1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/display/drm_dp_helper.h> 29 #include <drm/display/drm_dsc_helper.h> 30 #include <drm/drm_edid.h> 31 32 #include "i915_drv.h" 33 #include "i915_reg.h" 34 #include "intel_display.h" 35 #include "intel_display_types.h" 36 #include "intel_gmbus.h" 37 38 #define _INTEL_BIOS_PRIVATE 39 #include "intel_vbt_defs.h" 40 41 /** 42 * DOC: Video BIOS Table (VBT) 43 * 44 * The Video BIOS Table, or VBT, provides platform and board specific 45 * configuration information to the driver that is not discoverable or available 46 * through other means. The configuration is mostly related to display 47 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 48 * the PCI ROM. 49 * 50 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 51 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 52 * contain the actual configuration information. The VBT Header, and thus the 53 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 54 * BDB Header. The data blocks are concatenated after the BDB Header. The data 55 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 56 * data. (Block 53, the MIPI Sequence Block is an exception.) 57 * 58 * The driver parses the VBT during load. The relevant information is stored in 59 * driver private data for ease of use, and the actual VBT is not read after 60 * that. 61 */ 62 63 /* Wrapper for VBT child device config */ 64 struct intel_bios_encoder_data { 65 struct drm_i915_private *i915; 66 67 struct child_device_config child; 68 struct dsc_compression_parameters_entry *dsc; 69 struct list_head node; 70 }; 71 72 #define SLAVE_ADDR1 0x70 73 #define SLAVE_ADDR2 0x72 74 75 /* Get BDB block size given a pointer to Block ID. */ 76 static u32 _get_blocksize(const u8 *block_base) 77 { 78 /* The MIPI Sequence Block v3+ has a separate size field. */ 79 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 80 return *((const u32 *)(block_base + 4)); 81 else 82 return *((const u16 *)(block_base + 1)); 83 } 84 85 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 86 static u32 get_blocksize(const void *block_data) 87 { 88 return _get_blocksize(block_data - 3); 89 } 90 91 static const void * 92 find_raw_section(const void *_bdb, enum bdb_block_id section_id) 93 { 94 const struct bdb_header *bdb = _bdb; 95 const u8 *base = _bdb; 96 int index = 0; 97 u32 total, current_size; 98 enum bdb_block_id current_id; 99 100 /* skip to first section */ 101 index += bdb->header_size; 102 total = bdb->bdb_size; 103 104 /* walk the sections looking for section_id */ 105 while (index + 3 < total) { 106 current_id = *(base + index); 107 current_size = _get_blocksize(base + index); 108 index += 3; 109 110 if (index + current_size > total) 111 return NULL; 112 113 if (current_id == section_id) 114 return base + index; 115 116 index += current_size; 117 } 118 119 return NULL; 120 } 121 122 /* 123 * Offset from the start of BDB to the start of the 124 * block data (just past the block header). 125 */ 126 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) 127 { 128 const void *block; 129 130 block = find_raw_section(bdb, section_id); 131 if (!block) 132 return 0; 133 134 return block - bdb; 135 } 136 137 struct bdb_block_entry { 138 struct list_head node; 139 enum bdb_block_id section_id; 140 u8 data[]; 141 }; 142 143 static const void * 144 bdb_find_section(struct drm_i915_private *i915, 145 enum bdb_block_id section_id) 146 { 147 struct bdb_block_entry *entry; 148 149 list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) { 150 if (entry->section_id == section_id) 151 return entry->data + 3; 152 } 153 154 return NULL; 155 } 156 157 static const struct { 158 enum bdb_block_id section_id; 159 size_t min_size; 160 } bdb_blocks[] = { 161 { .section_id = BDB_GENERAL_FEATURES, 162 .min_size = sizeof(struct bdb_general_features), }, 163 { .section_id = BDB_GENERAL_DEFINITIONS, 164 .min_size = sizeof(struct bdb_general_definitions), }, 165 { .section_id = BDB_PSR, 166 .min_size = sizeof(struct bdb_psr), }, 167 { .section_id = BDB_DRIVER_FEATURES, 168 .min_size = sizeof(struct bdb_driver_features), }, 169 { .section_id = BDB_SDVO_LVDS_OPTIONS, 170 .min_size = sizeof(struct bdb_sdvo_lvds_options), }, 171 { .section_id = BDB_SDVO_PANEL_DTDS, 172 .min_size = sizeof(struct bdb_sdvo_panel_dtds), }, 173 { .section_id = BDB_EDP, 174 .min_size = sizeof(struct bdb_edp), }, 175 { .section_id = BDB_LVDS_OPTIONS, 176 .min_size = sizeof(struct bdb_lvds_options), }, 177 /* 178 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS, 179 * so keep the two ordered. 180 */ 181 { .section_id = BDB_LVDS_LFP_DATA_PTRS, 182 .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), }, 183 { .section_id = BDB_LVDS_LFP_DATA, 184 .min_size = 0, /* special case */ }, 185 { .section_id = BDB_LVDS_BACKLIGHT, 186 .min_size = sizeof(struct bdb_lfp_backlight_data), }, 187 { .section_id = BDB_LFP_POWER, 188 .min_size = sizeof(struct bdb_lfp_power), }, 189 { .section_id = BDB_MIPI_CONFIG, 190 .min_size = sizeof(struct bdb_mipi_config), }, 191 { .section_id = BDB_MIPI_SEQUENCE, 192 .min_size = sizeof(struct bdb_mipi_sequence) }, 193 { .section_id = BDB_COMPRESSION_PARAMETERS, 194 .min_size = sizeof(struct bdb_compression_parameters), }, 195 { .section_id = BDB_GENERIC_DTD, 196 .min_size = sizeof(struct bdb_generic_dtd), }, 197 }; 198 199 static size_t lfp_data_min_size(struct drm_i915_private *i915) 200 { 201 const struct bdb_lvds_lfp_data_ptrs *ptrs; 202 size_t size; 203 204 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 205 if (!ptrs) 206 return 0; 207 208 size = sizeof(struct bdb_lvds_lfp_data); 209 if (ptrs->panel_name.table_size) 210 size = max(size, ptrs->panel_name.offset + 211 sizeof(struct bdb_lvds_lfp_data_tail)); 212 213 return size; 214 } 215 216 static bool validate_lfp_data_ptrs(const void *bdb, 217 const struct bdb_lvds_lfp_data_ptrs *ptrs) 218 { 219 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; 220 int data_block_size, lfp_data_size; 221 const void *data_block; 222 int i; 223 224 data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 225 if (!data_block) 226 return false; 227 228 data_block_size = get_blocksize(data_block); 229 if (data_block_size == 0) 230 return false; 231 232 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ 233 if (ptrs->lvds_entries != 3) 234 return false; 235 236 fp_timing_size = ptrs->ptr[0].fp_timing.table_size; 237 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; 238 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; 239 panel_name_size = ptrs->panel_name.table_size; 240 241 /* fp_timing has variable size */ 242 if (fp_timing_size < 32 || 243 dvo_timing_size != sizeof(struct lvds_dvo_timing) || 244 panel_pnp_id_size != sizeof(struct lvds_pnp_id)) 245 return false; 246 247 /* panel_name is not present in old VBTs */ 248 if (panel_name_size != 0 && 249 panel_name_size != sizeof(struct lvds_lfp_panel_name)) 250 return false; 251 252 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; 253 if (16 * lfp_data_size > data_block_size) 254 return false; 255 256 /* make sure the table entries have uniform size */ 257 for (i = 1; i < 16; i++) { 258 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || 259 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || 260 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) 261 return false; 262 263 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || 264 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || 265 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) 266 return false; 267 } 268 269 /* 270 * Except for vlv/chv machines all real VBTs seem to have 6 271 * unaccounted bytes in the fp_timing table. And it doesn't 272 * appear to be a really intentional hole as the fp_timing 273 * 0xffff terminator is always within those 6 missing bytes. 274 */ 275 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size) 276 fp_timing_size += 6; 277 278 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size) 279 return false; 280 281 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset || 282 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || 283 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) 284 return false; 285 286 /* make sure the tables fit inside the data block */ 287 for (i = 0; i < 16; i++) { 288 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || 289 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || 290 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) 291 return false; 292 } 293 294 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) 295 return false; 296 297 /* make sure fp_timing terminators are present at expected locations */ 298 for (i = 0; i < 16; i++) { 299 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset + 300 fp_timing_size - 2; 301 302 if (*t != 0xffff) 303 return false; 304 } 305 306 return true; 307 } 308 309 /* make the data table offsets relative to the data block */ 310 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) 311 { 312 struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block; 313 u32 offset; 314 int i; 315 316 offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA); 317 318 for (i = 0; i < 16; i++) { 319 if (ptrs->ptr[i].fp_timing.offset < offset || 320 ptrs->ptr[i].dvo_timing.offset < offset || 321 ptrs->ptr[i].panel_pnp_id.offset < offset) 322 return false; 323 324 ptrs->ptr[i].fp_timing.offset -= offset; 325 ptrs->ptr[i].dvo_timing.offset -= offset; 326 ptrs->ptr[i].panel_pnp_id.offset -= offset; 327 } 328 329 if (ptrs->panel_name.table_size) { 330 if (ptrs->panel_name.offset < offset) 331 return false; 332 333 ptrs->panel_name.offset -= offset; 334 } 335 336 return validate_lfp_data_ptrs(bdb, ptrs); 337 } 338 339 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table, 340 int table_size, int total_size) 341 { 342 if (total_size < table_size) 343 return total_size; 344 345 table->table_size = table_size; 346 table->offset = total_size - table_size; 347 348 return total_size - table_size; 349 } 350 351 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next, 352 const struct lvds_lfp_data_ptr_table *prev, 353 int size) 354 { 355 next->table_size = prev->table_size; 356 next->offset = prev->offset + size; 357 } 358 359 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915, 360 const void *bdb) 361 { 362 int i, size, table_size, block_size, offset, fp_timing_size; 363 struct bdb_lvds_lfp_data_ptrs *ptrs; 364 const void *block; 365 void *ptrs_block; 366 367 /* 368 * The hardcoded fp_timing_size is only valid for 369 * modernish VBTs. All older VBTs definitely should 370 * include block 41 and thus we don't need to 371 * generate one. 372 */ 373 if (i915->display.vbt.version < 155) 374 return NULL; 375 376 fp_timing_size = 38; 377 378 block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 379 if (!block) 380 return NULL; 381 382 drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n"); 383 384 block_size = get_blocksize(block); 385 386 size = fp_timing_size + sizeof(struct lvds_dvo_timing) + 387 sizeof(struct lvds_pnp_id); 388 if (size * 16 > block_size) 389 return NULL; 390 391 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); 392 if (!ptrs_block) 393 return NULL; 394 395 *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS; 396 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); 397 ptrs = ptrs_block + 3; 398 399 table_size = sizeof(struct lvds_pnp_id); 400 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); 401 402 table_size = sizeof(struct lvds_dvo_timing); 403 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); 404 405 table_size = fp_timing_size; 406 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); 407 408 if (ptrs->ptr[0].fp_timing.table_size) 409 ptrs->lvds_entries++; 410 if (ptrs->ptr[0].dvo_timing.table_size) 411 ptrs->lvds_entries++; 412 if (ptrs->ptr[0].panel_pnp_id.table_size) 413 ptrs->lvds_entries++; 414 415 if (size != 0 || ptrs->lvds_entries != 3) { 416 kfree(ptrs_block); 417 return NULL; 418 } 419 420 size = fp_timing_size + sizeof(struct lvds_dvo_timing) + 421 sizeof(struct lvds_pnp_id); 422 for (i = 1; i < 16; i++) { 423 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); 424 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); 425 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); 426 } 427 428 table_size = sizeof(struct lvds_lfp_panel_name); 429 430 if (16 * (size + table_size) <= block_size) { 431 ptrs->panel_name.table_size = table_size; 432 ptrs->panel_name.offset = size * 16; 433 } 434 435 offset = block - bdb; 436 437 for (i = 0; i < 16; i++) { 438 ptrs->ptr[i].fp_timing.offset += offset; 439 ptrs->ptr[i].dvo_timing.offset += offset; 440 ptrs->ptr[i].panel_pnp_id.offset += offset; 441 } 442 443 if (ptrs->panel_name.table_size) 444 ptrs->panel_name.offset += offset; 445 446 return ptrs_block; 447 } 448 449 static void 450 init_bdb_block(struct drm_i915_private *i915, 451 const void *bdb, enum bdb_block_id section_id, 452 size_t min_size) 453 { 454 struct bdb_block_entry *entry; 455 void *temp_block = NULL; 456 const void *block; 457 size_t block_size; 458 459 block = find_raw_section(bdb, section_id); 460 461 /* Modern VBTs lack the LFP data table pointers block, make one up */ 462 if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) { 463 temp_block = generate_lfp_data_ptrs(i915, bdb); 464 if (temp_block) 465 block = temp_block + 3; 466 } 467 if (!block) 468 return; 469 470 drm_WARN(&i915->drm, min_size == 0, 471 "Block %d min_size is zero\n", section_id); 472 473 block_size = get_blocksize(block); 474 475 /* 476 * Version number and new block size are considered 477 * part of the header for MIPI sequenece block v3+. 