1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/display/drm_dp_helper.h> 29 #include <drm/display/drm_dsc_helper.h> 30 #include <drm/drm_edid.h> 31 32 #include "i915_drv.h" 33 #include "i915_reg.h" 34 #include "intel_display.h" 35 #include "intel_display_types.h" 36 #include "intel_gmbus.h" 37 38 #define _INTEL_BIOS_PRIVATE 39 #include "intel_vbt_defs.h" 40 41 /** 42 * DOC: Video BIOS Table (VBT) 43 * 44 * The Video BIOS Table, or VBT, provides platform and board specific 45 * configuration information to the driver that is not discoverable or available 46 * through other means. The configuration is mostly related to display 47 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 48 * the PCI ROM. 49 * 50 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 51 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 52 * contain the actual configuration information. The VBT Header, and thus the 53 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 54 * BDB Header. The data blocks are concatenated after the BDB Header. The data 55 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 56 * data. (Block 53, the MIPI Sequence Block is an exception.) 57 * 58 * The driver parses the VBT during load. The relevant information is stored in 59 * driver private data for ease of use, and the actual VBT is not read after 60 * that. 61 */ 62 63 /* Wrapper for VBT child device config */ 64 struct intel_bios_encoder_data { 65 struct drm_i915_private *i915; 66 67 struct child_device_config child; 68 struct dsc_compression_parameters_entry *dsc; 69 struct list_head node; 70 }; 71 72 #define SLAVE_ADDR1 0x70 73 #define SLAVE_ADDR2 0x72 74 75 /* Get BDB block size given a pointer to Block ID. */ 76 static u32 _get_blocksize(const u8 *block_base) 77 { 78 /* The MIPI Sequence Block v3+ has a separate size field. */ 79 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 80 return *((const u32 *)(block_base + 4)); 81 else 82 return *((const u16 *)(block_base + 1)); 83 } 84 85 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 86 static u32 get_blocksize(const void *block_data) 87 { 88 return _get_blocksize(block_data - 3); 89 } 90 91 static const void * 92 find_raw_section(const void *_bdb, enum bdb_block_id section_id) 93 { 94 const struct bdb_header *bdb = _bdb; 95 const u8 *base = _bdb; 96 int index = 0; 97 u32 total, current_size; 98 enum bdb_block_id current_id; 99 100 /* skip to first section */ 101 index += bdb->header_size; 102 total = bdb->bdb_size; 103 104 /* walk the sections looking for section_id */ 105 while (index + 3 < total) { 106 current_id = *(base + index); 107 current_size = _get_blocksize(base + index); 108 index += 3; 109 110 if (index + current_size > total) 111 return NULL; 112 113 if (current_id == section_id) 114 return base + index; 115 116 index += current_size; 117 } 118 119 return NULL; 120 } 121 122 /* 123 * Offset from the start of BDB to the start of the 124 * block data (just past the block header). 125 */ 126 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) 127 { 128 const void *block; 129 130 block = find_raw_section(bdb, section_id); 131 if (!block) 132 return 0; 133 134 return block - bdb; 135 } 136 137 struct bdb_block_entry { 138 struct list_head node; 139 enum bdb_block_id section_id; 140 u8 data[]; 141 }; 142 143 static const void * 144 bdb_find_section(struct drm_i915_private *i915, 145 enum bdb_block_id section_id) 146 { 147 struct bdb_block_entry *entry; 148 149 list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) { 150 if (entry->section_id == section_id) 151 return entry->data + 3; 152 } 153 154 return NULL; 155 } 156 157 static const struct { 158 enum bdb_block_id section_id; 159 size_t min_size; 160 } bdb_blocks[] = { 161 { .section_id = BDB_GENERAL_FEATURES, 162 .min_size = sizeof(struct bdb_general_features), }, 163 { .section_id = BDB_GENERAL_DEFINITIONS, 164 .min_size = sizeof(struct bdb_general_definitions), }, 165 { .section_id = BDB_PSR, 166 .min_size = sizeof(struct bdb_psr), }, 167 { .section_id = BDB_DRIVER_FEATURES, 168 .min_size = sizeof(struct bdb_driver_features), }, 169 { .section_id = BDB_SDVO_LVDS_OPTIONS, 170 .min_size = sizeof(struct bdb_sdvo_lvds_options), }, 171 { .section_id = BDB_SDVO_PANEL_DTDS, 172 .min_size = sizeof(struct bdb_sdvo_panel_dtds), }, 173 { .section_id = BDB_EDP, 174 .min_size = sizeof(struct bdb_edp), }, 175 { .section_id = BDB_LVDS_OPTIONS, 176 .min_size = sizeof(struct bdb_lvds_options), }, 177 /* 178 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS, 179 * so keep the two ordered. 180 */ 181 { .section_id = BDB_LVDS_LFP_DATA_PTRS, 182 .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), }, 183 { .section_id = BDB_LVDS_LFP_DATA, 184 .min_size = 0, /* special case */ }, 185 { .section_id = BDB_LVDS_BACKLIGHT, 186 .min_size = sizeof(struct bdb_lfp_backlight_data), }, 187 { .section_id = BDB_LFP_POWER, 188 .min_size = sizeof(struct bdb_lfp_power), }, 189 { .section_id = BDB_MIPI_CONFIG, 190 .min_size = sizeof(struct bdb_mipi_config), }, 191 { .section_id = BDB_MIPI_SEQUENCE, 192 .min_size = sizeof(struct bdb_mipi_sequence) }, 193 { .section_id = BDB_COMPRESSION_PARAMETERS, 194 .min_size = sizeof(struct bdb_compression_parameters), }, 195 { .section_id = BDB_GENERIC_DTD, 196 .min_size = sizeof(struct bdb_generic_dtd), }, 197 }; 198 199 static size_t lfp_data_min_size(struct drm_i915_private *i915) 200 { 201 const struct bdb_lvds_lfp_data_ptrs *ptrs; 202 size_t size; 203 204 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 205 if (!ptrs) 206 return 0; 207 208 size = sizeof(struct bdb_lvds_lfp_data); 209 if (ptrs->panel_name.table_size) 210 size = max(size, ptrs->panel_name.offset + 211 sizeof(struct bdb_lvds_lfp_data_tail)); 212 213 return size; 214 } 215 216 static bool validate_lfp_data_ptrs(const void *bdb, 217 const struct bdb_lvds_lfp_data_ptrs *ptrs) 218 { 219 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; 220 int data_block_size, lfp_data_size; 221 const void *data_block; 222 int i; 223 224 data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 225 if (!data_block) 226 return false; 227 228 data_block_size = get_blocksize(data_block); 229 if (data_block_size == 0) 230 return false; 231 232 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ 233 if (ptrs->lvds_entries != 3) 234 return false; 235 236 fp_timing_size = ptrs->ptr[0].fp_timing.table_size; 237 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; 238 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; 239 panel_name_size = ptrs->panel_name.table_size; 240 241 /* fp_timing has variable size */ 242 if (fp_timing_size < 32 || 243 dvo_timing_size != sizeof(struct lvds_dvo_timing) || 244 panel_pnp_id_size != sizeof(struct lvds_pnp_id)) 245 return false; 246 247 /* panel_name is not present in old VBTs */ 248 if (panel_name_size != 0 && 249 panel_name_size != sizeof(struct lvds_lfp_panel_name)) 250 return false; 251 252 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; 253 if (16 * lfp_data_size > data_block_size) 254 return false; 255 256 /* make sure the table entries have uniform size */ 257 for (i = 1; i < 16; i++) { 258 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || 259 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || 260 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) 261 return false; 262 263 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || 264 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || 265 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) 266 return false; 267 } 268 269 /* 270 * Except for vlv/chv machines all real VBTs seem to have 6 271 * unaccounted bytes in the fp_timing table. And it doesn't 272 * appear to be a really intentional hole as the fp_timing 273 * 0xffff terminator is always within those 6 missing bytes. 274 */ 275 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size) 276 fp_timing_size += 6; 277 278 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size) 279 return false; 280 281 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset || 282 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || 283 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) 284 return false; 285 286 /* make sure the tables fit inside the data block */ 287 for (i = 0; i < 16; i++) { 288 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || 289 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || 290 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) 291 return false; 292 } 293 294 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) 295 return false; 296 297 /* make sure fp_timing terminators are present at expected locations */ 298 for (i = 0; i < 16; i++) { 299 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset + 300 fp_timing_size - 2; 301 302 if (*t != 0xffff) 303 return false; 304 } 305 306 return true; 307 } 308 309 /* make the data table offsets relative to the data block */ 310 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) 311 { 312 struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block; 313 u32 offset; 314 int i; 315 316 offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA); 317 318 for (i = 0; i < 16; i++) { 319 if (ptrs->ptr[i].fp_timing.offset < offset || 320 ptrs->ptr[i].dvo_timing.offset < offset || 321 ptrs->ptr[i].panel_pnp_id.offset < offset) 322 return false; 323 324 ptrs->ptr[i].fp_timing.offset -= offset; 325 ptrs->ptr[i].dvo_timing.offset -= offset; 326 ptrs->ptr[i].panel_pnp_id.offset -= offset; 327 } 328 329 if (ptrs->panel_name.table_size) { 330 if (ptrs->panel_name.offset < offset) 331 return false; 332 333 ptrs->panel_name.offset -= offset; 334 } 335 336 return validate_lfp_data_ptrs(bdb, ptrs); 337 } 338 339 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table, 340 int table_size, int total_size) 341 { 342 if (total_size < table_size) 343 return total_size; 344 345 table->table_size = table_size; 346 table->offset = total_size - table_size; 347 348 return total_size - table_size; 349 } 350 351 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next, 352 const struct lvds_lfp_data_ptr_table *prev, 353 int size) 354 { 355 next->table_size = prev->table_size; 356 next->offset = prev->offset + size; 357 } 358 359 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915, 360 const void *bdb) 361 { 362 int i, size, table_size, block_size, offset, fp_timing_size; 363 struct bdb_lvds_lfp_data_ptrs *ptrs; 364 const void *block; 365 void *ptrs_block; 366 367 /* 368 * The hardcoded fp_timing_size is only valid for 369 * modernish VBTs. All older VBTs definitely should 370 * include block 41 and thus we don't need to 371 * generate one. 372 */ 373 if (i915->display.vbt.version < 155) 374 return NULL; 375 376 fp_timing_size = 38; 377 378 block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 379 if (!block) 380 return NULL; 381 382 drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n"); 383 384 block_size = get_blocksize(block); 385 386 size = fp_timing_size + sizeof(struct lvds_dvo_timing) + 387 sizeof(struct lvds_pnp_id); 388 if (size * 16 > block_size) 389 return NULL; 390 391 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); 392 if (!ptrs_block) 393 return NULL; 394 395 *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS; 396 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); 397 ptrs = ptrs_block + 3; 398 399 table_size = sizeof(struct lvds_pnp_id); 400 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); 401 402 table_size = sizeof(struct lvds_dvo_timing); 403 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); 404 405 table_size = fp_timing_size; 406 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); 407 408 if (ptrs->ptr[0].fp_timing.table_size) 409 ptrs->lvds_entries++; 410 if (ptrs->ptr[0].dvo_timing.table_size) 411 ptrs->lvds_entries++; 412 if (ptrs->ptr[0].panel_pnp_id.table_size) 413 ptrs->lvds_entries++; 414 415 if (size != 0 || ptrs->lvds_entries != 3) { 416 kfree(ptrs_block); 417 return NULL; 418 } 419 420 size = fp_timing_size + sizeof(struct lvds_dvo_timing) + 421 sizeof(struct lvds_pnp_id); 422 for (i = 1; i < 16; i++) { 423 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); 424 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); 425 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); 426 } 427 428 table_size = sizeof(struct lvds_lfp_panel_name); 429 430 if (16 * (size + table_size) <= block_size) { 431 ptrs->panel_name.table_size = table_size; 432 ptrs->panel_name.offset = size * 16; 433 } 434 435 offset = block - bdb; 436 437 for (i = 0; i < 16; i++) { 438 ptrs->ptr[i].fp_timing.offset += offset; 439 ptrs->ptr[i].dvo_timing.offset += offset; 440 ptrs->ptr[i].panel_pnp_id.offset += offset; 441 } 442 443 if (ptrs->panel_name.table_size) 444 ptrs->panel_name.offset += offset; 445 446 return ptrs_block; 447 } 448 449 static void 450 init_bdb_block(struct drm_i915_private *i915, 451 const void *bdb, enum bdb_block_id section_id, 452 size_t min_size) 453 { 454 struct bdb_block_entry *entry; 455 void *temp_block = NULL; 456 const void *block; 457 size_t block_size; 458 459 block = find_raw_section(bdb, section_id); 460 461 /* Modern VBTs lack the LFP data table pointers block, make one up */ 462 if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) { 463 temp_block = generate_lfp_data_ptrs(i915, bdb); 464 if (temp_block) 465 block = temp_block + 3; 466 } 467 if (!block) 468 return; 469 470 drm_WARN(&i915->drm, min_size == 0, 471 "Block %d min_size is zero\n", section_id); 472 473 block_size = get_blocksize(block); 474 475 /* 476 * Version number and new block size are considered 477 * part of the header for MIPI sequenece block v3+. 