1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <linux/debugfs.h> 29 #include <linux/firmware.h> 30 31 #include <drm/display/drm_dp_helper.h> 32 #include <drm/display/drm_dsc_helper.h> 33 #include <drm/drm_edid.h> 34 #include <drm/drm_fixed.h> 35 #include <drm/drm_print.h> 36 37 #include "soc/intel_rom.h" 38 39 #include "i915_drv.h" 40 #include "i915_utils.h" 41 #include "intel_display.h" 42 #include "intel_display_core.h" 43 #include "intel_display_rpm.h" 44 #include "intel_display_types.h" 45 #include "intel_gmbus.h" 46 47 #define _INTEL_BIOS_PRIVATE 48 #include "intel_vbt_defs.h" 49 50 /** 51 * DOC: Video BIOS Table (VBT) 52 * 53 * The Video BIOS Table, or VBT, provides platform and board specific 54 * configuration information to the driver that is not discoverable or available 55 * through other means. The configuration is mostly related to display 56 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 57 * the PCI ROM. 58 * 59 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 60 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 61 * contain the actual configuration information. The VBT Header, and thus the 62 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 63 * BDB Header. The data blocks are concatenated after the BDB Header. The data 64 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 65 * data. (Block 53, the MIPI Sequence Block is an exception.) 66 * 67 * The driver parses the VBT during load. The relevant information is stored in 68 * driver private data for ease of use, and the actual VBT is not read after 69 * that. 70 */ 71 72 /* Wrapper for VBT child device config */ 73 struct intel_bios_encoder_data { 74 struct intel_display *display; 75 76 struct child_device_config child; 77 struct dsc_compression_parameters_entry *dsc; 78 struct list_head node; 79 }; 80 81 #define TARGET_ADDR1 0x70 82 #define TARGET_ADDR2 0x72 83 84 /* Get BDB block size given a pointer to Block ID. */ 85 static u32 _get_blocksize(const u8 *block_base) 86 { 87 /* The MIPI Sequence Block v3+ has a separate size field. */ 88 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 89 return *((const u32 *)(block_base + 4)); 90 else 91 return *((const u16 *)(block_base + 1)); 92 } 93 94 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 95 static u32 get_blocksize(const void *block_data) 96 { 97 return _get_blocksize(block_data - 3); 98 } 99 100 static const void * 101 find_raw_section(const void *_bdb, enum bdb_block_id section_id) 102 { 103 const struct bdb_header *bdb = _bdb; 104 const u8 *base = _bdb; 105 int index = 0; 106 u32 total, current_size; 107 enum bdb_block_id current_id; 108 109 /* skip to first section */ 110 index += bdb->header_size; 111 total = bdb->bdb_size; 112 113 /* walk the sections looking for section_id */ 114 while (index + 3 < total) { 115 current_id = *(base + index); 116 current_size = _get_blocksize(base + index); 117 index += 3; 118 119 if (index + current_size > total) 120 return NULL; 121 122 if (current_id == section_id) 123 return base + index; 124 125 index += current_size; 126 } 127 128 return NULL; 129 } 130 131 /* 132 * Offset from the start of BDB to the start of the 133 * block data (just past the block header). 134 */ 135 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) 136 { 137 const void *block; 138 139 block = find_raw_section(bdb, section_id); 140 if (!block) 141 return 0; 142 143 return block - bdb; 144 } 145 146 struct bdb_block_entry { 147 struct list_head node; 148 enum bdb_block_id section_id; 149 u8 data[]; 150 }; 151 152 static const void * 153 bdb_find_section(struct intel_display *display, 154 enum bdb_block_id section_id) 155 { 156 struct bdb_block_entry *entry; 157 158 list_for_each_entry(entry, &display->vbt.bdb_blocks, node) { 159 if (entry->section_id == section_id) 160 return entry->data + 3; 161 } 162 163 return NULL; 164 } 165 166 static const struct { 167 enum bdb_block_id section_id; 168 size_t min_size; 169 } bdb_blocks[] = { 170 { .section_id = BDB_GENERAL_FEATURES, 171 .min_size = sizeof(struct bdb_general_features), }, 172 { .section_id = BDB_GENERAL_DEFINITIONS, 173 .min_size = sizeof(struct bdb_general_definitions), }, 174 { .section_id = BDB_PSR, 175 .min_size = sizeof(struct bdb_psr), }, 176 { .section_id = BDB_DRIVER_FEATURES, 177 .min_size = sizeof(struct bdb_driver_features), }, 178 { .section_id = BDB_SDVO_LVDS_OPTIONS, 179 .min_size = sizeof(struct bdb_sdvo_lvds_options), }, 180 { .section_id = BDB_SDVO_LVDS_DTD, 181 .min_size = sizeof(struct bdb_sdvo_lvds_dtd), }, 182 { .section_id = BDB_EDP, 183 .min_size = sizeof(struct bdb_edp), }, 184 { .section_id = BDB_LFP_OPTIONS, 185 .min_size = sizeof(struct bdb_lfp_options), }, 186 /* 187 * BDB_LFP_DATA depends on BDB_LFP_DATA_PTRS, 188 * so keep the two ordered. 189 */ 190 { .section_id = BDB_LFP_DATA_PTRS, 191 .min_size = sizeof(struct bdb_lfp_data_ptrs), }, 192 { .section_id = BDB_LFP_DATA, 193 .min_size = 0, /* special case */ }, 194 { .section_id = BDB_LFP_BACKLIGHT, 195 .min_size = sizeof(struct bdb_lfp_backlight), }, 196 { .section_id = BDB_LFP_POWER, 197 .min_size = sizeof(struct bdb_lfp_power), }, 198 { .section_id = BDB_MIPI_CONFIG, 199 .min_size = sizeof(struct bdb_mipi_config), }, 200 { .section_id = BDB_MIPI_SEQUENCE, 201 .min_size = sizeof(struct bdb_mipi_sequence) }, 202 { .section_id = BDB_COMPRESSION_PARAMETERS, 203 .min_size = sizeof(struct bdb_compression_parameters), }, 204 { .section_id = BDB_GENERIC_DTD, 205 .min_size = sizeof(struct bdb_generic_dtd), }, 206 }; 207 208 static size_t lfp_data_min_size(struct intel_display *display) 209 { 210 const struct bdb_lfp_data_ptrs *ptrs; 211 size_t size; 212 213 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 214 if (!ptrs) 215 return 0; 216 217 size = sizeof(struct bdb_lfp_data); 218 if (ptrs->panel_name.table_size) 219 size = max(size, ptrs->panel_name.offset + 220 sizeof(struct bdb_lfp_data_tail)); 221 222 return size; 223 } 224 225 static bool validate_lfp_data_ptrs(const void *bdb, 226 const struct bdb_lfp_data_ptrs *ptrs) 227 { 228 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; 229 int data_block_size, lfp_data_size; 230 const void *data_block; 231 int i; 232 233 data_block = find_raw_section(bdb, BDB_LFP_DATA); 234 if (!data_block) 235 return false; 236 237 data_block_size = get_blocksize(data_block); 238 if (data_block_size == 0) 239 return false; 240 241 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ 242 if (ptrs->num_entries != 3) 243 return false; 244 245 fp_timing_size = ptrs->ptr[0].fp_timing.table_size; 246 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; 247 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; 248 panel_name_size = ptrs->panel_name.table_size; 249 250 /* fp_timing has variable size */ 251 if (fp_timing_size < 32 || 252 dvo_timing_size != sizeof(struct bdb_edid_dtd) || 253 panel_pnp_id_size != sizeof(struct bdb_edid_pnp_id)) 254 return false; 255 256 /* panel_name is not present in old VBTs */ 257 if (panel_name_size != 0 && 258 panel_name_size != sizeof(struct bdb_edid_product_name)) 259 return false; 260 261 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; 262 if (16 * lfp_data_size > data_block_size) 263 return false; 264 265 /* make sure the table entries have uniform size */ 266 for (i = 1; i < 16; i++) { 267 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || 268 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || 269 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) 270 return false; 271 272 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || 273 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || 274 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) 275 return false; 276 } 277 278 /* 279 * Except for vlv/chv machines all real VBTs seem to have 6 280 * unaccounted bytes in the fp_timing table. And it doesn't 281 * appear to be a really intentional hole as the fp_timing 282 * 0xffff terminator is always within those 6 missing bytes. 283 */ 284 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size) 285 fp_timing_size += 6; 286 287 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size) 288 return false; 289 290 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset || 291 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || 292 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) 293 return false; 294 295 /* make sure the tables fit inside the data block */ 296 for (i = 0; i < 16; i++) { 297 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || 298 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || 299 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) 300 return false; 301 } 302 303 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) 304 return false; 305 306 /* make sure fp_timing terminators are present at expected locations */ 307 for (i = 0; i < 16; i++) { 308 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset + 309 fp_timing_size - 2; 310 311 if (*t != 0xffff) 312 return false; 313 } 314 315 return true; 316 } 317 318 /* make the data table offsets relative to the data block */ 319 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) 320 { 321 struct bdb_lfp_data_ptrs *ptrs = ptrs_block; 322 u32 offset; 323 int i; 324 325 offset = raw_block_offset(bdb, BDB_LFP_DATA); 326 327 for (i = 0; i < 16; i++) { 328 if (ptrs->ptr[i].fp_timing.offset < offset || 329 ptrs->ptr[i].dvo_timing.offset < offset || 330 ptrs->ptr[i].panel_pnp_id.offset < offset) 331 return false; 332 333 ptrs->ptr[i].fp_timing.offset -= offset; 334 ptrs->ptr[i].dvo_timing.offset -= offset; 335 ptrs->ptr[i].panel_pnp_id.offset -= offset; 336 } 337 338 if (ptrs->panel_name.table_size) { 339 if (ptrs->panel_name.offset < offset) 340 return false; 341 342 ptrs->panel_name.offset -= offset; 343 } 344 345 return validate_lfp_data_ptrs(bdb, ptrs); 346 } 347 348 static int make_lfp_data_ptr(struct lfp_data_ptr_table *table, 349 int table_size, int total_size) 350 { 351 if (total_size < table_size) 352 return total_size; 353 354 table->table_size = table_size; 355 table->offset = total_size - table_size; 356 357 return total_size - table_size; 358 } 359 360 static void next_lfp_data_ptr(struct lfp_data_ptr_table *next, 361 const struct lfp_data_ptr_table *prev, 362 int size) 363 { 364 next->table_size = prev->table_size; 365 next->offset = prev->offset + size; 366 } 367 368 static void *generate_lfp_data_ptrs(struct intel_display *display, 369 const void *bdb) 370 { 371 int i, size, table_size, block_size, offset, fp_timing_size; 372 struct bdb_lfp_data_ptrs *ptrs; 373 const void *block; 374 void *ptrs_block; 375 376 /* 377 * The hardcoded fp_timing_size is only valid for 378 * modernish VBTs. All older VBTs definitely should 379 * include block 41 and thus we don't need to 380 * generate one. 381 */ 382 if (display->vbt.version < 155) 383 return NULL; 384 385 fp_timing_size = 38; 386 387 block = find_raw_section(bdb, BDB_LFP_DATA); 388 if (!block) 389 return NULL; 390 391 drm_dbg_kms(display->drm, "Generating LFP data table pointers\n"); 392 393 block_size = get_blocksize(block); 394 395 size = fp_timing_size + sizeof(struct bdb_edid_dtd) + 396 sizeof(struct bdb_edid_pnp_id); 397 if (size * 16 > block_size) 398 return NULL; 399 400 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); 401 if (!ptrs_block) 402 return NULL; 403 404 *(u8 *)(ptrs_block + 0) = BDB_LFP_DATA_PTRS; 405 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); 406 ptrs = ptrs_block + 3; 407 408 table_size = sizeof(struct bdb_edid_pnp_id); 409 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); 410 411 table_size = sizeof(struct bdb_edid_dtd); 412 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); 413 414 table_size = fp_timing_size; 415 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); 416 417 if (ptrs->ptr[0].fp_timing.table_size) 418 ptrs->num_entries++; 419 if (ptrs->ptr[0].dvo_timing.table_size) 420 ptrs->num_entries++; 421 if (ptrs->ptr[0].panel_pnp_id.table_size) 422 ptrs->num_entries++; 423 424 if (size != 0 || ptrs->num_entries != 3) { 425 kfree(ptrs_block); 426 return NULL; 427 } 428 429 size = fp_timing_size + sizeof(struct bdb_edid_dtd) + 430 sizeof(struct bdb_edid_pnp_id); 431 for (i = 1; i < 16; i++) { 432 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); 433 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); 434 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); 435 } 436 437 table_size = sizeof(struct bdb_edid_product_name); 438 439 if (16 * (size + table_size) <= block_size) { 440 ptrs->panel_name.table_size = table_size; 441 ptrs->panel_name.offset = size * 16; 442 } 443 444 offset = block - bdb; 445 446 for (i = 0; i < 16; i++) { 447 ptrs->ptr[i].fp_timing.offset += offset; 448 ptrs->ptr[i].dvo_timing.offset += offset; 449 ptrs->ptr[i].panel_pnp_id.offset += offset; 450 } 451 452 if (ptrs->panel_name.table_size) 453 ptrs->panel_name.offset += offset; 454 455 return ptrs_block; 456 } 457 458 static void 459 init_bdb_block(struct intel_display *display, 460 const void *bdb, enum bdb_block_id section_id, 461 size_t min_size) 462 { 463 struct bdb_block_entry *entry; 464 void *temp_block = NULL; 465 const void *block; 466 size_t block_size; 467 468 block = find_raw_section(bdb, section_id); 469 470 /* Modern VBTs lack the LFP data table pointers block, make one up */ 471 if (!block && section_id == BDB_LFP_DATA_PTRS) { 472 temp_block = generate_lfp_data_ptrs(display, bdb); 473 if (temp_block) 474 block = temp_block + 3; 475 } 476 if (!block) 477 return; 478 479 drm_WARN(display->drm, min_size == 0, 480 "Block %d min_size is zero\n", section_id); 481 482 block_size = get_blocksize(block); 483 484 /* 485 * Version number and new block size are considered 486 * part of the header for MIPI sequenece block v3+. 