478 */ 479 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3) 480 block_size += 5; 481 482 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), 483 GFP_KERNEL); 484 if (!entry) { 485 kfree(temp_block); 486 return; 487 } 488 489 entry->section_id = section_id; 490 memcpy(entry->data, block - 3, block_size + 3); 491 492 kfree(temp_block); 493 494 drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n", 495 section_id, block_size, min_size); 496 497 if (section_id == BDB_LVDS_LFP_DATA_PTRS && 498 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { 499 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n"); 500 kfree(entry); 501 return; 502 } 503 504 list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks); 505 } 506 507 static void init_bdb_blocks(struct drm_i915_private *i915, 508 const void *bdb) 509 { 510 int i; 511 512 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { 513 enum bdb_block_id section_id = bdb_blocks[i].section_id; 514 size_t min_size = bdb_blocks[i].min_size; 515 516 if (section_id == BDB_LVDS_LFP_DATA) 517 min_size = lfp_data_min_size(i915); 518 519 init_bdb_block(i915, bdb, section_id, min_size); 520 } 521 } 522 523 static void 524 fill_detail_timing_data(struct drm_i915_private *i915, 525 struct drm_display_mode *panel_fixed_mode, 526 const struct lvds_dvo_timing *dvo_timing) 527 { 528 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 529 dvo_timing->hactive_lo; 530 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 531 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 532 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 533 ((dvo_timing->hsync_pulse_width_hi << 8) | 534 dvo_timing->hsync_pulse_width_lo); 535 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 536 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 537 538 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 539 dvo_timing->vactive_lo; 540 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 541 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 542 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 543 ((dvo_timing->vsync_pulse_width_hi << 4) | 544 dvo_timing->vsync_pulse_width_lo); 545 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 546 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 547 panel_fixed_mode->clock = dvo_timing->clock * 10; 548 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 549 550 if (dvo_timing->hsync_positive) 551 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 552 else 553 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 554 555 if (dvo_timing->vsync_positive) 556 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 557 else 558 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 559 560 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 561 dvo_timing->himage_lo; 562 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 563 dvo_timing->vimage_lo; 564 565 /* Some VBTs have bogus h/vsync_end values */ 566 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) { 567 drm_dbg_kms(&i915->drm, "reducing hsync_end %d->%d\n", 568 panel_fixed_mode->hsync_end, panel_fixed_mode->htotal); 569 panel_fixed_mode->hsync_end = panel_fixed_mode->htotal; 570 } 571 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) { 572 drm_dbg_kms(&i915->drm, "reducing vsync_end %d->%d\n", 573 panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal); 574 panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal; 575 } 576 577 drm_mode_set_name(panel_fixed_mode); 578 } 579 580 static const struct lvds_dvo_timing * 581 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data, 582 const struct bdb_lvds_lfp_data_ptrs *ptrs, 583 int index) 584 { 585 return (const void *)data + ptrs->ptr[index].dvo_timing.offset; 586 } 587 588 static const struct lvds_fp_timing * 589 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data, 590 const struct bdb_lvds_lfp_data_ptrs *ptrs, 591 int index) 592 { 593 return (const void *)data + ptrs->ptr[index].fp_timing.offset; 594 } 595 596 static const struct lvds_pnp_id * 597 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data, 598 const struct bdb_lvds_lfp_data_ptrs *ptrs, 599 int index) 600 { 601 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; 602 } 603 604 static const struct bdb_lvds_lfp_data_tail * 605 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data, 606 const struct bdb_lvds_lfp_data_ptrs *ptrs) 607 { 608 if (ptrs->panel_name.table_size) 609 return (const void *)data + ptrs->panel_name.offset; 610 else 611 return NULL; 612 } 613 614 static void dump_pnp_id(struct drm_i915_private *i915, 615 const struct lvds_pnp_id *pnp_id, 616 const char *name) 617 { 618 u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name); 619 char vend[4]; 620 621 drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n", 622 name, drm_edid_decode_mfg_id(mfg_name, vend), 623 pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial, 624 pnp_id->mfg_week, pnp_id->mfg_year + 1990); 625 } 626 627 static int opregion_get_panel_type(struct drm_i915_private *i915, 628 const struct intel_bios_encoder_data *devdata, 629 const struct drm_edid *drm_edid, bool use_fallback) 630 { 631 return intel_opregion_get_panel_type(i915); 632 } 633 634 static int vbt_get_panel_type(struct drm_i915_private *i915, 635 const struct intel_bios_encoder_data *devdata, 636 const struct drm_edid *drm_edid, bool use_fallback) 637 { 638 const struct bdb_lvds_options *lvds_options; 639 640 lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS); 641 if (!lvds_options) 642 return -1; 643 644 if (lvds_options->panel_type > 0xf && 645 lvds_options->panel_type != 0xff) { 646 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n", 647 lvds_options->panel_type); 648 return -1; 649 } 650 651 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) 652 return lvds_options->panel_type2; 653 654 drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); 655 656 return lvds_options->panel_type; 657 } 658 659 static int pnpid_get_panel_type(struct drm_i915_private *i915, 660 const struct intel_bios_encoder_data *devdata, 661 const struct drm_edid *drm_edid, bool use_fallback) 662 { 663 const struct bdb_lvds_lfp_data *data; 664 const struct bdb_lvds_lfp_data_ptrs *ptrs; 665 const struct lvds_pnp_id *edid_id; 666 struct lvds_pnp_id edid_id_nodate; 667 const struct edid *edid = drm_edid_raw(drm_edid); /* FIXME */ 668 int i, best = -1; 669 670 if (!edid) 671 return -1; 672 673 edid_id = (const void *)&edid->mfg_id[0]; 674 675 edid_id_nodate = *edid_id; 676 edid_id_nodate.mfg_week = 0; 677 edid_id_nodate.mfg_year = 0; 678 679 dump_pnp_id(i915, edid_id, "EDID"); 680 681 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 682 if (!ptrs) 683 return -1; 684 685 data = bdb_find_section(i915, BDB_LVDS_LFP_DATA); 686 if (!data) 687 return -1; 688 689 for (i = 0; i < 16; i++) { 690 const struct lvds_pnp_id *vbt_id = 691 get_lvds_pnp_id(data, ptrs, i); 692 693 /* full match? */ 694 if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id))) 695 return i; 696 697 /* 698 * Accept a match w/o date if no full match is found, 699 * and the VBT entry does not specify a date. 700 */ 701 if (best < 0 && 702 !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id))) 703 best = i; 704 } 705 706 return best; 707 } 708 709 static int fallback_get_panel_type(struct drm_i915_private *i915, 710 const struct intel_bios_encoder_data *devdata, 711 const struct drm_edid *drm_edid, bool use_fallback) 712 { 713 return use_fallback ? 0 : -1; 714 } 715 716 enum panel_type { 717 PANEL_TYPE_OPREGION, 718 PANEL_TYPE_VBT, 719 PANEL_TYPE_PNPID, 720 PANEL_TYPE_FALLBACK, 721 }; 722 723 static int get_panel_type(struct drm_i915_private *i915, 724 const struct intel_bios_encoder_data *devdata, 725 const struct drm_edid *drm_edid, bool use_fallback) 726 { 727 struct { 728 const char *name; 729 int (*get_panel_type)(struct drm_i915_private *i915, 730 const struct intel_bios_encoder_data *devdata, 731 const struct drm_edid *drm_edid, bool use_fallback); 732 int panel_type; 733 } panel_types[] = { 734 [PANEL_TYPE_OPREGION] = { 735 .name = "OpRegion", 736 .get_panel_type = opregion_get_panel_type, 737 }, 738 [PANEL_TYPE_VBT] = { 739 .name = "VBT", 740 .get_panel_type = vbt_get_panel_type, 741 }, 742 [PANEL_TYPE_PNPID] = { 743 .name = "PNPID", 744 .get_panel_type = pnpid_get_panel_type, 745 }, 746 [PANEL_TYPE_FALLBACK] = { 747 .name = "fallback", 748 .get_panel_type = fallback_get_panel_type, 749 }, 750 }; 751 int i; 752 753 for (i = 0; i < ARRAY_SIZE(panel_types); i++) { 754 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, 755 drm_edid, use_fallback); 756 757 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf && 758 panel_types[i].panel_type != 0xff); 759 760 if (panel_types[i].panel_type >= 0) 761 drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n", 762 panel_types[i].name, panel_types[i].panel_type); 763 } 764 765 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) 766 i = PANEL_TYPE_OPREGION; 767 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && 768 panel_types[PANEL_TYPE_PNPID].panel_type >= 0) 769 i = PANEL_TYPE_PNPID; 770 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && 771 panel_types[PANEL_TYPE_VBT].panel_type >= 0) 772 i = PANEL_TYPE_VBT; 773 else 774 i = PANEL_TYPE_FALLBACK; 775 776 drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n", 777 panel_types[i].name, panel_types[i].panel_type); 778 779 return panel_types[i].panel_type; 780 } 781 782 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) 783 { 784 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); 785 } 786 787 static bool panel_bool(unsigned int value, int panel_type) 788 { 789 return panel_bits(value, panel_type, 1); 790 } 791 792 /* Parse general panel options */ 793 static void 794 parse_panel_options(struct drm_i915_private *i915, 795 struct intel_panel *panel) 796 { 797 const struct bdb_lvds_options *lvds_options; 798 int panel_type = panel->vbt.panel_type; 799 int drrs_mode; 800 801 lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS); 802 if (!lvds_options) 803 return; 804 805 panel->vbt.lvds_dither = lvds_options->pixel_dither; 806 807 /* 808 * Empirical evidence indicates the block size can be 809 * either 4,14,16,24+ bytes. For older VBTs no clear 810 * relationship between the block size vs. BDB version. 811 */ 812 if (get_blocksize(lvds_options) < 16) 813 return; 814 815 drrs_mode = panel_bits(lvds_options->dps_panel_type_bits, 816 panel_type, 2); 817 /* 818 * VBT has static DRRS = 0 and seamless DRRS = 2. 819 * The below piece of code is required to adjust vbt.drrs_type 820 * to match the enum drrs_support_type. 821 */ 822 switch (drrs_mode) { 823 case 0: 824 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 825 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n"); 826 break; 827 case 2: 828 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; 829 drm_dbg_kms(&i915->drm, 830 "DRRS supported mode is seamless\n"); 831 break; 832 default: 833 panel->vbt.drrs_type = DRRS_TYPE_NONE; 834 drm_dbg_kms(&i915->drm, 835 "DRRS not supported (VBT input)\n"); 836 break; 837 } 838 } 839 840 static void 841 parse_lfp_panel_dtd(struct drm_i915_private *i915, 842 struct intel_panel *panel, 843 const struct bdb_lvds_lfp_data *lvds_lfp_data, 844 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs) 845 { 846 const struct lvds_dvo_timing *panel_dvo_timing; 847 const struct lvds_fp_timing *fp_timing; 848 struct drm_display_mode *panel_fixed_mode; 849 int panel_type = panel->vbt.panel_type; 850 851 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, 852 lvds_lfp_data_ptrs, 853 panel_type); 854 855 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 856 if (!panel_fixed_mode) 857 return; 858 859 fill_detail_timing_data(i915, panel_fixed_mode, panel_dvo_timing); 860 861 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 862 863 drm_dbg_kms(&i915->drm, 864 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", 865 DRM_MODE_ARG(panel_fixed_mode)); 866 867 fp_timing = get_lvds_fp_timing(lvds_lfp_data, 868 lvds_lfp_data_ptrs, 869 panel_type); 870 871 /* check the resolution, just to be sure */ 872 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 873 fp_timing->y_res == panel_fixed_mode->vdisplay) { 874 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 875 drm_dbg_kms(&i915->drm, 876 "VBT initial LVDS value %x\n", 877 panel->vbt.bios_lvds_val); 878 } 879 } 880 881 static void 882 parse_lfp_data(struct drm_i915_private *i915, 883 struct intel_panel *panel) 884 { 885 const struct bdb_lvds_lfp_data *data; 886 const struct bdb_lvds_lfp_data_tail *tail; 887 const struct bdb_lvds_lfp_data_ptrs *ptrs; 888 const struct lvds_pnp_id *pnp_id; 889 int panel_type = panel->vbt.panel_type; 890 891 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 892 if (!ptrs) 893 return; 894 895 data = bdb_find_section(i915, BDB_LVDS_LFP_DATA); 896 if (!data) 897 return; 898 899 if (!panel->vbt.lfp_lvds_vbt_mode) 900 parse_lfp_panel_dtd(i915, panel, data, ptrs); 901 902 pnp_id = get_lvds_pnp_id(data, ptrs, panel_type); 903 dump_pnp_id(i915, pnp_id, "Panel"); 904 905 tail = get_lfp_data_tail(data, ptrs); 906 if (!tail) 907 return; 908 909 drm_dbg_kms(&i915->drm, "Panel name: %.