xref: /linux/drivers/gpu/drm/i915/display/intel_bios.c (revision a4871e6201c46c8e1d04308265b4b4c5753c8209)
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/debugfs.h>
29 #include <linux/firmware.h>
30 
31 #include <drm/display/drm_dp_helper.h>
32 #include <drm/display/drm_dsc_helper.h>
33 #include <drm/drm_edid.h>
34 #include <drm/drm_fixed.h>
35 
36 #include "soc/intel_rom.h"
37 
38 #include "i915_drv.h"
39 #include "intel_display.h"
40 #include "intel_display_rpm.h"
41 #include "intel_display_types.h"
42 #include "intel_gmbus.h"
43 
44 #define _INTEL_BIOS_PRIVATE
45 #include "intel_vbt_defs.h"
46 
47 /**
48  * DOC: Video BIOS Table (VBT)
49  *
50  * The Video BIOS Table, or VBT, provides platform and board specific
51  * configuration information to the driver that is not discoverable or available
52  * through other means. The configuration is mostly related to display
53  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
54  * the PCI ROM.
55  *
56  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
57  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
58  * contain the actual configuration information. The VBT Header, and thus the
59  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
60  * BDB Header. The data blocks are concatenated after the BDB Header. The data
61  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
62  * data. (Block 53, the MIPI Sequence Block is an exception.)
63  *
64  * The driver parses the VBT during load. The relevant information is stored in
65  * driver private data for ease of use, and the actual VBT is not read after
66  * that.
67  */
68 
69 /* Wrapper for VBT child device config */
70 struct intel_bios_encoder_data {
71 	struct intel_display *display;
72 
73 	struct child_device_config child;
74 	struct dsc_compression_parameters_entry *dsc;
75 	struct list_head node;
76 };
77 
78 #define	TARGET_ADDR1	0x70
79 #define	TARGET_ADDR2	0x72
80 
81 /* Get BDB block size given a pointer to Block ID. */
82 static u32 _get_blocksize(const u8 *block_base)
83 {
84 	/* The MIPI Sequence Block v3+ has a separate size field. */
85 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
86 		return *((const u32 *)(block_base + 4));
87 	else
88 		return *((const u16 *)(block_base + 1));
89 }
90 
91 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
92 static u32 get_blocksize(const void *block_data)
93 {
94 	return _get_blocksize(block_data - 3);
95 }
96 
97 static const void *
98 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
99 {
100 	const struct bdb_header *bdb = _bdb;
101 	const u8 *base = _bdb;
102 	int index = 0;
103 	u32 total, current_size;
104 	enum bdb_block_id current_id;
105 
106 	/* skip to first section */
107 	index += bdb->header_size;
108 	total = bdb->bdb_size;
109 
110 	/* walk the sections looking for section_id */
111 	while (index + 3 < total) {
112 		current_id = *(base + index);
113 		current_size = _get_blocksize(base + index);
114 		index += 3;
115 
116 		if (index + current_size > total)
117 			return NULL;
118 
119 		if (current_id == section_id)
120 			return base + index;
121 
122 		index += current_size;
123 	}
124 
125 	return NULL;
126 }
127 
128 /*
129  * Offset from the start of BDB to the start of the
130  * block data (just past the block header).
131  */
132 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
133 {
134 	const void *block;
135 
136 	block = find_raw_section(bdb, section_id);
137 	if (!block)
138 		return 0;
139 
140 	return block - bdb;
141 }
142 
143 struct bdb_block_entry {
144 	struct list_head node;
145 	enum bdb_block_id section_id;
146 	u8 data[];
147 };
148 
149 static const void *
150 bdb_find_section(struct intel_display *display,
151 		 enum bdb_block_id section_id)
152 {
153 	struct bdb_block_entry *entry;
154 
155 	list_for_each_entry(entry, &display->vbt.bdb_blocks, node) {
156 		if (entry->section_id == section_id)
157 			return entry->data + 3;
158 	}
159 
160 	return NULL;
161 }
162 
163 static const struct {
164 	enum bdb_block_id section_id;
165 	size_t min_size;
166 } bdb_blocks[] = {
167 	{ .section_id = BDB_GENERAL_FEATURES,
168 	  .min_size = sizeof(struct bdb_general_features), },
169 	{ .section_id = BDB_GENERAL_DEFINITIONS,
170 	  .min_size = sizeof(struct bdb_general_definitions), },
171 	{ .section_id = BDB_PSR,
172 	  .min_size = sizeof(struct bdb_psr), },
173 	{ .section_id = BDB_DRIVER_FEATURES,
174 	  .min_size = sizeof(struct bdb_driver_features), },
175 	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
176 	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
177 	{ .section_id = BDB_SDVO_LVDS_DTD,
178 	  .min_size = sizeof(struct bdb_sdvo_lvds_dtd), },
179 	{ .section_id = BDB_EDP,
180 	  .min_size = sizeof(struct bdb_edp), },
181 	{ .section_id = BDB_LFP_OPTIONS,
182 	  .min_size = sizeof(struct bdb_lfp_options), },
183 	/*
184 	 * BDB_LFP_DATA depends on BDB_LFP_DATA_PTRS,
185 	 * so keep the two ordered.
186 	 */
187 	{ .section_id = BDB_LFP_DATA_PTRS,
188 	  .min_size = sizeof(struct bdb_lfp_data_ptrs), },
189 	{ .section_id = BDB_LFP_DATA,
190 	  .min_size = 0, /* special case */ },
191 	{ .section_id = BDB_LFP_BACKLIGHT,
192 	  .min_size = sizeof(struct bdb_lfp_backlight), },
193 	{ .section_id = BDB_LFP_POWER,
194 	  .min_size = sizeof(struct bdb_lfp_power), },
195 	{ .section_id = BDB_MIPI_CONFIG,
196 	  .min_size = sizeof(struct bdb_mipi_config), },
197 	{ .section_id = BDB_MIPI_SEQUENCE,
198 	  .min_size = sizeof(struct bdb_mipi_sequence) },
199 	{ .section_id = BDB_COMPRESSION_PARAMETERS,
200 	  .min_size = sizeof(struct bdb_compression_parameters), },
201 	{ .section_id = BDB_GENERIC_DTD,
202 	  .min_size = sizeof(struct bdb_generic_dtd), },
203 };
204 
205 static size_t lfp_data_min_size(struct intel_display *display)
206 {
207 	const struct bdb_lfp_data_ptrs *ptrs;
208 	size_t size;
209 
210 	ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
211 	if (!ptrs)
212 		return 0;
213 
214 	size = sizeof(struct bdb_lfp_data);
215 	if (ptrs->panel_name.table_size)
216 		size = max(size, ptrs->panel_name.offset +
217 			   sizeof(struct bdb_lfp_data_tail));
218 
219 	return size;
220 }
221 
222 static bool validate_lfp_data_ptrs(const void *bdb,
223 				   const struct bdb_lfp_data_ptrs *ptrs)
224 {
225 	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
226 	int data_block_size, lfp_data_size;
227 	const void *data_block;
228 	int i;
229 
230 	data_block = find_raw_section(bdb, BDB_LFP_DATA);
231 	if (!data_block)
232 		return false;
233 
234 	data_block_size = get_blocksize(data_block);
235 	if (data_block_size == 0)
236 		return false;
237 
238 	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
239 	if (ptrs->num_entries != 3)
240 		return false;
241 
242 	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
243 	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
244 	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
245 	panel_name_size = ptrs->panel_name.table_size;
246 
247 	/* fp_timing has variable size */
248 	if (fp_timing_size < 32 ||
249 	    dvo_timing_size != sizeof(struct bdb_edid_dtd) ||
250 	    panel_pnp_id_size != sizeof(struct bdb_edid_pnp_id))
251 		return false;
252 
253 	/* panel_name is not present in old VBTs */
254 	if (panel_name_size != 0 &&
255 	    panel_name_size != sizeof(struct bdb_edid_product_name))
256 		return false;
257 
258 	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
259 	if (16 * lfp_data_size > data_block_size)
260 		return false;
261 
262 	/* make sure the table entries have uniform size */
263 	for (i = 1; i < 16; i++) {
264 		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
265 		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
266 		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
267 			return false;
268 
269 		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
270 		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
271 		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
272 			return false;
273 	}
274 
275 	/*
276 	 * Except for vlv/chv machines all real VBTs seem to have 6
277 	 * unaccounted bytes in the fp_timing table. And it doesn't
278 	 * appear to be a really intentional hole as the fp_timing
279 	 * 0xffff terminator is always within those 6 missing bytes.
280 	 */
281 	if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
282 		fp_timing_size += 6;
283 
284 	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
285 		return false;
286 
287 	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
288 	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
289 	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
290 		return false;
291 
292 	/* make sure the tables fit inside the data block */
293 	for (i = 0; i < 16; i++) {
294 		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
295 		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
296 		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
297 			return false;
298 	}
299 
300 	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
301 		return false;
302 
303 	/* make sure fp_timing terminators are present at expected locations */
304 	for (i = 0; i < 16; i++) {
305 		const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
306 			fp_timing_size - 2;
307 
308 		if (*t != 0xffff)
309 			return false;
310 	}
311 
312 	return true;
313 }
314 
315 /* make the data table offsets relative to the data block */
316 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
317 {
318 	struct bdb_lfp_data_ptrs *ptrs = ptrs_block;
319 	u32 offset;
320 	int i;
321 
322 	offset = raw_block_offset(bdb, BDB_LFP_DATA);
323 
324 	for (i = 0; i < 16; i++) {
325 		if (ptrs->ptr[i].fp_timing.offset < offset ||
326 		    ptrs->ptr[i].dvo_timing.offset < offset ||
327 		    ptrs->ptr[i].panel_pnp_id.offset < offset)
328 			return false;
329 
330 		ptrs->ptr[i].fp_timing.offset -= offset;
331 		ptrs->ptr[i].dvo_timing.offset -= offset;
332 		ptrs->ptr[i].panel_pnp_id.offset -= offset;
333 	}
334 
335 	if (ptrs->panel_name.table_size) {
336 		if (ptrs->panel_name.offset < offset)
337 			return false;
338 
339 		ptrs->panel_name.offset -= offset;
340 	}
341 
342 	return validate_lfp_data_ptrs(bdb, ptrs);
343 }
344 
345 static int make_lfp_data_ptr(struct lfp_data_ptr_table *table,
346 			     int table_size, int total_size)
347 {
348 	if (total_size < table_size)
349 		return total_size;
350 
351 	table->table_size = table_size;
352 	table->offset = total_size - table_size;
353 
354 	return total_size - table_size;
355 }
356 
357 static void next_lfp_data_ptr(struct lfp_data_ptr_table *next,
358 			      const struct lfp_data_ptr_table *prev,
359 			      int size)
360 {
361 	next->table_size = prev->table_size;
362 	next->offset = prev->offset + size;
363 }
364 
365 static void *generate_lfp_data_ptrs(struct intel_display *display,
366 				    const void *bdb)
367 {
368 	int i, size, table_size, block_size, offset, fp_timing_size;
369 	struct bdb_lfp_data_ptrs *ptrs;
370 	const void *block;
371 	void *ptrs_block;
372 
373 	/*
374 	 * The hardcoded fp_timing_size is only valid for
375 	 * modernish VBTs. All older VBTs definitely should
376 	 * include block 41 and thus we don't need to
377 	 * generate one.
378 	 */
379 	if (display->vbt.version < 155)
380 		return NULL;
381 
382 	fp_timing_size = 38;
383 
384 	block = find_raw_section(bdb, BDB_LFP_DATA);
385 	if (!block)
386 		return NULL;
387 
388 	drm_dbg_kms(display->drm, "Generating LFP data table pointers\n");
389 
390 	block_size = get_blocksize(block);
391 
392 	size = fp_timing_size + sizeof(struct bdb_edid_dtd) +
393 		sizeof(struct bdb_edid_pnp_id);
394 	if (size * 16 > block_size)
395 		return NULL;
396 
397 	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
398 	if (!ptrs_block)
399 		return NULL;
400 
401 	*(u8 *)(ptrs_block + 0) = BDB_LFP_DATA_PTRS;
402 	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
403 	ptrs = ptrs_block + 3;
404 
405 	table_size = sizeof(struct bdb_edid_pnp_id);
406 	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
407 
408 	table_size = sizeof(struct bdb_edid_dtd);
409 	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
410 
411 	table_size = fp_timing_size;
412 	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
413 
414 	if (ptrs->ptr[0].fp_timing.table_size)
415 		ptrs->num_entries++;
416 	if (ptrs->ptr[0].dvo_timing.table_size)
417 		ptrs->num_entries++;
418 	if (ptrs->ptr[0].panel_pnp_id.table_size)
419 		ptrs->num_entries++;
420 
421 	if (size != 0 || ptrs->num_entries != 3) {
422 		kfree(ptrs_block);
423 		return NULL;
424 	}
425 
426 	size = fp_timing_size + sizeof(struct bdb_edid_dtd) +
427 		sizeof(struct bdb_edid_pnp_id);
428 	for (i = 1; i < 16; i++) {
429 		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
430 		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
431 		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
432 	}
433 
434 	table_size = sizeof(struct bdb_edid_product_name);
435 
436 	if (16 * (size + table_size) <= block_size) {
437 		ptrs->panel_name.table_size = table_size;
438 		ptrs->panel_name.offset = size * 16;
439 	}
440 
441 	offset = block - bdb;
442 
443 	for (i = 0; i < 16; i++) {
444 		ptrs->ptr[i].fp_timing.offset += offset;
445 		ptrs->ptr[i].dvo_timing.offset += offset;
446 		ptrs->ptr[i].panel_pnp_id.offset += offset;
447 	}
448 
449 	if (ptrs->panel_name.table_size)
450 		ptrs->panel_name.offset += offset;
451 
452 	return ptrs_block;
453 }
454 
455 static void
456 init_bdb_block(struct intel_display *display,
457 	       const void *bdb, enum bdb_block_id section_id,
458 	       size_t min_size)
459 {
460 	struct bdb_block_entry *entry;
461 	void *temp_block = NULL;
462 	const void *block;
463 	size_t block_size;
464 
465 	block = find_raw_section(bdb, section_id);
466 
467 	/* Modern VBTs lack the LFP data table pointers block, make one up */
468 	if (!block && section_id == BDB_LFP_DATA_PTRS) {
469 		temp_block = generate_lfp_data_ptrs(display, bdb);
470 		if (temp_block)
471 			block = temp_block + 3;
472 	}
473 	if (!block)
474 		return;
475 
476 	drm_WARN(display->drm, min_size == 0,
477 		 "Block %d min_size is zero\n", section_id);
478 
479 	block_size = get_blocksize(block);
480 
481 	/*
482 	 * Version number and new block size are considered
483 	 * part of the header for MIPI sequenece block v3+.
