xref: /linux/drivers/gpu/drm/i915/display/intel_bios.c (revision 88a8e278ff0b6b461bf39d4ace17384e976a3f3f)
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_dp_helper.h>
29 
30 #include "display/intel_display.h"
31 #include "display/intel_display_types.h"
32 #include "display/intel_gmbus.h"
33 
34 #include "i915_drv.h"
35 
36 #define _INTEL_BIOS_PRIVATE
37 #include "intel_vbt_defs.h"
38 
39 /**
40  * DOC: Video BIOS Table (VBT)
41  *
42  * The Video BIOS Table, or VBT, provides platform and board specific
43  * configuration information to the driver that is not discoverable or available
44  * through other means. The configuration is mostly related to display
45  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
46  * the PCI ROM.
47  *
48  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
49  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
50  * contain the actual configuration information. The VBT Header, and thus the
51  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
52  * BDB Header. The data blocks are concatenated after the BDB Header. The data
53  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
54  * data. (Block 53, the MIPI Sequence Block is an exception.)
55  *
56  * The driver parses the VBT during load. The relevant information is stored in
57  * driver private data for ease of use, and the actual VBT is not read after
58  * that.
59  */
60 
61 /* Wrapper for VBT child device config */
62 struct display_device_data {
63 	struct child_device_config child;
64 	struct dsc_compression_parameters_entry *dsc;
65 	struct list_head node;
66 };
67 
68 #define	SLAVE_ADDR1	0x70
69 #define	SLAVE_ADDR2	0x72
70 
71 /* Get BDB block size given a pointer to Block ID. */
72 static u32 _get_blocksize(const u8 *block_base)
73 {
74 	/* The MIPI Sequence Block v3+ has a separate size field. */
75 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
76 		return *((const u32 *)(block_base + 4));
77 	else
78 		return *((const u16 *)(block_base + 1));
79 }
80 
81 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
82 static u32 get_blocksize(const void *block_data)
83 {
84 	return _get_blocksize(block_data - 3);
85 }
86 
87 static const void *
88 find_section(const void *_bdb, enum bdb_block_id section_id)
89 {
90 	const struct bdb_header *bdb = _bdb;
91 	const u8 *base = _bdb;
92 	int index = 0;
93 	u32 total, current_size;
94 	enum bdb_block_id current_id;
95 
96 	/* skip to first section */
97 	index += bdb->header_size;
98 	total = bdb->bdb_size;
99 
100 	/* walk the sections looking for section_id */
101 	while (index + 3 < total) {
102 		current_id = *(base + index);
103 		current_size = _get_blocksize(base + index);
104 		index += 3;
105 
106 		if (index + current_size > total)
107 			return NULL;
108 
109 		if (current_id == section_id)
110 			return base + index;
111 
112 		index += current_size;
113 	}
114 
115 	return NULL;
116 }
117 
118 static void
119 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
120 			const struct lvds_dvo_timing *dvo_timing)
121 {
122 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
123 		dvo_timing->hactive_lo;
124 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
125 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
126 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
127 		((dvo_timing->hsync_pulse_width_hi << 8) |
128 			dvo_timing->hsync_pulse_width_lo);
129 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
130 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
131 
132 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
133 		dvo_timing->vactive_lo;
134 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
135 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
136 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
137 		((dvo_timing->vsync_pulse_width_hi << 4) |
138 			dvo_timing->vsync_pulse_width_lo);
139 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
140 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
141 	panel_fixed_mode->clock = dvo_timing->clock * 10;
142 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
143 
144 	if (dvo_timing->hsync_positive)
145 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
146 	else
147 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
148 
149 	if (dvo_timing->vsync_positive)
150 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
151 	else
152 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
153 
154 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
155 		dvo_timing->himage_lo;
156 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
157 		dvo_timing->vimage_lo;
158 
159 	/* Some VBTs have bogus h/vtotal values */
160 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
161 		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
162 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
163 		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
164 
165 	drm_mode_set_name(panel_fixed_mode);
166 }
167 
168 static const struct lvds_dvo_timing *
169 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
170 		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
171 		    int index)
172 {
173 	/*
174 	 * the size of fp_timing varies on the different platform.