*s\n", 910 (int)sizeof(tail->panel_name[0].name), 911 tail->panel_name[panel_type].name); 912 913 if (i915->display.vbt.version >= 188) { 914 panel->vbt.seamless_drrs_min_refresh_rate = 915 tail->seamless_drrs_min_refresh_rate[panel_type]; 916 drm_dbg_kms(&i915->drm, 917 "Seamless DRRS min refresh rate: %d Hz\n", 918 panel->vbt.seamless_drrs_min_refresh_rate); 919 } 920 } 921 922 static void 923 parse_generic_dtd(struct drm_i915_private *i915, 924 struct intel_panel *panel) 925 { 926 const struct bdb_generic_dtd *generic_dtd; 927 const struct generic_dtd_entry *dtd; 928 struct drm_display_mode *panel_fixed_mode; 929 int num_dtd; 930 931 /* 932 * Older VBTs provided DTD information for internal displays through 933 * the "LFP panel tables" block (42). As of VBT revision 229 the 934 * DTD information should be provided via a newer "generic DTD" 935 * block (58). Just to be safe, we'll try the new generic DTD block 936 * first on VBT >= 229, but still fall back to trying the old LFP 937 * block if that fails. 938 */ 939 if (i915->display.vbt.version < 229) 940 return; 941 942 generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD); 943 if (!generic_dtd) 944 return; 945 946 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 947 drm_err(&i915->drm, "GDTD size %u is too small.\n", 948 generic_dtd->gdtd_size); 949 return; 950 } else if (generic_dtd->gdtd_size != 951 sizeof(struct generic_dtd_entry)) { 952 drm_err(&i915->drm, "Unexpected GDTD size %u\n", 953 generic_dtd->gdtd_size); 954 /* DTD has unknown fields, but keep going */ 955 } 956 957 num_dtd = (get_blocksize(generic_dtd) - 958 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 959 if (panel->vbt.panel_type >= num_dtd) { 960 drm_err(&i915->drm, 961 "Panel type %d not found in table of %d DTD's\n", 962 panel->vbt.panel_type, num_dtd); 963 return; 964 } 965 966 dtd = &generic_dtd->dtd[panel->vbt.panel_type]; 967 968 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 969 if (!panel_fixed_mode) 970 return; 971 972 panel_fixed_mode->hdisplay = dtd->hactive; 973 panel_fixed_mode->hsync_start = 974 panel_fixed_mode->hdisplay + dtd->hfront_porch; 975 panel_fixed_mode->hsync_end = 976 panel_fixed_mode->hsync_start + dtd->hsync; 977 panel_fixed_mode->htotal = 978 panel_fixed_mode->hdisplay + dtd->hblank; 979 980 panel_fixed_mode->vdisplay = dtd->vactive; 981 panel_fixed_mode->vsync_start = 982 panel_fixed_mode->vdisplay + dtd->vfront_porch; 983 panel_fixed_mode->vsync_end = 984 panel_fixed_mode->vsync_start + dtd->vsync; 985 panel_fixed_mode->vtotal = 986 panel_fixed_mode->vdisplay + dtd->vblank; 987 988 panel_fixed_mode->clock = dtd->pixel_clock; 989 panel_fixed_mode->width_mm = dtd->width_mm; 990 panel_fixed_mode->height_mm = dtd->height_mm; 991 992 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 993 drm_mode_set_name(panel_fixed_mode); 994 995 if (dtd->hsync_positive_polarity) 996 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 997 else 998 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 999 1000 if (dtd->vsync_positive_polarity) 1001 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 1002 else 1003 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 1004 1005 drm_dbg_kms(&i915->drm, 1006 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", 1007 DRM_MODE_ARG(panel_fixed_mode)); 1008 1009 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 1010 } 1011 1012 static void 1013 parse_lfp_backlight(struct drm_i915_private *i915, 1014 struct intel_panel *panel) 1015 { 1016 const struct bdb_lfp_backlight_data *backlight_data; 1017 const struct lfp_backlight_data_entry *entry; 1018 int panel_type = panel->vbt.panel_type; 1019 u16 level; 1020 1021 backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT); 1022 if (!backlight_data) 1023 return; 1024 1025 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 1026 drm_dbg_kms(&i915->drm, 1027 "Unsupported backlight data entry size %u\n", 1028 backlight_data->entry_size); 1029 return; 1030 } 1031 1032 entry = &backlight_data->data[panel_type]; 1033 1034 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 1035 if (!panel->vbt.backlight.present) { 1036 drm_dbg_kms(&i915->drm, 1037 "PWM backlight not present in VBT (type %u)\n", 1038 entry->type); 1039 return; 1040 } 1041 1042 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 1043 panel->vbt.backlight.controller = 0; 1044 if (i915->display.vbt.version >= 191) { 1045 size_t exp_size; 1046 1047 if (i915->display.vbt.version >= 236) 1048 exp_size = sizeof(struct bdb_lfp_backlight_data); 1049 else if (i915->display.vbt.version >= 234) 1050 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234; 1051 else 1052 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191; 1053 1054 if (get_blocksize(backlight_data) >= exp_size) { 1055 const struct lfp_backlight_control_method *method; 1056 1057 method = &backlight_data->backlight_control[panel_type]; 1058 panel->vbt.backlight.type = method->type; 1059 panel->vbt.backlight.controller = method->controller; 1060 } 1061 } 1062 1063 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 1064 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; 1065 1066 if (i915->display.vbt.version >= 234) { 1067 u16 min_level; 1068 bool scale; 1069 1070 level = backlight_data->brightness_level[panel_type].level; 1071 min_level = backlight_data->brightness_min_level[panel_type].level; 1072 1073 if (i915->display.vbt.version >= 236) 1074 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 1075 else 1076 scale = level > 255; 1077 1078 if (scale) 1079 min_level = min_level / 255; 1080 1081 if (min_level > 255) { 1082 drm_warn(&i915->drm, "Brightness min level > 255\n"); 1083 level = 255; 1084 } 1085 panel->vbt.backlight.min_brightness = min_level; 1086 1087 panel->vbt.backlight.brightness_precision_bits = 1088 backlight_data->brightness_precision_bits[panel_type]; 1089 } else { 1090 level = backlight_data->level[panel_type]; 1091 panel->vbt.backlight.min_brightness = entry->min_brightness; 1092 } 1093 1094 if (i915->display.vbt.version >= 239) 1095 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 1096 DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100); 1097 else 1098 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30; 1099 1100 drm_dbg_kms(&i915->drm, 1101 "VBT backlight PWM modulation frequency %u Hz, " 1102 "active %s, min brightness %u, level %u, controller %u\n", 1103 panel->vbt.backlight.pwm_freq_hz, 1104 panel->vbt.backlight.active_low_pwm ? "low" : "high", 1105 panel->vbt.backlight.min_brightness, 1106 level, 1107 panel->vbt.backlight.controller); 1108 } 1109 1110 /* Try to find sdvo panel data */ 1111 static void 1112 parse_sdvo_panel_data(struct drm_i915_private *i915, 1113 struct intel_panel *panel) 1114 { 1115 const struct bdb_sdvo_panel_dtds *dtds; 1116 struct drm_display_mode *panel_fixed_mode; 1117 int index; 1118 1119 index = i915->display.params.vbt_sdvo_panel_type; 1120 if (index == -2) { 1121 drm_dbg_kms(&i915->drm, 1122 "Ignore SDVO panel mode from BIOS VBT tables.\n"); 1123 return; 1124 } 1125 1126 if (index == -1) { 1127 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 1128 1129 sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS); 1130 if (!sdvo_lvds_options) 1131 return; 1132 1133 index = sdvo_lvds_options->panel_type; 1134 } 1135 1136 dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS); 1137 if (!dtds) 1138 return; 1139 1140 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 1141 if (!panel_fixed_mode) 1142 return; 1143 1144 fill_detail_timing_data(i915, panel_fixed_mode, &dtds->dtds[index]); 1145 1146 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 1147 1148 drm_dbg_kms(&i915->drm, 1149 "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n", 1150 DRM_MODE_ARG(panel_fixed_mode)); 1151 } 1152 1153 static int intel_bios_ssc_frequency(struct drm_i915_private *i915, 1154 bool alternate) 1155 { 1156 switch (DISPLAY_VER(i915)) { 1157 case 2: 1158 return alternate ? 66667 : 48000; 1159 case 3: 1160 case 4: 1161 return alternate ? 100000 : 96000; 1162 default: 1163 return alternate ? 100000 : 120000; 1164 } 1165 } 1166 1167 static void 1168 parse_general_features(struct drm_i915_private *i915) 1169 { 1170 const struct bdb_general_features *general; 1171 1172 general = bdb_find_section(i915, BDB_GENERAL_FEATURES); 1173 if (!general) 1174 return; 1175 1176 i915->display.vbt.int_tv_support = general->int_tv_support; 1177 /* int_crt_support can't be trusted on earlier platforms */ 1178 if (i915->display.vbt.version >= 155 && 1179 (HAS_DDI(i915) || IS_VALLEYVIEW(i915))) 1180 i915->display.vbt.int_crt_support = general->int_crt_support; 1181 i915->display.vbt.lvds_use_ssc = general->enable_ssc; 1182 i915->display.vbt.lvds_ssc_freq = 1183 intel_bios_ssc_frequency(i915, general->ssc_freq); 1184 i915->display.vbt.display_clock_mode = general->display_clock_mode; 1185 i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 1186 if (i915->display.vbt.version >= 181) { 1187 i915->display.vbt.orientation = general->rotate_180 ? 1188 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 1189 DRM_MODE_PANEL_ORIENTATION_NORMAL; 1190 } else { 1191 i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1192 } 1193 1194 if (i915->display.vbt.version >= 249 && general->afc_startup_config) { 1195 i915->display.vbt.override_afc_startup = true; 1196 i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7; 1197 } 1198 1199 drm_dbg_kms(&i915->drm, 1200 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 1201 i915->display.vbt.int_tv_support, 1202 i915->display.vbt.int_crt_support, 1203 i915->display.vbt.lvds_use_ssc, 1204 i915->display.vbt.lvds_ssc_freq, 1205 i915->display.vbt.display_clock_mode, 1206 i915->display.vbt.fdi_rx_polarity_inverted); 1207 } 1208 1209 static const struct child_device_config * 1210 child_device_ptr(const struct bdb_general_definitions *defs, int i) 1211 { 1212 return (const void *) &defs->devices[i * defs->child_dev_size]; 1213 } 1214 1215 static void 1216 parse_sdvo_device_mapping(struct drm_i915_private *i915) 1217 { 1218 const struct intel_bios_encoder_data *devdata; 1219 int count = 0; 1220 1221 /* 1222 * Only parse SDVO mappings on gens that could have SDVO. This isn't 1223 * accurate and doesn't have to be, as long as it's not too strict. 1224 */ 1225 if (!IS_DISPLAY_VER(i915, 3, 7)) { 1226 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n"); 1227 return; 1228 } 1229 1230 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 1231 const struct child_device_config *child = &devdata->child; 1232 struct sdvo_device_mapping *mapping; 1233 1234 if (child->slave_addr != SLAVE_ADDR1 && 1235 child->slave_addr != SLAVE_ADDR2) { 1236 /* 1237 * If the slave address is neither 0x70 nor 0x72, 1238 * it is not a SDVO device. Skip it. 1239 */ 1240 continue; 1241 } 1242 if (child->dvo_port != DEVICE_PORT_DVOB && 1243 child->dvo_port != DEVICE_PORT_DVOC) { 1244 /* skip the incorrect SDVO port */ 1245 drm_dbg_kms(&i915->drm, 1246 "Incorrect SDVO port. Skip it\n"); 1247 continue; 1248 } 1249 drm_dbg_kms(&i915->drm, 1250 "the SDVO device with slave addr %2x is found on" 1251 " %s port\n", 1252 child->slave_addr, 1253 (child->dvo_port == DEVICE_PORT_DVOB) ? 1254 "SDVOB" : "SDVOC"); 1255 mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1]; 1256 if (!mapping->initialized) { 1257 mapping->dvo_port = child->dvo_port; 1258 mapping->slave_addr = child->slave_addr; 1259 mapping->dvo_wiring = child->dvo_wiring; 1260 mapping->ddc_pin = child->ddc_pin; 1261 mapping->i2c_pin = child->i2c_pin; 1262 mapping->initialized = 1; 1263 drm_dbg_kms(&i915->drm, 1264 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 1265 mapping->dvo_port, mapping->slave_addr, 1266 mapping->dvo_wiring, mapping->ddc_pin, 1267 mapping->i2c_pin); 1268 } else { 1269 drm_dbg_kms(&i915->drm, 1270 "Maybe one SDVO port is shared by " 1271 "two SDVO device.\n"); 1272 } 1273 if (child->slave2_addr) { 1274 /* Maybe this is a SDVO device with multiple inputs */ 1275 /* And the mapping info is not added */ 1276 drm_dbg_kms(&i915->drm, 1277 "there exists the slave2_addr. Maybe this" 1278 " is a SDVO device with multiple inputs.\n"); 1279 } 1280 count++; 1281 } 1282 1283 if (!count) { 1284 /* No SDVO device info is found */ 1285 drm_dbg_kms(&i915->drm, 1286 "No SDVO device info is found in VBT\n"); 1287 } 1288 } 1289 1290 static void 1291 parse_driver_features(struct drm_i915_private *i915) 1292 { 1293 const struct bdb_driver_features *driver; 1294 1295 driver = bdb_find_section(i915, BDB_DRIVER_FEATURES); 1296 if (!driver) 1297 return; 1298 1299 if (DISPLAY_VER(i915) >= 5) { 1300 /* 1301 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 1302 * to mean "eDP". The VBT spec doesn't agree with that 1303 * interpretation, but real world VBTs seem to. 1304 */ 1305 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 1306 i915->display.vbt.int_lvds_support = 0; 1307 } else { 1308 /* 1309 * FIXME it's not clear which BDB version has the LVDS config 1310 * bits defined. Revision history in the VBT spec says: 1311 * "0.92 | Add two definitions for VBT value of LVDS Active 1312 * Config (00b and 11b values defined) | 06/13/2005" 1313 * but does not the specify the BDB version. 1314 * 1315 * So far version 134 (on i945gm) is the oldest VBT observed 1316 * in the wild with the bits correctly populated. Version 1317 * 108 (on i85x) does not have the bits correctly populated. 1318 */ 1319 if (i915->display.vbt.version >= 134 && 1320 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 1321 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 1322 i915->display.vbt.int_lvds_support = 0; 1323 } 1324 } 1325 1326 static void 1327 parse_panel_driver_features(struct drm_i915_private *i915, 1328 struct intel_panel *panel) 1329 { 1330 const struct bdb_driver_features *driver; 1331 1332 driver = bdb_find_section(i915, BDB_DRIVER_FEATURES); 1333 if (!driver) 1334 return; 1335 1336 if (i915->display.vbt.version < 228) { 1337 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n", 1338 driver->drrs_enabled); 1339 /* 1340 * If DRRS is not supported, drrs_type has to be set to 0. 