			return -EINVAL;
252 		}
253 	} else if (DISPLAY_VER(dev_priv) >= 12) {
254 		switch (dram_info->type) {
255 		case INTEL_DRAM_DDR4:
256 			qi->t_bl = is_y_tile ? 8 : 4;
257 			qi->max_numchannels = 2;
258 			qi->channel_width = 64;
259 			qi->deinterleave = is_y_tile ? 1 : 2;
260 			break;
261 		case INTEL_DRAM_DDR5:
262 			qi->t_bl = is_y_tile ? 16 : 8;
263 			qi->max_numchannels = 4;
264 			qi->channel_width = 32;
265 			qi->deinterleave = is_y_tile ? 1 : 2;
266 			break;
267 		case INTEL_DRAM_LPDDR4:
268 			if (IS_ROCKETLAKE(dev_priv)) {
269 				qi->t_bl = 8;
270 				qi->max_numchannels = 4;
271 				qi->channel_width = 32;
272 				qi->deinterleave = 2;
273 				break;
274 			}
275 			fallthrough;
276 		case INTEL_DRAM_LPDDR5:
277 			qi->t_bl = 16;
278 			qi->max_numchannels = 8;
279 			qi->channel_width = 16;
280 			qi->deinterleave = is_y_tile ? 2 : 4;
281 			break;
282 		default:
283 			qi->t_bl = 16;
284 			qi->max_numchannels = 1;
285 			break;
286 		}
287 	} else if (DISPLAY_VER(dev_priv) == 11) {
288 		qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8;
289 		qi->max_numchannels = 1;
290 	}
291 
292 	if (drm_WARN_ON(&dev_priv->drm,
293 			qi->num_points > ARRAY_SIZE(qi->points)))
294 		qi->num_points = ARRAY_SIZE(qi->points);
295 
296 	for (i = 0; i < qi->num_points; i++) {
297 		struct intel_qgv_point *sp = &qi->points[i];
298 
299 		ret = intel_read_qgv_point_info(dev_priv, sp, i);
300 		if (ret) {
301 			drm_dbg_kms(&dev_priv->drm, "Could not read QGV %d info\n", i);
302 			return ret;
303 		}
304 
305 		drm_dbg_kms(&dev_priv->drm,
306 			    "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
307 			    i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
308 			    sp->t_rcd, sp->t_rc);
309 	}
310 
311 	if (qi->num_psf_points > 0) {
312 		ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points);
313 		if (ret) {
314 			drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n");
315 			qi->num_psf_points = 0;
316 		}
317 
318 		for (i = 0; i < qi->num_psf_points; i++)
319 			drm_dbg_kms(&dev_priv->drm,
320 				    "PSF GV %d: CLK=%d \n",
321 				    i, qi->psf_points[i].clk);
322 	}
323 
324 	return 0;
325 }
326 
327 static int adl_calc_psf_bw(int clk)
328 {
329 	/*
330 	 * clk is multiples of 16.666MHz (100/6)
331 	 * According to BSpec PSF GV bandwidth is
332 	 * calculated as BW = 64 * clk * 16.666Mhz
333 	 */
334 	return DIV_ROUND_CLOSEST(64 * clk * 100, 6);
335 }
336 
337 static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
338 {
339 	u16 dclk = 0;
340 	int i;
341 
342 	for (i = 0; i < qi->num_points; i++)
343 		dclk = max(dclk, qi->points[i].dclk);
344 
345 	return dclk;
346 }
347 
348 struct intel_sa_info {
349 	u16 displayrtids;
350 	u8 deburst, deprogbwlimit, derating;
351 };
352 
353 static const struct intel_sa_info icl_sa_info = {
354 	.deburst = 8,
355 	.deprogbwlimit = 25, /* GB/s */
356 	.displayrtids = 128,
357 	.derating = 10,
358 };
359 
360 static const struct intel_sa_info tgl_sa_info = {
361 	.deburst = 16,
362 	.deprogbwlimit = 34, /* GB/s */
363 	.displayrtids = 256,
364 	.derating = 10,
365 };
366 
367 static const struct intel_sa_info rkl_sa_info = {
368 	.deburst = 8,
369 	.deprogbwlimit = 20, /* GB/s */
370 	.displayrtids = 128,
371 	.derating = 10,
372 };
373 
374 static const struct intel_sa_info adls_sa_info = {
375 	.deburst = 16,
376 	.deprogbwlimit = 38, /* GB/s */
377 	.displayrtids = 256,
378 	.derating = 10,
379 };
380 
381 static const struct intel_sa_info adlp_sa_info = {
382 	.deburst = 16,
383 	.deprogbwlimit = 38, /* GB/s */
384 	.displayrtids = 256,
385 	.derating = 20,
386 };
387 
388 static const struct intel_sa_info mtl_sa_info = {
389 	.deburst = 32,
390 	.deprogbwlimit = 38, /* GB/s */
391 	.displayrtids = 256,
392 	.derating = 10,
393 };
394 
395 static const struct intel_sa_info xe2_hpd_sa_info = {
396 	.derating = 30,
397 	.deprogbwlimit = 53,
398 	/* Other values not used by simplified algorithm */
399 };
400 
401 static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
402 {
403 	struct intel_qgv_info qi = {};
404 	bool is_y_tile = true; /* assume y tile may be used */
405 	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
406 	int ipqdepth, ipqdepthpch = 16;
407 	int dclk_max;
408 	int maxdebw;
409 	int num_groups = ARRAY_SIZE(dev_priv->display.bw.max);
410 	int i, ret;
411 
412 	ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
413 	if (ret) {
414 		drm_dbg_kms(&dev_priv->drm,
415 			    "Failed to get memory subsystem information, ignoring bandwidth limits");
416 		return ret;
417 	}
418 
419 	dclk_max = icl_sagv_max_dclk(&qi);
420 	maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10);
421 	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
422 	qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
423 
424 	for (i = 0; i < num_groups; i++) {
425 		struct intel_bw_info *bi = &dev_priv->display.bw.max[i];
426 		int clpchgroup;
427 		int j;
428 
429 		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
430 		bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
431 
432 		bi->num_qgv_points = qi.num_points;
433 		bi->num_psf_gv_points = qi.num_psf_points;
434 
435 		for (j = 0; j < qi.num_points; j++) {
436 			const struct intel_qgv_point *sp = &qi.points[j];
437 			int ct, bw;
438 
439 			/*
440 			 * Max row cycle time
441 			 *
442 			 * FIXME what is the logic behind the
443 			 * assumed burst length?
