xref: /linux/drivers/gpu/drm/i915/display/intel_bios.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_dp_helper.h>
29 #include <drm/i915_drm.h>
30 
31 #include "display/intel_gmbus.h"
32 
33 #include "i915_drv.h"
34 
35 #define _INTEL_BIOS_PRIVATE
36 #include "intel_vbt_defs.h"
37 
38 /**
39  * DOC: Video BIOS Table (VBT)
40  *
41  * The Video BIOS Table, or VBT, provides platform and board specific
42  * configuration information to the driver that is not discoverable or available
43  * through other means. The configuration is mostly related to display
44  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
45  * the PCI ROM.
46  *
47  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
48  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
49  * contain the actual configuration information. The VBT Header, and thus the
50  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
51  * BDB Header. The data blocks are concatenated after the BDB Header. The data
52  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
53  * data. (Block 53, the MIPI Sequence Block is an exception.)
54  *
55  * The driver parses the VBT during load. The relevant information is stored in
56  * driver private data for ease of use, and the actual VBT is not read after
57  * that.
58  */
59 
60 #define	SLAVE_ADDR1	0x70
61 #define	SLAVE_ADDR2	0x72
62 
63 /* Get BDB block size given a pointer to Block ID. */
64 static u32 _get_blocksize(const u8 *block_base)
65 {
66 	/* The MIPI Sequence Block v3+ has a separate size field. */
67 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
68 		return *((const u32 *)(block_base + 4));
69 	else
70 		return *((const u16 *)(block_base + 1));
71 }
72 
73 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
74 static u32 get_blocksize(const void *block_data)
75 {
76 	return _get_blocksize(block_data - 3);
77 }
78 
79 static const void *
80 find_section(const void *_bdb, enum bdb_block_id section_id)
81 {
82 	const struct bdb_header *bdb = _bdb;
83 	const u8 *base = _bdb;
84 	int index = 0;
85 	u32 total, current_size;
86 	enum bdb_block_id current_id;
87 
88 	/* skip to first section */
89 	index += bdb->header_size;
90 	total = bdb->bdb_size;
91 
92 	/* walk the sections looking for section_id */
93 	while (index + 3 < total) {
94 		current_id = *(base + index);
95 		current_size = _get_blocksize(base + index);
96 		index += 3;
97 
98 		if (index + current_size > total)
99 			return NULL;
100 
101 		if (current_id == section_id)
102 			return base + index;
103 
104 		index += current_size;
105 	}
106 
107 	return NULL;
108 }
109 
110 static void
111 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
112 			const struct lvds_dvo_timing *dvo_timing)
113 {
114 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
115 		dvo_timing->hactive_lo;
116 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
117 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
118 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
119 		((dvo_timing->hsync_pulse_width_hi << 8) |
120 			dvo_timing->hsync_pulse_width_lo);
121 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
122 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
123 
124 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
125 		dvo_timing->vactive_lo;
126 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
127 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
128 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
129 		((dvo_timing->vsync_pulse_width_hi << 4) |
130 			dvo_timing->vsync_pulse_width_lo);
131 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
132 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
133 	panel_fixed_mode->clock = dvo_timing->clock * 10;
134 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
135 
136 	if (dvo_timing->hsync_positive)
137 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
138 	else
139 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
140 
141 	if (dvo_timing->vsync_positive)
142 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
143 	else
144 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
145 
146 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
147 		dvo_timing->himage_lo;
148 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
149 		dvo_timing->vimage_lo;
150 
151 	/* Some VBTs have bogus h/vtotal values */
152 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
153 		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
154 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
155 		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
156 
157 	drm_mode_set_name(panel_fixed_mode);
158 }
159 
160 static const struct lvds_dvo_timing *
161 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
162 		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
163 		    int index)
164 {
165 	/*
166 	 * the size of fp_timing varies on the different platform.
167 	 * So calculate the DVO timing relative offset in LVDS data
168 	 * entry to get the DVO timing entry
169 	 */
170 
171 	int lfp_data_size =
172 		lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
173 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
174 	int dvo_timing_offset =
175 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
176 		lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
177 	char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
178 
179 	return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
180 }
181 
182 /* get lvds_fp_timing entry
183  * this function may return NULL if the corresponding entry is invalid
184  */
185 static const struct lvds_fp_timing *
186 get_lvds_fp_timing(const struct bdb_header *bdb,
187 		   const struct bdb_lvds_lfp_data *data,
188 		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
189 		   int index)
190 {
191 	size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
192 	u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
193 	size_t ofs;
194 
195 	if (index >= ARRAY_SIZE(ptrs->ptr))
196 		return NULL;
197 	ofs = ptrs->ptr[index].fp_timing_offset;
198 	if (ofs < data_ofs ||
199 	    ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
200 		return NULL;
201 	return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
202 }
203 
204 /* Try to find integrated panel data */
205 static void
206 parse_lfp_panel_data(struct drm_i915_private *dev_priv,
207 		     const struct bdb_header *bdb)
208 {
209 	const struct bdb_lvds_options *lvds_options;
210 	const struct bdb_lvds_lfp_data *lvds_lfp_data;
211 	const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
212 	const struct lvds_dvo_timing *panel_dvo_timing;
213 	const struct lvds_fp_timing *fp_timing;
214 	struct drm_display_mode *panel_fixed_mode;
215 	int panel_type;
216 	int drrs_mode;
217 	int ret;
218 
219 	lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
220 	if (!lvds_options)
221 		return;
222 
223 	dev_priv->vbt.lvds_dither = lvds_options->pixel_dither;
224 
225 	ret = intel_opregion_get_panel_type(dev_priv);
226 	if (ret >= 0) {
227 		WARN_ON(ret > 0xf);
228 		panel_type = ret;
229 		DRM_DEBUG_KMS("Panel type: %d (OpRegion)\n", panel_type);
230 	} else {
231 		if (lvds_options->panel_type > 0xf) {
232 			DRM_DEBUG_KMS("Invalid VBT panel type 0x%x\n",
233 				      lvds_options->panel_type);
234 			return;
235 		}
236 		panel_type = lvds_options->panel_type;
237 		DRM_DEBUG_KMS("Panel type: %d (VBT)\n", panel_type);
238 	}
239 
240 	dev_priv->vbt.panel_type = panel_type;
241 
242 	drrs_mode = (lvds_options->dps_panel_type_bits
243 				>> (panel_type * 2)) & MODE_MASK;
244 	/*
245 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
246 	 * The below piece of code is required to adjust vbt.drrs_type
247 	 * to match the enum drrs_support_type.
248 	 */
249 	switch (drrs_mode) {
250 	case 0:
251 		dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT;
252 		DRM_DEBUG_KMS("DRRS supported mode is static\n");
253 		break;
254 	case 2:
255 		dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
256 		DRM_DEBUG_KMS("DRRS supported mode is seamless\n");
257 		break;
258 	default:
259 		dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
260 		DRM_DEBUG_KMS("DRRS not supported (VBT input)\n");
261 		break;
262 	}
263 
264 	lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
265 	if (!lvds_lfp_data)
266 		return;
267 
268 	lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
269 	if (!lvds_lfp_data_ptrs)
270 		return;
271 
272 	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
273 					       lvds_lfp_data_ptrs,
274 					       panel_type);
275 
276 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
277 	if (!panel_fixed_mode)
278 		return;
279 
280 	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
281 
282 	dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
283 
284 	DRM_DEBUG_KMS("Found panel mode in BIOS VBT tables:\n");
285 	drm_mode_debug_printmodeline(panel_fixed_mode);
286 
287 	fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
288 				       lvds_lfp_data_ptrs,
289 				       panel_type);
290 	if (fp_timing) {
291 		/* check the resolution, just to be sure */
292 		if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
