xref: /linux/drivers/gpu/drm/i915/display/intel_bios.c (revision 8f8d74ee110c02137f5b78ca0a2bd6c10331f267)
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/display/drm_dp_helper.h>
29 #include <drm/display/drm_dsc_helper.h>
30 #include <drm/drm_edid.h>
31 
32 #include "i915_drv.h"
33 #include "i915_reg.h"
34 #include "intel_display.h"
35 #include "intel_display_types.h"
36 #include "intel_gmbus.h"
37 
38 #define _INTEL_BIOS_PRIVATE
39 #include "intel_vbt_defs.h"
40 
41 /**
42  * DOC: Video BIOS Table (VBT)
43  *
44  * The Video BIOS Table, or VBT, provides platform and board specific
45  * configuration information to the driver that is not discoverable or available
46  * through other means. The configuration is mostly related to display
47  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
48  * the PCI ROM.
49  *
50  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
51  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
52  * contain the actual configuration information. The VBT Header, and thus the
53  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
54  * BDB Header. The data blocks are concatenated after the BDB Header. The data
55  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
56  * data. (Block 53, the MIPI Sequence Block is an exception.)
57  *
58  * The driver parses the VBT during load. The relevant information is stored in
59  * driver private data for ease of use, and the actual VBT is not read after
60  * that.
61  */
62 
63 /* Wrapper for VBT child device config */
64 struct intel_bios_encoder_data {
65 	struct drm_i915_private *i915;
66 
67 	struct child_device_config child;
68 	struct dsc_compression_parameters_entry *dsc;
69 	struct list_head node;
70 };
71 
72 #define	SLAVE_ADDR1	0x70
73 #define	SLAVE_ADDR2	0x72
74 
75 /* Get BDB block size given a pointer to Block ID. */
76 static u32 _get_blocksize(const u8 *block_base)
77 {
78 	/* The MIPI Sequence Block v3+ has a separate size field. */
79 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
80 		return *((const u32 *)(block_base + 4));
81 	else
82 		return *((const u16 *)(block_base + 1));
83 }
84 
85 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
86 static u32 get_blocksize(const void *block_data)
87 {
88 	return _get_blocksize(block_data - 3);
89 }
90 
91 static const void *
92 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
93 {
94 	const struct bdb_header *bdb = _bdb;
95 	const u8 *base = _bdb;
96 	int index = 0;
97 	u32 total, current_size;
98 	enum bdb_block_id current_id;
99 
100 	/* skip to first section */
101 	index += bdb->header_size;
102 	total = bdb->bdb_size;
103 
104 	/* walk the sections looking for section_id */
105 	while (index + 3 < total) {
106 		current_id = *(base + index);
107 		current_size = _get_blocksize(base + index);
108 		index += 3;
109 
110 		if (index + current_size > total)
111 			return NULL;
112 
113 		if (current_id == section_id)
114 			return base + index;
115 
116 		index += current_size;
117 	}
118 
119 	return NULL;
120 }
121 
122 /*
123  * Offset from the start of BDB to the start of the
124  * block data (just past the block header).
125  */
126 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
127 {
128 	const void *block;
129 
130 	block = find_raw_section(bdb, section_id);
131 	if (!block)
132 		return 0;
133 
134 	return block - bdb;
135 }
136 
137 struct bdb_block_entry {
138 	struct list_head node;
139 	enum bdb_block_id section_id;
140 	u8 data[];
141 };
142 
143 static const void *
144 bdb_find_section(struct drm_i915_private *i915,
145 		 enum bdb_block_id section_id)
146 {
147 	struct bdb_block_entry *entry;
148 
149 	list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
150 		if (entry->section_id == section_id)
151 			return entry->data + 3;
152 	}
153 
154 	return NULL;
155 }
156 
157 static const struct {
158 	enum bdb_block_id section_id;
159 	size_t min_size;
160 } bdb_blocks[] = {
161 	{ .section_id = BDB_GENERAL_FEATURES,
162 	  .min_size = sizeof(struct bdb_general_features), },
163 	{ .section_id = BDB_GENERAL_DEFINITIONS,
164 	  .min_size = sizeof(struct bdb_general_definitions), },
165 	{ .section_id = BDB_PSR,
166 	  .min_size = sizeof(struct bdb_psr), },
167 	{ .section_id = BDB_DRIVER_FEATURES,
168 	  .min_size = sizeof(struct bdb_driver_features), },
169 	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
170 	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
171 	{ .section_id = BDB_SDVO_PANEL_DTDS,
172 	  .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
173 	{ .section_id = BDB_EDP,
174 	  .min_size = sizeof(struct bdb_edp), },
175 	{ .section_id = BDB_LVDS_OPTIONS,
176 	  .min_size = sizeof(struct bdb_lvds_options), },
177 	/*
178 	 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
179 	 * so keep the two ordered.
180 	 */
181 	{ .section_id = BDB_LVDS_LFP_DATA_PTRS,
182 	  .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
183 	{ .section_id = BDB_LVDS_LFP_DATA,
184 	  .min_size = 0, /* special case */ },
185 	{ .section_id = BDB_LVDS_BACKLIGHT,
186 	  .min_size = sizeof(struct bdb_lfp_backlight_data), },
187 	{ .section_id = BDB_LFP_POWER,
188 	  .min_size = sizeof(struct bdb_lfp_power), },
189 	{ .section_id = BDB_MIPI_CONFIG,
190 	  .min_size = sizeof(struct bdb_mipi_config), },
191 	{ .section_id = BDB_MIPI_SEQUENCE,
192 	  .min_size = sizeof(struct bdb_mipi_sequence) },
193 	{ .section_id = BDB_COMPRESSION_PARAMETERS,
194 	  .min_size = sizeof(struct bdb_compression_parameters), },
195 	{ .section_id = BDB_GENERIC_DTD,
196 	  .min_size = sizeof(struct bdb_generic_dtd), },
197 };
198 
199 static size_t lfp_data_min_size(struct drm_i915_private *i915)
200 {
201 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
202 	size_t size;
203 
204 	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
205 	if (!ptrs)
206 		return 0;
207 
208 	size = sizeof(struct bdb_lvds_lfp_data);
209 	if (ptrs->panel_name.table_size)
210 		size = max(size, ptrs->panel_name.offset +
211 			   sizeof(struct bdb_lvds_lfp_data_tail));
212 
213 	return size;
214 }
215 
216 static bool validate_lfp_data_ptrs(const void *bdb,
217 				   const struct bdb_lvds_lfp_data_ptrs *ptrs)
218 {
219 	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
220 	int data_block_size, lfp_data_size;
221 	const void *data_block;
222 	int i;
223 
224 	data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
225 	if (!data_block)
226 		return false;
227 
228 	data_block_size = get_blocksize(data_block);
229 	if (data_block_size == 0)
230 		return false;
231 
232 	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
233 	if (ptrs->lvds_entries != 3)
234 		return false;
235 
236 	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
237 	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
238 	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
239 	panel_name_size = ptrs->panel_name.table_size;
240 
241 	/* fp_timing has variable size */
242 	if (fp_timing_size < 32 ||
243 	    dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
244 	    panel_pnp_id_size != sizeof(struct lvds_pnp_id))
245 		return false;
246 
247 	/* panel_name is not present in old VBTs */
248 	if (panel_name_size != 0 &&
249 	    panel_name_size != sizeof(struct lvds_lfp_panel_name))
250 		return false;
251 
252 	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
253 	if (16 * lfp_data_size > data_block_size)
254 		return false;
255 
256 	/* make sure the table entries have uniform size */
257 	for (i = 1; i < 16; i++) {
258 		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
259 		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
260 		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
261 			return false;
262 
263 		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
264 		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
265 		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
266 			return false;
267 	}
268 
269 	/*
270 	 * Except for vlv/chv machines all real VBTs seem to have 6
271 	 * unaccounted bytes in the fp_timing table. And it doesn't
272 	 * appear to be a really intentional hole as the fp_timing
273 	 * 0xffff terminator is always within those 6 missing bytes.
274 	 */
275 	if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
276 		fp_timing_size += 6;
277 
278 	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
279 		return false;
280 
281 	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
282 	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
283 	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
284 		return false;
285 
286 	/* make sure the tables fit inside the data block */
287 	for (i = 0; i < 16; i++) {
288 		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
289 		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
290 		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
291 			return false;
292 	}
293 
294 	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
295 		return false;
296 
297 	/* make sure fp_timing terminators are present at expected locations */
298 	for (i = 0; i < 16; i++) {
299 		const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
300 			fp_timing_size - 2;
301 
302 		if (*t != 0xffff)
303 			return false;
304 	}
305 
306 	return true;
307 }
308 
309 /* make the data table offsets relative to the data block */
310 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
311 {
312 	struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
313 	u32 offset;
314 	int i;
315 
316 	offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
317 
318 	for (i = 0; i < 16; i++) {
319 		if (ptrs->ptr[i].fp_timing.offset < offset ||
320 		    ptrs->ptr[i].dvo_timing.offset < offset ||
321 		    ptrs->ptr[i].panel_pnp_id.offset < offset)
322 			return false;
323 
324 		ptrs->ptr[i].fp_timing.offset -= offset;
325 		ptrs->ptr[i].dvo_timing.offset -= offset;
326 		ptrs->ptr[i].panel_pnp_id.offset -= offset;
327 	}
328 
329 	if (ptrs->panel_name.table_size) {
330 		if (ptrs->panel_name.offset < offset)
331 			return false;
332 
333 		ptrs->panel_name.offset -= offset;
334 	}
335 
336 	return validate_lfp_data_ptrs(bdb, ptrs);
337 }
338 
339 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
340 			     int table_size, int total_size)
341 {
342 	if (total_size < table_size)
343 		return total_size;
344 
345 	table->table_size = table_size;
346 	table->offset = total_size - table_size;
347 
348 	return total_size - table_size;
349 }
350 
351 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
352 			      const struct lvds_lfp_data_ptr_table *prev,
353 			      int size)
354 {
355 	next->table_size = prev->table_size;
356 	next->offset = prev->offset + size;
357 }
358 
359 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
360 				    const void *bdb)
361 {
362 	int i, size, table_size, block_size, offset, fp_timing_size;
363 	struct bdb_lvds_lfp_data_ptrs *ptrs;
364 	const void *block;
365 	void *ptrs_block;
366 
367 	/*
368 	 * The hardcoded fp_timing_size is only valid for
369 	 * modernish VBTs. All older VBTs definitely should
370 	 * include block 41 and thus we don't need to
371 	 * generate one.
372 	 */
373 	if (i915->display.vbt.version < 155)
374 		return NULL;
375 
376 	fp_timing_size = 38;
377 
378 	block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
379 	if (!block)
380 		return NULL;
381 
382 	drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
383 
384 	block_size = get_blocksize(block);
385 
386 	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
387 		sizeof(struct lvds_pnp_id);
388 	if (size * 16 > block_size)
389 		return NULL;
390 
391 	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
392 	if (!ptrs_block)
393 		return NULL;
394 
395 	*(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
396 	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
397 	ptrs = ptrs_block + 3;
398 
399 	table_size = sizeof(struct lvds_pnp_id);
400 	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
401 
402 	table_size = sizeof(struct lvds_dvo_timing);
403 	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
404 
405 	table_size = fp_timing_size;
406 	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
407 
408 	if (ptrs->ptr[0].fp_timing.table_size)
409 		ptrs->lvds_entries++;
410 	if (ptrs->ptr[0].dvo_timing.table_size)
411 		ptrs->lvds_entries++;
412 	if (ptrs->ptr[0].panel_pnp_id.table_size)
413 		ptrs->lvds_entries++;
414 
415 	if (size != 0 || ptrs->lvds_entries != 3) {
416 		kfree(ptrs_block);
417 		return NULL;
418 	}
419 
420 	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
421 		sizeof(struct lvds_pnp_id);
422 	for (i = 1; i < 16; i++) {
423 		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
424 		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
425 		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
426 	}
427 
428 	table_size = sizeof(struct lvds_lfp_panel_name);
429 
430 	if (16 * (size + table_size) <= block_size) {
431 		ptrs->panel_name.table_size = table_size;
432 		ptrs->panel_name.offset = size * 16;
433 	}
434 
435 	offset = block - bdb;
436 
437 	for (i = 0; i < 16; i++) {
438 		ptrs->ptr[i].fp_timing.offset += offset;
439 		ptrs->ptr[i].dvo_timing.offset += offset;
440 		ptrs->ptr[i].panel_pnp_id.offset += offset;
441 	}
442 
443 	if (ptrs->panel_name.table_size)
444 		ptrs->panel_name.offset += offset;
445 
446 	return ptrs_block;
447 }
448 
449 static void
450 init_bdb_block(struct drm_i915_private *i915,
451 	       const void *bdb, enum bdb_block_id section_id,
452 	       size_t min_size)
453 {
454 	struct bdb_block_entry *entry;
455 	void *temp_block = NULL;
456 	const void *block;
457 	size_t block_size;
458 
459 	block = find_raw_section(bdb, section_id);
460 
461 	/* Modern VBTs lack the LFP data table pointers block, make one up */
462 	if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
463 		temp_block = generate_lfp_data_ptrs(i915, bdb);
464 		if (temp_block)
465 			block = temp_block + 3;
466 	}
467 	if (!block)
468 		return;
469 
470 	drm_WARN(&i915->drm, min_size == 0,
471 		 "Block %d min_size is zero\n", section_id);
472 
473 	block_size = get_blocksize(block);
474 
475 	/*
476 	 * Version number and new block size are considered
477 	 * part of the header for MIPI sequenece block v3+.