484 	 */
485 	if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
486 		block_size += 5;
487 
488 	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
489 			GFP_KERNEL);
490 	if (!entry) {
491 		kfree(temp_block);
492 		return;
493 	}
494 
495 	entry->section_id = section_id;
496 	memcpy(entry->data, block - 3, block_size + 3);
497 
498 	kfree(temp_block);
499 
500 	drm_dbg_kms(display->drm,
501 		    "Found BDB block %d (size %zu, min size %zu)\n",
502 		    section_id, block_size, min_size);
503 
504 	if (section_id == BDB_LFP_DATA_PTRS &&
505 	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
506 		drm_err(display->drm,
507 			"VBT has malformed LFP data table pointers\n");
508 		kfree(entry);
509 		return;
510 	}
511 
512 	list_add_tail(&entry->node, &display->vbt.bdb_blocks);
513 }
514 
515 static void init_bdb_blocks(struct intel_display *display,
516 			    const void *bdb)
517 {
518 	int i;
519 
520 	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
521 		enum bdb_block_id section_id = bdb_blocks[i].section_id;
522 		size_t min_size = bdb_blocks[i].min_size;
523 
524 		if (section_id == BDB_LFP_DATA)
525 			min_size = lfp_data_min_size(display);
526 
527 		init_bdb_block(display, bdb, section_id, min_size);
528 	}
529 }
530 
531 static void
532 fill_detail_timing_data(struct intel_display *display,
533 			struct drm_display_mode *panel_fixed_mode,
534 			const struct bdb_edid_dtd *dvo_timing)
535 {
536 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
537 		dvo_timing->hactive_lo;
538 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
539 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
540 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
541 		((dvo_timing->hsync_pulse_width_hi << 8) |
542 			dvo_timing->hsync_pulse_width_lo);
543 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
544 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
545 
546 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
547 		dvo_timing->vactive_lo;
548 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
549 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
550 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
551 		((dvo_timing->vsync_pulse_width_hi << 4) |
552 			dvo_timing->vsync_pulse_width_lo);
553 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
554 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
555 	panel_fixed_mode->clock = dvo_timing->clock * 10;
556 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
557 
558 	if (dvo_timing->hsync_positive)
559 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
560 	else
561 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
562 
563 	if (dvo_timing->vsync_positive)
564 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
565 	else
566 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
567 
568 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
569 		dvo_timing->himage_lo;
570 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
571 		dvo_timing->vimage_lo;
572 
573 	/* Some VBTs have bogus h/vsync_end values */
574 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) {
575 		drm_dbg_kms(display->drm, "reducing hsync_end %d->%d\n",
576 			    panel_fixed_mode->hsync_end, panel_fixed_mode->htotal);
577 		panel_fixed_mode->hsync_end = panel_fixed_mode->htotal;
578 	}
579 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) {
580 		drm_dbg_kms(display->drm, "reducing vsync_end %d->%d\n",
581 			    panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal);
582 		panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal;
583 	}
584 
585 	drm_mode_set_name(panel_fixed_mode);
586 }
587 
588 static const struct bdb_edid_dtd *
589 get_lfp_dvo_timing(const struct bdb_lfp_data *data,
590 		   const struct bdb_lfp_data_ptrs *ptrs,
591 		   int index)
592 {
593 	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
594 }
595 
596 static const struct fp_timing *
597 get_lfp_fp_timing(const struct bdb_lfp_data *data,
598 		  const struct bdb_lfp_data_ptrs *ptrs,
599 		  int index)
600 {
601 	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
602 }
603 
604 static const struct drm_edid_product_id *
605 get_lfp_pnp_id(const struct bdb_lfp_data *data,
606 	       const struct bdb_lfp_data_ptrs *ptrs,
607 	       int index)
608 {
609 	/* These two are supposed to have the same layout in memory. */
610 	BUILD_BUG_ON(sizeof(struct bdb_edid_pnp_id) != sizeof(struct drm_edid_product_id));
611 
612 	return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
613 }
614 
615 static const struct bdb_lfp_data_tail *
616 get_lfp_data_tail(const struct bdb_lfp_data *data,
617 		  const struct bdb_lfp_data_ptrs *ptrs)
618 {
619 	if (ptrs->panel_name.table_size)
620 		return (const void *)data + ptrs->panel_name.offset;
621 	else
622 		return NULL;
623 }
624 
625 static int opregion_get_panel_type(struct intel_display *display,
626 				   const struct intel_bios_encoder_data *devdata,
627 				   const struct drm_edid *drm_edid, bool use_fallback)
628 {
629 	return intel_opregion_get_panel_type(display);
630 }
631 
632 static int vbt_get_panel_type(struct intel_display *display,
633 			      const struct intel_bios_encoder_data *devdata,
634 			      const struct drm_edid *drm_edid, bool use_fallback)
635 {
636 	const struct bdb_lfp_options *lfp_options;
637 
638 	lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS);
639 	if (!lfp_options)
640 		return -1;
641 
642 	if (lfp_options->panel_type > 0xf &&
643 	    lfp_options->panel_type != 0xff) {
644 		drm_dbg_kms(display->drm, "Invalid VBT panel type 0x%x\n",
645 			    lfp_options->panel_type);
646 		return -1;
647 	}
648 
649 	if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
650 		return lfp_options->panel_type2;
651 
652 	drm_WARN_ON(display->drm,
653 		    devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
654 
655 	return lfp_options->panel_type;
656 }
657 
658 static int pnpid_get_panel_type(struct intel_display *display,
659 				const struct intel_bios_encoder_data *devdata,
660 				const struct drm_edid *drm_edid, bool use_fallback)
661 {
662 	const struct bdb_lfp_data *data;
663 	const struct bdb_lfp_data_ptrs *ptrs;
664 	struct drm_edid_product_id product_id, product_id_nodate;
665 	struct drm_printer p;
666 	int i, best = -1;
667 
668 	if (!drm_edid)
669 		return -1;
670 
671 	drm_edid_get_product_id(drm_edid, &product_id);
672 
673 	product_id_nodate = product_id;
674 	product_id_nodate.week_of_manufacture = 0;
675 	product_id_nodate.year_of_manufacture = 0;
676 
677 	p = drm_dbg_printer(display->drm, DRM_UT_KMS, "EDID");
678 	drm_edid_print_product_id(&p, &product_id, true);
679 
680 	ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
681 	if (!ptrs)
682 		return -1;
683 
684 	data = bdb_find_section(display, BDB_LFP_DATA);
685 	if (!data)
686 		return -1;
687 
688 	for (i = 0; i < 16; i++) {
689 		const struct drm_edid_product_id *vbt_id =
690 			get_lfp_pnp_id(data, ptrs, i);
691 
692 		/* full match? */
693 		if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id)))
694 			return i;
695 
696 		/*
697 		 * Accept a match w/o date if no full match is found,
698 		 * and the VBT entry does not specify a date.
699 		 */
700 		if (best < 0 &&
701 		    !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id)))
702 			best = i;
703 	}
704 
705 	return best;
706 }
707 
708 static int fallback_get_panel_type(struct intel_display *display,
709 				   const struct intel_bios_encoder_data *devdata,
710 				   const struct drm_edid *drm_edid, bool use_fallback)
711 {
712 	return use_fallback ? 0 : -1;
713 }
714 
715 enum panel_type {
716 	PANEL_TYPE_OPREGION,
717 	PANEL_TYPE_VBT,
718 	PANEL_TYPE_PNPID,
719 	PANEL_TYPE_FALLBACK,
720 };
721 
722 static int get_panel_type(struct intel_display *display,
723 			  const struct intel_bios_encoder_data *devdata,
724 			  const struct drm_edid *drm_edid, bool use_fallback)
725 {
726 	struct {
727 		const char *name;
728 		int (*get_panel_type)(struct intel_display *display,
729 				      const struct intel_bios_encoder_data *devdata,
730 				      const struct drm_edid *drm_edid, bool use_fallback);
731 		int panel_type;
732 	} panel_types[] = {
733 		[PANEL_TYPE_OPREGION] = {
734 			.name = "OpRegion",
735 			.get_panel_type = opregion_get_panel_type,
736 		},
737 		[PANEL_TYPE_VBT] = {
738 			.name = "VBT",
739 			.get_panel_type = vbt_get_panel_type,
740 		},
741 		[PANEL_TYPE_PNPID] = {
742 			.name = "PNPID",
743 			.get_panel_type = pnpid_get_panel_type,
744 		},
745 		[PANEL_TYPE_FALLBACK] = {
746 			.name = "fallback",
747 			.get_panel_type = fallback_get_panel_type,
748 		},
749 	};
750 	int i;
751 
752 	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
753 		panel_types[i].panel_type = panel_types[i].get_panel_type(display, devdata,
754 									  drm_edid, use_fallback);
755 
756 		drm_WARN_ON(display->drm, panel_types[i].panel_type > 0xf &&
757 			    panel_types[i].panel_type != 0xff);
758 
759 		if (panel_types[i].panel_type >= 0)
760 			drm_dbg_kms(display->drm, "Panel type (%s): %d\n",
761 				    panel_types[i].name, panel_types[i].panel_type);
762 	}
763 
764 	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
765 		i = PANEL_TYPE_OPREGION;
766 	else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
767 		 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
768 		i = PANEL_TYPE_PNPID;
769 	else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
770 		 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
771 		i = PANEL_TYPE_VBT;
772 	else
773 		i = PANEL_TYPE_FALLBACK;
774 
775 	drm_dbg_kms(display->drm, "Selected panel type (%s): %d\n",
776 		    panel_types[i].name, panel_types[i].panel_type);
777 
778 	return panel_types[i].panel_type;
779 }
780 
781 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
782 {
783 	return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
784 }
785 
786 static bool panel_bool(unsigned int value, int panel_type)
787 {
788 	return panel_bits(value, panel_type, 1);
789 }
790 
791 /* Parse general panel options */
792 static void
793 parse_panel_options(struct intel_display *display,
794 		    struct intel_panel *panel)
795 {
796 	const struct bdb_lfp_options *lfp_options;
797 	int panel_type = panel->vbt.panel_type;
798 	int drrs_mode;
799 
800 	lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS);
801 	if (!lfp_options)
802 		return;
803 
804 	panel->vbt.lvds_dither = lfp_options->pixel_dither;
805 
806 	/*
807 	 * Empirical evidence indicates the block size can be
808 	 * either 4,14,16,24+ bytes. For older VBTs no clear
809 	 * relationship between the block size vs. BDB version.
810 	 */
811 	if (get_blocksize(lfp_options) < 16)
812 		return;
813 
814 	drrs_mode = panel_bits(lfp_options->dps_panel_type_bits,
815 			       panel_type, 2);
816 	/*
817 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
818 	 * The below piece of code is required to adjust vbt.drrs_type
819 	 * to match the enum drrs_support_type.
820 	 */
821 	switch (drrs_mode) {
822 	case 0:
823 		panel->vbt.drrs_type = DRRS_TYPE_STATIC;
824 		drm_dbg_kms(display->drm, "DRRS supported mode is static\n");
825 		break;
826 	case 2:
827 		panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
828 		drm_dbg_kms(display->drm,
829 			    "DRRS supported mode is seamless\n");
830 		break;
831 	default:
832 		panel->vbt.drrs_type = DRRS_TYPE_NONE;
833 		drm_dbg_kms(display->drm,
834 			    "DRRS not supported (VBT input)\n");
835 		break;
836 	}
837 }
838 
839 static void
840 parse_lfp_panel_dtd(struct intel_display *display,
841 		    struct intel_panel *panel,
842 		    const struct bdb_lfp_data *lfp_data,
843 		    const struct bdb_lfp_data_ptrs *lfp_data_ptrs)
844 {
845 	const struct bdb_edid_dtd *panel_dvo_timing;
846 	const struct fp_timing *fp_timing;
847 	struct drm_display_mode *panel_fixed_mode;
848 	int panel_type = panel->vbt.panel_type;
849 
850 	panel_dvo_timing = get_lfp_dvo_timing(lfp_data,
851 					      lfp_data_ptrs,
852 					      panel_type);
853 
854 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
855 	if (!panel_fixed_mode)
856 		return;
857 
858 	fill_detail_timing_data(display, panel_fixed_mode, panel_dvo_timing);
859 
860 	panel->vbt.lfp_vbt_mode = panel_fixed_mode;
861 
862 	drm_dbg_kms(display->drm,
863 		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
864 		    DRM_MODE_ARG(panel_fixed_mode));
865 
866 	fp_timing = get_lfp_fp_timing(lfp_data,
867 				      lfp_data_ptrs,
868 				      panel_type);
869 
870 	/* check the resolution, just to be sure */
871 	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
872 	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
873 		panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
874 		drm_dbg_kms(display->drm,
875 			    "VBT initial LVDS value %x\n",
876 			    panel->vbt.bios_lvds_val);
877 	}
878 }
879 
880 static void
881 parse_lfp_data(struct intel_display *display,
882 	       struct intel_panel *panel)
883 {
884 	const struct bdb_lfp_data *data;
885 	const struct bdb_lfp_data_tail *tail;
886 	const struct bdb_lfp_data_ptrs *ptrs;
887 	const struct drm_edid_product_id *pnp_id;
888 	struct drm_printer p;
889 	int panel_type = panel->vbt.panel_type;
890 
891 	ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
892 	if (!ptrs)
893 		return;
894 
895 	data = bdb_find_section(display, BDB_LFP_DATA);
896 	if (!data)
897 		return;
898 
899 	if (!panel->vbt.lfp_vbt_mode)
900 		parse_lfp_panel_dtd(display, panel, data, ptrs);
901 
902 	pnp_id = get_lfp_pnp_id(data, ptrs, panel_type);
903 
904 	p = drm_dbg_printer(display->drm, DRM_UT_KMS, "Panel");
905 	drm_edid_print_product_id(&p, pnp_id, false);
906 
907 	tail = get_lfp_data_tail(data, ptrs);
908 	if (!tail)
909 		return;
910 
911 	drm_dbg_kms(display->drm, "Panel name: %.*s\n",
912 		    (int)sizeof(tail->panel_name[0].name),
913 		    tail->panel_name[panel_type].name);
914 
915 	if (display->vbt.version >= 188) {
916 		panel->vbt.seamless_drrs_min_refresh_rate =
917 			tail->seamless_drrs_min_refresh_rate[panel_type];
918 		drm_dbg_kms(display->drm,
919 			    "Seamless DRRS min refresh rate: %d Hz\n",
920 			    panel->vbt.seamless_drrs_min_refresh_rate);
921 	}
922 }
923 
924 static void
925 parse_generic_dtd(struct intel_display *display,
926 		  struct intel_panel *panel)
927 {
928 	const struct bdb_generic_dtd *generic_dtd;
929 	const struct generic_dtd_entry *dtd;
930 	struct drm_display_mode *panel_fixed_mode;
931 	int num_dtd;
932 
933 	/*
934 	 * Older VBTs provided DTD information for internal displays through
935 	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
936 	 * DTD information should be provided via a newer "generic DTD"
937 	 * block (58).  Just to be safe, we'll try the new generic DTD block
938 	 * first on VBT >= 229, but still fall back to trying the old LFP
939 	 * block if that fails.
