1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <linux/debugfs.h> 29 #include <linux/firmware.h> 30 31 #include <drm/display/drm_dp_helper.h> 32 #include <drm/display/drm_dsc_helper.h> 33 #include <drm/drm_edid.h> 34 #include <drm/drm_fixed.h> 35 36 #include "soc/intel_rom.h" 37 38 #include "i915_drv.h" 39 #include "intel_display.h" 40 #include "intel_display_rpm.h" 41 #include "intel_display_types.h" 42 #include "intel_gmbus.h" 43 44 #define _INTEL_BIOS_PRIVATE 45 #include "intel_vbt_defs.h" 46 47 /** 48 * DOC: Video BIOS Table (VBT) 49 * 50 * The Video BIOS Table, or VBT, provides platform and board specific 51 * configuration information to the driver that is not discoverable or available 52 * through other means. The configuration is mostly related to display 53 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 54 * the PCI ROM. 55 * 56 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 57 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 58 * contain the actual configuration information. The VBT Header, and thus the 59 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 60 * BDB Header. The data blocks are concatenated after the BDB Header. The data 61 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 62 * data. (Block 53, the MIPI Sequence Block is an exception.) 63 * 64 * The driver parses the VBT during load. The relevant information is stored in 65 * driver private data for ease of use, and the actual VBT is not read after 66 * that. 67 */ 68 69 /* Wrapper for VBT child device config */ 70 struct intel_bios_encoder_data { 71 struct intel_display *display; 72 73 struct child_device_config child; 74 struct dsc_compression_parameters_entry *dsc; 75 struct list_head node; 76 }; 77 78 #define TARGET_ADDR1 0x70 79 #define TARGET_ADDR2 0x72 80 81 /* Get BDB block size given a pointer to Block ID. */ 82 static u32 _get_blocksize(const u8 *block_base) 83 { 84 /* The MIPI Sequence Block v3+ has a separate size field. */ 85 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 86 return *((const u32 *)(block_base + 4)); 87 else 88 return *((const u16 *)(block_base + 1)); 89 } 90 91 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 92 static u32 get_blocksize(const void *block_data) 93 { 94 return _get_blocksize(block_data - 3); 95 } 96 97 static const void * 98 find_raw_section(const void *_bdb, enum bdb_block_id section_id) 99 { 100 const struct bdb_header *bdb = _bdb; 101 const u8 *base = _bdb; 102 int index = 0; 103 u32 total, current_size; 104 enum bdb_block_id current_id; 105 106 /* skip to first section */ 107 index += bdb->header_size; 108 total = bdb->bdb_size; 109 110 /* walk the sections looking for section_id */ 111 while (index + 3 < total) { 112 current_id = *(base + index); 113 current_size = _get_blocksize(base + index); 114 index += 3; 115 116 if (index + current_size > total) 117 return NULL; 118 119 if (current_id == section_id) 120 return base + index; 121 122 index += current_size; 123 } 124 125 return NULL; 126 } 127 128 /* 129 * Offset from the start of BDB to the start of the 130 * block data (just past the block header). 131 */ 132 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) 133 { 134 const void *block; 135 136 block = find_raw_section(bdb, section_id); 137 if (!block) 138 return 0; 139 140 return block - bdb; 141 } 142 143 struct bdb_block_entry { 144 struct list_head node; 145 enum bdb_block_id section_id; 146 u8 data[]; 147 }; 148 149 static const void * 150 bdb_find_section(struct intel_display *display, 151 enum bdb_block_id section_id) 152 { 153 struct bdb_block_entry *entry; 154 155 list_for_each_entry(entry, &display->vbt.bdb_blocks, node) { 156 if (entry->section_id == section_id) 157 return entry->data + 3; 158 } 159 160 return NULL; 161 } 162 163 static const struct { 164 enum bdb_block_id section_id; 165 size_t min_size; 166 } bdb_blocks[] = { 167 { .section_id = BDB_GENERAL_FEATURES, 168 .min_size = sizeof(struct bdb_general_features), }, 169 { .section_id = BDB_GENERAL_DEFINITIONS, 170 .min_size = sizeof(struct bdb_general_definitions), }, 171 { .section_id = BDB_PSR, 172 .min_size = sizeof(struct bdb_psr), }, 173 { .section_id = BDB_DRIVER_FEATURES, 174 .min_size = sizeof(struct bdb_driver_features), }, 175 { .section_id = BDB_SDVO_LVDS_OPTIONS, 176 .min_size = sizeof(struct bdb_sdvo_lvds_options), }, 177 { .section_id = BDB_SDVO_LVDS_DTD, 178 .min_size = sizeof(struct bdb_sdvo_lvds_dtd), }, 179 { .section_id = BDB_EDP, 180 .min_size = sizeof(struct bdb_edp), }, 181 { .section_id = BDB_LFP_OPTIONS, 182 .min_size = sizeof(struct bdb_lfp_options), }, 183 /* 184 * BDB_LFP_DATA depends on BDB_LFP_DATA_PTRS, 185 * so keep the two ordered. 186 */ 187 { .section_id = BDB_LFP_DATA_PTRS, 188 .min_size = sizeof(struct bdb_lfp_data_ptrs), }, 189 { .section_id = BDB_LFP_DATA, 190 .min_size = 0, /* special case */ }, 191 { .section_id = BDB_LFP_BACKLIGHT, 192 .min_size = sizeof(struct bdb_lfp_backlight), }, 193 { .section_id = BDB_LFP_POWER, 194 .min_size = sizeof(struct bdb_lfp_power), }, 195 { .section_id = BDB_MIPI_CONFIG, 196 .min_size = sizeof(struct bdb_mipi_config), }, 197 { .section_id = BDB_MIPI_SEQUENCE, 198 .min_size = sizeof(struct bdb_mipi_sequence) }, 199 { .section_id = BDB_COMPRESSION_PARAMETERS, 200 .min_size = sizeof(struct bdb_compression_parameters), }, 201 { .section_id = BDB_GENERIC_DTD, 202 .min_size = sizeof(struct bdb_generic_dtd), }, 203 }; 204 205 static size_t lfp_data_min_size(struct intel_display *display) 206 { 207 const struct bdb_lfp_data_ptrs *ptrs; 208 size_t size; 209 210 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 211 if (!ptrs) 212 return 0; 213 214 size = sizeof(struct bdb_lfp_data); 215 if (ptrs->panel_name.table_size) 216 size = max(size, ptrs->panel_name.offset + 217 sizeof(struct bdb_lfp_data_tail)); 218 219 return size; 220 } 221 222 static bool validate_lfp_data_ptrs(const void *bdb, 223 const struct bdb_lfp_data_ptrs *ptrs) 224 { 225 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; 226 int data_block_size, lfp_data_size; 227 const void *data_block; 228 int i; 229 230 data_block = find_raw_section(bdb, BDB_LFP_DATA); 231 if (!data_block) 232 return false; 233 234 data_block_size = get_blocksize(data_block); 235 if (data_block_size == 0) 236 return false; 237 238 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ 239 if (ptrs->num_entries != 3) 240 return false; 241 242 fp_timing_size = ptrs->ptr[0].fp_timing.table_size; 243 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; 244 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; 245 panel_name_size = ptrs->panel_name.table_size; 246 247 /* fp_timing has variable size */ 248 if (fp_timing_size < 32 || 249 dvo_timing_size != sizeof(struct bdb_edid_dtd) || 250 panel_pnp_id_size != sizeof(struct bdb_edid_pnp_id)) 251 return false; 252 253 /* panel_name is not present in old VBTs */ 254 if (panel_name_size != 0 && 255 panel_name_size != sizeof(struct bdb_edid_product_name)) 256 return false; 257 258 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; 259 if (16 * lfp_data_size > data_block_size) 260 return false; 261 262 /* make sure the table entries have uniform size */ 263 for (i = 1; i < 16; i++) { 264 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || 265 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || 266 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) 267 return false; 268 269 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || 270 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || 271 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) 272 return false; 273 } 274 275 /* 276 * Except for vlv/chv machines all real VBTs seem to have 6 277 * unaccounted bytes in the fp_timing table. And it doesn't 278 * appear to be a really intentional hole as the fp_timing 279 * 0xffff terminator is always within those 6 missing bytes. 280 */ 281 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size) 282 fp_timing_size += 6; 283 284 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size) 285 return false; 286 287 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset || 288 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || 289 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) 290 return false; 291 292 /* make sure the tables fit inside the data block */ 293 for (i = 0; i < 16; i++) { 294 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || 295 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || 296 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) 297 return false; 298 } 299 300 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) 301 return false; 302 303 /* make sure fp_timing terminators are present at expected locations */ 304 for (i = 0; i < 16; i++) { 305 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset + 306 fp_timing_size - 2; 307 308 if (*t != 0xffff) 309 return false; 310 } 311 312 return true; 313 } 314 315 /* make the data table offsets relative to the data block */ 316 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) 317 { 318 struct bdb_lfp_data_ptrs *ptrs = ptrs_block; 319 u32 offset; 320 int i; 321 322 offset = raw_block_offset(bdb, BDB_LFP_DATA); 323 324 for (i = 0; i < 16; i++) { 325 if (ptrs->ptr[i].fp_timing.offset < offset || 326 ptrs->ptr[i].dvo_timing.offset < offset || 327 ptrs->ptr[i].panel_pnp_id.offset < offset) 328 return false; 329 330 ptrs->ptr[i].fp_timing.offset -= offset; 331 ptrs->ptr[i].dvo_timing.offset -= offset; 332 ptrs->ptr[i].panel_pnp_id.offset -= offset; 333 } 334 335 if (ptrs->panel_name.table_size) { 336 if (ptrs->panel_name.offset < offset) 337 return false; 338 339 ptrs->panel_name.offset -= offset; 340 } 341 342 return validate_lfp_data_ptrs(bdb, ptrs); 343 } 344 345 static int make_lfp_data_ptr(struct lfp_data_ptr_table *table, 346 int table_size, int total_size) 347 { 348 if (total_size < table_size) 349 return total_size; 350 351 table->table_size = table_size; 352 table->offset = total_size - table_size; 353 354 return total_size - table_size; 355 } 356 357 static void next_lfp_data_ptr(struct lfp_data_ptr_table *next, 358 const struct lfp_data_ptr_table *prev, 359 int size) 360 { 361 next->table_size = prev->table_size; 362 next->offset = prev->offset + size; 363 } 364 365 static void *generate_lfp_data_ptrs(struct intel_display *display, 366 const void *bdb) 367 { 368 int i, size, table_size, block_size, offset, fp_timing_size; 369 struct bdb_lfp_data_ptrs *ptrs; 370 const void *block; 371 void *ptrs_block; 372 373 /* 374 * The hardcoded fp_timing_size is only valid for 375 * modernish VBTs. All older VBTs definitely should 376 * include block 41 and thus we don't need to 377 * generate one. 378 */ 379 if (display->vbt.version < 155) 380 return NULL; 381 382 fp_timing_size = 38; 383 384 block = find_raw_section(bdb, BDB_LFP_DATA); 385 if (!block) 386 return NULL; 387 388 drm_dbg_kms(display->drm, "Generating LFP data table pointers\n"); 389 390 block_size = get_blocksize(block); 391 392 size = fp_timing_size + sizeof(struct bdb_edid_dtd) + 393 sizeof(struct bdb_edid_pnp_id); 394 if (size * 16 > block_size) 395 return NULL; 396 397 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); 398 if (!ptrs_block) 399 return NULL; 400 401 *(u8 *)(ptrs_block + 0) = BDB_LFP_DATA_PTRS; 402 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); 403 ptrs = ptrs_block + 3; 404 405 table_size = sizeof(struct bdb_edid_pnp_id); 406 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); 407 408 table_size = sizeof(struct bdb_edid_dtd); 409 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); 410 411 table_size = fp_timing_size; 412 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); 413 414 if (ptrs->ptr[0].fp_timing.table_size) 415 ptrs->num_entries++; 416 if (ptrs->ptr[0].dvo_timing.table_size) 417 ptrs->num_entries++; 418 if (ptrs->ptr[0].panel_pnp_id.table_size) 419 ptrs->num_entries++; 420 421 if (size != 0 || ptrs->num_entries != 3) { 422 kfree(ptrs_block); 423 return NULL; 424 } 425 426 size = fp_timing_size + sizeof(struct bdb_edid_dtd) + 427 sizeof(struct bdb_edid_pnp_id); 428 for (i = 1; i < 16; i++) { 429 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); 430 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); 431 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); 432 } 433 434 table_size = sizeof(struct bdb_edid_product_name); 435 436 if (16 * (size + table_size) <= block_size) { 437 ptrs->panel_name.table_size = table_size; 438 ptrs->panel_name.offset = size * 16; 439 } 440 441 offset = block - bdb; 442 443 for (i = 0; i < 16; i++) { 444 ptrs->ptr[i].fp_timing.offset += offset; 445 ptrs->ptr[i].dvo_timing.offset += offset; 446 ptrs->ptr[i].panel_pnp_id.offset += offset; 447 } 448 449 if (ptrs->panel_name.table_size) 450 ptrs->panel_name.offset += offset; 451 452 return ptrs_block; 453 } 454 455 static void 456 init_bdb_block(struct intel_display *display, 457 const void *bdb, enum bdb_block_id section_id, 458 size_t min_size) 459 { 460 struct bdb_block_entry *entry; 461 void *temp_block = NULL; 462 const void *block; 463 size_t block_size; 464 465 block = find_raw_section(bdb, section_id); 466 467 /* Modern VBTs lack the LFP data table pointers block, make one up */ 468 if (!block && section_id == BDB_LFP_DATA_PTRS) { 469 temp_block = generate_lfp_data_ptrs(display, bdb); 470 if (temp_block) 471 block = temp_block + 3; 472 } 473 if (!block) 474 return; 475 476 drm_WARN(display->drm, min_size == 0, 477 "Block %d min_size is zero\n", section_id); 478 479 block_size = get_blocksize(block); 480 481 /* 482 * Version number and new block size are considered 483 * part of the header for MIPI sequenece block v3+. 