444 			 */
445 			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
446 				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
447 			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
448 
449 			bi->deratedbw[j] = min(maxdebw,
450 					       bw * (100 - sa->derating) / 100);
451 
452 			drm_dbg_kms(&dev_priv->drm,
453 				    "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
454 				    i, j, bi->num_planes, bi->deratedbw[j]);
455 		}
456 	}
457 	/*
458 	 * In case if SAGV is disabled in BIOS, we always get 1
459 	 * SAGV point, but we can't send PCode commands to restrict it
460 	 * as it will fail and pointless anyway.
461 	 */
462 	if (qi.num_points == 1)
463 		dev_priv->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
464 	else
465 		dev_priv->display.sagv.status = I915_SAGV_ENABLED;
466 
467 	return 0;
468 }
469 
470 static int tgl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
471 {
472 	struct intel_qgv_info qi = {};
473 	const struct dram_info *dram_info = &dev_priv->dram_info;
474 	bool is_y_tile = true; /* assume y tile may be used */
475 	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
476 	int ipqdepth, ipqdepthpch = 16;
477 	int dclk_max;
478 	int maxdebw, peakbw;
479 	int clperchgroup;
480 	int num_groups = ARRAY_SIZE(dev_priv->display.bw.max);
481 	int i, ret;
482 
483 	ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
484 	if (ret) {
485 		drm_dbg_kms(&dev_priv->drm,
486 			    "Failed to get memory subsystem information, ignoring bandwidth limits");
487 		return ret;
488 	}
489 
490 	if (DISPLAY_VER(dev_priv) < 14 &&
491 	    (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5))
492 		num_channels *= 2;
493 
494 	qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
495 
496 	if (num_channels < qi.max_numchannels && DISPLAY_VER(dev_priv) >= 12)
497 		qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1);
498 
499 	if (DISPLAY_VER(dev_priv) >= 12 && num_channels > qi.max_numchannels)
500 		drm_warn(&dev_priv->drm, "Number of channels exceeds max number of channels.");
501 	if (qi.max_numchannels != 0)
502 		num_channels = min_t(u8, num_channels, qi.max_numchannels);
503 
504 	dclk_max = icl_sagv_max_dclk(&qi);
505 
506 	peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max;
507 	maxdebw = min(sa->deprogbwlimit * 1000, peakbw * DEPROGBWPCLIMIT / 100);
508 
509 	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
510 	/*
511 	 * clperchgroup = 4kpagespermempage * clperchperblock,
512 	 * clperchperblock = 8 / num_channels * interleave
513 	 */
514 	clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave;
515 
516 	for (i = 0; i < num_groups; i++) {
517 		struct intel_bw_info *bi = &dev_priv->display.bw.max[i];
518 		struct intel_bw_info *bi_next;
519 		int clpchgroup;
520 		int j;
521 
522 		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
523 
524 		if (i < num_groups - 1) {
525 			bi_next = &dev_priv->display.bw.max[i + 1];
526 
527 			if (clpchgroup < clperchgroup)
528 				bi_next->num_planes = (ipqdepth - clpchgroup) /
529 						       clpchgroup + 1;
530 			else
531 				bi_next->num_planes = 0;
532 		}
533 
534 		bi->num_qgv_points = qi.num_points;
535 		bi->num_psf_gv_points = qi.num_psf_points;
536 
537 		for (j = 0; j < qi.num_points; j++) {
538 			const struct intel_qgv_point *sp = &qi.points[j];
539 			int ct, bw;
540 
541 			/*
542 			 * Max row cycle time
543 			 *
544 			 * FIXME what is the logic behind the
545 			 * assumed burst length?
546 			 */
547 			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
548 				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
549 			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
550 
551 			bi->deratedbw[j] = min(maxdebw,
552 					       bw * (100 - sa->derating) / 100);
553 			bi->peakbw[j] = DIV_ROUND_CLOSEST(sp->dclk *
554 							  num_channels *
555 							  qi.channel_width, 8);
556 
557 			drm_dbg_kms(&dev_priv->drm,
558 				    "BW%d / QGV %d: num_planes=%d deratedbw=%u peakbw: %u\n",
559 				    i, j, bi->num_planes, bi->deratedbw[j],
560 				    bi->peakbw[j]);
561 		}
562 
563 		for (j = 0; j < qi.num_psf_points; j++) {
564 			const struct intel_psf_gv_point *sp = &qi.psf_points[j];
565 
566 			bi->psf_bw[j] = adl_calc_psf_bw(sp->clk);
567 
568 			drm_dbg_kms(&dev_priv->drm,
569 				    "BW%d / PSF GV %d: num_planes=%d bw=%u\n",
570 				    i, j, bi->num_planes, bi->psf_bw[j]);
571 		}
572 	}
573 
574 	/*
575 	 * In case if SAGV is disabled in BIOS, we always get 1
576 	 * SAGV point, but we can't send PCode commands to restrict it
577 	 * as it will fail and pointless anyway.