1341 * This is because, VBT is configured in such a way that 1342 * static DRRS is 0 and DRRS not supported is represented by 1343 * driver->drrs_enabled=false 1344 */ 1345 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1346 /* 1347 * FIXME Should DMRRS perhaps be treated as seamless 1348 * but without the automatic downclocking? 1349 */ 1350 if (driver->dmrrs_enabled) 1351 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1352 else 1353 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1354 } 1355 1356 panel->vbt.psr.enable = driver->psr_enabled; 1357 } 1358 } 1359 1360 static void 1361 parse_power_conservation_features(struct drm_i915_private *i915, 1362 struct intel_panel *panel) 1363 { 1364 const struct bdb_lfp_power *power; 1365 u8 panel_type = panel->vbt.panel_type; 1366 1367 panel->vbt.vrr = true; /* matches Windows behaviour */ 1368 1369 if (i915->display.vbt.version < 228) 1370 return; 1371 1372 power = bdb_find_section(i915, BDB_LFP_POWER); 1373 if (!power) 1374 return; 1375 1376 panel->vbt.psr.enable = panel_bool(power->psr, panel_type); 1377 1378 /* 1379 * If DRRS is not supported, drrs_type has to be set to 0. 1380 * This is because, VBT is configured in such a way that 1381 * static DRRS is 0 and DRRS not supported is represented by 1382 * power->drrs & BIT(panel_type)=false 1383 */ 1384 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1385 /* 1386 * FIXME Should DMRRS perhaps be treated as seamless 1387 * but without the automatic downclocking? 1388 */ 1389 if (panel_bool(power->dmrrs, panel_type)) 1390 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1391 else 1392 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1393 } 1394 1395 if (i915->display.vbt.version >= 232) 1396 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); 1397 1398 if (i915->display.vbt.version >= 233) 1399 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, 1400 panel_type); 1401 } 1402 1403 static void 1404 parse_edp(struct drm_i915_private *i915, 1405 struct intel_panel *panel) 1406 { 1407 const struct bdb_edp *edp; 1408 const struct edp_power_seq *edp_pps; 1409 const struct edp_fast_link_params *edp_link_params; 1410 int panel_type = panel->vbt.panel_type; 1411 1412 edp = bdb_find_section(i915, BDB_EDP); 1413 if (!edp) 1414 return; 1415 1416 switch (panel_bits(edp->color_depth, panel_type, 2)) { 1417 case EDP_18BPP: 1418 panel->vbt.edp.bpp = 18; 1419 break; 1420 case EDP_24BPP: 1421 panel->vbt.edp.bpp = 24; 1422 break; 1423 case EDP_30BPP: 1424 panel->vbt.edp.bpp = 30; 1425 break; 1426 } 1427 1428 /* Get the eDP sequencing and link info */ 1429 edp_pps = &edp->power_seqs[panel_type]; 1430 edp_link_params = &edp->fast_link_params[panel_type]; 1431 1432 panel->vbt.edp.pps = *edp_pps; 1433 1434 if (i915->display.vbt.version >= 224) { 1435 panel->vbt.edp.rate = 1436 edp->edp_fast_link_training_rate[panel_type] * 20; 1437 } else { 1438 switch (edp_link_params->rate) { 1439 case EDP_RATE_1_62: 1440 panel->vbt.edp.rate = 162000; 1441 break; 1442 case EDP_RATE_2_7: 1443 panel->vbt.edp.rate = 270000; 1444 break; 1445 case EDP_RATE_5_4: 1446 panel->vbt.edp.rate = 540000; 1447 break; 1448 default: 1449 drm_dbg_kms(&i915->drm, 1450 "VBT has unknown eDP link rate value %u\n", 1451 edp_link_params->rate); 1452 break; 1453 } 1454 } 1455 1456 switch (edp_link_params->lanes) { 1457 case EDP_LANE_1: 1458 panel->vbt.edp.lanes = 1; 1459 break; 1460 case EDP_LANE_2: 1461 panel->vbt.edp.lanes = 2; 1462 break; 1463 case EDP_LANE_4: 1464 panel->vbt.edp.lanes = 4; 1465 break; 1466 default: 1467 drm_dbg_kms(&i915->drm, 1468 "VBT has unknown eDP lane count value %u\n", 1469 edp_link_params->lanes); 1470 break; 1471 } 1472 1473 switch (edp_link_params->preemphasis) { 1474 case EDP_PREEMPHASIS_NONE: 1475 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 1476 break; 1477 case EDP_PREEMPHASIS_3_5dB: 1478 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 1479 break; 1480 case EDP_PREEMPHASIS_6dB: 1481 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 1482 break; 1483 case EDP_PREEMPHASIS_9_5dB: 1484 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 1485 break; 1486 default: 1487 drm_dbg_kms(&i915->drm, 1488 "VBT has unknown eDP pre-emphasis value %u\n", 1489 edp_link_params->preemphasis); 1490 break; 1491 } 1492 1493 switch (edp_link_params->vswing) { 1494 case EDP_VSWING_0_4V: 1495 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 1496 break; 1497 case EDP_VSWING_0_6V: 1498 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 1499 break; 1500 case EDP_VSWING_0_8V: 1501 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 1502 break; 1503 case EDP_VSWING_1_2V: 1504 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 1505 break; 1506 default: 1507 drm_dbg_kms(&i915->drm, 1508 "VBT has unknown eDP voltage swing value %u\n", 1509 edp_link_params->vswing); 1510 break; 1511 } 1512 1513 if (i915->display.vbt.version >= 173) { 1514 u8 vswing; 1515 1516 /* Don't read from VBT if module parameter has valid value*/ 1517 if (i915->display.params.edp_vswing) { 1518 panel->vbt.edp.low_vswing = 1519 i915->display.params.edp_vswing == 1; 1520 } else { 1521 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 1522 panel->vbt.edp.low_vswing = vswing == 0; 1523 } 1524 } 1525 1526 panel->vbt.edp.drrs_msa_timing_delay = 1527 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); 1528 1529 if (i915->display.vbt.version >= 244) 1530 panel->vbt.edp.max_link_rate = 1531 edp->edp_max_port_link_rate[panel_type] * 20; 1532 } 1533 1534 static void 1535 parse_psr(struct drm_i915_private *i915, 1536 struct intel_panel *panel) 1537 { 1538 const struct bdb_psr *psr; 1539 const struct psr_table *psr_table; 1540 int panel_type = panel->vbt.panel_type; 1541 1542 psr = bdb_find_section(i915, BDB_PSR); 1543 if (!psr) { 1544 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n"); 1545 return; 1546 } 1547 1548 psr_table = &psr->psr_table[panel_type]; 1549 1550 panel->vbt.psr.full_link = psr_table->full_link; 1551 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 1552 1553 /* Allowed VBT values goes from 0 to 15 */ 1554 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 1555 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 1556 1557 /* 1558 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 1559 * Old decimal value is wake up time in multiples of 100 us. 1560 */ 1561 if (i915->display.vbt.version >= 205 && 1562 (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) { 1563 switch (psr_table->tp1_wakeup_time) { 1564 case 0: 1565 panel->vbt.psr.tp1_wakeup_time_us = 500; 1566 break; 1567 case 1: 1568 panel->vbt.psr.tp1_wakeup_time_us = 100; 1569 break; 1570 case 3: 1571 panel->vbt.psr.tp1_wakeup_time_us = 0; 1572 break; 1573 default: 1574 drm_dbg_kms(&i915->drm, 1575 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1576 psr_table->tp1_wakeup_time); 1577 fallthrough; 1578 case 2: 1579 panel->vbt.psr.tp1_wakeup_time_us = 2500; 1580 break; 1581 } 1582 1583 switch (psr_table->tp2_tp3_wakeup_time) { 1584 case 0: 1585 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; 1586 break; 1587 case 1: 1588 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; 1589 break; 1590 case 3: 1591 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; 1592 break; 1593 default: 1594 drm_dbg_kms(&i915->drm, 1595 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1596 psr_table->tp2_tp3_wakeup_time); 1597 fallthrough; 1598 case 2: 1599 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 1600 break; 1601 } 1602 } else { 1603 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 1604 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 1605 } 1606 1607 if (i915->display.vbt.version >= 226) { 1608 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 1609 1610 wakeup_time = panel_bits(wakeup_time, panel_type, 2); 1611 switch (wakeup_time) { 1612 case 0: 1613 wakeup_time = 500; 1614 break; 1615 case 1: 1616 wakeup_time = 100; 1617 break; 1618 case 3: 1619 wakeup_time = 50; 1620 break; 1621 default: 1622 case 2: 1623 wakeup_time = 2500; 1624 break; 1625 } 1626 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 1627 } else { 1628 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 1629 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; 1630 } 1631 } 1632 1633 static void parse_dsi_backlight_ports(struct drm_i915_private *i915, 1634 struct intel_panel *panel, 1635 enum port port) 1636 { 1637 enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C; 1638 1639 if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) { 1640 panel->vbt.dsi.bl_ports = BIT(port); 1641 if (panel->vbt.dsi.config->cabc_supported) 1642 panel->vbt.dsi.cabc_ports = BIT(port); 1643 1644 return; 1645 } 1646 1647 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { 1648 case DL_DCS_PORT_A: 1649 panel->vbt.dsi.bl_ports = BIT(PORT_A); 1650 break; 1651 case DL_DCS_PORT_C: 1652 panel->vbt.dsi.bl_ports = BIT(port_bc); 1653 break; 1654 default: 1655 case DL_DCS_PORT_A_AND_C: 1656 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); 1657 break; 1658 } 1659 1660 if (!panel->vbt.dsi.config->cabc_supported) 1661 return; 1662 1663 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { 1664 case DL_DCS_PORT_A: 1665 panel->vbt.dsi.cabc_ports = BIT(PORT_A); 1666 break; 1667 case DL_DCS_PORT_C: 1668 panel->vbt.dsi.cabc_ports = BIT(port_bc); 1669 break; 1670 default: 1671 case DL_DCS_PORT_A_AND_C: 1672 panel->vbt.dsi.cabc_ports = 1673 BIT(PORT_A) | BIT(port_bc); 1674 break; 1675 } 1676 } 1677 1678 static void 1679 parse_mipi_config(struct drm_i915_private *i915, 1680 struct intel_panel *panel) 1681 { 1682 const struct bdb_mipi_config *start; 1683 const struct mipi_config *config; 1684 const struct mipi_pps_data *pps; 1685 int panel_type = panel->vbt.panel_type; 1686 enum port port; 1687 1688 /* parse MIPI blocks only if LFP type is MIPI */ 1689 if (!intel_bios_is_dsi_present(i915, &port)) 1690 return; 1691 1692 /* Initialize this to undefined indicating no generic MIPI support */ 1693 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1694 1695 /* Block #40 is already parsed and panel_fixed_mode is 1696 * stored in i915->lfp_lvds_vbt_mode 1697 * resuse this when needed 1698 */ 1699 1700 /* Parse #52 for panel index used from panel_type already 1701 * parsed 1702 */ 1703 start = bdb_find_section(i915, BDB_MIPI_CONFIG); 1704 if (!start) { 1705 drm_dbg_kms(&i915->drm, "No MIPI config BDB found"); 1706 return; 1707 } 1708 1709 drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n", 1710 panel_type); 1711 1712 /* 1713 * get hold of the correct configuration block and pps data as per 1714 * the panel_type as index 1715 */ 1716 config = &start->config[panel_type]; 1717 pps = &start->pps[panel_type]; 1718 1719 /* store as of now full data. Trim when we realise all is not needed */ 1720 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1721 if (!panel->vbt.dsi.config) 1722 return; 1723 1724 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1725 if (!panel->vbt.dsi.pps) { 1726 kfree(panel->vbt.dsi.config); 1727 return; 1728 } 1729 1730 parse_dsi_backlight_ports(i915, panel, port); 1731 1732 /* FIXME is the 90 vs. 270 correct? */ 1733 switch (config->rotation) { 1734 case ENABLE_ROTATION_0: 1735 /* 1736 * Most (all?) VBTs claim 0 degrees despite having 1737 * an upside down panel, thus we do not trust this. 1738 */ 1739 panel->vbt.dsi.orientation = 1740 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1741 break; 1742 case ENABLE_ROTATION_90: 1743 panel->vbt.dsi.orientation = 1744 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1745 break; 1746 case ENABLE_ROTATION_180: 1747 panel->vbt.dsi.orientation = 1748 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1749 break; 1750 case ENABLE_ROTATION_270: 1751 panel->vbt.dsi.orientation = 1752 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1753 break; 1754 } 1755 1756 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1757 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1758 } 1759 1760 /* Find the sequence block and size for the given panel. */ 1761 static const u8 * 1762 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence, 1763 u16 panel_id, u32 *seq_size) 1764 { 1765 u32 total = get_blocksize(sequence); 1766 const u8 *data = &sequence->data[0]; 1767 u8 current_id; 1768 u32 current_size; 1769 int header_size = sequence->version >= 3 ? 5 : 3; 1770 int index = 0; 1771 int i; 1772 1773 /* skip new block size */ 1774 if (sequence->version >= 3) 1775 data += 4; 1776 1777 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1778 if (index + header_size > total) { 1779 DRM_ERROR("Invalid sequence block (header)\n"); 1780 return NULL; 1781 } 1782 1783 current_id = *(data + index); 1784 if (sequence->version >= 3) 1785 current_size = *((const u32 *)(data + index + 1)); 1786 else 1787 current_size = *((const u16 *)(data + index + 1)); 1788 1789 index += header_size; 1790 1791 if (index + current_size > total) { 1792 DRM_ERROR("Invalid sequence block\n"); 1793 return NULL; 1794 } 1795 1796 if (current_id == panel_id) { 1797 *seq_size = current_size; 1798 return data + index; 1799 } 1800 1801 index += current_size; 1802 } 1803 1804 DRM_ERROR("Sequence block detected but no valid configuration\n"); 1805 1806 return NULL; 1807 } 1808 1809 static int goto_next_sequence(const u8 *data, int index, int total) 1810 { 1811 u16 len; 1812 1813 /* Skip Sequence Byte. */ 1814 for (index = index + 1; index < total; index += len) { 1815 u8 operation_byte = *(data + index); 1816 index++; 1817 1818 switch (operation_byte) { 1819 case MIPI_SEQ_ELEM_END: 1820 return index; 1821 case MIPI_SEQ_ELEM_SEND_PKT: 1822 if (index + 4 > total) 1823 return 0; 1824 1825 len = *((const u16 *)(data + index + 2)) + 4; 1826 break; 1827 case MIPI_SEQ_ELEM_DELAY: 1828 len = 4; 1829 break; 1830 case MIPI_SEQ_ELEM_GPIO: 1831 len = 2; 1832 break; 1833 case MIPI_SEQ_ELEM_I2C: 1834 if (index + 7 > total) 1835 return 0; 1836 len = *(data + index + 6) + 7; 1837 break; 1838 default: 1839 DRM_ERROR("Unknown operation byte\n"); 1840 return 0; 1841 } 1842 } 1843 1844 return 0; 1845 } 1846 1847 static int goto_next_sequence_v3(const u8 *data, int index, int total) 1848 { 1849 int seq_end; 1850 u16 len; 1851 u32 size_of_sequence; 1852 1853 /* 1854 * Could skip sequence based on Size of Sequence alone, but also do some 1855 * checking on the structure. 