478 	 */
479 	if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
480 		block_size += 5;
481 
482 	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
483 			GFP_KERNEL);
484 	if (!entry) {
485 		kfree(temp_block);
486 		return;
487 	}
488 
489 	entry->section_id = section_id;
490 	memcpy(entry->data, block - 3, block_size + 3);
491 
492 	kfree(temp_block);
493 
494 	drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
495 		    section_id, block_size, min_size);
496 
497 	if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
498 	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
499 		drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
500 		kfree(entry);
501 		return;
502 	}
503 
504 	list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
505 }
506 
507 static void init_bdb_blocks(struct drm_i915_private *i915,
508 			    const void *bdb)
509 {
510 	int i;
511 
512 	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
513 		enum bdb_block_id section_id = bdb_blocks[i].section_id;
514 		size_t min_size = bdb_blocks[i].min_size;
515 
516 		if (section_id == BDB_LVDS_LFP_DATA)
517 			min_size = lfp_data_min_size(i915);
518 
519 		init_bdb_block(i915, bdb, section_id, min_size);
520 	}
521 }
522 
523 static void
524 fill_detail_timing_data(struct drm_i915_private *i915,
525 			struct drm_display_mode *panel_fixed_mode,
526 			const struct lvds_dvo_timing *dvo_timing)
527 {
528 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
529 		dvo_timing->hactive_lo;
530 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
531 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
532 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
533 		((dvo_timing->hsync_pulse_width_hi << 8) |
534 			dvo_timing->hsync_pulse_width_lo);
535 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
536 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
537 
538 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
539 		dvo_timing->vactive_lo;
540 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
541 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
542 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
543 		((dvo_timing->vsync_pulse_width_hi << 4) |
544 			dvo_timing->vsync_pulse_width_lo);
545 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
546 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
547 	panel_fixed_mode->clock = dvo_timing->clock * 10;
548 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
549 
550 	if (dvo_timing->hsync_positive)
551 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
552 	else
553 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
554 
555 	if (dvo_timing->vsync_positive)
556 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
557 	else
558 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
559 
560 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
561 		dvo_timing->himage_lo;
562 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
563 		dvo_timing->vimage_lo;
564 
565 	/* Some VBTs have bogus h/vsync_end values */
566 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) {
567 		drm_dbg_kms(&i915->drm, "reducing hsync_end %d->%d\n",
568 			    panel_fixed_mode->hsync_end, panel_fixed_mode->htotal);
569 		panel_fixed_mode->hsync_end = panel_fixed_mode->htotal;
570 	}
571 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) {
572 		drm_dbg_kms(&i915->drm, "reducing vsync_end %d->%d\n",
573 			    panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal);
574 		panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal;
575 	}
576 
577 	drm_mode_set_name(panel_fixed_mode);
578 }
579 
580 static const struct lvds_dvo_timing *
581 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
582 		    const struct bdb_lvds_lfp_data_ptrs *ptrs,
583 		    int index)
584 {
585 	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
586 }
587 
588 static const struct lvds_fp_timing *
589 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
590 		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
591 		   int index)
592 {
593 	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
594 }
595 
596 static const struct lvds_pnp_id *
597 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
598 		const struct bdb_lvds_lfp_data_ptrs *ptrs,
599 		int index)
600 {
601 	return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
602 }
603 
604 static const struct bdb_lvds_lfp_data_tail *
605 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
606 		  const struct bdb_lvds_lfp_data_ptrs *ptrs)
607 {
608 	if (ptrs->panel_name.table_size)
609 		return (const void *)data + ptrs->panel_name.offset;
610 	else
611 		return NULL;
612 }
613 
614 static void dump_pnp_id(struct drm_i915_private *i915,
615 			const struct lvds_pnp_id *pnp_id,
616 			const char *name)
617 {
618 	u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
619 	char vend[4];
620 
621 	drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
622 		    name, drm_edid_decode_mfg_id(mfg_name, vend),
623 		    pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
624 		    pnp_id->mfg_week, pnp_id->mfg_year + 1990);
625 }
626 
627 static int opregion_get_panel_type(struct drm_i915_private *i915,
628 				   const struct intel_bios_encoder_data *devdata,
629 				   const struct drm_edid *drm_edid, bool use_fallback)
630 {
631 	return intel_opregion_get_panel_type(i915);
632 }
633 
634 static int vbt_get_panel_type(struct drm_i915_private *i915,
635 			      const struct intel_bios_encoder_data *devdata,
636 			      const struct drm_edid *drm_edid, bool use_fallback)
637 {
638 	const struct bdb_lvds_options *lvds_options;
639 
640 	lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
641 	if (!lvds_options)
642 		return -1;
643 
644 	if (lvds_options->panel_type > 0xf &&
645 	    lvds_options->panel_type != 0xff) {
646 		drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
647 			    lvds_options->panel_type);
648 		return -1;
649 	}
650 
651 	if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
652 		return lvds_options->panel_type2;
653 
654 	drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
655 
656 	return lvds_options->panel_type;
657 }
658 
659 static int pnpid_get_panel_type(struct drm_i915_private *i915,
660 				const struct intel_bios_encoder_data *devdata,
661 				const struct drm_edid *drm_edid, bool use_fallback)
662 {
663 	const struct bdb_lvds_lfp_data *data;
664 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
665 	const struct lvds_pnp_id *edid_id;
666 	struct lvds_pnp_id edid_id_nodate;
667 	const struct edid *edid = drm_edid_raw(drm_edid); /* FIXME */
668 	int i, best = -1;
669 
670 	if (!edid)
671 		return -1;
672 
673 	edid_id = (const void *)&edid->mfg_id[0];
674 
675 	edid_id_nodate = *edid_id;
676 	edid_id_nodate.mfg_week = 0;
677 	edid_id_nodate.mfg_year = 0;
678 
679 	dump_pnp_id(i915, edid_id, "EDID");
680 
681 	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
682 	if (!ptrs)
683 		return -1;
684 
685 	data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
686 	if (!data)
687 		return -1;
688 
689 	for (i = 0; i < 16; i++) {
690 		const struct lvds_pnp_id *vbt_id =
691 			get_lvds_pnp_id(data, ptrs, i);
692 
693 		/* full match? */
694 		if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
695 			return i;
696 
697 		/*
698 		 * Accept a match w/o date if no full match is found,
699 		 * and the VBT entry does not specify a date.
700 		 */
701 		if (best < 0 &&
702 		    !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
703 			best = i;
704 	}
705 
706 	return best;
707 }
708 
709 static int fallback_get_panel_type(struct drm_i915_private *i915,
710 				   const struct intel_bios_encoder_data *devdata,
711 				   const struct drm_edid *drm_edid, bool use_fallback)
712 {
713 	return use_fallback ? 0 : -1;
714 }
715 
716 enum panel_type {
717 	PANEL_TYPE_OPREGION,
718 	PANEL_TYPE_VBT,
719 	PANEL_TYPE_PNPID,
720 	PANEL_TYPE_FALLBACK,
721 };
722 
723 static int get_panel_type(struct drm_i915_private *i915,
724 			  const struct intel_bios_encoder_data *devdata,
725 			  const struct drm_edid *drm_edid, bool use_fallback)
726 {
727 	struct {
728 		const char *name;
729 		int (*get_panel_type)(struct drm_i915_private *i915,
730 				      const struct intel_bios_encoder_data *devdata,
731 				      const struct drm_edid *drm_edid, bool use_fallback);
732 		int panel_type;
733 	} panel_types[] = {
734 		[PANEL_TYPE_OPREGION] = {
735 			.name = "OpRegion",
736 			.get_panel_type = opregion_get_panel_type,
737 		},
738 		[PANEL_TYPE_VBT] = {
739 			.name = "VBT",
740 			.get_panel_type = vbt_get_panel_type,
741 		},
742 		[PANEL_TYPE_PNPID] = {
743 			.name = "PNPID",
744 			.get_panel_type = pnpid_get_panel_type,
745 		},
746 		[PANEL_TYPE_FALLBACK] = {
747 			.name = "fallback",
748 			.get_panel_type = fallback_get_panel_type,
749 		},
750 	};
751 	int i;
752 
753 	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
754 		panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata,
755 									  drm_edid, use_fallback);
756 
757 		drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
758 			    panel_types[i].panel_type != 0xff);
759 
760 		if (panel_types[i].panel_type >= 0)
761 			drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
762 				    panel_types[i].name, panel_types[i].panel_type);
763 	}
764 
765 	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
766 		i = PANEL_TYPE_OPREGION;
767 	else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
768 		 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
769 		i = PANEL_TYPE_PNPID;
770 	else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
771 		 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
772 		i = PANEL_TYPE_VBT;
773 	else
774 		i = PANEL_TYPE_FALLBACK;
775 
776 	drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
777 		    panel_types[i].name, panel_types[i].panel_type);
778 
779 	return panel_types[i].panel_type;
780 }
781 
782 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
783 {
784 	return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
785 }
786 
787 static bool panel_bool(unsigned int value, int panel_type)
788 {
789 	return panel_bits(value, panel_type, 1);
790 }
791 
792 /* Parse general panel options */
793 static void
794 parse_panel_options(struct drm_i915_private *i915,
795 		    struct intel_panel *panel)
796 {
797 	const struct bdb_lvds_options *lvds_options;
798 	int panel_type = panel->vbt.panel_type;
799 	int drrs_mode;
800 
801 	lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
802 	if (!lvds_options)
803 		return;
804 
805 	panel->vbt.lvds_dither = lvds_options->pixel_dither;
806 
807 	/*
808 	 * Empirical evidence indicates the block size can be
809 	 * either 4,14,16,24+ bytes. For older VBTs no clear
810 	 * relationship between the block size vs. BDB version.
811 	 */
812 	if (get_blocksize(lvds_options) < 16)
813 		return;
814 
815 	drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
816 			       panel_type, 2);
817 	/*
818 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
819 	 * The below piece of code is required to adjust vbt.drrs_type
820 	 * to match the enum drrs_support_type.
821 	 */
822 	switch (drrs_mode) {
823 	case 0:
824 		panel->vbt.drrs_type = DRRS_TYPE_STATIC;
825 		drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
826 		break;
827 	case 2:
828 		panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
829 		drm_dbg_kms(&i915->drm,
830 			    "DRRS supported mode is seamless\n");
831 		break;
832 	default:
833 		panel->vbt.drrs_type = DRRS_TYPE_NONE;
834 		drm_dbg_kms(&i915->drm,
835 			    "DRRS not supported (VBT input)\n");
836 		break;
837 	}
838 }
839 
840 static void
841 parse_lfp_panel_dtd(struct drm_i915_private *i915,
842 		    struct intel_panel *panel,
843 		    const struct bdb_lvds_lfp_data *lvds_lfp_data,
844 		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
845 {
846 	const struct lvds_dvo_timing *panel_dvo_timing;
847 	const struct lvds_fp_timing *fp_timing;
848 	struct drm_display_mode *panel_fixed_mode;
849 	int panel_type = panel->vbt.panel_type;
850 
851 	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
852 					       lvds_lfp_data_ptrs,
853 					       panel_type);
854 
855 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
856 	if (!panel_fixed_mode)
857 		return;
858 
859 	fill_detail_timing_data(i915, panel_fixed_mode, panel_dvo_timing);
860 
861 	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
862 
863 	drm_dbg_kms(&i915->drm,
864 		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
865 		    DRM_MODE_ARG(panel_fixed_mode));
866 
867 	fp_timing = get_lvds_fp_timing(lvds_lfp_data,
868 				       lvds_lfp_data_ptrs,
869 				       panel_type);
870 
871 	/* check the resolution, just to be sure */
872 	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
873 	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
874 		panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
875 		drm_dbg_kms(&i915->drm,
876 			    "VBT initial LVDS value %x\n",
877 			    panel->vbt.bios_lvds_val);
878 	}
879 }
880 
881 static void
882 parse_lfp_data(struct drm_i915_private *i915,
883 	       struct intel_panel *panel)
884 {
885 	const struct bdb_lvds_lfp_data *data;
886 	const struct bdb_lvds_lfp_data_tail *tail;
887 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
888 	const struct lvds_pnp_id *pnp_id;
889 	int panel_type = panel->vbt.panel_type;
890 
891 	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
892 	if (!ptrs)
893 		return;
894 
895 	data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
896 	if (!data)
897 		return;
898 
899 	if (!panel->vbt.lfp_lvds_vbt_mode)
900 		parse_lfp_panel_dtd(i915, panel, data, ptrs);
901 
902 	pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
903 	dump_pnp_id(i915, pnp_id, "Panel");
904 
905 	tail = get_lfp_data_tail(data, ptrs);
906 	if (!tail)
907 		return;
908 
909 	drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
910 		    (int)sizeof(tail->panel_name[0].name),
911 		    tail->panel_name[panel_type].name);
912 
913 	if (i915->display.vbt.version >= 188) {
914 		panel->vbt.seamless_drrs_min_refresh_rate =
915 			tail->seamless_drrs_min_refresh_rate[panel_type];
916 		drm_dbg_kms(&i915->drm,
917 			    "Seamless DRRS min refresh rate: %d Hz\n",
918 			    panel->vbt.seamless_drrs_min_refresh_rate);
919 	}
920 }
921 
922 static void
923 parse_generic_dtd(struct drm_i915_private *i915,
924 		  struct intel_panel *panel)
925 {
926 	const struct bdb_generic_dtd *generic_dtd;
927 	const struct generic_dtd_entry *dtd;
928 	struct drm_display_mode *panel_fixed_mode;
929 	int num_dtd;
930 
931 	/*
932 	 * Older VBTs provided DTD information for internal displays through
933 	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
934 	 * DTD information should be provided via a newer "generic DTD"
935 	 * block (58).  Just to be safe, we'll try the new generic DTD block
936 	 * first on VBT >= 229, but still fall back to trying the old LFP
937 	 * block if that fails.