293 		    fp_timing->y_res == panel_fixed_mode->vdisplay) {
294 			dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
295 			DRM_DEBUG_KMS("VBT initial LVDS value %x\n",
296 				      dev_priv->vbt.bios_lvds_val);
297 		}
298 	}
299 }
300 
301 static void
302 parse_lfp_backlight(struct drm_i915_private *dev_priv,
303 		    const struct bdb_header *bdb)
304 {
305 	const struct bdb_lfp_backlight_data *backlight_data;
306 	const struct lfp_backlight_data_entry *entry;
307 	int panel_type = dev_priv->vbt.panel_type;
308 
309 	backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
310 	if (!backlight_data)
311 		return;
312 
313 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
314 		DRM_DEBUG_KMS("Unsupported backlight data entry size %u\n",
315 			      backlight_data->entry_size);
316 		return;
317 	}
318 
319 	entry = &backlight_data->data[panel_type];
320 
321 	dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
322 	if (!dev_priv->vbt.backlight.present) {
323 		DRM_DEBUG_KMS("PWM backlight not present in VBT (type %u)\n",
324 			      entry->type);
325 		return;
326 	}
327 
328 	dev_priv->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
329 	if (bdb->version >= 191 &&
330 	    get_blocksize(backlight_data) >= sizeof(*backlight_data)) {
331 		const struct lfp_backlight_control_method *method;
332 
333 		method = &backlight_data->backlight_control[panel_type];
334 		dev_priv->vbt.backlight.type = method->type;
335 		dev_priv->vbt.backlight.controller = method->controller;
336 	}
337 
338 	dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
339 	dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm;
340 	dev_priv->vbt.backlight.min_brightness = entry->min_brightness;
341 	DRM_DEBUG_KMS("VBT backlight PWM modulation frequency %u Hz, "
342 		      "active %s, min brightness %u, level %u, controller %u\n",
343 		      dev_priv->vbt.backlight.pwm_freq_hz,
344 		      dev_priv->vbt.backlight.active_low_pwm ? "low" : "high",
345 		      dev_priv->vbt.backlight.min_brightness,
346 		      backlight_data->level[panel_type],
347 		      dev_priv->vbt.backlight.controller);
348 }
349 
350 /* Try to find sdvo panel data */
351 static void
352 parse_sdvo_panel_data(struct drm_i915_private *dev_priv,
353 		      const struct bdb_header *bdb)
354 {
355 	const struct bdb_sdvo_panel_dtds *dtds;
356 	struct drm_display_mode *panel_fixed_mode;
357 	int index;
358 
359 	index = i915_modparams.vbt_sdvo_panel_type;
360 	if (index == -2) {
361 		DRM_DEBUG_KMS("Ignore SDVO panel mode from BIOS VBT tables.\n");
362 		return;
363 	}
364 
365 	if (index == -1) {
366 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
367 
368 		sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
369 		if (!sdvo_lvds_options)
370 			return;
371 
372 		index = sdvo_lvds_options->panel_type;
373 	}
374 
375 	dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS);
376 	if (!dtds)
377 		return;
378 
379 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
380 	if (!panel_fixed_mode)
381 		return;
382 
383 	fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
384 
385 	dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
386 
387 	DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n");
388 	drm_mode_debug_printmodeline(panel_fixed_mode);
389 }
390 
391 static int intel_bios_ssc_frequency(struct drm_i915_private *dev_priv,
392 				    bool alternate)
393 {
394 	switch (INTEL_GEN(dev_priv)) {
395 	case 2:
396 		return alternate ? 66667 : 48000;
397 	case 3:
398 	case 4:
399 		return alternate ? 100000 : 96000;
400 	default:
401 		return alternate ? 100000 : 120000;
402 	}
403 }
404 
405 static void
406 parse_general_features(struct drm_i915_private *dev_priv,
407 		       const struct bdb_header *bdb)
408 {
409 	const struct bdb_general_features *general;
410 
411 	general = find_section(bdb, BDB_GENERAL_FEATURES);
412 	if (!general)
413 		return;
414 
415 	dev_priv->vbt.int_tv_support = general->int_tv_support;
416 	/* int_crt_support can't be trusted on earlier platforms */
417 	if (bdb->version >= 155 &&
418 	    (HAS_DDI(dev_priv) || IS_VALLEYVIEW(dev_priv)))
419 		dev_priv->vbt.int_crt_support = general->int_crt_support;
420 	dev_priv->vbt.lvds_use_ssc = general->enable_ssc;
421 	dev_priv->vbt.lvds_ssc_freq =
422 		intel_bios_ssc_frequency(dev_priv, general->ssc_freq);
423 	dev_priv->vbt.display_clock_mode = general->display_clock_mode;
424 	dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
425 	if (bdb->version >= 181) {
426 		dev_priv->vbt.orientation = general->rotate_180 ?
427 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
428 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
429 	} else {
430 		dev_priv->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
431 	}
432 	DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
433 		      dev_priv->vbt.int_tv_support,
434 		      dev_priv->vbt.int_crt_support,
435 		      dev_priv->vbt.lvds_use_ssc,
436 		      dev_priv->vbt.lvds_ssc_freq,
437 		      dev_priv->vbt.display_clock_mode,
438 		      dev_priv->vbt.fdi_rx_polarity_inverted);
439 }
440 
441 static const struct child_device_config *
442 child_device_ptr(const struct bdb_general_definitions *defs, int i)
443 {
444 	return (const void *) &defs->devices[i * defs->child_dev_size];
445 }
446 
447 static void
448 parse_sdvo_device_mapping(struct drm_i915_private *dev_priv, u8 bdb_version)
449 {
450 	struct sdvo_device_mapping *mapping;
451 	const struct child_device_config *child;
452 	int i, count = 0;
453 
454 	/*
455 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
456 	 * accurate and doesn't have to be, as long as it's not too strict.
457 	 */
458 	if (!IS_GEN_RANGE(dev_priv, 3, 7)) {
459 		DRM_DEBUG_KMS("Skipping SDVO device mapping\n");
460 		return;
461 	}
462 
463 	for (i = 0, count = 0; i < dev_priv->vbt.child_dev_num; i++) {
464 		child = dev_priv->vbt.child_dev + i;
465 
466 		if (child->slave_addr != SLAVE_ADDR1 &&
467 		    child->slave_addr != SLAVE_ADDR2) {
468 			/*
469 			 * If the slave address is neither 0x70 nor 0x72,
470 			 * it is not a SDVO device. Skip it.
471 			 */
472 			continue;
473 		}
474 		if (child->dvo_port != DEVICE_PORT_DVOB &&
475 		    child->dvo_port != DEVICE_PORT_DVOC) {
476 			/* skip the incorrect SDVO port */
477 			DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n");
478 			continue;
479 		}
480 		DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on"
481 			      " %s port\n",
482 			      child->slave_addr,
483 			      (child->dvo_port == DEVICE_PORT_DVOB) ?
484 			      "SDVOB" : "SDVOC");
485 		mapping = &dev_priv->vbt.sdvo_mappings[child->dvo_port - 1];
486 		if (!mapping->initialized) {
487 			mapping->dvo_port = child->dvo_port;
488 			mapping->slave_addr = child->slave_addr;
489 			mapping->dvo_wiring = child->dvo_wiring;
490 			mapping->ddc_pin = child->ddc_pin;
491 			mapping->i2c_pin = child->i2c_pin;
492 			mapping->initialized = 1;
493 			DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
494 				      mapping->dvo_port,
495 				      mapping->slave_addr,
496 				      mapping->dvo_wiring,
497 				      mapping->ddc_pin,
498 				      mapping->i2c_pin);
499 		} else {
500 			DRM_DEBUG_KMS("Maybe one SDVO port is shared by "
501 					 "two SDVO device.\n");
502 		}
503 		if (child->slave2_addr) {
504 			/* Maybe this is a SDVO device with multiple inputs */
505 			/* And the mapping info is not added */
506 			DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this"
507 				" is a SDVO device with multiple inputs.\n");
508 		}
509 		count++;
510 	}
511 
512 	if (!count) {
513 		/* No SDVO device info is found */
514 		DRM_DEBUG_KMS("No SDVO device info is found in VBT\n");
515 	}
516 }
517 
518 static void
519 parse_driver_features(struct drm_i915_private *dev_priv,
520 		      const struct bdb_header *bdb)
521 {
522 	const struct bdb_driver_features *driver;
523 
524 	driver = find_section(bdb, BDB_DRIVER_FEATURES);
525 	if (!driver)
526 		return;
527 
528 	if (INTEL_GEN(dev_priv) >= 5) {
529 		/*
530 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
531 		 * to mean "eDP". The VBT spec doesn't agree with that
532 		 * interpretation, but real world VBTs seem to.
533 		 */
534 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
535 			dev_priv->vbt.int_lvds_support = 0;
536 	} else {
537 		/*
538 		 * FIXME it's not clear which BDB version has the LVDS config
539 		 * bits defined. Revision history in the VBT spec says:
540 		 * "0.92 | Add two definitions for VBT value of LVDS Active
541 		 *  Config (00b and 11b values defined) | 06/13/2005"
542 		 * but does not the specify the BDB version.
543 		 *
544 		 * So far version 134 (on i945gm) is the oldest VBT observed
545 		 * in the wild with the bits correctly populated. Version
546 		 * 108 (on i85x) does not have the bits correctly populated.
547 		 */
548 		if (bdb->version >= 134 &&
549 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
550 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
551 			dev_priv->vbt.int_lvds_support = 0;
552 	}
553 
554 	DRM_DEBUG_KMS("DRRS State Enabled:%d\n", driver->drrs_enabled);
555 	/*
556 	 * If DRRS is not supported, drrs_type has to be set to 0.