940 	 */
941 	if (display->vbt.version < 229)
942 		return;
943 
944 	generic_dtd = bdb_find_section(display, BDB_GENERIC_DTD);
945 	if (!generic_dtd)
946 		return;
947 
948 	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
949 		drm_err(display->drm, "GDTD size %u is too small.\n",
950 			generic_dtd->gdtd_size);
951 		return;
952 	} else if (generic_dtd->gdtd_size !=
953 		   sizeof(struct generic_dtd_entry)) {
954 		drm_err(display->drm, "Unexpected GDTD size %u\n",
955 			generic_dtd->gdtd_size);
956 		/* DTD has unknown fields, but keep going */
957 	}
958 
959 	num_dtd = (get_blocksize(generic_dtd) -
960 		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
961 	if (panel->vbt.panel_type >= num_dtd) {
962 		drm_err(display->drm,
963 			"Panel type %d not found in table of %d DTD's\n",
964 			panel->vbt.panel_type, num_dtd);
965 		return;
966 	}
967 
968 	dtd = &generic_dtd->dtd[panel->vbt.panel_type];
969 
970 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
971 	if (!panel_fixed_mode)
972 		return;
973 
974 	panel_fixed_mode->hdisplay = dtd->hactive;
975 	panel_fixed_mode->hsync_start =
976 		panel_fixed_mode->hdisplay + dtd->hfront_porch;
977 	panel_fixed_mode->hsync_end =
978 		panel_fixed_mode->hsync_start + dtd->hsync;
979 	panel_fixed_mode->htotal =
980 		panel_fixed_mode->hdisplay + dtd->hblank;
981 
982 	panel_fixed_mode->vdisplay = dtd->vactive;
983 	panel_fixed_mode->vsync_start =
984 		panel_fixed_mode->vdisplay + dtd->vfront_porch;
985 	panel_fixed_mode->vsync_end =
986 		panel_fixed_mode->vsync_start + dtd->vsync;
987 	panel_fixed_mode->vtotal =
988 		panel_fixed_mode->vdisplay + dtd->vblank;
989 
990 	panel_fixed_mode->clock = dtd->pixel_clock;
991 	panel_fixed_mode->width_mm = dtd->width_mm;
992 	panel_fixed_mode->height_mm = dtd->height_mm;
993 
994 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
995 	drm_mode_set_name(panel_fixed_mode);
996 
997 	if (dtd->hsync_positive_polarity)
998 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
999 	else
1000 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
1001 
1002 	if (dtd->vsync_positive_polarity)
1003 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
1004 	else
1005 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
1006 
1007 	drm_dbg_kms(display->drm,
1008 		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1009 		    DRM_MODE_ARG(panel_fixed_mode));
1010 
1011 	panel->vbt.lfp_vbt_mode = panel_fixed_mode;
1012 }
1013 
1014 static void
1015 parse_lfp_backlight(struct intel_display *display,
1016 		    struct intel_panel *panel)
1017 {
1018 	const struct bdb_lfp_backlight *backlight_data;
1019 	const struct lfp_backlight_data_entry *entry;
1020 	int panel_type = panel->vbt.panel_type;
1021 	u16 level;
1022 
1023 	backlight_data = bdb_find_section(display, BDB_LFP_BACKLIGHT);
1024 	if (!backlight_data)
1025 		return;
1026 
1027 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1028 		drm_dbg_kms(display->drm,
1029 			    "Unsupported backlight data entry size %u\n",
1030 			    backlight_data->entry_size);
1031 		return;
1032 	}
1033 
1034 	entry = &backlight_data->data[panel_type];
1035 
1036 	panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1037 	if (!panel->vbt.backlight.present) {
1038 		drm_dbg_kms(display->drm,
1039 			    "PWM backlight not present in VBT (type %u)\n",
1040 			    entry->type);
1041 		return;
1042 	}
1043 
1044 	panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1045 	panel->vbt.backlight.controller = 0;
1046 	if (display->vbt.version >= 191) {
1047 		const struct lfp_backlight_control_method *method;
1048 
1049 		method = &backlight_data->backlight_control[panel_type];
1050 		panel->vbt.backlight.type = method->type;
1051 		panel->vbt.backlight.controller = method->controller;
1052 	}
1053 
1054 	panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1055 	panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1056 
1057 	if (display->vbt.version >= 234) {
1058 		u16 min_level;
1059 		bool scale;
1060 
1061 		level = backlight_data->brightness_level[panel_type].level;
1062 		min_level = backlight_data->brightness_min_level[panel_type].level;
1063 
1064 		if (display->vbt.version >= 236)
1065 			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1066 		else
1067 			scale = level > 255;
1068 
1069 		if (scale)
1070 			min_level = min_level / 255;
1071 
1072 		if (min_level > 255) {
1073 			drm_warn(display->drm, "Brightness min level > 255\n");
1074 			level = 255;
1075 		}
1076 		panel->vbt.backlight.min_brightness = min_level;
1077 
1078 		panel->vbt.backlight.brightness_precision_bits =
1079 			backlight_data->brightness_precision_bits[panel_type];
1080 	} else {
1081 		level = backlight_data->level[panel_type];
1082 		panel->vbt.backlight.min_brightness = entry->min_brightness;
1083 	}
1084 
1085 	if (display->vbt.version >= 239)
1086 		panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1087 			DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1088 	else
1089 		panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1090 
1091 	drm_dbg_kms(display->drm,
1092 		    "VBT backlight PWM modulation frequency %u Hz, "
1093 		    "active %s, min brightness %u, level %u, controller %u\n",
1094 		    panel->vbt.backlight.pwm_freq_hz,
1095 		    panel->vbt.backlight.active_low_pwm ? "low" : "high",
1096 		    panel->vbt.backlight.min_brightness,
1097 		    level,
1098 		    panel->vbt.backlight.controller);
1099 }
1100 
1101 static void
1102 parse_sdvo_lvds_data(struct intel_display *display,
1103 		     struct intel_panel *panel)
1104 {
1105 	const struct bdb_sdvo_lvds_dtd *dtd;
1106 	struct drm_display_mode *panel_fixed_mode;
1107 	int index;
1108 
1109 	index = display->params.vbt_sdvo_panel_type;
1110 	if (index == -2) {
1111 		drm_dbg_kms(display->drm,
1112 			    "Ignore SDVO LVDS mode from BIOS VBT tables.\n");
1113 		return;
1114 	}
1115 
1116 	if (index == -1) {
1117 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1118 
1119 		sdvo_lvds_options = bdb_find_section(display, BDB_SDVO_LVDS_OPTIONS);
1120 		if (!sdvo_lvds_options)
1121 			return;
1122 
1123 		index = sdvo_lvds_options->panel_type;
1124 	}
1125 
1126 	dtd = bdb_find_section(display, BDB_SDVO_LVDS_DTD);
1127 	if (!dtd)
1128 		return;
1129 
1130 	/*
1131 	 * This should not happen, as long as the panel_type
1132 	 * enumeration doesn't grow over 4 items.  But if it does, it
1133 	 * could lead to hard-to-detect bugs, so better double-check
1134 	 * it here to be sure.
1135 	 */
1136 	if (index >= ARRAY_SIZE(dtd->dtd)) {
1137 		drm_err(display->drm,
1138 			"index %d is larger than dtd->dtd[4] array\n",
1139 			index);
1140 		return;
1141 	}
1142 
1143 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1144 	if (!panel_fixed_mode)
1145 		return;
1146 
1147 	fill_detail_timing_data(display, panel_fixed_mode, &dtd->dtd[index]);
1148 
1149 	panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1150 
1151 	drm_dbg_kms(display->drm,
1152 		    "Found SDVO LVDS mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1153 		    DRM_MODE_ARG(panel_fixed_mode));
1154 }
1155 
1156 static int intel_bios_ssc_frequency(struct intel_display *display,
1157 				    bool alternate)
1158 {
1159 	switch (DISPLAY_VER(display)) {
1160 	case 2:
1161 		return alternate ? 66667 : 48000;
1162 	case 3:
1163 	case 4:
1164 		return alternate ? 100000 : 96000;
1165 	default:
1166 		return alternate ? 100000 : 120000;
1167 	}
1168 }
1169 
1170 static void
1171 parse_general_features(struct intel_display *display)
1172 {
1173 	const struct bdb_general_features *general;
1174 
1175 	general = bdb_find_section(display, BDB_GENERAL_FEATURES);
1176 	if (!general)
1177 		return;
1178 
1179 	display->vbt.int_tv_support = general->int_tv_support;
1180 	/* int_crt_support can't be trusted on earlier platforms */
1181 	if (display->vbt.version >= 155 &&
1182 	    (HAS_DDI(display) || display->platform.valleyview))
1183 		display->vbt.int_crt_support = general->int_crt_support;
1184 	display->vbt.lvds_use_ssc = general->enable_ssc;
1185 	display->vbt.lvds_ssc_freq =
1186 		intel_bios_ssc_frequency(display, general->ssc_freq);
1187 	display->vbt.display_clock_mode = general->display_clock_mode;
1188 	display->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1189 	if (display->vbt.version >= 181) {
1190 		display->vbt.orientation = general->rotate_180 ?
1191 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1192 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1193 	} else {
1194 		display->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1195 	}
1196 
1197 	if (display->vbt.version >= 249 && general->afc_startup_config) {
1198 		display->vbt.override_afc_startup = true;
1199 		display->vbt.override_afc_startup_val = general->afc_startup_config == 1 ? 0 : 7;
1200 	}
1201 
1202 	drm_dbg_kms(display->drm,
1203 		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1204 		    display->vbt.int_tv_support,
1205 		    display->vbt.int_crt_support,
1206 		    display->vbt.lvds_use_ssc,
1207 		    display->vbt.lvds_ssc_freq,
1208 		    display->vbt.display_clock_mode,
1209 		    display->vbt.fdi_rx_polarity_inverted);
1210 }
1211 
1212 static const struct child_device_config *
1213 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1214 {
1215 	return (const void *) &defs->devices[i * defs->child_dev_size];
1216 }
1217 
1218 static void
1219 parse_sdvo_device_mapping(struct intel_display *display)
1220 {
1221 	const struct intel_bios_encoder_data *devdata;
1222 	int count = 0;
1223 
1224 	/*
1225 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1226 	 * accurate and doesn't have to be, as long as it's not too strict.
1227 	 */
1228 	if (!IS_DISPLAY_VER(display, 3, 7)) {
1229 		drm_dbg_kms(display->drm, "Skipping SDVO device mapping\n");
1230 		return;
1231 	}
1232 
1233 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
1234 		const struct child_device_config *child = &devdata->child;
1235 		struct sdvo_device_mapping *mapping;
1236 
1237 		if (child->target_addr != TARGET_ADDR1 &&
1238 		    child->target_addr != TARGET_ADDR2) {
1239 			/*
1240 			 * If the target address is neither 0x70 nor 0x72,
1241 			 * it is not a SDVO device. Skip it.
1242 			 */
1243 			continue;
1244 		}
1245 		if (child->dvo_port != DEVICE_PORT_DVOB &&
1246 		    child->dvo_port != DEVICE_PORT_DVOC) {
1247 			/* skip the incorrect SDVO port */
1248 			drm_dbg_kms(display->drm,
1249 				    "Incorrect SDVO port. Skip it\n");
1250 			continue;
1251 		}
1252 		drm_dbg_kms(display->drm,
1253 			    "the SDVO device with target addr %2x is found on"
1254 			    " %s port\n",
1255 			    child->target_addr,
1256 			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1257 			    "SDVOB" : "SDVOC");
1258 		mapping = &display->vbt.sdvo_mappings[child->dvo_port - 1];
1259 		if (!mapping->initialized) {
1260 			mapping->dvo_port = child->dvo_port;
1261 			mapping->target_addr = child->target_addr;
1262 			mapping->dvo_wiring = child->dvo_wiring;
1263 			mapping->ddc_pin = child->ddc_pin;
1264 			mapping->i2c_pin = child->i2c_pin;
1265 			mapping->initialized = 1;
1266 			drm_dbg_kms(display->drm,
1267 				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1268 				    mapping->dvo_port, mapping->target_addr,
1269 				    mapping->dvo_wiring, mapping->ddc_pin,
1270 				    mapping->i2c_pin);
1271 		} else {
1272 			drm_dbg_kms(display->drm,
1273 				    "Maybe one SDVO port is shared by "
1274 				    "two SDVO device.\n");
1275 		}
1276 		if (child->target2_addr) {
1277 			/* Maybe this is a SDVO device with multiple inputs */
1278 			/* And the mapping info is not added */
1279 			drm_dbg_kms(display->drm,
1280 				    "there exists the target2_addr. Maybe this"
1281 				    " is a SDVO device with multiple inputs.\n");
1282 		}
1283 		count++;
1284 	}
1285 
1286 	if (!count) {
1287 		/* No SDVO device info is found */
1288 		drm_dbg_kms(display->drm,
1289 			    "No SDVO device info is found in VBT\n");
1290 	}
1291 }
1292 
1293 static void
1294 parse_driver_features(struct intel_display *display)
1295 {
1296 	const struct bdb_driver_features *driver;
1297 
1298 	driver = bdb_find_section(display, BDB_DRIVER_FEATURES);
1299 	if (!driver)
1300 		return;
1301 
1302 	if (DISPLAY_VER(display) >= 5) {
1303 		/*
1304 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1305 		 * to mean "eDP". The VBT spec doesn't agree with that
1306 		 * interpretation, but real world VBTs seem to.
1307 		 */
1308 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1309 			display->vbt.int_lvds_support = 0;
1310 	} else {
1311 		/*
1312 		 * FIXME it's not clear which BDB version has the LVDS config
1313 		 * bits defined. Revision history in the VBT spec says:
1314 		 * "0.92 | Add two definitions for VBT value of LVDS Active
1315 		 *  Config (00b and 11b values defined) | 06/13/2005"
1316 		 * but does not the specify the BDB version.
1317 		 *
1318 		 * So far version 134 (on i945gm) is the oldest VBT observed
1319 		 * in the wild with the bits correctly populated. Version
1320 		 * 108 (on i85x) does not have the bits correctly populated.
1321 		 */
1322 		if (display->vbt.version >= 134 &&
1323 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1324 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1325 			display->vbt.int_lvds_support = 0;
1326 	}
1327 }
1328 
1329 static void
1330 parse_panel_driver_features(struct intel_display *display,
1331 			    struct intel_panel *panel)
1332 {
1333 	const struct bdb_driver_features *driver;
1334 
1335 	driver = bdb_find_section(display, BDB_DRIVER_FEATURES);
1336 	if (!driver)
1337 		return;
1338 
1339 	if (display->vbt.version < 228) {
1340 		drm_dbg_kms(display->drm, "DRRS State Enabled:%d\n",
1341 			    driver->drrs_enabled);
1342 		/*
1343 		 * If DRRS is not supported, drrs_type has to be set to 0.
1344 		 * This is because, VBT is configured in such a way that
1345 		 * static DRRS is 0 and DRRS not supported is represented by
1346 		 * driver->drrs_enabled=false
1347 		 */
1348 		if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1349 			/*
1350 			 * FIXME Should DMRRS perhaps be treated as seamless
1351 			 * but without the automatic downclocking?
1352 			 */
1353 			if (driver->dmrrs_enabled)
1354 				panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1355 			else
1356 				panel->vbt.drrs_type = DRRS_TYPE_NONE;
1357 		}
1358 
1359 		panel->vbt.psr.enable = driver->psr_enabled;
1360 	}
1361 }
1362 
1363 static void
1364 parse_power_conservation_features(struct intel_display *display,
1365 				  struct intel_panel *panel)
1366 {
1367 	const struct bdb_lfp_power *power;
1368 	u8 panel_type = panel->vbt.panel_type;
1369 
1370 	panel->vbt.vrr = true; /* matches Windows behaviour */
1371 
1372 	if (display->vbt.version < 228)
1373 		return;
1374 
1375 	power = bdb_find_section(display, BDB_LFP_POWER);
1376 	if (!power)
1377 		return;
1378 
1379 	panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1380 
1381 	/*
1382 	 * If DRRS is not supported, drrs_type has to be set to 0.