578 	 */
579 	if (qi.num_points == 1)
580 		dev_priv->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
581 	else
582 		dev_priv->display.sagv.status = I915_SAGV_ENABLED;
583 
584 	return 0;
585 }
586 
587 static void dg2_get_bw_info(struct drm_i915_private *i915)
588 {
589 	unsigned int deratedbw = IS_DG2_G11(i915) ? 38000 : 50000;
590 	int num_groups = ARRAY_SIZE(i915->display.bw.max);
591 	int i;
592 
593 	/*
594 	 * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth
595 	 * that doesn't depend on the number of planes enabled. So fill all the
596 	 * plane group with constant bw information for uniformity with other
597 	 * platforms. DG2-G10 platforms have a constant 50 GB/s bandwidth,
598 	 * whereas DG2-G11 platforms have 38 GB/s.
599 	 */
600 	for (i = 0; i < num_groups; i++) {
601 		struct intel_bw_info *bi = &i915->display.bw.max[i];
602 
603 		bi->num_planes = 1;
604 		/* Need only one dummy QGV point per group */
605 		bi->num_qgv_points = 1;
606 		bi->deratedbw[0] = deratedbw;
607 	}
608 
609 	i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
610 }
611 
612 static int xe2_hpd_get_bw_info(struct drm_i915_private *i915,
613 			       const struct intel_sa_info *sa)
614 {
615 	struct intel_qgv_info qi = {};
616 	int num_channels = i915->dram_info.num_channels;
617 	int peakbw, maxdebw;
618 	int ret, i;
619 
620 	ret = icl_get_qgv_points(i915, &qi, true);
621 	if (ret) {
622 		drm_dbg_kms(&i915->drm,
623 			    "Failed to get memory subsystem information, ignoring bandwidth limits");
624 		return ret;
625 	}
626 
627 	peakbw = num_channels * qi.channel_width / 8 * icl_sagv_max_dclk(&qi);
628 	maxdebw = min(sa->deprogbwlimit * 1000, peakbw * DEPROGBWPCLIMIT / 10);
629 
630 	for (i = 0; i < qi.num_points; i++) {
631 		const struct intel_qgv_point *point = &qi.points[i];
632 		int bw = num_channels * (qi.channel_width / 8) * point->dclk;
633 
634 		i915->display.bw.max[0].deratedbw[i] =
635 			min(maxdebw, (100 - sa->derating) * bw / 100);
636 		i915->display.bw.max[0].peakbw[i] = bw;
637 
638 		drm_dbg_kms(&i915->drm, "QGV %d: deratedbw=%u peakbw: %u\n",
639 			    i, i915->display.bw.max[0].deratedbw[i],
640 			    i915->display.bw.max[0].peakbw[i]);
641 	}
642 
643 	/* Bandwidth does not depend on # of planes; set all groups the same */
644 	i915->display.bw.max[0].num_planes = 1;
645 	i915->display.bw.max[0].num_qgv_points = qi.num_points;
646 	for (i = 1; i < ARRAY_SIZE(i915->display.bw.max); i++)
647 		memcpy(&i915->display.bw.max[i], &i915->display.bw.max[0],
648 		       sizeof(i915->display.bw.max[0]));
649 
650 	/*
651 	 * Xe2_HPD should always have exactly two QGV points representing
652 	 * battery and plugged-in operation.
653 	 */
654 	drm_WARN_ON(&i915->drm, qi.num_points != 2);
655 	i915->display.sagv.status = I915_SAGV_ENABLED;
656 
657 	return 0;
658 }
659 
660 static unsigned int icl_max_bw_index(struct drm_i915_private *dev_priv,
661 				     int num_planes, int qgv_point)
662 {
663 	int i;
664 
665 	/*
666 	 * Let's return max bw for 0 planes
667 	 */
668 	num_planes = max(1, num_planes);
669 
670 	for (i = 0; i < ARRAY_SIZE(dev_priv->display.bw.max); i++) {
671 		const struct intel_bw_info *bi =
672 			&dev_priv->display.bw.max[i];
673 
674 		/*
675 		 * Pcode will not expose all QGV points when
676 		 * SAGV is forced to off/min/med/max.
677 		 */
678 		if (qgv_point >= bi->num_qgv_points)
679 			return UINT_MAX;
680 
681 		if (num_planes >= bi->num_planes)
682 			return i;
683 	}
684 
685 	return UINT_MAX;
686 }
687 
688 static unsigned int tgl_max_bw_index(struct drm_i915_private *dev_priv,
689 				     int num_planes, int qgv_point)
690 {
691 	int i;
692 
693 	/*
694 	 * Let's return max bw for 0 planes
695 	 */
696 	num_planes = max(1, num_planes);
697 
698 	for (i = ARRAY_SIZE(dev_priv->display.bw.max) - 1; i >= 0; i--) {
699 		const struct intel_bw_info *bi =
700 			&dev_priv->display.bw.max[i];
701 
702 		/*
703 		 * Pcode will not expose all QGV points when
704 		 * SAGV is forced to off/min/med/max.