938 	 */
939 	if (i915->display.vbt.version < 229)
940 		return;
941 
942 	generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD);
943 	if (!generic_dtd)
944 		return;
945 
946 	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
947 		drm_err(&i915->drm, "GDTD size %u is too small.\n",
948 			generic_dtd->gdtd_size);
949 		return;
950 	} else if (generic_dtd->gdtd_size !=
951 		   sizeof(struct generic_dtd_entry)) {
952 		drm_err(&i915->drm, "Unexpected GDTD size %u\n",
953 			generic_dtd->gdtd_size);
954 		/* DTD has unknown fields, but keep going */
955 	}
956 
957 	num_dtd = (get_blocksize(generic_dtd) -
958 		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
959 	if (panel->vbt.panel_type >= num_dtd) {
960 		drm_err(&i915->drm,
961 			"Panel type %d not found in table of %d DTD's\n",
962 			panel->vbt.panel_type, num_dtd);
963 		return;
964 	}
965 
966 	dtd = &generic_dtd->dtd[panel->vbt.panel_type];
967 
968 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
969 	if (!panel_fixed_mode)
970 		return;
971 
972 	panel_fixed_mode->hdisplay = dtd->hactive;
973 	panel_fixed_mode->hsync_start =
974 		panel_fixed_mode->hdisplay + dtd->hfront_porch;
975 	panel_fixed_mode->hsync_end =
976 		panel_fixed_mode->hsync_start + dtd->hsync;
977 	panel_fixed_mode->htotal =
978 		panel_fixed_mode->hdisplay + dtd->hblank;
979 
980 	panel_fixed_mode->vdisplay = dtd->vactive;
981 	panel_fixed_mode->vsync_start =
982 		panel_fixed_mode->vdisplay + dtd->vfront_porch;
983 	panel_fixed_mode->vsync_end =
984 		panel_fixed_mode->vsync_start + dtd->vsync;
985 	panel_fixed_mode->vtotal =
986 		panel_fixed_mode->vdisplay + dtd->vblank;
987 
988 	panel_fixed_mode->clock = dtd->pixel_clock;
989 	panel_fixed_mode->width_mm = dtd->width_mm;
990 	panel_fixed_mode->height_mm = dtd->height_mm;
991 
992 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
993 	drm_mode_set_name(panel_fixed_mode);
994 
995 	if (dtd->hsync_positive_polarity)
996 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
997 	else
998 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
999 
1000 	if (dtd->vsync_positive_polarity)
1001 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
1002 	else
1003 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
1004 
1005 	drm_dbg_kms(&i915->drm,
1006 		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1007 		    DRM_MODE_ARG(panel_fixed_mode));
1008 
1009 	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
1010 }
1011 
1012 static void
1013 parse_lfp_backlight(struct drm_i915_private *i915,
1014 		    struct intel_panel *panel)
1015 {
1016 	const struct bdb_lfp_backlight_data *backlight_data;
1017 	const struct lfp_backlight_data_entry *entry;
1018 	int panel_type = panel->vbt.panel_type;
1019 	u16 level;
1020 
1021 	backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT);
1022 	if (!backlight_data)
1023 		return;
1024 
1025 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1026 		drm_dbg_kms(&i915->drm,
1027 			    "Unsupported backlight data entry size %u\n",
1028 			    backlight_data->entry_size);
1029 		return;
1030 	}
1031 
1032 	entry = &backlight_data->data[panel_type];
1033 
1034 	panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1035 	if (!panel->vbt.backlight.present) {
1036 		drm_dbg_kms(&i915->drm,
1037 			    "PWM backlight not present in VBT (type %u)\n",
1038 			    entry->type);
1039 		return;
1040 	}
1041 
1042 	panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1043 	panel->vbt.backlight.controller = 0;
1044 	if (i915->display.vbt.version >= 191) {
1045 		const struct lfp_backlight_control_method *method;
1046 
1047 		method = &backlight_data->backlight_control[panel_type];
1048 		panel->vbt.backlight.type = method->type;
1049 		panel->vbt.backlight.controller = method->controller;
1050 	}
1051 
1052 	panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1053 	panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1054 
1055 	if (i915->display.vbt.version >= 234) {
1056 		u16 min_level;
1057 		bool scale;
1058 
1059 		level = backlight_data->brightness_level[panel_type].level;
1060 		min_level = backlight_data->brightness_min_level[panel_type].level;
1061 
1062 		if (i915->display.vbt.version >= 236)
1063 			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1064 		else
1065 			scale = level > 255;
1066 
1067 		if (scale)
1068 			min_level = min_level / 255;
1069 
1070 		if (min_level > 255) {
1071 			drm_warn(&i915->drm, "Brightness min level > 255\n");
1072 			level = 255;
1073 		}
1074 		panel->vbt.backlight.min_brightness = min_level;
1075 
1076 		panel->vbt.backlight.brightness_precision_bits =
1077 			backlight_data->brightness_precision_bits[panel_type];
1078 	} else {
1079 		level = backlight_data->level[panel_type];
1080 		panel->vbt.backlight.min_brightness = entry->min_brightness;
1081 	}
1082 
1083 	if (i915->display.vbt.version >= 239)
1084 		panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1085 			DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1086 	else
1087 		panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1088 
1089 	drm_dbg_kms(&i915->drm,
1090 		    "VBT backlight PWM modulation frequency %u Hz, "
1091 		    "active %s, min brightness %u, level %u, controller %u\n",
1092 		    panel->vbt.backlight.pwm_freq_hz,
1093 		    panel->vbt.backlight.active_low_pwm ? "low" : "high",
1094 		    panel->vbt.backlight.min_brightness,
1095 		    level,
1096 		    panel->vbt.backlight.controller);
1097 }
1098 
1099 /* Try to find sdvo panel data */
1100 static void
1101 parse_sdvo_panel_data(struct drm_i915_private *i915,
1102 		      struct intel_panel *panel)
1103 {
1104 	const struct bdb_sdvo_panel_dtds *dtds;
1105 	struct drm_display_mode *panel_fixed_mode;
1106 	int index;
1107 
1108 	index = i915->display.params.vbt_sdvo_panel_type;
1109 	if (index == -2) {
1110 		drm_dbg_kms(&i915->drm,
1111 			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
1112 		return;
1113 	}
1114 
1115 	if (index == -1) {
1116 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1117 
1118 		sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1119 		if (!sdvo_lvds_options)
1120 			return;
1121 
1122 		index = sdvo_lvds_options->panel_type;
1123 	}
1124 
1125 	dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS);
1126 	if (!dtds)
1127 		return;
1128 
1129 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1130 	if (!panel_fixed_mode)
1131 		return;
1132 
1133 	fill_detail_timing_data(i915, panel_fixed_mode, &dtds->dtds[index]);
1134 
1135 	panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1136 
1137 	drm_dbg_kms(&i915->drm,
1138 		    "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1139 		    DRM_MODE_ARG(panel_fixed_mode));
1140 }
1141 
1142 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1143 				    bool alternate)
1144 {
1145 	switch (DISPLAY_VER(i915)) {
1146 	case 2:
1147 		return alternate ? 66667 : 48000;
1148 	case 3:
1149 	case 4:
1150 		return alternate ? 100000 : 96000;
1151 	default:
1152 		return alternate ? 100000 : 120000;
1153 	}
1154 }
1155 
1156 static void
1157 parse_general_features(struct drm_i915_private *i915)
1158 {
1159 	const struct bdb_general_features *general;
1160 
1161 	general = bdb_find_section(i915, BDB_GENERAL_FEATURES);
1162 	if (!general)
1163 		return;
1164 
1165 	i915->display.vbt.int_tv_support = general->int_tv_support;
1166 	/* int_crt_support can't be trusted on earlier platforms */
1167 	if (i915->display.vbt.version >= 155 &&
1168 	    (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1169 		i915->display.vbt.int_crt_support = general->int_crt_support;
1170 	i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1171 	i915->display.vbt.lvds_ssc_freq =
1172 		intel_bios_ssc_frequency(i915, general->ssc_freq);
1173 	i915->display.vbt.display_clock_mode = general->display_clock_mode;
1174 	i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1175 	if (i915->display.vbt.version >= 181) {
1176 		i915->display.vbt.orientation = general->rotate_180 ?
1177 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1178 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1179 	} else {
1180 		i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1181 	}
1182 
1183 	if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1184 		i915->display.vbt.override_afc_startup = true;
1185 		i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1186 	}
1187 
1188 	drm_dbg_kms(&i915->drm,
1189 		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1190 		    i915->display.vbt.int_tv_support,
1191 		    i915->display.vbt.int_crt_support,
1192 		    i915->display.vbt.lvds_use_ssc,
1193 		    i915->display.vbt.lvds_ssc_freq,
1194 		    i915->display.vbt.display_clock_mode,
1195 		    i915->display.vbt.fdi_rx_polarity_inverted);
1196 }
1197 
1198 static const struct child_device_config *
1199 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1200 {
1201 	return (const void *) &defs->devices[i * defs->child_dev_size];
1202 }
1203 
1204 static void
1205 parse_sdvo_device_mapping(struct drm_i915_private *i915)
1206 {
1207 	const struct intel_bios_encoder_data *devdata;
1208 	int count = 0;
1209 
1210 	/*
1211 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1212 	 * accurate and doesn't have to be, as long as it's not too strict.
1213 	 */
1214 	if (!IS_DISPLAY_VER(i915, 3, 7)) {
1215 		drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1216 		return;
1217 	}
1218 
1219 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1220 		const struct child_device_config *child = &devdata->child;
1221 		struct sdvo_device_mapping *mapping;
1222 
1223 		if (child->slave_addr != SLAVE_ADDR1 &&
1224 		    child->slave_addr != SLAVE_ADDR2) {
1225 			/*
1226 			 * If the slave address is neither 0x70 nor 0x72,
1227 			 * it is not a SDVO device. Skip it.
1228 			 */
1229 			continue;
1230 		}
1231 		if (child->dvo_port != DEVICE_PORT_DVOB &&
1232 		    child->dvo_port != DEVICE_PORT_DVOC) {
1233 			/* skip the incorrect SDVO port */
1234 			drm_dbg_kms(&i915->drm,
1235 				    "Incorrect SDVO port. Skip it\n");
1236 			continue;
1237 		}
1238 		drm_dbg_kms(&i915->drm,
1239 			    "the SDVO device with slave addr %2x is found on"
1240 			    " %s port\n",
1241 			    child->slave_addr,
1242 			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1243 			    "SDVOB" : "SDVOC");
1244 		mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1245 		if (!mapping->initialized) {
1246 			mapping->dvo_port = child->dvo_port;
1247 			mapping->slave_addr = child->slave_addr;
1248 			mapping->dvo_wiring = child->dvo_wiring;
1249 			mapping->ddc_pin = child->ddc_pin;
1250 			mapping->i2c_pin = child->i2c_pin;
1251 			mapping->initialized = 1;
1252 			drm_dbg_kms(&i915->drm,
1253 				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1254 				    mapping->dvo_port, mapping->slave_addr,
1255 				    mapping->dvo_wiring, mapping->ddc_pin,
1256 				    mapping->i2c_pin);
1257 		} else {
1258 			drm_dbg_kms(&i915->drm,
1259 				    "Maybe one SDVO port is shared by "
1260 				    "two SDVO device.\n");
1261 		}
1262 		if (child->slave2_addr) {
1263 			/* Maybe this is a SDVO device with multiple inputs */
1264 			/* And the mapping info is not added */
1265 			drm_dbg_kms(&i915->drm,
1266 				    "there exists the slave2_addr. Maybe this"
1267 				    " is a SDVO device with multiple inputs.\n");
1268 		}
1269 		count++;
1270 	}
1271 
1272 	if (!count) {
1273 		/* No SDVO device info is found */
1274 		drm_dbg_kms(&i915->drm,
1275 			    "No SDVO device info is found in VBT\n");
1276 	}
1277 }
1278 
1279 static void
1280 parse_driver_features(struct drm_i915_private *i915)
1281 {
1282 	const struct bdb_driver_features *driver;
1283 
1284 	driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1285 	if (!driver)
1286 		return;
1287 
1288 	if (DISPLAY_VER(i915) >= 5) {
1289 		/*
1290 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1291 		 * to mean "eDP". The VBT spec doesn't agree with that
1292 		 * interpretation, but real world VBTs seem to.
1293 		 */
1294 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1295 			i915->display.vbt.int_lvds_support = 0;
1296 	} else {
1297 		/*
1298 		 * FIXME it's not clear which BDB version has the LVDS config
1299 		 * bits defined. Revision history in the VBT spec says:
1300 		 * "0.92 | Add two definitions for VBT value of LVDS Active
1301 		 *  Config (00b and 11b values defined) | 06/13/2005"
1302 		 * but does not the specify the BDB version.
1303 		 *
1304 		 * So far version 134 (on i945gm) is the oldest VBT observed
1305 		 * in the wild with the bits correctly populated. Version
1306 		 * 108 (on i85x) does not have the bits correctly populated.
1307 		 */
1308 		if (i915->display.vbt.version >= 134 &&
1309 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1310 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1311 			i915->display.vbt.int_lvds_support = 0;
1312 	}
1313 }
1314 
1315 static void
1316 parse_panel_driver_features(struct drm_i915_private *i915,
1317 			    struct intel_panel *panel)
1318 {
1319 	const struct bdb_driver_features *driver;
1320 
1321 	driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1322 	if (!driver)
1323 		return;
1324 
1325 	if (i915->display.vbt.version < 228) {
1326 		drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1327 			    driver->drrs_enabled);
1328 		/*
1329 		 * If DRRS is not supported, drrs_type has to be set to 0.
1330 		 * This is because, VBT is configured in such a way that
1331 		 * static DRRS is 0 and DRRS not supported is represented by
1332 		 * driver->drrs_enabled=false
1333 		 */
1334 		if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1335 			/*
1336 			 * FIXME Should DMRRS perhaps be treated as seamless
1337 			 * but without the automatic downclocking?
1338 			 */
1339 			if (driver->dmrrs_enabled)
1340 				panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1341 			else
1342 				panel->vbt.drrs_type = DRRS_TYPE_NONE;
1343 		}
1344 
1345 		panel->vbt.psr.enable = driver->psr_enabled;
1346 	}
1347 }
1348 
1349 static void
1350 parse_power_conservation_features(struct drm_i915_private *i915,
1351 				  struct intel_panel *panel)
1352 {
1353 	const struct bdb_lfp_power *power;
1354 	u8 panel_type = panel->vbt.panel_type;
1355 
1356 	panel->vbt.vrr = true; /* matches Windows behaviour */
1357 
1358 	if (i915->display.vbt.version < 228)
1359 		return;
1360 
1361 	power = bdb_find_section(i915, BDB_LFP_POWER);
1362 	if (!power)
1363 		return;
1364 
1365 	panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1366 
1367 	/*
1368 	 * If DRRS is not supported, drrs_type has to be set to 0.
1369 	 * This is because, VBT is configured in such a way that
1370 	 * static DRRS is 0 and DRRS not supported is represented by
1371 	 * power->drrs & BIT(panel_type)=false
1372 	 */
1373 	if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1374 		/*
1375 		 * FIXME Should DMRRS perhaps be treated as seamless
1376 		 * but without the automatic downclocking?