484 */ 485 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3) 486 block_size += 5; 487 488 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), 489 GFP_KERNEL); 490 if (!entry) { 491 kfree(temp_block); 492 return; 493 } 494 495 entry->section_id = section_id; 496 memcpy(entry->data, block - 3, block_size + 3); 497 498 kfree(temp_block); 499 500 drm_dbg_kms(display->drm, 501 "Found BDB block %d (size %zu, min size %zu)\n", 502 section_id, block_size, min_size); 503 504 if (section_id == BDB_LFP_DATA_PTRS && 505 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { 506 drm_err(display->drm, 507 "VBT has malformed LFP data table pointers\n"); 508 kfree(entry); 509 return; 510 } 511 512 list_add_tail(&entry->node, &display->vbt.bdb_blocks); 513 } 514 515 static void init_bdb_blocks(struct intel_display *display, 516 const void *bdb) 517 { 518 int i; 519 520 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { 521 enum bdb_block_id section_id = bdb_blocks[i].section_id; 522 size_t min_size = bdb_blocks[i].min_size; 523 524 if (section_id == BDB_LFP_DATA) 525 min_size = lfp_data_min_size(display); 526 527 init_bdb_block(display, bdb, section_id, min_size); 528 } 529 } 530 531 static void 532 fill_detail_timing_data(struct intel_display *display, 533 struct drm_display_mode *panel_fixed_mode, 534 const struct bdb_edid_dtd *dvo_timing) 535 { 536 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 537 dvo_timing->hactive_lo; 538 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 539 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 540 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 541 ((dvo_timing->hsync_pulse_width_hi << 8) | 542 dvo_timing->hsync_pulse_width_lo); 543 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 544 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 545 546 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 547 dvo_timing->vactive_lo; 548 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 549 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 550 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 551 ((dvo_timing->vsync_pulse_width_hi << 4) | 552 dvo_timing->vsync_pulse_width_lo); 553 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 554 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 555 panel_fixed_mode->clock = dvo_timing->clock * 10; 556 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 557 558 if (dvo_timing->hsync_positive) 559 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 560 else 561 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 562 563 if (dvo_timing->vsync_positive) 564 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 565 else 566 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 567 568 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 569 dvo_timing->himage_lo; 570 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 571 dvo_timing->vimage_lo; 572 573 /* Some VBTs have bogus h/vsync_end values */ 574 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) { 575 drm_dbg_kms(display->drm, "reducing hsync_end %d->%d\n", 576 panel_fixed_mode->hsync_end, panel_fixed_mode->htotal); 577 panel_fixed_mode->hsync_end = panel_fixed_mode->htotal; 578 } 579 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) { 580 drm_dbg_kms(display->drm, "reducing vsync_end %d->%d\n", 581 panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal); 582 panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal; 583 } 584 585 drm_mode_set_name(panel_fixed_mode); 586 } 587 588 static const struct bdb_edid_dtd * 589 get_lfp_dvo_timing(const struct bdb_lfp_data *data, 590 const struct bdb_lfp_data_ptrs *ptrs, 591 int index) 592 { 593 return (const void *)data + ptrs->ptr[index].dvo_timing.offset; 594 } 595 596 static const struct fp_timing * 597 get_lfp_fp_timing(const struct bdb_lfp_data *data, 598 const struct bdb_lfp_data_ptrs *ptrs, 599 int index) 600 { 601 return (const void *)data + ptrs->ptr[index].fp_timing.offset; 602 } 603 604 static const struct drm_edid_product_id * 605 get_lfp_pnp_id(const struct bdb_lfp_data *data, 606 const struct bdb_lfp_data_ptrs *ptrs, 607 int index) 608 { 609 /* These two are supposed to have the same layout in memory. */ 610 BUILD_BUG_ON(sizeof(struct bdb_edid_pnp_id) != sizeof(struct drm_edid_product_id)); 611 612 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; 613 } 614 615 static const struct bdb_lfp_data_tail * 616 get_lfp_data_tail(const struct bdb_lfp_data *data, 617 const struct bdb_lfp_data_ptrs *ptrs) 618 { 619 if (ptrs->panel_name.table_size) 620 return (const void *)data + ptrs->panel_name.offset; 621 else 622 return NULL; 623 } 624 625 static int opregion_get_panel_type(struct intel_display *display, 626 const struct intel_bios_encoder_data *devdata, 627 const struct drm_edid *drm_edid, bool use_fallback) 628 { 629 return intel_opregion_get_panel_type(display); 630 } 631 632 static int vbt_get_panel_type(struct intel_display *display, 633 const struct intel_bios_encoder_data *devdata, 634 const struct drm_edid *drm_edid, bool use_fallback) 635 { 636 const struct bdb_lfp_options *lfp_options; 637 638 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS); 639 if (!lfp_options) 640 return -1; 641 642 if (lfp_options->panel_type > 0xf && 643 lfp_options->panel_type != 0xff) { 644 drm_dbg_kms(display->drm, "Invalid VBT panel type 0x%x\n", 645 lfp_options->panel_type); 646 return -1; 647 } 648 649 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) 650 return lfp_options->panel_type2; 651 652 drm_WARN_ON(display->drm, 653 devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); 654 655 return lfp_options->panel_type; 656 } 657 658 static int pnpid_get_panel_type(struct intel_display *display, 659 const struct intel_bios_encoder_data *devdata, 660 const struct drm_edid *drm_edid, bool use_fallback) 661 { 662 const struct bdb_lfp_data *data; 663 const struct bdb_lfp_data_ptrs *ptrs; 664 struct drm_edid_product_id product_id, product_id_nodate; 665 struct drm_printer p; 666 int i, best = -1; 667 668 if (!drm_edid) 669 return -1; 670 671 drm_edid_get_product_id(drm_edid, &product_id); 672 673 product_id_nodate = product_id; 674 product_id_nodate.week_of_manufacture = 0; 675 product_id_nodate.year_of_manufacture = 0; 676 677 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "EDID"); 678 drm_edid_print_product_id(&p, &product_id, true); 679 680 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 681 if (!ptrs) 682 return -1; 683 684 data = bdb_find_section(display, BDB_LFP_DATA); 685 if (!data) 686 return -1; 687 688 for (i = 0; i < 16; i++) { 689 const struct drm_edid_product_id *vbt_id = 690 get_lfp_pnp_id(data, ptrs, i); 691 692 /* full match? */ 693 if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id))) 694 return i; 695 696 /* 697 * Accept a match w/o date if no full match is found, 698 * and the VBT entry does not specify a date. 699 */ 700 if (best < 0 && 701 !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id))) 702 best = i; 703 } 704 705 return best; 706 } 707 708 static int fallback_get_panel_type(struct intel_display *display, 709 const struct intel_bios_encoder_data *devdata, 710 const struct drm_edid *drm_edid, bool use_fallback) 711 { 712 return use_fallback ? 0 : -1; 713 } 714 715 enum panel_type { 716 PANEL_TYPE_OPREGION, 717 PANEL_TYPE_VBT, 718 PANEL_TYPE_PNPID, 719 PANEL_TYPE_FALLBACK, 720 }; 721 722 static int get_panel_type(struct intel_display *display, 723 const struct intel_bios_encoder_data *devdata, 724 const struct drm_edid *drm_edid, bool use_fallback) 725 { 726 struct { 727 const char *name; 728 int (*get_panel_type)(struct intel_display *display, 729 const struct intel_bios_encoder_data *devdata, 730 const struct drm_edid *drm_edid, bool use_fallback); 731 int panel_type; 732 } panel_types[] = { 733 [PANEL_TYPE_OPREGION] = { 734 .name = "OpRegion", 735 .get_panel_type = opregion_get_panel_type, 736 }, 737 [PANEL_TYPE_VBT] = { 738 .name = "VBT", 739 .get_panel_type = vbt_get_panel_type, 740 }, 741 [PANEL_TYPE_PNPID] = { 742 .name = "PNPID", 743 .get_panel_type = pnpid_get_panel_type, 744 }, 745 [PANEL_TYPE_FALLBACK] = { 746 .name = "fallback", 747 .get_panel_type = fallback_get_panel_type, 748 }, 749 }; 750 int i; 751 752 for (i = 0; i < ARRAY_SIZE(panel_types); i++) { 753 panel_types[i].panel_type = panel_types[i].get_panel_type(display, devdata, 754 drm_edid, use_fallback); 755 756 drm_WARN_ON(display->drm, panel_types[i].panel_type > 0xf && 757 panel_types[i].panel_type != 0xff); 758 759 if (panel_types[i].panel_type >= 0) 760 drm_dbg_kms(display->drm, "Panel type (%s): %d\n", 761 panel_types[i].name, panel_types[i].panel_type); 762 } 763 764 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) 765 i = PANEL_TYPE_OPREGION; 766 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && 767 panel_types[PANEL_TYPE_PNPID].panel_type >= 0) 768 i = PANEL_TYPE_PNPID; 769 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && 770 panel_types[PANEL_TYPE_VBT].panel_type >= 0) 771 i = PANEL_TYPE_VBT; 772 else 773 i = PANEL_TYPE_FALLBACK; 774 775 drm_dbg_kms(display->drm, "Selected panel type (%s): %d\n", 776 panel_types[i].name, panel_types[i].panel_type); 777 778 return panel_types[i].panel_type; 779 } 780 781 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) 782 { 783 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); 784 } 785 786 static bool panel_bool(unsigned int value, int panel_type) 787 { 788 return panel_bits(value, panel_type, 1); 789 } 790 791 /* Parse general panel options */ 792 static void 793 parse_panel_options(struct intel_display *display, 794 struct intel_panel *panel) 795 { 796 const struct bdb_lfp_options *lfp_options; 797 int panel_type = panel->vbt.panel_type; 798 int drrs_mode; 799 800 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS); 801 if (!lfp_options) 802 return; 803 804 panel->vbt.lvds_dither = lfp_options->pixel_dither; 805 806 /* 807 * Empirical evidence indicates the block size can be 808 * either 4,14,16,24+ bytes. For older VBTs no clear 809 * relationship between the block size vs. BDB version. 810 */ 811 if (get_blocksize(lfp_options) < 16) 812 return; 813 814 drrs_mode = panel_bits(lfp_options->dps_panel_type_bits, 815 panel_type, 2); 816 /* 817 * VBT has static DRRS = 0 and seamless DRRS = 2. 818 * The below piece of code is required to adjust vbt.drrs_type 819 * to match the enum drrs_support_type. 820 */ 821 switch (drrs_mode) { 822 case 0: 823 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 824 drm_dbg_kms(display->drm, "DRRS supported mode is static\n"); 825 break; 826 case 2: 827 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; 828 drm_dbg_kms(display->drm, 829 "DRRS supported mode is seamless\n"); 830 break; 831 default: 832 panel->vbt.drrs_type = DRRS_TYPE_NONE; 833 drm_dbg_kms(display->drm, 834 "DRRS not supported (VBT input)\n"); 835 break; 836 } 837 } 838 839 static void 840 parse_lfp_panel_dtd(struct intel_display *display, 841 struct intel_panel *panel, 842 const struct bdb_lfp_data *lfp_data, 843 const struct bdb_lfp_data_ptrs *lfp_data_ptrs) 844 { 845 const struct bdb_edid_dtd *panel_dvo_timing; 846 const struct fp_timing *fp_timing; 847 struct drm_display_mode *panel_fixed_mode; 848 int panel_type = panel->vbt.panel_type; 849 850 panel_dvo_timing = get_lfp_dvo_timing(lfp_data, 851 lfp_data_ptrs, 852 panel_type); 853 854 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 855 if (!panel_fixed_mode) 856 return; 857 858 fill_detail_timing_data(display, panel_fixed_mode, panel_dvo_timing); 859 860 panel->vbt.lfp_vbt_mode = panel_fixed_mode; 861 862 drm_dbg_kms(display->drm, 863 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", 864 DRM_MODE_ARG(panel_fixed_mode)); 865 866 fp_timing = get_lfp_fp_timing(lfp_data, 867 lfp_data_ptrs, 868 panel_type); 869 870 /* check the resolution, just to be sure */ 871 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 872 fp_timing->y_res == panel_fixed_mode->vdisplay) { 873 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 874 drm_dbg_kms(display->drm, 875 "VBT initial LVDS value %x\n", 876 panel->vbt.bios_lvds_val); 877 } 878 } 879 880 static void 881 parse_lfp_data(struct intel_display *display, 882 struct intel_panel *panel) 883 { 884 const struct bdb_lfp_data *data; 885 const struct bdb_lfp_data_tail *tail; 886 const struct bdb_lfp_data_ptrs *ptrs; 887 const struct drm_edid_product_id *pnp_id; 888 struct drm_printer p; 889 int panel_type = panel->vbt.panel_type; 890 891 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 892 if (!ptrs) 893 return; 894 895 data = bdb_find_section(display, BDB_LFP_DATA); 896 if (!data) 897 return; 898 899 if (!panel->vbt.lfp_vbt_mode) 900 parse_lfp_panel_dtd(display, panel, data, ptrs); 901 902 pnp_id = get_lfp_pnp_id(data, ptrs, panel_type); 903 904 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "Panel"); 905 drm_edid_print_product_id(&p, pnp_id, false); 906 907 tail = get_lfp_data_tail(data, ptrs); 908 if (!tail) 909 return; 910 911 drm_dbg_kms(display->drm, "Panel name: %.*s\n", 912 (int)sizeof(tail->panel_name[0].name), 913 tail->panel_name[panel_type].name); 914 915 if (display->vbt.version >= 188) { 916 panel->vbt.seamless_drrs_min_refresh_rate = 917 tail->seamless_drrs_min_refresh_rate[panel_type]; 918 drm_dbg_kms(display->drm, 919 "Seamless DRRS min refresh rate: %d Hz\n", 920 panel->vbt.seamless_drrs_min_refresh_rate); 921 } 922 } 923 924 static void 925 parse_generic_dtd(struct intel_display *display, 926 struct intel_panel *panel) 927 { 928 const struct bdb_generic_dtd *generic_dtd; 929 const struct generic_dtd_entry *dtd; 930 struct drm_display_mode *panel_fixed_mode; 931 int num_dtd; 932 933 /* 934 * Older VBTs provided DTD information for internal displays through 935 * the "LFP panel tables" block (42). As of VBT revision 229 the 936 * DTD information should be provided via a newer "generic DTD" 937 * block (58). Just to be safe, we'll try the new generic DTD block 938 * first on VBT >= 229, but still fall back to trying the old LFP 939 * block if that fails. 940 */ 941 if (display->vbt.version < 229) 942 return; 943 944 generic_dtd = bdb_find_section(display, BDB_GENERIC_DTD); 945 if (!generic_dtd) 946 return; 947 948 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 949 drm_err(display->drm, "GDTD size %u is too small.