705 		 */
706 		if (qgv_point >= bi->num_qgv_points)
707 			return UINT_MAX;
708 
709 		if (num_planes <= bi->num_planes)
710 			return i;
711 	}
712 
713 	return 0;
714 }
715 
716 static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv,
717 			       int psf_gv_point)
718 {
719 	const struct intel_bw_info *bi =
720 			&dev_priv->display.bw.max[0];
721 
722 	return bi->psf_bw[psf_gv_point];
723 }
724 
725 static unsigned int icl_qgv_bw(struct drm_i915_private *i915,
726 			       int num_active_planes, int qgv_point)
727 {
728 	unsigned int idx;
729 
730 	if (DISPLAY_VER(i915) >= 12)
731 		idx = tgl_max_bw_index(i915, num_active_planes, qgv_point);
732 	else
733 		idx = icl_max_bw_index(i915, num_active_planes, qgv_point);
734 
735 	if (idx >= ARRAY_SIZE(i915->display.bw.max))
736 		return 0;
737 
738 	return i915->display.bw.max[idx].deratedbw[qgv_point];
739 }
740 
741 void intel_bw_init_hw(struct drm_i915_private *dev_priv)
742 {
743 	if (!HAS_DISPLAY(dev_priv))
744 		return;
745 
746 	if (DISPLAY_VERx100(dev_priv) >= 1401 && IS_DGFX(dev_priv))
747 		xe2_hpd_get_bw_info(dev_priv, &xe2_hpd_sa_info);
748 	else if (DISPLAY_VER(dev_priv) >= 14)
749 		tgl_get_bw_info(dev_priv, &mtl_sa_info);
750 	else if (IS_DG2(dev_priv))
751 		dg2_get_bw_info(dev_priv);
752 	else if (IS_ALDERLAKE_P(dev_priv))
753 		tgl_get_bw_info(dev_priv, &adlp_sa_info);
754 	else if (IS_ALDERLAKE_S(dev_priv))
755 		tgl_get_bw_info(dev_priv, &adls_sa_info);
756 	else if (IS_ROCKETLAKE(dev_priv))
757 		tgl_get_bw_info(dev_priv, &rkl_sa_info);
758 	else if (DISPLAY_VER(dev_priv) == 12)
759 		tgl_get_bw_info(dev_priv, &tgl_sa_info);
760 	else if (DISPLAY_VER(dev_priv) == 11)
761 		icl_get_bw_info(dev_priv, &icl_sa_info);
762 }
763 
764 static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
765 {
766 	/*
767 	 * We assume cursors are small enough
768 	 * to not not cause bandwidth problems.
769 	 */
770 	return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
771 }
772 
773 static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
774 {
775 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
776 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
777 	unsigned int data_rate = 0;
778 	enum plane_id plane_id;
779 
780 	for_each_plane_id_on_crtc(crtc, plane_id) {
781 		/*
782 		 * We assume cursors are small enough
783 		 * to not not cause bandwidth problems.
784 		 */
785 		if (plane_id == PLANE_CURSOR)
786 			continue;
787 
788 		data_rate += crtc_state->data_rate[plane_id];
789 
790 		if (DISPLAY_VER(i915) < 11)
791 			data_rate += crtc_state->data_rate_y[plane_id];
792 	}
793 
794 	return data_rate;
795 }
796 
797 /* "Maximum Pipe Read Bandwidth" */
798 static int intel_bw_crtc_min_cdclk(const struct intel_crtc_state *crtc_state)
799 {
800 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
801 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
802 
803 	if (DISPLAY_VER(i915) < 12)
804 		return 0;
805 
806 	return DIV_ROUND_UP_ULL(mul_u32_u32(intel_bw_crtc_data_rate(crtc_state), 10), 512);
807 }
808 
809 void intel_bw_crtc_update(struct intel_bw_state *bw_state,
810 			  const struct intel_crtc_state *crtc_state)
811 {
812 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
813 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
814 
815 	bw_state->data_rate[crtc->pipe] =
816 		intel_bw_crtc_data_rate(crtc_state);
817 	bw_state->num_active_planes[crtc->pipe] =
818 		intel_bw_crtc_num_active_planes(crtc_state);
819 	bw_state->force_check_qgv = true;
820 
821 	drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
822 		    pipe_name(crtc->pipe),
823 		    bw_state->data_rate[crtc->pipe],
824 		    bw_state->num_active_planes[crtc->pipe]);
825 }
826 
827 static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
828 					       const struct intel_bw_state *bw_state)
829 {
830 	unsigned int num_active_planes = 0;
831 	enum pipe pipe;
832 
833 	for_each_pipe(dev_priv, pipe)
834 		num_active_planes += bw_state->num_active_planes[pipe];
835 
836 	return num_active_planes;
837 }
838 
839 static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
840 				       const struct intel_bw_state *bw_state)
841 {
842 	unsigned int data_rate = 0;
843 	enum pipe pipe;
844 
845 	for_each_pipe(dev_priv, pipe)
846 		data_rate += bw_state->data_rate[pipe];
847 
848 	if (DISPLAY_VER(dev_priv) >= 13 && i915_vtd_active(dev_priv))
849 		data_rate = DIV_ROUND_UP(data_rate * 105, 100);
850 
851 	return data_rate;
852 }
853 
854 struct intel_bw_state *
855 intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
856 {
857 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
858 	struct intel_global_state *bw_state;
859 
860 	bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->display.bw.obj);
861 
862 	return to_intel_bw_state(bw_state);
863 }
864 
865 struct intel_bw_state *
866 intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
867 {
868 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
869 	struct intel_global_state *bw_state;
870 
871 	bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->display.bw.obj);
872 
873 	return to_intel_bw_state(bw_state);
874 }
875 
876 struct intel_bw_state *
877 intel_atomic_get_bw_state(struct intel_atomic_state *state)
878 {
879 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
880 	struct intel_global_state *bw_state;
881 
882 	bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->display.bw.obj);
883 	if (IS_ERR(bw_state))
884 		return ERR_CAST(bw_state);
885 
886 	return to_intel_bw_state(bw_state);
887 }
888 
889 static unsigned int icl_max_bw_qgv_point_mask(struct drm_i915_private *i915,
890 					      int num_active_planes)
891 {
892 	unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points;
893 	unsigned int max_bw_point = 0;
894 	unsigned int max_bw = 0;
895 	int i;
896 
897 	for (i = 0; i < num_qgv_points; i++) {
898 		unsigned int max_data_rate =