1856 */ 1857 if (total < 5) { 1858 DRM_ERROR("Too small sequence size\n"); 1859 return 0; 1860 } 1861 1862 /* Skip Sequence Byte. */ 1863 index++; 1864 1865 /* 1866 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1867 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1868 * byte. 1869 */ 1870 size_of_sequence = *((const u32 *)(data + index)); 1871 index += 4; 1872 1873 seq_end = index + size_of_sequence; 1874 if (seq_end > total) { 1875 DRM_ERROR("Invalid sequence size\n"); 1876 return 0; 1877 } 1878 1879 for (; index < total; index += len) { 1880 u8 operation_byte = *(data + index); 1881 index++; 1882 1883 if (operation_byte == MIPI_SEQ_ELEM_END) { 1884 if (index != seq_end) { 1885 DRM_ERROR("Invalid element structure\n"); 1886 return 0; 1887 } 1888 return index; 1889 } 1890 1891 len = *(data + index); 1892 index++; 1893 1894 /* 1895 * FIXME: Would be nice to check elements like for v1/v2 in 1896 * goto_next_sequence() above. 1897 */ 1898 switch (operation_byte) { 1899 case MIPI_SEQ_ELEM_SEND_PKT: 1900 case MIPI_SEQ_ELEM_DELAY: 1901 case MIPI_SEQ_ELEM_GPIO: 1902 case MIPI_SEQ_ELEM_I2C: 1903 case MIPI_SEQ_ELEM_SPI: 1904 case MIPI_SEQ_ELEM_PMIC: 1905 break; 1906 default: 1907 DRM_ERROR("Unknown operation byte %u\n", 1908 operation_byte); 1909 break; 1910 } 1911 } 1912 1913 return 0; 1914 } 1915 1916 /* 1917 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1918 * skip all delay + gpio operands and stop at the first DSI packet op. 1919 */ 1920 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915, 1921 struct intel_panel *panel) 1922 { 1923 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1924 int index, len; 1925 1926 if (drm_WARN_ON(&i915->drm, 1927 !data || panel->vbt.dsi.seq_version != 1)) 1928 return 0; 1929 1930 /* index = 1 to skip sequence byte */ 1931 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1932 switch (data[index]) { 1933 case MIPI_SEQ_ELEM_SEND_PKT: 1934 return index == 1 ? 0 : index; 1935 case MIPI_SEQ_ELEM_DELAY: 1936 len = 5; /* 1 byte for operand + uint32 */ 1937 break; 1938 case MIPI_SEQ_ELEM_GPIO: 1939 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1940 break; 1941 default: 1942 return 0; 1943 } 1944 } 1945 1946 return 0; 1947 } 1948 1949 /* 1950 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence. 1951 * The deassert must be done before calling intel_dsi_device_ready, so for 1952 * these devices we split the init OTP sequence into a deassert sequence and 1953 * the actual init OTP part. 1954 */ 1955 static void fixup_mipi_sequences(struct drm_i915_private *i915, 1956 struct intel_panel *panel) 1957 { 1958 u8 *init_otp; 1959 int len; 1960 1961 /* Limit this to VLV for now. */ 1962 if (!IS_VALLEYVIEW(i915)) 1963 return; 1964 1965 /* Limit this to v1 vid-mode sequences */ 1966 if (panel->vbt.dsi.config->is_cmd_mode || 1967 panel->vbt.dsi.seq_version != 1) 1968 return; 1969 1970 /* Only do this if there are otp and assert seqs and no deassert seq */ 1971 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1972 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1973 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1974 return; 1975 1976 /* The deassert-sequence ends at the first DSI packet */ 1977 len = get_init_otp_deassert_fragment_len(i915, panel); 1978 if (!len) 1979 return; 1980 1981 drm_dbg_kms(&i915->drm, 1982 "Using init OTP fragment to deassert reset\n"); 1983 1984 /* Copy the fragment, update seq byte and terminate it */ 1985 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1986 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1987 if (!panel->vbt.dsi.deassert_seq) 1988 return; 1989 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 1990 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 1991 /* Use the copy for deassert */ 1992 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 1993 panel->vbt.dsi.deassert_seq; 1994 /* Replace the last byte of the fragment with init OTP seq byte */ 1995 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 1996 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 1997 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 1998 } 1999 2000 static void 2001 parse_mipi_sequence(struct drm_i915_private *i915, 2002 struct intel_panel *panel) 2003 { 2004 int panel_type = panel->vbt.panel_type; 2005 const struct bdb_mipi_sequence *sequence; 2006 const u8 *seq_data; 2007 u32 seq_size; 2008 u8 *data; 2009 int index = 0; 2010 2011 /* Only our generic panel driver uses the sequence block. */ 2012 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 2013 return; 2014 2015 sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE); 2016 if (!sequence) { 2017 drm_dbg_kms(&i915->drm, 2018 "No MIPI Sequence found, parsing complete\n"); 2019 return; 2020 } 2021 2022 /* Fail gracefully for forward incompatible sequence block. */ 2023 if (sequence->version >= 4) { 2024 drm_err(&i915->drm, 2025 "Unable to parse MIPI Sequence Block v%u\n", 2026 sequence->version); 2027 return; 2028 } 2029 2030 drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n", 2031 sequence->version); 2032 2033 seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size); 2034 if (!seq_data) 2035 return; 2036 2037 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 2038 if (!data) 2039 return; 2040 2041 /* Parse the sequences, store pointers to each sequence. */ 2042 for (;;) { 2043 u8 seq_id = *(data + index); 2044 if (seq_id == MIPI_SEQ_END) 2045 break; 2046 2047 if (seq_id >= MIPI_SEQ_MAX) { 2048 drm_err(&i915->drm, "Unknown sequence %u\n", 2049 seq_id); 2050 goto err; 2051 } 2052 2053 /* Log about presence of sequences we won't run. */ 2054 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 2055 drm_dbg_kms(&i915->drm, 2056 "Unsupported sequence %u\n", seq_id); 2057 2058 panel->vbt.dsi.sequence[seq_id] = data + index; 2059 2060 if (sequence->version >= 3) 2061 index = goto_next_sequence_v3(data, index, seq_size); 2062 else 2063 index = goto_next_sequence(data, index, seq_size); 2064 if (!index) { 2065 drm_err(&i915->drm, "Invalid sequence %u\n", 2066 seq_id); 2067 goto err; 2068 } 2069 } 2070 2071 panel->vbt.dsi.data = data; 2072 panel->vbt.dsi.size = seq_size; 2073 panel->vbt.dsi.seq_version = sequence->version; 2074 2075 fixup_mipi_sequences(i915, panel); 2076 2077 drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n"); 2078 return; 2079 2080 err: 2081 kfree(data); 2082 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); 2083 } 2084 2085 static void 2086 parse_compression_parameters(struct drm_i915_private *i915) 2087 { 2088 const struct bdb_compression_parameters *params; 2089 struct intel_bios_encoder_data *devdata; 2090 u16 block_size; 2091 int index; 2092 2093 if (i915->display.vbt.version < 198) 2094 return; 2095 2096 params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS); 2097 if (params) { 2098 /* Sanity checks */ 2099 if (params->entry_size != sizeof(params->data[0])) { 2100 drm_dbg_kms(&i915->drm, 2101 "VBT: unsupported compression param entry size\n"); 2102 return; 2103 } 2104 2105 block_size = get_blocksize(params); 2106 if (block_size < sizeof(*params)) { 2107 drm_dbg_kms(&i915->drm, 2108 "VBT: expected 16 compression param entries\n"); 2109 return; 2110 } 2111 } 2112 2113 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 2114 const struct child_device_config *child = &devdata->child; 2115 2116 if (!child->compression_enable) 2117 continue; 2118 2119 if (!params) { 2120 drm_dbg_kms(&i915->drm, 2121 "VBT: compression params not available\n"); 2122 continue; 2123 } 2124 2125 if (child->compression_method_cps) { 2126 drm_dbg_kms(&i915->drm, 2127 "VBT: CPS compression not supported\n"); 2128 continue; 2129 } 2130 2131 index = child->compression_structure_index; 2132 2133 devdata->dsc = kmemdup(¶ms->data[index], 2134 sizeof(*devdata->dsc), GFP_KERNEL); 2135 } 2136 } 2137 2138 static u8 translate_iboost(u8 val) 2139 { 2140 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 2141 2142 if (val >= ARRAY_SIZE(mapping)) { 2143 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 2144 return 0; 2145 } 2146 return mapping[val]; 2147 } 2148 2149 static const u8 cnp_ddc_pin_map[] = { 2150 [0] = 0, /* N/A */ 2151 [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B, 2152 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C, 2153 [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */ 2154 [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */ 2155 }; 2156 2157 static const u8 icp_ddc_pin_map[] = { 2158 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2159 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2160 [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C, 2161 [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1, 2162 [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2, 2163 [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3, 2164 [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4, 2165 [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5, 2166 [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6, 2167 }; 2168 2169 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 2170 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2171 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2172 [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D, 2173 [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E, 2174 }; 2175 2176 static const u8 adls_ddc_pin_map[] = { 2177 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2178 [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1, 2179 [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2, 2180 [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3, 2181 [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4, 2182 }; 2183 2184 static const u8 gen9bc_tgp_ddc_pin_map[] = { 2185 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B, 2186 [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C, 2187 [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D, 2188 }; 2189 2190 static const u8 adlp_ddc_pin_map[] = { 2191 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2192 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2193 [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1, 2194 [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2, 2195 [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3, 2196 [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4, 2197 }; 2198 2199 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin) 2200 { 2201 const u8 *ddc_pin_map; 2202 int i, n_entries; 2203 2204 if (IS_DGFX(i915)) 2205 return vbt_pin; 2206 2207 if (INTEL_PCH_TYPE(i915) >= PCH_LNL || HAS_PCH_MTP(i915) || 2208 IS_ALDERLAKE_P(i915)) { 2209 ddc_pin_map = adlp_ddc_pin_map; 2210 n_entries = ARRAY_SIZE(adlp_ddc_pin_map); 2211 } else if (IS_ALDERLAKE_S(i915)) { 2212 ddc_pin_map = adls_ddc_pin_map; 2213 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 2214 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) { 2215 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 2216 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 2217 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) { 2218 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 2219 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 2220 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) { 2221 ddc_pin_map = icp_ddc_pin_map; 2222 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 2223 } else if (HAS_PCH_CNP(i915)) { 2224 ddc_pin_map = cnp_ddc_pin_map; 2225 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 2226 } else { 2227 /* Assuming direct map */ 2228 return vbt_pin; 2229 } 2230 2231 for (i = 0; i < n_entries; i++) { 2232 if (ddc_pin_map[i] == vbt_pin) 2233 return i; 2234 } 2235 2236 drm_dbg_kms(&i915->drm, 2237 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 2238 vbt_pin); 2239 return 0; 2240 } 2241 2242 static u8 dvo_port_type(u8 dvo_port) 2243 { 2244 switch (dvo_port) { 2245 case DVO_PORT_HDMIA: 2246 case DVO_PORT_HDMIB: 2247 case DVO_PORT_HDMIC: 2248 case DVO_PORT_HDMID: 2249 case DVO_PORT_HDMIE: 2250 case DVO_PORT_HDMIF: 2251 case DVO_PORT_HDMIG: 2252 case DVO_PORT_HDMIH: 2253 case DVO_PORT_HDMII: 2254 return DVO_PORT_HDMIA; 2255 case DVO_PORT_DPA: 2256 case DVO_PORT_DPB: 2257 case DVO_PORT_DPC: 2258 case DVO_PORT_DPD: 2259 case DVO_PORT_DPE: 2260 case DVO_PORT_DPF: 2261 case DVO_PORT_DPG: 2262 case DVO_PORT_DPH: 2263 case DVO_PORT_DPI: 2264 return DVO_PORT_DPA; 2265 case DVO_PORT_MIPIA: 2266 case DVO_PORT_MIPIB: 2267 case DVO_PORT_MIPIC: 2268 case DVO_PORT_MIPID: 2269 return DVO_PORT_MIPIA; 2270 default: 2271 return dvo_port; 2272 } 2273 } 2274 2275 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 2276 const int port_mapping[][3], u8 dvo_port) 2277 { 2278 enum port port; 2279 int i; 2280 2281 for (port = PORT_A; port < n_ports; port++) { 2282 for (i = 0; i < n_dvo; i++) { 2283 if (port_mapping[port][i] == -1) 2284 break; 2285 2286 if (dvo_port == port_mapping[port][i]) 2287 return port; 2288 } 2289 } 2290 2291 return PORT_NONE; 2292 } 2293 2294 static enum port dvo_port_to_port(struct drm_i915_private *i915, 2295 u8 dvo_port) 2296 { 2297 /* 2298 * Each DDI port can have more than one value on the "DVO Port" field, 2299 * so look for all the possible values for each port. 2300 */ 2301 static const int port_mapping[][3] = { 2302 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2303 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2304 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2305 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2306 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 2307 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2308 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2309 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2310 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2311 }; 2312 /* 2313 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 2314 * map to DDI A,B,TC1,TC2 respectively. 