1383 	 * This is because, VBT is configured in such a way that
1384 	 * static DRRS is 0 and DRRS not supported is represented by
1385 	 * power->drrs & BIT(panel_type)=false
1386 	 */
1387 	if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1388 		/*
1389 		 * FIXME Should DMRRS perhaps be treated as seamless
1390 		 * but without the automatic downclocking?
1391 		 */
1392 		if (panel_bool(power->dmrrs, panel_type))
1393 			panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1394 		else
1395 			panel->vbt.drrs_type = DRRS_TYPE_NONE;
1396 	}
1397 
1398 	if (display->vbt.version >= 232)
1399 		panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1400 
1401 	if (display->vbt.version >= 233)
1402 		panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1403 					    panel_type);
1404 }
1405 
1406 static void vbt_edp_to_pps_delays(struct intel_pps_delays *pps,
1407 				  const struct edp_power_seq *edp_pps)
1408 {
1409 	pps->power_up = edp_pps->t1_t3;
1410 	pps->backlight_on = edp_pps->t8;
1411 	pps->backlight_off = edp_pps->t9;
1412 	pps->power_down = edp_pps->t10;
1413 	pps->power_cycle = edp_pps->t11_t12;
1414 }
1415 
1416 static void
1417 parse_edp(struct intel_display *display,
1418 	  struct intel_panel *panel)
1419 {
1420 	const struct bdb_edp *edp;
1421 	const struct edp_fast_link_params *edp_link_params;
1422 	int panel_type = panel->vbt.panel_type;
1423 
1424 	edp = bdb_find_section(display, BDB_EDP);
1425 	if (!edp)
1426 		return;
1427 
1428 	switch (panel_bits(edp->color_depth, panel_type, 2)) {
1429 	case EDP_18BPP:
1430 		panel->vbt.edp.bpp = 18;
1431 		break;
1432 	case EDP_24BPP:
1433 		panel->vbt.edp.bpp = 24;
1434 		break;
1435 	case EDP_30BPP:
1436 		panel->vbt.edp.bpp = 30;
1437 		break;
1438 	}
1439 
1440 	/* Get the eDP sequencing and link info */
1441 	edp_link_params = &edp->fast_link_params[panel_type];
1442 
1443 	vbt_edp_to_pps_delays(&panel->vbt.edp.pps,
1444 			      &edp->power_seqs[panel_type]);
1445 
1446 	if (display->vbt.version >= 224) {
1447 		panel->vbt.edp.rate =
1448 			edp->edp_fast_link_training_rate[panel_type] * 20;
1449 	} else {
1450 		switch (edp_link_params->rate) {
1451 		case EDP_RATE_1_62:
1452 			panel->vbt.edp.rate = 162000;
1453 			break;
1454 		case EDP_RATE_2_7:
1455 			panel->vbt.edp.rate = 270000;
1456 			break;
1457 		case EDP_RATE_5_4:
1458 			panel->vbt.edp.rate = 540000;
1459 			break;
1460 		default:
1461 			drm_dbg_kms(display->drm,
1462 				    "VBT has unknown eDP link rate value %u\n",
1463 				    edp_link_params->rate);
1464 			break;
1465 		}
1466 	}
1467 
1468 	switch (edp_link_params->lanes) {
1469 	case EDP_LANE_1:
1470 		panel->vbt.edp.lanes = 1;
1471 		break;
1472 	case EDP_LANE_2:
1473 		panel->vbt.edp.lanes = 2;
1474 		break;
1475 	case EDP_LANE_4:
1476 		panel->vbt.edp.lanes = 4;
1477 		break;
1478 	default:
1479 		drm_dbg_kms(display->drm,
1480 			    "VBT has unknown eDP lane count value %u\n",
1481 			    edp_link_params->lanes);
1482 		break;
1483 	}
1484 
1485 	switch (edp_link_params->preemphasis) {
1486 	case EDP_PREEMPHASIS_NONE:
1487 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1488 		break;
1489 	case EDP_PREEMPHASIS_3_5dB:
1490 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1491 		break;
1492 	case EDP_PREEMPHASIS_6dB:
1493 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1494 		break;
1495 	case EDP_PREEMPHASIS_9_5dB:
1496 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1497 		break;
1498 	default:
1499 		drm_dbg_kms(display->drm,
1500 			    "VBT has unknown eDP pre-emphasis value %u\n",
1501 			    edp_link_params->preemphasis);
1502 		break;
1503 	}
1504 
1505 	switch (edp_link_params->vswing) {
1506 	case EDP_VSWING_0_4V:
1507 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1508 		break;
1509 	case EDP_VSWING_0_6V:
1510 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1511 		break;
1512 	case EDP_VSWING_0_8V:
1513 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1514 		break;
1515 	case EDP_VSWING_1_2V:
1516 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1517 		break;
1518 	default:
1519 		drm_dbg_kms(display->drm,
1520 			    "VBT has unknown eDP voltage swing value %u\n",
1521 			    edp_link_params->vswing);
1522 		break;
1523 	}
1524 
1525 	if (display->vbt.version >= 173) {
1526 		u8 vswing;
1527 
1528 		/* Don't read from VBT if module parameter has valid value*/
1529 		if (display->params.edp_vswing) {
1530 			panel->vbt.edp.low_vswing =
1531 				display->params.edp_vswing == 1;
1532 		} else {
1533 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1534 			panel->vbt.edp.low_vswing = vswing == 0;
1535 		}
1536 	}
1537 
1538 	panel->vbt.edp.drrs_msa_timing_delay =
1539 		panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1540 
1541 	if (display->vbt.version >= 244)
1542 		panel->vbt.edp.max_link_rate =
1543 			edp->edp_max_port_link_rate[panel_type] * 20;
1544 
1545 	if (display->vbt.version >= 251)
1546 		panel->vbt.edp.dsc_disable =
1547 			panel_bool(edp->edp_dsc_disable, panel_type);
1548 }
1549 
1550 static void
1551 parse_psr(struct intel_display *display,
1552 	  struct intel_panel *panel)
1553 {
1554 	const struct bdb_psr *psr;
1555 	const struct psr_table *psr_table;
1556 	int panel_type = panel->vbt.panel_type;
1557 
1558 	psr = bdb_find_section(display, BDB_PSR);
1559 	if (!psr) {
1560 		drm_dbg_kms(display->drm, "No PSR BDB found.\n");
1561 		return;
1562 	}
1563 
1564 	psr_table = &psr->psr_table[panel_type];
1565 
1566 	panel->vbt.psr.full_link = psr_table->full_link;
1567 	panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1568 
1569 	/* Allowed VBT values goes from 0 to 15 */
1570 	panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1571 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1572 
1573 	/*
1574 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1575 	 * Old decimal value is wake up time in multiples of 100 us.
1576 	 */
1577 	if (display->vbt.version >= 205 &&
1578 	    (DISPLAY_VER(display) >= 9 && !display->platform.broxton)) {
1579 		switch (psr_table->tp1_wakeup_time) {
1580 		case 0:
1581 			panel->vbt.psr.tp1_wakeup_time_us = 500;
1582 			break;
1583 		case 1:
1584 			panel->vbt.psr.tp1_wakeup_time_us = 100;
1585 			break;
1586 		case 3:
1587 			panel->vbt.psr.tp1_wakeup_time_us = 0;
1588 			break;
1589 		default:
1590 			drm_dbg_kms(display->drm,
1591 				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1592 				    psr_table->tp1_wakeup_time);
1593 			fallthrough;
1594 		case 2:
1595 			panel->vbt.psr.tp1_wakeup_time_us = 2500;
1596 			break;
1597 		}
1598 
1599 		switch (psr_table->tp2_tp3_wakeup_time) {
1600 		case 0:
1601 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1602 			break;
1603 		case 1:
1604 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1605 			break;
1606 		case 3:
1607 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1608 			break;
1609 		default:
1610 			drm_dbg_kms(display->drm,
1611 				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1612 				    psr_table->tp2_tp3_wakeup_time);
1613 			fallthrough;
1614 		case 2:
1615 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1616 		break;
1617 		}
1618 	} else {
1619 		panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1620 		panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1621 	}
1622 
1623 	if (display->vbt.version >= 226) {
1624 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1625 
1626 		wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1627 		switch (wakeup_time) {
1628 		case 0:
1629 			wakeup_time = 500;
1630 			break;
1631 		case 1:
1632 			wakeup_time = 100;
1633 			break;
1634 		case 3:
1635 			wakeup_time = 50;
1636 			break;
1637 		default:
1638 		case 2:
1639 			wakeup_time = 2500;
1640 			break;
1641 		}
1642 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1643 	} else {
1644 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1645 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1646 	}
1647 }
1648 
1649 static void parse_dsi_backlight_ports(struct intel_display *display,
1650 				      struct intel_panel *panel,
1651 				      enum port port)
1652 {
1653 	enum port port_bc = DISPLAY_VER(display) >= 11 ? PORT_B : PORT_C;
1654 
1655 	if (!panel->vbt.dsi.config->dual_link || display->vbt.version < 197) {
1656 		panel->vbt.dsi.bl_ports = BIT(port);
1657 		if (panel->vbt.dsi.config->cabc_supported)
1658 			panel->vbt.dsi.cabc_ports = BIT(port);
1659 
1660 		return;
1661 	}
1662 
1663 	switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1664 	case DL_DCS_PORT_A:
1665 		panel->vbt.dsi.bl_ports = BIT(PORT_A);
1666 		break;
1667 	case DL_DCS_PORT_C:
1668 		panel->vbt.dsi.bl_ports = BIT(port_bc);
1669 		break;
1670 	default:
1671 	case DL_DCS_PORT_A_AND_C:
1672 		panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1673 		break;
1674 	}
1675 
1676 	if (!panel->vbt.dsi.config->cabc_supported)
1677 		return;
1678 
1679 	switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1680 	case DL_DCS_PORT_A:
1681 		panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1682 		break;
1683 	case DL_DCS_PORT_C:
1684 		panel->vbt.dsi.cabc_ports = BIT(port_bc);
1685 		break;
1686 	default:
1687 	case DL_DCS_PORT_A_AND_C:
1688 		panel->vbt.dsi.cabc_ports =
1689 					BIT(PORT_A) | BIT(port_bc);
1690 		break;
1691 	}
1692 }
1693 
1694 static void
1695 parse_mipi_config(struct intel_display *display,
1696 		  struct intel_panel *panel)
1697 {
1698 	const struct bdb_mipi_config *start;
1699 	const struct mipi_config *config;
1700 	const struct mipi_pps_data *pps;
1701 	int panel_type = panel->vbt.panel_type;
1702 	enum port port;
1703 
1704 	/* parse MIPI blocks only if LFP type is MIPI */
1705 	if (!intel_bios_is_dsi_present(display, &port))
1706 		return;
1707 
1708 	/* Initialize this to undefined indicating no generic MIPI support */
1709 	panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1710 
1711 	start = bdb_find_section(display, BDB_MIPI_CONFIG);
1712 	if (!start) {
1713 		drm_dbg_kms(display->drm, "No MIPI config BDB found");
1714 		return;
1715 	}
1716 
1717 	drm_dbg_kms(display->drm, "Found MIPI Config block, panel index = %d\n",
1718 		    panel_type);
1719 
1720 	/*
1721 	 * get hold of the correct configuration block and pps data as per
1722 	 * the panel_type as index
1723 	 */
1724 	config = &start->config[panel_type];
1725 	pps = &start->pps[panel_type];
1726 
1727 	/* store as of now full data. Trim when we realise all is not needed */
1728 	panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1729 	if (!panel->vbt.dsi.config)
1730 		return;
1731 
1732 	panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1733 	if (!panel->vbt.dsi.pps) {
1734 		kfree(panel->vbt.dsi.config);
1735 		return;
1736 	}
1737 
1738 	parse_dsi_backlight_ports(display, panel, port);
1739 
1740 	/* FIXME is the 90 vs. 270 correct? */
1741 	switch (config->rotation) {
1742 	case ENABLE_ROTATION_0:
1743 		/*
1744 		 * Most (all?) VBTs claim 0 degrees despite having
1745 		 * an upside down panel, thus we do not trust this.
1746 		 */
1747 		panel->vbt.dsi.orientation =
1748 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1749 		break;
1750 	case ENABLE_ROTATION_90:
1751 		panel->vbt.dsi.orientation =
1752 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1753 		break;
1754 	case ENABLE_ROTATION_180:
1755 		panel->vbt.dsi.orientation =
1756 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1757 		break;
1758 	case ENABLE_ROTATION_270:
1759 		panel->vbt.dsi.orientation =
1760 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1761 		break;
1762 	}
1763 
1764 	/* We have mandatory mipi config blocks. Initialize as generic panel */
1765 	panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1766 }
1767 
1768 /* Find the sequence block and size for the given panel. */
1769 static const u8 *
1770 find_panel_sequence_block(struct intel_display *display,
1771 			  const struct bdb_mipi_sequence *sequence,
1772 			  u16 panel_id, u32 *seq_size)
1773 {
1774 	u32 total = get_blocksize(sequence);
1775 	const u8 *data = &sequence->data[0];
1776 	u8 current_id;
1777 	u32 current_size;
1778 	int header_size = sequence->version >= 3 ? 5 : 3;
1779 	int index = 0;
1780 	int i;
1781 
1782 	/* skip new block size */
1783 	if (sequence->version >= 3)
1784 		data += 4;
1785 
1786 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1787 		if (index + header_size > total) {
1788 			drm_err(display->drm,
1789 				"Invalid sequence block (header)\n");
1790 			return NULL;
1791 		}
1792 
1793 		current_id = *(data + index);
1794 		if (sequence->version >= 3)
1795 			current_size = *((const u32 *)(data + index + 1));
1796 		else
1797 			current_size = *((const u16 *)(data + index + 1));
1798 
1799 		index += header_size;
1800 
1801 		if (index + current_size > total) {
1802 			drm_err(display->drm, "Invalid sequence block\n");
1803 			return NULL;
1804 		}
1805 
1806 		if (current_id == panel_id) {
1807 			*seq_size = current_size;
1808 			return data + index;
1809 		}
1810 
1811 		index += current_size;
1812 	}
1813 
1814 	drm_err(display->drm,
1815 		"Sequence block detected but no valid configuration\n");
1816 
1817 	return NULL;
1818 }
1819 
1820 static int goto_next_sequence(struct intel_display *display,
1821 			      const u8 *data, int index, int total)
1822 {
1823 	u16 len;
1824 
1825 	/* Skip Sequence Byte. */
1826 	for (index = index + 1; index < total; index += len) {
1827 		u8 operation_byte = *(data + index);
1828 		index++;
1829 
1830 		switch (operation_byte) {
1831 		case MIPI_SEQ_ELEM_END:
1832 			return index;
1833 		case MIPI_SEQ_ELEM_SEND_PKT:
1834 			if (index + 4 > total)
1835 				return 0;
1836 
1837 			len = *((const u16 *)(data + index + 2)) + 4;
1838 			break;
1839 		case MIPI_SEQ_ELEM_DELAY:
1840 			len = 4;
1841 			break;
1842 		case MIPI_SEQ_ELEM_GPIO:
1843 			len = 2;
1844 			break;
1845 		case MIPI_SEQ_ELEM_I2C:
1846 			if (index + 7 > total)
1847 				return 0;
1848 			len = *(data + index + 6) + 7;
1849 			break;
1850 		default:
1851 			drm_err(display->drm, "Unknown operation byte\n");
1852 			return 0;
1853 		}
1854 	}
1855 
1856 	return 0;
1857 }
1858 
1859 static int goto_next_sequence_v3(struct intel_display *display,
1860 				 const u8 *data, int index, int total)
1861 {
1862 	int seq_end;
1863 	u16 len;
1864 	u32 size_of_sequence;
1865 
1866 	/*
1867 	 * Could skip sequence based on Size of Sequence alone, but also do some
1868 	 * checking on the structure.