478 */ 479 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3) 480 block_size += 5; 481 482 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), 483 GFP_KERNEL); 484 if (!entry) { 485 kfree(temp_block); 486 return; 487 } 488 489 entry->section_id = section_id; 490 memcpy(entry->data, block - 3, block_size + 3); 491 492 kfree(temp_block); 493 494 drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n", 495 section_id, block_size, min_size); 496 497 if (section_id == BDB_LVDS_LFP_DATA_PTRS && 498 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { 499 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n"); 500 kfree(entry); 501 return; 502 } 503 504 list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks); 505 } 506 507 static void init_bdb_blocks(struct drm_i915_private *i915, 508 const void *bdb) 509 { 510 int i; 511 512 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { 513 enum bdb_block_id section_id = bdb_blocks[i].section_id; 514 size_t min_size = bdb_blocks[i].min_size; 515 516 if (section_id == BDB_LVDS_LFP_DATA) 517 min_size = lfp_data_min_size(i915); 518 519 init_bdb_block(i915, bdb, section_id, min_size); 520 } 521 } 522 523 static void 524 fill_detail_timing_data(struct drm_i915_private *i915, 525 struct drm_display_mode *panel_fixed_mode, 526 const struct lvds_dvo_timing *dvo_timing) 527 { 528 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 529 dvo_timing->hactive_lo; 530 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 531 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 532 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 533 ((dvo_timing->hsync_pulse_width_hi << 8) | 534 dvo_timing->hsync_pulse_width_lo); 535 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 536 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 537 538 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 539 dvo_timing->vactive_lo; 540 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 541 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 542 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 543 ((dvo_timing->vsync_pulse_width_hi << 4) | 544 dvo_timing->vsync_pulse_width_lo); 545 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 546 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 547 panel_fixed_mode->clock = dvo_timing->clock * 10; 548 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 549 550 if (dvo_timing->hsync_positive) 551 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 552 else 553 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 554 555 if (dvo_timing->vsync_positive) 556 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 557 else 558 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 559 560 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 561 dvo_timing->himage_lo; 562 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 563 dvo_timing->vimage_lo; 564 565 /* Some VBTs have bogus h/vsync_end values */ 566 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) { 567 drm_dbg_kms(&i915->drm, "reducing hsync_end %d->%d\n", 568 panel_fixed_mode->hsync_end, panel_fixed_mode->htotal); 569 panel_fixed_mode->hsync_end = panel_fixed_mode->htotal; 570 } 571 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) { 572 drm_dbg_kms(&i915->drm, "reducing vsync_end %d->%d\n", 573 panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal); 574 panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal; 575 } 576 577 drm_mode_set_name(panel_fixed_mode); 578 } 579 580 static const struct lvds_dvo_timing * 581 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data, 582 const struct bdb_lvds_lfp_data_ptrs *ptrs, 583 int index) 584 { 585 return (const void *)data + ptrs->ptr[index].dvo_timing.offset; 586 } 587 588 static const struct lvds_fp_timing * 589 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data, 590 const struct bdb_lvds_lfp_data_ptrs *ptrs, 591 int index) 592 { 593 return (const void *)data + ptrs->ptr[index].fp_timing.offset; 594 } 595 596 static const struct lvds_pnp_id * 597 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data, 598 const struct bdb_lvds_lfp_data_ptrs *ptrs, 599 int index) 600 { 601 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; 602 } 603 604 static const struct bdb_lvds_lfp_data_tail * 605 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data, 606 const struct bdb_lvds_lfp_data_ptrs *ptrs) 607 { 608 if (ptrs->panel_name.table_size) 609 return (const void *)data + ptrs->panel_name.offset; 610 else 611 return NULL; 612 } 613 614 static void dump_pnp_id(struct drm_i915_private *i915, 615 const struct lvds_pnp_id *pnp_id, 616 const char *name) 617 { 618 u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name); 619 char vend[4]; 620 621 drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n", 622 name, drm_edid_decode_mfg_id(mfg_name, vend), 623 pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial, 624 pnp_id->mfg_week, pnp_id->mfg_year + 1990); 625 } 626 627 static int opregion_get_panel_type(struct drm_i915_private *i915, 628 const struct intel_bios_encoder_data *devdata, 629 const struct drm_edid *drm_edid, bool use_fallback) 630 { 631 return intel_opregion_get_panel_type(i915); 632 } 633 634 static int vbt_get_panel_type(struct drm_i915_private *i915, 635 const struct intel_bios_encoder_data *devdata, 636 const struct drm_edid *drm_edid, bool use_fallback) 637 { 638 const struct bdb_lvds_options *lvds_options; 639 640 lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS); 641 if (!lvds_options) 642 return -1; 643 644 if (lvds_options->panel_type > 0xf && 645 lvds_options->panel_type != 0xff) { 646 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n", 647 lvds_options->panel_type); 648 return -1; 649 } 650 651 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) 652 return lvds_options->panel_type2; 653 654 drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); 655 656 return lvds_options->panel_type; 657 } 658 659 static int pnpid_get_panel_type(struct drm_i915_private *i915, 660 const struct intel_bios_encoder_data *devdata, 661 const struct drm_edid *drm_edid, bool use_fallback) 662 { 663 const struct bdb_lvds_lfp_data *data; 664 const struct bdb_lvds_lfp_data_ptrs *ptrs; 665 const struct lvds_pnp_id *edid_id; 666 struct lvds_pnp_id edid_id_nodate; 667 const struct edid *edid = drm_edid_raw(drm_edid); /* FIXME */ 668 int i, best = -1; 669 670 if (!edid) 671 return -1; 672 673 edid_id = (const void *)&edid->mfg_id[0]; 674 675 edid_id_nodate = *edid_id; 676 edid_id_nodate.mfg_week = 0; 677 edid_id_nodate.mfg_year = 0; 678 679 dump_pnp_id(i915, edid_id, "EDID"); 680 681 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 682 if (!ptrs) 683 return -1; 684 685 data = bdb_find_section(i915, BDB_LVDS_LFP_DATA); 686 if (!data) 687 return -1; 688 689 for (i = 0; i < 16; i++) { 690 const struct lvds_pnp_id *vbt_id = 691 get_lvds_pnp_id(data, ptrs, i); 692 693 /* full match? */ 694 if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id))) 695 return i; 696 697 /* 698 * Accept a match w/o date if no full match is found, 699 * and the VBT entry does not specify a date. 700 */ 701 if (best < 0 && 702 !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id))) 703 best = i; 704 } 705 706 return best; 707 } 708 709 static int fallback_get_panel_type(struct drm_i915_private *i915, 710 const struct intel_bios_encoder_data *devdata, 711 const struct drm_edid *drm_edid, bool use_fallback) 712 { 713 return use_fallback ? 0 : -1; 714 } 715 716 enum panel_type { 717 PANEL_TYPE_OPREGION, 718 PANEL_TYPE_VBT, 719 PANEL_TYPE_PNPID, 720 PANEL_TYPE_FALLBACK, 721 }; 722 723 static int get_panel_type(struct drm_i915_private *i915, 724 const struct intel_bios_encoder_data *devdata, 725 const struct drm_edid *drm_edid, bool use_fallback) 726 { 727 struct { 728 const char *name; 729 int (*get_panel_type)(struct drm_i915_private *i915, 730 const struct intel_bios_encoder_data *devdata, 731 const struct drm_edid *drm_edid, bool use_fallback); 732 int panel_type; 733 } panel_types[] = { 734 [PANEL_TYPE_OPREGION] = { 735 .name = "OpRegion", 736 .get_panel_type = opregion_get_panel_type, 737 }, 738 [PANEL_TYPE_VBT] = { 739 .name = "VBT", 740 .get_panel_type = vbt_get_panel_type, 741 }, 742 [PANEL_TYPE_PNPID] = { 743 .name = "PNPID", 744 .get_panel_type = pnpid_get_panel_type, 745 }, 746 [PANEL_TYPE_FALLBACK] = { 747 .name = "fallback", 748 .get_panel_type = fallback_get_panel_type, 749 }, 750 }; 751 int i; 752 753 for (i = 0; i < ARRAY_SIZE(panel_types); i++) { 754 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, 755 drm_edid, use_fallback); 756 757 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf && 758 panel_types[i].panel_type != 0xff); 759 760 if (panel_types[i].panel_type >= 0) 761 drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n", 762 panel_types[i].name, panel_types[i].panel_type); 763 } 764 765 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) 766 i = PANEL_TYPE_OPREGION; 767 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && 768 panel_types[PANEL_TYPE_PNPID].panel_type >= 0) 769 i = PANEL_TYPE_PNPID; 770 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && 771 panel_types[PANEL_TYPE_VBT].panel_type >= 0) 772 i = PANEL_TYPE_VBT; 773 else 774 i = PANEL_TYPE_FALLBACK; 775 776 drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n", 777 panel_types[i].name, panel_types[i].panel_type); 778 779 return panel_types[i].panel_type; 780 } 781 782 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) 783 { 784 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); 785 } 786 787 static bool panel_bool(unsigned int value, int panel_type) 788 { 789 return panel_bits(value, panel_type, 1); 790 } 791 792 /* Parse general panel options */ 793 static void 794 parse_panel_options(struct drm_i915_private *i915, 795 struct intel_panel *panel) 796 { 797 const struct bdb_lvds_options *lvds_options; 798 int panel_type = panel->vbt.panel_type; 799 int drrs_mode; 800 801 lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS); 802 if (!lvds_options) 803 return; 804 805 panel->vbt.lvds_dither = lvds_options->pixel_dither; 806 807 /* 808 * Empirical evidence indicates the block size can be 809 * either 4,14,16,24+ bytes. For older VBTs no clear 810 * relationship between the block size vs. BDB version. 811 */ 812 if (get_blocksize(lvds_options) < 16) 813 return; 814 815 drrs_mode = panel_bits(lvds_options->dps_panel_type_bits, 816 panel_type, 2); 817 /* 818 * VBT has static DRRS = 0 and seamless DRRS = 2. 819 * The below piece of code is required to adjust vbt.drrs_type 820 * to match the enum drrs_support_type. 821 */ 822 switch (drrs_mode) { 823 case 0: 824 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 825 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n"); 826 break; 827 case 2: 828 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; 829 drm_dbg_kms(&i915->drm, 830 "DRRS supported mode is seamless\n"); 831 break; 832 default: 833 panel->vbt.drrs_type = DRRS_TYPE_NONE; 834 drm_dbg_kms(&i915->drm, 835 "DRRS not supported (VBT input)\n"); 836 break; 837 } 838 } 839 840 static void 841 parse_lfp_panel_dtd(struct drm_i915_private *i915, 842 struct intel_panel *panel, 843 const struct bdb_lvds_lfp_data *lvds_lfp_data, 844 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs) 845 { 846 const struct lvds_dvo_timing *panel_dvo_timing; 847 const struct lvds_fp_timing *fp_timing; 848 struct drm_display_mode *panel_fixed_mode; 849 int panel_type = panel->vbt.panel_type; 850 851 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, 852 lvds_lfp_data_ptrs, 853 panel_type); 854 855 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 856 if (!panel_fixed_mode) 857 return; 858 859 fill_detail_timing_data(i915, panel_fixed_mode, panel_dvo_timing); 860 861 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 862 863 drm_dbg_kms(&i915->drm, 864 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", 865 DRM_MODE_ARG(panel_fixed_mode)); 866 867 fp_timing = get_lvds_fp_timing(lvds_lfp_data, 868 lvds_lfp_data_ptrs, 869 panel_type); 870 871 /* check the resolution, just to be sure */ 872 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 873 fp_timing->y_res == panel_fixed_mode->vdisplay) { 874 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 875 drm_dbg_kms(&i915->drm, 876 "VBT initial LVDS value %x\n", 877 panel->vbt.bios_lvds_val); 878 } 879 } 880 881 static void 882 parse_lfp_data(struct drm_i915_private *i915, 883 struct intel_panel *panel) 884 { 885 const struct bdb_lvds_lfp_data *data; 886 const struct bdb_lvds_lfp_data_tail *tail; 887 const struct bdb_lvds_lfp_data_ptrs *ptrs; 888 const struct lvds_pnp_id *pnp_id; 889 int panel_type = panel->vbt.panel_type; 890 891 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 892 if (!ptrs) 893 return; 894 895 data = bdb_find_section(i915, BDB_LVDS_LFP_DATA); 896 if (!data) 897 return; 898 899 if (!panel->vbt.lfp_lvds_vbt_mode) 900 parse_lfp_panel_dtd(i915, panel, data, ptrs); 901 902 pnp_id = get_lvds_pnp_id(data, ptrs, panel_type); 903 dump_pnp_id(i915, pnp_id, "Panel"); 904 905 tail = get_lfp_data_tail(data, ptrs); 906 if (!tail) 907 return; 908 909 drm_dbg_kms(&i915->drm, "Panel name: %.*s\n", 910 (int)sizeof(tail->panel_name[0].name), 911 tail->panel_name[panel_type].name); 912 913 if (i915->display.vbt.version >= 188) { 914 panel->vbt.seamless_drrs_min_refresh_rate = 915 tail->seamless_drrs_min_refresh_rate[panel_type]; 916 drm_dbg_kms(&i915->drm, 917 "Seamless DRRS min refresh rate: %d Hz\n", 918 panel->vbt.seamless_drrs_min_refresh_rate); 919 } 920 } 921 922 static void 923 parse_generic_dtd(struct drm_i915_private *i915, 924 struct intel_panel *panel) 925 { 926 const struct bdb_generic_dtd *generic_dtd; 927 const struct generic_dtd_entry *dtd; 928 struct drm_display_mode *panel_fixed_mode; 929 int num_dtd; 930 931 /* 932 * Older VBTs provided DTD information for internal displays through 933 * the "LFP panel tables" block (42). As of VBT revision 229 the 934 * DTD information should be provided via a newer "generic DTD" 935 * block (58). Just to be safe, we'll try the new generic DTD block 936 * first on VBT >= 229, but still fall back to trying the old LFP 937 * block if that fails. 