557 	 * This is because, VBT is configured in such a way that
558 	 * static DRRS is 0 and DRRS not supported is represented by
559 	 * driver->drrs_enabled=false
560 	 */
561 	if (!driver->drrs_enabled)
562 		dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
563 	dev_priv->vbt.psr.enable = driver->psr_enabled;
564 }
565 
566 static void
567 parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
568 {
569 	const struct bdb_edp *edp;
570 	const struct edp_power_seq *edp_pps;
571 	const struct edp_fast_link_params *edp_link_params;
572 	int panel_type = dev_priv->vbt.panel_type;
573 
574 	edp = find_section(bdb, BDB_EDP);
575 	if (!edp)
576 		return;
577 
578 	switch ((edp->color_depth >> (panel_type * 2)) & 3) {
579 	case EDP_18BPP:
580 		dev_priv->vbt.edp.bpp = 18;
581 		break;
582 	case EDP_24BPP:
583 		dev_priv->vbt.edp.bpp = 24;
584 		break;
585 	case EDP_30BPP:
586 		dev_priv->vbt.edp.bpp = 30;
587 		break;
588 	}
589 
590 	/* Get the eDP sequencing and link info */
591 	edp_pps = &edp->power_seqs[panel_type];
592 	edp_link_params = &edp->fast_link_params[panel_type];
593 
594 	dev_priv->vbt.edp.pps = *edp_pps;
595 
596 	switch (edp_link_params->rate) {
597 	case EDP_RATE_1_62:
598 		dev_priv->vbt.edp.rate = DP_LINK_BW_1_62;
599 		break;
600 	case EDP_RATE_2_7:
601 		dev_priv->vbt.edp.rate = DP_LINK_BW_2_7;
602 		break;
603 	default:
604 		DRM_DEBUG_KMS("VBT has unknown eDP link rate value %u\n",
605 			      edp_link_params->rate);
606 		break;
607 	}
608 
609 	switch (edp_link_params->lanes) {
610 	case EDP_LANE_1:
611 		dev_priv->vbt.edp.lanes = 1;
612 		break;
613 	case EDP_LANE_2:
614 		dev_priv->vbt.edp.lanes = 2;
615 		break;
616 	case EDP_LANE_4:
617 		dev_priv->vbt.edp.lanes = 4;
618 		break;
619 	default:
620 		DRM_DEBUG_KMS("VBT has unknown eDP lane count value %u\n",
621 			      edp_link_params->lanes);
622 		break;
623 	}
624 
625 	switch (edp_link_params->preemphasis) {
626 	case EDP_PREEMPHASIS_NONE:
627 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
628 		break;
629 	case EDP_PREEMPHASIS_3_5dB:
630 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
631 		break;
632 	case EDP_PREEMPHASIS_6dB:
633 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
634 		break;
635 	case EDP_PREEMPHASIS_9_5dB:
636 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
637 		break;
638 	default:
639 		DRM_DEBUG_KMS("VBT has unknown eDP pre-emphasis value %u\n",
640 			      edp_link_params->preemphasis);
641 		break;
642 	}
643 
644 	switch (edp_link_params->vswing) {
645 	case EDP_VSWING_0_4V:
646 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
647 		break;
648 	case EDP_VSWING_0_6V:
649 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
650 		break;
651 	case EDP_VSWING_0_8V:
652 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
653 		break;
654 	case EDP_VSWING_1_2V:
655 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
656 		break;
657 	default:
658 		DRM_DEBUG_KMS("VBT has unknown eDP voltage swing value %u\n",
659 			      edp_link_params->vswing);
660 		break;
661 	}
662 
663 	if (bdb->version >= 173) {
664 		u8 vswing;
665 
666 		/* Don't read from VBT if module parameter has valid value*/
667 		if (i915_modparams.edp_vswing) {
668 			dev_priv->vbt.edp.low_vswing =
669 				i915_modparams.edp_vswing == 1;
670 		} else {
671 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
672 			dev_priv->vbt.edp.low_vswing = vswing == 0;
673 		}
674 	}
675 }
676 
677 static void
678 parse_psr(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
679 {
680 	const struct bdb_psr *psr;
681 	const struct psr_table *psr_table;
682 	int panel_type = dev_priv->vbt.panel_type;
683 
684 	psr = find_section(bdb, BDB_PSR);
685 	if (!psr) {
686 		DRM_DEBUG_KMS("No PSR BDB found.\n");
687 		return;
688 	}
689 
690 	psr_table = &psr->psr_table[panel_type];
691 
692 	dev_priv->vbt.psr.full_link = psr_table->full_link;
693 	dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
694 
695 	/* Allowed VBT values goes from 0 to 15 */
696 	dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
697 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
698 
699 	switch (psr_table->lines_to_wait) {
700 	case 0:
701 		dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
702 		break;
703 	case 1:
704 		dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
705 		break;
706 	case 2:
707 		dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
708 		break;
709 	case 3:
710 		dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
711 		break;
712 	default:
713 		DRM_DEBUG_KMS("VBT has unknown PSR lines to wait %u\n",
714 			      psr_table->lines_to_wait);
715 		break;
716 	}
717 
718 	/*
719 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
720 	 * Old decimal value is wake up time in multiples of 100 us.
721 	 */
722 	if (bdb->version >= 205 &&
723 	    (IS_GEN9_BC(dev_priv) || IS_GEMINILAKE(dev_priv) ||
724 	     INTEL_GEN(dev_priv) >= 10)) {
725 		switch (psr_table->tp1_wakeup_time) {
726 		case 0:
727 			dev_priv->vbt.psr.tp1_wakeup_time_us = 500;
728 			break;
729 		case 1:
730 			dev_priv->vbt.psr.tp1_wakeup_time_us = 100;
731 			break;
732 		case 3:
733 			dev_priv->vbt.psr.tp1_wakeup_time_us = 0;
734 			break;
735 		default:
736 			DRM_DEBUG_KMS("VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
737 					psr_table->tp1_wakeup_time);
738 			/* fallthrough */
739 		case 2:
740 			dev_priv->vbt.psr.tp1_wakeup_time_us = 2500;
741 			break;
742 		}
743 
744 		switch (psr_table->tp2_tp3_wakeup_time) {
745 		case 0:
746 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 500;
747 			break;
748 		case 1:
749 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 100;
750 			break;
751 		case 3:
752 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 0;
753 			break;
754 		default:
755 			DRM_DEBUG_KMS("VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
756 					psr_table->tp2_tp3_wakeup_time);
757 			/* fallthrough */
758 		case 2:
759 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
760 		break;
761 		}
762 	} else {
763 		dev_priv->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
764 		dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
765 	}
766 
767 	if (bdb->version >= 226) {
768 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
769 
770 		wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
771 		switch (wakeup_time) {
772 		case 0:
773 			wakeup_time = 500;
774 			break;
775 		case 1:
776 			wakeup_time = 100;
777 			break;
778 		case 3:
779 			wakeup_time = 50;
780 			break;
781 		default:
782 		case 2:
783 			wakeup_time = 2500;
784 			break;
785 		}
786 		dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
787 	} else {
788 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
789 		dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = dev_priv->vbt.psr.tp2_tp3_wakeup_time_us;
790 	}
791 }
792 
793 static void parse_dsi_backlight_ports(struct drm_i915_private *dev_priv,
794 				      u16 version, enum port port)
795 {
796 	if (!dev_priv->vbt.dsi.config->dual_link || version < 197) {
797 		dev_priv->vbt.dsi.bl_ports = BIT(port);
798 		if (dev_priv->vbt.dsi.config->cabc_supported)
799 			dev_priv->vbt.dsi.cabc_ports = BIT(port);
800 
801 		return;
802 	}
803 
804 	switch (dev_priv->vbt.dsi.config->dl_dcs_backlight_ports) {
805 	case DL_DCS_PORT_A:
806 		dev_priv->vbt.dsi.bl_ports = BIT(PORT_A);
807 		break;
808 	case DL_DCS_PORT_C:
809 		dev_priv->vbt.dsi.bl_ports = BIT(PORT_C);
810 		break;
811 	default:
812 	case DL_DCS_PORT_A_AND_C:
813 		dev_priv->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
814 		break;
815 	}
816 
817 	if (!dev_priv->vbt.dsi.config->cabc_supported)
818 		return;
819 
820 	switch (dev_priv->vbt.dsi.config->dl_dcs_cabc_ports) {
821 	case DL_DCS_PORT_A:
822 		dev_priv->vbt.dsi.cabc_ports = BIT(PORT_A);
823 		break;
824 	case DL_DCS_PORT_C:
825 		dev_priv->vbt.dsi.cabc_ports = BIT(PORT_C);
826 		break;
827 	default:
828 	case DL_DCS_PORT_A_AND_C:
829 		dev_priv->vbt.dsi.cabc_ports =
830 					BIT(PORT_A) | BIT(PORT_C);
831 		break;
832 	}
833 }
834 
835 static void
836 parse_mipi_config(struct drm_i915_private *dev_priv,
837 		  const struct bdb_header *bdb)
838 {
839 	const struct bdb_mipi_config *start;
840 	const struct mipi_config *config;
841 	const struct mipi_pps_data *pps;
842 	int panel_type = dev_priv->vbt.panel_type;
843 	enum port port;
844 
845 	/* parse MIPI blocks only if LFP type is MIPI */
846 	if (!intel_bios_is_dsi_present(dev_priv, &port))
847 		return;
848 
849 	/* Initialize this to undefined indicating no generic MIPI support */
850 	dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
851 
852 	/* Block #40 is already parsed and panel_fixed_mode is
853 	 * stored in dev_priv->lfp_lvds_vbt_mode
854 	 * resuse this when needed
855 	 */
856 
857 	/* Parse #52 for panel index used from panel_type already
858 	 * parsed
859 	 */
860 	start = find_section(bdb, BDB_MIPI_CONFIG);
861 	if (!start) {
862 		DRM_DEBUG_KMS("No MIPI config BDB found");
863 		return;
864 	}
865 
866 	DRM_DEBUG_DRIVER("Found MIPI Config block, panel index = %d\n",
867 								panel_type);
868 
869 	/*
870 	 * get hold of the correct configuration block and pps data as per
871 	 * the panel_type as index
872 	 */
873 	config = &start->config[panel_type];
874 	pps = &start->pps[panel_type];
875 
876 	/* store as of now full data. Trim when we realise all is not needed */
877 	dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
878 	if (!dev_priv->vbt.dsi.config)
879 		return;
880 
881 	dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
882 	if (!dev_priv->vbt.dsi.pps) {
883 		kfree(dev_priv->vbt.dsi.config);
884 		return;
885 	}
886 
887 	parse_dsi_backlight_ports(dev_priv, bdb->version, port);
888 
889 	/* FIXME is the 90 vs. 270 correct? */
890 	switch (config->rotation) {
891 	case ENABLE_ROTATION_0:
892 		/*
893 		 * Most (all?) VBTs claim 0 degrees despite having
894 		 * an upside down panel, thus we do not trust this.