487 */ 488 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3) 489 block_size += 5; 490 491 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), 492 GFP_KERNEL); 493 if (!entry) { 494 kfree(temp_block); 495 return; 496 } 497 498 entry->section_id = section_id; 499 memcpy(entry->data, block - 3, block_size + 3); 500 501 kfree(temp_block); 502 503 drm_dbg_kms(display->drm, 504 "Found BDB block %d (size %zu, min size %zu)\n", 505 section_id, block_size, min_size); 506 507 if (section_id == BDB_LFP_DATA_PTRS && 508 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { 509 drm_err(display->drm, 510 "VBT has malformed LFP data table pointers\n"); 511 kfree(entry); 512 return; 513 } 514 515 list_add_tail(&entry->node, &display->vbt.bdb_blocks); 516 } 517 518 static void init_bdb_blocks(struct intel_display *display, 519 const void *bdb) 520 { 521 int i; 522 523 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { 524 enum bdb_block_id section_id = bdb_blocks[i].section_id; 525 size_t min_size = bdb_blocks[i].min_size; 526 527 if (section_id == BDB_LFP_DATA) 528 min_size = lfp_data_min_size(display); 529 530 init_bdb_block(display, bdb, section_id, min_size); 531 } 532 } 533 534 static void 535 fill_detail_timing_data(struct intel_display *display, 536 struct drm_display_mode *panel_fixed_mode, 537 const struct bdb_edid_dtd *dvo_timing) 538 { 539 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 540 dvo_timing->hactive_lo; 541 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 542 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 543 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 544 ((dvo_timing->hsync_pulse_width_hi << 8) | 545 dvo_timing->hsync_pulse_width_lo); 546 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 547 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 548 549 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 550 dvo_timing->vactive_lo; 551 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 552 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 553 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 554 ((dvo_timing->vsync_pulse_width_hi << 4) | 555 dvo_timing->vsync_pulse_width_lo); 556 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 557 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 558 panel_fixed_mode->clock = dvo_timing->clock * 10; 559 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 560 561 if (dvo_timing->hsync_positive) 562 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 563 else 564 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 565 566 if (dvo_timing->vsync_positive) 567 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 568 else 569 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 570 571 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 572 dvo_timing->himage_lo; 573 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 574 dvo_timing->vimage_lo; 575 576 /* Some VBTs have bogus h/vsync_end values */ 577 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) { 578 drm_dbg_kms(display->drm, "reducing hsync_end %d->%d\n", 579 panel_fixed_mode->hsync_end, panel_fixed_mode->htotal); 580 panel_fixed_mode->hsync_end = panel_fixed_mode->htotal; 581 } 582 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) { 583 drm_dbg_kms(display->drm, "reducing vsync_end %d->%d\n", 584 panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal); 585 panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal; 586 } 587 588 drm_mode_set_name(panel_fixed_mode); 589 } 590 591 static const struct bdb_edid_dtd * 592 get_lfp_dvo_timing(const struct bdb_lfp_data *data, 593 const struct bdb_lfp_data_ptrs *ptrs, 594 int index) 595 { 596 return (const void *)data + ptrs->ptr[index].dvo_timing.offset; 597 } 598 599 static const struct fp_timing * 600 get_lfp_fp_timing(const struct bdb_lfp_data *data, 601 const struct bdb_lfp_data_ptrs *ptrs, 602 int index) 603 { 604 return (const void *)data + ptrs->ptr[index].fp_timing.offset; 605 } 606 607 static const struct drm_edid_product_id * 608 get_lfp_pnp_id(const struct bdb_lfp_data *data, 609 const struct bdb_lfp_data_ptrs *ptrs, 610 int index) 611 { 612 /* These two are supposed to have the same layout in memory. */ 613 BUILD_BUG_ON(sizeof(struct bdb_edid_pnp_id) != sizeof(struct drm_edid_product_id)); 614 615 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; 616 } 617 618 static const struct bdb_lfp_data_tail * 619 get_lfp_data_tail(const struct bdb_lfp_data *data, 620 const struct bdb_lfp_data_ptrs *ptrs) 621 { 622 if (ptrs->panel_name.table_size) 623 return (const void *)data + ptrs->panel_name.offset; 624 else 625 return NULL; 626 } 627 628 static int opregion_get_panel_type(struct intel_display *display, 629 const struct intel_bios_encoder_data *devdata, 630 const struct drm_edid *drm_edid, bool use_fallback) 631 { 632 return intel_opregion_get_panel_type(display); 633 } 634 635 static int vbt_get_panel_type(struct intel_display *display, 636 const struct intel_bios_encoder_data *devdata, 637 const struct drm_edid *drm_edid, bool use_fallback) 638 { 639 const struct bdb_lfp_options *lfp_options; 640 641 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS); 642 if (!lfp_options) 643 return -1; 644 645 if (lfp_options->panel_type > 0xf && 646 lfp_options->panel_type != 0xff) { 647 drm_dbg_kms(display->drm, "Invalid VBT panel type 0x%x\n", 648 lfp_options->panel_type); 649 return -1; 650 } 651 652 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) 653 return lfp_options->panel_type2; 654 655 drm_WARN_ON(display->drm, 656 devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); 657 658 return lfp_options->panel_type; 659 } 660 661 static int pnpid_get_panel_type(struct intel_display *display, 662 const struct intel_bios_encoder_data *devdata, 663 const struct drm_edid *drm_edid, bool use_fallback) 664 { 665 const struct bdb_lfp_data *data; 666 const struct bdb_lfp_data_ptrs *ptrs; 667 struct drm_edid_product_id product_id, product_id_nodate; 668 struct drm_printer p; 669 int i, best = -1; 670 671 if (!drm_edid) 672 return -1; 673 674 drm_edid_get_product_id(drm_edid, &product_id); 675 676 product_id_nodate = product_id; 677 product_id_nodate.week_of_manufacture = 0; 678 product_id_nodate.year_of_manufacture = 0; 679 680 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "EDID"); 681 drm_edid_print_product_id(&p, &product_id, true); 682 683 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 684 if (!ptrs) 685 return -1; 686 687 data = bdb_find_section(display, BDB_LFP_DATA); 688 if (!data) 689 return -1; 690 691 for (i = 0; i < 16; i++) { 692 const struct drm_edid_product_id *vbt_id = 693 get_lfp_pnp_id(data, ptrs, i); 694 695 /* full match? */ 696 if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id))) 697 return i; 698 699 /* 700 * Accept a match w/o date if no full match is found, 701 * and the VBT entry does not specify a date. 702 */ 703 if (best < 0 && 704 !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id))) 705 best = i; 706 } 707 708 return best; 709 } 710 711 static int fallback_get_panel_type(struct intel_display *display, 712 const struct intel_bios_encoder_data *devdata, 713 const struct drm_edid *drm_edid, bool use_fallback) 714 { 715 return use_fallback ? 0 : -1; 716 } 717 718 enum panel_type { 719 PANEL_TYPE_OPREGION, 720 PANEL_TYPE_VBT, 721 PANEL_TYPE_PNPID, 722 PANEL_TYPE_FALLBACK, 723 }; 724 725 static int get_panel_type(struct intel_display *display, 726 const struct intel_bios_encoder_data *devdata, 727 const struct drm_edid *drm_edid, bool use_fallback) 728 { 729 struct { 730 const char *name; 731 int (*get_panel_type)(struct intel_display *display, 732 const struct intel_bios_encoder_data *devdata, 733 const struct drm_edid *drm_edid, bool use_fallback); 734 int panel_type; 735 } panel_types[] = { 736 [PANEL_TYPE_OPREGION] = { 737 .name = "OpRegion", 738 .get_panel_type = opregion_get_panel_type, 739 }, 740 [PANEL_TYPE_VBT] = { 741 .name = "VBT", 742 .get_panel_type = vbt_get_panel_type, 743 }, 744 [PANEL_TYPE_PNPID] = { 745 .name = "PNPID", 746 .get_panel_type = pnpid_get_panel_type, 747 }, 748 [PANEL_TYPE_FALLBACK] = { 749 .name = "fallback", 750 .get_panel_type = fallback_get_panel_type, 751 }, 752 }; 753 int i; 754 755 for (i = 0; i < ARRAY_SIZE(panel_types); i++) { 756 panel_types[i].panel_type = panel_types[i].get_panel_type(display, devdata, 757 drm_edid, use_fallback); 758 759 drm_WARN_ON(display->drm, panel_types[i].panel_type > 0xf && 760 panel_types[i].panel_type != 0xff); 761 762 if (panel_types[i].panel_type >= 0) 763 drm_dbg_kms(display->drm, "Panel type (%s): %d\n", 764 panel_types[i].name, panel_types[i].panel_type); 765 } 766 767 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) 768 i = PANEL_TYPE_OPREGION; 769 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && 770 panel_types[PANEL_TYPE_PNPID].panel_type >= 0) 771 i = PANEL_TYPE_PNPID; 772 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && 773 panel_types[PANEL_TYPE_VBT].panel_type >= 0) 774 i = PANEL_TYPE_VBT; 775 else 776 i = PANEL_TYPE_FALLBACK; 777 778 drm_dbg_kms(display->drm, "Selected panel type (%s): %d\n", 779 panel_types[i].name, panel_types[i].panel_type); 780 781 return panel_types[i].panel_type; 782 } 783 784 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) 785 { 786 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); 787 } 788 789 static bool panel_bool(unsigned int value, int panel_type) 790 { 791 return panel_bits(value, panel_type, 1); 792 } 793 794 /* Parse general panel options */ 795 static void 796 parse_panel_options(struct intel_display *display, 797 struct intel_panel *panel) 798 { 799 const struct bdb_lfp_options *lfp_options; 800 int panel_type = panel->vbt.panel_type; 801 int drrs_mode; 802 803 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS); 804 if (!lfp_options) 805 return; 806 807 panel->vbt.lvds_dither = lfp_options->pixel_dither; 808 809 /* 810 * Empirical evidence indicates the block size can be 811 * either 4,14,16,24+ bytes. For older VBTs no clear 812 * relationship between the block size vs. BDB version. 813 */ 814 if (get_blocksize(lfp_options) < 16) 815 return; 816 817 drrs_mode = panel_bits(lfp_options->dps_panel_type_bits, 818 panel_type, 2); 819 /* 820 * VBT has static DRRS = 0 and seamless DRRS = 2. 821 * The below piece of code is required to adjust vbt.drrs_type 822 * to match the enum drrs_support_type. 823 */ 824 switch (drrs_mode) { 825 case 0: 826 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 827 drm_dbg_kms(display->drm, "DRRS supported mode is static\n"); 828 break; 829 case 2: 830 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; 831 drm_dbg_kms(display->drm, 832 "DRRS supported mode is seamless\n"); 833 break; 834 default: 835 panel->vbt.drrs_type = DRRS_TYPE_NONE; 836 drm_dbg_kms(display->drm, 837 "DRRS not supported (VBT input)\n"); 838 break; 839 } 840 } 841 842 static void 843 parse_lfp_panel_dtd(struct intel_display *display, 844 struct intel_panel *panel, 845 const struct bdb_lfp_data *lfp_data, 846 const struct bdb_lfp_data_ptrs *lfp_data_ptrs) 847 { 848 const struct bdb_edid_dtd *panel_dvo_timing; 849 const struct fp_timing *fp_timing; 850 struct drm_display_mode *panel_fixed_mode; 851 int panel_type = panel->vbt.panel_type; 852 853 panel_dvo_timing = get_lfp_dvo_timing(lfp_data, 854 lfp_data_ptrs, 855 panel_type); 856 857 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 858 if (!panel_fixed_mode) 859 return; 860 861 fill_detail_timing_data(display, panel_fixed_mode, panel_dvo_timing); 862 863 panel->vbt.lfp_vbt_mode = panel_fixed_mode; 864 865 drm_dbg_kms(display->drm, 866 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", 867 DRM_MODE_ARG(panel_fixed_mode)); 868 869 fp_timing = get_lfp_fp_timing(lfp_data, 870 lfp_data_ptrs, 871 panel_type); 872 873 /* check the resolution, just to be sure */ 874 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 875 fp_timing->y_res == panel_fixed_mode->vdisplay) { 876 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 877 drm_dbg_kms(display->drm, 878 "VBT initial LVDS value %x\n", 879 panel->vbt.bios_lvds_val); 880 } 881 } 882 883 static void 884 parse_lfp_data(struct intel_display *display, 885 struct intel_panel *panel) 886 { 887 const struct bdb_lfp_data *data; 888 const struct bdb_lfp_data_tail *tail; 889 const struct bdb_lfp_data_ptrs *ptrs; 890 const struct drm_edid_product_id *pnp_id; 891 struct drm_printer p; 892 int panel_type = panel->vbt.panel_type; 893 894 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 895 if (!ptrs) 896 return; 897 898 data = bdb_find_section(display, BDB_LFP_DATA); 899 if (!data) 900 return; 901 902 if (!panel->vbt.lfp_vbt_mode) 903 parse_lfp_panel_dtd(display, panel, data, ptrs); 904 905 pnp_id = get_lfp_pnp_id(data, ptrs, panel_type); 906 907 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "Panel"); 908 drm_edid_print_product_id(&p, pnp_id, false); 909 910 tail = get_lfp_data_tail(data, ptrs); 911 if (!tail) 912 return; 913 914 drm_dbg_kms(display->drm, "Panel name: %.*s\n", 915 (int)sizeof(tail->panel_name[0].name), 916 tail->panel_name[panel_type].name); 917 918 if (display->vbt.version >= 188) { 919 panel->vbt.seamless_drrs_min_refresh_rate = 920 tail->seamless_drrs_min_refresh_rate[panel_type]; 921 drm_dbg_kms(display->drm, 922 "Seamless DRRS min refresh rate: %d Hz\n", 923 panel->vbt.seamless_drrs_min_refresh_rate); 924 } 925 } 926 927 static void 928 parse_generic_dtd(struct intel_display *display, 929 struct intel_panel *panel) 930 { 931 const struct bdb_generic_dtd *generic_dtd; 932 const struct generic_dtd_entry *dtd; 933 struct drm_display_mode *panel_fixed_mode; 934 int num_dtd; 935 936 /* 937 * Older VBTs provided DTD information for internal displays through 938 * the "LFP panel tables" block (42). As of VBT revision 229 the 939 * DTD information should be provided via a newer "generic DTD" 940 * block (58). Just to be safe, we'll try the new generic DTD block 941 * first on VBT >= 229, but still fall back to trying the old LFP 942 * block if that fails. 943 */ 944 if (display->vbt.version < 229) 945 return; 946 947 generic_dtd = bdb_find_section(display, BDB_GENERIC_DTD); 948 if (!generic_dtd) 949 return; 950 951 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 952 drm_err(display->drm, "GDTD size %u is too small.