938 */ 939 if (i915->display.vbt.version < 229) 940 return; 941 942 generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD); 943 if (!generic_dtd) 944 return; 945 946 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 947 drm_err(&i915->drm, "GDTD size %u is too small.\n", 948 generic_dtd->gdtd_size); 949 return; 950 } else if (generic_dtd->gdtd_size != 951 sizeof(struct generic_dtd_entry)) { 952 drm_err(&i915->drm, "Unexpected GDTD size %u\n", 953 generic_dtd->gdtd_size); 954 /* DTD has unknown fields, but keep going */ 955 } 956 957 num_dtd = (get_blocksize(generic_dtd) - 958 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 959 if (panel->vbt.panel_type >= num_dtd) { 960 drm_err(&i915->drm, 961 "Panel type %d not found in table of %d DTD's\n", 962 panel->vbt.panel_type, num_dtd); 963 return; 964 } 965 966 dtd = &generic_dtd->dtd[panel->vbt.panel_type]; 967 968 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 969 if (!panel_fixed_mode) 970 return; 971 972 panel_fixed_mode->hdisplay = dtd->hactive; 973 panel_fixed_mode->hsync_start = 974 panel_fixed_mode->hdisplay + dtd->hfront_porch; 975 panel_fixed_mode->hsync_end = 976 panel_fixed_mode->hsync_start + dtd->hsync; 977 panel_fixed_mode->htotal = 978 panel_fixed_mode->hdisplay + dtd->hblank; 979 980 panel_fixed_mode->vdisplay = dtd->vactive; 981 panel_fixed_mode->vsync_start = 982 panel_fixed_mode->vdisplay + dtd->vfront_porch; 983 panel_fixed_mode->vsync_end = 984 panel_fixed_mode->vsync_start + dtd->vsync; 985 panel_fixed_mode->vtotal = 986 panel_fixed_mode->vdisplay + dtd->vblank; 987 988 panel_fixed_mode->clock = dtd->pixel_clock; 989 panel_fixed_mode->width_mm = dtd->width_mm; 990 panel_fixed_mode->height_mm = dtd->height_mm; 991 992 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 993 drm_mode_set_name(panel_fixed_mode); 994 995 if (dtd->hsync_positive_polarity) 996 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 997 else 998 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 999 1000 if (dtd->vsync_positive_polarity) 1001 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 1002 else 1003 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 1004 1005 drm_dbg_kms(&i915->drm, 1006 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", 1007 DRM_MODE_ARG(panel_fixed_mode)); 1008 1009 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 1010 } 1011 1012 static void 1013 parse_lfp_backlight(struct drm_i915_private *i915, 1014 struct intel_panel *panel) 1015 { 1016 const struct bdb_lfp_backlight_data *backlight_data; 1017 const struct lfp_backlight_data_entry *entry; 1018 int panel_type = panel->vbt.panel_type; 1019 u16 level; 1020 1021 backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT); 1022 if (!backlight_data) 1023 return; 1024 1025 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 1026 drm_dbg_kms(&i915->drm, 1027 "Unsupported backlight data entry size %u\n", 1028 backlight_data->entry_size); 1029 return; 1030 } 1031 1032 entry = &backlight_data->data[panel_type]; 1033 1034 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 1035 if (!panel->vbt.backlight.present) { 1036 drm_dbg_kms(&i915->drm, 1037 "PWM backlight not present in VBT (type %u)\n", 1038 entry->type); 1039 return; 1040 } 1041 1042 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 1043 panel->vbt.backlight.controller = 0; 1044 if (i915->display.vbt.version >= 191) { 1045 const struct lfp_backlight_control_method *method; 1046 1047 method = &backlight_data->backlight_control[panel_type]; 1048 panel->vbt.backlight.type = method->type; 1049 panel->vbt.backlight.controller = method->controller; 1050 } 1051 1052 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 1053 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; 1054 1055 if (i915->display.vbt.version >= 234) { 1056 u16 min_level; 1057 bool scale; 1058 1059 level = backlight_data->brightness_level[panel_type].level; 1060 min_level = backlight_data->brightness_min_level[panel_type].level; 1061 1062 if (i915->display.vbt.version >= 236) 1063 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 1064 else 1065 scale = level > 255; 1066 1067 if (scale) 1068 min_level = min_level / 255; 1069 1070 if (min_level > 255) { 1071 drm_warn(&i915->drm, "Brightness min level > 255\n"); 1072 level = 255; 1073 } 1074 panel->vbt.backlight.min_brightness = min_level; 1075 1076 panel->vbt.backlight.brightness_precision_bits = 1077 backlight_data->brightness_precision_bits[panel_type]; 1078 } else { 1079 level = backlight_data->level[panel_type]; 1080 panel->vbt.backlight.min_brightness = entry->min_brightness; 1081 } 1082 1083 if (i915->display.vbt.version >= 239) 1084 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 1085 DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100); 1086 else 1087 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30; 1088 1089 drm_dbg_kms(&i915->drm, 1090 "VBT backlight PWM modulation frequency %u Hz, " 1091 "active %s, min brightness %u, level %u, controller %u\n", 1092 panel->vbt.backlight.pwm_freq_hz, 1093 panel->vbt.backlight.active_low_pwm ? "low" : "high", 1094 panel->vbt.backlight.min_brightness, 1095 level, 1096 panel->vbt.backlight.controller); 1097 } 1098 1099 /* Try to find sdvo panel data */ 1100 static void 1101 parse_sdvo_panel_data(struct drm_i915_private *i915, 1102 struct intel_panel *panel) 1103 { 1104 const struct bdb_sdvo_panel_dtds *dtds; 1105 struct drm_display_mode *panel_fixed_mode; 1106 int index; 1107 1108 index = i915->display.params.vbt_sdvo_panel_type; 1109 if (index == -2) { 1110 drm_dbg_kms(&i915->drm, 1111 "Ignore SDVO panel mode from BIOS VBT tables.\n"); 1112 return; 1113 } 1114 1115 if (index == -1) { 1116 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 1117 1118 sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS); 1119 if (!sdvo_lvds_options) 1120 return; 1121 1122 index = sdvo_lvds_options->panel_type; 1123 } 1124 1125 dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS); 1126 if (!dtds) 1127 return; 1128 1129 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 1130 if (!panel_fixed_mode) 1131 return; 1132 1133 fill_detail_timing_data(i915, panel_fixed_mode, &dtds->dtds[index]); 1134 1135 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 1136 1137 drm_dbg_kms(&i915->drm, 1138 "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n", 1139 DRM_MODE_ARG(panel_fixed_mode)); 1140 } 1141 1142 static int intel_bios_ssc_frequency(struct drm_i915_private *i915, 1143 bool alternate) 1144 { 1145 switch (DISPLAY_VER(i915)) { 1146 case 2: 1147 return alternate ? 66667 : 48000; 1148 case 3: 1149 case 4: 1150 return alternate ? 100000 : 96000; 1151 default: 1152 return alternate ? 100000 : 120000; 1153 } 1154 } 1155 1156 static void 1157 parse_general_features(struct drm_i915_private *i915) 1158 { 1159 const struct bdb_general_features *general; 1160 1161 general = bdb_find_section(i915, BDB_GENERAL_FEATURES); 1162 if (!general) 1163 return; 1164 1165 i915->display.vbt.int_tv_support = general->int_tv_support; 1166 /* int_crt_support can't be trusted on earlier platforms */ 1167 if (i915->display.vbt.version >= 155 && 1168 (HAS_DDI(i915) || IS_VALLEYVIEW(i915))) 1169 i915->display.vbt.int_crt_support = general->int_crt_support; 1170 i915->display.vbt.lvds_use_ssc = general->enable_ssc; 1171 i915->display.vbt.lvds_ssc_freq = 1172 intel_bios_ssc_frequency(i915, general->ssc_freq); 1173 i915->display.vbt.display_clock_mode = general->display_clock_mode; 1174 i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 1175 if (i915->display.vbt.version >= 181) { 1176 i915->display.vbt.orientation = general->rotate_180 ? 1177 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 1178 DRM_MODE_PANEL_ORIENTATION_NORMAL; 1179 } else { 1180 i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1181 } 1182 1183 if (i915->display.vbt.version >= 249 && general->afc_startup_config) { 1184 i915->display.vbt.override_afc_startup = true; 1185 i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7; 1186 } 1187 1188 drm_dbg_kms(&i915->drm, 1189 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 1190 i915->display.vbt.int_tv_support, 1191 i915->display.vbt.int_crt_support, 1192 i915->display.vbt.lvds_use_ssc, 1193 i915->display.vbt.lvds_ssc_freq, 1194 i915->display.vbt.display_clock_mode, 1195 i915->display.vbt.fdi_rx_polarity_inverted); 1196 } 1197 1198 static const struct child_device_config * 1199 child_device_ptr(const struct bdb_general_definitions *defs, int i) 1200 { 1201 return (const void *) &defs->devices[i * defs->child_dev_size]; 1202 } 1203 1204 static void 1205 parse_sdvo_device_mapping(struct drm_i915_private *i915) 1206 { 1207 const struct intel_bios_encoder_data *devdata; 1208 int count = 0; 1209 1210 /* 1211 * Only parse SDVO mappings on gens that could have SDVO. This isn't 1212 * accurate and doesn't have to be, as long as it's not too strict. 1213 */ 1214 if (!IS_DISPLAY_VER(i915, 3, 7)) { 1215 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n"); 1216 return; 1217 } 1218 1219 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 1220 const struct child_device_config *child = &devdata->child; 1221 struct sdvo_device_mapping *mapping; 1222 1223 if (child->slave_addr != SLAVE_ADDR1 && 1224 child->slave_addr != SLAVE_ADDR2) { 1225 /* 1226 * If the slave address is neither 0x70 nor 0x72, 1227 * it is not a SDVO device. Skip it. 1228 */ 1229 continue; 1230 } 1231 if (child->dvo_port != DEVICE_PORT_DVOB && 1232 child->dvo_port != DEVICE_PORT_DVOC) { 1233 /* skip the incorrect SDVO port */ 1234 drm_dbg_kms(&i915->drm, 1235 "Incorrect SDVO port. Skip it\n"); 1236 continue; 1237 } 1238 drm_dbg_kms(&i915->drm, 1239 "the SDVO device with slave addr %2x is found on" 1240 " %s port\n", 1241 child->slave_addr, 1242 (child->dvo_port == DEVICE_PORT_DVOB) ? 1243 "SDVOB" : "SDVOC"); 1244 mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1]; 1245 if (!mapping->initialized) { 1246 mapping->dvo_port = child->dvo_port; 1247 mapping->slave_addr = child->slave_addr; 1248 mapping->dvo_wiring = child->dvo_wiring; 1249 mapping->ddc_pin = child->ddc_pin; 1250 mapping->i2c_pin = child->i2c_pin; 1251 mapping->initialized = 1; 1252 drm_dbg_kms(&i915->drm, 1253 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 1254 mapping->dvo_port, mapping->slave_addr, 1255 mapping->dvo_wiring, mapping->ddc_pin, 1256 mapping->i2c_pin); 1257 } else { 1258 drm_dbg_kms(&i915->drm, 1259 "Maybe one SDVO port is shared by " 1260 "two SDVO device.\n"); 1261 } 1262 if (child->slave2_addr) { 1263 /* Maybe this is a SDVO device with multiple inputs */ 1264 /* And the mapping info is not added */ 1265 drm_dbg_kms(&i915->drm, 1266 "there exists the slave2_addr. Maybe this" 1267 " is a SDVO device with multiple inputs.\n"); 1268 } 1269 count++; 1270 } 1271 1272 if (!count) { 1273 /* No SDVO device info is found */ 1274 drm_dbg_kms(&i915->drm, 1275 "No SDVO device info is found in VBT\n"); 1276 } 1277 } 1278 1279 static void 1280 parse_driver_features(struct drm_i915_private *i915) 1281 { 1282 const struct bdb_driver_features *driver; 1283 1284 driver = bdb_find_section(i915, BDB_DRIVER_FEATURES); 1285 if (!driver) 1286 return; 1287 1288 if (DISPLAY_VER(i915) >= 5) { 1289 /* 1290 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 1291 * to mean "eDP". The VBT spec doesn't agree with that 1292 * interpretation, but real world VBTs seem to. 1293 */ 1294 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 1295 i915->display.vbt.int_lvds_support = 0; 1296 } else { 1297 /* 1298 * FIXME it's not clear which BDB version has the LVDS config 1299 * bits defined. Revision history in the VBT spec says: 1300 * "0.92 | Add two definitions for VBT value of LVDS Active 1301 * Config (00b and 11b values defined) | 06/13/2005" 1302 * but does not the specify the BDB version. 1303 * 1304 * So far version 134 (on i945gm) is the oldest VBT observed 1305 * in the wild with the bits correctly populated. Version 1306 * 108 (on i85x) does not have the bits correctly populated. 1307 */ 1308 if (i915->display.vbt.version >= 134 && 1309 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 1310 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 1311 i915->display.vbt.int_lvds_support = 0; 1312 } 1313 } 1314 1315 static void 1316 parse_panel_driver_features(struct drm_i915_private *i915, 1317 struct intel_panel *panel) 1318 { 1319 const struct bdb_driver_features *driver; 1320 1321 driver = bdb_find_section(i915, BDB_DRIVER_FEATURES); 1322 if (!driver) 1323 return; 1324 1325 if (i915->display.vbt.version < 228) { 1326 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n", 1327 driver->drrs_enabled); 1328 /* 1329 * If DRRS is not supported, drrs_type has to be set to 0. 1330 * This is because, VBT is configured in such a way that 1331 * static DRRS is 0 and DRRS not supported is represented by 1332 * driver->drrs_enabled=false 1333 */ 1334 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1335 /* 1336 * FIXME Should DMRRS perhaps be treated as seamless 1337 * but without the automatic downclocking? 1338 */ 1339 if (driver->dmrrs_enabled) 1340 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1341 else 1342 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1343 } 1344 1345 panel->vbt.psr.enable = driver->psr_enabled; 1346 } 1347 } 1348 1349 static void 1350 parse_power_conservation_features(struct drm_i915_private *i915, 1351 struct intel_panel *panel) 1352 { 1353 const struct bdb_lfp_power *power; 1354 u8 panel_type = panel->vbt.panel_type; 1355 1356 panel->vbt.vrr = true; /* matches Windows behaviour */ 1357 1358 if (i915->display.vbt.version < 228) 1359 return; 1360 1361 power = bdb_find_section(i915, BDB_LFP_POWER); 1362 if (!power) 1363 return; 1364 1365 panel->vbt.psr.enable = panel_bool(power->psr, panel_type); 1366 1367 /* 1368 * If DRRS is not supported, drrs_type has to be set to 0. 