2315 */ 2316 static const int rkl_port_mapping[][3] = { 2317 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2318 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2319 [PORT_C] = { -1 }, 2320 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2321 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2322 }; 2323 /* 2324 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 2325 * PORT_F and PORT_G, we need to map that to correct VBT sections. 2326 */ 2327 static const int adls_port_mapping[][3] = { 2328 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2329 [PORT_B] = { -1 }, 2330 [PORT_C] = { -1 }, 2331 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2332 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2333 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2334 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2335 }; 2336 static const int xelpd_port_mapping[][3] = { 2337 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2338 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2339 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2340 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2341 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2342 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2343 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2344 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2345 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2346 }; 2347 2348 if (DISPLAY_VER(i915) >= 13) 2349 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 2350 ARRAY_SIZE(xelpd_port_mapping[0]), 2351 xelpd_port_mapping, 2352 dvo_port); 2353 else if (IS_ALDERLAKE_S(i915)) 2354 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 2355 ARRAY_SIZE(adls_port_mapping[0]), 2356 adls_port_mapping, 2357 dvo_port); 2358 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 2359 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 2360 ARRAY_SIZE(rkl_port_mapping[0]), 2361 rkl_port_mapping, 2362 dvo_port); 2363 else 2364 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 2365 ARRAY_SIZE(port_mapping[0]), 2366 port_mapping, 2367 dvo_port); 2368 } 2369 2370 static enum port 2371 dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port) 2372 { 2373 switch (dvo_port) { 2374 case DVO_PORT_MIPIA: 2375 return PORT_A; 2376 case DVO_PORT_MIPIC: 2377 if (DISPLAY_VER(i915) >= 11) 2378 return PORT_B; 2379 else 2380 return PORT_C; 2381 default: 2382 return PORT_NONE; 2383 } 2384 } 2385 2386 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata) 2387 { 2388 struct drm_i915_private *i915 = devdata->i915; 2389 const struct child_device_config *child = &devdata->child; 2390 enum port port; 2391 2392 port = dvo_port_to_port(i915, child->dvo_port); 2393 if (port == PORT_NONE && DISPLAY_VER(i915) >= 11) 2394 port = dsi_dvo_port_to_port(i915, child->dvo_port); 2395 2396 return port; 2397 } 2398 2399 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 2400 { 2401 switch (vbt_max_link_rate) { 2402 default: 2403 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 2404 return 0; 2405 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 2406 return 2000000; 2407 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 2408 return 1350000; 2409 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 2410 return 1000000; 2411 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 2412 return 810000; 2413 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 2414 return 540000; 2415 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 2416 return 270000; 2417 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 2418 return 162000; 2419 } 2420 } 2421 2422 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 2423 { 2424 switch (vbt_max_link_rate) { 2425 default: 2426 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 2427 return 810000; 2428 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 2429 return 540000; 2430 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 2431 return 270000; 2432 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 2433 return 162000; 2434 } 2435 } 2436 2437 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) 2438 { 2439 if (!devdata || devdata->i915->display.vbt.version < 216) 2440 return 0; 2441 2442 if (devdata->i915->display.vbt.version >= 230) 2443 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); 2444 else 2445 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); 2446 } 2447 2448 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata) 2449 { 2450 if (!devdata || devdata->i915->display.vbt.version < 244) 2451 return 0; 2452 2453 return devdata->child.dp_max_lane_count + 1; 2454 } 2455 2456 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 2457 enum port port) 2458 { 2459 struct drm_i915_private *i915 = devdata->i915; 2460 bool is_hdmi; 2461 2462 if (port != PORT_A || DISPLAY_VER(i915) >= 12) 2463 return; 2464 2465 if (!intel_bios_encoder_supports_dvi(devdata)) 2466 return; 2467 2468 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2469 2470 drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n", 2471 is_hdmi ? "/HDMI" : ""); 2472 2473 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2474 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2475 } 2476 2477 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata, 2478 enum port port) 2479 { 2480 struct drm_i915_private *i915 = devdata->i915; 2481 2482 if (!intel_bios_encoder_supports_dvi(devdata)) 2483 return; 2484 2485 /* 2486 * Some BDW machines (eg. HP Pavilion 15-ab) shipped 2487 * with a HSW VBT where the level shifter value goes 2488 * up to 11, whereas the BDW max is 9. 2489 */ 2490 if (IS_BROADWELL(i915) && devdata->child.hdmi_level_shifter_value > 9) { 2491 drm_dbg_kms(&i915->drm, "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n", 2492 port_name(port), devdata->child.hdmi_level_shifter_value, 9); 2493 2494 devdata->child.hdmi_level_shifter_value = 9; 2495 } 2496 } 2497 2498 static bool 2499 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 2500 { 2501 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 2502 } 2503 2504 bool 2505 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 2506 { 2507 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 2508 } 2509 2510 bool 2511 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 2512 { 2513 return intel_bios_encoder_supports_dvi(devdata) && 2514 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 2515 } 2516 2517 bool 2518 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 2519 { 2520 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2521 } 2522 2523 bool 2524 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 2525 { 2526 return intel_bios_encoder_supports_dp(devdata) && 2527 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 2528 } 2529 2530 bool 2531 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata) 2532 { 2533 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT; 2534 } 2535 2536 bool 2537 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata) 2538 { 2539 return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon; 2540 } 2541 2542 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ 2543 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) 2544 { 2545 if (!devdata || devdata->i915->display.vbt.version < 158 || 2546 DISPLAY_VER(devdata->i915) >= 14) 2547 return -1; 2548 2549 return devdata->child.hdmi_level_shifter_value; 2550 } 2551 2552 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata) 2553 { 2554 if (!devdata || devdata->i915->display.vbt.version < 204) 2555 return 0; 2556 2557 switch (devdata->child.hdmi_max_data_rate) { 2558 default: 2559 MISSING_CASE(devdata->child.hdmi_max_data_rate); 2560 fallthrough; 2561 case HDMI_MAX_DATA_RATE_PLATFORM: 2562 return 0; 2563 case HDMI_MAX_DATA_RATE_594: 2564 return 594000; 2565 case HDMI_MAX_DATA_RATE_340: 2566 return 340000; 2567 case HDMI_MAX_DATA_RATE_300: 2568 return 300000; 2569 case HDMI_MAX_DATA_RATE_297: 2570 return 297000; 2571 case HDMI_MAX_DATA_RATE_165: 2572 return 165000; 2573 } 2574 } 2575 2576 static bool is_port_valid(struct drm_i915_private *i915, enum port port) 2577 { 2578 /* 2579 * On some ICL SKUs port F is not present, but broken VBTs mark 2580 * the port as present. Only try to initialize port F for the 2581 * SKUs that may actually have it. 2582 */ 2583 if (port == PORT_F && IS_ICELAKE(i915)) 2584 return IS_ICL_WITH_PORT_F(i915); 2585 2586 return true; 2587 } 2588 2589 static void print_ddi_port(const struct intel_bios_encoder_data *devdata) 2590 { 2591 struct drm_i915_private *i915 = devdata->i915; 2592 const struct child_device_config *child = &devdata->child; 2593 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt; 2594 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; 2595 enum port port; 2596 2597 port = intel_bios_encoder_port(devdata); 2598 if (port == PORT_NONE) 2599 return; 2600 2601 is_dvi = intel_bios_encoder_supports_dvi(devdata); 2602 is_dp = intel_bios_encoder_supports_dp(devdata); 2603 is_crt = intel_bios_encoder_supports_crt(devdata); 2604 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2605 is_edp = intel_bios_encoder_supports_edp(devdata); 2606 is_dsi = intel_bios_encoder_supports_dsi(devdata); 2607 2608 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 2609 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 2610 2611 drm_dbg_kms(&i915->drm, 2612 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 2613 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi, 2614 intel_bios_encoder_supports_dp_dual_mode(devdata), 2615 intel_bios_encoder_is_lspcon(devdata), 2616 supports_typec_usb, supports_tbt, 2617 devdata->dsc != NULL); 2618 2619 hdmi_level_shift = intel_bios_hdmi_level_shift(devdata); 2620 if (hdmi_level_shift >= 0) { 2621 drm_dbg_kms(&i915->drm, 2622 "Port %c VBT HDMI level shift: %d\n", 2623 port_name(port), hdmi_level_shift); 2624 } 2625 2626 max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata); 2627 if (max_tmds_clock) 2628 drm_dbg_kms(&i915->drm, 2629 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 2630 port_name(port), max_tmds_clock); 2631 2632 /* I_boost config for SKL and above */ 2633 dp_boost_level = intel_bios_dp_boost_level(devdata); 2634 if (dp_boost_level) 2635 drm_dbg_kms(&i915->drm, 2636 "Port %c VBT (e)DP boost level: %d\n", 2637 port_name(port), dp_boost_level); 2638 2639 hdmi_boost_level = intel_bios_hdmi_boost_level(devdata); 2640 if (hdmi_boost_level) 2641 drm_dbg_kms(&i915->drm, 2642 "Port %c VBT HDMI boost level: %d\n", 2643 port_name(port), hdmi_boost_level); 2644 2645 dp_max_link_rate = intel_bios_dp_max_link_rate(devdata); 2646 if (dp_max_link_rate) 2647 drm_dbg_kms(&i915->drm, 2648 "Port %c VBT DP max link rate: %d\n", 2649 port_name(port), dp_max_link_rate); 2650 2651 /* 2652 * FIXME need to implement support for VBT 2653 * vswing/preemph tables should this ever trigger. 2654 */ 2655 drm_WARN(&i915->drm, child->use_vbt_vswing, 2656 "Port %c asks to use VBT vswing/preemph tables\n", 2657 port_name(port)); 2658 } 2659 2660 static void parse_ddi_port(struct intel_bios_encoder_data *devdata) 2661 { 2662 struct drm_i915_private *i915 = devdata->i915; 2663 enum port port; 2664 2665 port = intel_bios_encoder_port(devdata); 2666 if (port == PORT_NONE) 2667 return; 2668 2669 if (!is_port_valid(i915, port)) { 2670 drm_dbg_kms(&i915->drm, 2671 "VBT reports port %c as supported, but that can't be true: skipping\n", 2672 port_name(port)); 2673 return; 2674 } 2675 2676 sanitize_device_type(devdata, port); 2677 sanitize_hdmi_level_shift(devdata, port); 2678 } 2679 2680 static bool has_ddi_port_info(struct drm_i915_private *i915) 2681 { 2682 return DISPLAY_VER(i915) >= 5 || IS_G4X(i915); 2683 } 2684 2685 static void parse_ddi_ports(struct drm_i915_private *i915) 2686 { 2687 struct intel_bios_encoder_data *devdata; 2688 2689 if (!has_ddi_port_info(i915)) 2690 return; 2691 2692 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 2693 parse_ddi_port(devdata); 2694 2695 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 2696 print_ddi_port(devdata); 2697 } 2698 2699 static void 2700 parse_general_definitions(struct drm_i915_private *i915) 2701 { 2702 const struct bdb_general_definitions *defs; 2703 struct intel_bios_encoder_data *devdata; 2704 const struct child_device_config *child; 2705 int i, child_device_num; 2706 u8 expected_size; 2707 u16 block_size; 2708 int bus_pin; 2709 2710 defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS); 2711 if (!defs) { 2712 drm_dbg_kms(&i915->drm, 2713 "No general definition block is found, no devices defined.