899 			icl_qgv_bw(i915, num_active_planes, i);
900 
901 		/*
902 		 * We need to know which qgv point gives us
903 		 * maximum bandwidth in order to disable SAGV
904 		 * if we find that we exceed SAGV block time
905 		 * with watermarks. By that moment we already
906 		 * have those, as it is calculated earlier in
907 		 * intel_atomic_check,
908 		 */
909 		if (max_data_rate > max_bw) {
910 			max_bw_point = BIT(i);
911 			max_bw = max_data_rate;
912 		}
913 	}
914 
915 	return max_bw_point;
916 }
917 
918 static u16 icl_prepare_qgv_points_mask(struct drm_i915_private *i915,
919 				       unsigned int qgv_points,
920 				       unsigned int psf_points)
921 {
922 	return ~(ICL_PCODE_REQ_QGV_PT(qgv_points) |
923 		 ADLS_PCODE_REQ_PSF_PT(psf_points)) & icl_qgv_points_mask(i915);
924 }
925 
926 static unsigned int icl_max_bw_psf_gv_point_mask(struct drm_i915_private *i915)
927 {
928 	unsigned int num_psf_gv_points = i915->display.bw.max[0].num_psf_gv_points;
929 	unsigned int max_bw_point_mask = 0;
930 	unsigned int max_bw = 0;
931 	int i;
932 
933 	for (i = 0; i < num_psf_gv_points; i++) {
934 		unsigned int max_data_rate = adl_psf_bw(i915, i);
935 
936 		if (max_data_rate > max_bw) {
937 			max_bw_point_mask = BIT(i);
938 			max_bw = max_data_rate;
939 		} else if (max_data_rate == max_bw) {
940 			max_bw_point_mask |= BIT(i);
941 		}
942 	}
943 
944 	return max_bw_point_mask;
945 }
946 
947 static void icl_force_disable_sagv(struct drm_i915_private *i915,
948 				   struct intel_bw_state *bw_state)
949 {
950 	unsigned int qgv_points = icl_max_bw_qgv_point_mask(i915, 0);
951 	unsigned int psf_points = icl_max_bw_psf_gv_point_mask(i915);
952 
953 	bw_state->qgv_points_mask = icl_prepare_qgv_points_mask(i915,
954 								qgv_points,
955 								psf_points);
956 
957 	drm_dbg_kms(&i915->drm, "Forcing SAGV disable: mask 0x%x\n",
958 		    bw_state->qgv_points_mask);
959 
960 	icl_pcode_restrict_qgv_points(i915, bw_state->qgv_points_mask);
961 }
962 
963 static int mtl_find_qgv_points(struct drm_i915_private *i915,
964 			       unsigned int data_rate,
965 			       unsigned int num_active_planes,
966 			       struct intel_bw_state *new_bw_state)
967 {
968 	unsigned int best_rate = UINT_MAX;
969 	unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points;
970 	unsigned int qgv_peak_bw  = 0;
971 	int i;
972 	int ret;
973 
974 	ret = intel_atomic_lock_global_state(&new_bw_state->base);
975 	if (ret)
976 		return ret;
977 
978 	/*
979 	 * If SAGV cannot be enabled, disable the pcode SAGV by passing all 1's
980 	 * for qgv peak bw in PM Demand request. So assign UINT_MAX if SAGV is
981 	 * not enabled. PM Demand code will clamp the value for the register
982 	 */
983 	if (!intel_can_enable_sagv(i915, new_bw_state)) {
984 		new_bw_state->qgv_point_peakbw = U16_MAX;
985 		drm_dbg_kms(&i915->drm, "No SAGV, use UINT_MAX as peak bw.");
986 		return 0;
987 	}
988 
989 	/*
990 	 * Find the best QGV point by comparing the data_rate with max data rate
991 	 * offered per plane group
992 	 */
993 	for (i = 0; i < num_qgv_points; i++) {
994 		unsigned int bw_index =
995 			tgl_max_bw_index(i915, num_active_planes, i);
996 		unsigned int max_data_rate;
997 
998 		if (bw_index >= ARRAY_SIZE(i915->display.bw.max))
999 			continue;
1000 
1001 		max_data_rate = i915->display.bw.max[bw_index].deratedbw[i];
1002 
1003 		if (max_data_rate < data_rate)
1004 			continue;
1005 
1006 		if (max_data_rate - data_rate < best_rate) {
1007 			best_rate = max_data_rate - data_rate;
1008 			qgv_peak_bw = i915->display.bw.max[bw_index].peakbw[i];
1009 		}
1010 
1011 		drm_dbg_kms(&i915->drm, "QGV point %d: max bw %d required %d qgv_peak_bw: %d\n",
1012 			    i, max_data_rate, data_rate, qgv_peak_bw);
1013 	}
1014 
1015 	drm_dbg_kms(&i915->drm, "Matching peaks QGV bw: %d for required data rate: %d\n",
1016 		    qgv_peak_bw, data_rate);
1017 
1018 	/*
1019 	 * The display configuration cannot be supported if no QGV point
1020 	 * satisfying the required data rate is found
1021 	 */
1022 	if (qgv_peak_bw == 0) {
1023 		drm_dbg_kms(&i915->drm, "No QGV points for bw %d for display configuration(%d active planes).\n",
1024 			    data_rate, num_active_planes);
1025 		return -EINVAL;
1026 	}
1027 
1028 	/* MTL PM DEMAND expects QGV BW parameter in multiples of 100 mbps */
1029 	new_bw_state->qgv_point_peakbw = DIV_ROUND_CLOSEST(qgv_peak_bw, 100);
1030 
1031 	return 0;
1032 }
1033 
1034 static int icl_find_qgv_points(struct drm_i915_private *i915,
1035 			       unsigned int data_rate,
1036 			       unsigned int num_active_planes,
1037 			       const struct intel_bw_state *old_bw_state,
1038 			       struct intel_bw_state *new_bw_state)
1039 {
1040 	unsigned int num_psf_gv_points = i915->display.bw.max[0].num_psf_gv_points;
1041 	unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points;
1042 	u16 psf_points = 0;
1043 	u16 qgv_points = 0;
1044 	int i;
1045 	int ret;
1046 
1047 	ret = intel_atomic_lock_global_state(&new_bw_state->base);
1048 	if (ret)
1049 		return ret;
1050 
1051 	for (i = 0; i < num_qgv_points; i++) {
1052 		unsigned int max_data_rate = icl_qgv_bw(i915,
1053 							num_active_planes, i);
1054 		if (max_data_rate >= data_rate)
1055 			qgv_points |= BIT(i);
1056 
1057 		drm_dbg_kms(&i915->drm, "QGV point %d: max bw %d required %d\n",
1058 			    i, max_data_rate, data_rate);
1059 	}
1060 
1061 	for (i = 0; i < num_psf_gv_points; i++) {
1062 		unsigned int max_data_rate = adl_psf_bw(i915, i);
1063 
1064 		if (max_data_rate >= data_rate)
1065 			psf_points |= BIT(i);
1066 
1067 		drm_dbg_kms(&i915->drm, "PSF GV point %d: max bw %d"
1068 			    " required %d\n",
1069 			    i, max_data_rate, data_rate);
1070 	}
1071 
1072 	/*
1073 	 * BSpec states that we always should have at least one allowed point
1074 	 * left, so if we couldn't - simply reject the configuration for obvious
1075 	 * reasons.