1369 * This is because, VBT is configured in such a way that 1370 * static DRRS is 0 and DRRS not supported is represented by 1371 * power->drrs & BIT(panel_type)=false 1372 */ 1373 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1374 /* 1375 * FIXME Should DMRRS perhaps be treated as seamless 1376 * but without the automatic downclocking? 1377 */ 1378 if (panel_bool(power->dmrrs, panel_type)) 1379 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1380 else 1381 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1382 } 1383 1384 if (i915->display.vbt.version >= 232) 1385 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); 1386 1387 if (i915->display.vbt.version >= 233) 1388 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, 1389 panel_type); 1390 } 1391 1392 static void 1393 parse_edp(struct drm_i915_private *i915, 1394 struct intel_panel *panel) 1395 { 1396 const struct bdb_edp *edp; 1397 const struct edp_power_seq *edp_pps; 1398 const struct edp_fast_link_params *edp_link_params; 1399 int panel_type = panel->vbt.panel_type; 1400 1401 edp = bdb_find_section(i915, BDB_EDP); 1402 if (!edp) 1403 return; 1404 1405 switch (panel_bits(edp->color_depth, panel_type, 2)) { 1406 case EDP_18BPP: 1407 panel->vbt.edp.bpp = 18; 1408 break; 1409 case EDP_24BPP: 1410 panel->vbt.edp.bpp = 24; 1411 break; 1412 case EDP_30BPP: 1413 panel->vbt.edp.bpp = 30; 1414 break; 1415 } 1416 1417 /* Get the eDP sequencing and link info */ 1418 edp_pps = &edp->power_seqs[panel_type]; 1419 edp_link_params = &edp->fast_link_params[panel_type]; 1420 1421 panel->vbt.edp.pps = *edp_pps; 1422 1423 if (i915->display.vbt.version >= 224) { 1424 panel->vbt.edp.rate = 1425 edp->edp_fast_link_training_rate[panel_type] * 20; 1426 } else { 1427 switch (edp_link_params->rate) { 1428 case EDP_RATE_1_62: 1429 panel->vbt.edp.rate = 162000; 1430 break; 1431 case EDP_RATE_2_7: 1432 panel->vbt.edp.rate = 270000; 1433 break; 1434 case EDP_RATE_5_4: 1435 panel->vbt.edp.rate = 540000; 1436 break; 1437 default: 1438 drm_dbg_kms(&i915->drm, 1439 "VBT has unknown eDP link rate value %u\n", 1440 edp_link_params->rate); 1441 break; 1442 } 1443 } 1444 1445 switch (edp_link_params->lanes) { 1446 case EDP_LANE_1: 1447 panel->vbt.edp.lanes = 1; 1448 break; 1449 case EDP_LANE_2: 1450 panel->vbt.edp.lanes = 2; 1451 break; 1452 case EDP_LANE_4: 1453 panel->vbt.edp.lanes = 4; 1454 break; 1455 default: 1456 drm_dbg_kms(&i915->drm, 1457 "VBT has unknown eDP lane count value %u\n", 1458 edp_link_params->lanes); 1459 break; 1460 } 1461 1462 switch (edp_link_params->preemphasis) { 1463 case EDP_PREEMPHASIS_NONE: 1464 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 1465 break; 1466 case EDP_PREEMPHASIS_3_5dB: 1467 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 1468 break; 1469 case EDP_PREEMPHASIS_6dB: 1470 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 1471 break; 1472 case EDP_PREEMPHASIS_9_5dB: 1473 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 1474 break; 1475 default: 1476 drm_dbg_kms(&i915->drm, 1477 "VBT has unknown eDP pre-emphasis value %u\n", 1478 edp_link_params->preemphasis); 1479 break; 1480 } 1481 1482 switch (edp_link_params->vswing) { 1483 case EDP_VSWING_0_4V: 1484 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 1485 break; 1486 case EDP_VSWING_0_6V: 1487 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 1488 break; 1489 case EDP_VSWING_0_8V: 1490 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 1491 break; 1492 case EDP_VSWING_1_2V: 1493 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 1494 break; 1495 default: 1496 drm_dbg_kms(&i915->drm, 1497 "VBT has unknown eDP voltage swing value %u\n", 1498 edp_link_params->vswing); 1499 break; 1500 } 1501 1502 if (i915->display.vbt.version >= 173) { 1503 u8 vswing; 1504 1505 /* Don't read from VBT if module parameter has valid value*/ 1506 if (i915->display.params.edp_vswing) { 1507 panel->vbt.edp.low_vswing = 1508 i915->display.params.edp_vswing == 1; 1509 } else { 1510 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 1511 panel->vbt.edp.low_vswing = vswing == 0; 1512 } 1513 } 1514 1515 panel->vbt.edp.drrs_msa_timing_delay = 1516 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); 1517 1518 if (i915->display.vbt.version >= 244) 1519 panel->vbt.edp.max_link_rate = 1520 edp->edp_max_port_link_rate[panel_type] * 20; 1521 } 1522 1523 static void 1524 parse_psr(struct drm_i915_private *i915, 1525 struct intel_panel *panel) 1526 { 1527 const struct bdb_psr *psr; 1528 const struct psr_table *psr_table; 1529 int panel_type = panel->vbt.panel_type; 1530 1531 psr = bdb_find_section(i915, BDB_PSR); 1532 if (!psr) { 1533 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n"); 1534 return; 1535 } 1536 1537 psr_table = &psr->psr_table[panel_type]; 1538 1539 panel->vbt.psr.full_link = psr_table->full_link; 1540 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 1541 1542 /* Allowed VBT values goes from 0 to 15 */ 1543 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 1544 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 1545 1546 /* 1547 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 1548 * Old decimal value is wake up time in multiples of 100 us. 1549 */ 1550 if (i915->display.vbt.version >= 205 && 1551 (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) { 1552 switch (psr_table->tp1_wakeup_time) { 1553 case 0: 1554 panel->vbt.psr.tp1_wakeup_time_us = 500; 1555 break; 1556 case 1: 1557 panel->vbt.psr.tp1_wakeup_time_us = 100; 1558 break; 1559 case 3: 1560 panel->vbt.psr.tp1_wakeup_time_us = 0; 1561 break; 1562 default: 1563 drm_dbg_kms(&i915->drm, 1564 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1565 psr_table->tp1_wakeup_time); 1566 fallthrough; 1567 case 2: 1568 panel->vbt.psr.tp1_wakeup_time_us = 2500; 1569 break; 1570 } 1571 1572 switch (psr_table->tp2_tp3_wakeup_time) { 1573 case 0: 1574 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; 1575 break; 1576 case 1: 1577 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; 1578 break; 1579 case 3: 1580 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; 1581 break; 1582 default: 1583 drm_dbg_kms(&i915->drm, 1584 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1585 psr_table->tp2_tp3_wakeup_time); 1586 fallthrough; 1587 case 2: 1588 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 1589 break; 1590 } 1591 } else { 1592 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 1593 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 1594 } 1595 1596 if (i915->display.vbt.version >= 226) { 1597 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 1598 1599 wakeup_time = panel_bits(wakeup_time, panel_type, 2); 1600 switch (wakeup_time) { 1601 case 0: 1602 wakeup_time = 500; 1603 break; 1604 case 1: 1605 wakeup_time = 100; 1606 break; 1607 case 3: 1608 wakeup_time = 50; 1609 break; 1610 default: 1611 case 2: 1612 wakeup_time = 2500; 1613 break; 1614 } 1615 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 1616 } else { 1617 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 1618 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; 1619 } 1620 } 1621 1622 static void parse_dsi_backlight_ports(struct drm_i915_private *i915, 1623 struct intel_panel *panel, 1624 enum port port) 1625 { 1626 enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C; 1627 1628 if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) { 1629 panel->vbt.dsi.bl_ports = BIT(port); 1630 if (panel->vbt.dsi.config->cabc_supported) 1631 panel->vbt.dsi.cabc_ports = BIT(port); 1632 1633 return; 1634 } 1635 1636 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { 1637 case DL_DCS_PORT_A: 1638 panel->vbt.dsi.bl_ports = BIT(PORT_A); 1639 break; 1640 case DL_DCS_PORT_C: 1641 panel->vbt.dsi.bl_ports = BIT(port_bc); 1642 break; 1643 default: 1644 case DL_DCS_PORT_A_AND_C: 1645 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); 1646 break; 1647 } 1648 1649 if (!panel->vbt.dsi.config->cabc_supported) 1650 return; 1651 1652 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { 1653 case DL_DCS_PORT_A: 1654 panel->vbt.dsi.cabc_ports = BIT(PORT_A); 1655 break; 1656 case DL_DCS_PORT_C: 1657 panel->vbt.dsi.cabc_ports = BIT(port_bc); 1658 break; 1659 default: 1660 case DL_DCS_PORT_A_AND_C: 1661 panel->vbt.dsi.cabc_ports = 1662 BIT(PORT_A) | BIT(port_bc); 1663 break; 1664 } 1665 } 1666 1667 static void 1668 parse_mipi_config(struct drm_i915_private *i915, 1669 struct intel_panel *panel) 1670 { 1671 const struct bdb_mipi_config *start; 1672 const struct mipi_config *config; 1673 const struct mipi_pps_data *pps; 1674 int panel_type = panel->vbt.panel_type; 1675 enum port port; 1676 1677 /* parse MIPI blocks only if LFP type is MIPI */ 1678 if (!intel_bios_is_dsi_present(i915, &port)) 1679 return; 1680 1681 /* Initialize this to undefined indicating no generic MIPI support */ 1682 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1683 1684 /* Block #40 is already parsed and panel_fixed_mode is 1685 * stored in i915->lfp_lvds_vbt_mode 1686 * resuse this when needed 1687 */ 1688 1689 /* Parse #52 for panel index used from panel_type already 1690 * parsed 1691 */ 1692 start = bdb_find_section(i915, BDB_MIPI_CONFIG); 1693 if (!start) { 1694 drm_dbg_kms(&i915->drm, "No MIPI config BDB found"); 1695 return; 1696 } 1697 1698 drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n", 1699 panel_type); 1700 1701 /* 1702 * get hold of the correct configuration block and pps data as per 1703 * the panel_type as index 1704 */ 1705 config = &start->config[panel_type]; 1706 pps = &start->pps[panel_type]; 1707 1708 /* store as of now full data. Trim when we realise all is not needed */ 1709 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1710 if (!panel->vbt.dsi.config) 1711 return; 1712 1713 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1714 if (!panel->vbt.dsi.pps) { 1715 kfree(panel->vbt.dsi.config); 1716 return; 1717 } 1718 1719 parse_dsi_backlight_ports(i915, panel, port); 1720 1721 /* FIXME is the 90 vs. 270 correct? */ 1722 switch (config->rotation) { 1723 case ENABLE_ROTATION_0: 1724 /* 1725 * Most (all?) VBTs claim 0 degrees despite having 1726 * an upside down panel, thus we do not trust this. 1727 */ 1728 panel->vbt.dsi.orientation = 1729 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1730 break; 1731 case ENABLE_ROTATION_90: 1732 panel->vbt.dsi.orientation = 1733 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1734 break; 1735 case ENABLE_ROTATION_180: 1736 panel->vbt.dsi.orientation = 1737 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1738 break; 1739 case ENABLE_ROTATION_270: 1740 panel->vbt.dsi.orientation = 1741 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1742 break; 1743 } 1744 1745 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1746 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1747 } 1748 1749 /* Find the sequence block and size for the given panel. */ 1750 static const u8 * 1751 find_panel_sequence_block(struct drm_i915_private *i915, 1752 const struct bdb_mipi_sequence *sequence, 1753 u16 panel_id, u32 *seq_size) 1754 { 1755 u32 total = get_blocksize(sequence); 1756 const u8 *data = &sequence->data[0]; 1757 u8 current_id; 1758 u32 current_size; 1759 int header_size = sequence->version >= 3 ? 5 : 3; 1760 int index = 0; 1761 int i; 1762 1763 /* skip new block size */ 1764 if (sequence->version >= 3) 1765 data += 4; 1766 1767 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1768 if (index + header_size > total) { 1769 drm_err(&i915->drm, "Invalid sequence block (header)\n"); 1770 return NULL; 1771 } 1772 1773 current_id = *(data + index); 1774 if (sequence->version >= 3) 1775 current_size = *((const u32 *)(data + index + 1)); 1776 else 1777 current_size = *((const u16 *)(data + index + 1)); 1778 1779 index += header_size; 1780 1781 if (index + current_size > total) { 1782 drm_err(&i915->drm, "Invalid sequence block\n"); 1783 return NULL; 1784 } 1785 1786 if (current_id == panel_id) { 1787 *seq_size = current_size; 1788 return data + index; 1789 } 1790 1791 index += current_size; 1792 } 1793 1794 drm_err(&i915->drm, "Sequence block detected but no valid configuration\n"); 1795 1796 return NULL; 1797 } 1798 1799 static int goto_next_sequence(struct drm_i915_private *i915, 1800 const u8 *data, int index, int total) 1801 { 1802 u16 len; 1803 1804 /* Skip Sequence Byte. */ 1805 for (index = index + 1; index < total; index += len) { 1806 u8 operation_byte = *(data + index); 1807 index++; 1808 1809 switch (operation_byte) { 1810 case MIPI_SEQ_ELEM_END: 1811 return index; 1812 case MIPI_SEQ_ELEM_SEND_PKT: 1813 if (index + 4 > total) 1814 return 0; 1815 1816 len = *((const u16 *)(data + index + 2)) + 4; 1817 break; 1818 case MIPI_SEQ_ELEM_DELAY: 1819 len = 4; 1820 break; 1821 case MIPI_SEQ_ELEM_GPIO: 1822 len = 2; 1823 break; 1824 case MIPI_SEQ_ELEM_I2C: 1825 if (index + 7 > total) 1826 return 0; 1827 len = *(data + index + 6) + 7; 1828 break; 1829 default: 1830 drm_err(&i915->drm, "Unknown operation byte\n"); 1831 return 0; 1832 } 1833 } 1834 1835 return 0; 1836 } 1837 1838 static int goto_next_sequence_v3(struct drm_i915_private *i915, 1839 const u8 *data, int index, int total) 1840 { 1841 int seq_end; 1842 u16 len; 1843 u32 size_of_sequence; 1844 1845 /* 1846 * Could skip sequence based on Size of Sequence alone, but also do some 1847 * checking on the structure. 1848 */ 1849 if (total < 5) { 1850 drm_err(&i915->drm, "Too small sequence size\n"); 1851 return 0; 1852 } 1853 1854 /* Skip Sequence Byte. */ 1855 index++; 1856 1857 /* 1858 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1859 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1860 * byte. 1861 */ 1862 size_of_sequence = *((const u32 *)(data + index)); 1863 index += 4; 1864 1865 seq_end = index + size_of_sequence; 1866 if (seq_end > total) { 1867 drm_err(&i915->drm, "Invalid sequence size\n"); 1868 return 0; 1869 } 1870 1871 for (; index < total; index += len) { 1872 u8 operation_byte = *(data + index); 1873 index++; 1874 1875 if (operation_byte == MIPI_SEQ_ELEM_END) { 1876 if (index != seq_end) { 1877 drm_err(&i915->drm, "Invalid element structure\n"); 1878 return 0; 1879 } 1880 return index; 1881 } 1882 1883 len = *(data + index); 1884 index++; 1885 1886 /* 1887 * FIXME: Would be nice to check elements like for v1/v2 in 1888 * goto_next_sequence() above. 