\n"); 2714 return; 2715 } 2716 2717 block_size = get_blocksize(defs); 2718 if (block_size < sizeof(*defs)) { 2719 drm_dbg_kms(&i915->drm, 2720 "General definitions block too small (%u)\n", 2721 block_size); 2722 return; 2723 } 2724 2725 bus_pin = defs->crt_ddc_gmbus_pin; 2726 drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2727 if (intel_gmbus_is_valid_pin(i915, bus_pin)) 2728 i915->display.vbt.crt_ddc_pin = bus_pin; 2729 2730 if (i915->display.vbt.version < 106) { 2731 expected_size = 22; 2732 } else if (i915->display.vbt.version < 111) { 2733 expected_size = 27; 2734 } else if (i915->display.vbt.version < 195) { 2735 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2736 } else if (i915->display.vbt.version == 195) { 2737 expected_size = 37; 2738 } else if (i915->display.vbt.version <= 215) { 2739 expected_size = 38; 2740 } else if (i915->display.vbt.version <= 250) { 2741 expected_size = 39; 2742 } else { 2743 expected_size = sizeof(*child); 2744 BUILD_BUG_ON(sizeof(*child) < 39); 2745 drm_dbg(&i915->drm, 2746 "Expected child device config size for VBT version %u not known; assuming %u\n", 2747 i915->display.vbt.version, expected_size); 2748 } 2749 2750 /* Flag an error for unexpected size, but continue anyway. */ 2751 if (defs->child_dev_size != expected_size) 2752 drm_err(&i915->drm, 2753 "Unexpected child device config size %u (expected %u for VBT version %u)\n", 2754 defs->child_dev_size, expected_size, i915->display.vbt.version); 2755 2756 /* The legacy sized child device config is the minimum we need. */ 2757 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2758 drm_dbg_kms(&i915->drm, 2759 "Child device config size %u is too small.\n", 2760 defs->child_dev_size); 2761 return; 2762 } 2763 2764 /* get the number of child device */ 2765 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2766 2767 for (i = 0; i < child_device_num; i++) { 2768 child = child_device_ptr(defs, i); 2769 if (!child->device_type) 2770 continue; 2771 2772 drm_dbg_kms(&i915->drm, 2773 "Found VBT child device with type 0x%x\n", 2774 child->device_type); 2775 2776 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2777 if (!devdata) 2778 break; 2779 2780 devdata->i915 = i915; 2781 2782 /* 2783 * Copy as much as we know (sizeof) and is available 2784 * (child_dev_size) of the child device config. Accessing the 2785 * data must depend on VBT version. 2786 */ 2787 memcpy(&devdata->child, child, 2788 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2789 2790 list_add_tail(&devdata->node, &i915->display.vbt.display_devices); 2791 } 2792 2793 if (list_empty(&i915->display.vbt.display_devices)) 2794 drm_dbg_kms(&i915->drm, 2795 "no child dev is parsed from VBT\n"); 2796 } 2797 2798 /* Common defaults which may be overridden by VBT. */ 2799 static void 2800 init_vbt_defaults(struct drm_i915_private *i915) 2801 { 2802 i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2803 2804 /* general features */ 2805 i915->display.vbt.int_tv_support = 1; 2806 i915->display.vbt.int_crt_support = 1; 2807 2808 /* driver features */ 2809 i915->display.vbt.int_lvds_support = 1; 2810 2811 /* Default to using SSC */ 2812 i915->display.vbt.lvds_use_ssc = 1; 2813 /* 2814 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2815 * clock for LVDS. 2816 */ 2817 i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915, 2818 !HAS_PCH_SPLIT(i915)); 2819 drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n", 2820 i915->display.vbt.lvds_ssc_freq); 2821 } 2822 2823 /* Common defaults which may be overridden by VBT. */ 2824 static void 2825 init_vbt_panel_defaults(struct intel_panel *panel) 2826 { 2827 /* Default to having backlight */ 2828 panel->vbt.backlight.present = true; 2829 2830 /* LFP panel data */ 2831 panel->vbt.lvds_dither = true; 2832 } 2833 2834 /* Defaults to initialize only if there is no VBT. */ 2835 static void 2836 init_vbt_missing_defaults(struct drm_i915_private *i915) 2837 { 2838 enum port port; 2839 int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) | 2840 BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F); 2841 2842 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915)) 2843 return; 2844 2845 for_each_port_masked(port, ports) { 2846 struct intel_bios_encoder_data *devdata; 2847 struct child_device_config *child; 2848 enum phy phy = intel_port_to_phy(i915, port); 2849 2850 /* 2851 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2852 * to detect it. 2853 */ 2854 if (intel_phy_is_tc(i915, phy)) 2855 continue; 2856 2857 /* Create fake child device config */ 2858 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2859 if (!devdata) 2860 break; 2861 2862 devdata->i915 = i915; 2863 child = &devdata->child; 2864 2865 if (port == PORT_F) 2866 child->dvo_port = DVO_PORT_HDMIF; 2867 else if (port == PORT_E) 2868 child->dvo_port = DVO_PORT_HDMIE; 2869 else 2870 child->dvo_port = DVO_PORT_HDMIA + port; 2871 2872 if (port != PORT_A && port != PORT_E) 2873 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2874 2875 if (port != PORT_E) 2876 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2877 2878 if (port == PORT_A) 2879 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2880 2881 list_add_tail(&devdata->node, &i915->display.vbt.display_devices); 2882 2883 drm_dbg_kms(&i915->drm, 2884 "Generating default VBT child device with type 0x04%x on port %c\n", 2885 child->device_type, port_name(port)); 2886 } 2887 2888 /* Bypass some minimum baseline VBT version checks */ 2889 i915->display.vbt.version = 155; 2890 } 2891 2892 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2893 { 2894 const void *_vbt = vbt; 2895 2896 return _vbt + vbt->bdb_offset; 2897 } 2898 2899 /** 2900 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2901 * @buf: pointer to a buffer to validate 2902 * @size: size of the buffer 2903 * 2904 * Returns true on valid VBT. 2905 */ 2906 bool intel_bios_is_valid_vbt(const void *buf, size_t size) 2907 { 2908 const struct vbt_header *vbt = buf; 2909 const struct bdb_header *bdb; 2910 2911 if (!vbt) 2912 return false; 2913 2914 if (sizeof(struct vbt_header) > size) { 2915 DRM_DEBUG_DRIVER("VBT header incomplete\n"); 2916 return false; 2917 } 2918 2919 if (memcmp(vbt->signature, "$VBT", 4)) { 2920 DRM_DEBUG_DRIVER("VBT invalid signature\n"); 2921 return false; 2922 } 2923 2924 if (vbt->vbt_size > size) { 2925 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n"); 2926 return false; 2927 } 2928 2929 size = vbt->vbt_size; 2930 2931 if (range_overflows_t(size_t, 2932 vbt->bdb_offset, 2933 sizeof(struct bdb_header), 2934 size)) { 2935 DRM_DEBUG_DRIVER("BDB header incomplete\n"); 2936 return false; 2937 } 2938 2939 bdb = get_bdb_header(vbt); 2940 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 2941 DRM_DEBUG_DRIVER("BDB incomplete\n"); 2942 return false; 2943 } 2944 2945 return vbt; 2946 } 2947 2948 static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset) 2949 { 2950 intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset); 2951 2952 return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER); 2953 } 2954 2955 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915) 2956 { 2957 u32 count, data, found, store = 0; 2958 u32 static_region, oprom_offset; 2959 u32 oprom_size = 0x200000; 2960 u16 vbt_size; 2961 u32 *vbt; 2962 2963 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS); 2964 static_region &= OPTIONROM_SPI_REGIONID_MASK; 2965 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region); 2966 2967 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET); 2968 oprom_offset &= OROM_OFFSET_MASK; 2969 2970 for (count = 0; count < oprom_size; count += 4) { 2971 data = intel_spi_read(&i915->uncore, oprom_offset + count); 2972 if (data == *((const u32 *)"$VBT")) { 2973 found = oprom_offset + count; 2974 break; 2975 } 2976 } 2977 2978 if (count >= oprom_size) 2979 goto err_not_found; 2980 2981 /* Get VBT size and allocate space for the VBT */ 2982 vbt_size = intel_spi_read(&i915->uncore, 2983 found + offsetof(struct vbt_header, vbt_size)); 2984 vbt_size &= 0xffff; 2985 2986 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); 2987 if (!vbt) 2988 goto err_not_found; 2989 2990 for (count = 0; count < vbt_size; count += 4) 2991 *(vbt + store++) = intel_spi_read(&i915->uncore, found + count); 2992 2993 if (!intel_bios_is_valid_vbt(vbt, vbt_size)) 2994 goto err_free_vbt; 2995 2996 drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n"); 2997 2998 return (struct vbt_header *)vbt; 2999 3000 err_free_vbt: 3001 kfree(vbt); 3002 err_not_found: 3003 return NULL; 3004 } 3005 3006 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915) 3007 { 3008 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 3009 void __iomem *p = NULL, *oprom; 3010 struct vbt_header *vbt; 3011 u16 vbt_size; 3012 size_t i, size; 3013 3014 oprom = pci_map_rom(pdev, &size); 3015 if (!oprom) 3016 return NULL; 3017 3018 /* Scour memory looking for the VBT signature. */ 3019 for (i = 0; i + 4 < size; i += 4) { 3020 if (ioread32(oprom + i) != *((const u32 *)"$VBT")) 3021 continue; 3022 3023 p = oprom + i; 3024 size -= i; 3025 break; 3026 } 3027 3028 if (!p) 3029 goto err_unmap_oprom; 3030 3031 if (sizeof(struct vbt_header) > size) { 3032 drm_dbg(&i915->drm, "VBT header incomplete\n"); 3033 goto err_unmap_oprom; 3034 } 3035 3036 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size)); 3037 if (vbt_size > size) { 3038 drm_dbg(&i915->drm, 3039 "VBT incomplete (vbt_size overflows)\n"); 3040 goto err_unmap_oprom; 3041 } 3042 3043 /* The rest will be validated by intel_bios_is_valid_vbt() */ 3044 vbt = kmalloc(vbt_size, GFP_KERNEL); 3045 if (!vbt) 3046 goto err_unmap_oprom; 3047 3048 memcpy_fromio(vbt, p, vbt_size); 3049 3050 if (!intel_bios_is_valid_vbt(vbt, vbt_size)) 3051 goto err_free_vbt; 3052 3053 pci_unmap_rom(pdev, oprom); 3054 3055 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n"); 3056 3057 return vbt; 3058 3059 err_free_vbt: 3060 kfree(vbt); 3061 err_unmap_oprom: 3062 pci_unmap_rom(pdev, oprom); 3063 3064 return NULL; 3065 } 3066 3067 /** 3068 * intel_bios_init - find VBT and initialize settings from the BIOS 3069 * @i915: i915 device instance 3070 * 3071 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 3072 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 3073 * initialize some defaults if the VBT is not present at all. 3074 */ 3075 void intel_bios_init(struct drm_i915_private *i915) 3076 { 3077 const struct vbt_header *vbt = i915->display.opregion.vbt; 3078 struct vbt_header *oprom_vbt = NULL; 3079 const struct bdb_header *bdb; 3080 3081 INIT_LIST_HEAD(&i915->display.vbt.display_devices); 3082 INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks); 3083 3084 if (!HAS_DISPLAY(i915)) { 3085 drm_dbg_kms(&i915->drm, 3086 "Skipping VBT init due to disabled display.\n"); 3087 return; 3088 } 3089 3090 init_vbt_defaults(i915); 3091 3092 /* 3093 * If the OpRegion does not have VBT, look in SPI flash through MMIO or 3094 * PCI mapping 3095 */ 3096 if (!vbt && IS_DGFX(i915)) { 3097 oprom_vbt = spi_oprom_get_vbt(i915); 3098 vbt = oprom_vbt; 3099 } 3100 3101 if (!vbt) { 3102 oprom_vbt = oprom_get_vbt(i915); 3103 vbt = oprom_vbt; 3104 } 3105 3106 if (!vbt) 3107 goto out; 3108 3109 bdb = get_bdb_header(vbt); 3110 i915->display.vbt.version = bdb->version; 3111 3112 drm_dbg_kms(&i915->drm, 3113 "VBT signature \"%.*s\", BDB version %d\n", 3114 (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version); 3115 3116 init_bdb_blocks(i915, bdb); 3117 3118 /* Grab useful general definitions */ 3119 parse_general_features(i915); 3120 parse_general_definitions(i915); 3121 parse_driver_features(i915); 3122 3123 /* Depends on child device list */ 3124 parse_compression_parameters(i915); 3125 3126 out: 3127 if (!vbt) { 3128 drm_info(&i915->drm, 3129 "Failed to find VBIOS tables (VBT)\n"); 3130 init_vbt_missing_defaults(i915); 3131 } 3132 3133 /* Further processing on pre-parsed or generated child device data */ 3134 parse_sdvo_device_mapping(i915); 3135 parse_ddi_ports(i915); 3136 3137 kfree(oprom_vbt); 3138 } 3139 3140 static void intel_bios_init_panel(struct drm_i915_private *i915, 3141 struct intel_panel *panel, 3142 const struct intel_bios_encoder_data *devdata, 3143 const struct drm_edid *drm_edid, 3144 bool use_fallback) 3145 { 3146 /* already have it? */ 3147 if (panel->vbt.panel_type >= 0) { 3148 drm_WARN_ON(&i915->drm, !use_fallback); 3149 return; 3150 } 3151 3152 panel->vbt.panel_type = get_panel_type(i915, devdata, 3153 drm_edid, use_fallback); 3154 if (panel->vbt.panel_type < 0) { 3155 drm_WARN_ON(&i915->drm, use_fallback); 3156 return; 3157 } 3158 3159 init_vbt_panel_defaults(panel); 3160 3161 parse_panel_options(i915, panel); 3162 parse_generic_dtd(i915, panel); 3163 parse_lfp_data(i915, panel); 3164 parse_lfp_backlight(i915, panel); 3165 parse_sdvo_panel_data(i915, panel); 3166 parse_panel_driver_features(i915, panel); 3167 parse_power_conservation_features(i915, panel); 3168 parse_edp(i915, panel); 3169 parse_psr(i915, panel); 3170 parse_mipi_config(i915, panel); 3171 parse_mipi_sequence(i915, panel); 3172 } 3173 3174 void intel_bios_init_panel_early(struct drm_i915_private *i915, 3175 struct intel_panel *panel, 3176 const struct intel_bios_encoder_data *devdata) 3177 { 3178 intel_bios_init_panel(i915, panel, devdata, NULL, false); 3179 } 3180 3181 void intel_bios_init_panel_late(struct drm_i915_private *i915, 3182 struct intel_panel *panel, 3183 const struct intel_bios_encoder_data *devdata, 3184 const struct drm_edid *drm_edid) 3185 { 3186 intel_bios_init_panel(i915, panel, devdata, drm_edid, true); 3187 } 3188 3189 /** 3190 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 3191 * @i915: i915 device instance 3192 */ 3193 void intel_bios_driver_remove(struct drm_i915_private *i915) 3194 { 3195 struct intel_bios_encoder_data *devdata, *nd; 3196 struct bdb_block_entry *entry, *ne; 3197 3198 list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) { 3199 list_del(&devdata->node); 3200 kfree(devdata->dsc); 3201 kfree(devdata); 3202 } 3203 3204 list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) { 3205 list_del(&entry->node); 3206 kfree(entry); 3207 } 3208 } 3209 3210 void intel_bios_fini_panel(struct intel_panel *panel) 3211 { 3212 kfree(panel->vbt.sdvo_lvds_vbt_mode); 3213 panel->vbt.sdvo_lvds_vbt_mode = NULL; 3214 kfree(panel->vbt.lfp_lvds_vbt_mode); 3215 panel->vbt.lfp_lvds_vbt_mode = NULL; 3216 kfree(panel->vbt.dsi.data); 3217 panel->vbt.dsi.data = NULL; 3218 kfree(panel->vbt.dsi.pps); 3219 panel->vbt.dsi.pps = NULL; 3220 kfree(panel->vbt.dsi.config); 3221 panel->vbt.dsi.config = NULL; 3222 kfree(panel->vbt.dsi.deassert_seq); 3223 panel->vbt.dsi.deassert_seq = NULL; 3224 } 3225 3226 /** 3227 * intel_bios_is_tv_present - is integrated TV present in VBT 3228 * @i915: i915 device instance 3229 * 3230 * Return true if TV is present. If no child devices were parsed from VBT, 3231 * assume TV is present. 