895 		 */
896 		dev_priv->vbt.dsi.orientation =
897 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
898 		break;
899 	case ENABLE_ROTATION_90:
900 		dev_priv->vbt.dsi.orientation =
901 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
902 		break;
903 	case ENABLE_ROTATION_180:
904 		dev_priv->vbt.dsi.orientation =
905 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
906 		break;
907 	case ENABLE_ROTATION_270:
908 		dev_priv->vbt.dsi.orientation =
909 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
910 		break;
911 	}
912 
913 	/* We have mandatory mipi config blocks. Initialize as generic panel */
914 	dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
915 }
916 
917 /* Find the sequence block and size for the given panel. */
918 static const u8 *
919 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
920 			  u16 panel_id, u32 *seq_size)
921 {
922 	u32 total = get_blocksize(sequence);
923 	const u8 *data = &sequence->data[0];
924 	u8 current_id;
925 	u32 current_size;
926 	int header_size = sequence->version >= 3 ? 5 : 3;
927 	int index = 0;
928 	int i;
929 
930 	/* skip new block size */
931 	if (sequence->version >= 3)
932 		data += 4;
933 
934 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
935 		if (index + header_size > total) {
936 			DRM_ERROR("Invalid sequence block (header)\n");
937 			return NULL;
938 		}
939 
940 		current_id = *(data + index);
941 		if (sequence->version >= 3)
942 			current_size = *((const u32 *)(data + index + 1));
943 		else
944 			current_size = *((const u16 *)(data + index + 1));
945 
946 		index += header_size;
947 
948 		if (index + current_size > total) {
949 			DRM_ERROR("Invalid sequence block\n");
950 			return NULL;
951 		}
952 
953 		if (current_id == panel_id) {
954 			*seq_size = current_size;
955 			return data + index;
956 		}
957 
958 		index += current_size;
959 	}
960 
961 	DRM_ERROR("Sequence block detected but no valid configuration\n");
962 
963 	return NULL;
964 }
965 
966 static int goto_next_sequence(const u8 *data, int index, int total)
967 {
968 	u16 len;
969 
970 	/* Skip Sequence Byte. */
971 	for (index = index + 1; index < total; index += len) {
972 		u8 operation_byte = *(data + index);
973 		index++;
974 
975 		switch (operation_byte) {
976 		case MIPI_SEQ_ELEM_END:
977 			return index;
978 		case MIPI_SEQ_ELEM_SEND_PKT:
979 			if (index + 4 > total)
980 				return 0;
981 
982 			len = *((const u16 *)(data + index + 2)) + 4;
983 			break;
984 		case MIPI_SEQ_ELEM_DELAY:
985 			len = 4;
986 			break;
987 		case MIPI_SEQ_ELEM_GPIO:
988 			len = 2;
989 			break;
990 		case MIPI_SEQ_ELEM_I2C:
991 			if (index + 7 > total)
992 				return 0;
993 			len = *(data + index + 6) + 7;
994 			break;
995 		default:
996 			DRM_ERROR("Unknown operation byte\n");
997 			return 0;
998 		}
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1005 {
1006 	int seq_end;
1007 	u16 len;
1008 	u32 size_of_sequence;
1009 
1010 	/*
1011 	 * Could skip sequence based on Size of Sequence alone, but also do some
1012 	 * checking on the structure.
1013 	 */
1014 	if (total < 5) {
1015 		DRM_ERROR("Too small sequence size\n");
1016 		return 0;
1017 	}
1018 
1019 	/* Skip Sequence Byte. */
1020 	index++;
1021 
1022 	/*
1023 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1024 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1025 	 * byte.
1026 	 */
1027 	size_of_sequence = *((const u32 *)(data + index));
1028 	index += 4;
1029 
1030 	seq_end = index + size_of_sequence;
1031 	if (seq_end > total) {
1032 		DRM_ERROR("Invalid sequence size\n");
1033 		return 0;
1034 	}
1035 
1036 	for (; index < total; index += len) {
1037 		u8 operation_byte = *(data + index);
1038 		index++;
1039 
1040 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1041 			if (index != seq_end) {
1042 				DRM_ERROR("Invalid element structure\n");
1043 				return 0;
1044 			}
1045 			return index;
1046 		}
1047 
1048 		len = *(data + index);
1049 		index++;
1050 
1051 		/*
1052 		 * FIXME: Would be nice to check elements like for v1/v2 in
1053 		 * goto_next_sequence() above.
1054 		 */
1055 		switch (operation_byte) {
1056 		case MIPI_SEQ_ELEM_SEND_PKT:
1057 		case MIPI_SEQ_ELEM_DELAY:
1058 		case MIPI_SEQ_ELEM_GPIO:
1059 		case MIPI_SEQ_ELEM_I2C:
1060 		case MIPI_SEQ_ELEM_SPI:
1061 		case MIPI_SEQ_ELEM_PMIC:
1062 			break;
1063 		default:
1064 			DRM_ERROR("Unknown operation byte %u\n",
1065 				  operation_byte);
1066 			break;
1067 		}
1068 	}
1069 
1070 	return 0;
1071 }
1072 
1073 /*
1074  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1075  * skip all delay + gpio operands and stop at the first DSI packet op.
1076  */
1077 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *dev_priv)
1078 {
1079 	const u8 *data = dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1080 	int index, len;
1081 
1082 	if (WARN_ON(!data || dev_priv->vbt.dsi.seq_version != 1))
1083 		return 0;
1084 
1085 	/* index = 1 to skip sequence byte */
1086 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1087 		switch (data[index]) {
1088 		case MIPI_SEQ_ELEM_SEND_PKT:
1089 			return index == 1 ? 0 : index;
1090 		case MIPI_SEQ_ELEM_DELAY:
1091 			len = 5; /* 1 byte for operand + uint32 */
1092 			break;
1093 		case MIPI_SEQ_ELEM_GPIO:
1094 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1095 			break;
1096 		default:
1097 			return 0;
1098 		}
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 /*
1105  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1106  * The deassert must be done before calling intel_dsi_device_ready, so for
1107  * these devices we split the init OTP sequence into a deassert sequence and
1108  * the actual init OTP part.
1109  */
1110 static void fixup_mipi_sequences(struct drm_i915_private *dev_priv)
1111 {
1112 	u8 *init_otp;
1113 	int len;
1114 
1115 	/* Limit this to VLV for now. */
1116 	if (!IS_VALLEYVIEW(dev_priv))
1117 		return;
1118 
1119 	/* Limit this to v1 vid-mode sequences */
1120 	if (dev_priv->vbt.dsi.config->is_cmd_mode ||
1121 	    dev_priv->vbt.dsi.seq_version != 1)
1122 		return;
1123 
1124 	/* Only do this if there are otp and assert seqs and no deassert seq */
1125 	if (!dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1126 	    !dev_priv->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1127 	    dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1128 		return;
1129 
1130 	/* The deassert-sequence ends at the first DSI packet */
1131 	len = get_init_otp_deassert_fragment_len(dev_priv);
1132 	if (!len)
1133 		return;
1134 
1135 	DRM_DEBUG_KMS("Using init OTP fragment to deassert reset\n");
1136 
1137 	/* Copy the fragment, update seq byte and terminate it */
1138 	init_otp = (u8 *)dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1139 	dev_priv->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1140 	if (!dev_priv->vbt.dsi.deassert_seq)
1141 		return;
1142 	dev_priv->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1143 	dev_priv->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1144 	/* Use the copy for deassert */
1145 	dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1146 		dev_priv->vbt.dsi.deassert_seq;
1147 	/* Replace the last byte of the fragment with init OTP seq byte */
1148 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1149 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1150 	dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1151 }
1152 
1153 static void
1154 parse_mipi_sequence(struct drm_i915_private *dev_priv,