175 	 * So calculate the DVO timing relative offset in LVDS data
176 	 * entry to get the DVO timing entry
177 	 */
178 
179 	int lfp_data_size =
180 		lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
181 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
182 	int dvo_timing_offset =
183 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
184 		lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
185 	char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
186 
187 	return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
188 }
189 
190 /* get lvds_fp_timing entry
191  * this function may return NULL if the corresponding entry is invalid
192  */
193 static const struct lvds_fp_timing *
194 get_lvds_fp_timing(const struct bdb_header *bdb,
195 		   const struct bdb_lvds_lfp_data *data,
196 		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
197 		   int index)
198 {
199 	size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
200 	u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
201 	size_t ofs;
202 
203 	if (index >= ARRAY_SIZE(ptrs->ptr))
204 		return NULL;
205 	ofs = ptrs->ptr[index].fp_timing_offset;
206 	if (ofs < data_ofs ||
207 	    ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
208 		return NULL;
209 	return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
210 }
211 
212 /* Parse general panel options */
213 static void
214 parse_panel_options(struct drm_i915_private *dev_priv,
215 		    const struct bdb_header *bdb)
216 {
217 	const struct bdb_lvds_options *lvds_options;
218 	int panel_type;
219 	int drrs_mode;
220 	int ret;
221 
222 	lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
223 	if (!lvds_options)
224 		return;
225 
226 	dev_priv->vbt.lvds_dither = lvds_options->pixel_dither;
227 
228 	ret = intel_opregion_get_panel_type(dev_priv);
229 	if (ret >= 0) {
230 		drm_WARN_ON(&dev_priv->drm, ret > 0xf);
231 		panel_type = ret;
232 		drm_dbg_kms(&dev_priv->drm, "Panel type: %d (OpRegion)\n",
233 			    panel_type);
234 	} else {
235 		if (lvds_options->panel_type > 0xf) {
236 			drm_dbg_kms(&dev_priv->drm,
237 				    "Invalid VBT panel type 0x%x\n",
238 				    lvds_options->panel_type);
239 			return;
240 		}
241 		panel_type = lvds_options->panel_type;
242 		drm_dbg_kms(&dev_priv->drm, "Panel type: %d (VBT)\n",
243 			    panel_type);
244 	}
245 
246 	dev_priv->vbt.panel_type = panel_type;
247 
248 	drrs_mode = (lvds_options->dps_panel_type_bits
249 				>> (panel_type * 2)) & MODE_MASK;
250 	/*
251 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
252 	 * The below piece of code is required to adjust vbt.drrs_type
253 	 * to match the enum drrs_support_type.
254 	 */
255 	switch (drrs_mode) {
256 	case 0:
257 		dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT;
258 		drm_dbg_kms(&dev_priv->drm, "DRRS supported mode is static\n");
259 		break;
260 	case 2:
261 		dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
262 		drm_dbg_kms(&dev_priv->drm,
263 			    "DRRS supported mode is seamless\n");
264 		break;
265 	default:
266 		dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
267 		drm_dbg_kms(&dev_priv->drm,
268 			    "DRRS not supported (VBT input)\n");
269 		break;
270 	}
271 }
272 
273 /* Try to find integrated panel timing data */
274 static void
275 parse_lfp_panel_dtd(struct drm_i915_private *dev_priv,
276 		    const struct bdb_header *bdb)
277 {
278 	const struct bdb_lvds_lfp_data *lvds_lfp_data;
279 	const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
280 	const struct lvds_dvo_timing *panel_dvo_timing;
281 	const struct lvds_fp_timing *fp_timing;
282 	struct drm_display_mode *panel_fixed_mode;
283 	int panel_type = dev_priv->vbt.panel_type;
284 
285 	lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
286 	if (!lvds_lfp_data)
287 		return;
288 
289 	lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
290 	if (!lvds_lfp_data_ptrs)
291 		return;
292 
293 	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
294 					       lvds_lfp_data_ptrs,
295 					       panel_type);
296 
297 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