1869 	 */
1870 	if (total < 5) {
1871 		drm_err(display->drm, "Too small sequence size\n");
1872 		return 0;
1873 	}
1874 
1875 	/* Skip Sequence Byte. */
1876 	index++;
1877 
1878 	/*
1879 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1880 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1881 	 * byte.
1882 	 */
1883 	size_of_sequence = *((const u32 *)(data + index));
1884 	index += 4;
1885 
1886 	seq_end = index + size_of_sequence;
1887 	if (seq_end > total) {
1888 		drm_err(display->drm, "Invalid sequence size\n");
1889 		return 0;
1890 	}
1891 
1892 	for (; index < total; index += len) {
1893 		u8 operation_byte = *(data + index);
1894 		index++;
1895 
1896 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1897 			if (index != seq_end) {
1898 				drm_err(display->drm,
1899 					"Invalid element structure\n");
1900 				return 0;
1901 			}
1902 			return index;
1903 		}
1904 
1905 		len = *(data + index);
1906 		index++;
1907 
1908 		/*
1909 		 * FIXME: Would be nice to check elements like for v1/v2 in
1910 		 * goto_next_sequence() above.
1911 		 */
1912 		switch (operation_byte) {
1913 		case MIPI_SEQ_ELEM_SEND_PKT:
1914 		case MIPI_SEQ_ELEM_DELAY:
1915 		case MIPI_SEQ_ELEM_GPIO:
1916 		case MIPI_SEQ_ELEM_I2C:
1917 		case MIPI_SEQ_ELEM_SPI:
1918 		case MIPI_SEQ_ELEM_PMIC:
1919 			break;
1920 		default:
1921 			drm_err(display->drm, "Unknown operation byte %u\n",
1922 				operation_byte);
1923 			break;
1924 		}
1925 	}
1926 
1927 	return 0;
1928 }
1929 
1930 /*
1931  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1932  * skip all delay + gpio operands and stop at the first DSI packet op.
1933  */
1934 static int get_init_otp_deassert_fragment_len(struct intel_display *display,
1935 					      struct intel_panel *panel)
1936 {
1937 	const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1938 	int index, len;
1939 
1940 	if (drm_WARN_ON(display->drm,
1941 			!data || panel->vbt.dsi.seq_version != 1))
1942 		return 0;
1943 
1944 	/* index = 1 to skip sequence byte */
1945 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1946 		switch (data[index]) {
1947 		case MIPI_SEQ_ELEM_SEND_PKT:
1948 			return index == 1 ? 0 : index;
1949 		case MIPI_SEQ_ELEM_DELAY:
1950 			len = 5; /* 1 byte for operand + uint32 */
1951 			break;
1952 		case MIPI_SEQ_ELEM_GPIO:
1953 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1954 			break;
1955 		default:
1956 			return 0;
1957 		}
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 /*
1964  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1965  * The deassert must be done before calling intel_dsi_device_ready, so for
1966  * these devices we split the init OTP sequence into a deassert sequence and
1967  * the actual init OTP part.
1968  */
1969 static void vlv_fixup_mipi_sequences(struct intel_display *display,
1970 				     struct intel_panel *panel)
1971 {
1972 	u8 *init_otp;
1973 	int len;
1974 
1975 	/* Limit this to v1 vid-mode sequences */
1976 	if (panel->vbt.dsi.config->is_cmd_mode ||
1977 	    panel->vbt.dsi.seq_version != 1)
1978 		return;
1979 
1980 	/* Only do this if there are otp and assert seqs and no deassert seq */
1981 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1982 	    !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1983 	    panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1984 		return;
1985 
1986 	/* The deassert-sequence ends at the first DSI packet */
1987 	len = get_init_otp_deassert_fragment_len(display, panel);
1988 	if (!len)
1989 		return;
1990 
1991 	drm_dbg_kms(display->drm,
1992 		    "Using init OTP fragment to deassert reset\n");
1993 
1994 	/* Copy the fragment, update seq byte and terminate it */
1995 	init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1996 	panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1997 	if (!panel->vbt.dsi.deassert_seq)
1998 		return;
1999 	panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
2000 	panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
2001 	/* Use the copy for deassert */
2002 	panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
2003 		panel->vbt.dsi.deassert_seq;
2004 	/* Replace the last byte of the fragment with init OTP seq byte */
2005 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
2006 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
2007 	panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
2008 }
2009 
2010 /*
2011  * Some machines (eg. Lenovo 82TQ) appear to have broken
2012  * VBT sequences:
2013  * - INIT_OTP is not present at all
2014  * - what should be in INIT_OTP is in DISPLAY_ON
2015  * - what should be in DISPLAY_ON is in BACKLIGHT_ON
2016  *   (along with the actual backlight stuff)
2017  *
2018  * To make those work we simply swap DISPLAY_ON and INIT_OTP.
2019  *
2020  * TODO: Do we need to limit this to specific machines,
2021  *       or examine the contents of the sequences to
2022  *       avoid false positives?
2023  */
2024 static void icl_fixup_mipi_sequences(struct intel_display *display,
2025 				     struct intel_panel *panel)
2026 {
2027 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] &&
2028 	    panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) {
2029 		drm_dbg_kms(display->drm,
2030 			    "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n");
2031 
2032 		swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP],
2033 		     panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]);
2034 	}
2035 }
2036 
2037 static void fixup_mipi_sequences(struct intel_display *display,
2038 				 struct intel_panel *panel)
2039 {
2040 	if (DISPLAY_VER(display) >= 11)
2041 		icl_fixup_mipi_sequences(display, panel);
2042 	else if (display->platform.valleyview)
2043 		vlv_fixup_mipi_sequences(display, panel);
2044 }
2045 
2046 static void
2047 parse_mipi_sequence(struct intel_display *display,
2048 		    struct intel_panel *panel)
2049 {
2050 	int panel_type = panel->vbt.panel_type;
2051 	const struct bdb_mipi_sequence *sequence;
2052 	const u8 *seq_data;
2053 	u32 seq_size;
2054 	u8 *data;
2055 	int index = 0;
2056 
2057 	/* Only our generic panel driver uses the sequence block. */
2058 	if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2059 		return;
2060 
2061 	sequence = bdb_find_section(display, BDB_MIPI_SEQUENCE);
2062 	if (!sequence) {
2063 		drm_dbg_kms(display->drm,
2064 			    "No MIPI Sequence found, parsing complete\n");
2065 		return;
2066 	}
2067 
2068 	/* Fail gracefully for forward incompatible sequence block. */
2069 	if (sequence->version >= 4) {
2070 		drm_err(display->drm,
2071 			"Unable to parse MIPI Sequence Block v%u\n",
2072 			sequence->version);
2073 		return;
2074 	}
2075 
2076 	drm_dbg_kms(display->drm, "Found MIPI sequence block v%u\n",
2077 		    sequence->version);
2078 
2079 	seq_data = find_panel_sequence_block(display, sequence, panel_type, &seq_size);
2080 	if (!seq_data)
2081 		return;
2082 
2083 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2084 	if (!data)
2085 		return;
2086 
2087 	/* Parse the sequences, store pointers to each sequence. */
2088 	for (;;) {
2089 		u8 seq_id = *(data + index);
2090 		if (seq_id == MIPI_SEQ_END)
2091 			break;
2092 
2093 		if (seq_id >= MIPI_SEQ_MAX) {
2094 			drm_err(display->drm, "Unknown sequence %u\n",
2095 				seq_id);
2096 			goto err;
2097 		}
2098 
2099 		/* Log about presence of sequences we won't run. */
2100 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2101 			drm_dbg_kms(display->drm,
2102 				    "Unsupported sequence %u\n", seq_id);
2103 
2104 		panel->vbt.dsi.sequence[seq_id] = data + index;
2105 
2106 		if (sequence->version >= 3)
2107 			index = goto_next_sequence_v3(display, data, index, seq_size);
2108 		else
2109 			index = goto_next_sequence(display, data, index, seq_size);
2110 		if (!index) {
2111 			drm_err(display->drm, "Invalid sequence %u\n",
2112 				seq_id);
2113 			goto err;
2114 		}
2115 	}
2116 
2117 	panel->vbt.dsi.data = data;
2118 	panel->vbt.dsi.size = seq_size;
2119 	panel->vbt.dsi.seq_version = sequence->version;
2120 
2121 	fixup_mipi_sequences(display, panel);
2122 
2123 	drm_dbg_kms(display->drm, "MIPI related VBT parsing complete\n");
2124 	return;
2125 
2126 err:
2127 	kfree(data);
2128 	memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2129 }
2130 
2131 static void
2132 parse_compression_parameters(struct intel_display *display)
2133 {
2134 	const struct bdb_compression_parameters *params;
2135 	struct intel_bios_encoder_data *devdata;
2136 	u16 block_size;
2137 	int index;
2138 
2139 	if (display->vbt.version < 198)
2140 		return;
2141 
2142 	params = bdb_find_section(display, BDB_COMPRESSION_PARAMETERS);
2143 	if (params) {
2144 		/* Sanity checks */
2145 		if (params->entry_size != sizeof(params->data[0])) {
2146 			drm_dbg_kms(display->drm,
2147 				    "VBT: unsupported compression param entry size\n");
2148 			return;
2149 		}
2150 
2151 		block_size = get_blocksize(params);
2152 		if (block_size < sizeof(*params)) {
2153 			drm_dbg_kms(display->drm,
2154 				    "VBT: expected 16 compression param entries\n");
2155 			return;
2156 		}
2157 	}
2158 
2159 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
2160 		const struct child_device_config *child = &devdata->child;
2161 
2162 		if (!child->compression_enable)
2163 			continue;
2164 
2165 		if (!params) {
2166 			drm_dbg_kms(display->drm,
2167 				    "VBT: compression params not available\n");
2168 			continue;
2169 		}
2170 
2171 		if (child->compression_method_cps) {
2172 			drm_dbg_kms(display->drm,
2173 				    "VBT: CPS compression not supported\n");
2174 			continue;
2175 		}
2176 
2177 		index = child->compression_structure_index;
2178 
2179 		devdata->dsc = kmemdup(&params->data[index],
2180 				       sizeof(*devdata->dsc), GFP_KERNEL);
2181 	}
2182 }
2183 
2184 static u8 translate_iboost(struct intel_display *display, u8 val)
2185 {
2186 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2187 
2188 	if (val >= ARRAY_SIZE(mapping)) {
2189 		drm_dbg_kms(display->drm,
2190 			    "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2191 		return 0;
2192 	}
2193 	return mapping[val];
2194 }
2195 
2196 static const u8 cnp_ddc_pin_map[] = {
2197 	[0] = 0, /* N/A */
2198 	[GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2199 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2200 	[GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2201 	[GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2202 };
2203 
2204 static const u8 icp_ddc_pin_map[] = {
2205 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2206 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2207 	[GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2208 	[GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2209 	[GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2210 	[GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2211 	[GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2212 	[GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2213 	[GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2214 };
2215 
2216 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2217 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2218 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2219 	[GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2220 	[GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2221 };
2222 
2223 static const u8 adls_ddc_pin_map[] = {
2224 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2225 	[GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2226 	[GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2227 	[GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2228 	[GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2229 };
2230 
2231 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2232 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2233 	[GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2234 	[GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2235 };
2236 
2237 static const u8 adlp_ddc_pin_map[] = {
2238 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2239 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2240 	[GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2241 	[GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2242 	[GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2243 	[GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2244 };
2245 
2246 static u8 map_ddc_pin(struct intel_display *display, u8 vbt_pin)
2247 {
2248 	struct drm_i915_private *i915 = to_i915(display->drm);
2249 	const u8 *ddc_pin_map;
2250 	int i, n_entries;
2251 
2252 	if (INTEL_PCH_TYPE(i915) >= PCH_MTL || display->platform.alderlake_p) {
2253 		ddc_pin_map = adlp_ddc_pin_map;
2254 		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2255 	} else if (display->platform.alderlake_s) {
2256 		ddc_pin_map = adls_ddc_pin_map;
2257 		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2258 	} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2259 		return vbt_pin;
2260 	} else if (display->platform.rocketlake && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2261 		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2262 		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2263 	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(display) == 9) {
2264 		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2265 		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2266 	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2267 		ddc_pin_map = icp_ddc_pin_map;
2268 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2269 	} else if (HAS_PCH_CNP(i915)) {
2270 		ddc_pin_map = cnp_ddc_pin_map;
2271 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2272 	} else {
2273 		/* Assuming direct map */
2274 		return vbt_pin;
2275 	}
2276 
2277 	for (i = 0; i < n_entries; i++) {
2278 		if (ddc_pin_map[i] == vbt_pin)
2279 			return i;
2280 	}
2281 
2282 	drm_dbg_kms(display->drm,
2283 		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2284 		    vbt_pin);
2285 	return 0;
2286 }
2287 
2288 static u8 dvo_port_type(u8 dvo_port)
2289 {
2290 	switch (dvo_port) {
2291 	case DVO_PORT_HDMIA:
2292 	case DVO_PORT_HDMIB:
2293 	case DVO_PORT_HDMIC:
2294 	case DVO_PORT_HDMID:
2295 	case DVO_PORT_HDMIE:
2296 	case DVO_PORT_HDMIF:
2297 	case DVO_PORT_HDMIG:
2298 	case DVO_PORT_HDMIH:
2299 	case DVO_PORT_HDMII:
2300 		return DVO_PORT_HDMIA;
2301 	case DVO_PORT_DPA:
2302 	case DVO_PORT_DPB:
2303 	case DVO_PORT_DPC:
2304 	case DVO_PORT_DPD:
2305 	case DVO_PORT_DPE:
2306 	case DVO_PORT_DPF:
2307 	case DVO_PORT_DPG:
2308 	case DVO_PORT_DPH:
2309 	case DVO_PORT_DPI:
2310 		return DVO_PORT_DPA;
2311 	case DVO_PORT_MIPIA:
2312 	case DVO_PORT_MIPIB:
2313 	case DVO_PORT_MIPIC:
2314 	case DVO_PORT_MIPID:
2315 		return DVO_PORT_MIPIA;
2316 	default:
2317 		return dvo_port;
2318 	}
2319 }
2320 
2321 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2322 				    const int port_mapping[][3], u8 dvo_port)
2323 {
2324 	enum port port;
2325 	int i;
2326 
2327 	for (port = PORT_A; port < n_ports; port++) {
2328 		for (i = 0; i < n_dvo; i++) {
2329 			if (port_mapping[port][i] == -1)
2330 				break;
2331 
2332 			if (dvo_port == port_mapping[port][i])
2333 				return port;
2334 		}
2335 	}
2336 
2337 	return PORT_NONE;
2338 }
2339 
2340 static enum port dvo_port_to_port(struct intel_display *display,
2341 				  u8 dvo_port)
2342 {
2343 	/*
2344 	 * Each DDI port can have more than one value on the "DVO Port" field,
2345 	 * so look for all the possible values for each port.