1377 		 */
1378 		if (panel_bool(power->dmrrs, panel_type))
1379 			panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1380 		else
1381 			panel->vbt.drrs_type = DRRS_TYPE_NONE;
1382 	}
1383 
1384 	if (i915->display.vbt.version >= 232)
1385 		panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1386 
1387 	if (i915->display.vbt.version >= 233)
1388 		panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1389 					    panel_type);
1390 }
1391 
1392 static void
1393 parse_edp(struct drm_i915_private *i915,
1394 	  struct intel_panel *panel)
1395 {
1396 	const struct bdb_edp *edp;
1397 	const struct edp_power_seq *edp_pps;
1398 	const struct edp_fast_link_params *edp_link_params;
1399 	int panel_type = panel->vbt.panel_type;
1400 
1401 	edp = bdb_find_section(i915, BDB_EDP);
1402 	if (!edp)
1403 		return;
1404 
1405 	switch (panel_bits(edp->color_depth, panel_type, 2)) {
1406 	case EDP_18BPP:
1407 		panel->vbt.edp.bpp = 18;
1408 		break;
1409 	case EDP_24BPP:
1410 		panel->vbt.edp.bpp = 24;
1411 		break;
1412 	case EDP_30BPP:
1413 		panel->vbt.edp.bpp = 30;
1414 		break;
1415 	}
1416 
1417 	/* Get the eDP sequencing and link info */
1418 	edp_pps = &edp->power_seqs[panel_type];
1419 	edp_link_params = &edp->fast_link_params[panel_type];
1420 
1421 	panel->vbt.edp.pps = *edp_pps;
1422 
1423 	if (i915->display.vbt.version >= 224) {
1424 		panel->vbt.edp.rate =
1425 			edp->edp_fast_link_training_rate[panel_type] * 20;
1426 	} else {
1427 		switch (edp_link_params->rate) {
1428 		case EDP_RATE_1_62:
1429 			panel->vbt.edp.rate = 162000;
1430 			break;
1431 		case EDP_RATE_2_7:
1432 			panel->vbt.edp.rate = 270000;
1433 			break;
1434 		case EDP_RATE_5_4:
1435 			panel->vbt.edp.rate = 540000;
1436 			break;
1437 		default:
1438 			drm_dbg_kms(&i915->drm,
1439 				    "VBT has unknown eDP link rate value %u\n",
1440 				    edp_link_params->rate);
1441 			break;
1442 		}
1443 	}
1444 
1445 	switch (edp_link_params->lanes) {
1446 	case EDP_LANE_1:
1447 		panel->vbt.edp.lanes = 1;
1448 		break;
1449 	case EDP_LANE_2:
1450 		panel->vbt.edp.lanes = 2;
1451 		break;
1452 	case EDP_LANE_4:
1453 		panel->vbt.edp.lanes = 4;
1454 		break;
1455 	default:
1456 		drm_dbg_kms(&i915->drm,
1457 			    "VBT has unknown eDP lane count value %u\n",
1458 			    edp_link_params->lanes);
1459 		break;
1460 	}
1461 
1462 	switch (edp_link_params->preemphasis) {
1463 	case EDP_PREEMPHASIS_NONE:
1464 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1465 		break;
1466 	case EDP_PREEMPHASIS_3_5dB:
1467 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1468 		break;
1469 	case EDP_PREEMPHASIS_6dB:
1470 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1471 		break;
1472 	case EDP_PREEMPHASIS_9_5dB:
1473 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1474 		break;
1475 	default:
1476 		drm_dbg_kms(&i915->drm,
1477 			    "VBT has unknown eDP pre-emphasis value %u\n",
1478 			    edp_link_params->preemphasis);
1479 		break;
1480 	}
1481 
1482 	switch (edp_link_params->vswing) {
1483 	case EDP_VSWING_0_4V:
1484 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1485 		break;
1486 	case EDP_VSWING_0_6V:
1487 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1488 		break;
1489 	case EDP_VSWING_0_8V:
1490 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1491 		break;
1492 	case EDP_VSWING_1_2V:
1493 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1494 		break;
1495 	default:
1496 		drm_dbg_kms(&i915->drm,
1497 			    "VBT has unknown eDP voltage swing value %u\n",
1498 			    edp_link_params->vswing);
1499 		break;
1500 	}
1501 
1502 	if (i915->display.vbt.version >= 173) {
1503 		u8 vswing;
1504 
1505 		/* Don't read from VBT if module parameter has valid value*/
1506 		if (i915->display.params.edp_vswing) {
1507 			panel->vbt.edp.low_vswing =
1508 				i915->display.params.edp_vswing == 1;
1509 		} else {
1510 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1511 			panel->vbt.edp.low_vswing = vswing == 0;
1512 		}
1513 	}
1514 
1515 	panel->vbt.edp.drrs_msa_timing_delay =
1516 		panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1517 
1518 	if (i915->display.vbt.version >= 244)
1519 		panel->vbt.edp.max_link_rate =
1520 			edp->edp_max_port_link_rate[panel_type] * 20;
1521 }
1522 
1523 static void
1524 parse_psr(struct drm_i915_private *i915,
1525 	  struct intel_panel *panel)
1526 {
1527 	const struct bdb_psr *psr;
1528 	const struct psr_table *psr_table;
1529 	int panel_type = panel->vbt.panel_type;
1530 
1531 	psr = bdb_find_section(i915, BDB_PSR);
1532 	if (!psr) {
1533 		drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1534 		return;
1535 	}
1536 
1537 	psr_table = &psr->psr_table[panel_type];
1538 
1539 	panel->vbt.psr.full_link = psr_table->full_link;
1540 	panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1541 
1542 	/* Allowed VBT values goes from 0 to 15 */
1543 	panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1544 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1545 
1546 	/*
1547 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1548 	 * Old decimal value is wake up time in multiples of 100 us.
1549 	 */
1550 	if (i915->display.vbt.version >= 205 &&
1551 	    (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1552 		switch (psr_table->tp1_wakeup_time) {
1553 		case 0:
1554 			panel->vbt.psr.tp1_wakeup_time_us = 500;
1555 			break;
1556 		case 1:
1557 			panel->vbt.psr.tp1_wakeup_time_us = 100;
1558 			break;
1559 		case 3:
1560 			panel->vbt.psr.tp1_wakeup_time_us = 0;
1561 			break;
1562 		default:
1563 			drm_dbg_kms(&i915->drm,
1564 				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1565 				    psr_table->tp1_wakeup_time);
1566 			fallthrough;
1567 		case 2:
1568 			panel->vbt.psr.tp1_wakeup_time_us = 2500;
1569 			break;
1570 		}
1571 
1572 		switch (psr_table->tp2_tp3_wakeup_time) {
1573 		case 0:
1574 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1575 			break;
1576 		case 1:
1577 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1578 			break;
1579 		case 3:
1580 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1581 			break;
1582 		default:
1583 			drm_dbg_kms(&i915->drm,
1584 				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1585 				    psr_table->tp2_tp3_wakeup_time);
1586 			fallthrough;
1587 		case 2:
1588 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1589 		break;
1590 		}
1591 	} else {
1592 		panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1593 		panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1594 	}
1595 
1596 	if (i915->display.vbt.version >= 226) {
1597 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1598 
1599 		wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1600 		switch (wakeup_time) {
1601 		case 0:
1602 			wakeup_time = 500;
1603 			break;
1604 		case 1:
1605 			wakeup_time = 100;
1606 			break;
1607 		case 3:
1608 			wakeup_time = 50;
1609 			break;
1610 		default:
1611 		case 2:
1612 			wakeup_time = 2500;
1613 			break;
1614 		}
1615 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1616 	} else {
1617 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1618 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1619 	}
1620 }
1621 
1622 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1623 				      struct intel_panel *panel,
1624 				      enum port port)
1625 {
1626 	enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1627 
1628 	if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1629 		panel->vbt.dsi.bl_ports = BIT(port);
1630 		if (panel->vbt.dsi.config->cabc_supported)
1631 			panel->vbt.dsi.cabc_ports = BIT(port);
1632 
1633 		return;
1634 	}
1635 
1636 	switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1637 	case DL_DCS_PORT_A:
1638 		panel->vbt.dsi.bl_ports = BIT(PORT_A);
1639 		break;
1640 	case DL_DCS_PORT_C:
1641 		panel->vbt.dsi.bl_ports = BIT(port_bc);
1642 		break;
1643 	default:
1644 	case DL_DCS_PORT_A_AND_C:
1645 		panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1646 		break;
1647 	}
1648 
1649 	if (!panel->vbt.dsi.config->cabc_supported)
1650 		return;
1651 
1652 	switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1653 	case DL_DCS_PORT_A:
1654 		panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1655 		break;
1656 	case DL_DCS_PORT_C:
1657 		panel->vbt.dsi.cabc_ports = BIT(port_bc);
1658 		break;
1659 	default:
1660 	case DL_DCS_PORT_A_AND_C:
1661 		panel->vbt.dsi.cabc_ports =
1662 					BIT(PORT_A) | BIT(port_bc);
1663 		break;
1664 	}
1665 }
1666 
1667 static void
1668 parse_mipi_config(struct drm_i915_private *i915,
1669 		  struct intel_panel *panel)
1670 {
1671 	const struct bdb_mipi_config *start;
1672 	const struct mipi_config *config;
1673 	const struct mipi_pps_data *pps;
1674 	int panel_type = panel->vbt.panel_type;
1675 	enum port port;
1676 
1677 	/* parse MIPI blocks only if LFP type is MIPI */
1678 	if (!intel_bios_is_dsi_present(i915, &port))
1679 		return;
1680 
1681 	/* Initialize this to undefined indicating no generic MIPI support */
1682 	panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1683 
1684 	/* Block #40 is already parsed and panel_fixed_mode is
1685 	 * stored in i915->lfp_lvds_vbt_mode
1686 	 * resuse this when needed
1687 	 */
1688 
1689 	/* Parse #52 for panel index used from panel_type already
1690 	 * parsed
1691 	 */
1692 	start = bdb_find_section(i915, BDB_MIPI_CONFIG);
1693 	if (!start) {
1694 		drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1695 		return;
1696 	}
1697 
1698 	drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1699 		panel_type);
1700 
1701 	/*
1702 	 * get hold of the correct configuration block and pps data as per
1703 	 * the panel_type as index
1704 	 */
1705 	config = &start->config[panel_type];
1706 	pps = &start->pps[panel_type];
1707 
1708 	/* store as of now full data. Trim when we realise all is not needed */
1709 	panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1710 	if (!panel->vbt.dsi.config)
1711 		return;
1712 
1713 	panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1714 	if (!panel->vbt.dsi.pps) {
1715 		kfree(panel->vbt.dsi.config);
1716 		return;
1717 	}
1718 
1719 	parse_dsi_backlight_ports(i915, panel, port);
1720 
1721 	/* FIXME is the 90 vs. 270 correct? */
1722 	switch (config->rotation) {
1723 	case ENABLE_ROTATION_0:
1724 		/*
1725 		 * Most (all?) VBTs claim 0 degrees despite having
1726 		 * an upside down panel, thus we do not trust this.
1727 		 */
1728 		panel->vbt.dsi.orientation =
1729 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1730 		break;
1731 	case ENABLE_ROTATION_90:
1732 		panel->vbt.dsi.orientation =
1733 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1734 		break;
1735 	case ENABLE_ROTATION_180:
1736 		panel->vbt.dsi.orientation =
1737 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1738 		break;
1739 	case ENABLE_ROTATION_270:
1740 		panel->vbt.dsi.orientation =
1741 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1742 		break;
1743 	}
1744 
1745 	/* We have mandatory mipi config blocks. Initialize as generic panel */
1746 	panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1747 }
1748 
1749 /* Find the sequence block and size for the given panel. */
1750 static const u8 *
1751 find_panel_sequence_block(struct drm_i915_private *i915,
1752 			  const struct bdb_mipi_sequence *sequence,
1753 			  u16 panel_id, u32 *seq_size)
1754 {
1755 	u32 total = get_blocksize(sequence);
1756 	const u8 *data = &sequence->data[0];
1757 	u8 current_id;
1758 	u32 current_size;
1759 	int header_size = sequence->version >= 3 ? 5 : 3;
1760 	int index = 0;
1761 	int i;
1762 
1763 	/* skip new block size */
1764 	if (sequence->version >= 3)
1765 		data += 4;
1766 
1767 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1768 		if (index + header_size > total) {
1769 			drm_err(&i915->drm, "Invalid sequence block (header)\n");
1770 			return NULL;
1771 		}
1772 
1773 		current_id = *(data + index);
1774 		if (sequence->version >= 3)
1775 			current_size = *((const u32 *)(data + index + 1));
1776 		else
1777 			current_size = *((const u16 *)(data + index + 1));
1778 
1779 		index += header_size;
1780 
1781 		if (index + current_size > total) {
1782 			drm_err(&i915->drm, "Invalid sequence block\n");
1783 			return NULL;
1784 		}
1785 
1786 		if (current_id == panel_id) {
1787 			*seq_size = current_size;
1788 			return data + index;
1789 		}
1790 
1791 		index += current_size;
1792 	}
1793 
1794 	drm_err(&i915->drm, "Sequence block detected but no valid configuration\n");
1795 
1796 	return NULL;
1797 }
1798 
1799 static int goto_next_sequence(struct drm_i915_private *i915,
1800 			      const u8 *data, int index, int total)
1801 {
1802 	u16 len;
1803 
1804 	/* Skip Sequence Byte. */
1805 	for (index = index + 1; index < total; index += len) {
1806 		u8 operation_byte = *(data + index);
1807 		index++;
1808 
1809 		switch (operation_byte) {
1810 		case MIPI_SEQ_ELEM_END:
1811 			return index;
1812 		case MIPI_SEQ_ELEM_SEND_PKT:
1813 			if (index + 4 > total)
1814 				return 0;
1815 
1816 			len = *((const u16 *)(data + index + 2)) + 4;
1817 			break;
1818 		case MIPI_SEQ_ELEM_DELAY:
1819 			len = 4;
1820 			break;
1821 		case MIPI_SEQ_ELEM_GPIO:
1822 			len = 2;
1823 			break;
1824 		case MIPI_SEQ_ELEM_I2C:
1825 			if (index + 7 > total)
1826 				return 0;
1827 			len = *(data + index + 6) + 7;
1828 			break;
1829 		default:
1830 			drm_err(&i915->drm, "Unknown operation byte\n");
1831 			return 0;
1832 		}
1833 	}
1834 
1835 	return 0;
1836 }
1837 
1838 static int goto_next_sequence_v3(struct drm_i915_private *i915,
1839 				 const u8 *data, int index, int total)
1840 {
1841 	int seq_end;
1842 	u16 len;
1843 	u32 size_of_sequence;
1844 
1845 	/*
1846 	 * Could skip sequence based on Size of Sequence alone, but also do some
1847 	 * checking on the structure.