298 	if (!panel_fixed_mode)
299 		return;
300 
301 	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
302 
303 	dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
304 
305 	drm_dbg_kms(&dev_priv->drm,
306 		    "Found panel mode in BIOS VBT legacy lfp table:\n");
307 	drm_mode_debug_printmodeline(panel_fixed_mode);
308 
309 	fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
310 				       lvds_lfp_data_ptrs,
311 				       panel_type);
312 	if (fp_timing) {
313 		/* check the resolution, just to be sure */
314 		if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
315 		    fp_timing->y_res == panel_fixed_mode->vdisplay) {
316 			dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
317 			drm_dbg_kms(&dev_priv->drm,
318 				    "VBT initial LVDS value %x\n",
319 				    dev_priv->vbt.bios_lvds_val);
320 		}
321 	}
322 }
323 
324 static void
325 parse_generic_dtd(struct drm_i915_private *dev_priv,
326 		  const struct bdb_header *bdb)
327 {
328 	const struct bdb_generic_dtd *generic_dtd;
329 	const struct generic_dtd_entry *dtd;
330 	struct drm_display_mode *panel_fixed_mode;
331 	int num_dtd;
332 
333 	generic_dtd = find_section(bdb, BDB_GENERIC_DTD);
334 	if (!generic_dtd)
335 		return;
336 
337 	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
338 		drm_err(&dev_priv->drm, "GDTD size %u is too small.\n",
339 			generic_dtd->gdtd_size);
340 		return;
341 	} else if (generic_dtd->gdtd_size !=
342 		   sizeof(struct generic_dtd_entry)) {
343 		drm_err(&dev_priv->drm, "Unexpected GDTD size %u\n",
344 			generic_dtd->gdtd_size);
345 		/* DTD has unknown fields, but keep going */
346 	}
347 
348 	num_dtd = (get_blocksize(generic_dtd) -
349 		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
350 	if (dev_priv->vbt.panel_type >= num_dtd) {
351 		drm_err(&dev_priv->drm,
352 			"Panel type %d not found in table of %d DTD's\n",
353 			dev_priv->vbt.panel_type, num_dtd);
354 		return;
355 	}
356 
357 	dtd = &generic_dtd->dtd[dev_priv->vbt.panel_type];
358 
359 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
360 	if (!panel_fixed_mode)
361 		return;
362 
363 	panel_fixed_mode->hdisplay = dtd->hactive;
364 	panel_fixed_mode->hsync_start =
365 		panel_fixed_mode->hdisplay + dtd->hfront_porch;
366 	panel_fixed_mode->hsync_end =
367 		panel_fixed_mode->hsync_start + dtd->hsync;
368 	panel_fixed_mode->htotal =
369 		panel_fixed_mode->hdisplay + dtd->hblank;
370 
371 	panel_fixed_mode->vdisplay = dtd->vactive;
372 	panel_fixed_mode->vsync_start =
373 		panel_fixed_mode->vdisplay + dtd->vfront_porch;
374 	panel_fixed_mode->vsync_end =
375 		panel_fixed_mode->vsync_start + dtd->vsync;
376 	panel_fixed_mode->vtotal =
377 		panel_fixed_mode->vdisplay + dtd->vblank;
378 
379 	panel_fixed_mode->clock = dtd->pixel_clock;
380 	panel_fixed_mode->width_mm = dtd->width_mm;
381 	panel_fixed_mode->height_mm = dtd->height_mm;
382 
383 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
384 	drm_mode_set_name(panel_fixed_mode);
385 
386 	if (dtd->hsync_positive_polarity)
387 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
388 	else
389 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
390 
391 	if (dtd->vsync_positive_polarity)
392 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
393 	else
394 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
395 
396 	drm_dbg_kms(&dev_priv->drm,
397 		    "Found panel mode in BIOS VBT generic dtd table:\n");
398 	drm_mode_debug_printmodeline(panel_fixed_mode);
399 
400 	dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
401 }
402 
403 static void
404 parse_panel_dtd(struct drm_i915_private *dev_priv,
405 		const struct bdb_header *bdb)
406 {
407 	/*
408 	 * Older VBTs provided provided DTD information for internal displays
409 	 * through the "LFP panel DTD" block (42).  As of VBT revision 229,
410 	 * that block is now deprecated and DTD information should be provided
411 	 * via a newer "generic DTD" block (58).  Just to be safe, we'll
412 	 * try the new generic DTD block first on VBT >= 229, but still fall
413 	 * back to trying the old LFP block if that fails.