1889 */ 1890 switch (operation_byte) { 1891 case MIPI_SEQ_ELEM_SEND_PKT: 1892 case MIPI_SEQ_ELEM_DELAY: 1893 case MIPI_SEQ_ELEM_GPIO: 1894 case MIPI_SEQ_ELEM_I2C: 1895 case MIPI_SEQ_ELEM_SPI: 1896 case MIPI_SEQ_ELEM_PMIC: 1897 break; 1898 default: 1899 drm_err(&i915->drm, "Unknown operation byte %u\n", 1900 operation_byte); 1901 break; 1902 } 1903 } 1904 1905 return 0; 1906 } 1907 1908 /* 1909 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1910 * skip all delay + gpio operands and stop at the first DSI packet op. 1911 */ 1912 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915, 1913 struct intel_panel *panel) 1914 { 1915 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1916 int index, len; 1917 1918 if (drm_WARN_ON(&i915->drm, 1919 !data || panel->vbt.dsi.seq_version != 1)) 1920 return 0; 1921 1922 /* index = 1 to skip sequence byte */ 1923 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1924 switch (data[index]) { 1925 case MIPI_SEQ_ELEM_SEND_PKT: 1926 return index == 1 ? 0 : index; 1927 case MIPI_SEQ_ELEM_DELAY: 1928 len = 5; /* 1 byte for operand + uint32 */ 1929 break; 1930 case MIPI_SEQ_ELEM_GPIO: 1931 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1932 break; 1933 default: 1934 return 0; 1935 } 1936 } 1937 1938 return 0; 1939 } 1940 1941 /* 1942 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence. 1943 * The deassert must be done before calling intel_dsi_device_ready, so for 1944 * these devices we split the init OTP sequence into a deassert sequence and 1945 * the actual init OTP part. 1946 */ 1947 static void vlv_fixup_mipi_sequences(struct drm_i915_private *i915, 1948 struct intel_panel *panel) 1949 { 1950 u8 *init_otp; 1951 int len; 1952 1953 /* Limit this to v1 vid-mode sequences */ 1954 if (panel->vbt.dsi.config->is_cmd_mode || 1955 panel->vbt.dsi.seq_version != 1) 1956 return; 1957 1958 /* Only do this if there are otp and assert seqs and no deassert seq */ 1959 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1960 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1961 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1962 return; 1963 1964 /* The deassert-sequence ends at the first DSI packet */ 1965 len = get_init_otp_deassert_fragment_len(i915, panel); 1966 if (!len) 1967 return; 1968 1969 drm_dbg_kms(&i915->drm, 1970 "Using init OTP fragment to deassert reset\n"); 1971 1972 /* Copy the fragment, update seq byte and terminate it */ 1973 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1974 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1975 if (!panel->vbt.dsi.deassert_seq) 1976 return; 1977 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 1978 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 1979 /* Use the copy for deassert */ 1980 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 1981 panel->vbt.dsi.deassert_seq; 1982 /* Replace the last byte of the fragment with init OTP seq byte */ 1983 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 1984 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 1985 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 1986 } 1987 1988 /* 1989 * Some machines (eg. Lenovo 82TQ) appear to have broken 1990 * VBT sequences: 1991 * - INIT_OTP is not present at all 1992 * - what should be in INIT_OTP is in DISPLAY_ON 1993 * - what should be in DISPLAY_ON is in BACKLIGHT_ON 1994 * (along with the actual backlight stuff) 1995 * 1996 * To make those work we simply swap DISPLAY_ON and INIT_OTP. 1997 * 1998 * TODO: Do we need to limit this to specific machines, 1999 * or examine the contents of the sequences to 2000 * avoid false positives? 2001 */ 2002 static void icl_fixup_mipi_sequences(struct drm_i915_private *i915, 2003 struct intel_panel *panel) 2004 { 2005 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] && 2006 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) { 2007 drm_dbg_kms(&i915->drm, "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n"); 2008 2009 swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP], 2010 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]); 2011 } 2012 } 2013 2014 static void fixup_mipi_sequences(struct drm_i915_private *i915, 2015 struct intel_panel *panel) 2016 { 2017 if (DISPLAY_VER(i915) >= 11) 2018 icl_fixup_mipi_sequences(i915, panel); 2019 else if (IS_VALLEYVIEW(i915)) 2020 vlv_fixup_mipi_sequences(i915, panel); 2021 } 2022 2023 static void 2024 parse_mipi_sequence(struct drm_i915_private *i915, 2025 struct intel_panel *panel) 2026 { 2027 int panel_type = panel->vbt.panel_type; 2028 const struct bdb_mipi_sequence *sequence; 2029 const u8 *seq_data; 2030 u32 seq_size; 2031 u8 *data; 2032 int index = 0; 2033 2034 /* Only our generic panel driver uses the sequence block. */ 2035 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 2036 return; 2037 2038 sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE); 2039 if (!sequence) { 2040 drm_dbg_kms(&i915->drm, 2041 "No MIPI Sequence found, parsing complete\n"); 2042 return; 2043 } 2044 2045 /* Fail gracefully for forward incompatible sequence block. */ 2046 if (sequence->version >= 4) { 2047 drm_err(&i915->drm, 2048 "Unable to parse MIPI Sequence Block v%u\n", 2049 sequence->version); 2050 return; 2051 } 2052 2053 drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n", 2054 sequence->version); 2055 2056 seq_data = find_panel_sequence_block(i915, sequence, panel_type, &seq_size); 2057 if (!seq_data) 2058 return; 2059 2060 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 2061 if (!data) 2062 return; 2063 2064 /* Parse the sequences, store pointers to each sequence. */ 2065 for (;;) { 2066 u8 seq_id = *(data + index); 2067 if (seq_id == MIPI_SEQ_END) 2068 break; 2069 2070 if (seq_id >= MIPI_SEQ_MAX) { 2071 drm_err(&i915->drm, "Unknown sequence %u\n", 2072 seq_id); 2073 goto err; 2074 } 2075 2076 /* Log about presence of sequences we won't run. */ 2077 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 2078 drm_dbg_kms(&i915->drm, 2079 "Unsupported sequence %u\n", seq_id); 2080 2081 panel->vbt.dsi.sequence[seq_id] = data + index; 2082 2083 if (sequence->version >= 3) 2084 index = goto_next_sequence_v3(i915, data, index, seq_size); 2085 else 2086 index = goto_next_sequence(i915, data, index, seq_size); 2087 if (!index) { 2088 drm_err(&i915->drm, "Invalid sequence %u\n", 2089 seq_id); 2090 goto err; 2091 } 2092 } 2093 2094 panel->vbt.dsi.data = data; 2095 panel->vbt.dsi.size = seq_size; 2096 panel->vbt.dsi.seq_version = sequence->version; 2097 2098 fixup_mipi_sequences(i915, panel); 2099 2100 drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n"); 2101 return; 2102 2103 err: 2104 kfree(data); 2105 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); 2106 } 2107 2108 static void 2109 parse_compression_parameters(struct drm_i915_private *i915) 2110 { 2111 const struct bdb_compression_parameters *params; 2112 struct intel_bios_encoder_data *devdata; 2113 u16 block_size; 2114 int index; 2115 2116 if (i915->display.vbt.version < 198) 2117 return; 2118 2119 params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS); 2120 if (params) { 2121 /* Sanity checks */ 2122 if (params->entry_size != sizeof(params->data[0])) { 2123 drm_dbg_kms(&i915->drm, 2124 "VBT: unsupported compression param entry size\n"); 2125 return; 2126 } 2127 2128 block_size = get_blocksize(params); 2129 if (block_size < sizeof(*params)) { 2130 drm_dbg_kms(&i915->drm, 2131 "VBT: expected 16 compression param entries\n"); 2132 return; 2133 } 2134 } 2135 2136 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 2137 const struct child_device_config *child = &devdata->child; 2138 2139 if (!child->compression_enable) 2140 continue; 2141 2142 if (!params) { 2143 drm_dbg_kms(&i915->drm, 2144 "VBT: compression params not available\n"); 2145 continue; 2146 } 2147 2148 if (child->compression_method_cps) { 2149 drm_dbg_kms(&i915->drm, 2150 "VBT: CPS compression not supported\n"); 2151 continue; 2152 } 2153 2154 index = child->compression_structure_index; 2155 2156 devdata->dsc = kmemdup(¶ms->data[index], 2157 sizeof(*devdata->dsc), GFP_KERNEL); 2158 } 2159 } 2160 2161 static u8 translate_iboost(struct drm_i915_private *i915, u8 val) 2162 { 2163 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 2164 2165 if (val >= ARRAY_SIZE(mapping)) { 2166 drm_dbg_kms(&i915->drm, 2167 "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 2168 return 0; 2169 } 2170 return mapping[val]; 2171 } 2172 2173 static const u8 cnp_ddc_pin_map[] = { 2174 [0] = 0, /* N/A */ 2175 [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B, 2176 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C, 2177 [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */ 2178 [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */ 2179 }; 2180 2181 static const u8 icp_ddc_pin_map[] = { 2182 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2183 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2184 [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C, 2185 [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1, 2186 [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2, 2187 [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3, 2188 [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4, 2189 [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5, 2190 [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6, 2191 }; 2192 2193 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 2194 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2195 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2196 [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D, 2197 [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E, 2198 }; 2199 2200 static const u8 adls_ddc_pin_map[] = { 2201 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2202 [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1, 2203 [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2, 2204 [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3, 2205 [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4, 2206 }; 2207 2208 static const u8 gen9bc_tgp_ddc_pin_map[] = { 2209 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B, 2210 [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C, 2211 [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D, 2212 }; 2213 2214 static const u8 adlp_ddc_pin_map[] = { 2215 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2216 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2217 [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1, 2218 [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2, 2219 [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3, 2220 [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4, 2221 }; 2222 2223 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin) 2224 { 2225 const u8 *ddc_pin_map; 2226 int i, n_entries; 2227 2228 if (IS_DGFX(i915)) 2229 return vbt_pin; 2230 2231 if (INTEL_PCH_TYPE(i915) >= PCH_MTL || IS_ALDERLAKE_P(i915)) { 2232 ddc_pin_map = adlp_ddc_pin_map; 2233 n_entries = ARRAY_SIZE(adlp_ddc_pin_map); 2234 } else if (IS_ALDERLAKE_S(i915)) { 2235 ddc_pin_map = adls_ddc_pin_map; 2236 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 2237 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) { 2238 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 2239 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 2240 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) { 2241 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 2242 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 2243 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) { 2244 ddc_pin_map = icp_ddc_pin_map; 2245 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 2246 } else if (HAS_PCH_CNP(i915)) { 2247 ddc_pin_map = cnp_ddc_pin_map; 2248 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 2249 } else { 2250 /* Assuming direct map */ 2251 return vbt_pin; 2252 } 2253 2254 for (i = 0; i < n_entries; i++) { 2255 if (ddc_pin_map[i] == vbt_pin) 2256 return i; 2257 } 2258 2259 drm_dbg_kms(&i915->drm, 2260 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 2261 vbt_pin); 2262 return 0; 2263 } 2264 2265 static u8 dvo_port_type(u8 dvo_port) 2266 { 2267 switch (dvo_port) { 2268 case DVO_PORT_HDMIA: 2269 case DVO_PORT_HDMIB: 2270 case DVO_PORT_HDMIC: 2271 case DVO_PORT_HDMID: 2272 case DVO_PORT_HDMIE: 2273 case DVO_PORT_HDMIF: 2274 case DVO_PORT_HDMIG: 2275 case DVO_PORT_HDMIH: 2276 case DVO_PORT_HDMII: 2277 return DVO_PORT_HDMIA; 2278 case DVO_PORT_DPA: 2279 case DVO_PORT_DPB: 2280 case DVO_PORT_DPC: 2281 case DVO_PORT_DPD: 2282 case DVO_PORT_DPE: 2283 case DVO_PORT_DPF: 2284 case DVO_PORT_DPG: 2285 case DVO_PORT_DPH: 2286 case DVO_PORT_DPI: 2287 return DVO_PORT_DPA; 2288 case DVO_PORT_MIPIA: 2289 case DVO_PORT_MIPIB: 2290 case DVO_PORT_MIPIC: 2291 case DVO_PORT_MIPID: 2292 return DVO_PORT_MIPIA; 2293 default: 2294 return dvo_port; 2295 } 2296 } 2297 2298 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 2299 const int port_mapping[][3], u8 dvo_port) 2300 { 2301 enum port port; 2302 int i; 2303 2304 for (port = PORT_A; port < n_ports; port++) { 2305 for (i = 0; i < n_dvo; i++) { 2306 if (port_mapping[port][i] == -1) 2307 break; 2308 2309 if (dvo_port == port_mapping[port][i]) 2310 return port; 2311 } 2312 } 2313 2314 return PORT_NONE; 2315 } 2316 2317 static enum port dvo_port_to_port(struct drm_i915_private *i915, 2318 u8 dvo_port) 2319 { 2320 /* 2321 * Each DDI port can have more than one value on the "DVO Port" field, 2322 * so look for all the possible values for each port. 2323 */ 2324 static const int port_mapping[][3] = { 2325 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2326 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2327 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2328 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2329 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 2330 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2331 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2332 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2333 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2334 }; 2335 /* 2336 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 2337 * map to DDI A,B,TC1,TC2 respectively. 