\n", 953 generic_dtd->gdtd_size); 954 return; 955 } else if (generic_dtd->gdtd_size != 956 sizeof(struct generic_dtd_entry)) { 957 drm_err(display->drm, "Unexpected GDTD size %u\n", 958 generic_dtd->gdtd_size); 959 /* DTD has unknown fields, but keep going */ 960 } 961 962 num_dtd = (get_blocksize(generic_dtd) - 963 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 964 if (panel->vbt.panel_type >= num_dtd) { 965 drm_err(display->drm, 966 "Panel type %d not found in table of %d DTD's\n", 967 panel->vbt.panel_type, num_dtd); 968 return; 969 } 970 971 dtd = &generic_dtd->dtd[panel->vbt.panel_type]; 972 973 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 974 if (!panel_fixed_mode) 975 return; 976 977 panel_fixed_mode->hdisplay = dtd->hactive; 978 panel_fixed_mode->hsync_start = 979 panel_fixed_mode->hdisplay + dtd->hfront_porch; 980 panel_fixed_mode->hsync_end = 981 panel_fixed_mode->hsync_start + dtd->hsync; 982 panel_fixed_mode->htotal = 983 panel_fixed_mode->hdisplay + dtd->hblank; 984 985 panel_fixed_mode->vdisplay = dtd->vactive; 986 panel_fixed_mode->vsync_start = 987 panel_fixed_mode->vdisplay + dtd->vfront_porch; 988 panel_fixed_mode->vsync_end = 989 panel_fixed_mode->vsync_start + dtd->vsync; 990 panel_fixed_mode->vtotal = 991 panel_fixed_mode->vdisplay + dtd->vblank; 992 993 panel_fixed_mode->clock = dtd->pixel_clock; 994 panel_fixed_mode->width_mm = dtd->width_mm; 995 panel_fixed_mode->height_mm = dtd->height_mm; 996 997 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 998 drm_mode_set_name(panel_fixed_mode); 999 1000 if (dtd->hsync_positive_polarity) 1001 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 1002 else 1003 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 1004 1005 if (dtd->vsync_positive_polarity) 1006 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 1007 else 1008 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 1009 1010 drm_dbg_kms(display->drm, 1011 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", 1012 DRM_MODE_ARG(panel_fixed_mode)); 1013 1014 panel->vbt.lfp_vbt_mode = panel_fixed_mode; 1015 } 1016 1017 static void 1018 parse_lfp_backlight(struct intel_display *display, 1019 struct intel_panel *panel) 1020 { 1021 const struct bdb_lfp_backlight *backlight_data; 1022 const struct lfp_backlight_data_entry *entry; 1023 int panel_type = panel->vbt.panel_type; 1024 u16 level; 1025 1026 backlight_data = bdb_find_section(display, BDB_LFP_BACKLIGHT); 1027 if (!backlight_data) 1028 return; 1029 1030 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 1031 drm_dbg_kms(display->drm, 1032 "Unsupported backlight data entry size %u\n", 1033 backlight_data->entry_size); 1034 return; 1035 } 1036 1037 entry = &backlight_data->data[panel_type]; 1038 1039 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 1040 if (!panel->vbt.backlight.present) { 1041 drm_dbg_kms(display->drm, 1042 "PWM backlight not present in VBT (type %u)\n", 1043 entry->type); 1044 return; 1045 } 1046 1047 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 1048 panel->vbt.backlight.controller = 0; 1049 if (display->vbt.version >= 191) { 1050 const struct lfp_backlight_control_method *method; 1051 1052 method = &backlight_data->backlight_control[panel_type]; 1053 panel->vbt.backlight.type = method->type; 1054 panel->vbt.backlight.controller = method->controller; 1055 } 1056 1057 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 1058 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; 1059 1060 if (display->vbt.version >= 234) { 1061 u16 min_level; 1062 bool scale; 1063 1064 level = backlight_data->brightness_level[panel_type].level; 1065 min_level = backlight_data->brightness_min_level[panel_type].level; 1066 1067 if (display->vbt.version >= 236) 1068 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 1069 else 1070 scale = level > 255; 1071 1072 if (scale) 1073 min_level = min_level / 255; 1074 1075 if (min_level > 255) { 1076 drm_warn(display->drm, "Brightness min level > 255\n"); 1077 level = 255; 1078 } 1079 panel->vbt.backlight.min_brightness = min_level; 1080 1081 panel->vbt.backlight.brightness_precision_bits = 1082 backlight_data->brightness_precision_bits[panel_type]; 1083 } else { 1084 level = backlight_data->level[panel_type]; 1085 panel->vbt.backlight.min_brightness = entry->min_brightness; 1086 } 1087 1088 if (display->vbt.version >= 239) 1089 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 1090 DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100); 1091 else 1092 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30; 1093 1094 drm_dbg_kms(display->drm, 1095 "VBT backlight PWM modulation frequency %u Hz, " 1096 "active %s, min brightness %u, level %u, controller %u\n", 1097 panel->vbt.backlight.pwm_freq_hz, 1098 panel->vbt.backlight.active_low_pwm ? "low" : "high", 1099 panel->vbt.backlight.min_brightness, 1100 level, 1101 panel->vbt.backlight.controller); 1102 } 1103 1104 static void 1105 parse_sdvo_lvds_data(struct intel_display *display, 1106 struct intel_panel *panel) 1107 { 1108 const struct bdb_sdvo_lvds_dtd *dtd; 1109 struct drm_display_mode *panel_fixed_mode; 1110 int index; 1111 1112 index = display->params.vbt_sdvo_panel_type; 1113 if (index == -2) { 1114 drm_dbg_kms(display->drm, 1115 "Ignore SDVO LVDS mode from BIOS VBT tables.\n"); 1116 return; 1117 } 1118 1119 if (index == -1) { 1120 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 1121 1122 sdvo_lvds_options = bdb_find_section(display, BDB_SDVO_LVDS_OPTIONS); 1123 if (!sdvo_lvds_options) 1124 return; 1125 1126 index = sdvo_lvds_options->panel_type; 1127 } 1128 1129 dtd = bdb_find_section(display, BDB_SDVO_LVDS_DTD); 1130 if (!dtd) 1131 return; 1132 1133 /* 1134 * This should not happen, as long as the panel_type 1135 * enumeration doesn't grow over 4 items. But if it does, it 1136 * could lead to hard-to-detect bugs, so better double-check 1137 * it here to be sure. 1138 */ 1139 if (index >= ARRAY_SIZE(dtd->dtd)) { 1140 drm_err(display->drm, 1141 "index %d is larger than dtd->dtd[4] array\n", 1142 index); 1143 return; 1144 } 1145 1146 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 1147 if (!panel_fixed_mode) 1148 return; 1149 1150 fill_detail_timing_data(display, panel_fixed_mode, &dtd->dtd[index]); 1151 1152 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 1153 1154 drm_dbg_kms(display->drm, 1155 "Found SDVO LVDS mode in BIOS VBT tables: " DRM_MODE_FMT "\n", 1156 DRM_MODE_ARG(panel_fixed_mode)); 1157 } 1158 1159 static int intel_bios_ssc_frequency(struct intel_display *display, 1160 bool alternate) 1161 { 1162 switch (DISPLAY_VER(display)) { 1163 case 2: 1164 return alternate ? 66667 : 48000; 1165 case 3: 1166 case 4: 1167 return alternate ? 100000 : 96000; 1168 default: 1169 return alternate ? 100000 : 120000; 1170 } 1171 } 1172 1173 static void 1174 parse_general_features(struct intel_display *display) 1175 { 1176 const struct bdb_general_features *general; 1177 1178 general = bdb_find_section(display, BDB_GENERAL_FEATURES); 1179 if (!general) 1180 return; 1181 1182 display->vbt.int_tv_support = general->int_tv_support; 1183 /* int_crt_support can't be trusted on earlier platforms */ 1184 if (display->vbt.version >= 155 && 1185 (HAS_DDI(display) || display->platform.valleyview)) 1186 display->vbt.int_crt_support = general->int_crt_support; 1187 display->vbt.lvds_use_ssc = general->enable_ssc; 1188 display->vbt.lvds_ssc_freq = 1189 intel_bios_ssc_frequency(display, general->ssc_freq); 1190 display->vbt.display_clock_mode = general->display_clock_mode; 1191 display->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 1192 if (display->vbt.version >= 181) { 1193 display->vbt.orientation = general->rotate_180 ? 1194 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 1195 DRM_MODE_PANEL_ORIENTATION_NORMAL; 1196 } else { 1197 display->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1198 } 1199 1200 if (display->vbt.version >= 249 && general->afc_startup_config) { 1201 display->vbt.override_afc_startup = true; 1202 display->vbt.override_afc_startup_val = general->afc_startup_config == 1 ? 0 : 7; 1203 } 1204 1205 drm_dbg_kms(display->drm, 1206 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 1207 display->vbt.int_tv_support, 1208 display->vbt.int_crt_support, 1209 display->vbt.lvds_use_ssc, 1210 display->vbt.lvds_ssc_freq, 1211 display->vbt.display_clock_mode, 1212 display->vbt.fdi_rx_polarity_inverted); 1213 } 1214 1215 static const struct child_device_config * 1216 child_device_ptr(const struct bdb_general_definitions *defs, int i) 1217 { 1218 return (const void *) &defs->devices[i * defs->child_dev_size]; 1219 } 1220 1221 static void 1222 parse_sdvo_device_mapping(struct intel_display *display) 1223 { 1224 const struct intel_bios_encoder_data *devdata; 1225 int count = 0; 1226 1227 /* 1228 * Only parse SDVO mappings on gens that could have SDVO. This isn't 1229 * accurate and doesn't have to be, as long as it's not too strict. 1230 */ 1231 if (!IS_DISPLAY_VER(display, 3, 7)) { 1232 drm_dbg_kms(display->drm, "Skipping SDVO device mapping\n"); 1233 return; 1234 } 1235 1236 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 1237 const struct child_device_config *child = &devdata->child; 1238 struct sdvo_device_mapping *mapping; 1239 1240 if (child->target_addr != TARGET_ADDR1 && 1241 child->target_addr != TARGET_ADDR2) { 1242 /* 1243 * If the target address is neither 0x70 nor 0x72, 1244 * it is not a SDVO device. Skip it. 1245 */ 1246 continue; 1247 } 1248 if (child->dvo_port != DEVICE_PORT_DVOB && 1249 child->dvo_port != DEVICE_PORT_DVOC) { 1250 /* skip the incorrect SDVO port */ 1251 drm_dbg_kms(display->drm, 1252 "Incorrect SDVO port. Skip it\n"); 1253 continue; 1254 } 1255 drm_dbg_kms(display->drm, 1256 "the SDVO device with target addr %2x is found on" 1257 " %s port\n", 1258 child->target_addr, 1259 (child->dvo_port == DEVICE_PORT_DVOB) ? 1260 "SDVOB" : "SDVOC"); 1261 mapping = &display->vbt.sdvo_mappings[child->dvo_port - 1]; 1262 if (!mapping->initialized) { 1263 mapping->dvo_port = child->dvo_port; 1264 mapping->target_addr = child->target_addr; 1265 mapping->dvo_wiring = child->dvo_wiring; 1266 mapping->ddc_pin = child->ddc_pin; 1267 mapping->i2c_pin = child->i2c_pin; 1268 mapping->initialized = 1; 1269 drm_dbg_kms(display->drm, 1270 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 1271 mapping->dvo_port, mapping->target_addr, 1272 mapping->dvo_wiring, mapping->ddc_pin, 1273 mapping->i2c_pin); 1274 } else { 1275 drm_dbg_kms(display->drm, 1276 "Maybe one SDVO port is shared by " 1277 "two SDVO device.\n"); 1278 } 1279 if (child->target2_addr) { 1280 /* Maybe this is a SDVO device with multiple inputs */ 1281 /* And the mapping info is not added */ 1282 drm_dbg_kms(display->drm, 1283 "there exists the target2_addr. Maybe this" 1284 " is a SDVO device with multiple inputs.\n"); 1285 } 1286 count++; 1287 } 1288 1289 if (!count) { 1290 /* No SDVO device info is found */ 1291 drm_dbg_kms(display->drm, 1292 "No SDVO device info is found in VBT\n"); 1293 } 1294 } 1295 1296 static void 1297 parse_driver_features(struct intel_display *display) 1298 { 1299 const struct bdb_driver_features *driver; 1300 1301 driver = bdb_find_section(display, BDB_DRIVER_FEATURES); 1302 if (!driver) 1303 return; 1304 1305 if (DISPLAY_VER(display) >= 5) { 1306 /* 1307 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 1308 * to mean "eDP". The VBT spec doesn't agree with that 1309 * interpretation, but real world VBTs seem to. 1310 */ 1311 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 1312 display->vbt.int_lvds_support = 0; 1313 } else { 1314 /* 1315 * FIXME it's not clear which BDB version has the LVDS config 1316 * bits defined. Revision history in the VBT spec says: 1317 * "0.92 | Add two definitions for VBT value of LVDS Active 1318 * Config (00b and 11b values defined) | 06/13/2005" 1319 * but does not the specify the BDB version. 1320 * 1321 * So far version 134 (on i945gm) is the oldest VBT observed 1322 * in the wild with the bits correctly populated. Version 1323 * 108 (on i85x) does not have the bits correctly populated. 1324 */ 1325 if (display->vbt.version >= 134 && 1326 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 1327 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 1328 display->vbt.int_lvds_support = 0; 1329 } 1330 } 1331 1332 static void 1333 parse_panel_driver_features(struct intel_display *display, 1334 struct intel_panel *panel) 1335 { 1336 const struct bdb_driver_features *driver; 1337 1338 driver = bdb_find_section(display, BDB_DRIVER_FEATURES); 1339 if (!driver) 1340 return; 1341 1342 if (display->vbt.version < 228) { 1343 drm_dbg_kms(display->drm, "DRRS State Enabled:%d\n", 1344 driver->drrs_enabled); 1345 /* 1346 * If DRRS is not supported, drrs_type has to be set to 0. 1347 * This is because, VBT is configured in such a way that 1348 * static DRRS is 0 and DRRS not supported is represented by 1349 * driver->drrs_enabled=false 1350 */ 1351 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1352 /* 1353 * FIXME Should DMRRS perhaps be treated as seamless 1354 * but without the automatic downclocking? 1355 */ 1356 if (driver->dmrrs_enabled) 1357 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1358 else 1359 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1360 } 1361 1362 panel->vbt.psr.enable = driver->psr_enabled; 1363 } 1364 } 1365 1366 static void 1367 parse_power_conservation_features(struct intel_display *display, 1368 struct intel_panel *panel) 1369 { 1370 const struct bdb_lfp_power *power; 1371 u8 panel_type = panel->vbt.panel_type; 1372 1373 panel->vbt.vrr = true; /* matches Windows behaviour */ 1374 1375 if (display->vbt.version < 228) 1376 return; 1377 1378 power = bdb_find_section(display, BDB_LFP_POWER); 1379 if (!power) 1380 return; 1381 1382 panel->vbt.psr.enable = panel_bool(power->psr, panel_type); 1383 1384 /* 1385 * If DRRS is not supported, drrs_type has to be set to 0. 1386 * This is because, VBT is configured in such a way that 1387 * static DRRS is 0 and DRRS not supported is represented by 1388 * power->drrs & BIT(panel_type)=false 1389 */ 1390 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1391 /* 1392 * FIXME Should DMRRS perhaps be treated as seamless 1393 * but without the automatic downclocking? 