414 	 */
415 	if (bdb->version >= 229)
416 		parse_generic_dtd(dev_priv, bdb);
417 	if (!dev_priv->vbt.lfp_lvds_vbt_mode)
418 		parse_lfp_panel_dtd(dev_priv, bdb);
419 }
420 
421 static void
422 parse_lfp_backlight(struct drm_i915_private *dev_priv,
423 		    const struct bdb_header *bdb)
424 {
425 	const struct bdb_lfp_backlight_data *backlight_data;
426 	const struct lfp_backlight_data_entry *entry;
427 	int panel_type = dev_priv->vbt.panel_type;
428 
429 	backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
430 	if (!backlight_data)
431 		return;
432 
433 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
434 		drm_dbg_kms(&dev_priv->drm,
435 			    "Unsupported backlight data entry size %u\n",
436 			    backlight_data->entry_size);
437 		return;
438 	}
439 
440 	entry = &backlight_data->data[panel_type];
441 
442 	dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
443 	if (!dev_priv->vbt.backlight.present) {
444 		drm_dbg_kms(&dev_priv->drm,
445 			    "PWM backlight not present in VBT (type %u)\n",
446 			    entry->type);
447 		return;
448 	}
449 
450 	dev_priv->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
451 	if (bdb->version >= 191 &&
452 	    get_blocksize(backlight_data) >= sizeof(*backlight_data)) {
453 		const struct lfp_backlight_control_method *method;
454 
455 		method = &backlight_data->backlight_control[panel_type];
456 		dev_priv->vbt.backlight.type = method->type;
457 		dev_priv->vbt.backlight.controller = method->controller;
458 	}
459 
460 	dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
461 	dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm;
462 	dev_priv->vbt.backlight.min_brightness = entry->min_brightness;
463 	drm_dbg_kms(&dev_priv->drm,
464 		    "VBT backlight PWM modulation frequency %u Hz, "
465 		    "active %s, min brightness %u, level %u, controller %u\n",
466 		    dev_priv->vbt.backlight.pwm_freq_hz,
467 		    dev_priv->vbt.backlight.active_low_pwm ? "low" : "high",
468 		    dev_priv->vbt.backlight.min_brightness,
469 		    backlight_data->level[panel_type],
470 		    dev_priv->vbt.backlight.controller);
471 }
472 
473 /* Try to find sdvo panel data */
474 static void
475 parse_sdvo_panel_data(struct drm_i915_private *dev_priv,
476 		      const struct bdb_header *bdb)
477 {
478 	const struct bdb_sdvo_panel_dtds *dtds;
479 	struct drm_display_mode *panel_fixed_mode;
480 	int index;
481 
482 	index = i915_modparams.vbt_sdvo_panel_type;
483 	if (index == -2) {
484 		drm_dbg_kms(&dev_priv->drm,
485 			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
486 		return;
487 	}
488 
489 	if (index == -1) {
490 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
491 
492 		sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
493 		if (!sdvo_lvds_options)
494 			return;
495 
496 		index = sdvo_lvds_options->panel_type;
497 	}
498 
499 	dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS);
500 	if (!dtds)
501 		return;
502 
503 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
504 	if (!panel_fixed_mode)
505 		return;
506 
507 	fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
508 
509 	dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
510 
511 	drm_dbg_kms(&dev_priv->drm,
512 		    "Found SDVO panel mode in BIOS VBT tables:\n");
513 	drm_mode_debug_printmodeline(panel_fixed_mode);
514 }
515 