1076 	 */
1077 	if (qgv_points == 0) {
1078 		drm_dbg_kms(&i915->drm, "No QGV points provide sufficient memory"
1079 			    " bandwidth %d for display configuration(%d active planes).\n",
1080 			    data_rate, num_active_planes);
1081 		return -EINVAL;
1082 	}
1083 
1084 	if (num_psf_gv_points > 0 && psf_points == 0) {
1085 		drm_dbg_kms(&i915->drm, "No PSF GV points provide sufficient memory"
1086 			    " bandwidth %d for display configuration(%d active planes).\n",
1087 			    data_rate, num_active_planes);
1088 		return -EINVAL;
1089 	}
1090 
1091 	/*
1092 	 * Leave only single point with highest bandwidth, if
1093 	 * we can't enable SAGV due to the increased memory latency it may
1094 	 * cause.
1095 	 */
1096 	if (!intel_can_enable_sagv(i915, new_bw_state)) {
1097 		qgv_points = icl_max_bw_qgv_point_mask(i915, num_active_planes);
1098 		drm_dbg_kms(&i915->drm, "No SAGV, using single QGV point mask 0x%x\n",
1099 			    qgv_points);
1100 	}
1101 
1102 	/*
1103 	 * We store the ones which need to be masked as that is what PCode
1104 	 * actually accepts as a parameter.
1105 	 */
1106 	new_bw_state->qgv_points_mask = icl_prepare_qgv_points_mask(i915,
1107 								    qgv_points,
1108 								    psf_points);
1109 	/*
1110 	 * If the actual mask had changed we need to make sure that
1111 	 * the commits are serialized(in case this is a nomodeset, nonblocking)
1112 	 */
1113 	if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
1114 		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
1115 		if (ret)
1116 			return ret;
1117 	}
1118 
1119 	return 0;
1120 }
1121 
1122 static int intel_bw_check_qgv_points(struct drm_i915_private *i915,
1123 				     const struct intel_bw_state *old_bw_state,
1124 				     struct intel_bw_state *new_bw_state)
1125 {
1126 	unsigned int data_rate = intel_bw_data_rate(i915, new_bw_state);
1127 	unsigned int num_active_planes =
1128 			intel_bw_num_active_planes(i915, new_bw_state);
1129 
1130 	data_rate = DIV_ROUND_UP(data_rate, 1000);
1131 
1132 	if (DISPLAY_VER(i915) >= 14)
1133 		return mtl_find_qgv_points(i915, data_rate, num_active_planes,
1134 					   new_bw_state);
1135 	else
1136 		return icl_find_qgv_points(i915, data_rate, num_active_planes,
1137 					   old_bw_state, new_bw_state);
1138 }
1139 
1140 static bool intel_bw_state_changed(struct drm_i915_private *i915,
1141 				   const struct intel_bw_state *old_bw_state,
1142 				   const struct intel_bw_state *new_bw_state)
1143 {
1144 	enum pipe pipe;
1145 
1146 	for_each_pipe(i915, pipe) {
1147 		const struct intel_dbuf_bw *old_crtc_bw =
1148 			&old_bw_state->dbuf_bw[pipe];
1149 		const struct intel_dbuf_bw *new_crtc_bw =
1150 			&new_bw_state->dbuf_bw[pipe];
1151 		enum dbuf_slice slice;
1152 
1153 		for_each_dbuf_slice(i915, slice) {
1154 			if (old_crtc_bw->max_bw[slice] != new_crtc_bw->max_bw[slice] ||
1155 			    old_crtc_bw->active_planes[slice] != new_crtc_bw->active_planes[slice])
1156 				return true;
1157 		}
1158 
1159 		if (old_bw_state->min_cdclk[pipe] != new_bw_state->min_cdclk[pipe])
1160 			return true;
1161 	}
1162 
1163 	return false;
1164 }
1165 
1166 static void skl_plane_calc_dbuf_bw(struct intel_bw_state *bw_state,
1167 				   struct intel_crtc *crtc,
1168 				   enum plane_id plane_id,
1169 				   const struct skl_ddb_entry *ddb,
1170 				   unsigned int data_rate)
1171 {
1172 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1173 	struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
1174 	unsigned int dbuf_mask = skl_ddb_dbuf_slice_mask(i915, ddb);
1175 	enum dbuf_slice slice;
1176 
1177 	/*
1178 	 * The arbiter can only really guarantee an
1179 	 * equal share of the total bw to each plane.