1848 	 */
1849 	if (total < 5) {
1850 		drm_err(&i915->drm, "Too small sequence size\n");
1851 		return 0;
1852 	}
1853 
1854 	/* Skip Sequence Byte. */
1855 	index++;
1856 
1857 	/*
1858 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1859 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1860 	 * byte.
1861 	 */
1862 	size_of_sequence = *((const u32 *)(data + index));
1863 	index += 4;
1864 
1865 	seq_end = index + size_of_sequence;
1866 	if (seq_end > total) {
1867 		drm_err(&i915->drm, "Invalid sequence size\n");
1868 		return 0;
1869 	}
1870 
1871 	for (; index < total; index += len) {
1872 		u8 operation_byte = *(data + index);
1873 		index++;
1874 
1875 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1876 			if (index != seq_end) {
1877 				drm_err(&i915->drm, "Invalid element structure\n");
1878 				return 0;
1879 			}
1880 			return index;
1881 		}
1882 
1883 		len = *(data + index);
1884 		index++;
1885 
1886 		/*
1887 		 * FIXME: Would be nice to check elements like for v1/v2 in
1888 		 * goto_next_sequence() above.
1889 		 */
1890 		switch (operation_byte) {
1891 		case MIPI_SEQ_ELEM_SEND_PKT:
1892 		case MIPI_SEQ_ELEM_DELAY:
1893 		case MIPI_SEQ_ELEM_GPIO:
1894 		case MIPI_SEQ_ELEM_I2C:
1895 		case MIPI_SEQ_ELEM_SPI:
1896 		case MIPI_SEQ_ELEM_PMIC:
1897 			break;
1898 		default:
1899 			drm_err(&i915->drm, "Unknown operation byte %u\n",
1900 				operation_byte);
1901 			break;
1902 		}
1903 	}
1904 
1905 	return 0;
1906 }
1907 
1908 /*
1909  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1910  * skip all delay + gpio operands and stop at the first DSI packet op.
1911  */
1912 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1913 					      struct intel_panel *panel)
1914 {
1915 	const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1916 	int index, len;
1917 
1918 	if (drm_WARN_ON(&i915->drm,
1919 			!data || panel->vbt.dsi.seq_version != 1))
1920 		return 0;
1921 
1922 	/* index = 1 to skip sequence byte */
1923 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1924 		switch (data[index]) {
1925 		case MIPI_SEQ_ELEM_SEND_PKT:
1926 			return index == 1 ? 0 : index;
1927 		case MIPI_SEQ_ELEM_DELAY:
1928 			len = 5; /* 1 byte for operand + uint32 */
1929 			break;
1930 		case MIPI_SEQ_ELEM_GPIO:
1931 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1932 			break;
1933 		default:
1934 			return 0;
1935 		}
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 /*
1942  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1943  * The deassert must be done before calling intel_dsi_device_ready, so for
1944  * these devices we split the init OTP sequence into a deassert sequence and
1945  * the actual init OTP part.
1946  */
1947 static void vlv_fixup_mipi_sequences(struct drm_i915_private *i915,
1948 				     struct intel_panel *panel)
1949 {
1950 	u8 *init_otp;
1951 	int len;
1952 
1953 	/* Limit this to v1 vid-mode sequences */
1954 	if (panel->vbt.dsi.config->is_cmd_mode ||
1955 	    panel->vbt.dsi.seq_version != 1)
1956 		return;
1957 
1958 	/* Only do this if there are otp and assert seqs and no deassert seq */
1959 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1960 	    !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1961 	    panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1962 		return;
1963 
1964 	/* The deassert-sequence ends at the first DSI packet */
1965 	len = get_init_otp_deassert_fragment_len(i915, panel);
1966 	if (!len)
1967 		return;
1968 
1969 	drm_dbg_kms(&i915->drm,
1970 		    "Using init OTP fragment to deassert reset\n");
1971 
1972 	/* Copy the fragment, update seq byte and terminate it */
1973 	init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1974 	panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1975 	if (!panel->vbt.dsi.deassert_seq)
1976 		return;
1977 	panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1978 	panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1979 	/* Use the copy for deassert */
1980 	panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1981 		panel->vbt.dsi.deassert_seq;
1982 	/* Replace the last byte of the fragment with init OTP seq byte */
1983 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1984 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1985 	panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1986 }
1987 
1988 /*
1989  * Some machines (eg. Lenovo 82TQ) appear to have broken
1990  * VBT sequences:
1991  * - INIT_OTP is not present at all
1992  * - what should be in INIT_OTP is in DISPLAY_ON
1993  * - what should be in DISPLAY_ON is in BACKLIGHT_ON
1994  *   (along with the actual backlight stuff)
1995  *
1996  * To make those work we simply swap DISPLAY_ON and INIT_OTP.
1997  *
1998  * TODO: Do we need to limit this to specific machines,
1999  *       or examine the contents of the sequences to
2000  *       avoid false positives?
2001  */
2002 static void icl_fixup_mipi_sequences(struct drm_i915_private *i915,
2003 				     struct intel_panel *panel)
2004 {
2005 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] &&
2006 	    panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) {
2007 		drm_dbg_kms(&i915->drm, "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n");
2008 
2009 		swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP],
2010 		     panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]);
2011 	}
2012 }
2013 
2014 static void fixup_mipi_sequences(struct drm_i915_private *i915,
2015 				 struct intel_panel *panel)
2016 {
2017 	if (DISPLAY_VER(i915) >= 11)
2018 		icl_fixup_mipi_sequences(i915, panel);
2019 	else if (IS_VALLEYVIEW(i915))
2020 		vlv_fixup_mipi_sequences(i915, panel);
2021 }
2022 
2023 static void
2024 parse_mipi_sequence(struct drm_i915_private *i915,
2025 		    struct intel_panel *panel)
2026 {
2027 	int panel_type = panel->vbt.panel_type;
2028 	const struct bdb_mipi_sequence *sequence;
2029 	const u8 *seq_data;
2030 	u32 seq_size;
2031 	u8 *data;
2032 	int index = 0;
2033 
2034 	/* Only our generic panel driver uses the sequence block. */
2035 	if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2036 		return;
2037 
2038 	sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE);
2039 	if (!sequence) {
2040 		drm_dbg_kms(&i915->drm,
2041 			    "No MIPI Sequence found, parsing complete\n");
2042 		return;
2043 	}
2044 
2045 	/* Fail gracefully for forward incompatible sequence block. */
2046 	if (sequence->version >= 4) {
2047 		drm_err(&i915->drm,
2048 			"Unable to parse MIPI Sequence Block v%u\n",
2049 			sequence->version);
2050 		return;
2051 	}
2052 
2053 	drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2054 		sequence->version);
2055 
2056 	seq_data = find_panel_sequence_block(i915, sequence, panel_type, &seq_size);
2057 	if (!seq_data)
2058 		return;
2059 
2060 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2061 	if (!data)
2062 		return;
2063 
2064 	/* Parse the sequences, store pointers to each sequence. */
2065 	for (;;) {
2066 		u8 seq_id = *(data + index);
2067 		if (seq_id == MIPI_SEQ_END)
2068 			break;
2069 
2070 		if (seq_id >= MIPI_SEQ_MAX) {
2071 			drm_err(&i915->drm, "Unknown sequence %u\n",
2072 				seq_id);
2073 			goto err;
2074 		}
2075 
2076 		/* Log about presence of sequences we won't run. */
2077 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2078 			drm_dbg_kms(&i915->drm,
2079 				    "Unsupported sequence %u\n", seq_id);
2080 
2081 		panel->vbt.dsi.sequence[seq_id] = data + index;
2082 
2083 		if (sequence->version >= 3)
2084 			index = goto_next_sequence_v3(i915, data, index, seq_size);
2085 		else
2086 			index = goto_next_sequence(i915, data, index, seq_size);
2087 		if (!index) {
2088 			drm_err(&i915->drm, "Invalid sequence %u\n",
2089 				seq_id);
2090 			goto err;
2091 		}
2092 	}
2093 
2094 	panel->vbt.dsi.data = data;
2095 	panel->vbt.dsi.size = seq_size;
2096 	panel->vbt.dsi.seq_version = sequence->version;
2097 
2098 	fixup_mipi_sequences(i915, panel);
2099 
2100 	drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2101 	return;
2102 
2103 err:
2104 	kfree(data);
2105 	memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2106 }
2107 
2108 static void
2109 parse_compression_parameters(struct drm_i915_private *i915)
2110 {
2111 	const struct bdb_compression_parameters *params;
2112 	struct intel_bios_encoder_data *devdata;
2113 	u16 block_size;
2114 	int index;
2115 
2116 	if (i915->display.vbt.version < 198)
2117 		return;
2118 
2119 	params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS);
2120 	if (params) {
2121 		/* Sanity checks */
2122 		if (params->entry_size != sizeof(params->data[0])) {
2123 			drm_dbg_kms(&i915->drm,
2124 				    "VBT: unsupported compression param entry size\n");
2125 			return;
2126 		}
2127 
2128 		block_size = get_blocksize(params);
2129 		if (block_size < sizeof(*params)) {
2130 			drm_dbg_kms(&i915->drm,
2131 				    "VBT: expected 16 compression param entries\n");
2132 			return;
2133 		}
2134 	}
2135 
2136 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2137 		const struct child_device_config *child = &devdata->child;
2138 
2139 		if (!child->compression_enable)
2140 			continue;
2141 
2142 		if (!params) {
2143 			drm_dbg_kms(&i915->drm,
2144 				    "VBT: compression params not available\n");
2145 			continue;
2146 		}
2147 
2148 		if (child->compression_method_cps) {
2149 			drm_dbg_kms(&i915->drm,
2150 				    "VBT: CPS compression not supported\n");
2151 			continue;
2152 		}
2153 
2154 		index = child->compression_structure_index;
2155 
2156 		devdata->dsc = kmemdup(&params->data[index],
2157 				       sizeof(*devdata->dsc), GFP_KERNEL);
2158 	}
2159 }
2160 
2161 static u8 translate_iboost(struct drm_i915_private *i915, u8 val)
2162 {
2163 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2164 
2165 	if (val >= ARRAY_SIZE(mapping)) {
2166 		drm_dbg_kms(&i915->drm,
2167 			    "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2168 		return 0;
2169 	}
2170 	return mapping[val];
2171 }
2172 
2173 static const u8 cnp_ddc_pin_map[] = {
2174 	[0] = 0, /* N/A */
2175 	[GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2176 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2177 	[GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2178 	[GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2179 };
2180 
2181 static const u8 icp_ddc_pin_map[] = {
2182 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2183 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2184 	[GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2185 	[GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2186 	[GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2187 	[GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2188 	[GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2189 	[GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2190 	[GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2191 };
2192 
2193 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2194 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2195 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2196 	[GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2197 	[GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2198 };
2199 
2200 static const u8 adls_ddc_pin_map[] = {
2201 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2202 	[GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2203 	[GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2204 	[GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2205 	[GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2206 };
2207 
2208 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2209 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2210 	[GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2211 	[GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2212 };
2213 
2214 static const u8 adlp_ddc_pin_map[] = {
2215 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2216 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2217 	[GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2218 	[GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2219 	[GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2220 	[GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2221 };
2222 
2223 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2224 {
2225 	const u8 *ddc_pin_map;
2226 	int i, n_entries;
2227 
2228 	if (IS_DGFX(i915))
2229 		return vbt_pin;
2230 
2231 	if (INTEL_PCH_TYPE(i915) >= PCH_MTL || IS_ALDERLAKE_P(i915)) {
2232 		ddc_pin_map = adlp_ddc_pin_map;
2233 		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2234 	} else if (IS_ALDERLAKE_S(i915)) {
2235 		ddc_pin_map = adls_ddc_pin_map;
2236 		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2237 	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2238 		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2239 		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2240 	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2241 		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2242 		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2243 	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2244 		ddc_pin_map = icp_ddc_pin_map;
2245 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2246 	} else if (HAS_PCH_CNP(i915)) {
2247 		ddc_pin_map = cnp_ddc_pin_map;
2248 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2249 	} else {
2250 		/* Assuming direct map */
2251 		return vbt_pin;
2252 	}
2253 
2254 	for (i = 0; i < n_entries; i++) {
2255 		if (ddc_pin_map[i] == vbt_pin)
2256 			return i;
2257 	}
2258 
2259 	drm_dbg_kms(&i915->drm,
2260 		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2261 		    vbt_pin);
2262 	return 0;
2263 }
2264 
2265 static u8 dvo_port_type(u8 dvo_port)
2266 {
2267 	switch (dvo_port) {
2268 	case DVO_PORT_HDMIA:
2269 	case DVO_PORT_HDMIB:
2270 	case DVO_PORT_HDMIC:
2271 	case DVO_PORT_HDMID:
2272 	case DVO_PORT_HDMIE:
2273 	case DVO_PORT_HDMIF:
2274 	case DVO_PORT_HDMIG:
2275 	case DVO_PORT_HDMIH:
2276 	case DVO_PORT_HDMII:
2277 		return DVO_PORT_HDMIA;
2278 	case DVO_PORT_DPA:
2279 	case DVO_PORT_DPB:
2280 	case DVO_PORT_DPC:
2281 	case DVO_PORT_DPD:
2282 	case DVO_PORT_DPE:
2283 	case DVO_PORT_DPF:
2284 	case DVO_PORT_DPG:
2285 	case DVO_PORT_DPH:
2286 	case DVO_PORT_DPI:
2287 		return DVO_PORT_DPA;
2288 	case DVO_PORT_MIPIA:
2289 	case DVO_PORT_MIPIB:
2290 	case DVO_PORT_MIPIC:
2291 	case DVO_PORT_MIPID:
2292 		return DVO_PORT_MIPIA;
2293 	default:
2294 		return dvo_port;
2295 	}
2296 }
2297 
2298 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2299 				    const int port_mapping[][3], u8 dvo_port)
2300 {
2301 	enum port port;
2302 	int i;
2303 
2304 	for (port = PORT_A; port < n_ports; port++) {
2305 		for (i = 0; i < n_dvo; i++) {
2306 			if (port_mapping[port][i] == -1)
2307 				break;
2308 
2309 			if (dvo_port == port_mapping[port][i])
2310 				return port;
2311 		}
2312 	}
2313 
2314 	return PORT_NONE;
2315 }
2316 
2317 static enum port dvo_port_to_port(struct drm_i915_private *i915,
2318 				  u8 dvo_port)
2319 {
2320 	/*
2321 	 * Each DDI port can have more than one value on the "DVO Port" field,
2322 	 * so look for all the possible values for each port.