1394 */ 1395 if (panel_bool(power->dmrrs, panel_type)) 1396 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1397 else 1398 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1399 } 1400 1401 if (display->vbt.version >= 232) 1402 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); 1403 1404 if (display->vbt.version >= 233) 1405 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, 1406 panel_type); 1407 } 1408 1409 static void vbt_edp_to_pps_delays(struct intel_pps_delays *pps, 1410 const struct edp_power_seq *edp_pps) 1411 { 1412 pps->power_up = edp_pps->t1_t3; 1413 pps->backlight_on = edp_pps->t8; 1414 pps->backlight_off = edp_pps->t9; 1415 pps->power_down = edp_pps->t10; 1416 pps->power_cycle = edp_pps->t11_t12; 1417 } 1418 1419 static void 1420 parse_edp(struct intel_display *display, 1421 struct intel_panel *panel) 1422 { 1423 const struct bdb_edp *edp; 1424 const struct edp_fast_link_params *edp_link_params; 1425 int panel_type = panel->vbt.panel_type; 1426 1427 edp = bdb_find_section(display, BDB_EDP); 1428 if (!edp) 1429 return; 1430 1431 switch (panel_bits(edp->color_depth, panel_type, 2)) { 1432 case EDP_18BPP: 1433 panel->vbt.edp.bpp = 18; 1434 break; 1435 case EDP_24BPP: 1436 panel->vbt.edp.bpp = 24; 1437 break; 1438 case EDP_30BPP: 1439 panel->vbt.edp.bpp = 30; 1440 break; 1441 } 1442 1443 /* Get the eDP sequencing and link info */ 1444 edp_link_params = &edp->fast_link_params[panel_type]; 1445 1446 vbt_edp_to_pps_delays(&panel->vbt.edp.pps, 1447 &edp->power_seqs[panel_type]); 1448 1449 if (display->vbt.version >= 224) { 1450 panel->vbt.edp.rate = 1451 edp->edp_fast_link_training_rate[panel_type] * 20; 1452 } else { 1453 switch (edp_link_params->rate) { 1454 case EDP_RATE_1_62: 1455 panel->vbt.edp.rate = 162000; 1456 break; 1457 case EDP_RATE_2_7: 1458 panel->vbt.edp.rate = 270000; 1459 break; 1460 case EDP_RATE_5_4: 1461 panel->vbt.edp.rate = 540000; 1462 break; 1463 default: 1464 drm_dbg_kms(display->drm, 1465 "VBT has unknown eDP link rate value %u\n", 1466 edp_link_params->rate); 1467 break; 1468 } 1469 } 1470 1471 switch (edp_link_params->lanes) { 1472 case EDP_LANE_1: 1473 panel->vbt.edp.lanes = 1; 1474 break; 1475 case EDP_LANE_2: 1476 panel->vbt.edp.lanes = 2; 1477 break; 1478 case EDP_LANE_4: 1479 panel->vbt.edp.lanes = 4; 1480 break; 1481 default: 1482 drm_dbg_kms(display->drm, 1483 "VBT has unknown eDP lane count value %u\n", 1484 edp_link_params->lanes); 1485 break; 1486 } 1487 1488 switch (edp_link_params->preemphasis) { 1489 case EDP_PREEMPHASIS_NONE: 1490 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 1491 break; 1492 case EDP_PREEMPHASIS_3_5dB: 1493 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 1494 break; 1495 case EDP_PREEMPHASIS_6dB: 1496 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 1497 break; 1498 case EDP_PREEMPHASIS_9_5dB: 1499 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 1500 break; 1501 default: 1502 drm_dbg_kms(display->drm, 1503 "VBT has unknown eDP pre-emphasis value %u\n", 1504 edp_link_params->preemphasis); 1505 break; 1506 } 1507 1508 switch (edp_link_params->vswing) { 1509 case EDP_VSWING_0_4V: 1510 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 1511 break; 1512 case EDP_VSWING_0_6V: 1513 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 1514 break; 1515 case EDP_VSWING_0_8V: 1516 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 1517 break; 1518 case EDP_VSWING_1_2V: 1519 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 1520 break; 1521 default: 1522 drm_dbg_kms(display->drm, 1523 "VBT has unknown eDP voltage swing value %u\n", 1524 edp_link_params->vswing); 1525 break; 1526 } 1527 1528 if (display->vbt.version >= 173) { 1529 u8 vswing; 1530 1531 /* Don't read from VBT if module parameter has valid value*/ 1532 if (display->params.edp_vswing) { 1533 panel->vbt.edp.low_vswing = 1534 display->params.edp_vswing == 1; 1535 } else { 1536 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 1537 panel->vbt.edp.low_vswing = vswing == 0; 1538 } 1539 } 1540 1541 panel->vbt.edp.drrs_msa_timing_delay = 1542 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); 1543 1544 if (display->vbt.version >= 244) 1545 panel->vbt.edp.max_link_rate = 1546 edp->edp_max_port_link_rate[panel_type] * 20; 1547 1548 if (display->vbt.version >= 251) 1549 panel->vbt.edp.dsc_disable = 1550 panel_bool(edp->edp_dsc_disable, panel_type); 1551 } 1552 1553 static void 1554 parse_psr(struct intel_display *display, 1555 struct intel_panel *panel) 1556 { 1557 const struct bdb_psr *psr; 1558 const struct psr_table *psr_table; 1559 int panel_type = panel->vbt.panel_type; 1560 1561 psr = bdb_find_section(display, BDB_PSR); 1562 if (!psr) { 1563 drm_dbg_kms(display->drm, "No PSR BDB found.\n"); 1564 return; 1565 } 1566 1567 psr_table = &psr->psr_table[panel_type]; 1568 1569 panel->vbt.psr.full_link = psr_table->full_link; 1570 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 1571 panel->vbt.psr.idle_frames = psr_table->idle_frames; 1572 1573 /* 1574 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 1575 * Old decimal value is wake up time in multiples of 100 us. 1576 */ 1577 if (display->vbt.version >= 205 && 1578 (DISPLAY_VER(display) >= 9 && !display->platform.broxton)) { 1579 switch (psr_table->tp1_wakeup_time) { 1580 case 0: 1581 panel->vbt.psr.tp1_wakeup_time_us = 500; 1582 break; 1583 case 1: 1584 panel->vbt.psr.tp1_wakeup_time_us = 100; 1585 break; 1586 case 3: 1587 panel->vbt.psr.tp1_wakeup_time_us = 0; 1588 break; 1589 default: 1590 drm_dbg_kms(display->drm, 1591 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1592 psr_table->tp1_wakeup_time); 1593 fallthrough; 1594 case 2: 1595 panel->vbt.psr.tp1_wakeup_time_us = 2500; 1596 break; 1597 } 1598 1599 switch (psr_table->tp2_tp3_wakeup_time) { 1600 case 0: 1601 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; 1602 break; 1603 case 1: 1604 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; 1605 break; 1606 case 3: 1607 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; 1608 break; 1609 default: 1610 drm_dbg_kms(display->drm, 1611 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1612 psr_table->tp2_tp3_wakeup_time); 1613 fallthrough; 1614 case 2: 1615 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 1616 break; 1617 } 1618 } else { 1619 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 1620 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 1621 } 1622 1623 if (display->vbt.version >= 226) { 1624 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 1625 1626 wakeup_time = panel_bits(wakeup_time, panel_type, 2); 1627 switch (wakeup_time) { 1628 case 0: 1629 wakeup_time = 500; 1630 break; 1631 case 1: 1632 wakeup_time = 100; 1633 break; 1634 case 3: 1635 wakeup_time = 50; 1636 break; 1637 default: 1638 case 2: 1639 wakeup_time = 2500; 1640 break; 1641 } 1642 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 1643 } else { 1644 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 1645 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; 1646 } 1647 } 1648 1649 static void parse_dsi_backlight_ports(struct intel_display *display, 1650 struct intel_panel *panel, 1651 enum port port) 1652 { 1653 enum port port_bc = DISPLAY_VER(display) >= 11 ? PORT_B : PORT_C; 1654 1655 if (!panel->vbt.dsi.config->dual_link || display->vbt.version < 197) { 1656 panel->vbt.dsi.bl_ports = BIT(port); 1657 if (panel->vbt.dsi.config->cabc_supported) 1658 panel->vbt.dsi.cabc_ports = BIT(port); 1659 1660 return; 1661 } 1662 1663 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { 1664 case DL_DCS_PORT_A: 1665 panel->vbt.dsi.bl_ports = BIT(PORT_A); 1666 break; 1667 case DL_DCS_PORT_C: 1668 panel->vbt.dsi.bl_ports = BIT(port_bc); 1669 break; 1670 default: 1671 case DL_DCS_PORT_A_AND_C: 1672 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); 1673 break; 1674 } 1675 1676 if (!panel->vbt.dsi.config->cabc_supported) 1677 return; 1678 1679 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { 1680 case DL_DCS_PORT_A: 1681 panel->vbt.dsi.cabc_ports = BIT(PORT_A); 1682 break; 1683 case DL_DCS_PORT_C: 1684 panel->vbt.dsi.cabc_ports = BIT(port_bc); 1685 break; 1686 default: 1687 case DL_DCS_PORT_A_AND_C: 1688 panel->vbt.dsi.cabc_ports = 1689 BIT(PORT_A) | BIT(port_bc); 1690 break; 1691 } 1692 } 1693 1694 static void 1695 parse_mipi_config(struct intel_display *display, 1696 struct intel_panel *panel) 1697 { 1698 const struct bdb_mipi_config *start; 1699 const struct mipi_config *config; 1700 const struct mipi_pps_data *pps; 1701 int panel_type = panel->vbt.panel_type; 1702 enum port port; 1703 1704 /* parse MIPI blocks only if LFP type is MIPI */ 1705 if (!intel_bios_is_dsi_present(display, &port)) 1706 return; 1707 1708 /* Initialize this to undefined indicating no generic MIPI support */ 1709 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1710 1711 start = bdb_find_section(display, BDB_MIPI_CONFIG); 1712 if (!start) { 1713 drm_dbg_kms(display->drm, "No MIPI config BDB found"); 1714 return; 1715 } 1716 1717 drm_dbg_kms(display->drm, "Found MIPI Config block, panel index = %d\n", 1718 panel_type); 1719 1720 /* 1721 * get hold of the correct configuration block and pps data as per 1722 * the panel_type as index 1723 */ 1724 config = &start->config[panel_type]; 1725 pps = &start->pps[panel_type]; 1726 1727 /* store as of now full data. Trim when we realise all is not needed */ 1728 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1729 if (!panel->vbt.dsi.config) 1730 return; 1731 1732 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1733 if (!panel->vbt.dsi.pps) { 1734 kfree(panel->vbt.dsi.config); 1735 return; 1736 } 1737 1738 parse_dsi_backlight_ports(display, panel, port); 1739 1740 /* FIXME is the 90 vs. 270 correct? */ 1741 switch (config->rotation) { 1742 case ENABLE_ROTATION_0: 1743 /* 1744 * Most (all?) VBTs claim 0 degrees despite having 1745 * an upside down panel, thus we do not trust this. 1746 */ 1747 panel->vbt.dsi.orientation = 1748 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1749 break; 1750 case ENABLE_ROTATION_90: 1751 panel->vbt.dsi.orientation = 1752 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1753 break; 1754 case ENABLE_ROTATION_180: 1755 panel->vbt.dsi.orientation = 1756 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1757 break; 1758 case ENABLE_ROTATION_270: 1759 panel->vbt.dsi.orientation = 1760 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1761 break; 1762 } 1763 1764 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1765 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1766 } 1767 1768 /* Find the sequence block and size for the given panel. */ 1769 static const u8 * 1770 find_panel_sequence_block(struct intel_display *display, 1771 const struct bdb_mipi_sequence *sequence, 1772 u16 panel_id, u32 *seq_size) 1773 { 1774 u32 total = get_blocksize(sequence); 1775 const u8 *data = &sequence->data[0]; 1776 u8 current_id; 1777 u32 current_size; 1778 int header_size = sequence->version >= 3 ? 5 : 3; 1779 int index = 0; 1780 int i; 1781 1782 /* skip new block size */ 1783 if (sequence->version >= 3) 1784 data += 4; 1785 1786 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1787 if (index + header_size > total) { 1788 drm_err(display->drm, 1789 "Invalid sequence block (header)\n"); 1790 return NULL; 1791 } 1792 1793 current_id = *(data + index); 1794 if (sequence->version >= 3) 1795 current_size = *((const u32 *)(data + index + 1)); 1796 else 1797 current_size = *((const u16 *)(data + index + 1)); 1798 1799 index += header_size; 1800 1801 if (index + current_size > total) { 1802 drm_err(display->drm, "Invalid sequence block\n"); 1803 return NULL; 1804 } 1805 1806 if (current_id == panel_id) { 1807 *seq_size = current_size; 1808 return data + index; 1809 } 1810 1811 index += current_size; 1812 } 1813 1814 drm_err(display->drm, 1815 "Sequence block detected but no valid configuration\n"); 1816 1817 return NULL; 1818 } 1819 1820 static int goto_next_sequence(struct intel_display *display, 1821 const u8 *data, int index, int total) 1822 { 1823 u16 len; 1824 1825 /* Skip Sequence Byte. */ 1826 for (index = index + 1; index < total; index += len) { 1827 u8 operation_byte = *(data + index); 1828 index++; 1829 1830 switch (operation_byte) { 1831 case MIPI_SEQ_ELEM_END: 1832 return index; 1833 case MIPI_SEQ_ELEM_SEND_PKT: 1834 if (index + 4 > total) 1835 return 0; 1836 1837 len = *((const u16 *)(data + index + 2)) + 4; 1838 break; 1839 case MIPI_SEQ_ELEM_DELAY: 1840 len = 4; 1841 break; 1842 case MIPI_SEQ_ELEM_GPIO: 1843 len = 2; 1844 break; 1845 case MIPI_SEQ_ELEM_I2C: 1846 if (index + 7 > total) 1847 return 0; 1848 len = *(data + index + 6) + 7; 1849 break; 1850 default: 1851 drm_err(display->drm, "Unknown operation byte\n"); 1852 return 0; 1853 } 1854 } 1855 1856 return 0; 1857 } 1858 1859 static int goto_next_sequence_v3(struct intel_display *display, 1860 const u8 *data, int index, int total) 1861 { 1862 int seq_end; 1863 u16 len; 1864 u32 size_of_sequence; 1865 1866 /* 1867 * Could skip sequence based on Size of Sequence alone, but also do some 1868 * checking on the structure. 1869 */ 1870 if (total < 5) { 1871 drm_err(display->drm, "Too small sequence size\n"); 1872 return 0; 1873 } 1874 1875 /* Skip Sequence Byte. */ 1876 index++; 1877 1878 /* 1879 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1880 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1881 * byte. 1882 */ 1883 size_of_sequence = *((const u32 *)(data + index)); 1884 index += 4; 1885 1886 seq_end = index + size_of_sequence; 1887 if (seq_end > total) { 1888 drm_err(display->drm, "Invalid sequence size\n"); 1889 return 0; 1890 } 1891 1892 for (; index < total; index += len) { 1893 u8 operation_byte = *(data + index); 1894 index++; 1895 1896 if (operation_byte == MIPI_SEQ_ELEM_END) { 1897 if (index != seq_end) { 1898 drm_err(display->drm, 1899 "Invalid element structure\n"); 1900 return 0; 1901 } 1902 return index; 1903 } 1904 1905 len = *(data + index); 1906 index++; 1907 1908 /* 1909 * FIXME: Would be nice to check elements like for v1/v2 in 1910 * goto_next_sequence() above. 