516 static int intel_bios_ssc_frequency(struct drm_i915_private *dev_priv,
517 				    bool alternate)
518 {
519 	switch (INTEL_GEN(dev_priv)) {
520 	case 2:
521 		return alternate ? 66667 : 48000;
522 	case 3:
523 	case 4:
524 		return alternate ? 100000 : 96000;
525 	default:
526 		return alternate ? 100000 : 120000;
527 	}
528 }
529 
530 static void
531 parse_general_features(struct drm_i915_private *dev_priv,
532 		       const struct bdb_header *bdb)
533 {
534 	const struct bdb_general_features *general;
535 
536 	general = find_section(bdb, BDB_GENERAL_FEATURES);
537 	if (!general)
538 		return;
539 
540 	dev_priv->vbt.int_tv_support = general->int_tv_support;
541 	/* int_crt_support can't be trusted on earlier platforms */
542 	if (bdb->version >= 155 &&
543 	    (HAS_DDI(dev_priv) || IS_VALLEYVIEW(dev_priv)))
544 		dev_priv->vbt.int_crt_support = general->int_crt_support;
545 	dev_priv->vbt.lvds_use_ssc = general->enable_ssc;
546 	dev_priv->vbt.lvds_ssc_freq =
547 		intel_bios_ssc_frequency(dev_priv, general->ssc_freq);
548 	dev_priv->vbt.display_clock_mode = general->display_clock_mode;
549 	dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
550 	if (bdb->version >= 181) {
551 		dev_priv->vbt.orientation = general->rotate_180 ?
552 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
553 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
554 	} else {
555 		dev_priv->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
556 	}
557 	drm_dbg_kms(&dev_priv->drm,
558 		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
559 		    dev_priv->vbt.int_tv_support,
560 		    dev_priv->vbt.int_crt_support,
561 		    dev_priv->vbt.lvds_use_ssc,
562 		    dev_priv->vbt.lvds_ssc_freq,
563 		    dev_priv->vbt.display_clock_mode,
564 		    dev_priv->vbt.fdi_rx_polarity_inverted);
565 }
566 
567 static const struct child_device_config *
568 child_device_ptr(const struct bdb_general_definitions *defs, int i)
569 {
570 	return (const void *) &defs->devices[i * defs->child_dev_size];
571 }
572 
573 static void
574 parse_sdvo_device_mapping(struct drm_i915_private *dev_priv, u8 bdb_version)
575 {
576 	struct sdvo_device_mapping *mapping;
577 	const struct display_device_data *devdata;
578 	const struct child_device_config *child;
579 	int count = 0;
580 
581 	/*
582 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
583 	 * accurate and doesn't have to be, as long as it's not too strict.
584 	 */
585 	if (!IS_GEN_RANGE(dev_priv, 3, 7)) {
586 		drm_dbg_kms(&dev_priv->drm, "Skipping SDVO device mapping\n");
587 		return;
588 	}
589 
590 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
591 		child = &devdata->child;
592 
593 		if (child->slave_addr != SLAVE_ADDR1 &&
594 		    child->slave_addr != SLAVE_ADDR2) {
595 			/*
596 			 * If the slave address is neither 0x70 nor 0x72,
597 			 * it is not a SDVO device. Skip it.
598 			 */
599 			continue;
600 		}
601 		if (child->dvo_port != DEVICE_PORT_DVOB &&
602 		    child->dvo_port != DEVICE_PORT_DVOC) {
603 			/* skip the incorrect SDVO port */
604 			drm_dbg_kms(&dev_priv->drm,
605 				    "Incorrect SDVO port. Skip it\n");
606 			continue;
607 		}
608 		drm_dbg_kms(&dev_priv->drm,
609 			    "the SDVO device with slave addr %2x is found on"
610 			    " %s port\n",
611 			    child->slave_addr,
612 			    (child->dvo_port == DEVICE_PORT_DVOB) ?