2323 	 */
2324 	static const int port_mapping[][3] = {
2325 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2326 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2327 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2328 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2329 		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2330 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2331 		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2332 		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2333 		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2334 	};
2335 	/*
2336 	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2337 	 * map to DDI A,B,TC1,TC2 respectively.
2338 	 */
2339 	static const int rkl_port_mapping[][3] = {
2340 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2341 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2342 		[PORT_C] = { -1 },
2343 		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2344 		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2345 	};
2346 	/*
2347 	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2348 	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2349 	 */
2350 	static const int adls_port_mapping[][3] = {
2351 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2352 		[PORT_B] = { -1 },
2353 		[PORT_C] = { -1 },
2354 		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2355 		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2356 		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2357 		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2358 	};
2359 	static const int xelpd_port_mapping[][3] = {
2360 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2361 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2362 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2363 		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2364 		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2365 		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2366 		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2367 		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2368 		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2369 	};
2370 
2371 	if (DISPLAY_VER(i915) >= 13)
2372 		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2373 					  ARRAY_SIZE(xelpd_port_mapping[0]),
2374 					  xelpd_port_mapping,
2375 					  dvo_port);
2376 	else if (IS_ALDERLAKE_S(i915))
2377 		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2378 					  ARRAY_SIZE(adls_port_mapping[0]),
2379 					  adls_port_mapping,
2380 					  dvo_port);
2381 	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2382 		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2383 					  ARRAY_SIZE(rkl_port_mapping[0]),
2384 					  rkl_port_mapping,
2385 					  dvo_port);
2386 	else
2387 		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2388 					  ARRAY_SIZE(port_mapping[0]),
2389 					  port_mapping,
2390 					  dvo_port);
2391 }
2392 
2393 static enum port
2394 dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port)
2395 {
2396 	switch (dvo_port) {
2397 	case DVO_PORT_MIPIA:
2398 		return PORT_A;
2399 	case DVO_PORT_MIPIC:
2400 		if (DISPLAY_VER(i915) >= 11)
2401 			return PORT_B;
2402 		else
2403 			return PORT_C;
2404 	default:
2405 		return PORT_NONE;
2406 	}
2407 }
2408 
2409 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2410 {
2411 	struct drm_i915_private *i915 = devdata->i915;
2412 	const struct child_device_config *child = &devdata->child;
2413 	enum port port;
2414 
2415 	port = dvo_port_to_port(i915, child->dvo_port);
2416 	if (port == PORT_NONE && DISPLAY_VER(i915) >= 11)
2417 		port = dsi_dvo_port_to_port(i915, child->dvo_port);
2418 
2419 	return port;
2420 }
2421 
2422 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2423 {
2424 	switch (vbt_max_link_rate) {
2425 	default:
2426 	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2427 		return 0;
2428 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2429 		return 2000000;
2430 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2431 		return 1350000;
2432 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2433 		return 1000000;
2434 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2435 		return 810000;
2436 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2437 		return 540000;
2438 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2439 		return 270000;
2440 	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2441 		return 162000;
2442 	}
2443 }
2444 
2445 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2446 {
2447 	switch (vbt_max_link_rate) {
2448 	default:
2449 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2450 		return 810000;
2451 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2452 		return 540000;
2453 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2454 		return 270000;
2455 	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2456 		return 162000;
2457 	}
2458 }
2459 
2460 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2461 {
2462 	if (!devdata || devdata->i915->display.vbt.version < 216)
2463 		return 0;
2464 
2465 	if (devdata->i915->display.vbt.version >= 230)
2466 		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2467 	else
2468 		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2469 }
2470 
2471 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2472 {
2473 	if (!devdata || devdata->i915->display.vbt.version < 244)
2474 		return 0;
2475 
2476 	return devdata->child.dp_max_lane_count + 1;
2477 }
2478 
2479 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2480 				 enum port port)
2481 {
2482 	struct drm_i915_private *i915 = devdata->i915;
2483 	bool is_hdmi;
2484 
2485 	if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2486 		return;
2487 
2488 	if (!intel_bios_encoder_supports_dvi(devdata))
2489 		return;
2490 
2491 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2492 
2493 	drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2494 		    is_hdmi ? "/HDMI" : "");
2495 
2496 	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2497 	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2498 }
2499 
2500 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata,
2501 				      enum port port)
2502 {
2503 	struct drm_i915_private *i915 = devdata->i915;
2504 
2505 	if (!intel_bios_encoder_supports_dvi(devdata))
2506 		return;
2507 
2508 	/*
2509 	 * Some BDW machines (eg. HP Pavilion 15-ab) shipped
2510 	 * with a HSW VBT where the level shifter value goes
2511 	 * up to 11, whereas the BDW max is 9.
2512 	 */
2513 	if (IS_BROADWELL(i915) && devdata->child.hdmi_level_shifter_value > 9) {
2514 		drm_dbg_kms(&i915->drm, "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n",
2515 			    port_name(port), devdata->child.hdmi_level_shifter_value, 9);
2516 
2517 		devdata->child.hdmi_level_shifter_value = 9;
2518 	}
2519 }
2520 
2521 static bool
2522 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2523 {
2524 	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2525 }
2526 
2527 bool
2528 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2529 {
2530 	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2531 }
2532 
2533 bool
2534 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2535 {
2536 	return intel_bios_encoder_supports_dvi(devdata) &&
2537 		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2538 }
2539 
2540 bool
2541 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2542 {
2543 	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2544 }
2545 
2546 bool
2547 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2548 {
2549 	return intel_bios_encoder_supports_dp(devdata) &&
2550 		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2551 }
2552 
2553 bool
2554 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2555 {
2556 	return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2557 }
2558 
2559 bool
2560 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2561 {
2562 	return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon;
2563 }
2564 
2565 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
2566 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2567 {
2568 	if (!devdata || devdata->i915->display.vbt.version < 158 ||
2569 	    DISPLAY_VER(devdata->i915) >= 14)
2570 		return -1;
2571 
2572 	return devdata->child.hdmi_level_shifter_value;
2573 }
2574 
2575 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2576 {
2577 	if (!devdata || devdata->i915->display.vbt.version < 204)
2578 		return 0;
2579 
2580 	switch (devdata->child.hdmi_max_data_rate) {
2581 	default:
2582 		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2583 		fallthrough;
2584 	case HDMI_MAX_DATA_RATE_PLATFORM:
2585 		return 0;
2586 	case HDMI_MAX_DATA_RATE_594:
2587 		return 594000;
2588 	case HDMI_MAX_DATA_RATE_340:
2589 		return 340000;
2590 	case HDMI_MAX_DATA_RATE_300:
2591 		return 300000;
2592 	case HDMI_MAX_DATA_RATE_297:
2593 		return 297000;
2594 	case HDMI_MAX_DATA_RATE_165:
2595 		return 165000;
2596 	}
2597 }
2598 
2599 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2600 {
2601 	/*
2602 	 * On some ICL SKUs port F is not present, but broken VBTs mark
2603 	 * the port as present. Only try to initialize port F for the
2604 	 * SKUs that may actually have it.
2605 	 */
2606 	if (port == PORT_F && IS_ICELAKE(i915))
2607 		return IS_ICL_WITH_PORT_F(i915);
2608 
2609 	return true;
2610 }
2611 
2612 static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2613 {
2614 	struct drm_i915_private *i915 = devdata->i915;
2615 	const struct child_device_config *child = &devdata->child;
2616 	bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2617 	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2618 	enum port port;
2619 
2620 	port = intel_bios_encoder_port(devdata);
2621 	if (port == PORT_NONE)
2622 		return;
2623 
2624 	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2625 	is_dp = intel_bios_encoder_supports_dp(devdata);
2626 	is_crt = intel_bios_encoder_supports_crt(devdata);
2627 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2628 	is_edp = intel_bios_encoder_supports_edp(devdata);
2629 	is_dsi = intel_bios_encoder_supports_dsi(devdata);
2630 
2631 	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2632 	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2633 
2634 	drm_dbg_kms(&i915->drm,
2635 		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2636 		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2637 		    intel_bios_encoder_supports_dp_dual_mode(devdata),
2638 		    intel_bios_encoder_is_lspcon(devdata),
2639 		    supports_typec_usb, supports_tbt,
2640 		    devdata->dsc != NULL);
2641 
2642 	hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2643 	if (hdmi_level_shift >= 0) {
2644 		drm_dbg_kms(&i915->drm,
2645 			    "Port %c VBT HDMI level shift: %d\n",
2646 			    port_name(port), hdmi_level_shift);
2647 	}
2648 
2649 	max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2650 	if (max_tmds_clock)
2651 		drm_dbg_kms(&i915->drm,
2652 			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2653 			    port_name(port), max_tmds_clock);
2654 
2655 	/* I_boost config for SKL and above */
2656 	dp_boost_level = intel_bios_dp_boost_level(devdata);
2657 	if (dp_boost_level)
2658 		drm_dbg_kms(&i915->drm,
2659 			    "Port %c VBT (e)DP boost level: %d\n",
2660 			    port_name(port), dp_boost_level);
2661 
2662 	hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2663 	if (hdmi_boost_level)
2664 		drm_dbg_kms(&i915->drm,
2665 			    "Port %c VBT HDMI boost level: %d\n",
2666 			    port_name(port), hdmi_boost_level);
2667 
2668 	dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2669 	if (dp_max_link_rate)
2670 		drm_dbg_kms(&i915->drm,
2671 			    "Port %c VBT DP max link rate: %d\n",
2672 			    port_name(port), dp_max_link_rate);
2673 
2674 	/*
2675 	 * FIXME need to implement support for VBT
2676 	 * vswing/preemph tables should this ever trigger.
2677 	 */
2678 	drm_WARN(&i915->drm, child->use_vbt_vswing,
2679 		 "Port %c asks to use VBT vswing/preemph tables\n",
2680 		 port_name(port));
2681 }
2682 
2683 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2684 {
2685 	struct drm_i915_private *i915 = devdata->i915;
2686 	enum port port;
2687 
2688 	port = intel_bios_encoder_port(devdata);
2689 	if (port == PORT_NONE)
2690 		return;
2691 
2692 	if (!is_port_valid(i915, port)) {
2693 		drm_dbg_kms(&i915->drm,
2694 			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2695 			    port_name(port));
2696 		return;
2697 	}
2698 
2699 	sanitize_device_type(devdata, port);
2700 	sanitize_hdmi_level_shift(devdata, port);
2701 }
2702 
2703 static bool has_ddi_port_info(struct drm_i915_private *i915)
2704 {
2705 	return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2706 }
2707 
2708 static void parse_ddi_ports(struct drm_i915_private *i915)
2709 {
2710 	struct intel_bios_encoder_data *devdata;
2711 
2712 	if (!has_ddi_port_info(i915))
2713 		return;
2714 
2715 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2716 		parse_ddi_port(devdata);
2717 
2718 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2719 		print_ddi_port(devdata);
2720 }
2721 
2722 static void
2723 parse_general_definitions(struct drm_i915_private *i915)
2724 {
2725 	const struct bdb_general_definitions *defs;
2726 	struct intel_bios_encoder_data *devdata;
2727 	const struct child_device_config *child;
2728 	int i, child_device_num;
2729 	u8 expected_size;
2730 	u16 block_size;
2731 	int bus_pin;
2732 
2733 	defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS);
2734 	if (!defs) {
2735 		drm_dbg_kms(&i915->drm,
2736 			    "No general definition block is found, no devices defined.\n");
2737 		return;
2738 	}
2739 
2740 	block_size = get_blocksize(defs);
2741 	if (block_size < sizeof(*defs)) {
2742 		drm_dbg_kms(&i915->drm,
2743 			    "General definitions block too small (%u)\n",
2744 			    block_size);
2745 		return;
2746 	}
2747 
2748 	bus_pin = defs->crt_ddc_gmbus_pin;
2749 	drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2750 	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2751 		i915->display.vbt.crt_ddc_pin = bus_pin;
2752 
2753 	if (i915->display.vbt.version < 106) {
2754 		expected_size = 22;
2755 	} else if (i915->display.vbt.version < 111) {
2756 		expected_size = 27;
2757 	} else if (i915->display.vbt.version < 195) {
2758 		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2759 	} else if (i915->display.vbt.version == 195) {
2760 		expected_size = 37;
2761 	} else if (i915->display.vbt.version <= 215) {
2762 		expected_size = 38;
2763 	} else if (i915->display.vbt.version <= 250) {
2764 		expected_size = 39;
2765 	} else {
2766 		expected_size = sizeof(*child);
2767 		BUILD_BUG_ON(sizeof(*child) < 39);
2768 		drm_dbg(&i915->drm,
2769 			"Expected child device config size for VBT version %u not known; assuming %u\n",
2770 			i915->display.vbt.version, expected_size);
2771 	}
2772 
2773 	/* Flag an error for unexpected size, but continue anyway. */
2774 	if (defs->child_dev_size != expected_size)
2775 		drm_err(&i915->drm,
2776 			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
2777 			defs->child_dev_size, expected_size, i915->display.vbt.version);
2778 
2779 	/* The legacy sized child device config is the minimum we need. */
2780 	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2781 		drm_dbg_kms(&i915->drm,
2782 			    "Child device config size %u is too small.\n",
2783 			    defs->child_dev_size);
2784 		return;
2785 	}
2786 
2787 	/* get the number of child device */
2788 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2789 
2790 	for (i = 0; i < child_device_num; i++) {
2791 		child = child_device_ptr(defs, i);
2792 		if (!child->device_type)
2793 			continue;
2794 
2795 		drm_dbg_kms(&i915->drm,
2796 			    "Found VBT child device with type 0x%x\n",
2797 			    child->device_type);
2798 
2799 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2800 		if (!devdata)
2801 			break;
2802 
2803 		devdata->i915 = i915;
2804 
2805 		/*
2806 		 * Copy as much as we know (sizeof) and is available
2807 		 * (child_dev_size) of the child device config. Accessing the
2808 		 * data must depend on VBT version.