\n", 950 generic_dtd->gdtd_size); 951 return; 952 } else if (generic_dtd->gdtd_size != 953 sizeof(struct generic_dtd_entry)) { 954 drm_err(display->drm, "Unexpected GDTD size %u\n", 955 generic_dtd->gdtd_size); 956 /* DTD has unknown fields, but keep going */ 957 } 958 959 num_dtd = (get_blocksize(generic_dtd) - 960 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 961 if (panel->vbt.panel_type >= num_dtd) { 962 drm_err(display->drm, 963 "Panel type %d not found in table of %d DTD's\n", 964 panel->vbt.panel_type, num_dtd); 965 return; 966 } 967 968 dtd = &generic_dtd->dtd[panel->vbt.panel_type]; 969 970 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 971 if (!panel_fixed_mode) 972 return; 973 974 panel_fixed_mode->hdisplay = dtd->hactive; 975 panel_fixed_mode->hsync_start = 976 panel_fixed_mode->hdisplay + dtd->hfront_porch; 977 panel_fixed_mode->hsync_end = 978 panel_fixed_mode->hsync_start + dtd->hsync; 979 panel_fixed_mode->htotal = 980 panel_fixed_mode->hdisplay + dtd->hblank; 981 982 panel_fixed_mode->vdisplay = dtd->vactive; 983 panel_fixed_mode->vsync_start = 984 panel_fixed_mode->vdisplay + dtd->vfront_porch; 985 panel_fixed_mode->vsync_end = 986 panel_fixed_mode->vsync_start + dtd->vsync; 987 panel_fixed_mode->vtotal = 988 panel_fixed_mode->vdisplay + dtd->vblank; 989 990 panel_fixed_mode->clock = dtd->pixel_clock; 991 panel_fixed_mode->width_mm = dtd->width_mm; 992 panel_fixed_mode->height_mm = dtd->height_mm; 993 994 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 995 drm_mode_set_name(panel_fixed_mode); 996 997 if (dtd->hsync_positive_polarity) 998 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 999 else 1000 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 1001 1002 if (dtd->vsync_positive_polarity) 1003 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 1004 else 1005 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 1006 1007 drm_dbg_kms(display->drm, 1008 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", 1009 DRM_MODE_ARG(panel_fixed_mode)); 1010 1011 panel->vbt.lfp_vbt_mode = panel_fixed_mode; 1012 } 1013 1014 static void 1015 parse_lfp_backlight(struct intel_display *display, 1016 struct intel_panel *panel) 1017 { 1018 const struct bdb_lfp_backlight *backlight_data; 1019 const struct lfp_backlight_data_entry *entry; 1020 int panel_type = panel->vbt.panel_type; 1021 u16 level; 1022 1023 backlight_data = bdb_find_section(display, BDB_LFP_BACKLIGHT); 1024 if (!backlight_data) 1025 return; 1026 1027 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 1028 drm_dbg_kms(display->drm, 1029 "Unsupported backlight data entry size %u\n", 1030 backlight_data->entry_size); 1031 return; 1032 } 1033 1034 entry = &backlight_data->data[panel_type]; 1035 1036 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 1037 if (!panel->vbt.backlight.present) { 1038 drm_dbg_kms(display->drm, 1039 "PWM backlight not present in VBT (type %u)\n", 1040 entry->type); 1041 return; 1042 } 1043 1044 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 1045 panel->vbt.backlight.controller = 0; 1046 if (display->vbt.version >= 191) { 1047 const struct lfp_backlight_control_method *method; 1048 1049 method = &backlight_data->backlight_control[panel_type]; 1050 panel->vbt.backlight.type = method->type; 1051 panel->vbt.backlight.controller = method->controller; 1052 } 1053 1054 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 1055 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; 1056 1057 if (display->vbt.version >= 234) { 1058 u16 min_level; 1059 bool scale; 1060 1061 level = backlight_data->brightness_level[panel_type].level; 1062 min_level = backlight_data->brightness_min_level[panel_type].level; 1063 1064 if (display->vbt.version >= 236) 1065 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 1066 else 1067 scale = level > 255; 1068 1069 if (scale) 1070 min_level = min_level / 255; 1071 1072 if (min_level > 255) { 1073 drm_warn(display->drm, "Brightness min level > 255\n"); 1074 level = 255; 1075 } 1076 panel->vbt.backlight.min_brightness = min_level; 1077 1078 panel->vbt.backlight.brightness_precision_bits = 1079 backlight_data->brightness_precision_bits[panel_type]; 1080 } else { 1081 level = backlight_data->level[panel_type]; 1082 panel->vbt.backlight.min_brightness = entry->min_brightness; 1083 } 1084 1085 if (display->vbt.version >= 239) 1086 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 1087 DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100); 1088 else 1089 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30; 1090 1091 drm_dbg_kms(display->drm, 1092 "VBT backlight PWM modulation frequency %u Hz, " 1093 "active %s, min brightness %u, level %u, controller %u\n", 1094 panel->vbt.backlight.pwm_freq_hz, 1095 panel->vbt.backlight.active_low_pwm ? "low" : "high", 1096 panel->vbt.backlight.min_brightness, 1097 level, 1098 panel->vbt.backlight.controller); 1099 } 1100 1101 static void 1102 parse_sdvo_lvds_data(struct intel_display *display, 1103 struct intel_panel *panel) 1104 { 1105 const struct bdb_sdvo_lvds_dtd *dtd; 1106 struct drm_display_mode *panel_fixed_mode; 1107 int index; 1108 1109 index = display->params.vbt_sdvo_panel_type; 1110 if (index == -2) { 1111 drm_dbg_kms(display->drm, 1112 "Ignore SDVO LVDS mode from BIOS VBT tables.\n"); 1113 return; 1114 } 1115 1116 if (index == -1) { 1117 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 1118 1119 sdvo_lvds_options = bdb_find_section(display, BDB_SDVO_LVDS_OPTIONS); 1120 if (!sdvo_lvds_options) 1121 return; 1122 1123 index = sdvo_lvds_options->panel_type; 1124 } 1125 1126 dtd = bdb_find_section(display, BDB_SDVO_LVDS_DTD); 1127 if (!dtd) 1128 return; 1129 1130 /* 1131 * This should not happen, as long as the panel_type 1132 * enumeration doesn't grow over 4 items. But if it does, it 1133 * could lead to hard-to-detect bugs, so better double-check 1134 * it here to be sure. 1135 */ 1136 if (index >= ARRAY_SIZE(dtd->dtd)) { 1137 drm_err(display->drm, 1138 "index %d is larger than dtd->dtd[4] array\n", 1139 index); 1140 return; 1141 } 1142 1143 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 1144 if (!panel_fixed_mode) 1145 return; 1146 1147 fill_detail_timing_data(display, panel_fixed_mode, &dtd->dtd[index]); 1148 1149 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 1150 1151 drm_dbg_kms(display->drm, 1152 "Found SDVO LVDS mode in BIOS VBT tables: " DRM_MODE_FMT "\n", 1153 DRM_MODE_ARG(panel_fixed_mode)); 1154 } 1155 1156 static int intel_bios_ssc_frequency(struct intel_display *display, 1157 bool alternate) 1158 { 1159 switch (DISPLAY_VER(display)) { 1160 case 2: 1161 return alternate ? 66667 : 48000; 1162 case 3: 1163 case 4: 1164 return alternate ? 100000 : 96000; 1165 default: 1166 return alternate ? 100000 : 120000; 1167 } 1168 } 1169 1170 static void 1171 parse_general_features(struct intel_display *display) 1172 { 1173 const struct bdb_general_features *general; 1174 1175 general = bdb_find_section(display, BDB_GENERAL_FEATURES); 1176 if (!general) 1177 return; 1178 1179 display->vbt.int_tv_support = general->int_tv_support; 1180 /* int_crt_support can't be trusted on earlier platforms */ 1181 if (display->vbt.version >= 155 && 1182 (HAS_DDI(display) || display->platform.valleyview)) 1183 display->vbt.int_crt_support = general->int_crt_support; 1184 display->vbt.lvds_use_ssc = general->enable_ssc; 1185 display->vbt.lvds_ssc_freq = 1186 intel_bios_ssc_frequency(display, general->ssc_freq); 1187 display->vbt.display_clock_mode = general->display_clock_mode; 1188 display->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 1189 if (display->vbt.version >= 181) { 1190 display->vbt.orientation = general->rotate_180 ? 1191 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 1192 DRM_MODE_PANEL_ORIENTATION_NORMAL; 1193 } else { 1194 display->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1195 } 1196 1197 if (display->vbt.version >= 249 && general->afc_startup_config) { 1198 display->vbt.override_afc_startup = true; 1199 display->vbt.override_afc_startup_val = general->afc_startup_config == 1 ? 0 : 7; 1200 } 1201 1202 drm_dbg_kms(display->drm, 1203 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 1204 display->vbt.int_tv_support, 1205 display->vbt.int_crt_support, 1206 display->vbt.lvds_use_ssc, 1207 display->vbt.lvds_ssc_freq, 1208 display->vbt.display_clock_mode, 1209 display->vbt.fdi_rx_polarity_inverted); 1210 } 1211 1212 static const struct child_device_config * 1213 child_device_ptr(const struct bdb_general_definitions *defs, int i) 1214 { 1215 return (const void *) &defs->devices[i * defs->child_dev_size]; 1216 } 1217 1218 static void 1219 parse_sdvo_device_mapping(struct intel_display *display) 1220 { 1221 const struct intel_bios_encoder_data *devdata; 1222 int count = 0; 1223 1224 /* 1225 * Only parse SDVO mappings on gens that could have SDVO. This isn't 1226 * accurate and doesn't have to be, as long as it's not too strict. 1227 */ 1228 if (!IS_DISPLAY_VER(display, 3, 7)) { 1229 drm_dbg_kms(display->drm, "Skipping SDVO device mapping\n"); 1230 return; 1231 } 1232 1233 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 1234 const struct child_device_config *child = &devdata->child; 1235 struct sdvo_device_mapping *mapping; 1236 1237 if (child->target_addr != TARGET_ADDR1 && 1238 child->target_addr != TARGET_ADDR2) { 1239 /* 1240 * If the target address is neither 0x70 nor 0x72, 1241 * it is not a SDVO device. Skip it. 1242 */ 1243 continue; 1244 } 1245 if (child->dvo_port != DEVICE_PORT_DVOB && 1246 child->dvo_port != DEVICE_PORT_DVOC) { 1247 /* skip the incorrect SDVO port */ 1248 drm_dbg_kms(display->drm, 1249 "Incorrect SDVO port. Skip it\n"); 1250 continue; 1251 } 1252 drm_dbg_kms(display->drm, 1253 "the SDVO device with target addr %2x is found on" 1254 " %s port\n", 1255 child->target_addr, 1256 (child->dvo_port == DEVICE_PORT_DVOB) ? 1257 "SDVOB" : "SDVOC"); 1258 mapping = &display->vbt.sdvo_mappings[child->dvo_port - 1]; 1259 if (!mapping->initialized) { 1260 mapping->dvo_port = child->dvo_port; 1261 mapping->target_addr = child->target_addr; 1262 mapping->dvo_wiring = child->dvo_wiring; 1263 mapping->ddc_pin = child->ddc_pin; 1264 mapping->i2c_pin = child->i2c_pin; 1265 mapping->initialized = 1; 1266 drm_dbg_kms(display->drm, 1267 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 1268 mapping->dvo_port, mapping->target_addr, 1269 mapping->dvo_wiring, mapping->ddc_pin, 1270 mapping->i2c_pin); 1271 } else { 1272 drm_dbg_kms(display->drm, 1273 "Maybe one SDVO port is shared by " 1274 "two SDVO device.\n"); 1275 } 1276 if (child->target2_addr) { 1277 /* Maybe this is a SDVO device with multiple inputs */ 1278 /* And the mapping info is not added */ 1279 drm_dbg_kms(display->drm, 1280 "there exists the target2_addr. Maybe this" 1281 " is a SDVO device with multiple inputs.\n"); 1282 } 1283 count++; 1284 } 1285 1286 if (!count) { 1287 /* No SDVO device info is found */ 1288 drm_dbg_kms(display->drm, 1289 "No SDVO device info is found in VBT\n"); 1290 } 1291 } 1292 1293 static void 1294 parse_driver_features(struct intel_display *display) 1295 { 1296 const struct bdb_driver_features *driver; 1297 1298 driver = bdb_find_section(display, BDB_DRIVER_FEATURES); 1299 if (!driver) 1300 return; 1301 1302 if (DISPLAY_VER(display) >= 5) { 1303 /* 1304 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 1305 * to mean "eDP". The VBT spec doesn't agree with that 1306 * interpretation, but real world VBTs seem to. 1307 */ 1308 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 1309 display->vbt.int_lvds_support = 0; 1310 } else { 1311 /* 1312 * FIXME it's not clear which BDB version has the LVDS config 1313 * bits defined. Revision history in the VBT spec says: 1314 * "0.92 | Add two definitions for VBT value of LVDS Active 1315 * Config (00b and 11b values defined) | 06/13/2005" 1316 * but does not the specify the BDB version. 1317 * 1318 * So far version 134 (on i945gm) is the oldest VBT observed 1319 * in the wild with the bits correctly populated. Version 1320 * 108 (on i85x) does not have the bits correctly populated. 1321 */ 1322 if (display->vbt.version >= 134 && 1323 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 1324 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 1325 display->vbt.int_lvds_support = 0; 1326 } 1327 } 1328 1329 static void 1330 parse_panel_driver_features(struct intel_display *display, 1331 struct intel_panel *panel) 1332 { 1333 const struct bdb_driver_features *driver; 1334 1335 driver = bdb_find_section(display, BDB_DRIVER_FEATURES); 1336 if (!driver) 1337 return; 1338 1339 if (display->vbt.version < 228) { 1340 drm_dbg_kms(display->drm, "DRRS State Enabled:%d\n", 1341 driver->drrs_enabled); 1342 /* 1343 * If DRRS is not supported, drrs_type has to be set to 0. 1344 * This is because, VBT is configured in such a way that 1345 * static DRRS is 0 and DRRS not supported is represented by 1346 * driver->drrs_enabled=false 1347 */ 1348 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1349 /* 1350 * FIXME Should DMRRS perhaps be treated as seamless 1351 * but without the automatic downclocking? 1352 */ 1353 if (driver->dmrrs_enabled) 1354 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1355 else 1356 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1357 } 1358 1359 panel->vbt.psr.enable = driver->psr_enabled; 1360 } 1361 } 1362 1363 static void 1364 parse_power_conservation_features(struct intel_display *display, 1365 struct intel_panel *panel) 1366 { 1367 const struct bdb_lfp_power *power; 1368 u8 panel_type = panel->vbt.panel_type; 1369 1370 panel->vbt.vrr = true; /* matches Windows behaviour */ 1371 1372 if (display->vbt.version < 228) 1373 return; 1374 1375 power = bdb_find_section(display, BDB_LFP_POWER); 1376 if (!power) 1377 return; 1378 1379 panel->vbt.psr.enable = panel_bool(power->psr, panel_type); 1380 1381 /* 1382 * If DRRS is not supported, drrs_type has to be set to 0. 1383 * This is because, VBT is configured in such a way that 1384 * static DRRS is 0 and DRRS not supported is represented by 1385 * power->drrs & BIT(panel_type)=false 1386 */ 1387 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1388 /* 1389 * FIXME Should DMRRS perhaps be treated as seamless 1390 * but without the automatic downclocking? 