2346 	 */
2347 	static const int port_mapping[][3] = {
2348 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2349 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2350 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2351 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2352 		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2353 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2354 		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2355 		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2356 		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2357 	};
2358 	/*
2359 	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2360 	 * map to DDI A,B,TC1,TC2 respectively.
2361 	 */
2362 	static const int rkl_port_mapping[][3] = {
2363 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2364 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2365 		[PORT_C] = { -1 },
2366 		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2367 		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2368 	};
2369 	/*
2370 	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2371 	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2372 	 */
2373 	static const int adls_port_mapping[][3] = {
2374 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2375 		[PORT_B] = { -1 },
2376 		[PORT_C] = { -1 },
2377 		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2378 		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2379 		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2380 		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2381 	};
2382 	static const int xelpd_port_mapping[][3] = {
2383 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2384 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2385 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2386 		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2387 		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2388 		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2389 		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2390 		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2391 		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2392 	};
2393 
2394 	if (DISPLAY_VER(display) >= 13)
2395 		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2396 					  ARRAY_SIZE(xelpd_port_mapping[0]),
2397 					  xelpd_port_mapping,
2398 					  dvo_port);
2399 	else if (display->platform.alderlake_s)
2400 		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2401 					  ARRAY_SIZE(adls_port_mapping[0]),
2402 					  adls_port_mapping,
2403 					  dvo_port);
2404 	else if (display->platform.dg1 || display->platform.rocketlake)
2405 		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2406 					  ARRAY_SIZE(rkl_port_mapping[0]),
2407 					  rkl_port_mapping,
2408 					  dvo_port);
2409 	else
2410 		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2411 					  ARRAY_SIZE(port_mapping[0]),
2412 					  port_mapping,
2413 					  dvo_port);
2414 }
2415 
2416 static enum port
2417 dsi_dvo_port_to_port(struct intel_display *display, u8 dvo_port)
2418 {
2419 	switch (dvo_port) {
2420 	case DVO_PORT_MIPIA:
2421 		return PORT_A;
2422 	case DVO_PORT_MIPIC:
2423 		if (DISPLAY_VER(display) >= 11)
2424 			return PORT_B;
2425 		else
2426 			return PORT_C;
2427 	default:
2428 		return PORT_NONE;
2429 	}
2430 }
2431 
2432 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2433 {
2434 	struct intel_display *display = devdata->display;
2435 	const struct child_device_config *child = &devdata->child;
2436 	enum port port;
2437 
2438 	port = dvo_port_to_port(display, child->dvo_port);
2439 	if (port == PORT_NONE && DISPLAY_VER(display) >= 11)
2440 		port = dsi_dvo_port_to_port(display, child->dvo_port);
2441 
2442 	return port;
2443 }
2444 
2445 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2446 {
2447 	switch (vbt_max_link_rate) {
2448 	default:
2449 	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2450 		return 0;
2451 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2452 		return 2000000;
2453 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2454 		return 1350000;
2455 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2456 		return 1000000;
2457 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2458 		return 810000;
2459 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2460 		return 540000;
2461 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2462 		return 270000;
2463 	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2464 		return 162000;
2465 	}
2466 }
2467 
2468 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2469 {
2470 	switch (vbt_max_link_rate) {
2471 	default:
2472 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2473 		return 810000;
2474 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2475 		return 540000;
2476 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2477 		return 270000;
2478 	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2479 		return 162000;
2480 	}
2481 }
2482 
2483 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2484 {
2485 	if (!devdata || devdata->display->vbt.version < 216)
2486 		return 0;
2487 
2488 	if (devdata->display->vbt.version >= 230)
2489 		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2490 	else
2491 		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2492 }
2493 
2494 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2495 {
2496 	if (!devdata || devdata->display->vbt.version < 244)
2497 		return 0;
2498 
2499 	return devdata->child.dp_max_lane_count + 1;
2500 }
2501 
2502 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2503 				 enum port port)
2504 {
2505 	struct intel_display *display = devdata->display;
2506 	bool is_hdmi;
2507 
2508 	if (port != PORT_A || DISPLAY_VER(display) >= 12)
2509 		return;
2510 
2511 	if (!intel_bios_encoder_supports_dvi(devdata))
2512 		return;
2513 
2514 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2515 
2516 	drm_dbg_kms(display->drm, "VBT claims port A supports DVI%s, ignoring\n",
2517 		    is_hdmi ? "/HDMI" : "");
2518 
2519 	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2520 	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2521 }
2522 
2523 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata,
2524 				      enum port port)
2525 {
2526 	struct intel_display *display = devdata->display;
2527 
2528 	if (!intel_bios_encoder_supports_dvi(devdata))
2529 		return;
2530 
2531 	/*
2532 	 * Some BDW machines (eg. HP Pavilion 15-ab) shipped
2533 	 * with a HSW VBT where the level shifter value goes
2534 	 * up to 11, whereas the BDW max is 9.
2535 	 */
2536 	if (display->platform.broadwell && devdata->child.hdmi_level_shifter_value > 9) {
2537 		drm_dbg_kms(display->drm,
2538 			    "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n",
2539 			    port_name(port), devdata->child.hdmi_level_shifter_value, 9);
2540 
2541 		devdata->child.hdmi_level_shifter_value = 9;
2542 	}
2543 }
2544 
2545 static bool
2546 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2547 {
2548 	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2549 }
2550 
2551 bool
2552 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2553 {
2554 	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2555 }
2556 
2557 bool
2558 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2559 {
2560 	return intel_bios_encoder_supports_dvi(devdata) &&
2561 		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2562 }
2563 
2564 bool
2565 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2566 {
2567 	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2568 }
2569 
2570 bool
2571 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2572 {
2573 	return intel_bios_encoder_supports_dp(devdata) &&
2574 		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2575 }
2576 
2577 bool
2578 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2579 {
2580 	return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2581 }
2582 
2583 bool
2584 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2585 {
2586 	return devdata && HAS_LSPCON(devdata->display) && devdata->child.lspcon;
2587 }
2588 
2589 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
2590 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2591 {
2592 	if (!devdata || devdata->display->vbt.version < 158 ||
2593 	    DISPLAY_VER(devdata->display) >= 14)
2594 		return -1;
2595 
2596 	return devdata->child.hdmi_level_shifter_value;
2597 }
2598 
2599 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2600 {
2601 	if (!devdata || devdata->display->vbt.version < 204)
2602 		return 0;
2603 
2604 	switch (devdata->child.hdmi_max_data_rate) {
2605 	default:
2606 		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2607 		fallthrough;
2608 	case HDMI_MAX_DATA_RATE_PLATFORM:
2609 		return 0;
2610 	case HDMI_MAX_DATA_RATE_594:
2611 		return 594000;
2612 	case HDMI_MAX_DATA_RATE_340:
2613 		return 340000;
2614 	case HDMI_MAX_DATA_RATE_300:
2615 		return 300000;
2616 	case HDMI_MAX_DATA_RATE_297:
2617 		return 297000;
2618 	case HDMI_MAX_DATA_RATE_165:
2619 		return 165000;
2620 	}
2621 }
2622 
2623 static bool is_port_valid(struct intel_display *display, enum port port)
2624 {
2625 	/*
2626 	 * On some ICL SKUs port F is not present, but broken VBTs mark
2627 	 * the port as present. Only try to initialize port F for the
2628 	 * SKUs that may actually have it.
2629 	 */
2630 	if (port == PORT_F && display->platform.icelake)
2631 		return display->platform.icelake_port_f;
2632 
2633 	return true;
2634 }
2635 
2636 static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2637 {
2638 	struct intel_display *display = devdata->display;
2639 	const struct child_device_config *child = &devdata->child;
2640 	bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2641 	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2642 	enum port port;
2643 
2644 	port = intel_bios_encoder_port(devdata);
2645 	if (port == PORT_NONE)
2646 		return;
2647 
2648 	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2649 	is_dp = intel_bios_encoder_supports_dp(devdata);
2650 	is_crt = intel_bios_encoder_supports_crt(devdata);
2651 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2652 	is_edp = intel_bios_encoder_supports_edp(devdata);
2653 	is_dsi = intel_bios_encoder_supports_dsi(devdata);
2654 
2655 	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2656 	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2657 
2658 	drm_dbg_kms(display->drm,
2659 		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2660 		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2661 		    intel_bios_encoder_supports_dp_dual_mode(devdata),
2662 		    intel_bios_encoder_is_lspcon(devdata),
2663 		    supports_typec_usb, supports_tbt,
2664 		    devdata->dsc != NULL);
2665 
2666 	hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2667 	if (hdmi_level_shift >= 0) {
2668 		drm_dbg_kms(display->drm,
2669 			    "Port %c VBT HDMI level shift: %d\n",
2670 			    port_name(port), hdmi_level_shift);
2671 	}
2672 
2673 	max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2674 	if (max_tmds_clock)
2675 		drm_dbg_kms(display->drm,
2676 			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2677 			    port_name(port), max_tmds_clock);
2678 
2679 	/* I_boost config for SKL and above */
2680 	dp_boost_level = intel_bios_dp_boost_level(devdata);
2681 	if (dp_boost_level)
2682 		drm_dbg_kms(display->drm,
2683 			    "Port %c VBT (e)DP boost level: %d\n",
2684 			    port_name(port), dp_boost_level);
2685 
2686 	hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2687 	if (hdmi_boost_level)
2688 		drm_dbg_kms(display->drm,
2689 			    "Port %c VBT HDMI boost level: %d\n",
2690 			    port_name(port), hdmi_boost_level);
2691 
2692 	dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2693 	if (dp_max_link_rate)
2694 		drm_dbg_kms(display->drm,
2695 			    "Port %c VBT DP max link rate: %d\n",
2696 			    port_name(port), dp_max_link_rate);
2697 
2698 	/*
2699 	 * FIXME need to implement support for VBT
2700 	 * vswing/preemph tables should this ever trigger.
2701 	 */
2702 	drm_WARN(display->drm, child->use_vbt_vswing,
2703 		 "Port %c asks to use VBT vswing/preemph tables\n",
2704 		 port_name(port));
2705 }
2706 
2707 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2708 {
2709 	struct intel_display *display = devdata->display;
2710 	enum port port;
2711 
2712 	port = intel_bios_encoder_port(devdata);
2713 	if (port == PORT_NONE)
2714 		return;
2715 
2716 	if (!is_port_valid(display, port)) {
2717 		drm_dbg_kms(display->drm,
2718 			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2719 			    port_name(port));
2720 		return;
2721 	}
2722 
2723 	sanitize_device_type(devdata, port);
2724 	sanitize_hdmi_level_shift(devdata, port);
2725 }
2726 
2727 static bool has_ddi_port_info(struct intel_display *display)
2728 {
2729 	return DISPLAY_VER(display) >= 5 || display->platform.g4x;
2730 }
2731 
2732 static void parse_ddi_ports(struct intel_display *display)
2733 {
2734 	struct intel_bios_encoder_data *devdata;
2735 
2736 	if (!has_ddi_port_info(display))
2737 		return;
2738 
2739 	list_for_each_entry(devdata, &display->vbt.display_devices, node)
2740 		parse_ddi_port(devdata);
2741 
2742 	list_for_each_entry(devdata, &display->vbt.display_devices, node)
2743 		print_ddi_port(devdata);
2744 }
2745 
2746 static int child_device_expected_size(u16 version)
2747 {
2748 	BUILD_BUG_ON(sizeof(struct child_device_config) < 40);
2749 
2750 	if (version > 256)
2751 		return -ENOENT;
2752 	else if (version >= 256)
2753 		return 40;
2754 	else if (version >= 216)
2755 		return 39;
2756 	else if (version >= 196)
2757 		return 38;
2758 	else if (version >= 195)
2759 		return 37;
2760 	else if (version >= 111)
2761 		return LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2762 	else if (version >= 106)
2763 		return 27;
2764 	else
2765 		return 22;
2766 }
2767 
2768 static bool child_device_size_valid(struct intel_display *display, int size)
2769 {
2770 	int expected_size;
2771 
2772 	expected_size = child_device_expected_size(display->vbt.version);
2773 	if (expected_size < 0) {
2774 		expected_size = sizeof(struct child_device_config);
2775 		drm_dbg_kms(display->drm,
2776 			    "Expected child device config size for VBT version %u not known; assuming %d\n",
2777 			    display->vbt.version, expected_size);
2778 	}
2779 
2780 	/* Flag an error for unexpected size, but continue anyway. */
2781 	if (size != expected_size)
2782 		drm_err(display->drm,
2783 			"Unexpected child device config size %d (expected %d for VBT version %u)\n",
2784 			size, expected_size, display->vbt.version);
2785 
2786 	/* The legacy sized child device config is the minimum we need. */
2787 	if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2788 		drm_dbg_kms(display->drm,
2789 			    "Child device config size %d is too small.\n",
2790 			    size);
2791 		return false;
2792 	}
2793 
2794 	return true;
2795 }
2796 
2797 static void
2798 parse_general_definitions(struct intel_display *display)
2799 {
2800 	const struct bdb_general_definitions *defs;
2801 	struct intel_bios_encoder_data *devdata;
2802 	const struct child_device_config *child;
2803 	int i, child_device_num;
2804 	u16 block_size;
2805 	int bus_pin;
2806 
2807 	defs = bdb_find_section(display, BDB_GENERAL_DEFINITIONS);
2808 	if (!defs) {
2809 		drm_dbg_kms(display->drm,
2810 			    "No general definition block is found, no devices defined.\n");
2811 		return;
2812 	}
2813 
2814 	block_size = get_blocksize(defs);
2815 	if (block_size < sizeof(*defs)) {
2816 		drm_dbg_kms(display->drm,
2817 			    "General definitions block too small (%u)\n",
2818 			    block_size);
2819 		return;
2820 	}
2821 
2822 	bus_pin = defs->crt_ddc_gmbus_pin;
2823 	drm_dbg_kms(display->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2824 	if (intel_gmbus_is_valid_pin(display, bus_pin))
2825 		display->vbt.crt_ddc_pin = bus_pin;
2826 
2827 	if (!child_device_size_valid(display, defs->child_dev_size))
2828 		return;
2829 
2830 	/* get the number of child device */
2831 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2832 
2833 	for (i = 0; i < child_device_num; i++) {
2834 		child = child_device_ptr(defs, i);
2835 		if (!child->device_type)
2836 			continue;
2837 
2838 		drm_dbg_kms(display->drm,
2839 			    "Found VBT child device with type 0x%x\n",
2840 			    child->device_type);
2841 
2842 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2843 		if (!devdata)
2844 			break;
2845 
2846 		devdata->display = display;
2847 
2848 		/*
2849 		 * Copy as much as we know (sizeof) and is available
2850 		 * (child_dev_size) of the child device config. Accessing the
2851 		 * data must depend on VBT version.