1155 		    const struct bdb_header *bdb)
1156 {
1157 	int panel_type = dev_priv->vbt.panel_type;
1158 	const struct bdb_mipi_sequence *sequence;
1159 	const u8 *seq_data;
1160 	u32 seq_size;
1161 	u8 *data;
1162 	int index = 0;
1163 
1164 	/* Only our generic panel driver uses the sequence block. */
1165 	if (dev_priv->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1166 		return;
1167 
1168 	sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
1169 	if (!sequence) {
1170 		DRM_DEBUG_KMS("No MIPI Sequence found, parsing complete\n");
1171 		return;
1172 	}
1173 
1174 	/* Fail gracefully for forward incompatible sequence block. */
1175 	if (sequence->version >= 4) {
1176 		DRM_ERROR("Unable to parse MIPI Sequence Block v%u\n",
1177 			  sequence->version);
1178 		return;
1179 	}
1180 
1181 	DRM_DEBUG_DRIVER("Found MIPI sequence block v%u\n", sequence->version);
1182 
1183 	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1184 	if (!seq_data)
1185 		return;
1186 
1187 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1188 	if (!data)
1189 		return;
1190 
1191 	/* Parse the sequences, store pointers to each sequence. */
1192 	for (;;) {
1193 		u8 seq_id = *(data + index);
1194 		if (seq_id == MIPI_SEQ_END)
1195 			break;
1196 
1197 		if (seq_id >= MIPI_SEQ_MAX) {
1198 			DRM_ERROR("Unknown sequence %u\n", seq_id);
1199 			goto err;
1200 		}
1201 
1202 		/* Log about presence of sequences we won't run. */
1203 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1204 			DRM_DEBUG_KMS("Unsupported sequence %u\n", seq_id);
1205 
1206 		dev_priv->vbt.dsi.sequence[seq_id] = data + index;
1207 
1208 		if (sequence->version >= 3)
1209 			index = goto_next_sequence_v3(data, index, seq_size);
1210 		else
1211 			index = goto_next_sequence(data, index, seq_size);
1212 		if (!index) {
1213 			DRM_ERROR("Invalid sequence %u\n", seq_id);
1214 			goto err;
1215 		}
1216 	}
1217 
1218 	dev_priv->vbt.dsi.data = data;
1219 	dev_priv->vbt.dsi.size = seq_size;
1220 	dev_priv->vbt.dsi.seq_version = sequence->version;
1221 
1222 	fixup_mipi_sequences(dev_priv);
1223 
1224 	DRM_DEBUG_DRIVER("MIPI related VBT parsing complete\n");
1225 	return;
1226 
1227 err:
1228 	kfree(data);
1229 	memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence));
1230 }
1231 
1232 static u8 translate_iboost(u8 val)
1233 {
1234 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1235 
1236 	if (val >= ARRAY_SIZE(mapping)) {
1237 		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1238 		return 0;
1239 	}
1240 	return mapping[val];
1241 }
1242 
1243 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
1244 {
1245 	const struct ddi_vbt_port_info *info;
1246 	enum port port;
1247 
1248 	for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1249 		info = &i915->vbt.ddi_port_info[port];
1250 
1251 		if (info->child && ddc_pin == info->alternate_ddc_pin)
1252 			return port;
1253 	}
1254 
1255 	return PORT_NONE;
1256 }
1257 
1258 static void sanitize_ddc_pin(struct drm_i915_private *dev_priv,
1259 			     enum port port)
1260 {
1261 	struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1262 	enum port p;
1263 
1264 	if (!info->alternate_ddc_pin)
1265 		return;
1266 
1267 	p = get_port_by_ddc_pin(dev_priv, info->alternate_ddc_pin);
1268 	if (p != PORT_NONE) {
1269 		DRM_DEBUG_KMS("port %c trying to use the same DDC pin (0x%x) as port %c, "
1270 			      "disabling port %c DVI/HDMI support\n",
1271 			      port_name(port), info->alternate_ddc_pin,
1272 			      port_name(p), port_name(port));
1273 
1274 		/*
1275 		 * If we have multiple ports supposedly sharing the
1276 		 * pin, then dvi/hdmi couldn't exist on the shared
1277 		 * port. Otherwise they share the same ddc bin and
1278 		 * system couldn't communicate with them separately.
1279 		 *
1280 		 * Give child device order the priority, first come first
1281 		 * served.
1282 		 */
1283 		info->supports_dvi = false;
1284 		info->supports_hdmi = false;
1285 		info->alternate_ddc_pin = 0;
1286 	}
1287 }
1288 
1289 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
1290 {
1291 	const struct ddi_vbt_port_info *info;
1292 	enum port port;
1293 
1294 	for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1295 		info = &i915->vbt.ddi_port_info[port];
1296 
1297 		if (info->child && aux_ch == info->alternate_aux_channel)
1298 			return port;
1299 	}
1300 
1301 	return PORT_NONE;
1302 }
1303 
1304 static void sanitize_aux_ch(struct drm_i915_private *dev_priv,
1305 			    enum port port)
1306 {
1307 	struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1308 	enum port p;
1309 
1310 	if (!info->alternate_aux_channel)
1311 		return;
1312 
1313 	p = get_port_by_aux_ch(dev_priv, info->alternate_aux_channel);
1314 	if (p != PORT_NONE) {
1315 		DRM_DEBUG_KMS("port %c trying to use the same AUX CH (0x%x) as port %c, "
1316 			      "disabling port %c DP support\n",
1317 			      port_name(port), info->alternate_aux_channel,
1318 			      port_name(p), port_name(port));
1319 
1320 		/*
1321 		 * If we have multiple ports supposedlt sharing the
1322 		 * aux channel, then DP couldn't exist on the shared
1323 		 * port. Otherwise they share the same aux channel
1324 		 * and system couldn't communicate with them separately.
1325 		 *
1326 		 * Give child device order the priority, first come first
1327 		 * served.
1328 		 */
1329 		info->supports_dp = false;
1330 		info->alternate_aux_channel = 0;
1331 	}
1332 }
1333 
1334 static const u8 cnp_ddc_pin_map[] = {
1335 	[0] = 0, /* N/A */
1336 	[DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1337 	[DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1338 	[DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1339 	[DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1340 };
1341 
1342 static const u8 icp_ddc_pin_map[] = {
1343 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1344 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1345 	[ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1346 	[ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1347 	[ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1348 	[ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1349 };
1350 
1351 static const u8 mcc_ddc_pin_map[] = {
1352 	[MCC_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1353 	[MCC_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1354 	[MCC_DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
1355 };
1356 
1357 static u8 map_ddc_pin(struct drm_i915_private *dev_priv, u8 vbt_pin)
1358 {
1359 	const u8 *ddc_pin_map;
1360 	int n_entries;
1361 
1362 	if (HAS_PCH_MCC(dev_priv)) {
1363 		ddc_pin_map = mcc_ddc_pin_map;
1364 		n_entries = ARRAY_SIZE(mcc_ddc_pin_map);
1365 	} else if (HAS_PCH_ICP(dev_priv)) {
1366 		ddc_pin_map = icp_ddc_pin_map;
1367 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
1368 	} else if (HAS_PCH_CNP(dev_priv)) {
1369 		ddc_pin_map = cnp_ddc_pin_map;
1370 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
1371 	} else {
1372 		/* Assuming direct map */
1373 		return vbt_pin;
1374 	}
1375 
1376 	if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
1377 		return ddc_pin_map[vbt_pin];
1378 
1379 	DRM_DEBUG_KMS("Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
1380 		      vbt_pin);
1381 	return 0;
1382 }
1383 
1384 static enum port dvo_port_to_port(u8 dvo_port)
1385 {
1386 	/*
1387 	 * Each DDI port can have more than one value on the "DVO Port" field,
1388 	 * so look for all the possible values for each port.