613 			    "SDVOB" : "SDVOC");
614 		mapping = &dev_priv->vbt.sdvo_mappings[child->dvo_port - 1];
615 		if (!mapping->initialized) {
616 			mapping->dvo_port = child->dvo_port;
617 			mapping->slave_addr = child->slave_addr;
618 			mapping->dvo_wiring = child->dvo_wiring;
619 			mapping->ddc_pin = child->ddc_pin;
620 			mapping->i2c_pin = child->i2c_pin;
621 			mapping->initialized = 1;
622 			drm_dbg_kms(&dev_priv->drm,
623 				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
624 				    mapping->dvo_port, mapping->slave_addr,
625 				    mapping->dvo_wiring, mapping->ddc_pin,
626 				    mapping->i2c_pin);
627 		} else {
628 			drm_dbg_kms(&dev_priv->drm,
629 				    "Maybe one SDVO port is shared by "
630 				    "two SDVO device.\n");
631 		}
632 		if (child->slave2_addr) {
633 			/* Maybe this is a SDVO device with multiple inputs */
634 			/* And the mapping info is not added */
635 			drm_dbg_kms(&dev_priv->drm,
636 				    "there exists the slave2_addr. Maybe this"
637 				    " is a SDVO device with multiple inputs.\n");
638 		}
639 		count++;
640 	}
641 
642 	if (!count) {
643 		/* No SDVO device info is found */
644 		drm_dbg_kms(&dev_priv->drm,
645 			    "No SDVO device info is found in VBT\n");
646 	}
647 }
648 
649 static void
650 parse_driver_features(struct drm_i915_private *dev_priv,
651 		      const struct bdb_header *bdb)
652 {
653 	const struct bdb_driver_features *driver;
654 
655 	driver = find_section(bdb, BDB_DRIVER_FEATURES);
656 	if (!driver)
657 		return;
658 
659 	if (INTEL_GEN(dev_priv) >= 5) {
660 		/*
661 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
662 		 * to mean "eDP". The VBT spec doesn't agree with that
663 		 * interpretation, but real world VBTs seem to.
664 		 */
665 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
666 			dev_priv->vbt.int_lvds_support = 0;
667 	} else {
668 		/*
669 		 * FIXME it's not clear which BDB version has the LVDS config
670 		 * bits defined. Revision history in the VBT spec says:
671 		 * "0.92 | Add two definitions for VBT value of LVDS Active
672 		 *  Config (00b and 11b values defined) | 06/13/2005"
673 		 * but does not the specify the BDB version.
674 		 *
675 		 * So far version 134 (on i945gm) is the oldest VBT observed
676 		 * in the wild with the bits correctly populated. Version
677 		 * 108 (on i85x) does not have the bits correctly populated.
678 		 */
679 		if (bdb->version >= 134 &&
680 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
681 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
682 			dev_priv->vbt.int_lvds_support = 0;
683 	}
684 
685 	if (bdb->version < 228) {
686 		drm_dbg_kms(&dev_priv->drm, "DRRS State Enabled:%d\n",
687 			    driver->drrs_enabled);
688 		/*
689 		 * If DRRS is not supported, drrs_type has to be set to 0.
690 		 * This is because, VBT is configured in such a way that
691 		 * static DRRS is 0 and DRRS not supported is represented by
692 		 * driver->drrs_enabled=false
693 		 */
694 		if (!driver->drrs_enabled)
695 			dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
696 
697 		dev_priv->vbt.psr.enable = driver->psr_enabled;
698 	}
699 }
700 
701 static void
702 parse_power_conservation_features(struct drm_i915_private *dev_priv,
703 				  const struct bdb_header *bdb)
704 {
705 	const struct bdb_lfp_power *power;
706 	u8 panel_type = dev_priv->vbt.panel_type;
707 
708 	if (bdb->version < 228)
709 		return;
710 
711 	power = find_section(bdb, BDB_LFP_POWER);
712 	if (!power)
713 		return;
714 
715 	dev_priv->vbt.psr.enable = power->psr & BIT(panel_type);
716 
717 	/*
718 	 * If DRRS is not supported, drrs_type has to be set to 0.