2338 */ 2339 static const int rkl_port_mapping[][3] = { 2340 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2341 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2342 [PORT_C] = { -1 }, 2343 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2344 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2345 }; 2346 /* 2347 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 2348 * PORT_F and PORT_G, we need to map that to correct VBT sections. 2349 */ 2350 static const int adls_port_mapping[][3] = { 2351 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2352 [PORT_B] = { -1 }, 2353 [PORT_C] = { -1 }, 2354 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2355 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2356 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2357 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2358 }; 2359 static const int xelpd_port_mapping[][3] = { 2360 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2361 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2362 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2363 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2364 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2365 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2366 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2367 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2368 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2369 }; 2370 2371 if (DISPLAY_VER(i915) >= 13) 2372 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 2373 ARRAY_SIZE(xelpd_port_mapping[0]), 2374 xelpd_port_mapping, 2375 dvo_port); 2376 else if (IS_ALDERLAKE_S(i915)) 2377 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 2378 ARRAY_SIZE(adls_port_mapping[0]), 2379 adls_port_mapping, 2380 dvo_port); 2381 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 2382 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 2383 ARRAY_SIZE(rkl_port_mapping[0]), 2384 rkl_port_mapping, 2385 dvo_port); 2386 else 2387 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 2388 ARRAY_SIZE(port_mapping[0]), 2389 port_mapping, 2390 dvo_port); 2391 } 2392 2393 static enum port 2394 dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port) 2395 { 2396 switch (dvo_port) { 2397 case DVO_PORT_MIPIA: 2398 return PORT_A; 2399 case DVO_PORT_MIPIC: 2400 if (DISPLAY_VER(i915) >= 11) 2401 return PORT_B; 2402 else 2403 return PORT_C; 2404 default: 2405 return PORT_NONE; 2406 } 2407 } 2408 2409 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata) 2410 { 2411 struct drm_i915_private *i915 = devdata->i915; 2412 const struct child_device_config *child = &devdata->child; 2413 enum port port; 2414 2415 port = dvo_port_to_port(i915, child->dvo_port); 2416 if (port == PORT_NONE && DISPLAY_VER(i915) >= 11) 2417 port = dsi_dvo_port_to_port(i915, child->dvo_port); 2418 2419 return port; 2420 } 2421 2422 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 2423 { 2424 switch (vbt_max_link_rate) { 2425 default: 2426 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 2427 return 0; 2428 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 2429 return 2000000; 2430 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 2431 return 1350000; 2432 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 2433 return 1000000; 2434 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 2435 return 810000; 2436 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 2437 return 540000; 2438 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 2439 return 270000; 2440 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 2441 return 162000; 2442 } 2443 } 2444 2445 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 2446 { 2447 switch (vbt_max_link_rate) { 2448 default: 2449 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 2450 return 810000; 2451 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 2452 return 540000; 2453 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 2454 return 270000; 2455 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 2456 return 162000; 2457 } 2458 } 2459 2460 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) 2461 { 2462 if (!devdata || devdata->i915->display.vbt.version < 216) 2463 return 0; 2464 2465 if (devdata->i915->display.vbt.version >= 230) 2466 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); 2467 else 2468 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); 2469 } 2470 2471 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata) 2472 { 2473 if (!devdata || devdata->i915->display.vbt.version < 244) 2474 return 0; 2475 2476 return devdata->child.dp_max_lane_count + 1; 2477 } 2478 2479 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 2480 enum port port) 2481 { 2482 struct drm_i915_private *i915 = devdata->i915; 2483 bool is_hdmi; 2484 2485 if (port != PORT_A || DISPLAY_VER(i915) >= 12) 2486 return; 2487 2488 if (!intel_bios_encoder_supports_dvi(devdata)) 2489 return; 2490 2491 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2492 2493 drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n", 2494 is_hdmi ? "/HDMI" : ""); 2495 2496 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2497 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2498 } 2499 2500 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata, 2501 enum port port) 2502 { 2503 struct drm_i915_private *i915 = devdata->i915; 2504 2505 if (!intel_bios_encoder_supports_dvi(devdata)) 2506 return; 2507 2508 /* 2509 * Some BDW machines (eg. HP Pavilion 15-ab) shipped 2510 * with a HSW VBT where the level shifter value goes 2511 * up to 11, whereas the BDW max is 9. 2512 */ 2513 if (IS_BROADWELL(i915) && devdata->child.hdmi_level_shifter_value > 9) { 2514 drm_dbg_kms(&i915->drm, "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n", 2515 port_name(port), devdata->child.hdmi_level_shifter_value, 9); 2516 2517 devdata->child.hdmi_level_shifter_value = 9; 2518 } 2519 } 2520 2521 static bool 2522 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 2523 { 2524 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 2525 } 2526 2527 bool 2528 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 2529 { 2530 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 2531 } 2532 2533 bool 2534 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 2535 { 2536 return intel_bios_encoder_supports_dvi(devdata) && 2537 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 2538 } 2539 2540 bool 2541 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 2542 { 2543 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2544 } 2545 2546 bool 2547 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 2548 { 2549 return intel_bios_encoder_supports_dp(devdata) && 2550 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 2551 } 2552 2553 bool 2554 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata) 2555 { 2556 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT; 2557 } 2558 2559 bool 2560 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata) 2561 { 2562 return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon; 2563 } 2564 2565 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ 2566 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) 2567 { 2568 if (!devdata || devdata->i915->display.vbt.version < 158 || 2569 DISPLAY_VER(devdata->i915) >= 14) 2570 return -1; 2571 2572 return devdata->child.hdmi_level_shifter_value; 2573 } 2574 2575 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata) 2576 { 2577 if (!devdata || devdata->i915->display.vbt.version < 204) 2578 return 0; 2579 2580 switch (devdata->child.hdmi_max_data_rate) { 2581 default: 2582 MISSING_CASE(devdata->child.hdmi_max_data_rate); 2583 fallthrough; 2584 case HDMI_MAX_DATA_RATE_PLATFORM: 2585 return 0; 2586 case HDMI_MAX_DATA_RATE_594: 2587 return 594000; 2588 case HDMI_MAX_DATA_RATE_340: 2589 return 340000; 2590 case HDMI_MAX_DATA_RATE_300: 2591 return 300000; 2592 case HDMI_MAX_DATA_RATE_297: 2593 return 297000; 2594 case HDMI_MAX_DATA_RATE_165: 2595 return 165000; 2596 } 2597 } 2598 2599 static bool is_port_valid(struct drm_i915_private *i915, enum port port) 2600 { 2601 /* 2602 * On some ICL SKUs port F is not present, but broken VBTs mark 2603 * the port as present. Only try to initialize port F for the 2604 * SKUs that may actually have it. 2605 */ 2606 if (port == PORT_F && IS_ICELAKE(i915)) 2607 return IS_ICL_WITH_PORT_F(i915); 2608 2609 return true; 2610 } 2611 2612 static void print_ddi_port(const struct intel_bios_encoder_data *devdata) 2613 { 2614 struct drm_i915_private *i915 = devdata->i915; 2615 const struct child_device_config *child = &devdata->child; 2616 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt; 2617 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; 2618 enum port port; 2619 2620 port = intel_bios_encoder_port(devdata); 2621 if (port == PORT_NONE) 2622 return; 2623 2624 is_dvi = intel_bios_encoder_supports_dvi(devdata); 2625 is_dp = intel_bios_encoder_supports_dp(devdata); 2626 is_crt = intel_bios_encoder_supports_crt(devdata); 2627 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2628 is_edp = intel_bios_encoder_supports_edp(devdata); 2629 is_dsi = intel_bios_encoder_supports_dsi(devdata); 2630 2631 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 2632 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 2633 2634 drm_dbg_kms(&i915->drm, 2635 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 2636 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi, 2637 intel_bios_encoder_supports_dp_dual_mode(devdata), 2638 intel_bios_encoder_is_lspcon(devdata), 2639 supports_typec_usb, supports_tbt, 2640 devdata->dsc != NULL); 2641 2642 hdmi_level_shift = intel_bios_hdmi_level_shift(devdata); 2643 if (hdmi_level_shift >= 0) { 2644 drm_dbg_kms(&i915->drm, 2645 "Port %c VBT HDMI level shift: %d\n", 2646 port_name(port), hdmi_level_shift); 2647 } 2648 2649 max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata); 2650 if (max_tmds_clock) 2651 drm_dbg_kms(&i915->drm, 2652 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 2653 port_name(port), max_tmds_clock); 2654 2655 /* I_boost config for SKL and above */ 2656 dp_boost_level = intel_bios_dp_boost_level(devdata); 2657 if (dp_boost_level) 2658 drm_dbg_kms(&i915->drm, 2659 "Port %c VBT (e)DP boost level: %d\n", 2660 port_name(port), dp_boost_level); 2661 2662 hdmi_boost_level = intel_bios_hdmi_boost_level(devdata); 2663 if (hdmi_boost_level) 2664 drm_dbg_kms(&i915->drm, 2665 "Port %c VBT HDMI boost level: %d\n", 2666 port_name(port), hdmi_boost_level); 2667 2668 dp_max_link_rate = intel_bios_dp_max_link_rate(devdata); 2669 if (dp_max_link_rate) 2670 drm_dbg_kms(&i915->drm, 2671 "Port %c VBT DP max link rate: %d\n", 2672 port_name(port), dp_max_link_rate); 2673 2674 /* 2675 * FIXME need to implement support for VBT 2676 * vswing/preemph tables should this ever trigger. 2677 */ 2678 drm_WARN(&i915->drm, child->use_vbt_vswing, 2679 "Port %c asks to use VBT vswing/preemph tables\n", 2680 port_name(port)); 2681 } 2682 2683 static void parse_ddi_port(struct intel_bios_encoder_data *devdata) 2684 { 2685 struct drm_i915_private *i915 = devdata->i915; 2686 enum port port; 2687 2688 port = intel_bios_encoder_port(devdata); 2689 if (port == PORT_NONE) 2690 return; 2691 2692 if (!is_port_valid(i915, port)) { 2693 drm_dbg_kms(&i915->drm, 2694 "VBT reports port %c as supported, but that can't be true: skipping\n", 2695 port_name(port)); 2696 return; 2697 } 2698 2699 sanitize_device_type(devdata, port); 2700 sanitize_hdmi_level_shift(devdata, port); 2701 } 2702 2703 static bool has_ddi_port_info(struct drm_i915_private *i915) 2704 { 2705 return DISPLAY_VER(i915) >= 5 || IS_G4X(i915); 2706 } 2707 2708 static void parse_ddi_ports(struct drm_i915_private *i915) 2709 { 2710 struct intel_bios_encoder_data *devdata; 2711 2712 if (!has_ddi_port_info(i915)) 2713 return; 2714 2715 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 2716 parse_ddi_port(devdata); 2717 2718 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 2719 print_ddi_port(devdata); 2720 } 2721 2722 static void 2723 parse_general_definitions(struct drm_i915_private *i915) 2724 { 2725 const struct bdb_general_definitions *defs; 2726 struct intel_bios_encoder_data *devdata; 2727 const struct child_device_config *child; 2728 int i, child_device_num; 2729 u8 expected_size; 2730 u16 block_size; 2731 int bus_pin; 2732 2733 defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS); 2734 if (!defs) { 2735 drm_dbg_kms(&i915->drm, 2736 "No general definition block is found, no devices defined.