2852 		 */
2853 		memcpy(&devdata->child, child,
2854 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2855 
2856 		list_add_tail(&devdata->node, &display->vbt.display_devices);
2857 	}
2858 
2859 	if (list_empty(&display->vbt.display_devices))
2860 		drm_dbg_kms(display->drm,
2861 			    "no child dev is parsed from VBT\n");
2862 }
2863 
2864 /* Common defaults which may be overridden by VBT. */
2865 static void
2866 init_vbt_defaults(struct intel_display *display)
2867 {
2868 	struct drm_i915_private *i915 = to_i915(display->drm);
2869 
2870 	display->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2871 
2872 	/* general features */
2873 	display->vbt.int_tv_support = 1;
2874 	display->vbt.int_crt_support = 1;
2875 
2876 	/* driver features */
2877 	display->vbt.int_lvds_support = 1;
2878 
2879 	/* Default to using SSC */
2880 	display->vbt.lvds_use_ssc = 1;
2881 	/*
2882 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2883 	 * clock for LVDS.
2884 	 */
2885 	display->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(display,
2886 							      !HAS_PCH_SPLIT(i915));
2887 	drm_dbg_kms(display->drm, "Set default to SSC at %d kHz\n",
2888 		    display->vbt.lvds_ssc_freq);
2889 }
2890 
2891 /* Common defaults which may be overridden by VBT. */
2892 static void
2893 init_vbt_panel_defaults(struct intel_panel *panel)
2894 {
2895 	/* Default to having backlight */
2896 	panel->vbt.backlight.present = true;
2897 
2898 	/* LFP panel data */
2899 	panel->vbt.lvds_dither = true;
2900 }
2901 
2902 /* Defaults to initialize only if there is no VBT. */
2903 static void
2904 init_vbt_missing_defaults(struct intel_display *display)
2905 {
2906 	unsigned int ports = DISPLAY_RUNTIME_INFO(display)->port_mask;
2907 	enum port port;
2908 
2909 	if (!HAS_DDI(display) && !display->platform.cherryview)
2910 		return;
2911 
2912 	for_each_port_masked(port, ports) {
2913 		struct intel_bios_encoder_data *devdata;
2914 		struct child_device_config *child;
2915 		enum phy phy = intel_port_to_phy(display, port);
2916 
2917 		/*
2918 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2919 		 * to detect it.
2920 		 */
2921 		if (intel_phy_is_tc(display, phy))
2922 			continue;
2923 
2924 		/* Create fake child device config */
2925 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2926 		if (!devdata)
2927 			break;
2928 
2929 		devdata->display = display;
2930 		child = &devdata->child;
2931 
2932 		if (port == PORT_F)
2933 			child->dvo_port = DVO_PORT_HDMIF;
2934 		else if (port == PORT_E)
2935 			child->dvo_port = DVO_PORT_HDMIE;
2936 		else
2937 			child->dvo_port = DVO_PORT_HDMIA + port;
2938 
2939 		if (port != PORT_A && port != PORT_E)
2940 			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2941 
2942 		if (port != PORT_E)
2943 			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2944 
2945 		if (port == PORT_A)
2946 			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2947 
2948 		list_add_tail(&devdata->node, &display->vbt.display_devices);
2949 
2950 		drm_dbg_kms(display->drm,
2951 			    "Generating default VBT child device with type 0x%04x on port %c\n",
2952 			    child->device_type, port_name(port));
2953 	}
2954 
2955 	/* Bypass some minimum baseline VBT version checks */
2956 	display->vbt.version = 155;
2957 }
2958 
2959 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2960 {
2961 	const void *_vbt = vbt;
2962 
2963 	return _vbt + vbt->bdb_offset;
2964 }
2965 
2966 static const char vbt_signature[] = "$VBT";
2967 static const int vbt_signature_len = 4;
2968 
2969 /**
2970  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2971  * @display:	display device
2972  * @buf:	pointer to a buffer to validate
2973  * @size:	size of the buffer
2974  *
2975  * Returns true on valid VBT.
2976  */
2977 bool intel_bios_is_valid_vbt(struct intel_display *display,
2978 			     const void *buf, size_t size)
2979 {
2980 	const struct vbt_header *vbt = buf;
2981 	const struct bdb_header *bdb;
2982 
2983 	if (!vbt)
2984 		return false;
2985 
2986 	if (sizeof(struct vbt_header) > size) {
2987 		drm_dbg_kms(display->drm, "VBT header incomplete\n");
2988 		return false;
2989 	}
2990 
2991 	if (memcmp(vbt->signature, vbt_signature, vbt_signature_len)) {
2992 		drm_dbg_kms(display->drm, "VBT invalid signature\n");
2993 		return false;
2994 	}
2995 
2996 	if (vbt->vbt_size > size) {
2997 		drm_dbg_kms(display->drm,
2998 			    "VBT incomplete (vbt_size overflows)\n");
2999 		return false;
3000 	}
3001 
3002 	size = vbt->vbt_size;
3003 
3004 	if (range_overflows_t(size_t,
3005 			      vbt->bdb_offset,
3006 			      sizeof(struct bdb_header),
3007 			      size)) {
3008 		drm_dbg_kms(display->drm, "BDB header incomplete\n");
3009 		return false;
3010 	}
3011 
3012 	bdb = get_bdb_header(vbt);
3013 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
3014 		drm_dbg_kms(display->drm, "BDB incomplete\n");
3015 		return false;
3016 	}
3017 
3018 	return vbt;
3019 }
3020 
3021 static struct vbt_header *firmware_get_vbt(struct intel_display *display,
3022 					   size_t *size)
3023 {
3024 	struct vbt_header *vbt = NULL;
3025 	const struct firmware *fw = NULL;
3026 	const char *name = display->params.vbt_firmware;
3027 	int ret;
3028 
3029 	if (!name || !*name)
3030 		return NULL;
3031 
3032 	ret = request_firmware(&fw, name, display->drm->dev);
3033 	if (ret) {
3034 		drm_err(display->drm,
3035 			"Requesting VBT firmware \"%s\" failed (%d)\n",
3036 			name, ret);
3037 		return NULL;
3038 	}
3039 
3040 	if (intel_bios_is_valid_vbt(display, fw->data, fw->size)) {
3041 		vbt = kmemdup(fw->data, fw->size, GFP_KERNEL);
3042 		if (vbt) {
3043 			drm_dbg_kms(display->drm,
3044 				    "Found valid VBT firmware \"%s\"\n", name);
3045 			if (size)
3046 				*size = fw->size;
3047 		}
3048 	} else {
3049 		drm_dbg_kms(display->drm, "Invalid VBT firmware \"%s\"\n",
3050 			    name);
3051 	}
3052 
3053 	release_firmware(fw);
3054 
3055 	return vbt;
3056 }
3057 
3058 static struct vbt_header *oprom_get_vbt(struct intel_display *display,
3059 					struct intel_rom *rom,
3060 					size_t *size, const char *type)
3061 {
3062 	struct vbt_header *vbt;
3063 	size_t vbt_size;
3064 	loff_t offset;
3065 
3066 	if (!rom)
3067 		return NULL;
3068 
3069 	BUILD_BUG_ON(vbt_signature_len != sizeof(vbt_signature) - 1);
3070 	BUILD_BUG_ON(vbt_signature_len != sizeof(u32));
3071 
3072 	offset = intel_rom_find(rom, *(const u32 *)vbt_signature);
3073 	if (offset < 0)
3074 		goto err_free_rom;
3075 
3076 	if (sizeof(struct vbt_header) > intel_rom_size(rom) - offset) {
3077 		drm_dbg_kms(display->drm, "VBT header incomplete\n");
3078 		goto err_free_rom;
3079 	}
3080 
3081 	BUILD_BUG_ON(sizeof(vbt->vbt_size) != sizeof(u16));
3082 
3083 	vbt_size = intel_rom_read16(rom, offset + offsetof(struct vbt_header, vbt_size));
3084 	if (vbt_size > intel_rom_size(rom) - offset) {
3085 		drm_dbg_kms(display->drm, "VBT incomplete (vbt_size overflows)\n");
3086 		goto err_free_rom;
3087 	}
3088 
3089 	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3090 	if (!vbt)
3091 		goto err_free_rom;
3092 
3093 	intel_rom_read_block(rom, vbt, offset, vbt_size);
3094 
3095 	if (!intel_bios_is_valid_vbt(display, vbt, vbt_size))
3096 		goto err_free_vbt;
3097 
3098 	drm_dbg_kms(display->drm, "Found valid VBT in %s\n", type);
3099 
3100 	if (size)
3101 		*size = vbt_size;
3102 
3103 	intel_rom_free(rom);
3104 
3105 	return vbt;
3106 
3107 err_free_vbt:
3108 	kfree(vbt);
3109 err_free_rom:
3110 	intel_rom_free(rom);
3111 	return NULL;
3112 }
3113 
3114 static const struct vbt_header *intel_bios_get_vbt(struct intel_display *display,
3115 						   size_t *sizep)
3116 {
3117 	struct drm_i915_private *i915 = to_i915(display->drm);
3118 	const struct vbt_header *vbt = NULL;
3119 
3120 	vbt = firmware_get_vbt(display, sizep);
3121 
3122 	if (!vbt)
3123 		vbt = intel_opregion_get_vbt(display, sizep);
3124 
3125 	/*
3126 	 * If the OpRegion does not have VBT, look in SPI flash
3127 	 * through MMIO or PCI mapping
3128 	 */
3129 	if (!vbt && IS_DGFX(i915))
3130 		with_intel_display_rpm(display)
3131 			vbt = oprom_get_vbt(display, intel_rom_spi(i915), sizep, "SPI flash");
3132 
3133 	if (!vbt)
3134 		with_intel_display_rpm(display)
3135 			vbt = oprom_get_vbt(display, intel_rom_pci(i915), sizep, "PCI ROM");
3136 
3137 	return vbt;
3138 }
3139 
3140 /**
3141  * intel_bios_init - find VBT and initialize settings from the BIOS
3142  * @display: display device instance
3143  *
3144  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3145  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3146  * initialize some defaults if the VBT is not present at all.
3147  */
3148 void intel_bios_init(struct intel_display *display)
3149 {
3150 	const struct vbt_header *vbt;
3151 	const struct bdb_header *bdb;
3152 
3153 	INIT_LIST_HEAD(&display->vbt.display_devices);
3154 	INIT_LIST_HEAD(&display->vbt.bdb_blocks);
3155 
3156 	if (!HAS_DISPLAY(display)) {
3157 		drm_dbg_kms(display->drm,
3158 			    "Skipping VBT init due to disabled display.\n");
3159 		return;
3160 	}
3161 
3162 	init_vbt_defaults(display);
3163 
3164 	vbt = intel_bios_get_vbt(display, NULL);
3165 
3166 	if (!vbt)
3167 		goto out;
3168 
3169 	bdb = get_bdb_header(vbt);
3170 	display->vbt.version = bdb->version;
3171 
3172 	drm_dbg_kms(display->drm,
3173 		    "VBT signature \"%.*s\", BDB version %d\n",
3174 		    (int)sizeof(vbt->signature), vbt->signature,
3175 		    display->vbt.version);
3176 
3177 	init_bdb_blocks(display, bdb);
3178 
3179 	/* Grab useful general definitions */
3180 	parse_general_features(display);
3181 	parse_general_definitions(display);
3182 	parse_driver_features(display);
3183 
3184 	/* Depends on child device list */
3185 	parse_compression_parameters(display);
3186 
3187 out:
3188 	if (!vbt) {
3189 		drm_info(display->drm,
3190 			 "Failed to find VBIOS tables (VBT)\n");
3191 		init_vbt_missing_defaults(display);
3192 	}
3193 
3194 	/* Further processing on pre-parsed or generated child device data */
3195 	parse_sdvo_device_mapping(display);
3196 	parse_ddi_ports(display);
3197 
3198 	kfree(vbt);
3199 }
3200 
3201 static void intel_bios_init_panel(struct intel_display *display,
3202 				  struct intel_panel *panel,
3203 				  const struct intel_bios_encoder_data *devdata,
3204 				  const struct drm_edid *drm_edid,
3205 				  bool use_fallback)
3206 {
3207 	/* already have it? */
3208 	if (panel->vbt.panel_type >= 0) {
3209 		drm_WARN_ON(display->drm, !use_fallback);
3210 		return;
3211 	}
3212 
3213 	panel->vbt.panel_type = get_panel_type(display, devdata,
3214 					       drm_edid, use_fallback);
3215 	if (panel->vbt.panel_type < 0) {
3216 		drm_WARN_ON(display->drm, use_fallback);
3217 		return;
3218 	}
3219 
3220 	init_vbt_panel_defaults(panel);
3221 
3222 	parse_panel_options(display, panel);
3223 	parse_generic_dtd(display, panel);
3224 	parse_lfp_data(display, panel);
3225 	parse_lfp_backlight(display, panel);
3226 	parse_sdvo_lvds_data(display, panel);
3227 	parse_panel_driver_features(display, panel);
3228 	parse_power_conservation_features(display, panel);
3229 	parse_edp(display, panel);
3230 	parse_psr(display, panel);
3231 	parse_mipi_config(display, panel);
3232 	parse_mipi_sequence(display, panel);
3233 }
3234 
3235 void intel_bios_init_panel_early(struct intel_display *display,
3236 				 struct intel_panel *panel,
3237 				 const struct intel_bios_encoder_data *devdata)
3238 {
3239 	intel_bios_init_panel(display, panel, devdata, NULL, false);
3240 }
3241 
3242 void intel_bios_init_panel_late(struct intel_display *display,
3243 				struct intel_panel *panel,
3244 				const struct intel_bios_encoder_data *devdata,
3245 				const struct drm_edid *drm_edid)
3246 {
3247 	intel_bios_init_panel(display, panel, devdata, drm_edid, true);
3248 }
3249 
3250 /**
3251  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3252  * @display: display device instance
3253  */
3254 void intel_bios_driver_remove(struct intel_display *display)
3255 {
3256 	struct intel_bios_encoder_data *devdata, *nd;
3257 	struct bdb_block_entry *entry, *ne;
3258 
3259 	list_for_each_entry_safe(devdata, nd, &display->vbt.display_devices,
3260 				 node) {
3261 		list_del(&devdata->node);
3262 		kfree(devdata->dsc);
3263 		kfree(devdata);
3264 	}
3265 
3266 	list_for_each_entry_safe(entry, ne, &display->vbt.bdb_blocks, node) {
3267 		list_del(&entry->node);
3268 		kfree(entry);
3269 	}
3270 }
3271 
3272 void intel_bios_fini_panel(struct intel_panel *panel)
3273 {
3274 	kfree(panel->vbt.sdvo_lvds_vbt_mode);
3275 	panel->vbt.sdvo_lvds_vbt_mode = NULL;
3276 	kfree(panel->vbt.lfp_vbt_mode);
3277 	panel->vbt.lfp_vbt_mode = NULL;
3278 	kfree(panel->vbt.dsi.data);
3279 	panel->vbt.dsi.data = NULL;
3280 	kfree(panel->vbt.dsi.pps);
3281 	panel->vbt.dsi.pps = NULL;
3282 	kfree(panel->vbt.dsi.config);
3283 	panel->vbt.dsi.config = NULL;
3284 	kfree(panel->vbt.dsi.deassert_seq);
3285 	panel->vbt.dsi.deassert_seq = NULL;
3286 }
3287 
3288 /**
3289  * intel_bios_is_tv_present - is integrated TV present in VBT
3290  * @display: display device instance
3291  *
3292  * Return true if TV is present. If no child devices were parsed from VBT,
3293  * assume TV is present.