1391 */ 1392 if (panel_bool(power->dmrrs, panel_type)) 1393 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1394 else 1395 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1396 } 1397 1398 if (display->vbt.version >= 232) 1399 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); 1400 1401 if (display->vbt.version >= 233) 1402 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, 1403 panel_type); 1404 } 1405 1406 static void vbt_edp_to_pps_delays(struct intel_pps_delays *pps, 1407 const struct edp_power_seq *edp_pps) 1408 { 1409 pps->power_up = edp_pps->t1_t3; 1410 pps->backlight_on = edp_pps->t8; 1411 pps->backlight_off = edp_pps->t9; 1412 pps->power_down = edp_pps->t10; 1413 pps->power_cycle = edp_pps->t11_t12; 1414 } 1415 1416 static void 1417 parse_edp(struct intel_display *display, 1418 struct intel_panel *panel) 1419 { 1420 const struct bdb_edp *edp; 1421 const struct edp_fast_link_params *edp_link_params; 1422 int panel_type = panel->vbt.panel_type; 1423 1424 edp = bdb_find_section(display, BDB_EDP); 1425 if (!edp) 1426 return; 1427 1428 switch (panel_bits(edp->color_depth, panel_type, 2)) { 1429 case EDP_18BPP: 1430 panel->vbt.edp.bpp = 18; 1431 break; 1432 case EDP_24BPP: 1433 panel->vbt.edp.bpp = 24; 1434 break; 1435 case EDP_30BPP: 1436 panel->vbt.edp.bpp = 30; 1437 break; 1438 } 1439 1440 /* Get the eDP sequencing and link info */ 1441 edp_link_params = &edp->fast_link_params[panel_type]; 1442 1443 vbt_edp_to_pps_delays(&panel->vbt.edp.pps, 1444 &edp->power_seqs[panel_type]); 1445 1446 if (display->vbt.version >= 224) { 1447 panel->vbt.edp.rate = 1448 edp->edp_fast_link_training_rate[panel_type] * 20; 1449 } else { 1450 switch (edp_link_params->rate) { 1451 case EDP_RATE_1_62: 1452 panel->vbt.edp.rate = 162000; 1453 break; 1454 case EDP_RATE_2_7: 1455 panel->vbt.edp.rate = 270000; 1456 break; 1457 case EDP_RATE_5_4: 1458 panel->vbt.edp.rate = 540000; 1459 break; 1460 default: 1461 drm_dbg_kms(display->drm, 1462 "VBT has unknown eDP link rate value %u\n", 1463 edp_link_params->rate); 1464 break; 1465 } 1466 } 1467 1468 switch (edp_link_params->lanes) { 1469 case EDP_LANE_1: 1470 panel->vbt.edp.lanes = 1; 1471 break; 1472 case EDP_LANE_2: 1473 panel->vbt.edp.lanes = 2; 1474 break; 1475 case EDP_LANE_4: 1476 panel->vbt.edp.lanes = 4; 1477 break; 1478 default: 1479 drm_dbg_kms(display->drm, 1480 "VBT has unknown eDP lane count value %u\n", 1481 edp_link_params->lanes); 1482 break; 1483 } 1484 1485 switch (edp_link_params->preemphasis) { 1486 case EDP_PREEMPHASIS_NONE: 1487 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 1488 break; 1489 case EDP_PREEMPHASIS_3_5dB: 1490 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 1491 break; 1492 case EDP_PREEMPHASIS_6dB: 1493 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 1494 break; 1495 case EDP_PREEMPHASIS_9_5dB: 1496 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 1497 break; 1498 default: 1499 drm_dbg_kms(display->drm, 1500 "VBT has unknown eDP pre-emphasis value %u\n", 1501 edp_link_params->preemphasis); 1502 break; 1503 } 1504 1505 switch (edp_link_params->vswing) { 1506 case EDP_VSWING_0_4V: 1507 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 1508 break; 1509 case EDP_VSWING_0_6V: 1510 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 1511 break; 1512 case EDP_VSWING_0_8V: 1513 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 1514 break; 1515 case EDP_VSWING_1_2V: 1516 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 1517 break; 1518 default: 1519 drm_dbg_kms(display->drm, 1520 "VBT has unknown eDP voltage swing value %u\n", 1521 edp_link_params->vswing); 1522 break; 1523 } 1524 1525 if (display->vbt.version >= 173) { 1526 u8 vswing; 1527 1528 /* Don't read from VBT if module parameter has valid value*/ 1529 if (display->params.edp_vswing) { 1530 panel->vbt.edp.low_vswing = 1531 display->params.edp_vswing == 1; 1532 } else { 1533 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 1534 panel->vbt.edp.low_vswing = vswing == 0; 1535 } 1536 } 1537 1538 panel->vbt.edp.drrs_msa_timing_delay = 1539 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); 1540 1541 if (display->vbt.version >= 244) 1542 panel->vbt.edp.max_link_rate = 1543 edp->edp_max_port_link_rate[panel_type] * 20; 1544 1545 if (display->vbt.version >= 251) 1546 panel->vbt.edp.dsc_disable = 1547 panel_bool(edp->edp_dsc_disable, panel_type); 1548 } 1549 1550 static void 1551 parse_psr(struct intel_display *display, 1552 struct intel_panel *panel) 1553 { 1554 const struct bdb_psr *psr; 1555 const struct psr_table *psr_table; 1556 int panel_type = panel->vbt.panel_type; 1557 1558 psr = bdb_find_section(display, BDB_PSR); 1559 if (!psr) { 1560 drm_dbg_kms(display->drm, "No PSR BDB found.\n"); 1561 return; 1562 } 1563 1564 psr_table = &psr->psr_table[panel_type]; 1565 1566 panel->vbt.psr.full_link = psr_table->full_link; 1567 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 1568 1569 /* Allowed VBT values goes from 0 to 15 */ 1570 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 1571 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 1572 1573 /* 1574 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 1575 * Old decimal value is wake up time in multiples of 100 us. 1576 */ 1577 if (display->vbt.version >= 205 && 1578 (DISPLAY_VER(display) >= 9 && !display->platform.broxton)) { 1579 switch (psr_table->tp1_wakeup_time) { 1580 case 0: 1581 panel->vbt.psr.tp1_wakeup_time_us = 500; 1582 break; 1583 case 1: 1584 panel->vbt.psr.tp1_wakeup_time_us = 100; 1585 break; 1586 case 3: 1587 panel->vbt.psr.tp1_wakeup_time_us = 0; 1588 break; 1589 default: 1590 drm_dbg_kms(display->drm, 1591 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1592 psr_table->tp1_wakeup_time); 1593 fallthrough; 1594 case 2: 1595 panel->vbt.psr.tp1_wakeup_time_us = 2500; 1596 break; 1597 } 1598 1599 switch (psr_table->tp2_tp3_wakeup_time) { 1600 case 0: 1601 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; 1602 break; 1603 case 1: 1604 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; 1605 break; 1606 case 3: 1607 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; 1608 break; 1609 default: 1610 drm_dbg_kms(display->drm, 1611 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1612 psr_table->tp2_tp3_wakeup_time); 1613 fallthrough; 1614 case 2: 1615 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 1616 break; 1617 } 1618 } else { 1619 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 1620 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 1621 } 1622 1623 if (display->vbt.version >= 226) { 1624 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 1625 1626 wakeup_time = panel_bits(wakeup_time, panel_type, 2); 1627 switch (wakeup_time) { 1628 case 0: 1629 wakeup_time = 500; 1630 break; 1631 case 1: 1632 wakeup_time = 100; 1633 break; 1634 case 3: 1635 wakeup_time = 50; 1636 break; 1637 default: 1638 case 2: 1639 wakeup_time = 2500; 1640 break; 1641 } 1642 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 1643 } else { 1644 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 1645 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; 1646 } 1647 } 1648 1649 static void parse_dsi_backlight_ports(struct intel_display *display, 1650 struct intel_panel *panel, 1651 enum port port) 1652 { 1653 enum port port_bc = DISPLAY_VER(display) >= 11 ? PORT_B : PORT_C; 1654 1655 if (!panel->vbt.dsi.config->dual_link || display->vbt.version < 197) { 1656 panel->vbt.dsi.bl_ports = BIT(port); 1657 if (panel->vbt.dsi.config->cabc_supported) 1658 panel->vbt.dsi.cabc_ports = BIT(port); 1659 1660 return; 1661 } 1662 1663 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { 1664 case DL_DCS_PORT_A: 1665 panel->vbt.dsi.bl_ports = BIT(PORT_A); 1666 break; 1667 case DL_DCS_PORT_C: 1668 panel->vbt.dsi.bl_ports = BIT(port_bc); 1669 break; 1670 default: 1671 case DL_DCS_PORT_A_AND_C: 1672 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); 1673 break; 1674 } 1675 1676 if (!panel->vbt.dsi.config->cabc_supported) 1677 return; 1678 1679 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { 1680 case DL_DCS_PORT_A: 1681 panel->vbt.dsi.cabc_ports = BIT(PORT_A); 1682 break; 1683 case DL_DCS_PORT_C: 1684 panel->vbt.dsi.cabc_ports = BIT(port_bc); 1685 break; 1686 default: 1687 case DL_DCS_PORT_A_AND_C: 1688 panel->vbt.dsi.cabc_ports = 1689 BIT(PORT_A) | BIT(port_bc); 1690 break; 1691 } 1692 } 1693 1694 static void 1695 parse_mipi_config(struct intel_display *display, 1696 struct intel_panel *panel) 1697 { 1698 const struct bdb_mipi_config *start; 1699 const struct mipi_config *config; 1700 const struct mipi_pps_data *pps; 1701 int panel_type = panel->vbt.panel_type; 1702 enum port port; 1703 1704 /* parse MIPI blocks only if LFP type is MIPI */ 1705 if (!intel_bios_is_dsi_present(display, &port)) 1706 return; 1707 1708 /* Initialize this to undefined indicating no generic MIPI support */ 1709 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1710 1711 start = bdb_find_section(display, BDB_MIPI_CONFIG); 1712 if (!start) { 1713 drm_dbg_kms(display->drm, "No MIPI config BDB found"); 1714 return; 1715 } 1716 1717 drm_dbg_kms(display->drm, "Found MIPI Config block, panel index = %d\n", 1718 panel_type); 1719 1720 /* 1721 * get hold of the correct configuration block and pps data as per 1722 * the panel_type as index 1723 */ 1724 config = &start->config[panel_type]; 1725 pps = &start->pps[panel_type]; 1726 1727 /* store as of now full data. Trim when we realise all is not needed */ 1728 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1729 if (!panel->vbt.dsi.config) 1730 return; 1731 1732 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1733 if (!panel->vbt.dsi.pps) { 1734 kfree(panel->vbt.dsi.config); 1735 return; 1736 } 1737 1738 parse_dsi_backlight_ports(display, panel, port); 1739 1740 /* FIXME is the 90 vs. 270 correct? */ 1741 switch (config->rotation) { 1742 case ENABLE_ROTATION_0: 1743 /* 1744 * Most (all?) VBTs claim 0 degrees despite having 1745 * an upside down panel, thus we do not trust this. 1746 */ 1747 panel->vbt.dsi.orientation = 1748 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1749 break; 1750 case ENABLE_ROTATION_90: 1751 panel->vbt.dsi.orientation = 1752 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1753 break; 1754 case ENABLE_ROTATION_180: 1755 panel->vbt.dsi.orientation = 1756 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1757 break; 1758 case ENABLE_ROTATION_270: 1759 panel->vbt.dsi.orientation = 1760 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1761 break; 1762 } 1763 1764 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1765 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1766 } 1767 1768 /* Find the sequence block and size for the given panel. */ 1769 static const u8 * 1770 find_panel_sequence_block(struct intel_display *display, 1771 const struct bdb_mipi_sequence *sequence, 1772 u16 panel_id, u32 *seq_size) 1773 { 1774 u32 total = get_blocksize(sequence); 1775 const u8 *data = &sequence->data[0]; 1776 u8 current_id; 1777 u32 current_size; 1778 int header_size = sequence->version >= 3 ? 5 : 3; 1779 int index = 0; 1780 int i; 1781 1782 /* skip new block size */ 1783 if (sequence->version >= 3) 1784 data += 4; 1785 1786 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1787 if (index + header_size > total) { 1788 drm_err(display->drm, 1789 "Invalid sequence block (header)\n"); 1790 return NULL; 1791 } 1792 1793 current_id = *(data + index); 1794 if (sequence->version >= 3) 1795 current_size = *((const u32 *)(data + index + 1)); 1796 else 1797 current_size = *((const u16 *)(data + index + 1)); 1798 1799 index += header_size; 1800 1801 if (index + current_size > total) { 1802 drm_err(display->drm, "Invalid sequence block\n"); 1803 return NULL; 1804 } 1805 1806 if (current_id == panel_id) { 1807 *seq_size = current_size; 1808 return data + index; 1809 } 1810 1811 index += current_size; 1812 } 1813 1814 drm_err(display->drm, 1815 "Sequence block detected but no valid configuration\n"); 1816 1817 return NULL; 1818 } 1819 1820 static int goto_next_sequence(struct intel_display *display, 1821 const u8 *data, int index, int total) 1822 { 1823 u16 len; 1824 1825 /* Skip Sequence Byte. */ 1826 for (index = index + 1; index < total; index += len) { 1827 u8 operation_byte = *(data + index); 1828 index++; 1829 1830 switch (operation_byte) { 1831 case MIPI_SEQ_ELEM_END: 1832 return index; 1833 case MIPI_SEQ_ELEM_SEND_PKT: 1834 if (index + 4 > total) 1835 return 0; 1836 1837 len = *((const u16 *)(data + index + 2)) + 4; 1838 break; 1839 case MIPI_SEQ_ELEM_DELAY: 1840 len = 4; 1841 break; 1842 case MIPI_SEQ_ELEM_GPIO: 1843 len = 2; 1844 break; 1845 case MIPI_SEQ_ELEM_I2C: 1846 if (index + 7 > total) 1847 return 0; 1848 len = *(data + index + 6) + 7; 1849 break; 1850 default: 1851 drm_err(display->drm, "Unknown operation byte\n"); 1852 return 0; 1853 } 1854 } 1855 1856 return 0; 1857 } 1858 1859 static int goto_next_sequence_v3(struct intel_display *display, 1860 const u8 *data, int index, int total) 1861 { 1862 int seq_end; 1863 u16 len; 1864 u32 size_of_sequence; 1865 1866 /* 1867 * Could skip sequence based on Size of Sequence alone, but also do some 1868 * checking on the structure. 1869 */ 1870 if (total < 5) { 1871 drm_err(display->drm, "Too small sequence size\n"); 1872 return 0; 1873 } 1874 1875 /* Skip Sequence Byte. */ 1876 index++; 1877 1878 /* 1879 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1880 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1881 * byte. 1882 */ 1883 size_of_sequence = *((const u32 *)(data + index)); 1884 index += 4; 1885 1886 seq_end = index + size_of_sequence; 1887 if (seq_end > total) { 1888 drm_err(display->drm, "Invalid sequence size\n"); 1889 return 0; 1890 } 1891 1892 for (; index < total; index += len) { 1893 u8 operation_byte = *(data + index); 1894 index++; 1895 1896 if (operation_byte == MIPI_SEQ_ELEM_END) { 1897 if (index != seq_end) { 1898 drm_err(display->drm, 1899 "Invalid element structure\n"); 1900 return 0; 1901 } 1902 return index; 1903 } 1904 1905 len = *(data + index); 1906 index++; 1907 1908 /* 1909 * FIXME: Would be nice to check elements like for v1/v2 in 1910 * goto_next_sequence() above. 