1389 	 */
1390 	static const int dvo_ports[][3] = {
1391 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1},
1392 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1},
1393 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1},
1394 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1},
1395 		[PORT_E] = { DVO_PORT_CRT, DVO_PORT_HDMIE, DVO_PORT_DPE},
1396 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1},
1397 	};
1398 	enum port port;
1399 	int i;
1400 
1401 	for (port = PORT_A; port < ARRAY_SIZE(dvo_ports); port++) {
1402 		for (i = 0; i < ARRAY_SIZE(dvo_ports[port]); i++) {
1403 			if (dvo_ports[port][i] == -1)
1404 				break;
1405 
1406 			if (dvo_port == dvo_ports[port][i])
1407 				return port;
1408 		}
1409 	}
1410 
1411 	return PORT_NONE;
1412 }
1413 
1414 static void parse_ddi_port(struct drm_i915_private *dev_priv,
1415 			   const struct child_device_config *child,
1416 			   u8 bdb_version)
1417 {
1418 	struct ddi_vbt_port_info *info;
1419 	bool is_dvi, is_hdmi, is_dp, is_edp, is_crt;
1420 	enum port port;
1421 
1422 	port = dvo_port_to_port(child->dvo_port);
1423 	if (port == PORT_NONE)
1424 		return;
1425 
1426 	info = &dev_priv->vbt.ddi_port_info[port];
1427 
1428 	if (info->child) {
1429 		DRM_DEBUG_KMS("More than one child device for port %c in VBT, using the first.\n",
1430 			      port_name(port));
1431 		return;
1432 	}
1433 
1434 	is_dvi = child->device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1435 	is_dp = child->device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1436 	is_crt = child->device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1437 	is_hdmi = is_dvi && (child->device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1438 	is_edp = is_dp && (child->device_type & DEVICE_TYPE_INTERNAL_CONNECTOR);
1439 
1440 	if (port == PORT_A && is_dvi) {
1441 		DRM_DEBUG_KMS("VBT claims port A supports DVI%s, ignoring\n",
1442 			      is_hdmi ? "/HDMI" : "");
1443 		is_dvi = false;
1444 		is_hdmi = false;
1445 	}
1446 
1447 	info->supports_dvi = is_dvi;
1448 	info->supports_hdmi = is_hdmi;
1449 	info->supports_dp = is_dp;
1450 	info->supports_edp = is_edp;
1451 
1452 	if (bdb_version >= 195)
1453 		info->supports_typec_usb = child->dp_usb_type_c;
1454 
1455 	if (bdb_version >= 209)
1456 		info->supports_tbt = child->tbt;
1457 
1458 	DRM_DEBUG_KMS("Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d\n",
1459 		      port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
1460 		      HAS_LSPCON(dev_priv) && child->lspcon,
1461 		      info->supports_typec_usb, info->supports_tbt);
1462 
1463 	if (is_edp && is_dvi)
1464 		DRM_DEBUG_KMS("Internal DP port %c is TMDS compatible\n",
1465 			      port_name(port));
1466 	if (is_crt && port != PORT_E)
1467 		DRM_DEBUG_KMS("Port %c is analog\n", port_name(port));
1468 	if (is_crt && (is_dvi || is_dp))
1469 		DRM_DEBUG_KMS("Analog port %c is also DP or TMDS compatible\n",
1470 			      port_name(port));
1471 	if (is_dvi && (port == PORT_A || port == PORT_E))
1472 		DRM_DEBUG_KMS("Port %c is TMDS compatible\n", port_name(port));
1473 	if (!is_dvi && !is_dp && !is_crt)
1474 		DRM_DEBUG_KMS("Port %c is not DP/TMDS/CRT compatible\n",
1475 			      port_name(port));
1476 	if (is_edp && (port == PORT_B || port == PORT_C || port == PORT_E))
1477 		DRM_DEBUG_KMS("Port %c is internal DP\n", port_name(port));
1478 
1479 	if (is_dvi) {
1480 		u8 ddc_pin;
1481 
1482 		ddc_pin = map_ddc_pin(dev_priv, child->ddc_pin);
1483 		if (intel_gmbus_is_valid_pin(dev_priv, ddc_pin)) {
1484 			info->alternate_ddc_pin = ddc_pin;
1485 			sanitize_ddc_pin(dev_priv, port);
1486 		} else {
1487 			DRM_DEBUG_KMS("Port %c has invalid DDC pin %d, "
1488 				      "sticking to defaults\n",
1489 				      port_name(port), ddc_pin);
1490 		}
1491 	}
1492 
1493 	if (is_dp) {
1494 		info->alternate_aux_channel = child->aux_channel;
1495 
1496 		sanitize_aux_ch(dev_priv, port);
1497 	}
1498 
1499 	if (bdb_version >= 158) {
1500 		/* The VBT HDMI level shift values match the table we have. */
1501 		u8 hdmi_level_shift = child->hdmi_level_shifter_value;
1502 		DRM_DEBUG_KMS("VBT HDMI level shift for port %c: %d\n",
1503 			      port_name(port),
1504 			      hdmi_level_shift);
1505 		info->hdmi_level_shift = hdmi_level_shift;
1506 	}
1507 
1508 	if (bdb_version >= 204) {
1509 		int max_tmds_clock;
1510 
1511 		switch (child->hdmi_max_data_rate) {
1512 		default:
1513 			MISSING_CASE(child->hdmi_max_data_rate);
1514 			/* fall through */
1515 		case HDMI_MAX_DATA_RATE_PLATFORM:
1516 			max_tmds_clock = 0;
1517 			break;
1518 		case HDMI_MAX_DATA_RATE_297:
1519 			max_tmds_clock = 297000;
1520 			break;
1521 		case HDMI_MAX_DATA_RATE_165:
1522 			max_tmds_clock = 165000;
1523 			break;
1524 		}
1525 
1526 		if (max_tmds_clock)
1527 			DRM_DEBUG_KMS("VBT HDMI max TMDS clock for port %c: %d kHz\n",
1528 				      port_name(port), max_tmds_clock);
1529 		info->max_tmds_clock = max_tmds_clock;
1530 	}
1531 
1532 	/* Parse the I_boost config for SKL and above */
1533 	if (bdb_version >= 196 && child->iboost) {
1534 		info->dp_boost_level = translate_iboost(child->dp_iboost_level);
1535 		DRM_DEBUG_KMS("VBT (e)DP boost level for port %c: %d\n",
1536 			      port_name(port), info->dp_boost_level);
1537 		info->hdmi_boost_level = translate_iboost(child->hdmi_iboost_level);
1538 		DRM_DEBUG_KMS("VBT HDMI boost level for port %c: %d\n",
1539 			      port_name(port), info->hdmi_boost_level);
1540 	}
1541 
1542 	/* DP max link rate for CNL+ */
1543 	if (bdb_version >= 216) {
1544 		switch (child->dp_max_link_rate) {
1545 		default:
1546 		case VBT_DP_MAX_LINK_RATE_HBR3:
1547 			info->dp_max_link_rate = 810000;
1548 			break;
1549 		case VBT_DP_MAX_LINK_RATE_HBR2:
1550 			info->dp_max_link_rate = 540000;
1551 			break;
1552 		case VBT_DP_MAX_LINK_RATE_HBR:
1553 			info->dp_max_link_rate = 270000;
1554 			break;
1555 		case VBT_DP_MAX_LINK_RATE_LBR:
1556 			info->dp_max_link_rate = 162000;
1557 			break;
1558 		}
1559 		DRM_DEBUG_KMS("VBT DP max link rate for port %c: %d\n",
1560 			      port_name(port), info->dp_max_link_rate);
1561 	}
1562 
1563 	info->child = child;
1564 }
1565 
1566 static void parse_ddi_ports(struct drm_i915_private *dev_priv, u8 bdb_version)
1567 {
1568 	const struct child_device_config *child;
1569 	int i;
1570 
1571 	if (!HAS_DDI(dev_priv) && !IS_CHERRYVIEW(dev_priv))
1572 		return;
1573 
1574 	if (bdb_version < 155)
1575 		return;
1576 
1577 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1578 		child = dev_priv->vbt.child_dev + i;
1579 
1580 		parse_ddi_port(dev_priv, child, bdb_version);
1581 	}
1582 }
1583 
1584 static void
1585 parse_general_definitions(struct drm_i915_private *dev_priv,
1586 			  const struct bdb_header *bdb)
1587 {
1588 	const struct bdb_general_definitions *defs;
1589 	const struct child_device_config *child;
1590 	int i, child_device_num, count;
1591 	u8 expected_size;
1592 	u16 block_size;
1593 	int bus_pin;
1594 
1595 	defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
1596 	if (!defs) {
1597 		DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n");
1598 		return;
1599 	}
1600 
1601 	block_size = get_blocksize(defs);
1602 	if (block_size < sizeof(*defs)) {
1603 		DRM_DEBUG_KMS("General definitions block too small (%u)\n",
1604 			      block_size);
1605 		return;
1606 	}
1607 
1608 	bus_pin = defs->crt_ddc_gmbus_pin;
1609 	DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin);
1610 	if (intel_gmbus_is_valid_pin(dev_priv, bus_pin))
1611 		dev_priv->vbt.crt_ddc_pin = bus_pin;
1612 
1613 	if (bdb->version < 106) {
1614 		expected_size = 22;
1615 	} else if (bdb->version < 111) {
1616 		expected_size = 27;
1617 	} else if (bdb->version < 195) {
1618 		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
1619 	} else if (bdb->version == 195) {
1620 		expected_size = 37;
1621 	} else if (bdb->version <= 215) {
1622 		expected_size = 38;
1623 	} else if (bdb->version <= 216) {
1624 		expected_size = 39;
1625 	} else {
1626 		expected_size = sizeof(*child);
1627 		BUILD_BUG_ON(sizeof(*child) < 39);
1628 		DRM_DEBUG_DRIVER("Expected child device config size for VBT version %u not known; assuming %u\n",
1629 				 bdb->version, expected_size);
1630 	}
1631 
1632 	/* Flag an error for unexpected size, but continue anyway. */
1633 	if (defs->child_dev_size != expected_size)
1634 		DRM_ERROR("Unexpected child device config size %u (expected %u for VBT version %u)\n",
1635 			  defs->child_dev_size, expected_size, bdb->version);
1636 
1637 	/* The legacy sized child device config is the minimum we need. */
1638 	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
1639 		DRM_DEBUG_KMS("Child device config size %u is too small.\n",
1640 			      defs->child_dev_size);
1641 		return;
1642 	}
1643 
1644 	/* get the number of child device */
1645 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
1646 	count = 0;
1647 	/* get the number of child device that is present */
1648 	for (i = 0; i < child_device_num; i++) {
1649 		child = child_device_ptr(defs, i);
1650 		if (!child->device_type)
1651 			continue;
1652 		count++;
1653 	}
1654 	if (!count) {
1655 		DRM_DEBUG_KMS("no child dev is parsed from VBT\n");
1656 		return;
1657 	}
1658 	dev_priv->vbt.child_dev = kcalloc(count, sizeof(*child), GFP_KERNEL);
1659 	if (!dev_priv->vbt.child_dev) {
1660 		DRM_DEBUG_KMS("No memory space for child device\n");
1661 		return;
1662 	}
1663 
1664 	dev_priv->vbt.child_dev_num = count;
1665 	count = 0;
1666 	for (i = 0; i < child_device_num; i++) {
1667 		child = child_device_ptr(defs, i);
1668 		if (!child->device_type)
1669 			continue;
1670 
1671 		/*
1672 		 * Copy as much as we know (sizeof) and is available
1673 		 * (child_dev_size) of the child device. Accessing the data must
1674 		 * depend on VBT version.