2809 		 */
2810 		memcpy(&devdata->child, child,
2811 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2812 
2813 		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2814 	}
2815 
2816 	if (list_empty(&i915->display.vbt.display_devices))
2817 		drm_dbg_kms(&i915->drm,
2818 			    "no child dev is parsed from VBT\n");
2819 }
2820 
2821 /* Common defaults which may be overridden by VBT. */
2822 static void
2823 init_vbt_defaults(struct drm_i915_private *i915)
2824 {
2825 	i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2826 
2827 	/* general features */
2828 	i915->display.vbt.int_tv_support = 1;
2829 	i915->display.vbt.int_crt_support = 1;
2830 
2831 	/* driver features */
2832 	i915->display.vbt.int_lvds_support = 1;
2833 
2834 	/* Default to using SSC */
2835 	i915->display.vbt.lvds_use_ssc = 1;
2836 	/*
2837 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2838 	 * clock for LVDS.
2839 	 */
2840 	i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2841 								   !HAS_PCH_SPLIT(i915));
2842 	drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2843 		    i915->display.vbt.lvds_ssc_freq);
2844 }
2845 
2846 /* Common defaults which may be overridden by VBT. */
2847 static void
2848 init_vbt_panel_defaults(struct intel_panel *panel)
2849 {
2850 	/* Default to having backlight */
2851 	panel->vbt.backlight.present = true;
2852 
2853 	/* LFP panel data */
2854 	panel->vbt.lvds_dither = true;
2855 }
2856 
2857 /* Defaults to initialize only if there is no VBT. */
2858 static void
2859 init_vbt_missing_defaults(struct drm_i915_private *i915)
2860 {
2861 	enum port port;
2862 	int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2863 		    BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2864 
2865 	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2866 		return;
2867 
2868 	for_each_port_masked(port, ports) {
2869 		struct intel_bios_encoder_data *devdata;
2870 		struct child_device_config *child;
2871 		enum phy phy = intel_port_to_phy(i915, port);
2872 
2873 		/*
2874 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2875 		 * to detect it.
2876 		 */
2877 		if (intel_phy_is_tc(i915, phy))
2878 			continue;
2879 
2880 		/* Create fake child device config */
2881 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2882 		if (!devdata)
2883 			break;
2884 
2885 		devdata->i915 = i915;
2886 		child = &devdata->child;
2887 
2888 		if (port == PORT_F)
2889 			child->dvo_port = DVO_PORT_HDMIF;
2890 		else if (port == PORT_E)
2891 			child->dvo_port = DVO_PORT_HDMIE;
2892 		else
2893 			child->dvo_port = DVO_PORT_HDMIA + port;
2894 
2895 		if (port != PORT_A && port != PORT_E)
2896 			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2897 
2898 		if (port != PORT_E)
2899 			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2900 
2901 		if (port == PORT_A)
2902 			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2903 
2904 		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2905 
2906 		drm_dbg_kms(&i915->drm,
2907 			    "Generating default VBT child device with type 0x04%x on port %c\n",
2908 			    child->device_type, port_name(port));
2909 	}
2910 
2911 	/* Bypass some minimum baseline VBT version checks */
2912 	i915->display.vbt.version = 155;
2913 }
2914 
2915 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2916 {
2917 	const void *_vbt = vbt;
2918 
2919 	return _vbt + vbt->bdb_offset;
2920 }
2921 
2922 /**
2923  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2924  * @i915:	the device
2925  * @buf:	pointer to a buffer to validate
2926  * @size:	size of the buffer
2927  *
2928  * Returns true on valid VBT.
2929  */
2930 bool intel_bios_is_valid_vbt(struct drm_i915_private *i915,
2931 			     const void *buf, size_t size)
2932 {
2933 	const struct vbt_header *vbt = buf;
2934 	const struct bdb_header *bdb;
2935 
2936 	if (!vbt)
2937 		return false;
2938 
2939 	if (sizeof(struct vbt_header) > size) {
2940 		drm_dbg_kms(&i915->drm, "VBT header incomplete\n");
2941 		return false;
2942 	}
2943 
2944 	if (memcmp(vbt->signature, "$VBT", 4)) {
2945 		drm_dbg_kms(&i915->drm, "VBT invalid signature\n");
2946 		return false;
2947 	}
2948 
2949 	if (vbt->vbt_size > size) {
2950 		drm_dbg_kms(&i915->drm, "VBT incomplete (vbt_size overflows)\n");
2951 		return false;
2952 	}
2953 
2954 	size = vbt->vbt_size;
2955 
2956 	if (range_overflows_t(size_t,
2957 			      vbt->bdb_offset,
2958 			      sizeof(struct bdb_header),
2959 			      size)) {
2960 		drm_dbg_kms(&i915->drm, "BDB header incomplete\n");
2961 		return false;
2962 	}
2963 
2964 	bdb = get_bdb_header(vbt);
2965 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2966 		drm_dbg_kms(&i915->drm, "BDB incomplete\n");
2967 		return false;
2968 	}
2969 
2970 	return vbt;
2971 }
2972 
2973 static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset)
2974 {
2975 	intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset);
2976 
2977 	return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER);
2978 }
2979 
2980 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2981 {
2982 	u32 count, data, found, store = 0;
2983 	u32 static_region, oprom_offset;
2984 	u32 oprom_size = 0x200000;
2985 	u16 vbt_size;
2986 	u32 *vbt;
2987 
2988 	static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
2989 	static_region &= OPTIONROM_SPI_REGIONID_MASK;
2990 	intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
2991 
2992 	oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
2993 	oprom_offset &= OROM_OFFSET_MASK;
2994 
2995 	for (count = 0; count < oprom_size; count += 4) {
2996 		data = intel_spi_read(&i915->uncore, oprom_offset + count);
2997 		if (data == *((const u32 *)"$VBT")) {
2998 			found = oprom_offset + count;
2999 			break;
3000 		}
3001 	}
3002 
3003 	if (count >= oprom_size)
3004 		goto err_not_found;
3005 
3006 	/* Get VBT size and allocate space for the VBT */
3007 	vbt_size = intel_spi_read(&i915->uncore,
3008 				  found + offsetof(struct vbt_header, vbt_size));
3009 	vbt_size &= 0xffff;
3010 
3011 	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3012 	if (!vbt)
3013 		goto err_not_found;
3014 
3015 	for (count = 0; count < vbt_size; count += 4)
3016 		*(vbt + store++) = intel_spi_read(&i915->uncore, found + count);
3017 
3018 	if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size))
3019 		goto err_free_vbt;
3020 
3021 	drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
3022 
3023 	return (struct vbt_header *)vbt;
3024 
3025 err_free_vbt:
3026 	kfree(vbt);
3027 err_not_found:
3028 	return NULL;
3029 }
3030 
3031 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
3032 {
3033 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
3034 	void __iomem *p = NULL, *oprom;
3035 	struct vbt_header *vbt;
3036 	u16 vbt_size;
3037 	size_t i, size;
3038 
3039 	oprom = pci_map_rom(pdev, &size);
3040 	if (!oprom)
3041 		return NULL;
3042 
3043 	/* Scour memory looking for the VBT signature. */
3044 	for (i = 0; i + 4 < size; i += 4) {
3045 		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3046 			continue;
3047 
3048 		p = oprom + i;
3049 		size -= i;
3050 		break;
3051 	}
3052 
3053 	if (!p)
3054 		goto err_unmap_oprom;
3055 
3056 	if (sizeof(struct vbt_header) > size) {
3057 		drm_dbg(&i915->drm, "VBT header incomplete\n");
3058 		goto err_unmap_oprom;
3059 	}
3060 
3061 	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3062 	if (vbt_size > size) {
3063 		drm_dbg(&i915->drm,
3064 			"VBT incomplete (vbt_size overflows)\n");
3065 		goto err_unmap_oprom;
3066 	}
3067 
3068 	/* The rest will be validated by intel_bios_is_valid_vbt() */
3069 	vbt = kmalloc(vbt_size, GFP_KERNEL);
3070 	if (!vbt)
3071 		goto err_unmap_oprom;
3072 
3073 	memcpy_fromio(vbt, p, vbt_size);
3074 
3075 	if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size))
3076 		goto err_free_vbt;
3077 
3078 	pci_unmap_rom(pdev, oprom);
3079 
3080 	drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3081 
3082 	return vbt;
3083 
3084 err_free_vbt:
3085 	kfree(vbt);
3086 err_unmap_oprom:
3087 	pci_unmap_rom(pdev, oprom);
3088 
3089 	return NULL;
3090 }
3091 
3092 /**
3093  * intel_bios_init - find VBT and initialize settings from the BIOS
3094  * @i915: i915 device instance
3095  *
3096  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3097  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3098  * initialize some defaults if the VBT is not present at all.
3099  */
3100 void intel_bios_init(struct drm_i915_private *i915)
3101 {
3102 	const struct vbt_header *vbt;
3103 	struct vbt_header *oprom_vbt = NULL;
3104 	const struct bdb_header *bdb;
3105 
3106 	INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3107 	INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3108 
3109 	if (!HAS_DISPLAY(i915)) {
3110 		drm_dbg_kms(&i915->drm,
3111 			    "Skipping VBT init due to disabled display.\n");
3112 		return;
3113 	}
3114 
3115 	init_vbt_defaults(i915);
3116 
3117 	vbt = intel_opregion_get_vbt(i915, NULL);
3118 
3119 	/*
3120 	 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3121 	 * PCI mapping
3122 	 */
3123 	if (!vbt && IS_DGFX(i915)) {
3124 		oprom_vbt = spi_oprom_get_vbt(i915);
3125 		vbt = oprom_vbt;
3126 	}
3127 
3128 	if (!vbt) {
3129 		oprom_vbt = oprom_get_vbt(i915);
3130 		vbt = oprom_vbt;
3131 	}
3132 
3133 	if (!vbt)
3134 		goto out;
3135 
3136 	bdb = get_bdb_header(vbt);
3137 	i915->display.vbt.version = bdb->version;
3138 
3139 	drm_dbg_kms(&i915->drm,
3140 		    "VBT signature \"%.*s\", BDB version %d\n",
3141 		    (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3142 
3143 	init_bdb_blocks(i915, bdb);
3144 
3145 	/* Grab useful general definitions */
3146 	parse_general_features(i915);
3147 	parse_general_definitions(i915);
3148 	parse_driver_features(i915);
3149 
3150 	/* Depends on child device list */
3151 	parse_compression_parameters(i915);
3152 
3153 out:
3154 	if (!vbt) {
3155 		drm_info(&i915->drm,
3156 			 "Failed to find VBIOS tables (VBT)\n");
3157 		init_vbt_missing_defaults(i915);
3158 	}
3159 
3160 	/* Further processing on pre-parsed or generated child device data */
3161 	parse_sdvo_device_mapping(i915);
3162 	parse_ddi_ports(i915);
3163 
3164 	kfree(oprom_vbt);
3165 }
3166 
3167 static void intel_bios_init_panel(struct drm_i915_private *i915,
3168 				  struct intel_panel *panel,
3169 				  const struct intel_bios_encoder_data *devdata,
3170 				  const struct drm_edid *drm_edid,
3171 				  bool use_fallback)
3172 {
3173 	/* already have it? */
3174 	if (panel->vbt.panel_type >= 0) {
3175 		drm_WARN_ON(&i915->drm, !use_fallback);
3176 		return;
3177 	}
3178 
3179 	panel->vbt.panel_type = get_panel_type(i915, devdata,
3180 					       drm_edid, use_fallback);
3181 	if (panel->vbt.panel_type < 0) {
3182 		drm_WARN_ON(&i915->drm, use_fallback);
3183 		return;
3184 	}
3185 
3186 	init_vbt_panel_defaults(panel);
3187 
3188 	parse_panel_options(i915, panel);
3189 	parse_generic_dtd(i915, panel);
3190 	parse_lfp_data(i915, panel);
3191 	parse_lfp_backlight(i915, panel);
3192 	parse_sdvo_panel_data(i915, panel);
3193 	parse_panel_driver_features(i915, panel);
3194 	parse_power_conservation_features(i915, panel);
3195 	parse_edp(i915, panel);
3196 	parse_psr(i915, panel);
3197 	parse_mipi_config(i915, panel);
3198 	parse_mipi_sequence(i915, panel);
3199 }
3200 
3201 void intel_bios_init_panel_early(struct drm_i915_private *i915,
3202 				 struct intel_panel *panel,
3203 				 const struct intel_bios_encoder_data *devdata)
3204 {
3205 	intel_bios_init_panel(i915, panel, devdata, NULL, false);
3206 }
3207 
3208 void intel_bios_init_panel_late(struct drm_i915_private *i915,
3209 				struct intel_panel *panel,
3210 				const struct intel_bios_encoder_data *devdata,
3211 				const struct drm_edid *drm_edid)
3212 {
3213 	intel_bios_init_panel(i915, panel, devdata, drm_edid, true);
3214 }
3215 
3216 /**
3217  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3218  * @i915: i915 device instance
3219  */
3220 void intel_bios_driver_remove(struct drm_i915_private *i915)
3221 {
3222 	struct intel_bios_encoder_data *devdata, *nd;
3223 	struct bdb_block_entry *entry, *ne;
3224 
3225 	list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3226 		list_del(&devdata->node);
3227 		kfree(devdata->dsc);
3228 		kfree(devdata);
3229 	}
3230 
3231 	list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3232 		list_del(&entry->node);
3233 		kfree(entry);
3234 	}
3235 }
3236 
3237 void intel_bios_fini_panel(struct intel_panel *panel)
3238 {
3239 	kfree(panel->vbt.sdvo_lvds_vbt_mode);
3240 	panel->vbt.sdvo_lvds_vbt_mode = NULL;
3241 	kfree(panel->vbt.lfp_lvds_vbt_mode);
3242 	panel->vbt.lfp_lvds_vbt_mode = NULL;
3243 	kfree(panel->vbt.dsi.data);
3244 	panel->vbt.dsi.data = NULL;
3245 	kfree(panel->vbt.dsi.pps);
3246 	panel->vbt.dsi.pps = NULL;
3247 	kfree(panel->vbt.dsi.config);
3248 	panel->vbt.dsi.config = NULL;
3249 	kfree(panel->vbt.dsi.deassert_seq);
3250 	panel->vbt.dsi.deassert_seq = NULL;
3251 }
3252 
3253 /**
3254  * intel_bios_is_tv_present - is integrated TV present in VBT
3255  * @i915: i915 device instance
3256  *
3257  * Return true if TV is present. If no child devices were parsed from VBT,
3258  * assume TV is present.