1911 */ 1912 switch (operation_byte) { 1913 case MIPI_SEQ_ELEM_SEND_PKT: 1914 case MIPI_SEQ_ELEM_DELAY: 1915 case MIPI_SEQ_ELEM_GPIO: 1916 case MIPI_SEQ_ELEM_I2C: 1917 case MIPI_SEQ_ELEM_SPI: 1918 case MIPI_SEQ_ELEM_PMIC: 1919 break; 1920 default: 1921 drm_err(display->drm, "Unknown operation byte %u\n", 1922 operation_byte); 1923 break; 1924 } 1925 } 1926 1927 return 0; 1928 } 1929 1930 /* 1931 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1932 * skip all delay + gpio operands and stop at the first DSI packet op. 1933 */ 1934 static int get_init_otp_deassert_fragment_len(struct intel_display *display, 1935 struct intel_panel *panel) 1936 { 1937 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1938 int index, len; 1939 1940 if (drm_WARN_ON(display->drm, 1941 !data || panel->vbt.dsi.seq_version >= 3)) 1942 return 0; 1943 1944 /* index = 1 to skip sequence byte */ 1945 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1946 switch (data[index]) { 1947 case MIPI_SEQ_ELEM_SEND_PKT: 1948 return index == 1 ? 0 : index; 1949 case MIPI_SEQ_ELEM_DELAY: 1950 len = 5; /* 1 byte for operand + uint32 */ 1951 break; 1952 case MIPI_SEQ_ELEM_GPIO: 1953 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1954 break; 1955 default: 1956 return 0; 1957 } 1958 } 1959 1960 return 0; 1961 } 1962 1963 /* 1964 * Some v1/v2 VBT MIPI sequences do the deassert in the init OTP sequence. 1965 * The deassert must be done before calling intel_dsi_device_ready, so for 1966 * these devices we split the init OTP sequence into a deassert sequence and 1967 * the actual init OTP part. 1968 */ 1969 static void vlv_fixup_mipi_sequences(struct intel_display *display, 1970 struct intel_panel *panel) 1971 { 1972 u8 *init_otp; 1973 int len; 1974 1975 /* Limit this to v1/v2 vid-mode sequences */ 1976 if (panel->vbt.dsi.config->is_cmd_mode || 1977 panel->vbt.dsi.seq_version >= 3) 1978 return; 1979 1980 /* Only do this if there are otp and assert seqs and no deassert seq */ 1981 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1982 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1983 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1984 return; 1985 1986 /* The deassert-sequence ends at the first DSI packet */ 1987 len = get_init_otp_deassert_fragment_len(display, panel); 1988 if (!len) 1989 return; 1990 1991 drm_dbg_kms(display->drm, 1992 "Using init OTP fragment to deassert reset\n"); 1993 1994 /* Copy the fragment, update seq byte and terminate it */ 1995 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1996 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1997 if (!panel->vbt.dsi.deassert_seq) 1998 return; 1999 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 2000 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 2001 /* Use the copy for deassert */ 2002 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 2003 panel->vbt.dsi.deassert_seq; 2004 /* Replace the last byte of the fragment with init OTP seq byte */ 2005 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 2006 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 2007 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 2008 } 2009 2010 /* 2011 * Some machines (eg. Lenovo 82TQ) appear to have broken 2012 * VBT sequences: 2013 * - INIT_OTP is not present at all 2014 * - what should be in INIT_OTP is in DISPLAY_ON 2015 * - what should be in DISPLAY_ON is in BACKLIGHT_ON 2016 * (along with the actual backlight stuff) 2017 * 2018 * To make those work we simply swap DISPLAY_ON and INIT_OTP. 2019 * 2020 * TODO: Do we need to limit this to specific machines, 2021 * or examine the contents of the sequences to 2022 * avoid false positives? 2023 */ 2024 static void icl_fixup_mipi_sequences(struct intel_display *display, 2025 struct intel_panel *panel) 2026 { 2027 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] && 2028 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) { 2029 drm_dbg_kms(display->drm, 2030 "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n"); 2031 2032 swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP], 2033 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]); 2034 } 2035 } 2036 2037 static void fixup_mipi_sequences(struct intel_display *display, 2038 struct intel_panel *panel) 2039 { 2040 if (DISPLAY_VER(display) >= 11) 2041 icl_fixup_mipi_sequences(display, panel); 2042 else if (display->platform.valleyview) 2043 vlv_fixup_mipi_sequences(display, panel); 2044 } 2045 2046 static void 2047 parse_mipi_sequence(struct intel_display *display, 2048 struct intel_panel *panel) 2049 { 2050 int panel_type = panel->vbt.panel_type; 2051 const struct bdb_mipi_sequence *sequence; 2052 const u8 *seq_data; 2053 u32 seq_size; 2054 u8 *data; 2055 int index = 0; 2056 2057 /* Only our generic panel driver uses the sequence block. */ 2058 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 2059 return; 2060 2061 sequence = bdb_find_section(display, BDB_MIPI_SEQUENCE); 2062 if (!sequence) { 2063 drm_dbg_kms(display->drm, 2064 "No MIPI Sequence found, parsing complete\n"); 2065 return; 2066 } 2067 2068 /* Fail gracefully for forward incompatible sequence block. */ 2069 if (sequence->version >= 4) { 2070 drm_err(display->drm, 2071 "Unable to parse MIPI Sequence Block v%u\n", 2072 sequence->version); 2073 return; 2074 } 2075 2076 drm_dbg_kms(display->drm, "Found MIPI sequence block v%u\n", 2077 sequence->version); 2078 2079 seq_data = find_panel_sequence_block(display, sequence, panel_type, &seq_size); 2080 if (!seq_data) 2081 return; 2082 2083 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 2084 if (!data) 2085 return; 2086 2087 /* Parse the sequences, store pointers to each sequence. */ 2088 for (;;) { 2089 u8 seq_id = *(data + index); 2090 if (seq_id == MIPI_SEQ_END) 2091 break; 2092 2093 if (seq_id >= MIPI_SEQ_MAX) { 2094 drm_err(display->drm, "Unknown sequence %u\n", 2095 seq_id); 2096 goto err; 2097 } 2098 2099 /* Log about presence of sequences we won't run. */ 2100 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 2101 drm_dbg_kms(display->drm, 2102 "Unsupported sequence %u\n", seq_id); 2103 2104 panel->vbt.dsi.sequence[seq_id] = data + index; 2105 2106 if (sequence->version >= 3) 2107 index = goto_next_sequence_v3(display, data, index, seq_size); 2108 else 2109 index = goto_next_sequence(display, data, index, seq_size); 2110 if (!index) { 2111 drm_err(display->drm, "Invalid sequence %u\n", 2112 seq_id); 2113 goto err; 2114 } 2115 } 2116 2117 panel->vbt.dsi.data = data; 2118 panel->vbt.dsi.size = seq_size; 2119 panel->vbt.dsi.seq_version = sequence->version; 2120 2121 fixup_mipi_sequences(display, panel); 2122 2123 drm_dbg_kms(display->drm, "MIPI related VBT parsing complete\n"); 2124 return; 2125 2126 err: 2127 kfree(data); 2128 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); 2129 } 2130 2131 static void 2132 parse_compression_parameters(struct intel_display *display) 2133 { 2134 const struct bdb_compression_parameters *params; 2135 struct intel_bios_encoder_data *devdata; 2136 u16 block_size; 2137 int index; 2138 2139 if (display->vbt.version < 198) 2140 return; 2141 2142 params = bdb_find_section(display, BDB_COMPRESSION_PARAMETERS); 2143 if (params) { 2144 /* Sanity checks */ 2145 if (params->entry_size != sizeof(params->data[0])) { 2146 drm_dbg_kms(display->drm, 2147 "VBT: unsupported compression param entry size\n"); 2148 return; 2149 } 2150 2151 block_size = get_blocksize(params); 2152 if (block_size < sizeof(*params)) { 2153 drm_dbg_kms(display->drm, 2154 "VBT: expected 16 compression param entries\n"); 2155 return; 2156 } 2157 } 2158 2159 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 2160 const struct child_device_config *child = &devdata->child; 2161 2162 if (!child->compression_enable) 2163 continue; 2164 2165 if (!params) { 2166 drm_dbg_kms(display->drm, 2167 "VBT: compression params not available\n"); 2168 continue; 2169 } 2170 2171 if (child->compression_method_cps) { 2172 drm_dbg_kms(display->drm, 2173 "VBT: CPS compression not supported\n"); 2174 continue; 2175 } 2176 2177 index = child->compression_structure_index; 2178 2179 devdata->dsc = kmemdup(¶ms->data[index], 2180 sizeof(*devdata->dsc), GFP_KERNEL); 2181 } 2182 } 2183 2184 static u8 translate_iboost(struct intel_display *display, u8 val) 2185 { 2186 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 2187 2188 if (val >= ARRAY_SIZE(mapping)) { 2189 drm_dbg_kms(display->drm, 2190 "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 2191 return 0; 2192 } 2193 return mapping[val]; 2194 } 2195 2196 static const u8 cnp_ddc_pin_map[] = { 2197 [0] = 0, /* N/A */ 2198 [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B, 2199 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C, 2200 [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */ 2201 [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */ 2202 }; 2203 2204 static const u8 icp_ddc_pin_map[] = { 2205 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2206 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2207 [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C, 2208 [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1, 2209 [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2, 2210 [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3, 2211 [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4, 2212 [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5, 2213 [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6, 2214 }; 2215 2216 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 2217 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2218 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2219 [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D, 2220 [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E, 2221 }; 2222 2223 static const u8 adls_ddc_pin_map[] = { 2224 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2225 [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1, 2226 [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2, 2227 [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3, 2228 [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4, 2229 }; 2230 2231 static const u8 gen9bc_tgp_ddc_pin_map[] = { 2232 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B, 2233 [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C, 2234 [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D, 2235 }; 2236 2237 static const u8 adlp_ddc_pin_map[] = { 2238 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2239 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2240 [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1, 2241 [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2, 2242 [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3, 2243 [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4, 2244 }; 2245 2246 static u8 map_ddc_pin(struct intel_display *display, u8 vbt_pin) 2247 { 2248 const u8 *ddc_pin_map; 2249 int i, n_entries; 2250 2251 if (INTEL_PCH_TYPE(display) >= PCH_MTL || display->platform.alderlake_p) { 2252 ddc_pin_map = adlp_ddc_pin_map; 2253 n_entries = ARRAY_SIZE(adlp_ddc_pin_map); 2254 } else if (display->platform.alderlake_s) { 2255 ddc_pin_map = adls_ddc_pin_map; 2256 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 2257 } else if (INTEL_PCH_TYPE(display) >= PCH_DG1) { 2258 return vbt_pin; 2259 } else if (display->platform.rocketlake && INTEL_PCH_TYPE(display) == PCH_TGP) { 2260 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 2261 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 2262 } else if (HAS_PCH_TGP(display) && DISPLAY_VER(display) == 9) { 2263 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 2264 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 2265 } else if (INTEL_PCH_TYPE(display) >= PCH_ICP) { 2266 ddc_pin_map = icp_ddc_pin_map; 2267 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 2268 } else if (HAS_PCH_CNP(display)) { 2269 ddc_pin_map = cnp_ddc_pin_map; 2270 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 2271 } else { 2272 /* Assuming direct map */ 2273 return vbt_pin; 2274 } 2275 2276 for (i = 0; i < n_entries; i++) { 2277 if (ddc_pin_map[i] == vbt_pin) 2278 return i; 2279 } 2280 2281 drm_dbg_kms(display->drm, 2282 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 2283 vbt_pin); 2284 return 0; 2285 } 2286 2287 static u8 dvo_port_type(u8 dvo_port) 2288 { 2289 switch (dvo_port) { 2290 case DVO_PORT_HDMIA: 2291 case DVO_PORT_HDMIB: 2292 case DVO_PORT_HDMIC: 2293 case DVO_PORT_HDMID: 2294 case DVO_PORT_HDMIE: 2295 case DVO_PORT_HDMIF: 2296 case DVO_PORT_HDMIG: 2297 case DVO_PORT_HDMIH: 2298 case DVO_PORT_HDMII: 2299 return DVO_PORT_HDMIA; 2300 case DVO_PORT_DPA: 2301 case DVO_PORT_DPB: 2302 case DVO_PORT_DPC: 2303 case DVO_PORT_DPD: 2304 case DVO_PORT_DPE: 2305 case DVO_PORT_DPF: 2306 case DVO_PORT_DPG: 2307 case DVO_PORT_DPH: 2308 case DVO_PORT_DPI: 2309 return DVO_PORT_DPA; 2310 case DVO_PORT_MIPIA: 2311 case DVO_PORT_MIPIB: 2312 case DVO_PORT_MIPIC: 2313 case DVO_PORT_MIPID: 2314 return DVO_PORT_MIPIA; 2315 default: 2316 return dvo_port; 2317 } 2318 } 2319 2320 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 2321 const int port_mapping[][3], u8 dvo_port) 2322 { 2323 enum port port; 2324 int i; 2325 2326 for (port = PORT_A; port < n_ports; port++) { 2327 for (i = 0; i < n_dvo; i++) { 2328 if (port_mapping[port][i] == -1) 2329 break; 2330 2331 if (dvo_port == port_mapping[port][i]) 2332 return port; 2333 } 2334 } 2335 2336 return PORT_NONE; 2337 } 2338 2339 static enum port dvo_port_to_port(struct intel_display *display, 2340 u8 dvo_port) 2341 { 2342 /* 2343 * Each DDI port can have more than one value on the "DVO Port" field, 2344 * so look for all the possible values for each port. 2345 */ 2346 static const int port_mapping[][3] = { 2347 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2348 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2349 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2350 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2351 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 2352 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2353 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2354 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2355 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2356 }; 2357 /* 2358 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 2359 * map to DDI A,B,TC1,TC2 respectively. 