1180 	 */
1181 	for_each_dbuf_slice_in_mask(i915, slice, dbuf_mask) {
1182 		crtc_bw->max_bw[slice] = max(crtc_bw->max_bw[slice], data_rate);
1183 		crtc_bw->active_planes[slice] |= BIT(plane_id);
1184 	}
1185 }
1186 
1187 static void skl_crtc_calc_dbuf_bw(struct intel_bw_state *bw_state,
1188 				  const struct intel_crtc_state *crtc_state)
1189 {
1190 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1191 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1192 	struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
1193 	enum plane_id plane_id;
1194 
1195 	memset(crtc_bw, 0, sizeof(*crtc_bw));
1196 
1197 	if (!crtc_state->hw.active)
1198 		return;
1199 
1200 	for_each_plane_id_on_crtc(crtc, plane_id) {
1201 		/*
1202 		 * We assume cursors are small enough
1203 		 * to not cause bandwidth problems.
1204 		 */
1205 		if (plane_id == PLANE_CURSOR)
1206 			continue;
1207 
1208 		skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id,
1209 				       &crtc_state->wm.skl.plane_ddb[plane_id],
1210 				       crtc_state->data_rate[plane_id]);
1211 
1212 		if (DISPLAY_VER(i915) < 11)
1213 			skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id,
1214 					       &crtc_state->wm.skl.plane_ddb_y[plane_id],
1215 					       crtc_state->data_rate[plane_id]);
1216 	}
1217 }
1218 
1219 /* "Maximum Data Buffer Bandwidth" */
1220 static int
1221 intel_bw_dbuf_min_cdclk(struct drm_i915_private *i915,
1222 			const struct intel_bw_state *bw_state)
1223 {
1224 	unsigned int total_max_bw = 0;
1225 	enum dbuf_slice slice;
1226 
1227 	for_each_dbuf_slice(i915, slice) {
1228 		int num_active_planes = 0;
1229 		unsigned int max_bw = 0;
1230 		enum pipe pipe;
1231 
1232 		/*
1233 		 * The arbiter can only really guarantee an
1234 		 * equal share of the total bw to each plane.
1235 		 */
1236 		for_each_pipe(i915, pipe) {
1237 			const struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[pipe];
1238 
1239 			max_bw = max(crtc_bw->max_bw[slice], max_bw);
1240 			num_active_planes += hweight8(crtc_bw->active_planes[slice]);
1241 		}
1242 		max_bw *= num_active_planes;
1243 
1244 		total_max_bw = max(total_max_bw, max_bw);
1245 	}
1246 
1247 	return DIV_ROUND_UP(total_max_bw, 64);
1248 }
1249 
1250 int intel_bw_min_cdclk(struct drm_i915_private *i915,
1251 		       const struct intel_bw_state *bw_state)
1252 {
1253 	enum pipe pipe;
1254 	int min_cdclk;
1255 
1256 	min_cdclk = intel_bw_dbuf_min_cdclk(i915, bw_state);
1257 
1258 	for_each_pipe(i915, pipe)
1259 		min_cdclk = max(bw_state->min_cdclk[pipe], min_cdclk);
1260 
1261 	return min_cdclk;
1262 }
1263 
1264 int intel_bw_calc_min_cdclk(struct intel_atomic_state *state,
1265 			    bool *need_cdclk_calc)
1266 {
1267 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1268 	struct intel_bw_state *new_bw_state = NULL;
1269 	const struct intel_bw_state *old_bw_state = NULL;
1270 	const struct intel_cdclk_state *cdclk_state;
1271 	const struct intel_crtc_state *crtc_state;
1272 	int old_min_cdclk, new_min_cdclk;
1273 	struct intel_crtc *crtc;
1274 	int i;
1275 
1276 	if (DISPLAY_VER(dev_priv) < 9)
1277 		return 0;
1278 
1279 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
1280 		new_bw_state = intel_atomic_get_bw_state(state);
1281 		if (IS_ERR(new_bw_state))
1282 			return PTR_ERR(new_bw_state);
1283 
1284 		old_bw_state = intel_atomic_get_old_bw_state(state);
1285 
1286 		skl_crtc_calc_dbuf_bw(new_bw_state, crtc_state);
1287 
1288 		new_bw_state->min_cdclk[crtc->pipe] =
1289 			intel_bw_crtc_min_cdclk(crtc_state);
1290 	}
1291 
1292 	if (!old_bw_state)
1293 		return 0;
1294 
1295 	if (intel_bw_state_changed(dev_priv, old_bw_state, new_bw_state)) {
1296 		int ret = intel_atomic_lock_global_state(&new_bw_state->base);
1297 		if (ret)
1298 			return ret;
1299 	}
1300 
1301 	old_min_cdclk = intel_bw_min_cdclk(dev_priv, old_bw_state);
1302 	new_min_cdclk = intel_bw_min_cdclk(dev_priv, new_bw_state);
1303 
1304 	/*
1305 	 * No need to check against the cdclk state if
1306 	 * the min cdclk doesn't increase.
1307 	 *
1308 	 * Ie. we only ever increase the cdclk due to bandwidth
1309 	 * requirements. This can reduce back and forth
1310 	 * display blinking due to constant cdclk changes.
1311 	 */
1312 	if (new_min_cdclk <= old_min_cdclk)
1313 		return 0;
1314 
1315 	cdclk_state = intel_atomic_get_cdclk_state(state);
1316 	if (IS_ERR(cdclk_state))
1317 		return PTR_ERR(cdclk_state);
1318 
1319 	/*
1320 	 * No need to recalculate the cdclk state if
1321 	 * the min cdclk doesn't increase.