\n"); 2737 return; 2738 } 2739 2740 block_size = get_blocksize(defs); 2741 if (block_size < sizeof(*defs)) { 2742 drm_dbg_kms(&i915->drm, 2743 "General definitions block too small (%u)\n", 2744 block_size); 2745 return; 2746 } 2747 2748 bus_pin = defs->crt_ddc_gmbus_pin; 2749 drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2750 if (intel_gmbus_is_valid_pin(i915, bus_pin)) 2751 i915->display.vbt.crt_ddc_pin = bus_pin; 2752 2753 if (i915->display.vbt.version < 106) { 2754 expected_size = 22; 2755 } else if (i915->display.vbt.version < 111) { 2756 expected_size = 27; 2757 } else if (i915->display.vbt.version < 195) { 2758 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2759 } else if (i915->display.vbt.version == 195) { 2760 expected_size = 37; 2761 } else if (i915->display.vbt.version <= 215) { 2762 expected_size = 38; 2763 } else if (i915->display.vbt.version <= 250) { 2764 expected_size = 39; 2765 } else { 2766 expected_size = sizeof(*child); 2767 BUILD_BUG_ON(sizeof(*child) < 39); 2768 drm_dbg(&i915->drm, 2769 "Expected child device config size for VBT version %u not known; assuming %u\n", 2770 i915->display.vbt.version, expected_size); 2771 } 2772 2773 /* Flag an error for unexpected size, but continue anyway. */ 2774 if (defs->child_dev_size != expected_size) 2775 drm_err(&i915->drm, 2776 "Unexpected child device config size %u (expected %u for VBT version %u)\n", 2777 defs->child_dev_size, expected_size, i915->display.vbt.version); 2778 2779 /* The legacy sized child device config is the minimum we need. */ 2780 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2781 drm_dbg_kms(&i915->drm, 2782 "Child device config size %u is too small.\n", 2783 defs->child_dev_size); 2784 return; 2785 } 2786 2787 /* get the number of child device */ 2788 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2789 2790 for (i = 0; i < child_device_num; i++) { 2791 child = child_device_ptr(defs, i); 2792 if (!child->device_type) 2793 continue; 2794 2795 drm_dbg_kms(&i915->drm, 2796 "Found VBT child device with type 0x%x\n", 2797 child->device_type); 2798 2799 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2800 if (!devdata) 2801 break; 2802 2803 devdata->i915 = i915; 2804 2805 /* 2806 * Copy as much as we know (sizeof) and is available 2807 * (child_dev_size) of the child device config. Accessing the 2808 * data must depend on VBT version. 2809 */ 2810 memcpy(&devdata->child, child, 2811 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2812 2813 list_add_tail(&devdata->node, &i915->display.vbt.display_devices); 2814 } 2815 2816 if (list_empty(&i915->display.vbt.display_devices)) 2817 drm_dbg_kms(&i915->drm, 2818 "no child dev is parsed from VBT\n"); 2819 } 2820 2821 /* Common defaults which may be overridden by VBT. */ 2822 static void 2823 init_vbt_defaults(struct drm_i915_private *i915) 2824 { 2825 i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2826 2827 /* general features */ 2828 i915->display.vbt.int_tv_support = 1; 2829 i915->display.vbt.int_crt_support = 1; 2830 2831 /* driver features */ 2832 i915->display.vbt.int_lvds_support = 1; 2833 2834 /* Default to using SSC */ 2835 i915->display.vbt.lvds_use_ssc = 1; 2836 /* 2837 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2838 * clock for LVDS. 2839 */ 2840 i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915, 2841 !HAS_PCH_SPLIT(i915)); 2842 drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n", 2843 i915->display.vbt.lvds_ssc_freq); 2844 } 2845 2846 /* Common defaults which may be overridden by VBT. */ 2847 static void 2848 init_vbt_panel_defaults(struct intel_panel *panel) 2849 { 2850 /* Default to having backlight */ 2851 panel->vbt.backlight.present = true; 2852 2853 /* LFP panel data */ 2854 panel->vbt.lvds_dither = true; 2855 } 2856 2857 /* Defaults to initialize only if there is no VBT. */ 2858 static void 2859 init_vbt_missing_defaults(struct drm_i915_private *i915) 2860 { 2861 enum port port; 2862 int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) | 2863 BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F); 2864 2865 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915)) 2866 return; 2867 2868 for_each_port_masked(port, ports) { 2869 struct intel_bios_encoder_data *devdata; 2870 struct child_device_config *child; 2871 enum phy phy = intel_port_to_phy(i915, port); 2872 2873 /* 2874 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2875 * to detect it. 2876 */ 2877 if (intel_phy_is_tc(i915, phy)) 2878 continue; 2879 2880 /* Create fake child device config */ 2881 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2882 if (!devdata) 2883 break; 2884 2885 devdata->i915 = i915; 2886 child = &devdata->child; 2887 2888 if (port == PORT_F) 2889 child->dvo_port = DVO_PORT_HDMIF; 2890 else if (port == PORT_E) 2891 child->dvo_port = DVO_PORT_HDMIE; 2892 else 2893 child->dvo_port = DVO_PORT_HDMIA + port; 2894 2895 if (port != PORT_A && port != PORT_E) 2896 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2897 2898 if (port != PORT_E) 2899 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2900 2901 if (port == PORT_A) 2902 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2903 2904 list_add_tail(&devdata->node, &i915->display.vbt.display_devices); 2905 2906 drm_dbg_kms(&i915->drm, 2907 "Generating default VBT child device with type 0x04%x on port %c\n", 2908 child->device_type, port_name(port)); 2909 } 2910 2911 /* Bypass some minimum baseline VBT version checks */ 2912 i915->display.vbt.version = 155; 2913 } 2914 2915 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2916 { 2917 const void *_vbt = vbt; 2918 2919 return _vbt + vbt->bdb_offset; 2920 } 2921 2922 /** 2923 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2924 * @i915: the device 2925 * @buf: pointer to a buffer to validate 2926 * @size: size of the buffer 2927 * 2928 * Returns true on valid VBT. 2929 */ 2930 bool intel_bios_is_valid_vbt(struct drm_i915_private *i915, 2931 const void *buf, size_t size) 2932 { 2933 const struct vbt_header *vbt = buf; 2934 const struct bdb_header *bdb; 2935 2936 if (!vbt) 2937 return false; 2938 2939 if (sizeof(struct vbt_header) > size) { 2940 drm_dbg_kms(&i915->drm, "VBT header incomplete\n"); 2941 return false; 2942 } 2943 2944 if (memcmp(vbt->signature, "$VBT", 4)) { 2945 drm_dbg_kms(&i915->drm, "VBT invalid signature\n"); 2946 return false; 2947 } 2948 2949 if (vbt->vbt_size > size) { 2950 drm_dbg_kms(&i915->drm, "VBT incomplete (vbt_size overflows)\n"); 2951 return false; 2952 } 2953 2954 size = vbt->vbt_size; 2955 2956 if (range_overflows_t(size_t, 2957 vbt->bdb_offset, 2958 sizeof(struct bdb_header), 2959 size)) { 2960 drm_dbg_kms(&i915->drm, "BDB header incomplete\n"); 2961 return false; 2962 } 2963 2964 bdb = get_bdb_header(vbt); 2965 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 2966 drm_dbg_kms(&i915->drm, "BDB incomplete\n"); 2967 return false; 2968 } 2969 2970 return vbt; 2971 } 2972 2973 static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset) 2974 { 2975 intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset); 2976 2977 return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER); 2978 } 2979 2980 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915) 2981 { 2982 u32 count, data, found, store = 0; 2983 u32 static_region, oprom_offset; 2984 u32 oprom_size = 0x200000; 2985 u16 vbt_size; 2986 u32 *vbt; 2987 2988 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS); 2989 static_region &= OPTIONROM_SPI_REGIONID_MASK; 2990 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region); 2991 2992 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET); 2993 oprom_offset &= OROM_OFFSET_MASK; 2994 2995 for (count = 0; count < oprom_size; count += 4) { 2996 data = intel_spi_read(&i915->uncore, oprom_offset + count); 2997 if (data == *((const u32 *)"$VBT")) { 2998 found = oprom_offset + count; 2999 break; 3000 } 3001 } 3002 3003 if (count >= oprom_size) 3004 goto err_not_found; 3005 3006 /* Get VBT size and allocate space for the VBT */ 3007 vbt_size = intel_spi_read(&i915->uncore, 3008 found + offsetof(struct vbt_header, vbt_size)); 3009 vbt_size &= 0xffff; 3010 3011 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); 3012 if (!vbt) 3013 goto err_not_found; 3014 3015 for (count = 0; count < vbt_size; count += 4) 3016 *(vbt + store++) = intel_spi_read(&i915->uncore, found + count); 3017 3018 if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size)) 3019 goto err_free_vbt; 3020 3021 drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n"); 3022 3023 return (struct vbt_header *)vbt; 3024 3025 err_free_vbt: 3026 kfree(vbt); 3027 err_not_found: 3028 return NULL; 3029 } 3030 3031 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915) 3032 { 3033 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 3034 void __iomem *p = NULL, *oprom; 3035 struct vbt_header *vbt; 3036 u16 vbt_size; 3037 size_t i, size; 3038 3039 oprom = pci_map_rom(pdev, &size); 3040 if (!oprom) 3041 return NULL; 3042 3043 /* Scour memory looking for the VBT signature. */ 3044 for (i = 0; i + 4 < size; i += 4) { 3045 if (ioread32(oprom + i) != *((const u32 *)"$VBT")) 3046 continue; 3047 3048 p = oprom + i; 3049 size -= i; 3050 break; 3051 } 3052 3053 if (!p) 3054 goto err_unmap_oprom; 3055 3056 if (sizeof(struct vbt_header) > size) { 3057 drm_dbg(&i915->drm, "VBT header incomplete\n"); 3058 goto err_unmap_oprom; 3059 } 3060 3061 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size)); 3062 if (vbt_size > size) { 3063 drm_dbg(&i915->drm, 3064 "VBT incomplete (vbt_size overflows)\n"); 3065 goto err_unmap_oprom; 3066 } 3067 3068 /* The rest will be validated by intel_bios_is_valid_vbt() */ 3069 vbt = kmalloc(vbt_size, GFP_KERNEL); 3070 if (!vbt) 3071 goto err_unmap_oprom; 3072 3073 memcpy_fromio(vbt, p, vbt_size); 3074 3075 if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size)) 3076 goto err_free_vbt; 3077 3078 pci_unmap_rom(pdev, oprom); 3079 3080 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n"); 3081 3082 return vbt; 3083 3084 err_free_vbt: 3085 kfree(vbt); 3086 err_unmap_oprom: 3087 pci_unmap_rom(pdev, oprom); 3088 3089 return NULL; 3090 } 3091 3092 /** 3093 * intel_bios_init - find VBT and initialize settings from the BIOS 3094 * @i915: i915 device instance 3095 * 3096 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 3097 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 3098 * initialize some defaults if the VBT is not present at all. 3099 */ 3100 void intel_bios_init(struct drm_i915_private *i915) 3101 { 3102 const struct vbt_header *vbt; 3103 struct vbt_header *oprom_vbt = NULL; 3104 const struct bdb_header *bdb; 3105 3106 INIT_LIST_HEAD(&i915->display.vbt.display_devices); 3107 INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks); 3108 3109 if (!HAS_DISPLAY(i915)) { 3110 drm_dbg_kms(&i915->drm, 3111 "Skipping VBT init due to disabled display.\n"); 3112 return; 3113 } 3114 3115 init_vbt_defaults(i915); 3116 3117 vbt = intel_opregion_get_vbt(i915, NULL); 3118 3119 /* 3120 * If the OpRegion does not have VBT, look in SPI flash through MMIO or 3121 * PCI mapping 3122 */ 3123 if (!vbt && IS_DGFX(i915)) { 3124 oprom_vbt = spi_oprom_get_vbt(i915); 3125 vbt = oprom_vbt; 3126 } 3127 3128 if (!vbt) { 3129 oprom_vbt = oprom_get_vbt(i915); 3130 vbt = oprom_vbt; 3131 } 3132 3133 if (!vbt) 3134 goto out; 3135 3136 bdb = get_bdb_header(vbt); 3137 i915->display.vbt.version = bdb->version; 3138 3139 drm_dbg_kms(&i915->drm, 3140 "VBT signature \"%.*s\", BDB version %d\n", 3141 (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version); 3142 3143 init_bdb_blocks(i915, bdb); 3144 3145 /* Grab useful general definitions */ 3146 parse_general_features(i915); 3147 parse_general_definitions(i915); 3148 parse_driver_features(i915); 3149 3150 /* Depends on child device list */ 3151 parse_compression_parameters(i915); 3152 3153 out: 3154 if (!vbt) { 3155 drm_info(&i915->drm, 3156 "Failed to find VBIOS tables (VBT)\n"); 3157 init_vbt_missing_defaults(i915); 3158 } 3159 3160 /* Further processing on pre-parsed or generated child device data */ 3161 parse_sdvo_device_mapping(i915); 3162 parse_ddi_ports(i915); 3163 3164 kfree(oprom_vbt); 3165 } 3166 3167 static void intel_bios_init_panel(struct drm_i915_private *i915, 3168 struct intel_panel *panel, 3169 const struct intel_bios_encoder_data *devdata, 3170 const struct drm_edid *drm_edid, 3171 bool use_fallback) 3172 { 3173 /* already have it? */ 3174 if (panel->vbt.panel_type >= 0) { 3175 drm_WARN_ON(&i915->drm, !use_fallback); 3176 return; 3177 } 3178 3179 panel->vbt.panel_type = get_panel_type(i915, devdata, 3180 drm_edid, use_fallback); 3181 if (panel->vbt.panel_type < 0) { 3182 drm_WARN_ON(&i915->drm, use_fallback); 3183 return; 3184 } 3185 3186 init_vbt_panel_defaults(panel); 3187 3188 parse_panel_options(i915, panel); 3189 parse_generic_dtd(i915, panel); 3190 parse_lfp_data(i915, panel); 3191 parse_lfp_backlight(i915, panel); 3192 parse_sdvo_panel_data(i915, panel); 3193 parse_panel_driver_features(i915, panel); 3194 parse_power_conservation_features(i915, panel); 3195 parse_edp(i915, panel); 3196 parse_psr(i915, panel); 3197 parse_mipi_config(i915, panel); 3198 parse_mipi_sequence(i915, panel); 3199 } 3200 3201 void intel_bios_init_panel_early(struct drm_i915_private *i915, 3202 struct intel_panel *panel, 3203 const struct intel_bios_encoder_data *devdata) 3204 { 3205 intel_bios_init_panel(i915, panel, devdata, NULL, false); 3206 } 3207 3208 void intel_bios_init_panel_late(struct drm_i915_private *i915, 3209 struct intel_panel *panel, 3210 const struct intel_bios_encoder_data *devdata, 3211 const struct drm_edid *drm_edid) 3212 { 3213 intel_bios_init_panel(i915, panel, devdata, drm_edid, true); 3214 } 3215 3216 /** 3217 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 3218 * @i915: i915 device instance 3219 */ 3220 void intel_bios_driver_remove(struct drm_i915_private *i915) 3221 { 3222 struct intel_bios_encoder_data *devdata, *nd; 3223 struct bdb_block_entry *entry, *ne; 3224 3225 list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) { 3226 list_del(&devdata->node); 3227 kfree(devdata->dsc); 3228 kfree(devdata); 3229 } 3230 3231 list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) { 3232 list_del(&entry->node); 3233 kfree(entry); 3234 } 3235 } 3236 3237 void intel_bios_fini_panel(struct intel_panel *panel) 3238 { 3239 kfree(panel->vbt.sdvo_lvds_vbt_mode); 3240 panel->vbt.sdvo_lvds_vbt_mode = NULL; 3241 kfree(panel->vbt.lfp_lvds_vbt_mode); 3242 panel->vbt.lfp_lvds_vbt_mode = NULL; 3243 kfree(panel->vbt.dsi.data); 3244 panel->vbt.dsi.data = NULL; 3245 kfree(panel->vbt.dsi.pps); 3246 panel->vbt.dsi.pps = NULL; 3247 kfree(panel->vbt.dsi.config); 3248 panel->vbt.dsi.config = NULL; 3249 kfree(panel->vbt.dsi.deassert_seq); 3250 panel->vbt.dsi.deassert_seq = NULL; 3251 } 3252 3253 /** 3254 * intel_bios_is_tv_present - is integrated TV present in VBT 3255 * @i915: i915 device instance 3256 * 3257 * Return true if TV is present. If no child devices were parsed from VBT, 3258 * assume TV is present. 