2360 */ 2361 static const int rkl_port_mapping[][3] = { 2362 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2363 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2364 [PORT_C] = { -1 }, 2365 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2366 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2367 }; 2368 /* 2369 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 2370 * PORT_F and PORT_G, we need to map that to correct VBT sections. 2371 */ 2372 static const int adls_port_mapping[][3] = { 2373 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2374 [PORT_B] = { -1 }, 2375 [PORT_C] = { -1 }, 2376 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2377 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2378 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2379 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2380 }; 2381 static const int xelpd_port_mapping[][3] = { 2382 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2383 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2384 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2385 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2386 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2387 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2388 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2389 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2390 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2391 }; 2392 2393 if (DISPLAY_VER(display) >= 13) 2394 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 2395 ARRAY_SIZE(xelpd_port_mapping[0]), 2396 xelpd_port_mapping, 2397 dvo_port); 2398 else if (display->platform.alderlake_s) 2399 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 2400 ARRAY_SIZE(adls_port_mapping[0]), 2401 adls_port_mapping, 2402 dvo_port); 2403 else if (display->platform.dg1 || display->platform.rocketlake) 2404 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 2405 ARRAY_SIZE(rkl_port_mapping[0]), 2406 rkl_port_mapping, 2407 dvo_port); 2408 else 2409 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 2410 ARRAY_SIZE(port_mapping[0]), 2411 port_mapping, 2412 dvo_port); 2413 } 2414 2415 static enum port 2416 dsi_dvo_port_to_port(struct intel_display *display, u8 dvo_port) 2417 { 2418 switch (dvo_port) { 2419 case DVO_PORT_MIPIA: 2420 return PORT_A; 2421 case DVO_PORT_MIPIC: 2422 if (DISPLAY_VER(display) >= 11) 2423 return PORT_B; 2424 else 2425 return PORT_C; 2426 default: 2427 return PORT_NONE; 2428 } 2429 } 2430 2431 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata) 2432 { 2433 struct intel_display *display = devdata->display; 2434 const struct child_device_config *child = &devdata->child; 2435 enum port port; 2436 2437 port = dvo_port_to_port(display, child->dvo_port); 2438 if (port == PORT_NONE && DISPLAY_VER(display) >= 11) 2439 port = dsi_dvo_port_to_port(display, child->dvo_port); 2440 2441 return port; 2442 } 2443 2444 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 2445 { 2446 switch (vbt_max_link_rate) { 2447 default: 2448 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 2449 return 0; 2450 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 2451 return 2000000; 2452 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 2453 return 1350000; 2454 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 2455 return 1000000; 2456 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 2457 return 810000; 2458 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 2459 return 540000; 2460 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 2461 return 270000; 2462 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 2463 return 162000; 2464 } 2465 } 2466 2467 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 2468 { 2469 switch (vbt_max_link_rate) { 2470 default: 2471 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 2472 return 810000; 2473 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 2474 return 540000; 2475 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 2476 return 270000; 2477 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 2478 return 162000; 2479 } 2480 } 2481 2482 static u32 edp_rate_override_mask(int rate) 2483 { 2484 switch (rate) { 2485 case 2000000: return BDB_263_VBT_EDP_LINK_RATE_20; 2486 case 1350000: return BDB_263_VBT_EDP_LINK_RATE_13_5; 2487 case 1000000: return BDB_263_VBT_EDP_LINK_RATE_10; 2488 case 810000: return BDB_263_VBT_EDP_LINK_RATE_8_1; 2489 case 675000: return BDB_263_VBT_EDP_LINK_RATE_6_75; 2490 case 540000: return BDB_263_VBT_EDP_LINK_RATE_5_4; 2491 case 432000: return BDB_263_VBT_EDP_LINK_RATE_4_32; 2492 case 324000: return BDB_263_VBT_EDP_LINK_RATE_3_24; 2493 case 270000: return BDB_263_VBT_EDP_LINK_RATE_2_7; 2494 case 243000: return BDB_263_VBT_EDP_LINK_RATE_2_43; 2495 case 216000: return BDB_263_VBT_EDP_LINK_RATE_2_16; 2496 case 162000: return BDB_263_VBT_EDP_LINK_RATE_1_62; 2497 default: return 0; 2498 } 2499 } 2500 2501 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) 2502 { 2503 if (!devdata || devdata->display->vbt.version < 216) 2504 return 0; 2505 2506 if (devdata->display->vbt.version >= 230) 2507 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); 2508 else 2509 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); 2510 } 2511 2512 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata) 2513 { 2514 if (!devdata || devdata->display->vbt.version < 244) 2515 return 0; 2516 2517 return devdata->child.dp_max_lane_count + 1; 2518 } 2519 2520 bool 2521 intel_bios_encoder_reject_edp_rate(const struct intel_bios_encoder_data *devdata, 2522 int rate) 2523 { 2524 if (!devdata || devdata->display->vbt.version < 263) 2525 return false; 2526 2527 if (devdata->child.edp_data_rate_override == BDB_263_VBT_EDP_RATES_MASK) 2528 return false; 2529 2530 return devdata->child.edp_data_rate_override & edp_rate_override_mask(rate); 2531 } 2532 2533 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 2534 enum port port) 2535 { 2536 struct intel_display *display = devdata->display; 2537 bool is_hdmi; 2538 2539 if (port != PORT_A || DISPLAY_VER(display) >= 12) 2540 return; 2541 2542 if (!intel_bios_encoder_supports_dvi(devdata)) 2543 return; 2544 2545 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2546 2547 drm_dbg_kms(display->drm, "VBT claims port A supports DVI%s, ignoring\n", 2548 is_hdmi ? "/HDMI" : ""); 2549 2550 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2551 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2552 } 2553 2554 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata, 2555 enum port port) 2556 { 2557 struct intel_display *display = devdata->display; 2558 2559 if (!intel_bios_encoder_supports_dvi(devdata)) 2560 return; 2561 2562 /* 2563 * Some BDW machines (eg. HP Pavilion 15-ab) shipped 2564 * with a HSW VBT where the level shifter value goes 2565 * up to 11, whereas the BDW max is 9. 2566 */ 2567 if (display->platform.broadwell && devdata->child.hdmi_level_shifter_value > 9) { 2568 drm_dbg_kms(display->drm, 2569 "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n", 2570 port_name(port), devdata->child.hdmi_level_shifter_value, 9); 2571 2572 devdata->child.hdmi_level_shifter_value = 9; 2573 } 2574 } 2575 2576 static bool 2577 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 2578 { 2579 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 2580 } 2581 2582 bool 2583 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 2584 { 2585 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 2586 } 2587 2588 bool 2589 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 2590 { 2591 return intel_bios_encoder_supports_dvi(devdata) && 2592 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 2593 } 2594 2595 bool 2596 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 2597 { 2598 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2599 } 2600 2601 bool 2602 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 2603 { 2604 return intel_bios_encoder_supports_dp(devdata) && 2605 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 2606 } 2607 2608 bool 2609 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata) 2610 { 2611 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT; 2612 } 2613 2614 bool 2615 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata) 2616 { 2617 return devdata && HAS_LSPCON(devdata->display) && devdata->child.lspcon; 2618 } 2619 2620 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ 2621 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) 2622 { 2623 if (!devdata || devdata->display->vbt.version < 158 || 2624 DISPLAY_VER(devdata->display) >= 14) 2625 return -1; 2626 2627 return devdata->child.hdmi_level_shifter_value; 2628 } 2629 2630 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata) 2631 { 2632 if (!devdata || devdata->display->vbt.version < 204) 2633 return 0; 2634 2635 switch (devdata->child.hdmi_max_data_rate) { 2636 default: 2637 MISSING_CASE(devdata->child.hdmi_max_data_rate); 2638 fallthrough; 2639 case HDMI_MAX_DATA_RATE_PLATFORM: 2640 return 0; 2641 case HDMI_MAX_DATA_RATE_594: 2642 return 594000; 2643 case HDMI_MAX_DATA_RATE_340: 2644 return 340000; 2645 case HDMI_MAX_DATA_RATE_300: 2646 return 300000; 2647 case HDMI_MAX_DATA_RATE_297: 2648 return 297000; 2649 case HDMI_MAX_DATA_RATE_165: 2650 return 165000; 2651 } 2652 } 2653 2654 static bool is_port_valid(struct intel_display *display, enum port port) 2655 { 2656 /* 2657 * On some ICL SKUs port F is not present, but broken VBTs mark 2658 * the port as present. Only try to initialize port F for the 2659 * SKUs that may actually have it. 2660 */ 2661 if (port == PORT_F && display->platform.icelake) 2662 return display->platform.icelake_port_f; 2663 2664 return true; 2665 } 2666 2667 static void print_ddi_port(const struct intel_bios_encoder_data *devdata) 2668 { 2669 struct intel_display *display = devdata->display; 2670 const struct child_device_config *child = &devdata->child; 2671 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt; 2672 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; 2673 enum port port; 2674 2675 port = intel_bios_encoder_port(devdata); 2676 if (port == PORT_NONE) 2677 return; 2678 2679 is_dvi = intel_bios_encoder_supports_dvi(devdata); 2680 is_dp = intel_bios_encoder_supports_dp(devdata); 2681 is_crt = intel_bios_encoder_supports_crt(devdata); 2682 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2683 is_edp = intel_bios_encoder_supports_edp(devdata); 2684 is_dsi = intel_bios_encoder_supports_dsi(devdata); 2685 2686 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 2687 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 2688 2689 drm_dbg_kms(display->drm, 2690 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 2691 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi, 2692 intel_bios_encoder_supports_dp_dual_mode(devdata), 2693 intel_bios_encoder_is_lspcon(devdata), 2694 supports_typec_usb, supports_tbt, 2695 devdata->dsc != NULL); 2696 2697 hdmi_level_shift = intel_bios_hdmi_level_shift(devdata); 2698 if (hdmi_level_shift >= 0) { 2699 drm_dbg_kms(display->drm, 2700 "Port %c VBT HDMI level shift: %d\n", 2701 port_name(port), hdmi_level_shift); 2702 } 2703 2704 max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata); 2705 if (max_tmds_clock) 2706 drm_dbg_kms(display->drm, 2707 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 2708 port_name(port), max_tmds_clock); 2709 2710 /* I_boost config for SKL and above */ 2711 dp_boost_level = intel_bios_dp_boost_level(devdata); 2712 if (dp_boost_level) 2713 drm_dbg_kms(display->drm, 2714 "Port %c VBT (e)DP boost level: %d\n", 2715 port_name(port), dp_boost_level); 2716 2717 hdmi_boost_level = intel_bios_hdmi_boost_level(devdata); 2718 if (hdmi_boost_level) 2719 drm_dbg_kms(display->drm, 2720 "Port %c VBT HDMI boost level: %d\n", 2721 port_name(port), hdmi_boost_level); 2722 2723 dp_max_link_rate = intel_bios_dp_max_link_rate(devdata); 2724 if (dp_max_link_rate) 2725 drm_dbg_kms(display->drm, 2726 "Port %c VBT DP max link rate: %d\n", 2727 port_name(port), dp_max_link_rate); 2728 2729 /* 2730 * FIXME need to implement support for VBT 2731 * vswing/preemph tables should this ever trigger. 2732 */ 2733 drm_WARN(display->drm, child->use_vbt_vswing, 2734 "Port %c asks to use VBT vswing/preemph tables\n", 2735 port_name(port)); 2736 } 2737 2738 static void parse_ddi_port(struct intel_bios_encoder_data *devdata) 2739 { 2740 struct intel_display *display = devdata->display; 2741 enum port port; 2742 2743 port = intel_bios_encoder_port(devdata); 2744 if (port == PORT_NONE) 2745 return; 2746 2747 if (!is_port_valid(display, port)) { 2748 drm_dbg_kms(display->drm, 2749 "VBT reports port %c as supported, but that can't be true: skipping\n", 2750 port_name(port)); 2751 return; 2752 } 2753 2754 sanitize_device_type(devdata, port); 2755 sanitize_hdmi_level_shift(devdata, port); 2756 } 2757 2758 static bool has_ddi_port_info(struct intel_display *display) 2759 { 2760 return DISPLAY_VER(display) >= 5 || display->platform.g4x; 2761 } 2762 2763 static void parse_ddi_ports(struct intel_display *display) 2764 { 2765 struct intel_bios_encoder_data *devdata; 2766 2767 if (!has_ddi_port_info(display)) 2768 return; 2769 2770 list_for_each_entry(devdata, &display->vbt.display_devices, node) 2771 parse_ddi_port(devdata); 2772 2773 list_for_each_entry(devdata, &display->vbt.display_devices, node) 2774 print_ddi_port(devdata); 2775 } 2776 2777 static int child_device_expected_size(u16 version) 2778 { 2779 BUILD_BUG_ON(sizeof(struct child_device_config) < 40); 2780 2781 if (version > 263) 2782 return -ENOENT; 2783 else if (version >= 263) 2784 return 44; 2785 else if (version >= 256) 2786 return 40; 2787 else if (version >= 216) 2788 return 39; 2789 else if (version >= 196) 2790 return 38; 2791 else if (version >= 195) 2792 return 37; 2793 else if (version >= 111) 2794 return LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2795 else if (version >= 106) 2796 return 27; 2797 else 2798 return 22; 2799 } 2800 2801 static bool child_device_size_valid(struct intel_display *display, int size) 2802 { 2803 int expected_size; 2804 2805 expected_size = child_device_expected_size(display->vbt.version); 2806 if (expected_size < 0) { 2807 expected_size = sizeof(struct child_device_config); 2808 drm_dbg_kms(display->drm, 2809 "Expected child device config size for VBT version %u not known; assuming %d\n", 2810 display->vbt.version, expected_size); 2811 } 2812 2813 /* Flag an error for unexpected size, but continue anyway. */ 2814 if (size != expected_size) 2815 drm_err(display->drm, 2816 "Unexpected child device config size %d (expected %d for VBT version %u)\n", 2817 size, expected_size, display->vbt.version); 2818 2819 /* The legacy sized child device config is the minimum we need. */ 2820 if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2821 drm_dbg_kms(display->drm, 2822 "Child device config size %d is too small.