1322 	 *
1323 	 * Ie. we only ever increase the cdclk due to bandwidth
1324 	 * requirements. This can reduce back and forth
1325 	 * display blinking due to constant cdclk changes.
1326 	 */
1327 	if (new_min_cdclk <= cdclk_state->bw_min_cdclk)
1328 		return 0;
1329 
1330 	drm_dbg_kms(&dev_priv->drm,
1331 		    "new bandwidth min cdclk (%d kHz) > old min cdclk (%d kHz)\n",
1332 		    new_min_cdclk, cdclk_state->bw_min_cdclk);
1333 	*need_cdclk_calc = true;
1334 
1335 	return 0;
1336 }
1337 
1338 static int intel_bw_check_data_rate(struct intel_atomic_state *state, bool *changed)
1339 {
1340 	struct drm_i915_private *i915 = to_i915(state->base.dev);
1341 	const struct intel_crtc_state *new_crtc_state, *old_crtc_state;
1342 	struct intel_crtc *crtc;
1343 	int i;
1344 
1345 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
1346 					    new_crtc_state, i) {
1347 		unsigned int old_data_rate =
1348 			intel_bw_crtc_data_rate(old_crtc_state);
1349 		unsigned int new_data_rate =
1350 			intel_bw_crtc_data_rate(new_crtc_state);
1351 		unsigned int old_active_planes =
1352 			intel_bw_crtc_num_active_planes(old_crtc_state);
1353 		unsigned int new_active_planes =
1354 			intel_bw_crtc_num_active_planes(new_crtc_state);
1355 		struct intel_bw_state *new_bw_state;
1356 
1357 		/*
1358 		 * Avoid locking the bw state when
1359 		 * nothing significant has changed.
1360 		 */
1361 		if (old_data_rate == new_data_rate &&
1362 		    old_active_planes == new_active_planes)
1363 			continue;
1364 
1365 		new_bw_state = intel_atomic_get_bw_state(state);
1366 		if (IS_ERR(new_bw_state))
1367 			return PTR_ERR(new_bw_state);
1368 
1369 		new_bw_state->data_rate[crtc->pipe] = new_data_rate;
1370 		new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
1371 
1372 		*changed = true;
1373 
1374 		drm_dbg_kms(&i915->drm,
1375 			    "[CRTC:%d:%s] data rate %u num active planes %u\n",
1376 			    crtc->base.base.id, crtc->base.name,
1377 			    new_bw_state->data_rate[crtc->pipe],
1378 			    new_bw_state->num_active_planes[crtc->pipe]);
1379 	}
1380 
1381 	return 0;
1382 }
1383 
1384 int intel_bw_atomic_check(struct intel_atomic_state *state)
1385 {
1386 	bool changed = false;
1387 	struct drm_i915_private *i915 = to_i915(state->base.dev);
1388 	struct intel_bw_state *new_bw_state;
1389 	const struct intel_bw_state *old_bw_state;
1390 	int ret;
1391 
1392 	/* FIXME earlier gens need some checks too */
1393 	if (DISPLAY_VER(i915) < 11)
1394 		return 0;
1395 
1396 	ret = intel_bw_check_data_rate(state, &changed);
1397 	if (ret)
1398 		return ret;
1399 
1400 	old_bw_state = intel_atomic_get_old_bw_state(state);
1401 	new_bw_state = intel_atomic_get_new_bw_state(state);
1402 
1403 	if (new_bw_state &&
1404 	    (intel_can_enable_sagv(i915, old_bw_state) !=
1405 	     intel_can_enable_sagv(i915, new_bw_state) ||
1406 	     new_bw_state->force_check_qgv))
1407 		changed = true;
1408 
1409 	/*
1410 	 * If none of our inputs (data rates, number of active
1411 	 * planes, SAGV yes/no) changed then nothing to do here.
1412 	 */
1413 	if (!changed)
1414 		return 0;
1415 
1416 	ret = intel_bw_check_qgv_points(i915, old_bw_state, new_bw_state);
1417 	if (ret)
1418 		return ret;
1419 
1420 	new_bw_state->force_check_qgv = false;
1421 
1422 	return 0;
1423 }
1424 
1425 static struct intel_global_state *
1426 intel_bw_duplicate_state(struct intel_global_obj *obj)
1427 {
1428 	struct intel_bw_state *state;
1429 
1430 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
1431 	if (!state)
1432 		return NULL;
1433 
1434 	return &state->base;
1435 }
1436 
1437 static void intel_bw_destroy_state(struct intel_global_obj *obj,
1438 				   struct intel_global_state *state)
1439 {
1440 	kfree(state);
1441 }
1442 
1443 static const struct intel_global_state_funcs intel_bw_funcs = {
1444 	.atomic_duplicate_state = intel_bw_duplicate_state,
1445 	.atomic_destroy_state = intel_bw_destroy_state,
1446 };
1447 
1448 int intel_bw_init(struct drm_i915_private *i915)
1449 {
1450 	struct intel_bw_state *state;
1451 
1452 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1453 	if (!state)
1454 		return -ENOMEM;
1455 
1456 	intel_atomic_global_obj_init(i915, &i915->display.bw.obj,
1457 				     &state->base, &intel_bw_funcs);
1458 
1459 	/*
1460 	 * Limit this only if we have SAGV. And for Display version 14 onwards
1461 	 * sagv is handled though pmdemand requests
1462 	 */
1463 	if (intel_has_sagv(i915) && IS_DISPLAY_VER(i915, 11, 13))
1464 		icl_force_disable_sagv(i915, state);
1465 
1466 	return 0;
1467 }
1468