3232 */ 3233 bool intel_bios_is_tv_present(struct drm_i915_private *i915) 3234 { 3235 const struct intel_bios_encoder_data *devdata; 3236 3237 if (!i915->display.vbt.int_tv_support) 3238 return false; 3239 3240 if (list_empty(&i915->display.vbt.display_devices)) 3241 return true; 3242 3243 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3244 const struct child_device_config *child = &devdata->child; 3245 3246 /* 3247 * If the device type is not TV, continue. 3248 */ 3249 switch (child->device_type) { 3250 case DEVICE_TYPE_INT_TV: 3251 case DEVICE_TYPE_TV: 3252 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 3253 break; 3254 default: 3255 continue; 3256 } 3257 /* Only when the addin_offset is non-zero, it is regarded 3258 * as present. 3259 */ 3260 if (child->addin_offset) 3261 return true; 3262 } 3263 3264 return false; 3265 } 3266 3267 /** 3268 * intel_bios_is_lvds_present - is LVDS present in VBT 3269 * @i915: i915 device instance 3270 * @i2c_pin: i2c pin for LVDS if present 3271 * 3272 * Return true if LVDS is present. If no child devices were parsed from VBT, 3273 * assume LVDS is present. 3274 */ 3275 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin) 3276 { 3277 const struct intel_bios_encoder_data *devdata; 3278 3279 if (list_empty(&i915->display.vbt.display_devices)) 3280 return true; 3281 3282 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3283 const struct child_device_config *child = &devdata->child; 3284 3285 /* If the device type is not LFP, continue. 3286 * We have to check both the new identifiers as well as the 3287 * old for compatibility with some BIOSes. 3288 */ 3289 if (child->device_type != DEVICE_TYPE_INT_LFP && 3290 child->device_type != DEVICE_TYPE_LFP) 3291 continue; 3292 3293 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin)) 3294 *i2c_pin = child->i2c_pin; 3295 3296 /* However, we cannot trust the BIOS writers to populate 3297 * the VBT correctly. Since LVDS requires additional 3298 * information from AIM blocks, a non-zero addin offset is 3299 * a good indicator that the LVDS is actually present. 3300 */ 3301 if (child->addin_offset) 3302 return true; 3303 3304 /* But even then some BIOS writers perform some black magic 3305 * and instantiate the device without reference to any 3306 * additional data. Trust that if the VBT was written into 3307 * the OpRegion then they have validated the LVDS's existence. 3308 */ 3309 if (i915->display.opregion.vbt) 3310 return true; 3311 } 3312 3313 return false; 3314 } 3315 3316 /** 3317 * intel_bios_is_port_present - is the specified digital port present 3318 * @i915: i915 device instance 3319 * @port: port to check 3320 * 3321 * Return true if the device in %port is present. 3322 */ 3323 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port) 3324 { 3325 const struct intel_bios_encoder_data *devdata; 3326 3327 if (WARN_ON(!has_ddi_port_info(i915))) 3328 return true; 3329 3330 if (!is_port_valid(i915, port)) 3331 return false; 3332 3333 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3334 const struct child_device_config *child = &devdata->child; 3335 3336 if (dvo_port_to_port(i915, child->dvo_port) == port) 3337 return true; 3338 } 3339 3340 return false; 3341 } 3342 3343 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) 3344 { 3345 const struct child_device_config *child = &devdata->child; 3346 3347 if (!intel_bios_encoder_supports_dp(devdata) || 3348 !intel_bios_encoder_supports_hdmi(devdata)) 3349 return false; 3350 3351 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) 3352 return true; 3353 3354 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 3355 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && 3356 child->aux_channel != 0) 3357 return true; 3358 3359 return false; 3360 } 3361 3362 /** 3363 * intel_bios_is_dsi_present - is DSI present in VBT 3364 * @i915: i915 device instance 3365 * @port: port for DSI if present 3366 * 3367 * Return true if DSI is present, and return the port in %port. 3368 */ 3369 bool intel_bios_is_dsi_present(struct drm_i915_private *i915, 3370 enum port *port) 3371 { 3372 const struct intel_bios_encoder_data *devdata; 3373 3374 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3375 const struct child_device_config *child = &devdata->child; 3376 u8 dvo_port = child->dvo_port; 3377 3378 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3379 continue; 3380 3381 if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) { 3382 drm_dbg_kms(&i915->drm, 3383 "VBT has unsupported DSI port %c\n", 3384 port_name(dvo_port - DVO_PORT_MIPIA)); 3385 continue; 3386 } 3387 3388 if (port) 3389 *port = dsi_dvo_port_to_port(i915, dvo_port); 3390 return true; 3391 } 3392 3393 return false; 3394 } 3395 3396 static void fill_dsc(struct intel_crtc_state *crtc_state, 3397 struct dsc_compression_parameters_entry *dsc, 3398 int dsc_max_bpc) 3399 { 3400 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 3401 int bpc = 8; 3402 3403 vdsc_cfg->dsc_version_major = dsc->version_major; 3404 vdsc_cfg->dsc_version_minor = dsc->version_minor; 3405 3406 if (dsc->support_12bpc && dsc_max_bpc >= 12) 3407 bpc = 12; 3408 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 3409 bpc = 10; 3410 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 3411 bpc = 8; 3412 else 3413 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n", 3414 dsc_max_bpc); 3415 3416 crtc_state->pipe_bpp = bpc * 3; 3417 3418 crtc_state->dsc.compressed_bpp_x16 = to_bpp_x16(min(crtc_state->pipe_bpp, 3419 VBT_DSC_MAX_BPP(dsc->max_bpp))); 3420 3421 /* 3422 * FIXME: This is ugly, and slice count should take DSC engine 3423 * throughput etc. into account. 3424 * 3425 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 3426 */ 3427 if (dsc->slices_per_line & BIT(2)) { 3428 crtc_state->dsc.slice_count = 4; 3429 } else if (dsc->slices_per_line & BIT(1)) { 3430 crtc_state->dsc.slice_count = 2; 3431 } else { 3432 /* FIXME */ 3433 if (!(dsc->slices_per_line & BIT(0))) 3434 DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n"); 3435 3436 crtc_state->dsc.slice_count = 1; 3437 } 3438 3439 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 3440 crtc_state->dsc.slice_count != 0) 3441 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n", 3442 crtc_state->hw.adjusted_mode.crtc_hdisplay, 3443 crtc_state->dsc.slice_count); 3444 3445 /* 3446 * The VBT rc_buffer_block_size and rc_buffer_size definitions 3447 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 3448 */ 3449 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 3450 dsc->rc_buffer_size); 3451 3452 /* FIXME: DSI spec says bpc + 1 for this one */ 3453 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 3454 3455 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 3456 3457 vdsc_cfg->slice_height = dsc->slice_height; 3458 } 3459 3460 /* FIXME: initially DSI specific */ 3461 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 3462 struct intel_crtc_state *crtc_state, 3463 int dsc_max_bpc) 3464 { 3465 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3466 const struct intel_bios_encoder_data *devdata; 3467 3468 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3469 const struct child_device_config *child = &devdata->child; 3470 3471 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3472 continue; 3473 3474 if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) { 3475 if (!devdata->dsc) 3476 return false; 3477 3478 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 3479 3480 return true; 3481 } 3482 } 3483 3484 return false; 3485 } 3486 3487 static const u8 adlp_aux_ch_map[] = { 3488 [AUX_CH_A] = DP_AUX_A, 3489 [AUX_CH_B] = DP_AUX_B, 3490 [AUX_CH_C] = DP_AUX_C, 3491 [AUX_CH_D_XELPD] = DP_AUX_D, 3492 [AUX_CH_E_XELPD] = DP_AUX_E, 3493 [AUX_CH_USBC1] = DP_AUX_F, 3494 [AUX_CH_USBC2] = DP_AUX_G, 3495 [AUX_CH_USBC3] = DP_AUX_H, 3496 [AUX_CH_USBC4] = DP_AUX_I, 3497 }; 3498 3499 /* 3500 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 3501 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 3502 */ 3503 static const u8 adls_aux_ch_map[] = { 3504 [AUX_CH_A] = DP_AUX_A, 3505 [AUX_CH_USBC1] = DP_AUX_B, 3506 [AUX_CH_USBC2] = DP_AUX_C, 3507 [AUX_CH_USBC3] = DP_AUX_D, 3508 [AUX_CH_USBC4] = DP_AUX_E, 3509 }; 3510 3511 /* 3512 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 3513 * map to DDI A,B,TC1,TC2 respectively. 3514 */ 3515 static const u8 rkl_aux_ch_map[] = { 3516 [AUX_CH_A] = DP_AUX_A, 3517 [AUX_CH_B] = DP_AUX_B, 3518 [AUX_CH_USBC1] = DP_AUX_C, 3519 [AUX_CH_USBC2] = DP_AUX_D, 3520 }; 3521 3522 static const u8 direct_aux_ch_map[] = { 3523 [AUX_CH_A] = DP_AUX_A, 3524 [AUX_CH_B] = DP_AUX_B, 3525 [AUX_CH_C] = DP_AUX_C, 3526 [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */ 3527 [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */ 3528 [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */ 3529 [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */ 3530 [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */ 3531 [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */ 3532 }; 3533 3534 static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel) 3535 { 3536 const u8 *aux_ch_map; 3537 int i, n_entries; 3538 3539 if (DISPLAY_VER(i915) >= 13) { 3540 aux_ch_map = adlp_aux_ch_map; 3541 n_entries = ARRAY_SIZE(adlp_aux_ch_map); 3542 } else if (IS_ALDERLAKE_S(i915)) { 3543 aux_ch_map = adls_aux_ch_map; 3544 n_entries = ARRAY_SIZE(adls_aux_ch_map); 3545 } else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) { 3546 aux_ch_map = rkl_aux_ch_map; 3547 n_entries = ARRAY_SIZE(rkl_aux_ch_map); 3548 } else { 3549 aux_ch_map = direct_aux_ch_map; 3550 n_entries = ARRAY_SIZE(direct_aux_ch_map); 3551 } 3552 3553 for (i = 0; i < n_entries; i++) { 3554 if (aux_ch_map[i] == aux_channel) 3555 return i; 3556 } 3557 3558 drm_dbg_kms(&i915->drm, 3559 "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n", 3560 aux_channel); 3561 3562 return AUX_CH_NONE; 3563 } 3564 3565 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata) 3566 { 3567 if (!devdata || !devdata->child.aux_channel) 3568 return AUX_CH_NONE; 3569 3570 return map_aux_ch(devdata->i915, devdata->child.aux_channel); 3571 } 3572 3573 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata) 3574 { 3575 struct drm_i915_private *i915; 3576 u8 aux_channel; 3577 int count = 0; 3578 3579 if (!devdata || !devdata->child.aux_channel) 3580 return false; 3581 3582 i915 = devdata->i915; 3583 aux_channel = devdata->child.aux_channel; 3584 3585 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3586 if (intel_bios_encoder_supports_dp(devdata) && 3587 aux_channel == devdata->child.aux_channel) 3588 count++; 3589 } 3590 3591 return count > 1; 3592 } 3593 3594 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata) 3595 { 3596 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) 3597 return 0; 3598 3599 return translate_iboost(devdata->child.dp_iboost_level); 3600 } 3601 3602 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 3603 { 3604 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) 3605 return 0; 3606 3607 return translate_iboost(devdata->child.hdmi_iboost_level); 3608 } 3609 3610 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata) 3611 { 3612 if (!devdata || !devdata->child.ddc_pin) 3613 return 0; 3614 3615 return map_ddc_pin(devdata->i915, devdata->child.ddc_pin); 3616 } 3617 3618 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 3619 { 3620 return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c; 3621 } 3622 3623 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 3624 { 3625 return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt; 3626 } 3627 3628 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata) 3629 { 3630 return devdata && devdata->child.lane_reversal; 3631 } 3632 3633 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata) 3634 { 3635 return devdata && devdata->child.hpd_invert; 3636 } 3637 3638 const struct intel_bios_encoder_data * 3639 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port) 3640 { 3641 struct intel_bios_encoder_data *devdata; 3642 3643 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3644 if (intel_bios_encoder_port(devdata) == port) 3645 return devdata; 3646 } 3647 3648 return NULL; 3649 } 3650 3651 void intel_bios_for_each_encoder(struct drm_i915_private *i915, 3652 void (*func)(struct drm_i915_private *i915, 3653 const struct intel_bios_encoder_data *devdata)) 3654 { 3655 struct intel_bios_encoder_data *devdata; 3656 3657 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 3658 func(i915, devdata); 3659 } 3660