1675 		 */
1676 		memcpy(dev_priv->vbt.child_dev + count, child,
1677 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
1678 		count++;
1679 	}
1680 }
1681 
1682 /* Common defaults which may be overridden by VBT. */
1683 static void
1684 init_vbt_defaults(struct drm_i915_private *dev_priv)
1685 {
1686 	enum port port;
1687 
1688 	dev_priv->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
1689 
1690 	/* Default to having backlight */
1691 	dev_priv->vbt.backlight.present = true;
1692 
1693 	/* LFP panel data */
1694 	dev_priv->vbt.lvds_dither = 1;
1695 
1696 	/* SDVO panel data */
1697 	dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1698 
1699 	/* general features */
1700 	dev_priv->vbt.int_tv_support = 1;
1701 	dev_priv->vbt.int_crt_support = 1;
1702 
1703 	/* driver features */
1704 	dev_priv->vbt.int_lvds_support = 1;
1705 
1706 	/* Default to using SSC */
1707 	dev_priv->vbt.lvds_use_ssc = 1;
1708 	/*
1709 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
1710 	 * clock for LVDS.
1711 	 */
1712 	dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev_priv,
1713 			!HAS_PCH_SPLIT(dev_priv));
1714 	DRM_DEBUG_KMS("Set default to SSC at %d kHz\n", dev_priv->vbt.lvds_ssc_freq);
1715 
1716 	for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1717 		struct ddi_vbt_port_info *info =
1718 			&dev_priv->vbt.ddi_port_info[port];
1719 
1720 		info->hdmi_level_shift = HDMI_LEVEL_SHIFT_UNKNOWN;
1721 	}
1722 }
1723 
1724 /* Defaults to initialize only if there is no VBT. */
1725 static void
1726 init_vbt_missing_defaults(struct drm_i915_private *dev_priv)
1727 {
1728 	enum port port;
1729 
1730 	for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1731 		struct ddi_vbt_port_info *info =
1732 			&dev_priv->vbt.ddi_port_info[port];
1733 
1734 		/*
1735 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
1736 		 * to detect it.
1737 		 */
1738 		if (intel_port_is_tc(dev_priv, port))
1739 			continue;
1740 
1741 		info->supports_dvi = (port != PORT_A && port != PORT_E);
1742 		info->supports_hdmi = info->supports_dvi;
1743 		info->supports_dp = (port != PORT_E);
1744 		info->supports_edp = (port == PORT_A);
1745 	}
1746 }
1747 
1748 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
1749 {
1750 	const void *_vbt = vbt;
1751 
1752 	return _vbt + vbt->bdb_offset;
1753 }
1754 
1755 /**
1756  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
1757  * @buf:	pointer to a buffer to validate
1758  * @size:	size of the buffer
1759  *
1760  * Returns true on valid VBT.
1761  */
1762 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
1763 {
1764 	const struct vbt_header *vbt = buf;
1765 	const struct bdb_header *bdb;
1766 
1767 	if (!vbt)
1768 		return false;
1769 
1770 	if (sizeof(struct vbt_header) > size) {
1771 		DRM_DEBUG_DRIVER("VBT header incomplete\n");
1772 		return false;
1773 	}
1774 
1775 	if (memcmp(vbt->signature, "$VBT", 4)) {
1776 		DRM_DEBUG_DRIVER("VBT invalid signature\n");
1777 		return false;
1778 	}
1779 
1780 	if (range_overflows_t(size_t,
1781 			      vbt->bdb_offset,
1782 			      sizeof(struct bdb_header),
1783 			      size)) {
1784 		DRM_DEBUG_DRIVER("BDB header incomplete\n");
1785 		return false;
1786 	}
1787 
1788 	bdb = get_bdb_header(vbt);
1789 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
1790 		DRM_DEBUG_DRIVER("BDB incomplete\n");
1791 		return false;
1792 	}
1793 
1794 	return vbt;
1795 }
1796 
1797 static const struct vbt_header *find_vbt(void __iomem *bios, size_t size)
1798 {
1799 	size_t i;
1800 
1801 	/* Scour memory looking for the VBT signature. */
1802 	for (i = 0; i + 4 < size; i++) {
1803 		void *vbt;
1804 
1805 		if (ioread32(bios + i) != *((const u32 *) "$VBT"))
1806 			continue;
1807 
1808 		/*
1809 		 * This is the one place where we explicitly discard the address
1810 		 * space (__iomem) of the BIOS/VBT.
1811 		 */
1812 		vbt = (void __force *) bios + i;
1813 		if (intel_bios_is_valid_vbt(vbt, size - i))
1814 			return vbt;
1815 
1816 		break;
1817 	}
1818 
1819 	return NULL;
1820 }
1821 
1822 /**
1823  * intel_bios_init - find VBT and initialize settings from the BIOS
1824  * @dev_priv: i915 device instance
1825  *
1826  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
1827  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
1828  * initialize some defaults if the VBT is not present at all.
1829  */
1830 void intel_bios_init(struct drm_i915_private *dev_priv)
1831 {
1832 	struct pci_dev *pdev = dev_priv->drm.pdev;
1833 	const struct vbt_header *vbt = dev_priv->opregion.vbt;
1834 	const struct bdb_header *bdb;
1835 	u8 __iomem *bios = NULL;
1836 
1837 	if (!HAS_DISPLAY(dev_priv)) {
1838 		DRM_DEBUG_KMS("Skipping VBT init due to disabled display.\n");
1839 		return;
1840 	}
1841 
1842 	init_vbt_defaults(dev_priv);
1843 
1844 	/* If the OpRegion does not have VBT, look in PCI ROM. */
1845 	if (!vbt) {
1846 		size_t size;
1847 
1848 		bios = pci_map_rom(pdev, &size);
1849 		if (!bios)
1850 			goto out;
1851 
1852 		vbt = find_vbt(bios, size);
1853 		if (!vbt)
1854 			goto out;
1855 
1856 		DRM_DEBUG_KMS("Found valid VBT in PCI ROM\n");
1857 	}
1858 
1859 	bdb = get_bdb_header(vbt);
1860 
1861 	DRM_DEBUG_KMS("VBT signature \"%.*s\", BDB version %d\n",
1862 		      (int)sizeof(vbt->signature), vbt->signature, bdb->version);
1863 
1864 	/* Grab useful general definitions */
1865 	parse_general_features(dev_priv, bdb);
1866 	parse_general_definitions(dev_priv, bdb);
1867 	parse_lfp_panel_data(dev_priv, bdb);
1868 	parse_lfp_backlight(dev_priv, bdb);
1869 	parse_sdvo_panel_data(dev_priv, bdb);
1870 	parse_driver_features(dev_priv, bdb);
1871 	parse_edp(dev_priv, bdb);
1872 	parse_psr(dev_priv, bdb);
1873 	parse_mipi_config(dev_priv, bdb);
1874 	parse_mipi_sequence(dev_priv, bdb);
1875 
1876 	/* Further processing on pre-parsed data */
1877 	parse_sdvo_device_mapping(dev_priv, bdb->version);
1878 	parse_ddi_ports(dev_priv, bdb->version);
1879 
1880 out:
1881 	if (!vbt) {
1882 		DRM_INFO("Failed to find VBIOS tables (VBT)\n");
1883 		init_vbt_missing_defaults(dev_priv);
1884 	}
1885 
1886 	if (bios)
1887 		pci_unmap_rom(pdev, bios);
1888 }
1889 
1890 /**
1891  * intel_bios_cleanup - Free any resources allocated by intel_bios_init()
1892  * @dev_priv: i915 device instance
1893  */
1894 void intel_bios_cleanup(struct drm_i915_private *dev_priv)
1895 {
1896 	kfree(dev_priv->vbt.child_dev);
1897 	dev_priv->vbt.child_dev = NULL;
1898 	dev_priv->vbt.child_dev_num = 0;
1899 	kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1900 	dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1901 	kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1902 	dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1903 	kfree(dev_priv->vbt.dsi.data);
1904 	dev_priv->vbt.dsi.data = NULL;
1905 	kfree(dev_priv->vbt.dsi.pps);
1906 	dev_priv->vbt.dsi.pps = NULL;
1907 	kfree(dev_priv->vbt.dsi.config);
1908 	dev_priv->vbt.dsi.config = NULL;
1909 	kfree(dev_priv->vbt.dsi.deassert_seq);
1910 	dev_priv->vbt.dsi.deassert_seq = NULL;
1911 }
1912 
1913 /**
1914  * intel_bios_is_tv_present - is integrated TV present in VBT
1915  * @dev_priv:	i915 device instance
1916  *
1917  * Return true if TV is present. If no child devices were parsed from VBT,
1918  * assume TV is present.
1919  */
1920 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv)
1921 {
1922 	const struct child_device_config *child;
1923 	int i;
1924 
1925 	if (!dev_priv->vbt.int_tv_support)
1926 		return false;
1927 
1928 	if (!dev_priv->vbt.child_dev_num)
1929 		return true;
1930 
1931 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1932 		child = dev_priv->vbt.child_dev + i;
1933 		/*
1934 		 * If the device type is not TV, continue.
1935 		 */
1936 		switch (child->device_type) {
1937 		case DEVICE_TYPE_INT_TV:
1938 		case DEVICE_TYPE_TV:
1939 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
1940 			break;
1941 		default:
1942 			continue;
1943 		}
1944 		/* Only when the addin_offset is non-zero, it is regarded
1945 		 * as present.
1946 		 */
1947 		if (child->addin_offset)
1948 			return true;
1949 	}
1950 
1951 	return false;
1952 }
1953 
1954 /**
1955  * intel_bios_is_lvds_present - is LVDS present in VBT
1956  * @dev_priv:	i915 device instance
1957  * @i2c_pin:	i2c pin for LVDS if present
1958  *
1959  * Return true if LVDS is present. If no child devices were parsed from VBT,
1960  * assume LVDS is present.