1911 */ 1912 switch (operation_byte) { 1913 case MIPI_SEQ_ELEM_SEND_PKT: 1914 case MIPI_SEQ_ELEM_DELAY: 1915 case MIPI_SEQ_ELEM_GPIO: 1916 case MIPI_SEQ_ELEM_I2C: 1917 case MIPI_SEQ_ELEM_SPI: 1918 case MIPI_SEQ_ELEM_PMIC: 1919 break; 1920 default: 1921 drm_err(display->drm, "Unknown operation byte %u\n", 1922 operation_byte); 1923 break; 1924 } 1925 } 1926 1927 return 0; 1928 } 1929 1930 /* 1931 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1932 * skip all delay + gpio operands and stop at the first DSI packet op. 1933 */ 1934 static int get_init_otp_deassert_fragment_len(struct intel_display *display, 1935 struct intel_panel *panel) 1936 { 1937 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1938 int index, len; 1939 1940 if (drm_WARN_ON(display->drm, 1941 !data || panel->vbt.dsi.seq_version >= 3)) 1942 return 0; 1943 1944 /* index = 1 to skip sequence byte */ 1945 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1946 switch (data[index]) { 1947 case MIPI_SEQ_ELEM_SEND_PKT: 1948 return index == 1 ? 0 : index; 1949 case MIPI_SEQ_ELEM_DELAY: 1950 len = 5; /* 1 byte for operand + uint32 */ 1951 break; 1952 case MIPI_SEQ_ELEM_GPIO: 1953 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1954 break; 1955 default: 1956 return 0; 1957 } 1958 } 1959 1960 return 0; 1961 } 1962 1963 /* 1964 * Some v1/v2 VBT MIPI sequences do the deassert in the init OTP sequence. 1965 * The deassert must be done before calling intel_dsi_device_ready, so for 1966 * these devices we split the init OTP sequence into a deassert sequence and 1967 * the actual init OTP part. 1968 */ 1969 static void vlv_fixup_mipi_sequences(struct intel_display *display, 1970 struct intel_panel *panel) 1971 { 1972 u8 *init_otp; 1973 int len; 1974 1975 /* Limit this to v1/v2 vid-mode sequences */ 1976 if (panel->vbt.dsi.config->is_cmd_mode || 1977 panel->vbt.dsi.seq_version >= 3) 1978 return; 1979 1980 /* Only do this if there are otp and assert seqs and no deassert seq */ 1981 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1982 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1983 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1984 return; 1985 1986 /* The deassert-sequence ends at the first DSI packet */ 1987 len = get_init_otp_deassert_fragment_len(display, panel); 1988 if (!len) 1989 return; 1990 1991 drm_dbg_kms(display->drm, 1992 "Using init OTP fragment to deassert reset\n"); 1993 1994 /* Copy the fragment, update seq byte and terminate it */ 1995 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1996 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1997 if (!panel->vbt.dsi.deassert_seq) 1998 return; 1999 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 2000 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 2001 /* Use the copy for deassert */ 2002 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 2003 panel->vbt.dsi.deassert_seq; 2004 /* Replace the last byte of the fragment with init OTP seq byte */ 2005 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 2006 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 2007 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 2008 } 2009 2010 /* 2011 * Some machines (eg. Lenovo 82TQ) appear to have broken 2012 * VBT sequences: 2013 * - INIT_OTP is not present at all 2014 * - what should be in INIT_OTP is in DISPLAY_ON 2015 * - what should be in DISPLAY_ON is in BACKLIGHT_ON 2016 * (along with the actual backlight stuff) 2017 * 2018 * To make those work we simply swap DISPLAY_ON and INIT_OTP. 2019 * 2020 * TODO: Do we need to limit this to specific machines, 2021 * or examine the contents of the sequences to 2022 * avoid false positives? 2023 */ 2024 static void icl_fixup_mipi_sequences(struct intel_display *display, 2025 struct intel_panel *panel) 2026 { 2027 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] && 2028 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) { 2029 drm_dbg_kms(display->drm, 2030 "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n"); 2031 2032 swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP], 2033 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]); 2034 } 2035 } 2036 2037 static void fixup_mipi_sequences(struct intel_display *display, 2038 struct intel_panel *panel) 2039 { 2040 if (DISPLAY_VER(display) >= 11) 2041 icl_fixup_mipi_sequences(display, panel); 2042 else if (display->platform.valleyview) 2043 vlv_fixup_mipi_sequences(display, panel); 2044 } 2045 2046 static void 2047 parse_mipi_sequence(struct intel_display *display, 2048 struct intel_panel *panel) 2049 { 2050 int panel_type = panel->vbt.panel_type; 2051 const struct bdb_mipi_sequence *sequence; 2052 const u8 *seq_data; 2053 u32 seq_size; 2054 u8 *data; 2055 int index = 0; 2056 2057 /* Only our generic panel driver uses the sequence block. */ 2058 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 2059 return; 2060 2061 sequence = bdb_find_section(display, BDB_MIPI_SEQUENCE); 2062 if (!sequence) { 2063 drm_dbg_kms(display->drm, 2064 "No MIPI Sequence found, parsing complete\n"); 2065 return; 2066 } 2067 2068 /* Fail gracefully for forward incompatible sequence block. */ 2069 if (sequence->version >= 4) { 2070 drm_err(display->drm, 2071 "Unable to parse MIPI Sequence Block v%u\n", 2072 sequence->version); 2073 return; 2074 } 2075 2076 drm_dbg_kms(display->drm, "Found MIPI sequence block v%u\n", 2077 sequence->version); 2078 2079 seq_data = find_panel_sequence_block(display, sequence, panel_type, &seq_size); 2080 if (!seq_data) 2081 return; 2082 2083 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 2084 if (!data) 2085 return; 2086 2087 /* Parse the sequences, store pointers to each sequence. */ 2088 for (;;) { 2089 u8 seq_id = *(data + index); 2090 if (seq_id == MIPI_SEQ_END) 2091 break; 2092 2093 if (seq_id >= MIPI_SEQ_MAX) { 2094 drm_err(display->drm, "Unknown sequence %u\n", 2095 seq_id); 2096 goto err; 2097 } 2098 2099 /* Log about presence of sequences we won't run. */ 2100 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 2101 drm_dbg_kms(display->drm, 2102 "Unsupported sequence %u\n", seq_id); 2103 2104 panel->vbt.dsi.sequence[seq_id] = data + index; 2105 2106 if (sequence->version >= 3) 2107 index = goto_next_sequence_v3(display, data, index, seq_size); 2108 else 2109 index = goto_next_sequence(display, data, index, seq_size); 2110 if (!index) { 2111 drm_err(display->drm, "Invalid sequence %u\n", 2112 seq_id); 2113 goto err; 2114 } 2115 } 2116 2117 panel->vbt.dsi.data = data; 2118 panel->vbt.dsi.size = seq_size; 2119 panel->vbt.dsi.seq_version = sequence->version; 2120 2121 fixup_mipi_sequences(display, panel); 2122 2123 drm_dbg_kms(display->drm, "MIPI related VBT parsing complete\n"); 2124 return; 2125 2126 err: 2127 kfree(data); 2128 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); 2129 } 2130 2131 static void 2132 parse_compression_parameters(struct intel_display *display) 2133 { 2134 const struct bdb_compression_parameters *params; 2135 struct intel_bios_encoder_data *devdata; 2136 u16 block_size; 2137 int index; 2138 2139 if (display->vbt.version < 198) 2140 return; 2141 2142 params = bdb_find_section(display, BDB_COMPRESSION_PARAMETERS); 2143 if (params) { 2144 /* Sanity checks */ 2145 if (params->entry_size != sizeof(params->data[0])) { 2146 drm_dbg_kms(display->drm, 2147 "VBT: unsupported compression param entry size\n"); 2148 return; 2149 } 2150 2151 block_size = get_blocksize(params); 2152 if (block_size < sizeof(*params)) { 2153 drm_dbg_kms(display->drm, 2154 "VBT: expected 16 compression param entries\n"); 2155 return; 2156 } 2157 } 2158 2159 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 2160 const struct child_device_config *child = &devdata->child; 2161 2162 if (!child->compression_enable) 2163 continue; 2164 2165 if (!params) { 2166 drm_dbg_kms(display->drm, 2167 "VBT: compression params not available\n"); 2168 continue; 2169 } 2170 2171 if (child->compression_method_cps) { 2172 drm_dbg_kms(display->drm, 2173 "VBT: CPS compression not supported\n"); 2174 continue; 2175 } 2176 2177 index = child->compression_structure_index; 2178 2179 devdata->dsc = kmemdup(¶ms->data[index], 2180 sizeof(*devdata->dsc), GFP_KERNEL); 2181 } 2182 } 2183 2184 static u8 translate_iboost(struct intel_display *display, u8 val) 2185 { 2186 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 2187 2188 if (val >= ARRAY_SIZE(mapping)) { 2189 drm_dbg_kms(display->drm, 2190 "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 2191 return 0; 2192 } 2193 return mapping[val]; 2194 } 2195 2196 static const u8 cnp_ddc_pin_map[] = { 2197 [0] = 0, /* N/A */ 2198 [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B, 2199 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C, 2200 [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */ 2201 [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */ 2202 }; 2203 2204 static const u8 icp_ddc_pin_map[] = { 2205 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2206 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2207 [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C, 2208 [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1, 2209 [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2, 2210 [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3, 2211 [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4, 2212 [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5, 2213 [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6, 2214 }; 2215 2216 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 2217 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2218 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2219 [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D, 2220 [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E, 2221 }; 2222 2223 static const u8 adls_ddc_pin_map[] = { 2224 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2225 [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1, 2226 [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2, 2227 [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3, 2228 [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4, 2229 }; 2230 2231 static const u8 gen9bc_tgp_ddc_pin_map[] = { 2232 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B, 2233 [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C, 2234 [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D, 2235 }; 2236 2237 static const u8 adlp_ddc_pin_map[] = { 2238 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2239 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2240 [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1, 2241 [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2, 2242 [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3, 2243 [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4, 2244 }; 2245 2246 static u8 map_ddc_pin(struct intel_display *display, u8 vbt_pin) 2247 { 2248 const u8 *ddc_pin_map; 2249 int i, n_entries; 2250 2251 if (INTEL_PCH_TYPE(display) >= PCH_MTL || display->platform.alderlake_p) { 2252 ddc_pin_map = adlp_ddc_pin_map; 2253 n_entries = ARRAY_SIZE(adlp_ddc_pin_map); 2254 } else if (display->platform.alderlake_s) { 2255 ddc_pin_map = adls_ddc_pin_map; 2256 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 2257 } else if (INTEL_PCH_TYPE(display) >= PCH_DG1) { 2258 return vbt_pin; 2259 } else if (display->platform.rocketlake && INTEL_PCH_TYPE(display) == PCH_TGP) { 2260 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 2261 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 2262 } else if (HAS_PCH_TGP(display) && DISPLAY_VER(display) == 9) { 2263 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 2264 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 2265 } else if (INTEL_PCH_TYPE(display) >= PCH_ICP) { 2266 ddc_pin_map = icp_ddc_pin_map; 2267 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 2268 } else if (HAS_PCH_CNP(display)) { 2269 ddc_pin_map = cnp_ddc_pin_map; 2270 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 2271 } else { 2272 /* Assuming direct map */ 2273 return vbt_pin; 2274 } 2275 2276 for (i = 0; i < n_entries; i++) { 2277 if (ddc_pin_map[i] == vbt_pin) 2278 return i; 2279 } 2280 2281 drm_dbg_kms(display->drm, 2282 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 2283 vbt_pin); 2284 return 0; 2285 } 2286 2287 static u8 dvo_port_type(u8 dvo_port) 2288 { 2289 switch (dvo_port) { 2290 case DVO_PORT_HDMIA: 2291 case DVO_PORT_HDMIB: 2292 case DVO_PORT_HDMIC: 2293 case DVO_PORT_HDMID: 2294 case DVO_PORT_HDMIE: 2295 case DVO_PORT_HDMIF: 2296 case DVO_PORT_HDMIG: 2297 case DVO_PORT_HDMIH: 2298 case DVO_PORT_HDMII: 2299 return DVO_PORT_HDMIA; 2300 case DVO_PORT_DPA: 2301 case DVO_PORT_DPB: 2302 case DVO_PORT_DPC: 2303 case DVO_PORT_DPD: 2304 case DVO_PORT_DPE: 2305 case DVO_PORT_DPF: 2306 case DVO_PORT_DPG: 2307 case DVO_PORT_DPH: 2308 case DVO_PORT_DPI: 2309 return DVO_PORT_DPA; 2310 case DVO_PORT_MIPIA: 2311 case DVO_PORT_MIPIB: 2312 case DVO_PORT_MIPIC: 2313 case DVO_PORT_MIPID: 2314 return DVO_PORT_MIPIA; 2315 default: 2316 return dvo_port; 2317 } 2318 } 2319 2320 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 2321 const int port_mapping[][3], u8 dvo_port) 2322 { 2323 enum port port; 2324 int i; 2325 2326 for (port = PORT_A; port < n_ports; port++) { 2327 for (i = 0; i < n_dvo; i++) { 2328 if (port_mapping[port][i] == -1) 2329 break; 2330 2331 if (dvo_port == port_mapping[port][i]) 2332 return port; 2333 } 2334 } 2335 2336 return PORT_NONE; 2337 } 2338 2339 static enum port dvo_port_to_port(struct intel_display *display, 2340 u8 dvo_port) 2341 { 2342 /* 2343 * Each DDI port can have more than one value on the "DVO Port" field, 2344 * so look for all the possible values for each port. 2345 */ 2346 static const int port_mapping[][3] = { 2347 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2348 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2349 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2350 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2351 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 2352 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2353 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2354 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2355 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2356 }; 2357 /* 2358 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 2359 * map to DDI A,B,TC1,TC2 respectively. 