3259 */ 3260 bool intel_bios_is_tv_present(struct drm_i915_private *i915) 3261 { 3262 const struct intel_bios_encoder_data *devdata; 3263 3264 if (!i915->display.vbt.int_tv_support) 3265 return false; 3266 3267 if (list_empty(&i915->display.vbt.display_devices)) 3268 return true; 3269 3270 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3271 const struct child_device_config *child = &devdata->child; 3272 3273 /* 3274 * If the device type is not TV, continue. 3275 */ 3276 switch (child->device_type) { 3277 case DEVICE_TYPE_INT_TV: 3278 case DEVICE_TYPE_TV: 3279 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 3280 break; 3281 default: 3282 continue; 3283 } 3284 /* Only when the addin_offset is non-zero, it is regarded 3285 * as present. 3286 */ 3287 if (child->addin_offset) 3288 return true; 3289 } 3290 3291 return false; 3292 } 3293 3294 /** 3295 * intel_bios_is_lvds_present - is LVDS present in VBT 3296 * @i915: i915 device instance 3297 * @i2c_pin: i2c pin for LVDS if present 3298 * 3299 * Return true if LVDS is present. If no child devices were parsed from VBT, 3300 * assume LVDS is present. 3301 */ 3302 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin) 3303 { 3304 const struct intel_bios_encoder_data *devdata; 3305 3306 if (list_empty(&i915->display.vbt.display_devices)) 3307 return true; 3308 3309 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3310 const struct child_device_config *child = &devdata->child; 3311 3312 /* If the device type is not LFP, continue. 3313 * We have to check both the new identifiers as well as the 3314 * old for compatibility with some BIOSes. 3315 */ 3316 if (child->device_type != DEVICE_TYPE_INT_LFP && 3317 child->device_type != DEVICE_TYPE_LFP) 3318 continue; 3319 3320 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin)) 3321 *i2c_pin = child->i2c_pin; 3322 3323 /* However, we cannot trust the BIOS writers to populate 3324 * the VBT correctly. Since LVDS requires additional 3325 * information from AIM blocks, a non-zero addin offset is 3326 * a good indicator that the LVDS is actually present. 3327 */ 3328 if (child->addin_offset) 3329 return true; 3330 3331 /* But even then some BIOS writers perform some black magic 3332 * and instantiate the device without reference to any 3333 * additional data. Trust that if the VBT was written into 3334 * the OpRegion then they have validated the LVDS's existence. 3335 */ 3336 if (intel_opregion_get_vbt(i915, NULL)) 3337 return true; 3338 } 3339 3340 return false; 3341 } 3342 3343 /** 3344 * intel_bios_is_port_present - is the specified digital port present 3345 * @i915: i915 device instance 3346 * @port: port to check 3347 * 3348 * Return true if the device in %port is present. 3349 */ 3350 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port) 3351 { 3352 const struct intel_bios_encoder_data *devdata; 3353 3354 if (WARN_ON(!has_ddi_port_info(i915))) 3355 return true; 3356 3357 if (!is_port_valid(i915, port)) 3358 return false; 3359 3360 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3361 const struct child_device_config *child = &devdata->child; 3362 3363 if (dvo_port_to_port(i915, child->dvo_port) == port) 3364 return true; 3365 } 3366 3367 return false; 3368 } 3369 3370 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) 3371 { 3372 const struct child_device_config *child = &devdata->child; 3373 3374 if (!devdata) 3375 return false; 3376 3377 if (!intel_bios_encoder_supports_dp(devdata) || 3378 !intel_bios_encoder_supports_hdmi(devdata)) 3379 return false; 3380 3381 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) 3382 return true; 3383 3384 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 3385 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && 3386 child->aux_channel != 0) 3387 return true; 3388 3389 return false; 3390 } 3391 3392 /** 3393 * intel_bios_is_dsi_present - is DSI present in VBT 3394 * @i915: i915 device instance 3395 * @port: port for DSI if present 3396 * 3397 * Return true if DSI is present, and return the port in %port. 3398 */ 3399 bool intel_bios_is_dsi_present(struct drm_i915_private *i915, 3400 enum port *port) 3401 { 3402 const struct intel_bios_encoder_data *devdata; 3403 3404 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3405 const struct child_device_config *child = &devdata->child; 3406 u8 dvo_port = child->dvo_port; 3407 3408 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3409 continue; 3410 3411 if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) { 3412 drm_dbg_kms(&i915->drm, 3413 "VBT has unsupported DSI port %c\n", 3414 port_name(dvo_port - DVO_PORT_MIPIA)); 3415 continue; 3416 } 3417 3418 if (port) 3419 *port = dsi_dvo_port_to_port(i915, dvo_port); 3420 return true; 3421 } 3422 3423 return false; 3424 } 3425 3426 static void fill_dsc(struct intel_crtc_state *crtc_state, 3427 struct dsc_compression_parameters_entry *dsc, 3428 int dsc_max_bpc) 3429 { 3430 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 3431 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 3432 int bpc = 8; 3433 3434 vdsc_cfg->dsc_version_major = dsc->version_major; 3435 vdsc_cfg->dsc_version_minor = dsc->version_minor; 3436 3437 if (dsc->support_12bpc && dsc_max_bpc >= 12) 3438 bpc = 12; 3439 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 3440 bpc = 10; 3441 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 3442 bpc = 8; 3443 else 3444 drm_dbg_kms(&i915->drm, "VBT: Unsupported BPC %d for DCS\n", 3445 dsc_max_bpc); 3446 3447 crtc_state->pipe_bpp = bpc * 3; 3448 3449 crtc_state->dsc.compressed_bpp_x16 = to_bpp_x16(min(crtc_state->pipe_bpp, 3450 VBT_DSC_MAX_BPP(dsc->max_bpp))); 3451 3452 /* 3453 * FIXME: This is ugly, and slice count should take DSC engine 3454 * throughput etc. into account. 3455 * 3456 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 3457 */ 3458 if (dsc->slices_per_line & BIT(2)) { 3459 crtc_state->dsc.slice_count = 4; 3460 } else if (dsc->slices_per_line & BIT(1)) { 3461 crtc_state->dsc.slice_count = 2; 3462 } else { 3463 /* FIXME */ 3464 if (!(dsc->slices_per_line & BIT(0))) 3465 drm_dbg_kms(&i915->drm, "VBT: Unsupported DSC slice count for DSI\n"); 3466 3467 crtc_state->dsc.slice_count = 1; 3468 } 3469 3470 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 3471 crtc_state->dsc.slice_count != 0) 3472 drm_dbg_kms(&i915->drm, "VBT: DSC hdisplay %d not divisible by slice count %d\n", 3473 crtc_state->hw.adjusted_mode.crtc_hdisplay, 3474 crtc_state->dsc.slice_count); 3475 3476 /* 3477 * The VBT rc_buffer_block_size and rc_buffer_size definitions 3478 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 3479 */ 3480 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 3481 dsc->rc_buffer_size); 3482 3483 /* FIXME: DSI spec says bpc + 1 for this one */ 3484 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 3485 3486 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 3487 3488 vdsc_cfg->slice_height = dsc->slice_height; 3489 } 3490 3491 /* FIXME: initially DSI specific */ 3492 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 3493 struct intel_crtc_state *crtc_state, 3494 int dsc_max_bpc) 3495 { 3496 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3497 const struct intel_bios_encoder_data *devdata; 3498 3499 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3500 const struct child_device_config *child = &devdata->child; 3501 3502 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3503 continue; 3504 3505 if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) { 3506 if (!devdata->dsc) 3507 return false; 3508 3509 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 3510 3511 return true; 3512 } 3513 } 3514 3515 return false; 3516 } 3517 3518 static const u8 adlp_aux_ch_map[] = { 3519 [AUX_CH_A] = DP_AUX_A, 3520 [AUX_CH_B] = DP_AUX_B, 3521 [AUX_CH_C] = DP_AUX_C, 3522 [AUX_CH_D_XELPD] = DP_AUX_D, 3523 [AUX_CH_E_XELPD] = DP_AUX_E, 3524 [AUX_CH_USBC1] = DP_AUX_F, 3525 [AUX_CH_USBC2] = DP_AUX_G, 3526 [AUX_CH_USBC3] = DP_AUX_H, 3527 [AUX_CH_USBC4] = DP_AUX_I, 3528 }; 3529 3530 /* 3531 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 3532 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 3533 */ 3534 static const u8 adls_aux_ch_map[] = { 3535 [AUX_CH_A] = DP_AUX_A, 3536 [AUX_CH_USBC1] = DP_AUX_B, 3537 [AUX_CH_USBC2] = DP_AUX_C, 3538 [AUX_CH_USBC3] = DP_AUX_D, 3539 [AUX_CH_USBC4] = DP_AUX_E, 3540 }; 3541 3542 /* 3543 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 3544 * map to DDI A,B,TC1,TC2 respectively. 3545 */ 3546 static const u8 rkl_aux_ch_map[] = { 3547 [AUX_CH_A] = DP_AUX_A, 3548 [AUX_CH_B] = DP_AUX_B, 3549 [AUX_CH_USBC1] = DP_AUX_C, 3550 [AUX_CH_USBC2] = DP_AUX_D, 3551 }; 3552 3553 static const u8 direct_aux_ch_map[] = { 3554 [AUX_CH_A] = DP_AUX_A, 3555 [AUX_CH_B] = DP_AUX_B, 3556 [AUX_CH_C] = DP_AUX_C, 3557 [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */ 3558 [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */ 3559 [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */ 3560 [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */ 3561 [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */ 3562 [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */ 3563 }; 3564 3565 static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel) 3566 { 3567 const u8 *aux_ch_map; 3568 int i, n_entries; 3569 3570 if (DISPLAY_VER(i915) >= 13) { 3571 aux_ch_map = adlp_aux_ch_map; 3572 n_entries = ARRAY_SIZE(adlp_aux_ch_map); 3573 } else if (IS_ALDERLAKE_S(i915)) { 3574 aux_ch_map = adls_aux_ch_map; 3575 n_entries = ARRAY_SIZE(adls_aux_ch_map); 3576 } else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) { 3577 aux_ch_map = rkl_aux_ch_map; 3578 n_entries = ARRAY_SIZE(rkl_aux_ch_map); 3579 } else { 3580 aux_ch_map = direct_aux_ch_map; 3581 n_entries = ARRAY_SIZE(direct_aux_ch_map); 3582 } 3583 3584 for (i = 0; i < n_entries; i++) { 3585 if (aux_ch_map[i] == aux_channel) 3586 return i; 3587 } 3588 3589 drm_dbg_kms(&i915->drm, 3590 "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n", 3591 aux_channel); 3592 3593 return AUX_CH_NONE; 3594 } 3595 3596 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata) 3597 { 3598 if (!devdata || !devdata->child.aux_channel) 3599 return AUX_CH_NONE; 3600 3601 return map_aux_ch(devdata->i915, devdata->child.aux_channel); 3602 } 3603 3604 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata) 3605 { 3606 struct drm_i915_private *i915; 3607 u8 aux_channel; 3608 int count = 0; 3609 3610 if (!devdata || !devdata->child.aux_channel) 3611 return false; 3612 3613 i915 = devdata->i915; 3614 aux_channel = devdata->child.aux_channel; 3615 3616 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3617 if (intel_bios_encoder_supports_dp(devdata) && 3618 aux_channel == devdata->child.aux_channel) 3619 count++; 3620 } 3621 3622 return count > 1; 3623 } 3624 3625 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata) 3626 { 3627 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) 3628 return 0; 3629 3630 return translate_iboost(devdata->i915, devdata->child.dp_iboost_level); 3631 } 3632 3633 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 3634 { 3635 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) 3636 return 0; 3637 3638 return translate_iboost(devdata->i915, devdata->child.hdmi_iboost_level); 3639 } 3640 3641 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata) 3642 { 3643 if (!devdata || !devdata->child.ddc_pin) 3644 return 0; 3645 3646 return map_ddc_pin(devdata->i915, devdata->child.ddc_pin); 3647 } 3648 3649 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 3650 { 3651 return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c; 3652 } 3653 3654 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 3655 { 3656 return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt; 3657 } 3658 3659 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata) 3660 { 3661 return devdata && devdata->child.lane_reversal; 3662 } 3663 3664 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata) 3665 { 3666 return devdata && devdata->child.hpd_invert; 3667 } 3668 3669 const struct intel_bios_encoder_data * 3670 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port) 3671 { 3672 struct intel_bios_encoder_data *devdata; 3673 3674 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3675 if (intel_bios_encoder_port(devdata) == port) 3676 return devdata; 3677 } 3678 3679 return NULL; 3680 } 3681 3682 void intel_bios_for_each_encoder(struct drm_i915_private *i915, 3683 void (*func)(struct drm_i915_private *i915, 3684 const struct intel_bios_encoder_data *devdata)) 3685 { 3686 struct intel_bios_encoder_data *devdata; 3687 3688 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 3689 func(i915, devdata); 3690 } 3691 3692 static int intel_bios_vbt_show(struct seq_file *m, void *unused) 3693 { 3694 struct drm_i915_private *i915 = m->private; 3695 const void *vbt; 3696 size_t vbt_size; 3697 3698 /* 3699 * FIXME: VBT might originate from other places than opregion, and then 3700 * this would be incorrect. 3701 */ 3702 vbt = intel_opregion_get_vbt(i915, &vbt_size); 3703 if (vbt) 3704 seq_write(m, vbt, vbt_size); 3705 3706 return 0; 3707 } 3708 3709 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt); 3710 3711 void intel_bios_debugfs_register(struct drm_i915_private *i915) 3712 { 3713 struct drm_minor *minor = i915->drm.primary; 3714 3715 debugfs_create_file("i915_vbt", 0444, minor->debugfs_root, 3716 i915, &intel_bios_vbt_fops); 3717 } 3718