1961  */
1962 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin)
1963 {
1964 	const struct child_device_config *child;
1965 	int i;
1966 
1967 	if (!dev_priv->vbt.child_dev_num)
1968 		return true;
1969 
1970 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1971 		child = dev_priv->vbt.child_dev + i;
1972 
1973 		/* If the device type is not LFP, continue.
1974 		 * We have to check both the new identifiers as well as the
1975 		 * old for compatibility with some BIOSes.
1976 		 */
1977 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
1978 		    child->device_type != DEVICE_TYPE_LFP)
1979 			continue;
1980 
1981 		if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin))
1982 			*i2c_pin = child->i2c_pin;
1983 
1984 		/* However, we cannot trust the BIOS writers to populate
1985 		 * the VBT correctly.  Since LVDS requires additional
1986 		 * information from AIM blocks, a non-zero addin offset is
1987 		 * a good indicator that the LVDS is actually present.
1988 		 */
1989 		if (child->addin_offset)
1990 			return true;
1991 
1992 		/* But even then some BIOS writers perform some black magic
1993 		 * and instantiate the device without reference to any
1994 		 * additional data.  Trust that if the VBT was written into
1995 		 * the OpRegion then they have validated the LVDS's existence.
1996 		 */
1997 		if (dev_priv->opregion.vbt)
1998 			return true;
1999 	}
2000 
2001 	return false;
2002 }
2003 
2004 /**
2005  * intel_bios_is_port_present - is the specified digital port present
2006  * @dev_priv:	i915 device instance
2007  * @port:	port to check
2008  *
2009  * Return true if the device in %port is present.
2010  */
2011 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port)
2012 {
2013 	const struct child_device_config *child;
2014 	static const struct {
2015 		u16 dp, hdmi;
2016 	} port_mapping[] = {
2017 		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2018 		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2019 		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2020 		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2021 		[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2022 	};
2023 	int i;
2024 
2025 	if (HAS_DDI(dev_priv)) {
2026 		const struct ddi_vbt_port_info *port_info =
2027 			&dev_priv->vbt.ddi_port_info[port];
2028 
2029 		return port_info->supports_dp ||
2030 		       port_info->supports_dvi ||
2031 		       port_info->supports_hdmi;
2032 	}
2033 
2034 	/* FIXME maybe deal with port A as well? */
2035 	if (WARN_ON(port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
2036 		return false;
2037 
2038 	if (!dev_priv->vbt.child_dev_num)
2039 		return false;
2040 
2041 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2042 		child = dev_priv->vbt.child_dev + i;
2043 
2044 		if ((child->dvo_port == port_mapping[port].dp ||
2045 		     child->dvo_port == port_mapping[port].hdmi) &&
2046 		    (child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
2047 					   DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
2048 			return true;
2049 	}
2050 
2051 	return false;
2052 }
2053 
2054 /**
2055  * intel_bios_is_port_edp - is the device in given port eDP
2056  * @dev_priv:	i915 device instance
2057  * @port:	port to check
2058  *
2059  * Return true if the device in %port is eDP.
2060  */
2061 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
2062 {
2063 	const struct child_device_config *child;
2064 	static const short port_mapping[] = {
2065 		[PORT_B] = DVO_PORT_DPB,
2066 		[PORT_C] = DVO_PORT_DPC,
2067 		[PORT_D] = DVO_PORT_DPD,
2068 		[PORT_E] = DVO_PORT_DPE,
2069 		[PORT_F] = DVO_PORT_DPF,
2070 	};
2071 	int i;
2072 
2073 	if (HAS_DDI(dev_priv))
2074 		return dev_priv->vbt.ddi_port_info[port].supports_edp;
2075 
2076 	if (!dev_priv->vbt.child_dev_num)
2077 		return false;
2078 
2079 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2080 		child = dev_priv->vbt.child_dev + i;
2081 
2082 		if (child->dvo_port == port_mapping[port] &&
2083 		    (child->device_type & DEVICE_TYPE_eDP_BITS) ==
2084 		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
2085 			return true;
2086 	}
2087 
2088 	return false;
2089 }
2090 
2091 static bool child_dev_is_dp_dual_mode(const struct child_device_config *child,
2092 				      enum port port)
2093 {
2094 	static const struct {
2095 		u16 dp, hdmi;
2096 	} port_mapping[] = {
2097 		/*
2098 		 * Buggy VBTs may declare DP ports as having
2099 		 * HDMI type dvo_port :( So let's check both.
2100 		 */
2101 		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2102 		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2103 		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2104 		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2105 		[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2106 	};
2107 
2108 	if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
2109 		return false;
2110 
2111 	if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
2112 	    (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
2113 		return false;
2114 
2115 	if (child->dvo_port == port_mapping[port].dp)
2116 		return true;
2117 
2118 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
2119 	if (child->dvo_port == port_mapping[port].hdmi &&
2120 	    child->aux_channel != 0)
2121 		return true;
2122 
2123 	return false;
2124 }
2125 
2126 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv,
2127 				     enum port port)
2128 {
2129 	const struct child_device_config *child;
2130 	int i;
2131 
2132 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2133 		child = dev_priv->vbt.child_dev + i;
2134 
2135 		if (child_dev_is_dp_dual_mode(child, port))
2136 			return true;
2137 	}
2138 
2139 	return false;
2140 }
2141 
2142 /**
2143  * intel_bios_is_dsi_present - is DSI present in VBT
2144  * @dev_priv:	i915 device instance
2145  * @port:	port for DSI if present
2146  *
2147  * Return true if DSI is present, and return the port in %port.
2148  */
2149 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv,
2150 			       enum port *port)
2151 {
2152 	const struct child_device_config *child;
2153 	u8 dvo_port;
2154 	int i;
2155 
2156 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2157 		child = dev_priv->vbt.child_dev + i;
2158 
2159 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2160 			continue;
2161 
2162 		dvo_port = child->dvo_port;
2163 
2164 		if (dvo_port == DVO_PORT_MIPIA ||
2165 		    (dvo_port == DVO_PORT_MIPIB && INTEL_GEN(dev_priv) >= 11) ||
2166 		    (dvo_port == DVO_PORT_MIPIC && INTEL_GEN(dev_priv) < 11)) {
2167 			if (port)
2168 				*port = dvo_port - DVO_PORT_MIPIA;
2169 			return true;
2170 		} else if (dvo_port == DVO_PORT_MIPIB ||
2171 			   dvo_port == DVO_PORT_MIPIC ||
2172 			   dvo_port == DVO_PORT_MIPID) {
2173 			DRM_DEBUG_KMS("VBT has unsupported DSI port %c\n",
2174 				      port_name(dvo_port - DVO_PORT_MIPIA));
2175 		}
2176 	}
2177 
2178 	return false;
2179 }
2180 
2181 /**
2182  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
2183  * @i915:	i915 device instance
2184  * @port:	port to check
2185  *
2186  * Return true if HPD should be inverted for %port.
2187  */
2188 bool
2189 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
2190 				enum port port)
2191 {
2192 	const struct child_device_config *child =
2193 		i915->vbt.ddi_port_info[port].child;
2194 
2195 	if (WARN_ON_ONCE(!IS_GEN9_LP(i915)))
2196 		return false;
2197 
2198 	return child && child->hpd_invert;
2199 }
2200 
2201 /**
2202  * intel_bios_is_lspcon_present - if LSPCON is attached on %port
2203  * @i915:	i915 device instance
2204  * @port:	port to check
2205  *
2206  * Return true if LSPCON is present on this port
2207  */
2208 bool
2209 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
2210 			     enum port port)
2211 {
2212 	const struct child_device_config *child =
2213 		i915->vbt.ddi_port_info[port].child;
2214 
2215 	return HAS_LSPCON(i915) && child && child->lspcon;
2216 }
2217 
2218 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv,
2219 				   enum port port)
2220 {
2221 	const struct ddi_vbt_port_info *info =
2222 		&dev_priv->vbt.ddi_port_info[port];
2223 	enum aux_ch aux_ch;
2224 
2225 	if (!info->alternate_aux_channel) {
2226 		aux_ch = (enum aux_ch)port;
2227 
2228 		DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
2229 			      aux_ch_name(aux_ch), port_name(port));
2230 		return aux_ch;
2231 	}
2232 
2233 	switch (info->alternate_aux_channel) {
2234 	case DP_AUX_A:
2235 		aux_ch = AUX_CH_A;
2236 		break;
2237 	case DP_AUX_B:
2238 		aux_ch = AUX_CH_B;
2239 		break;
2240 	case DP_AUX_C:
2241 		aux_ch = AUX_CH_C;
2242 		break;
2243 	case DP_AUX_D:
2244 		aux_ch = AUX_CH_D;
2245 		break;
2246 	case DP_AUX_E:
2247 		aux_ch = AUX_CH_E;
2248 		break;
2249 	case DP_AUX_F:
2250 		aux_ch = AUX_CH_F;
2251 		break;
2252 	default:
2253 		MISSING_CASE(info->alternate_aux_channel);
2254 		aux_ch = AUX_CH_A;
2255 		break;
2256 	}
2257 
2258 	DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
2259 		      aux_ch_name(aux_ch), port_name(port));
2260 
2261 	return aux_ch;
2262 }
2263