2360 */ 2361 static const int rkl_port_mapping[][3] = { 2362 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2363 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2364 [PORT_C] = { -1 }, 2365 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2366 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2367 }; 2368 /* 2369 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 2370 * PORT_F and PORT_G, we need to map that to correct VBT sections. 2371 */ 2372 static const int adls_port_mapping[][3] = { 2373 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2374 [PORT_B] = { -1 }, 2375 [PORT_C] = { -1 }, 2376 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2377 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2378 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2379 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2380 }; 2381 static const int xelpd_port_mapping[][3] = { 2382 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2383 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2384 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2385 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2386 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2387 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2388 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2389 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2390 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2391 }; 2392 2393 if (DISPLAY_VER(display) >= 13) 2394 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 2395 ARRAY_SIZE(xelpd_port_mapping[0]), 2396 xelpd_port_mapping, 2397 dvo_port); 2398 else if (display->platform.alderlake_s) 2399 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 2400 ARRAY_SIZE(adls_port_mapping[0]), 2401 adls_port_mapping, 2402 dvo_port); 2403 else if (display->platform.dg1 || display->platform.rocketlake) 2404 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 2405 ARRAY_SIZE(rkl_port_mapping[0]), 2406 rkl_port_mapping, 2407 dvo_port); 2408 else 2409 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 2410 ARRAY_SIZE(port_mapping[0]), 2411 port_mapping, 2412 dvo_port); 2413 } 2414 2415 static enum port 2416 dsi_dvo_port_to_port(struct intel_display *display, u8 dvo_port) 2417 { 2418 switch (dvo_port) { 2419 case DVO_PORT_MIPIA: 2420 return PORT_A; 2421 case DVO_PORT_MIPIC: 2422 if (DISPLAY_VER(display) >= 11) 2423 return PORT_B; 2424 else 2425 return PORT_C; 2426 default: 2427 return PORT_NONE; 2428 } 2429 } 2430 2431 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata) 2432 { 2433 struct intel_display *display = devdata->display; 2434 const struct child_device_config *child = &devdata->child; 2435 enum port port; 2436 2437 port = dvo_port_to_port(display, child->dvo_port); 2438 if (port == PORT_NONE && DISPLAY_VER(display) >= 11) 2439 port = dsi_dvo_port_to_port(display, child->dvo_port); 2440 2441 return port; 2442 } 2443 2444 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 2445 { 2446 switch (vbt_max_link_rate) { 2447 default: 2448 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 2449 return 0; 2450 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 2451 return 2000000; 2452 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 2453 return 1350000; 2454 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 2455 return 1000000; 2456 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 2457 return 810000; 2458 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 2459 return 540000; 2460 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 2461 return 270000; 2462 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 2463 return 162000; 2464 } 2465 } 2466 2467 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 2468 { 2469 switch (vbt_max_link_rate) { 2470 default: 2471 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 2472 return 810000; 2473 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 2474 return 540000; 2475 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 2476 return 270000; 2477 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 2478 return 162000; 2479 } 2480 } 2481 2482 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) 2483 { 2484 if (!devdata || devdata->display->vbt.version < 216) 2485 return 0; 2486 2487 if (devdata->display->vbt.version >= 230) 2488 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); 2489 else 2490 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); 2491 } 2492 2493 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata) 2494 { 2495 if (!devdata || devdata->display->vbt.version < 244) 2496 return 0; 2497 2498 return devdata->child.dp_max_lane_count + 1; 2499 } 2500 2501 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 2502 enum port port) 2503 { 2504 struct intel_display *display = devdata->display; 2505 bool is_hdmi; 2506 2507 if (port != PORT_A || DISPLAY_VER(display) >= 12) 2508 return; 2509 2510 if (!intel_bios_encoder_supports_dvi(devdata)) 2511 return; 2512 2513 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2514 2515 drm_dbg_kms(display->drm, "VBT claims port A supports DVI%s, ignoring\n", 2516 is_hdmi ? "/HDMI" : ""); 2517 2518 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2519 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2520 } 2521 2522 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata, 2523 enum port port) 2524 { 2525 struct intel_display *display = devdata->display; 2526 2527 if (!intel_bios_encoder_supports_dvi(devdata)) 2528 return; 2529 2530 /* 2531 * Some BDW machines (eg. HP Pavilion 15-ab) shipped 2532 * with a HSW VBT where the level shifter value goes 2533 * up to 11, whereas the BDW max is 9. 2534 */ 2535 if (display->platform.broadwell && devdata->child.hdmi_level_shifter_value > 9) { 2536 drm_dbg_kms(display->drm, 2537 "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n", 2538 port_name(port), devdata->child.hdmi_level_shifter_value, 9); 2539 2540 devdata->child.hdmi_level_shifter_value = 9; 2541 } 2542 } 2543 2544 static bool 2545 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 2546 { 2547 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 2548 } 2549 2550 bool 2551 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 2552 { 2553 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 2554 } 2555 2556 bool 2557 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 2558 { 2559 return intel_bios_encoder_supports_dvi(devdata) && 2560 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 2561 } 2562 2563 bool 2564 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 2565 { 2566 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2567 } 2568 2569 bool 2570 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 2571 { 2572 return intel_bios_encoder_supports_dp(devdata) && 2573 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 2574 } 2575 2576 bool 2577 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata) 2578 { 2579 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT; 2580 } 2581 2582 bool 2583 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata) 2584 { 2585 return devdata && HAS_LSPCON(devdata->display) && devdata->child.lspcon; 2586 } 2587 2588 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ 2589 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) 2590 { 2591 if (!devdata || devdata->display->vbt.version < 158 || 2592 DISPLAY_VER(devdata->display) >= 14) 2593 return -1; 2594 2595 return devdata->child.hdmi_level_shifter_value; 2596 } 2597 2598 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata) 2599 { 2600 if (!devdata || devdata->display->vbt.version < 204) 2601 return 0; 2602 2603 switch (devdata->child.hdmi_max_data_rate) { 2604 default: 2605 MISSING_CASE(devdata->child.hdmi_max_data_rate); 2606 fallthrough; 2607 case HDMI_MAX_DATA_RATE_PLATFORM: 2608 return 0; 2609 case HDMI_MAX_DATA_RATE_594: 2610 return 594000; 2611 case HDMI_MAX_DATA_RATE_340: 2612 return 340000; 2613 case HDMI_MAX_DATA_RATE_300: 2614 return 300000; 2615 case HDMI_MAX_DATA_RATE_297: 2616 return 297000; 2617 case HDMI_MAX_DATA_RATE_165: 2618 return 165000; 2619 } 2620 } 2621 2622 static bool is_port_valid(struct intel_display *display, enum port port) 2623 { 2624 /* 2625 * On some ICL SKUs port F is not present, but broken VBTs mark 2626 * the port as present. Only try to initialize port F for the 2627 * SKUs that may actually have it. 2628 */ 2629 if (port == PORT_F && display->platform.icelake) 2630 return display->platform.icelake_port_f; 2631 2632 return true; 2633 } 2634 2635 static void print_ddi_port(const struct intel_bios_encoder_data *devdata) 2636 { 2637 struct intel_display *display = devdata->display; 2638 const struct child_device_config *child = &devdata->child; 2639 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt; 2640 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; 2641 enum port port; 2642 2643 port = intel_bios_encoder_port(devdata); 2644 if (port == PORT_NONE) 2645 return; 2646 2647 is_dvi = intel_bios_encoder_supports_dvi(devdata); 2648 is_dp = intel_bios_encoder_supports_dp(devdata); 2649 is_crt = intel_bios_encoder_supports_crt(devdata); 2650 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2651 is_edp = intel_bios_encoder_supports_edp(devdata); 2652 is_dsi = intel_bios_encoder_supports_dsi(devdata); 2653 2654 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 2655 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 2656 2657 drm_dbg_kms(display->drm, 2658 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 2659 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi, 2660 intel_bios_encoder_supports_dp_dual_mode(devdata), 2661 intel_bios_encoder_is_lspcon(devdata), 2662 supports_typec_usb, supports_tbt, 2663 devdata->dsc != NULL); 2664 2665 hdmi_level_shift = intel_bios_hdmi_level_shift(devdata); 2666 if (hdmi_level_shift >= 0) { 2667 drm_dbg_kms(display->drm, 2668 "Port %c VBT HDMI level shift: %d\n", 2669 port_name(port), hdmi_level_shift); 2670 } 2671 2672 max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata); 2673 if (max_tmds_clock) 2674 drm_dbg_kms(display->drm, 2675 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 2676 port_name(port), max_tmds_clock); 2677 2678 /* I_boost config for SKL and above */ 2679 dp_boost_level = intel_bios_dp_boost_level(devdata); 2680 if (dp_boost_level) 2681 drm_dbg_kms(display->drm, 2682 "Port %c VBT (e)DP boost level: %d\n", 2683 port_name(port), dp_boost_level); 2684 2685 hdmi_boost_level = intel_bios_hdmi_boost_level(devdata); 2686 if (hdmi_boost_level) 2687 drm_dbg_kms(display->drm, 2688 "Port %c VBT HDMI boost level: %d\n", 2689 port_name(port), hdmi_boost_level); 2690 2691 dp_max_link_rate = intel_bios_dp_max_link_rate(devdata); 2692 if (dp_max_link_rate) 2693 drm_dbg_kms(display->drm, 2694 "Port %c VBT DP max link rate: %d\n", 2695 port_name(port), dp_max_link_rate); 2696 2697 /* 2698 * FIXME need to implement support for VBT 2699 * vswing/preemph tables should this ever trigger. 2700 */ 2701 drm_WARN(display->drm, child->use_vbt_vswing, 2702 "Port %c asks to use VBT vswing/preemph tables\n", 2703 port_name(port)); 2704 } 2705 2706 static void parse_ddi_port(struct intel_bios_encoder_data *devdata) 2707 { 2708 struct intel_display *display = devdata->display; 2709 enum port port; 2710 2711 port = intel_bios_encoder_port(devdata); 2712 if (port == PORT_NONE) 2713 return; 2714 2715 if (!is_port_valid(display, port)) { 2716 drm_dbg_kms(display->drm, 2717 "VBT reports port %c as supported, but that can't be true: skipping\n", 2718 port_name(port)); 2719 return; 2720 } 2721 2722 sanitize_device_type(devdata, port); 2723 sanitize_hdmi_level_shift(devdata, port); 2724 } 2725 2726 static bool has_ddi_port_info(struct intel_display *display) 2727 { 2728 return DISPLAY_VER(display) >= 5 || display->platform.g4x; 2729 } 2730 2731 static void parse_ddi_ports(struct intel_display *display) 2732 { 2733 struct intel_bios_encoder_data *devdata; 2734 2735 if (!has_ddi_port_info(display)) 2736 return; 2737 2738 list_for_each_entry(devdata, &display->vbt.display_devices, node) 2739 parse_ddi_port(devdata); 2740 2741 list_for_each_entry(devdata, &display->vbt.display_devices, node) 2742 print_ddi_port(devdata); 2743 } 2744 2745 static int child_device_expected_size(u16 version) 2746 { 2747 BUILD_BUG_ON(sizeof(struct child_device_config) < 40); 2748 2749 if (version > 256) 2750 return -ENOENT; 2751 else if (version >= 256) 2752 return 40; 2753 else if (version >= 216) 2754 return 39; 2755 else if (version >= 196) 2756 return 38; 2757 else if (version >= 195) 2758 return 37; 2759 else if (version >= 111) 2760 return LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2761 else if (version >= 106) 2762 return 27; 2763 else 2764 return 22; 2765 } 2766 2767 static bool child_device_size_valid(struct intel_display *display, int size) 2768 { 2769 int expected_size; 2770 2771 expected_size = child_device_expected_size(display->vbt.version); 2772 if (expected_size < 0) { 2773 expected_size = sizeof(struct child_device_config); 2774 drm_dbg_kms(display->drm, 2775 "Expected child device config size for VBT version %u not known; assuming %d\n", 2776 display->vbt.version, expected_size); 2777 } 2778 2779 /* Flag an error for unexpected size, but continue anyway. */ 2780 if (size != expected_size) 2781 drm_err(display->drm, 2782 "Unexpected child device config size %d (expected %d for VBT version %u)\n", 2783 size, expected_size, display->vbt.version); 2784 2785 /* The legacy sized child device config is the minimum we need. */ 2786 if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2787 drm_dbg_kms(display->drm, 2788 "Child device config size %d is too small.