3259  */
3260 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3261 {
3262 	const struct intel_bios_encoder_data *devdata;
3263 
3264 	if (!i915->display.vbt.int_tv_support)
3265 		return false;
3266 
3267 	if (list_empty(&i915->display.vbt.display_devices))
3268 		return true;
3269 
3270 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3271 		const struct child_device_config *child = &devdata->child;
3272 
3273 		/*
3274 		 * If the device type is not TV, continue.
3275 		 */
3276 		switch (child->device_type) {
3277 		case DEVICE_TYPE_INT_TV:
3278 		case DEVICE_TYPE_TV:
3279 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3280 			break;
3281 		default:
3282 			continue;
3283 		}
3284 		/* Only when the addin_offset is non-zero, it is regarded
3285 		 * as present.
3286 		 */
3287 		if (child->addin_offset)
3288 			return true;
3289 	}
3290 
3291 	return false;
3292 }
3293 
3294 /**
3295  * intel_bios_is_lvds_present - is LVDS present in VBT
3296  * @i915:	i915 device instance
3297  * @i2c_pin:	i2c pin for LVDS if present
3298  *
3299  * Return true if LVDS is present. If no child devices were parsed from VBT,
3300  * assume LVDS is present.
3301  */
3302 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3303 {
3304 	const struct intel_bios_encoder_data *devdata;
3305 
3306 	if (list_empty(&i915->display.vbt.display_devices))
3307 		return true;
3308 
3309 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3310 		const struct child_device_config *child = &devdata->child;
3311 
3312 		/* If the device type is not LFP, continue.
3313 		 * We have to check both the new identifiers as well as the
3314 		 * old for compatibility with some BIOSes.
3315 		 */
3316 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3317 		    child->device_type != DEVICE_TYPE_LFP)
3318 			continue;
3319 
3320 		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3321 			*i2c_pin = child->i2c_pin;
3322 
3323 		/* However, we cannot trust the BIOS writers to populate
3324 		 * the VBT correctly.  Since LVDS requires additional
3325 		 * information from AIM blocks, a non-zero addin offset is
3326 		 * a good indicator that the LVDS is actually present.
3327 		 */
3328 		if (child->addin_offset)
3329 			return true;
3330 
3331 		/* But even then some BIOS writers perform some black magic
3332 		 * and instantiate the device without reference to any
3333 		 * additional data.  Trust that if the VBT was written into
3334 		 * the OpRegion then they have validated the LVDS's existence.
3335 		 */
3336 		if (intel_opregion_get_vbt(i915, NULL))
3337 			return true;
3338 	}
3339 
3340 	return false;
3341 }
3342 
3343 /**
3344  * intel_bios_is_port_present - is the specified digital port present
3345  * @i915:	i915 device instance
3346  * @port:	port to check
3347  *
3348  * Return true if the device in %port is present.
3349  */
3350 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3351 {
3352 	const struct intel_bios_encoder_data *devdata;
3353 
3354 	if (WARN_ON(!has_ddi_port_info(i915)))
3355 		return true;
3356 
3357 	if (!is_port_valid(i915, port))
3358 		return false;
3359 
3360 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3361 		const struct child_device_config *child = &devdata->child;
3362 
3363 		if (dvo_port_to_port(i915, child->dvo_port) == port)
3364 			return true;
3365 	}
3366 
3367 	return false;
3368 }
3369 
3370 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3371 {
3372 	const struct child_device_config *child = &devdata->child;
3373 
3374 	if (!devdata)
3375 		return false;
3376 
3377 	if (!intel_bios_encoder_supports_dp(devdata) ||
3378 	    !intel_bios_encoder_supports_hdmi(devdata))
3379 		return false;
3380 
3381 	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3382 		return true;
3383 
3384 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3385 	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3386 	    child->aux_channel != 0)
3387 		return true;
3388 
3389 	return false;
3390 }
3391 
3392 /**
3393  * intel_bios_is_dsi_present - is DSI present in VBT
3394  * @i915:	i915 device instance
3395  * @port:	port for DSI if present
3396  *
3397  * Return true if DSI is present, and return the port in %port.
3398  */
3399 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3400 			       enum port *port)
3401 {
3402 	const struct intel_bios_encoder_data *devdata;
3403 
3404 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3405 		const struct child_device_config *child = &devdata->child;
3406 		u8 dvo_port = child->dvo_port;
3407 
3408 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3409 			continue;
3410 
3411 		if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) {
3412 			drm_dbg_kms(&i915->drm,
3413 				    "VBT has unsupported DSI port %c\n",
3414 				    port_name(dvo_port - DVO_PORT_MIPIA));
3415 			continue;
3416 		}
3417 
3418 		if (port)
3419 			*port = dsi_dvo_port_to_port(i915, dvo_port);
3420 		return true;
3421 	}
3422 
3423 	return false;
3424 }
3425 
3426 static void fill_dsc(struct intel_crtc_state *crtc_state,
3427 		     struct dsc_compression_parameters_entry *dsc,
3428 		     int dsc_max_bpc)
3429 {
3430 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
3431 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3432 	int bpc = 8;
3433 
3434 	vdsc_cfg->dsc_version_major = dsc->version_major;
3435 	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3436 
3437 	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3438 		bpc = 12;
3439 	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3440 		bpc = 10;
3441 	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3442 		bpc = 8;
3443 	else
3444 		drm_dbg_kms(&i915->drm, "VBT: Unsupported BPC %d for DCS\n",
3445 			    dsc_max_bpc);
3446 
3447 	crtc_state->pipe_bpp = bpc * 3;
3448 
3449 	crtc_state->dsc.compressed_bpp_x16 = to_bpp_x16(min(crtc_state->pipe_bpp,
3450 							    VBT_DSC_MAX_BPP(dsc->max_bpp)));
3451 
3452 	/*
3453 	 * FIXME: This is ugly, and slice count should take DSC engine
3454 	 * throughput etc. into account.
3455 	 *
3456 	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3457 	 */
3458 	if (dsc->slices_per_line & BIT(2)) {
3459 		crtc_state->dsc.slice_count = 4;
3460 	} else if (dsc->slices_per_line & BIT(1)) {
3461 		crtc_state->dsc.slice_count = 2;
3462 	} else {
3463 		/* FIXME */
3464 		if (!(dsc->slices_per_line & BIT(0)))
3465 			drm_dbg_kms(&i915->drm, "VBT: Unsupported DSC slice count for DSI\n");
3466 
3467 		crtc_state->dsc.slice_count = 1;
3468 	}
3469 
3470 	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3471 	    crtc_state->dsc.slice_count != 0)
3472 		drm_dbg_kms(&i915->drm, "VBT: DSC hdisplay %d not divisible by slice count %d\n",
3473 			    crtc_state->hw.adjusted_mode.crtc_hdisplay,
3474 			    crtc_state->dsc.slice_count);
3475 
3476 	/*
3477 	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3478 	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3479 	 */
3480 	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3481 							    dsc->rc_buffer_size);
3482 
3483 	/* FIXME: DSI spec says bpc + 1 for this one */
3484 	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3485 
3486 	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3487 
3488 	vdsc_cfg->slice_height = dsc->slice_height;
3489 }
3490 
3491 /* FIXME: initially DSI specific */
3492 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3493 			       struct intel_crtc_state *crtc_state,
3494 			       int dsc_max_bpc)
3495 {
3496 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3497 	const struct intel_bios_encoder_data *devdata;
3498 
3499 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3500 		const struct child_device_config *child = &devdata->child;
3501 
3502 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3503 			continue;
3504 
3505 		if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) {
3506 			if (!devdata->dsc)
3507 				return false;
3508 
3509 			fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3510 
3511 			return true;
3512 		}
3513 	}
3514 
3515 	return false;
3516 }
3517 
3518 static const u8 adlp_aux_ch_map[] = {
3519 	[AUX_CH_A] = DP_AUX_A,
3520 	[AUX_CH_B] = DP_AUX_B,
3521 	[AUX_CH_C] = DP_AUX_C,
3522 	[AUX_CH_D_XELPD] = DP_AUX_D,
3523 	[AUX_CH_E_XELPD] = DP_AUX_E,
3524 	[AUX_CH_USBC1] = DP_AUX_F,
3525 	[AUX_CH_USBC2] = DP_AUX_G,
3526 	[AUX_CH_USBC3] = DP_AUX_H,
3527 	[AUX_CH_USBC4] = DP_AUX_I,
3528 };
3529 
3530 /*
3531  * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3532  * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3533  */
3534 static const u8 adls_aux_ch_map[] = {
3535 	[AUX_CH_A] = DP_AUX_A,
3536 	[AUX_CH_USBC1] = DP_AUX_B,
3537 	[AUX_CH_USBC2] = DP_AUX_C,
3538 	[AUX_CH_USBC3] = DP_AUX_D,
3539 	[AUX_CH_USBC4] = DP_AUX_E,
3540 };
3541 
3542 /*
3543  * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3544  * map to DDI A,B,TC1,TC2 respectively.
3545  */
3546 static const u8 rkl_aux_ch_map[] = {
3547 	[AUX_CH_A] = DP_AUX_A,
3548 	[AUX_CH_B] = DP_AUX_B,
3549 	[AUX_CH_USBC1] = DP_AUX_C,
3550 	[AUX_CH_USBC2] = DP_AUX_D,
3551 };
3552 
3553 static const u8 direct_aux_ch_map[] = {
3554 	[AUX_CH_A] = DP_AUX_A,
3555 	[AUX_CH_B] = DP_AUX_B,
3556 	[AUX_CH_C] = DP_AUX_C,
3557 	[AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3558 	[AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3559 	[AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3560 	[AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3561 	[AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3562 	[AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3563 };
3564 
3565 static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel)
3566 {
3567 	const u8 *aux_ch_map;
3568 	int i, n_entries;
3569 
3570 	if (DISPLAY_VER(i915) >= 13) {
3571 		aux_ch_map = adlp_aux_ch_map;
3572 		n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3573 	} else if (IS_ALDERLAKE_S(i915)) {
3574 		aux_ch_map = adls_aux_ch_map;
3575 		n_entries = ARRAY_SIZE(adls_aux_ch_map);
3576 	} else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) {
3577 		aux_ch_map = rkl_aux_ch_map;
3578 		n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3579 	} else {
3580 		aux_ch_map = direct_aux_ch_map;
3581 		n_entries = ARRAY_SIZE(direct_aux_ch_map);
3582 	}
3583 
3584 	for (i = 0; i < n_entries; i++) {
3585 		if (aux_ch_map[i] == aux_channel)
3586 			return i;
3587 	}
3588 
3589 	drm_dbg_kms(&i915->drm,
3590 		    "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3591 		    aux_channel);
3592 
3593 	return AUX_CH_NONE;
3594 }
3595 
3596 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3597 {
3598 	if (!devdata || !devdata->child.aux_channel)
3599 		return AUX_CH_NONE;
3600 
3601 	return map_aux_ch(devdata->i915, devdata->child.aux_channel);
3602 }
3603 
3604 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3605 {
3606 	struct drm_i915_private *i915;
3607 	u8 aux_channel;
3608 	int count = 0;
3609 
3610 	if (!devdata || !devdata->child.aux_channel)
3611 		return false;
3612 
3613 	i915 = devdata->i915;
3614 	aux_channel = devdata->child.aux_channel;
3615 
3616 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3617 		if (intel_bios_encoder_supports_dp(devdata) &&
3618 		    aux_channel == devdata->child.aux_channel)
3619 			count++;
3620 	}
3621 
3622 	return count > 1;
3623 }
3624 
3625 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3626 {
3627 	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3628 		return 0;
3629 
3630 	return translate_iboost(devdata->i915, devdata->child.dp_iboost_level);
3631 }
3632 
3633 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3634 {
3635 	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3636 		return 0;
3637 
3638 	return translate_iboost(devdata->i915, devdata->child.hdmi_iboost_level);
3639 }
3640 
3641 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3642 {
3643 	if (!devdata || !devdata->child.ddc_pin)
3644 		return 0;
3645 
3646 	return map_ddc_pin(devdata->i915, devdata->child.ddc_pin);
3647 }
3648 
3649 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3650 {
3651 	return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3652 }
3653 
3654 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3655 {
3656 	return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3657 }
3658 
3659 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3660 {
3661 	return devdata && devdata->child.lane_reversal;
3662 }
3663 
3664 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3665 {
3666 	return devdata && devdata->child.hpd_invert;
3667 }
3668 
3669 const struct intel_bios_encoder_data *
3670 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3671 {
3672 	struct intel_bios_encoder_data *devdata;
3673 
3674 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3675 		if (intel_bios_encoder_port(devdata) == port)
3676 			return devdata;
3677 	}
3678 
3679 	return NULL;
3680 }
3681 
3682 void intel_bios_for_each_encoder(struct drm_i915_private *i915,
3683 				 void (*func)(struct drm_i915_private *i915,
3684 					      const struct intel_bios_encoder_data *devdata))
3685 {
3686 	struct intel_bios_encoder_data *devdata;
3687 
3688 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
3689 		func(i915, devdata);
3690 }
3691 
3692 static int intel_bios_vbt_show(struct seq_file *m, void *unused)
3693 {
3694 	struct drm_i915_private *i915 = m->private;
3695 	const void *vbt;
3696 	size_t vbt_size;
3697 
3698 	/*
3699 	 * FIXME: VBT might originate from other places than opregion, and then
3700 	 * this would be incorrect.
3701 	 */
3702 	vbt = intel_opregion_get_vbt(i915, &vbt_size);
3703 	if (vbt)
3704 		seq_write(m, vbt, vbt_size);
3705 
3706 	return 0;
3707 }
3708 
3709 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt);
3710 
3711 void intel_bios_debugfs_register(struct drm_i915_private *i915)
3712 {
3713 	struct drm_minor *minor = i915->drm.primary;
3714 
3715 	debugfs_create_file("i915_vbt", 0444, minor->debugfs_root,
3716 			    i915, &intel_bios_vbt_fops);
3717 }
3718