\n", 2823 size); 2824 return false; 2825 } 2826 2827 return true; 2828 } 2829 2830 static void 2831 parse_general_definitions(struct intel_display *display) 2832 { 2833 const struct bdb_general_definitions *defs; 2834 struct intel_bios_encoder_data *devdata; 2835 const struct child_device_config *child; 2836 int i, child_device_num; 2837 u16 block_size; 2838 int bus_pin; 2839 2840 defs = bdb_find_section(display, BDB_GENERAL_DEFINITIONS); 2841 if (!defs) { 2842 drm_dbg_kms(display->drm, 2843 "No general definition block is found, no devices defined.\n"); 2844 return; 2845 } 2846 2847 block_size = get_blocksize(defs); 2848 if (block_size < sizeof(*defs)) { 2849 drm_dbg_kms(display->drm, 2850 "General definitions block too small (%u)\n", 2851 block_size); 2852 return; 2853 } 2854 2855 bus_pin = defs->crt_ddc_gmbus_pin; 2856 drm_dbg_kms(display->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2857 if (intel_gmbus_is_valid_pin(display, bus_pin)) 2858 display->vbt.crt_ddc_pin = bus_pin; 2859 2860 if (!child_device_size_valid(display, defs->child_dev_size)) 2861 return; 2862 2863 /* get the number of child device */ 2864 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2865 2866 for (i = 0; i < child_device_num; i++) { 2867 child = child_device_ptr(defs, i); 2868 if (!child->device_type) 2869 continue; 2870 2871 drm_dbg_kms(display->drm, 2872 "Found VBT child device with type 0x%x\n", 2873 child->device_type); 2874 2875 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2876 if (!devdata) 2877 break; 2878 2879 devdata->display = display; 2880 2881 /* 2882 * Copy as much as we know (sizeof) and is available 2883 * (child_dev_size) of the child device config. Accessing the 2884 * data must depend on VBT version. 2885 */ 2886 memcpy(&devdata->child, child, 2887 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2888 2889 list_add_tail(&devdata->node, &display->vbt.display_devices); 2890 } 2891 2892 if (list_empty(&display->vbt.display_devices)) 2893 drm_dbg_kms(display->drm, 2894 "no child dev is parsed from VBT\n"); 2895 } 2896 2897 /* Common defaults which may be overridden by VBT. */ 2898 static void 2899 init_vbt_defaults(struct intel_display *display) 2900 { 2901 display->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2902 2903 /* general features */ 2904 display->vbt.int_tv_support = 1; 2905 display->vbt.int_crt_support = 1; 2906 2907 /* driver features */ 2908 display->vbt.int_lvds_support = 1; 2909 2910 /* Default to using SSC */ 2911 display->vbt.lvds_use_ssc = 1; 2912 /* 2913 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2914 * clock for LVDS. 2915 */ 2916 display->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(display, 2917 !HAS_PCH_SPLIT(display)); 2918 drm_dbg_kms(display->drm, "Set default to SSC at %d kHz\n", 2919 display->vbt.lvds_ssc_freq); 2920 } 2921 2922 /* Common defaults which may be overridden by VBT. */ 2923 static void 2924 init_vbt_panel_defaults(struct intel_panel *panel) 2925 { 2926 /* Default to having backlight */ 2927 panel->vbt.backlight.present = true; 2928 2929 /* LFP panel data */ 2930 panel->vbt.lvds_dither = true; 2931 } 2932 2933 /* Defaults to initialize only if there is no VBT. */ 2934 static void 2935 init_vbt_missing_defaults(struct intel_display *display) 2936 { 2937 unsigned int ports = DISPLAY_RUNTIME_INFO(display)->port_mask; 2938 enum port port; 2939 2940 if (!HAS_DDI(display) && !display->platform.cherryview) 2941 return; 2942 2943 for_each_port_masked(port, ports) { 2944 struct intel_bios_encoder_data *devdata; 2945 struct child_device_config *child; 2946 enum phy phy = intel_port_to_phy(display, port); 2947 2948 /* 2949 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2950 * to detect it. 2951 */ 2952 if (intel_phy_is_tc(display, phy)) 2953 continue; 2954 2955 /* Create fake child device config */ 2956 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2957 if (!devdata) 2958 break; 2959 2960 devdata->display = display; 2961 child = &devdata->child; 2962 2963 if (port == PORT_F) 2964 child->dvo_port = DVO_PORT_HDMIF; 2965 else if (port == PORT_E) 2966 child->dvo_port = DVO_PORT_HDMIE; 2967 else 2968 child->dvo_port = DVO_PORT_HDMIA + port; 2969 2970 if (port != PORT_A && port != PORT_E) 2971 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2972 2973 if (port != PORT_E) 2974 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2975 2976 if (port == PORT_A) 2977 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2978 2979 list_add_tail(&devdata->node, &display->vbt.display_devices); 2980 2981 drm_dbg_kms(display->drm, 2982 "Generating default VBT child device with type 0x%04x on port %c\n", 2983 child->device_type, port_name(port)); 2984 } 2985 2986 /* Bypass some minimum baseline VBT version checks */ 2987 display->vbt.version = 155; 2988 } 2989 2990 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2991 { 2992 const void *_vbt = vbt; 2993 2994 return _vbt + vbt->bdb_offset; 2995 } 2996 2997 static const char vbt_signature[] = "$VBT"; 2998 static const int vbt_signature_len = 4; 2999 3000 /** 3001 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 3002 * @display: display device 3003 * @buf: pointer to a buffer to validate 3004 * @size: size of the buffer 3005 * 3006 * Returns true on valid VBT. 3007 */ 3008 bool intel_bios_is_valid_vbt(struct intel_display *display, 3009 const void *buf, size_t size) 3010 { 3011 const struct vbt_header *vbt = buf; 3012 const struct bdb_header *bdb; 3013 3014 if (!vbt) 3015 return false; 3016 3017 if (sizeof(struct vbt_header) > size) { 3018 drm_dbg_kms(display->drm, "VBT header incomplete\n"); 3019 return false; 3020 } 3021 3022 if (memcmp(vbt->signature, vbt_signature, vbt_signature_len)) { 3023 drm_dbg_kms(display->drm, "VBT invalid signature\n"); 3024 return false; 3025 } 3026 3027 if (vbt->vbt_size > size) { 3028 drm_dbg_kms(display->drm, 3029 "VBT incomplete (vbt_size overflows)\n"); 3030 return false; 3031 } 3032 3033 size = vbt->vbt_size; 3034 3035 if (range_overflows_t(size_t, 3036 vbt->bdb_offset, 3037 sizeof(struct bdb_header), 3038 size)) { 3039 drm_dbg_kms(display->drm, "BDB header incomplete\n"); 3040 return false; 3041 } 3042 3043 bdb = get_bdb_header(vbt); 3044 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 3045 drm_dbg_kms(display->drm, "BDB incomplete\n"); 3046 return false; 3047 } 3048 3049 return vbt; 3050 } 3051 3052 static struct vbt_header *firmware_get_vbt(struct intel_display *display, 3053 size_t *size) 3054 { 3055 struct vbt_header *vbt = NULL; 3056 const struct firmware *fw = NULL; 3057 const char *name = display->params.vbt_firmware; 3058 int ret; 3059 3060 if (!name || !*name) 3061 return NULL; 3062 3063 ret = request_firmware(&fw, name, display->drm->dev); 3064 if (ret) { 3065 drm_err(display->drm, 3066 "Requesting VBT firmware \"%s\" failed (%d)\n", 3067 name, ret); 3068 return NULL; 3069 } 3070 3071 if (intel_bios_is_valid_vbt(display, fw->data, fw->size)) { 3072 vbt = kmemdup(fw->data, fw->size, GFP_KERNEL); 3073 if (vbt) { 3074 drm_dbg_kms(display->drm, 3075 "Found valid VBT firmware \"%s\"\n", name); 3076 if (size) 3077 *size = fw->size; 3078 } 3079 } else { 3080 drm_dbg_kms(display->drm, "Invalid VBT firmware \"%s\"\n", 3081 name); 3082 } 3083 3084 release_firmware(fw); 3085 3086 return vbt; 3087 } 3088 3089 static struct vbt_header *oprom_get_vbt(struct intel_display *display, 3090 struct intel_rom *rom, 3091 size_t *size, const char *type) 3092 { 3093 struct vbt_header *vbt; 3094 size_t vbt_size; 3095 loff_t offset; 3096 3097 if (!rom) 3098 return NULL; 3099 3100 BUILD_BUG_ON(vbt_signature_len != sizeof(vbt_signature) - 1); 3101 BUILD_BUG_ON(vbt_signature_len != sizeof(u32)); 3102 3103 offset = intel_rom_find(rom, *(const u32 *)vbt_signature); 3104 if (offset < 0) 3105 goto err_free_rom; 3106 3107 if (sizeof(struct vbt_header) > intel_rom_size(rom) - offset) { 3108 drm_dbg_kms(display->drm, "VBT header incomplete\n"); 3109 goto err_free_rom; 3110 } 3111 3112 BUILD_BUG_ON(sizeof(vbt->vbt_size) != sizeof(u16)); 3113 3114 vbt_size = intel_rom_read16(rom, offset + offsetof(struct vbt_header, vbt_size)); 3115 if (vbt_size > intel_rom_size(rom) - offset) { 3116 drm_dbg_kms(display->drm, "VBT incomplete (vbt_size overflows)\n"); 3117 goto err_free_rom; 3118 } 3119 3120 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); 3121 if (!vbt) 3122 goto err_free_rom; 3123 3124 intel_rom_read_block(rom, vbt, offset, vbt_size); 3125 3126 if (!intel_bios_is_valid_vbt(display, vbt, vbt_size)) 3127 goto err_free_vbt; 3128 3129 drm_dbg_kms(display->drm, "Found valid VBT in %s\n", type); 3130 3131 if (size) 3132 *size = vbt_size; 3133 3134 intel_rom_free(rom); 3135 3136 return vbt; 3137 3138 err_free_vbt: 3139 kfree(vbt); 3140 err_free_rom: 3141 intel_rom_free(rom); 3142 return NULL; 3143 } 3144 3145 static const struct vbt_header *intel_bios_get_vbt(struct intel_display *display, 3146 size_t *sizep) 3147 { 3148 struct drm_i915_private *i915 = to_i915(display->drm); 3149 const struct vbt_header *vbt = NULL; 3150 3151 vbt = firmware_get_vbt(display, sizep); 3152 3153 if (!vbt) 3154 vbt = intel_opregion_get_vbt(display, sizep); 3155 3156 /* 3157 * If the OpRegion does not have VBT, look in SPI flash 3158 * through MMIO or PCI mapping 3159 */ 3160 if (!vbt && display->platform.dgfx) 3161 with_intel_display_rpm(display) 3162 vbt = oprom_get_vbt(display, intel_rom_spi(i915), sizep, "SPI flash"); 3163 3164 if (!vbt) 3165 with_intel_display_rpm(display) 3166 vbt = oprom_get_vbt(display, intel_rom_pci(i915), sizep, "PCI ROM"); 3167 3168 return vbt; 3169 } 3170 3171 /** 3172 * intel_bios_init - find VBT and initialize settings from the BIOS 3173 * @display: display device instance 3174 * 3175 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 3176 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 3177 * initialize some defaults if the VBT is not present at all. 3178 */ 3179 void intel_bios_init(struct intel_display *display) 3180 { 3181 const struct vbt_header *vbt; 3182 const struct bdb_header *bdb; 3183 3184 INIT_LIST_HEAD(&display->vbt.display_devices); 3185 INIT_LIST_HEAD(&display->vbt.bdb_blocks); 3186 3187 if (!HAS_DISPLAY(display)) { 3188 drm_dbg_kms(display->drm, 3189 "Skipping VBT init due to disabled display.\n"); 3190 return; 3191 } 3192 3193 init_vbt_defaults(display); 3194 3195 vbt = intel_bios_get_vbt(display, NULL); 3196 3197 if (!vbt) 3198 goto out; 3199 3200 bdb = get_bdb_header(vbt); 3201 display->vbt.version = bdb->version; 3202 3203 drm_dbg_kms(display->drm, 3204 "VBT signature \"%.*s\", BDB version %d\n", 3205 (int)sizeof(vbt->signature), vbt->signature, 3206 display->vbt.version); 3207 3208 init_bdb_blocks(display, bdb); 3209 3210 /* Grab useful general definitions */ 3211 parse_general_features(display); 3212 parse_general_definitions(display); 3213 parse_driver_features(display); 3214 3215 /* Depends on child device list */ 3216 parse_compression_parameters(display); 3217 3218 out: 3219 if (!vbt) { 3220 drm_info(display->drm, 3221 "Failed to find VBIOS tables (VBT)\n"); 3222 init_vbt_missing_defaults(display); 3223 } 3224 3225 /* Further processing on pre-parsed or generated child device data */ 3226 parse_sdvo_device_mapping(display); 3227 parse_ddi_ports(display); 3228 3229 kfree(vbt); 3230 } 3231 3232 static void intel_bios_init_panel(struct intel_display *display, 3233 struct intel_panel *panel, 3234 const struct intel_bios_encoder_data *devdata, 3235 const struct drm_edid *drm_edid, 3236 bool use_fallback) 3237 { 3238 /* already have it? */ 3239 if (panel->vbt.panel_type >= 0) { 3240 drm_WARN_ON(display->drm, !use_fallback); 3241 return; 3242 } 3243 3244 panel->vbt.panel_type = get_panel_type(display, devdata, 3245 drm_edid, use_fallback); 3246 if (panel->vbt.panel_type < 0) { 3247 drm_WARN_ON(display->drm, use_fallback); 3248 return; 3249 } 3250 3251 init_vbt_panel_defaults(panel); 3252 3253 parse_panel_options(display, panel); 3254 parse_generic_dtd(display, panel); 3255 parse_lfp_data(display, panel); 3256 parse_lfp_backlight(display, panel); 3257 parse_sdvo_lvds_data(display, panel); 3258 parse_panel_driver_features(display, panel); 3259 parse_power_conservation_features(display, panel); 3260 parse_edp(display, panel); 3261 parse_psr(display, panel); 3262 parse_mipi_config(display, panel); 3263 parse_mipi_sequence(display, panel); 3264 } 3265 3266 void intel_bios_init_panel_early(struct intel_display *display, 3267 struct intel_panel *panel, 3268 const struct intel_bios_encoder_data *devdata) 3269 { 3270 intel_bios_init_panel(display, panel, devdata, NULL, false); 3271 } 3272 3273 void intel_bios_init_panel_late(struct intel_display *display, 3274 struct intel_panel *panel, 3275 const struct intel_bios_encoder_data *devdata, 3276 const struct drm_edid *drm_edid) 3277 { 3278 intel_bios_init_panel(display, panel, devdata, drm_edid, true); 3279 } 3280 3281 /** 3282 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 3283 * @display: display device instance 3284 */ 3285 void intel_bios_driver_remove(struct intel_display *display) 3286 { 3287 struct intel_bios_encoder_data *devdata, *nd; 3288 struct bdb_block_entry *entry, *ne; 3289 3290 list_for_each_entry_safe(devdata, nd, &display->vbt.display_devices, 3291 node) { 3292 list_del(&devdata->node); 3293 kfree(devdata->dsc); 3294 kfree(devdata); 3295 } 3296 3297 list_for_each_entry_safe(entry, ne, &display->vbt.bdb_blocks, node) { 3298 list_del(&entry->node); 3299 kfree(entry); 3300 } 3301 } 3302 3303 void intel_bios_fini_panel(struct intel_panel *panel) 3304 { 3305 kfree(panel->vbt.sdvo_lvds_vbt_mode); 3306 panel->vbt.sdvo_lvds_vbt_mode = NULL; 3307 kfree(panel->vbt.lfp_vbt_mode); 3308 panel->vbt.lfp_vbt_mode = NULL; 3309 kfree(panel->vbt.dsi.data); 3310 panel->vbt.dsi.data = NULL; 3311 kfree(panel->vbt.dsi.pps); 3312 panel->vbt.dsi.pps = NULL; 3313 kfree(panel->vbt.dsi.config); 3314 panel->vbt.dsi.config = NULL; 3315 kfree(panel->vbt.dsi.deassert_seq); 3316 panel->vbt.dsi.deassert_seq = NULL; 3317 } 3318 3319 /** 3320 * intel_bios_is_tv_present - is integrated TV present in VBT 3321 * @display: display device instance 3322 * 3323 * Return true if TV is present. If no child devices were parsed from VBT, 3324 * assume TV is present. 