\n", 2789 size); 2790 return false; 2791 } 2792 2793 return true; 2794 } 2795 2796 static void 2797 parse_general_definitions(struct intel_display *display) 2798 { 2799 const struct bdb_general_definitions *defs; 2800 struct intel_bios_encoder_data *devdata; 2801 const struct child_device_config *child; 2802 int i, child_device_num; 2803 u16 block_size; 2804 int bus_pin; 2805 2806 defs = bdb_find_section(display, BDB_GENERAL_DEFINITIONS); 2807 if (!defs) { 2808 drm_dbg_kms(display->drm, 2809 "No general definition block is found, no devices defined.\n"); 2810 return; 2811 } 2812 2813 block_size = get_blocksize(defs); 2814 if (block_size < sizeof(*defs)) { 2815 drm_dbg_kms(display->drm, 2816 "General definitions block too small (%u)\n", 2817 block_size); 2818 return; 2819 } 2820 2821 bus_pin = defs->crt_ddc_gmbus_pin; 2822 drm_dbg_kms(display->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2823 if (intel_gmbus_is_valid_pin(display, bus_pin)) 2824 display->vbt.crt_ddc_pin = bus_pin; 2825 2826 if (!child_device_size_valid(display, defs->child_dev_size)) 2827 return; 2828 2829 /* get the number of child device */ 2830 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2831 2832 for (i = 0; i < child_device_num; i++) { 2833 child = child_device_ptr(defs, i); 2834 if (!child->device_type) 2835 continue; 2836 2837 drm_dbg_kms(display->drm, 2838 "Found VBT child device with type 0x%x\n", 2839 child->device_type); 2840 2841 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2842 if (!devdata) 2843 break; 2844 2845 devdata->display = display; 2846 2847 /* 2848 * Copy as much as we know (sizeof) and is available 2849 * (child_dev_size) of the child device config. Accessing the 2850 * data must depend on VBT version. 2851 */ 2852 memcpy(&devdata->child, child, 2853 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2854 2855 list_add_tail(&devdata->node, &display->vbt.display_devices); 2856 } 2857 2858 if (list_empty(&display->vbt.display_devices)) 2859 drm_dbg_kms(display->drm, 2860 "no child dev is parsed from VBT\n"); 2861 } 2862 2863 /* Common defaults which may be overridden by VBT. */ 2864 static void 2865 init_vbt_defaults(struct intel_display *display) 2866 { 2867 display->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2868 2869 /* general features */ 2870 display->vbt.int_tv_support = 1; 2871 display->vbt.int_crt_support = 1; 2872 2873 /* driver features */ 2874 display->vbt.int_lvds_support = 1; 2875 2876 /* Default to using SSC */ 2877 display->vbt.lvds_use_ssc = 1; 2878 /* 2879 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2880 * clock for LVDS. 2881 */ 2882 display->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(display, 2883 !HAS_PCH_SPLIT(display)); 2884 drm_dbg_kms(display->drm, "Set default to SSC at %d kHz\n", 2885 display->vbt.lvds_ssc_freq); 2886 } 2887 2888 /* Common defaults which may be overridden by VBT. */ 2889 static void 2890 init_vbt_panel_defaults(struct intel_panel *panel) 2891 { 2892 /* Default to having backlight */ 2893 panel->vbt.backlight.present = true; 2894 2895 /* LFP panel data */ 2896 panel->vbt.lvds_dither = true; 2897 } 2898 2899 /* Defaults to initialize only if there is no VBT. */ 2900 static void 2901 init_vbt_missing_defaults(struct intel_display *display) 2902 { 2903 unsigned int ports = DISPLAY_RUNTIME_INFO(display)->port_mask; 2904 enum port port; 2905 2906 if (!HAS_DDI(display) && !display->platform.cherryview) 2907 return; 2908 2909 for_each_port_masked(port, ports) { 2910 struct intel_bios_encoder_data *devdata; 2911 struct child_device_config *child; 2912 enum phy phy = intel_port_to_phy(display, port); 2913 2914 /* 2915 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2916 * to detect it. 2917 */ 2918 if (intel_phy_is_tc(display, phy)) 2919 continue; 2920 2921 /* Create fake child device config */ 2922 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2923 if (!devdata) 2924 break; 2925 2926 devdata->display = display; 2927 child = &devdata->child; 2928 2929 if (port == PORT_F) 2930 child->dvo_port = DVO_PORT_HDMIF; 2931 else if (port == PORT_E) 2932 child->dvo_port = DVO_PORT_HDMIE; 2933 else 2934 child->dvo_port = DVO_PORT_HDMIA + port; 2935 2936 if (port != PORT_A && port != PORT_E) 2937 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2938 2939 if (port != PORT_E) 2940 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2941 2942 if (port == PORT_A) 2943 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2944 2945 list_add_tail(&devdata->node, &display->vbt.display_devices); 2946 2947 drm_dbg_kms(display->drm, 2948 "Generating default VBT child device with type 0x%04x on port %c\n", 2949 child->device_type, port_name(port)); 2950 } 2951 2952 /* Bypass some minimum baseline VBT version checks */ 2953 display->vbt.version = 155; 2954 } 2955 2956 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2957 { 2958 const void *_vbt = vbt; 2959 2960 return _vbt + vbt->bdb_offset; 2961 } 2962 2963 static const char vbt_signature[] = "$VBT"; 2964 static const int vbt_signature_len = 4; 2965 2966 /** 2967 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2968 * @display: display device 2969 * @buf: pointer to a buffer to validate 2970 * @size: size of the buffer 2971 * 2972 * Returns true on valid VBT. 2973 */ 2974 bool intel_bios_is_valid_vbt(struct intel_display *display, 2975 const void *buf, size_t size) 2976 { 2977 const struct vbt_header *vbt = buf; 2978 const struct bdb_header *bdb; 2979 2980 if (!vbt) 2981 return false; 2982 2983 if (sizeof(struct vbt_header) > size) { 2984 drm_dbg_kms(display->drm, "VBT header incomplete\n"); 2985 return false; 2986 } 2987 2988 if (memcmp(vbt->signature, vbt_signature, vbt_signature_len)) { 2989 drm_dbg_kms(display->drm, "VBT invalid signature\n"); 2990 return false; 2991 } 2992 2993 if (vbt->vbt_size > size) { 2994 drm_dbg_kms(display->drm, 2995 "VBT incomplete (vbt_size overflows)\n"); 2996 return false; 2997 } 2998 2999 size = vbt->vbt_size; 3000 3001 if (range_overflows_t(size_t, 3002 vbt->bdb_offset, 3003 sizeof(struct bdb_header), 3004 size)) { 3005 drm_dbg_kms(display->drm, "BDB header incomplete\n"); 3006 return false; 3007 } 3008 3009 bdb = get_bdb_header(vbt); 3010 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 3011 drm_dbg_kms(display->drm, "BDB incomplete\n"); 3012 return false; 3013 } 3014 3015 return vbt; 3016 } 3017 3018 static struct vbt_header *firmware_get_vbt(struct intel_display *display, 3019 size_t *size) 3020 { 3021 struct vbt_header *vbt = NULL; 3022 const struct firmware *fw = NULL; 3023 const char *name = display->params.vbt_firmware; 3024 int ret; 3025 3026 if (!name || !*name) 3027 return NULL; 3028 3029 ret = request_firmware(&fw, name, display->drm->dev); 3030 if (ret) { 3031 drm_err(display->drm, 3032 "Requesting VBT firmware \"%s\" failed (%d)\n", 3033 name, ret); 3034 return NULL; 3035 } 3036 3037 if (intel_bios_is_valid_vbt(display, fw->data, fw->size)) { 3038 vbt = kmemdup(fw->data, fw->size, GFP_KERNEL); 3039 if (vbt) { 3040 drm_dbg_kms(display->drm, 3041 "Found valid VBT firmware \"%s\"\n", name); 3042 if (size) 3043 *size = fw->size; 3044 } 3045 } else { 3046 drm_dbg_kms(display->drm, "Invalid VBT firmware \"%s\"\n", 3047 name); 3048 } 3049 3050 release_firmware(fw); 3051 3052 return vbt; 3053 } 3054 3055 static struct vbt_header *oprom_get_vbt(struct intel_display *display, 3056 struct intel_rom *rom, 3057 size_t *size, const char *type) 3058 { 3059 struct vbt_header *vbt; 3060 size_t vbt_size; 3061 loff_t offset; 3062 3063 if (!rom) 3064 return NULL; 3065 3066 BUILD_BUG_ON(vbt_signature_len != sizeof(vbt_signature) - 1); 3067 BUILD_BUG_ON(vbt_signature_len != sizeof(u32)); 3068 3069 offset = intel_rom_find(rom, *(const u32 *)vbt_signature); 3070 if (offset < 0) 3071 goto err_free_rom; 3072 3073 if (sizeof(struct vbt_header) > intel_rom_size(rom) - offset) { 3074 drm_dbg_kms(display->drm, "VBT header incomplete\n"); 3075 goto err_free_rom; 3076 } 3077 3078 BUILD_BUG_ON(sizeof(vbt->vbt_size) != sizeof(u16)); 3079 3080 vbt_size = intel_rom_read16(rom, offset + offsetof(struct vbt_header, vbt_size)); 3081 if (vbt_size > intel_rom_size(rom) - offset) { 3082 drm_dbg_kms(display->drm, "VBT incomplete (vbt_size overflows)\n"); 3083 goto err_free_rom; 3084 } 3085 3086 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); 3087 if (!vbt) 3088 goto err_free_rom; 3089 3090 intel_rom_read_block(rom, vbt, offset, vbt_size); 3091 3092 if (!intel_bios_is_valid_vbt(display, vbt, vbt_size)) 3093 goto err_free_vbt; 3094 3095 drm_dbg_kms(display->drm, "Found valid VBT in %s\n", type); 3096 3097 if (size) 3098 *size = vbt_size; 3099 3100 intel_rom_free(rom); 3101 3102 return vbt; 3103 3104 err_free_vbt: 3105 kfree(vbt); 3106 err_free_rom: 3107 intel_rom_free(rom); 3108 return NULL; 3109 } 3110 3111 static const struct vbt_header *intel_bios_get_vbt(struct intel_display *display, 3112 size_t *sizep) 3113 { 3114 struct drm_i915_private *i915 = to_i915(display->drm); 3115 const struct vbt_header *vbt = NULL; 3116 3117 vbt = firmware_get_vbt(display, sizep); 3118 3119 if (!vbt) 3120 vbt = intel_opregion_get_vbt(display, sizep); 3121 3122 /* 3123 * If the OpRegion does not have VBT, look in SPI flash 3124 * through MMIO or PCI mapping 3125 */ 3126 if (!vbt && display->platform.dgfx) 3127 with_intel_display_rpm(display) 3128 vbt = oprom_get_vbt(display, intel_rom_spi(i915), sizep, "SPI flash"); 3129 3130 if (!vbt) 3131 with_intel_display_rpm(display) 3132 vbt = oprom_get_vbt(display, intel_rom_pci(i915), sizep, "PCI ROM"); 3133 3134 return vbt; 3135 } 3136 3137 /** 3138 * intel_bios_init - find VBT and initialize settings from the BIOS 3139 * @display: display device instance 3140 * 3141 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 3142 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 3143 * initialize some defaults if the VBT is not present at all. 3144 */ 3145 void intel_bios_init(struct intel_display *display) 3146 { 3147 const struct vbt_header *vbt; 3148 const struct bdb_header *bdb; 3149 3150 INIT_LIST_HEAD(&display->vbt.display_devices); 3151 INIT_LIST_HEAD(&display->vbt.bdb_blocks); 3152 3153 if (!HAS_DISPLAY(display)) { 3154 drm_dbg_kms(display->drm, 3155 "Skipping VBT init due to disabled display.\n"); 3156 return; 3157 } 3158 3159 init_vbt_defaults(display); 3160 3161 vbt = intel_bios_get_vbt(display, NULL); 3162 3163 if (!vbt) 3164 goto out; 3165 3166 bdb = get_bdb_header(vbt); 3167 display->vbt.version = bdb->version; 3168 3169 drm_dbg_kms(display->drm, 3170 "VBT signature \"%.*s\", BDB version %d\n", 3171 (int)sizeof(vbt->signature), vbt->signature, 3172 display->vbt.version); 3173 3174 init_bdb_blocks(display, bdb); 3175 3176 /* Grab useful general definitions */ 3177 parse_general_features(display); 3178 parse_general_definitions(display); 3179 parse_driver_features(display); 3180 3181 /* Depends on child device list */ 3182 parse_compression_parameters(display); 3183 3184 out: 3185 if (!vbt) { 3186 drm_info(display->drm, 3187 "Failed to find VBIOS tables (VBT)\n"); 3188 init_vbt_missing_defaults(display); 3189 } 3190 3191 /* Further processing on pre-parsed or generated child device data */ 3192 parse_sdvo_device_mapping(display); 3193 parse_ddi_ports(display); 3194 3195 kfree(vbt); 3196 } 3197 3198 static void intel_bios_init_panel(struct intel_display *display, 3199 struct intel_panel *panel, 3200 const struct intel_bios_encoder_data *devdata, 3201 const struct drm_edid *drm_edid, 3202 bool use_fallback) 3203 { 3204 /* already have it? */ 3205 if (panel->vbt.panel_type >= 0) { 3206 drm_WARN_ON(display->drm, !use_fallback); 3207 return; 3208 } 3209 3210 panel->vbt.panel_type = get_panel_type(display, devdata, 3211 drm_edid, use_fallback); 3212 if (panel->vbt.panel_type < 0) { 3213 drm_WARN_ON(display->drm, use_fallback); 3214 return; 3215 } 3216 3217 init_vbt_panel_defaults(panel); 3218 3219 parse_panel_options(display, panel); 3220 parse_generic_dtd(display, panel); 3221 parse_lfp_data(display, panel); 3222 parse_lfp_backlight(display, panel); 3223 parse_sdvo_lvds_data(display, panel); 3224 parse_panel_driver_features(display, panel); 3225 parse_power_conservation_features(display, panel); 3226 parse_edp(display, panel); 3227 parse_psr(display, panel); 3228 parse_mipi_config(display, panel); 3229 parse_mipi_sequence(display, panel); 3230 } 3231 3232 void intel_bios_init_panel_early(struct intel_display *display, 3233 struct intel_panel *panel, 3234 const struct intel_bios_encoder_data *devdata) 3235 { 3236 intel_bios_init_panel(display, panel, devdata, NULL, false); 3237 } 3238 3239 void intel_bios_init_panel_late(struct intel_display *display, 3240 struct intel_panel *panel, 3241 const struct intel_bios_encoder_data *devdata, 3242 const struct drm_edid *drm_edid) 3243 { 3244 intel_bios_init_panel(display, panel, devdata, drm_edid, true); 3245 } 3246 3247 /** 3248 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 3249 * @display: display device instance 3250 */ 3251 void intel_bios_driver_remove(struct intel_display *display) 3252 { 3253 struct intel_bios_encoder_data *devdata, *nd; 3254 struct bdb_block_entry *entry, *ne; 3255 3256 list_for_each_entry_safe(devdata, nd, &display->vbt.display_devices, 3257 node) { 3258 list_del(&devdata->node); 3259 kfree(devdata->dsc); 3260 kfree(devdata); 3261 } 3262 3263 list_for_each_entry_safe(entry, ne, &display->vbt.bdb_blocks, node) { 3264 list_del(&entry->node); 3265 kfree(entry); 3266 } 3267 } 3268 3269 void intel_bios_fini_panel(struct intel_panel *panel) 3270 { 3271 kfree(panel->vbt.sdvo_lvds_vbt_mode); 3272 panel->vbt.sdvo_lvds_vbt_mode = NULL; 3273 kfree(panel->vbt.lfp_vbt_mode); 3274 panel->vbt.lfp_vbt_mode = NULL; 3275 kfree(panel->vbt.dsi.data); 3276 panel->vbt.dsi.data = NULL; 3277 kfree(panel->vbt.dsi.pps); 3278 panel->vbt.dsi.pps = NULL; 3279 kfree(panel->vbt.dsi.config); 3280 panel->vbt.dsi.config = NULL; 3281 kfree(panel->vbt.dsi.deassert_seq); 3282 panel->vbt.dsi.deassert_seq = NULL; 3283 } 3284 3285 /** 3286 * intel_bios_is_tv_present - is integrated TV present in VBT 3287 * @display: display device instance 3288 * 3289 * Return true if TV is present. If no child devices were parsed from VBT, 3290 * assume TV is present. 