3294  */
3295 bool intel_bios_is_tv_present(struct intel_display *display)
3296 {
3297 	const struct intel_bios_encoder_data *devdata;
3298 
3299 	if (!display->vbt.int_tv_support)
3300 		return false;
3301 
3302 	if (list_empty(&display->vbt.display_devices))
3303 		return true;
3304 
3305 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3306 		const struct child_device_config *child = &devdata->child;
3307 
3308 		/*
3309 		 * If the device type is not TV, continue.
3310 		 */
3311 		switch (child->device_type) {
3312 		case DEVICE_TYPE_INT_TV:
3313 		case DEVICE_TYPE_TV:
3314 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3315 			break;
3316 		default:
3317 			continue;
3318 		}
3319 		/* Only when the addin_offset is non-zero, it is regarded
3320 		 * as present.
3321 		 */
3322 		if (child->addin_offset)
3323 			return true;
3324 	}
3325 
3326 	return false;
3327 }
3328 
3329 /**
3330  * intel_bios_is_lvds_present - is LVDS present in VBT
3331  * @display: display device instance
3332  * @i2c_pin:	i2c pin for LVDS if present
3333  *
3334  * Return true if LVDS is present. If no child devices were parsed from VBT,
3335  * assume LVDS is present.
3336  */
3337 bool intel_bios_is_lvds_present(struct intel_display *display, u8 *i2c_pin)
3338 {
3339 	const struct intel_bios_encoder_data *devdata;
3340 
3341 	if (list_empty(&display->vbt.display_devices))
3342 		return true;
3343 
3344 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3345 		const struct child_device_config *child = &devdata->child;
3346 
3347 		/* If the device type is not LFP, continue.
3348 		 * We have to check both the new identifiers as well as the
3349 		 * old for compatibility with some BIOSes.
3350 		 */
3351 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3352 		    child->device_type != DEVICE_TYPE_LFP)
3353 			continue;
3354 
3355 		if (intel_gmbus_is_valid_pin(display, child->i2c_pin))
3356 			*i2c_pin = child->i2c_pin;
3357 
3358 		/* However, we cannot trust the BIOS writers to populate
3359 		 * the VBT correctly.  Since LVDS requires additional
3360 		 * information from AIM blocks, a non-zero addin offset is
3361 		 * a good indicator that the LVDS is actually present.
3362 		 */
3363 		if (child->addin_offset)
3364 			return true;
3365 
3366 		/* But even then some BIOS writers perform some black magic
3367 		 * and instantiate the device without reference to any
3368 		 * additional data.  Trust that if the VBT was written into
3369 		 * the OpRegion then they have validated the LVDS's existence.
3370 		 */
3371 		return intel_opregion_vbt_present(display);
3372 	}
3373 
3374 	return false;
3375 }
3376 
3377 /**
3378  * intel_bios_is_port_present - is the specified digital port present
3379  * @display: display device instance
3380  * @port:	port to check
3381  *
3382  * Return true if the device in %port is present.
3383  */
3384 bool intel_bios_is_port_present(struct intel_display *display, enum port port)
3385 {
3386 	const struct intel_bios_encoder_data *devdata;
3387 
3388 	if (WARN_ON(!has_ddi_port_info(display)))
3389 		return true;
3390 
3391 	if (!is_port_valid(display, port))
3392 		return false;
3393 
3394 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3395 		const struct child_device_config *child = &devdata->child;
3396 
3397 		if (dvo_port_to_port(display, child->dvo_port) == port)
3398 			return true;
3399 	}
3400 
3401 	return false;
3402 }
3403 
3404 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3405 {
3406 	const struct child_device_config *child = &devdata->child;
3407 
3408 	if (!devdata)
3409 		return false;
3410 
3411 	if (!intel_bios_encoder_supports_dp(devdata) ||
3412 	    !intel_bios_encoder_supports_hdmi(devdata))
3413 		return false;
3414 
3415 	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3416 		return true;
3417 
3418 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3419 	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3420 	    child->aux_channel != 0)
3421 		return true;
3422 
3423 	return false;
3424 }
3425 
3426 /**
3427  * intel_bios_is_dsi_present - is DSI present in VBT
3428  * @display: display device instance
3429  * @port:	port for DSI if present
3430  *
3431  * Return true if DSI is present, and return the port in %port.
3432  */
3433 bool intel_bios_is_dsi_present(struct intel_display *display,
3434 			       enum port *port)
3435 {
3436 	const struct intel_bios_encoder_data *devdata;
3437 
3438 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3439 		const struct child_device_config *child = &devdata->child;
3440 		u8 dvo_port = child->dvo_port;
3441 
3442 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3443 			continue;
3444 
3445 		if (dsi_dvo_port_to_port(display, dvo_port) == PORT_NONE) {
3446 			drm_dbg_kms(display->drm,
3447 				    "VBT has unsupported DSI port %c\n",
3448 				    port_name(dvo_port - DVO_PORT_MIPIA));
3449 			continue;
3450 		}
3451 
3452 		if (port)
3453 			*port = dsi_dvo_port_to_port(display, dvo_port);
3454 		return true;
3455 	}
3456 
3457 	return false;
3458 }
3459 
3460 static void fill_dsc(struct intel_crtc_state *crtc_state,
3461 		     struct dsc_compression_parameters_entry *dsc,
3462 		     int dsc_max_bpc)
3463 {
3464 	struct intel_display *display = to_intel_display(crtc_state);
3465 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3466 	int bpc = 8;
3467 
3468 	vdsc_cfg->dsc_version_major = dsc->version_major;
3469 	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3470 
3471 	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3472 		bpc = 12;
3473 	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3474 		bpc = 10;
3475 	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3476 		bpc = 8;
3477 	else
3478 		drm_dbg_kms(display->drm, "VBT: Unsupported BPC %d for DCS\n",
3479 			    dsc_max_bpc);
3480 
3481 	crtc_state->pipe_bpp = bpc * 3;
3482 
3483 	crtc_state->dsc.compressed_bpp_x16 = fxp_q4_from_int(min(crtc_state->pipe_bpp,
3484 								 VBT_DSC_MAX_BPP(dsc->max_bpp)));
3485 
3486 	/*
3487 	 * FIXME: This is ugly, and slice count should take DSC engine
3488 	 * throughput etc. into account.
3489 	 *
3490 	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3491 	 */
3492 	if (dsc->slices_per_line & BIT(2)) {
3493 		crtc_state->dsc.slice_count = 4;
3494 	} else if (dsc->slices_per_line & BIT(1)) {
3495 		crtc_state->dsc.slice_count = 2;
3496 	} else {
3497 		/* FIXME */
3498 		if (!(dsc->slices_per_line & BIT(0)))
3499 			drm_dbg_kms(display->drm,
3500 				    "VBT: Unsupported DSC slice count for DSI\n");
3501 
3502 		crtc_state->dsc.slice_count = 1;
3503 	}
3504 
3505 	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3506 	    crtc_state->dsc.slice_count != 0)
3507 		drm_dbg_kms(display->drm,
3508 			    "VBT: DSC hdisplay %d not divisible by slice count %d\n",
3509 			    crtc_state->hw.adjusted_mode.crtc_hdisplay,
3510 			    crtc_state->dsc.slice_count);
3511 
3512 	/*
3513 	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3514 	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3515 	 */
3516 	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3517 							    dsc->rc_buffer_size);
3518 
3519 	/* FIXME: DSI spec says bpc + 1 for this one */
3520 	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3521 
3522 	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3523 
3524 	vdsc_cfg->slice_height = dsc->slice_height;
3525 }
3526 
3527 /* FIXME: initially DSI specific */
3528 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3529 			       struct intel_crtc_state *crtc_state,
3530 			       int dsc_max_bpc)
3531 {
3532 	struct intel_display *display = to_intel_display(encoder);
3533 	const struct intel_bios_encoder_data *devdata;
3534 
3535 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3536 		const struct child_device_config *child = &devdata->child;
3537 
3538 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3539 			continue;
3540 
3541 		if (dsi_dvo_port_to_port(display, child->dvo_port) == encoder->port) {
3542 			if (!devdata->dsc)
3543 				return false;
3544 
3545 			fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3546 
3547 			return true;
3548 		}
3549 	}
3550 
3551 	return false;
3552 }
3553 
3554 static const u8 adlp_aux_ch_map[] = {
3555 	[AUX_CH_A] = DP_AUX_A,
3556 	[AUX_CH_B] = DP_AUX_B,
3557 	[AUX_CH_C] = DP_AUX_C,
3558 	[AUX_CH_D_XELPD] = DP_AUX_D,
3559 	[AUX_CH_E_XELPD] = DP_AUX_E,
3560 	[AUX_CH_USBC1] = DP_AUX_F,
3561 	[AUX_CH_USBC2] = DP_AUX_G,
3562 	[AUX_CH_USBC3] = DP_AUX_H,
3563 	[AUX_CH_USBC4] = DP_AUX_I,
3564 };
3565 
3566 /*
3567  * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3568  * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3569  */
3570 static const u8 adls_aux_ch_map[] = {
3571 	[AUX_CH_A] = DP_AUX_A,
3572 	[AUX_CH_USBC1] = DP_AUX_B,
3573 	[AUX_CH_USBC2] = DP_AUX_C,
3574 	[AUX_CH_USBC3] = DP_AUX_D,
3575 	[AUX_CH_USBC4] = DP_AUX_E,
3576 };
3577 
3578 /*
3579  * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3580  * map to DDI A,B,TC1,TC2 respectively.
3581  */
3582 static const u8 rkl_aux_ch_map[] = {
3583 	[AUX_CH_A] = DP_AUX_A,
3584 	[AUX_CH_B] = DP_AUX_B,
3585 	[AUX_CH_USBC1] = DP_AUX_C,
3586 	[AUX_CH_USBC2] = DP_AUX_D,
3587 };
3588 
3589 static const u8 direct_aux_ch_map[] = {
3590 	[AUX_CH_A] = DP_AUX_A,
3591 	[AUX_CH_B] = DP_AUX_B,
3592 	[AUX_CH_C] = DP_AUX_C,
3593 	[AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3594 	[AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3595 	[AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3596 	[AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3597 	[AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3598 	[AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3599 };
3600 
3601 static enum aux_ch map_aux_ch(struct intel_display *display, u8 aux_channel)
3602 {
3603 	const u8 *aux_ch_map;
3604 	int i, n_entries;
3605 
3606 	if (DISPLAY_VER(display) >= 13) {
3607 		aux_ch_map = adlp_aux_ch_map;
3608 		n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3609 	} else if (display->platform.alderlake_s) {
3610 		aux_ch_map = adls_aux_ch_map;
3611 		n_entries = ARRAY_SIZE(adls_aux_ch_map);
3612 	} else if (display->platform.dg1 || display->platform.rocketlake) {
3613 		aux_ch_map = rkl_aux_ch_map;
3614 		n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3615 	} else {
3616 		aux_ch_map = direct_aux_ch_map;
3617 		n_entries = ARRAY_SIZE(direct_aux_ch_map);
3618 	}
3619 
3620 	for (i = 0; i < n_entries; i++) {
3621 		if (aux_ch_map[i] == aux_channel)
3622 			return i;
3623 	}
3624 
3625 	drm_dbg_kms(display->drm,
3626 		    "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3627 		    aux_channel);
3628 
3629 	return AUX_CH_NONE;
3630 }
3631 
3632 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3633 {
3634 	if (!devdata || !devdata->child.aux_channel)
3635 		return AUX_CH_NONE;
3636 
3637 	return map_aux_ch(devdata->display, devdata->child.aux_channel);
3638 }
3639 
3640 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3641 {
3642 	struct intel_display *display;
3643 	u8 aux_channel;
3644 	int count = 0;
3645 
3646 	if (!devdata || !devdata->child.aux_channel)
3647 		return false;
3648 
3649 	display = devdata->display;
3650 	aux_channel = devdata->child.aux_channel;
3651 
3652 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3653 		if (intel_bios_encoder_supports_dp(devdata) &&
3654 		    aux_channel == devdata->child.aux_channel)
3655 			count++;
3656 	}
3657 
3658 	return count > 1;
3659 }
3660 
3661 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3662 {
3663 	if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost)
3664 		return 0;
3665 
3666 	return translate_iboost(devdata->display, devdata->child.dp_iboost_level);
3667 }
3668 
3669 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3670 {
3671 	if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost)
3672 		return 0;
3673 
3674 	return translate_iboost(devdata->display, devdata->child.hdmi_iboost_level);
3675 }
3676 
3677 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3678 {
3679 	if (!devdata || !devdata->child.ddc_pin)
3680 		return 0;
3681 
3682 	return map_ddc_pin(devdata->display, devdata->child.ddc_pin);
3683 }
3684 
3685 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3686 {
3687 	return devdata->display->vbt.version >= 195 && devdata->child.dp_usb_type_c;
3688 }
3689 
3690 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3691 {
3692 	return devdata->display->vbt.version >= 209 && devdata->child.tbt;
3693 }
3694 
3695 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3696 {
3697 	return devdata && devdata->child.lane_reversal;
3698 }
3699 
3700 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3701 {
3702 	return devdata && devdata->child.hpd_invert;
3703 }
3704 
3705 const struct intel_bios_encoder_data *
3706 intel_bios_encoder_data_lookup(struct intel_display *display, enum port port)
3707 {
3708 	struct intel_bios_encoder_data *devdata;
3709 
3710 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3711 		if (intel_bios_encoder_port(devdata) == port)
3712 			return devdata;
3713 	}
3714 
3715 	return NULL;
3716 }
3717 
3718 void intel_bios_for_each_encoder(struct intel_display *display,
3719 				 void (*func)(struct intel_display *display,
3720 					      const struct intel_bios_encoder_data *devdata))
3721 {
3722 	struct intel_bios_encoder_data *devdata;
3723 
3724 	list_for_each_entry(devdata, &display->vbt.display_devices, node)
3725 		func(display, devdata);
3726 }
3727 
3728 static int intel_bios_vbt_show(struct seq_file *m, void *unused)
3729 {
3730 	struct intel_display *display = m->private;
3731 	const void *vbt;
3732 	size_t vbt_size;
3733 
3734 	vbt = intel_bios_get_vbt(display, &vbt_size);
3735 
3736 	if (vbt) {
3737 		seq_write(m, vbt, vbt_size);
3738 		kfree(vbt);
3739 	}
3740 
3741 	return 0;
3742 }
3743 
3744 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt);
3745 
3746 void intel_bios_debugfs_register(struct intel_display *display)
3747 {
3748 	struct drm_minor *minor = display->drm->primary;
3749 
3750 	debugfs_create_file("i915_vbt", 0444, minor->debugfs_root,
3751 			    display, &intel_bios_vbt_fops);
3752 }
3753