3325 */ 3326 bool intel_bios_is_tv_present(struct intel_display *display) 3327 { 3328 const struct intel_bios_encoder_data *devdata; 3329 3330 if (!display->vbt.int_tv_support) 3331 return false; 3332 3333 if (list_empty(&display->vbt.display_devices)) 3334 return true; 3335 3336 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3337 const struct child_device_config *child = &devdata->child; 3338 3339 /* 3340 * If the device type is not TV, continue. 3341 */ 3342 switch (child->device_type) { 3343 case DEVICE_TYPE_INT_TV: 3344 case DEVICE_TYPE_TV: 3345 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 3346 break; 3347 default: 3348 continue; 3349 } 3350 /* Only when the addin_offset is non-zero, it is regarded 3351 * as present. 3352 */ 3353 if (child->addin_offset) 3354 return true; 3355 } 3356 3357 return false; 3358 } 3359 3360 /** 3361 * intel_bios_is_lvds_present - is LVDS present in VBT 3362 * @display: display device instance 3363 * @i2c_pin: i2c pin for LVDS if present 3364 * 3365 * Return true if LVDS is present. If no child devices were parsed from VBT, 3366 * assume LVDS is present. 3367 */ 3368 bool intel_bios_is_lvds_present(struct intel_display *display, u8 *i2c_pin) 3369 { 3370 const struct intel_bios_encoder_data *devdata; 3371 3372 if (list_empty(&display->vbt.display_devices)) 3373 return true; 3374 3375 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3376 const struct child_device_config *child = &devdata->child; 3377 3378 /* If the device type is not LFP, continue. 3379 * We have to check both the new identifiers as well as the 3380 * old for compatibility with some BIOSes. 3381 */ 3382 if (child->device_type != DEVICE_TYPE_INT_LFP && 3383 child->device_type != DEVICE_TYPE_LFP) 3384 continue; 3385 3386 if (intel_gmbus_is_valid_pin(display, child->i2c_pin)) 3387 *i2c_pin = child->i2c_pin; 3388 3389 /* However, we cannot trust the BIOS writers to populate 3390 * the VBT correctly. Since LVDS requires additional 3391 * information from AIM blocks, a non-zero addin offset is 3392 * a good indicator that the LVDS is actually present. 3393 */ 3394 if (child->addin_offset) 3395 return true; 3396 3397 /* But even then some BIOS writers perform some black magic 3398 * and instantiate the device without reference to any 3399 * additional data. Trust that if the VBT was written into 3400 * the OpRegion then they have validated the LVDS's existence. 3401 */ 3402 return intel_opregion_vbt_present(display); 3403 } 3404 3405 return false; 3406 } 3407 3408 /** 3409 * intel_bios_is_port_present - is the specified digital port present 3410 * @display: display device instance 3411 * @port: port to check 3412 * 3413 * Return true if the device in %port is present. 3414 */ 3415 bool intel_bios_is_port_present(struct intel_display *display, enum port port) 3416 { 3417 const struct intel_bios_encoder_data *devdata; 3418 3419 if (WARN_ON(!has_ddi_port_info(display))) 3420 return true; 3421 3422 if (!is_port_valid(display, port)) 3423 return false; 3424 3425 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3426 const struct child_device_config *child = &devdata->child; 3427 3428 if (dvo_port_to_port(display, child->dvo_port) == port) 3429 return true; 3430 } 3431 3432 return false; 3433 } 3434 3435 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) 3436 { 3437 const struct child_device_config *child = &devdata->child; 3438 3439 if (!devdata) 3440 return false; 3441 3442 if (!intel_bios_encoder_supports_dp(devdata) || 3443 !intel_bios_encoder_supports_hdmi(devdata)) 3444 return false; 3445 3446 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) 3447 return true; 3448 3449 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 3450 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && 3451 child->aux_channel != 0) 3452 return true; 3453 3454 return false; 3455 } 3456 3457 /** 3458 * intel_bios_is_dsi_present - is DSI present in VBT 3459 * @display: display device instance 3460 * @port: port for DSI if present 3461 * 3462 * Return true if DSI is present, and return the port in %port. 3463 */ 3464 bool intel_bios_is_dsi_present(struct intel_display *display, 3465 enum port *port) 3466 { 3467 const struct intel_bios_encoder_data *devdata; 3468 3469 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3470 const struct child_device_config *child = &devdata->child; 3471 u8 dvo_port = child->dvo_port; 3472 3473 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3474 continue; 3475 3476 if (dsi_dvo_port_to_port(display, dvo_port) == PORT_NONE) { 3477 drm_dbg_kms(display->drm, 3478 "VBT has unsupported DSI port %c\n", 3479 port_name(dvo_port - DVO_PORT_MIPIA)); 3480 continue; 3481 } 3482 3483 if (port) 3484 *port = dsi_dvo_port_to_port(display, dvo_port); 3485 return true; 3486 } 3487 3488 return false; 3489 } 3490 3491 static void fill_dsc(struct intel_crtc_state *crtc_state, 3492 struct dsc_compression_parameters_entry *dsc, 3493 int dsc_max_bpc) 3494 { 3495 struct intel_display *display = to_intel_display(crtc_state); 3496 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 3497 int bpc = 8; 3498 3499 vdsc_cfg->dsc_version_major = dsc->version_major; 3500 vdsc_cfg->dsc_version_minor = dsc->version_minor; 3501 3502 if (dsc->support_12bpc && dsc_max_bpc >= 12) 3503 bpc = 12; 3504 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 3505 bpc = 10; 3506 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 3507 bpc = 8; 3508 else 3509 drm_dbg_kms(display->drm, "VBT: Unsupported BPC %d for DCS\n", 3510 dsc_max_bpc); 3511 3512 crtc_state->pipe_bpp = bpc * 3; 3513 3514 crtc_state->dsc.compressed_bpp_x16 = fxp_q4_from_int(min(crtc_state->pipe_bpp, 3515 VBT_DSC_MAX_BPP(dsc->max_bpp))); 3516 3517 /* 3518 * FIXME: This is ugly, and slice count should take DSC engine 3519 * throughput etc. into account. 3520 * 3521 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 3522 */ 3523 if (dsc->slices_per_line & BIT(2)) { 3524 crtc_state->dsc.slice_count = 4; 3525 } else if (dsc->slices_per_line & BIT(1)) { 3526 crtc_state->dsc.slice_count = 2; 3527 } else { 3528 /* FIXME */ 3529 if (!(dsc->slices_per_line & BIT(0))) 3530 drm_dbg_kms(display->drm, 3531 "VBT: Unsupported DSC slice count for DSI\n"); 3532 3533 crtc_state->dsc.slice_count = 1; 3534 } 3535 3536 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 3537 crtc_state->dsc.slice_count != 0) 3538 drm_dbg_kms(display->drm, 3539 "VBT: DSC hdisplay %d not divisible by slice count %d\n", 3540 crtc_state->hw.adjusted_mode.crtc_hdisplay, 3541 crtc_state->dsc.slice_count); 3542 3543 /* 3544 * The VBT rc_buffer_block_size and rc_buffer_size definitions 3545 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 3546 */ 3547 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 3548 dsc->rc_buffer_size); 3549 3550 /* FIXME: DSI spec says bpc + 1 for this one */ 3551 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 3552 3553 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 3554 3555 vdsc_cfg->slice_height = dsc->slice_height; 3556 } 3557 3558 /* FIXME: initially DSI specific */ 3559 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 3560 struct intel_crtc_state *crtc_state, 3561 int dsc_max_bpc) 3562 { 3563 struct intel_display *display = to_intel_display(encoder); 3564 const struct intel_bios_encoder_data *devdata; 3565 3566 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3567 const struct child_device_config *child = &devdata->child; 3568 3569 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3570 continue; 3571 3572 if (dsi_dvo_port_to_port(display, child->dvo_port) == encoder->port) { 3573 if (!devdata->dsc) 3574 return false; 3575 3576 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 3577 3578 return true; 3579 } 3580 } 3581 3582 return false; 3583 } 3584 3585 static const u8 adlp_aux_ch_map[] = { 3586 [AUX_CH_A] = DP_AUX_A, 3587 [AUX_CH_B] = DP_AUX_B, 3588 [AUX_CH_C] = DP_AUX_C, 3589 [AUX_CH_D_XELPD] = DP_AUX_D, 3590 [AUX_CH_E_XELPD] = DP_AUX_E, 3591 [AUX_CH_USBC1] = DP_AUX_F, 3592 [AUX_CH_USBC2] = DP_AUX_G, 3593 [AUX_CH_USBC3] = DP_AUX_H, 3594 [AUX_CH_USBC4] = DP_AUX_I, 3595 }; 3596 3597 /* 3598 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 3599 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 3600 */ 3601 static const u8 adls_aux_ch_map[] = { 3602 [AUX_CH_A] = DP_AUX_A, 3603 [AUX_CH_USBC1] = DP_AUX_B, 3604 [AUX_CH_USBC2] = DP_AUX_C, 3605 [AUX_CH_USBC3] = DP_AUX_D, 3606 [AUX_CH_USBC4] = DP_AUX_E, 3607 }; 3608 3609 /* 3610 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 3611 * map to DDI A,B,TC1,TC2 respectively. 3612 */ 3613 static const u8 rkl_aux_ch_map[] = { 3614 [AUX_CH_A] = DP_AUX_A, 3615 [AUX_CH_B] = DP_AUX_B, 3616 [AUX_CH_USBC1] = DP_AUX_C, 3617 [AUX_CH_USBC2] = DP_AUX_D, 3618 }; 3619 3620 static const u8 direct_aux_ch_map[] = { 3621 [AUX_CH_A] = DP_AUX_A, 3622 [AUX_CH_B] = DP_AUX_B, 3623 [AUX_CH_C] = DP_AUX_C, 3624 [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */ 3625 [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */ 3626 [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */ 3627 [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */ 3628 [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */ 3629 [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */ 3630 }; 3631 3632 static enum aux_ch map_aux_ch(struct intel_display *display, u8 aux_channel) 3633 { 3634 const u8 *aux_ch_map; 3635 int i, n_entries; 3636 3637 if (DISPLAY_VER(display) >= 13) { 3638 aux_ch_map = adlp_aux_ch_map; 3639 n_entries = ARRAY_SIZE(adlp_aux_ch_map); 3640 } else if (display->platform.alderlake_s) { 3641 aux_ch_map = adls_aux_ch_map; 3642 n_entries = ARRAY_SIZE(adls_aux_ch_map); 3643 } else if (display->platform.dg1 || display->platform.rocketlake) { 3644 aux_ch_map = rkl_aux_ch_map; 3645 n_entries = ARRAY_SIZE(rkl_aux_ch_map); 3646 } else { 3647 aux_ch_map = direct_aux_ch_map; 3648 n_entries = ARRAY_SIZE(direct_aux_ch_map); 3649 } 3650 3651 for (i = 0; i < n_entries; i++) { 3652 if (aux_ch_map[i] == aux_channel) 3653 return i; 3654 } 3655 3656 drm_dbg_kms(display->drm, 3657 "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n", 3658 aux_channel); 3659 3660 return AUX_CH_NONE; 3661 } 3662 3663 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata) 3664 { 3665 if (!devdata || !devdata->child.aux_channel) 3666 return AUX_CH_NONE; 3667 3668 return map_aux_ch(devdata->display, devdata->child.aux_channel); 3669 } 3670 3671 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata) 3672 { 3673 struct intel_display *display; 3674 u8 aux_channel; 3675 int count = 0; 3676 3677 if (!devdata || !devdata->child.aux_channel) 3678 return false; 3679 3680 display = devdata->display; 3681 aux_channel = devdata->child.aux_channel; 3682 3683 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3684 if (intel_bios_encoder_supports_dp(devdata) && 3685 aux_channel == devdata->child.aux_channel) 3686 count++; 3687 } 3688 3689 return count > 1; 3690 } 3691 3692 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata) 3693 { 3694 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost) 3695 return 0; 3696 3697 return translate_iboost(devdata->display, devdata->child.dp_iboost_level); 3698 } 3699 3700 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 3701 { 3702 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost) 3703 return 0; 3704 3705 return translate_iboost(devdata->display, devdata->child.hdmi_iboost_level); 3706 } 3707 3708 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata) 3709 { 3710 if (!devdata || !devdata->child.ddc_pin) 3711 return 0; 3712 3713 return map_ddc_pin(devdata->display, devdata->child.ddc_pin); 3714 } 3715 3716 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 3717 { 3718 return devdata->display->vbt.version >= 195 && devdata->child.dp_usb_type_c; 3719 } 3720 3721 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 3722 { 3723 return devdata->display->vbt.version >= 209 && devdata->child.tbt; 3724 } 3725 3726 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata) 3727 { 3728 return devdata && devdata->child.lane_reversal; 3729 } 3730 3731 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata) 3732 { 3733 return devdata && devdata->child.hpd_invert; 3734 } 3735 3736 const struct intel_bios_encoder_data * 3737 intel_bios_encoder_data_lookup(struct intel_display *display, enum port port) 3738 { 3739 struct intel_bios_encoder_data *devdata; 3740 3741 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3742 if (intel_bios_encoder_port(devdata) == port) 3743 return devdata; 3744 } 3745 3746 return NULL; 3747 } 3748 3749 void intel_bios_for_each_encoder(struct intel_display *display, 3750 void (*func)(struct intel_display *display, 3751 const struct intel_bios_encoder_data *devdata)) 3752 { 3753 struct intel_bios_encoder_data *devdata; 3754 3755 list_for_each_entry(devdata, &display->vbt.display_devices, node) 3756 func(display, devdata); 3757 } 3758 3759 static int intel_bios_vbt_show(struct seq_file *m, void *unused) 3760 { 3761 struct intel_display *display = m->private; 3762 const void *vbt; 3763 size_t vbt_size; 3764 3765 vbt = intel_bios_get_vbt(display, &vbt_size); 3766 3767 if (vbt) { 3768 seq_write(m, vbt, vbt_size); 3769 kfree(vbt); 3770 } 3771 3772 return 0; 3773 } 3774 3775 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt); 3776 3777 void intel_bios_debugfs_register(struct intel_display *display) 3778 { 3779 debugfs_create_file("i915_vbt", 0444, display->drm->debugfs_root, 3780 display, &intel_bios_vbt_fops); 3781 } 3782