3291 */ 3292 bool intel_bios_is_tv_present(struct intel_display *display) 3293 { 3294 const struct intel_bios_encoder_data *devdata; 3295 3296 if (!display->vbt.int_tv_support) 3297 return false; 3298 3299 if (list_empty(&display->vbt.display_devices)) 3300 return true; 3301 3302 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3303 const struct child_device_config *child = &devdata->child; 3304 3305 /* 3306 * If the device type is not TV, continue. 3307 */ 3308 switch (child->device_type) { 3309 case DEVICE_TYPE_INT_TV: 3310 case DEVICE_TYPE_TV: 3311 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 3312 break; 3313 default: 3314 continue; 3315 } 3316 /* Only when the addin_offset is non-zero, it is regarded 3317 * as present. 3318 */ 3319 if (child->addin_offset) 3320 return true; 3321 } 3322 3323 return false; 3324 } 3325 3326 /** 3327 * intel_bios_is_lvds_present - is LVDS present in VBT 3328 * @display: display device instance 3329 * @i2c_pin: i2c pin for LVDS if present 3330 * 3331 * Return true if LVDS is present. If no child devices were parsed from VBT, 3332 * assume LVDS is present. 3333 */ 3334 bool intel_bios_is_lvds_present(struct intel_display *display, u8 *i2c_pin) 3335 { 3336 const struct intel_bios_encoder_data *devdata; 3337 3338 if (list_empty(&display->vbt.display_devices)) 3339 return true; 3340 3341 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3342 const struct child_device_config *child = &devdata->child; 3343 3344 /* If the device type is not LFP, continue. 3345 * We have to check both the new identifiers as well as the 3346 * old for compatibility with some BIOSes. 3347 */ 3348 if (child->device_type != DEVICE_TYPE_INT_LFP && 3349 child->device_type != DEVICE_TYPE_LFP) 3350 continue; 3351 3352 if (intel_gmbus_is_valid_pin(display, child->i2c_pin)) 3353 *i2c_pin = child->i2c_pin; 3354 3355 /* However, we cannot trust the BIOS writers to populate 3356 * the VBT correctly. Since LVDS requires additional 3357 * information from AIM blocks, a non-zero addin offset is 3358 * a good indicator that the LVDS is actually present. 3359 */ 3360 if (child->addin_offset) 3361 return true; 3362 3363 /* But even then some BIOS writers perform some black magic 3364 * and instantiate the device without reference to any 3365 * additional data. Trust that if the VBT was written into 3366 * the OpRegion then they have validated the LVDS's existence. 3367 */ 3368 return intel_opregion_vbt_present(display); 3369 } 3370 3371 return false; 3372 } 3373 3374 /** 3375 * intel_bios_is_port_present - is the specified digital port present 3376 * @display: display device instance 3377 * @port: port to check 3378 * 3379 * Return true if the device in %port is present. 3380 */ 3381 bool intel_bios_is_port_present(struct intel_display *display, enum port port) 3382 { 3383 const struct intel_bios_encoder_data *devdata; 3384 3385 if (WARN_ON(!has_ddi_port_info(display))) 3386 return true; 3387 3388 if (!is_port_valid(display, port)) 3389 return false; 3390 3391 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3392 const struct child_device_config *child = &devdata->child; 3393 3394 if (dvo_port_to_port(display, child->dvo_port) == port) 3395 return true; 3396 } 3397 3398 return false; 3399 } 3400 3401 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) 3402 { 3403 const struct child_device_config *child = &devdata->child; 3404 3405 if (!devdata) 3406 return false; 3407 3408 if (!intel_bios_encoder_supports_dp(devdata) || 3409 !intel_bios_encoder_supports_hdmi(devdata)) 3410 return false; 3411 3412 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) 3413 return true; 3414 3415 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 3416 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && 3417 child->aux_channel != 0) 3418 return true; 3419 3420 return false; 3421 } 3422 3423 /** 3424 * intel_bios_is_dsi_present - is DSI present in VBT 3425 * @display: display device instance 3426 * @port: port for DSI if present 3427 * 3428 * Return true if DSI is present, and return the port in %port. 3429 */ 3430 bool intel_bios_is_dsi_present(struct intel_display *display, 3431 enum port *port) 3432 { 3433 const struct intel_bios_encoder_data *devdata; 3434 3435 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3436 const struct child_device_config *child = &devdata->child; 3437 u8 dvo_port = child->dvo_port; 3438 3439 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3440 continue; 3441 3442 if (dsi_dvo_port_to_port(display, dvo_port) == PORT_NONE) { 3443 drm_dbg_kms(display->drm, 3444 "VBT has unsupported DSI port %c\n", 3445 port_name(dvo_port - DVO_PORT_MIPIA)); 3446 continue; 3447 } 3448 3449 if (port) 3450 *port = dsi_dvo_port_to_port(display, dvo_port); 3451 return true; 3452 } 3453 3454 return false; 3455 } 3456 3457 static void fill_dsc(struct intel_crtc_state *crtc_state, 3458 struct dsc_compression_parameters_entry *dsc, 3459 int dsc_max_bpc) 3460 { 3461 struct intel_display *display = to_intel_display(crtc_state); 3462 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 3463 int bpc = 8; 3464 3465 vdsc_cfg->dsc_version_major = dsc->version_major; 3466 vdsc_cfg->dsc_version_minor = dsc->version_minor; 3467 3468 if (dsc->support_12bpc && dsc_max_bpc >= 12) 3469 bpc = 12; 3470 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 3471 bpc = 10; 3472 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 3473 bpc = 8; 3474 else 3475 drm_dbg_kms(display->drm, "VBT: Unsupported BPC %d for DCS\n", 3476 dsc_max_bpc); 3477 3478 crtc_state->pipe_bpp = bpc * 3; 3479 3480 crtc_state->dsc.compressed_bpp_x16 = fxp_q4_from_int(min(crtc_state->pipe_bpp, 3481 VBT_DSC_MAX_BPP(dsc->max_bpp))); 3482 3483 /* 3484 * FIXME: This is ugly, and slice count should take DSC engine 3485 * throughput etc. into account. 3486 * 3487 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 3488 */ 3489 if (dsc->slices_per_line & BIT(2)) { 3490 crtc_state->dsc.slice_count = 4; 3491 } else if (dsc->slices_per_line & BIT(1)) { 3492 crtc_state->dsc.slice_count = 2; 3493 } else { 3494 /* FIXME */ 3495 if (!(dsc->slices_per_line & BIT(0))) 3496 drm_dbg_kms(display->drm, 3497 "VBT: Unsupported DSC slice count for DSI\n"); 3498 3499 crtc_state->dsc.slice_count = 1; 3500 } 3501 3502 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 3503 crtc_state->dsc.slice_count != 0) 3504 drm_dbg_kms(display->drm, 3505 "VBT: DSC hdisplay %d not divisible by slice count %d\n", 3506 crtc_state->hw.adjusted_mode.crtc_hdisplay, 3507 crtc_state->dsc.slice_count); 3508 3509 /* 3510 * The VBT rc_buffer_block_size and rc_buffer_size definitions 3511 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 3512 */ 3513 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 3514 dsc->rc_buffer_size); 3515 3516 /* FIXME: DSI spec says bpc + 1 for this one */ 3517 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 3518 3519 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 3520 3521 vdsc_cfg->slice_height = dsc->slice_height; 3522 } 3523 3524 /* FIXME: initially DSI specific */ 3525 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 3526 struct intel_crtc_state *crtc_state, 3527 int dsc_max_bpc) 3528 { 3529 struct intel_display *display = to_intel_display(encoder); 3530 const struct intel_bios_encoder_data *devdata; 3531 3532 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3533 const struct child_device_config *child = &devdata->child; 3534 3535 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3536 continue; 3537 3538 if (dsi_dvo_port_to_port(display, child->dvo_port) == encoder->port) { 3539 if (!devdata->dsc) 3540 return false; 3541 3542 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 3543 3544 return true; 3545 } 3546 } 3547 3548 return false; 3549 } 3550 3551 static const u8 adlp_aux_ch_map[] = { 3552 [AUX_CH_A] = DP_AUX_A, 3553 [AUX_CH_B] = DP_AUX_B, 3554 [AUX_CH_C] = DP_AUX_C, 3555 [AUX_CH_D_XELPD] = DP_AUX_D, 3556 [AUX_CH_E_XELPD] = DP_AUX_E, 3557 [AUX_CH_USBC1] = DP_AUX_F, 3558 [AUX_CH_USBC2] = DP_AUX_G, 3559 [AUX_CH_USBC3] = DP_AUX_H, 3560 [AUX_CH_USBC4] = DP_AUX_I, 3561 }; 3562 3563 /* 3564 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 3565 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 3566 */ 3567 static const u8 adls_aux_ch_map[] = { 3568 [AUX_CH_A] = DP_AUX_A, 3569 [AUX_CH_USBC1] = DP_AUX_B, 3570 [AUX_CH_USBC2] = DP_AUX_C, 3571 [AUX_CH_USBC3] = DP_AUX_D, 3572 [AUX_CH_USBC4] = DP_AUX_E, 3573 }; 3574 3575 /* 3576 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 3577 * map to DDI A,B,TC1,TC2 respectively. 3578 */ 3579 static const u8 rkl_aux_ch_map[] = { 3580 [AUX_CH_A] = DP_AUX_A, 3581 [AUX_CH_B] = DP_AUX_B, 3582 [AUX_CH_USBC1] = DP_AUX_C, 3583 [AUX_CH_USBC2] = DP_AUX_D, 3584 }; 3585 3586 static const u8 direct_aux_ch_map[] = { 3587 [AUX_CH_A] = DP_AUX_A, 3588 [AUX_CH_B] = DP_AUX_B, 3589 [AUX_CH_C] = DP_AUX_C, 3590 [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */ 3591 [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */ 3592 [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */ 3593 [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */ 3594 [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */ 3595 [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */ 3596 }; 3597 3598 static enum aux_ch map_aux_ch(struct intel_display *display, u8 aux_channel) 3599 { 3600 const u8 *aux_ch_map; 3601 int i, n_entries; 3602 3603 if (DISPLAY_VER(display) >= 13) { 3604 aux_ch_map = adlp_aux_ch_map; 3605 n_entries = ARRAY_SIZE(adlp_aux_ch_map); 3606 } else if (display->platform.alderlake_s) { 3607 aux_ch_map = adls_aux_ch_map; 3608 n_entries = ARRAY_SIZE(adls_aux_ch_map); 3609 } else if (display->platform.dg1 || display->platform.rocketlake) { 3610 aux_ch_map = rkl_aux_ch_map; 3611 n_entries = ARRAY_SIZE(rkl_aux_ch_map); 3612 } else { 3613 aux_ch_map = direct_aux_ch_map; 3614 n_entries = ARRAY_SIZE(direct_aux_ch_map); 3615 } 3616 3617 for (i = 0; i < n_entries; i++) { 3618 if (aux_ch_map[i] == aux_channel) 3619 return i; 3620 } 3621 3622 drm_dbg_kms(display->drm, 3623 "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n", 3624 aux_channel); 3625 3626 return AUX_CH_NONE; 3627 } 3628 3629 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata) 3630 { 3631 if (!devdata || !devdata->child.aux_channel) 3632 return AUX_CH_NONE; 3633 3634 return map_aux_ch(devdata->display, devdata->child.aux_channel); 3635 } 3636 3637 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata) 3638 { 3639 struct intel_display *display; 3640 u8 aux_channel; 3641 int count = 0; 3642 3643 if (!devdata || !devdata->child.aux_channel) 3644 return false; 3645 3646 display = devdata->display; 3647 aux_channel = devdata->child.aux_channel; 3648 3649 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3650 if (intel_bios_encoder_supports_dp(devdata) && 3651 aux_channel == devdata->child.aux_channel) 3652 count++; 3653 } 3654 3655 return count > 1; 3656 } 3657 3658 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata) 3659 { 3660 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost) 3661 return 0; 3662 3663 return translate_iboost(devdata->display, devdata->child.dp_iboost_level); 3664 } 3665 3666 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 3667 { 3668 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost) 3669 return 0; 3670 3671 return translate_iboost(devdata->display, devdata->child.hdmi_iboost_level); 3672 } 3673 3674 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata) 3675 { 3676 if (!devdata || !devdata->child.ddc_pin) 3677 return 0; 3678 3679 return map_ddc_pin(devdata->display, devdata->child.ddc_pin); 3680 } 3681 3682 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 3683 { 3684 return devdata->display->vbt.version >= 195 && devdata->child.dp_usb_type_c; 3685 } 3686 3687 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 3688 { 3689 return devdata->display->vbt.version >= 209 && devdata->child.tbt; 3690 } 3691 3692 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata) 3693 { 3694 return devdata && devdata->child.lane_reversal; 3695 } 3696 3697 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata) 3698 { 3699 return devdata && devdata->child.hpd_invert; 3700 } 3701 3702 const struct intel_bios_encoder_data * 3703 intel_bios_encoder_data_lookup(struct intel_display *display, enum port port) 3704 { 3705 struct intel_bios_encoder_data *devdata; 3706 3707 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3708 if (intel_bios_encoder_port(devdata) == port) 3709 return devdata; 3710 } 3711 3712 return NULL; 3713 } 3714 3715 void intel_bios_for_each_encoder(struct intel_display *display, 3716 void (*func)(struct intel_display *display, 3717 const struct intel_bios_encoder_data *devdata)) 3718 { 3719 struct intel_bios_encoder_data *devdata; 3720 3721 list_for_each_entry(devdata, &display->vbt.display_devices, node) 3722 func(display, devdata); 3723 } 3724 3725 static int intel_bios_vbt_show(struct seq_file *m, void *unused) 3726 { 3727 struct intel_display *display = m->private; 3728 const void *vbt; 3729 size_t vbt_size; 3730 3731 vbt = intel_bios_get_vbt(display, &vbt_size); 3732 3733 if (vbt) { 3734 seq_write(m, vbt, vbt_size); 3735 kfree(vbt); 3736 } 3737 3738 return 0; 3739 } 3740 3741 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt); 3742 3743 void intel_bios_debugfs_register(struct intel_display *display) 3744 { 3745 struct drm_minor *minor = display->drm->primary; 3746 3747 debugfs_create_file("i915_vbt", 0444, minor->debugfs_root, 3748 display, &intel_bios_vbt_fops); 3749 } 3750