719 	 * This is because, VBT is configured in such a way that
720 	 * static DRRS is 0 and DRRS not supported is represented by
721 	 * power->drrs & BIT(panel_type)=false
722 	 */
723 	if (!(power->drrs & BIT(panel_type)))
724 		dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
725 }
726 
727 static void
728 parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
729 {
730 	const struct bdb_edp *edp;
731 	const struct edp_power_seq *edp_pps;
732 	const struct edp_fast_link_params *edp_link_params;
733 	int panel_type = dev_priv->vbt.panel_type;
734 
735 	edp = find_section(bdb, BDB_EDP);
736 	if (!edp)
737 		return;
738 
739 	switch ((edp->color_depth >> (panel_type * 2)) & 3) {
740 	case EDP_18BPP:
741 		dev_priv->vbt.edp.bpp = 18;
742 		break;
743 	case EDP_24BPP:
744 		dev_priv->vbt.edp.bpp = 24;
745 		break;
746 	case EDP_30BPP:
747 		dev_priv->vbt.edp.bpp = 30;
748 		break;
749 	}
750 
751 	/* Get the eDP sequencing and link info */
752 	edp_pps = &edp->power_seqs[panel_type];
753 	edp_link_params = &edp->fast_link_params[panel_type];
754 
755 	dev_priv->vbt.edp.pps = *edp_pps;
756 
757 	switch (edp_link_params->rate) {
758 	case EDP_RATE_1_62:
759 		dev_priv->vbt.edp.rate = DP_LINK_BW_1_62;
760 		break;
761 	case EDP_RATE_2_7:
762 		dev_priv->vbt.edp.rate = DP_LINK_BW_2_7;
763 		break;
764 	default:
765 		drm_dbg_kms(&dev_priv->drm,
766 			    "VBT has unknown eDP link rate value %u\n",
767 			     edp_link_params->rate);
768 		break;
769 	}
770 
771 	switch (edp_link_params->lanes) {
772 	case EDP_LANE_1:
773 		dev_priv->vbt.edp.lanes = 1;
774 		break;
775 	case EDP_LANE_2:
776 		dev_priv->vbt.edp.lanes = 2;
777 		break;
778 	case EDP_LANE_4:
779 		dev_priv->vbt.edp.lanes = 4;
780 		break;
781 	default:
782 		drm_dbg_kms(&dev_priv->drm,
783 			    "VBT has unknown eDP lane count value %u\n",
784 			    edp_link_params->lanes);
785 		break;
786 	}
787 
788 	switch (edp_link_params->preemphasis) {
789 	case EDP_PREEMPHASIS_NONE:
790 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
791 		break;
792 	case EDP_PREEMPHASIS_3_5dB:
793 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
794 		break;
795 	case EDP_PREEMPHASIS_6dB:
796 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
797 		break;
798 	case EDP_PREEMPHASIS_9_5dB:
799 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
800 		break;
801 	default:
802 		drm_dbg_kms(&dev_priv->drm,
803 			    "VBT has unknown eDP pre-emphasis value %u\n",
804 			    edp_link_params->preemphasis);
805 		break;
806 	}
807 
808 	switch (edp_link_params->vswing) {
809 	case EDP_VSWING_0_4V:
810 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
811 		break;
812 	case EDP_VSWING_0_6V:
813 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
814 		break;
815 	case EDP_VSWING_0_8V:
816 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
817 		break;
818 	case EDP_VSWING_1_2V:
819 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
820 		break;
821 	default:
822 		drm_dbg_kms(&dev_priv->drm,
823 			    "VBT has unknown eDP voltage swing value %u\n",
824 			    edp_link_params->vswing);
825 		break;
826 	}
827 
828 	if (bdb->version >= 173) {
829 		u8 vswing;
830 
831 		/* Don't read from VBT if module parameter has valid value*/
832 		if (i915_modparams.edp_vswing) {
833 			dev_priv->vbt.edp.low_vswing =
834 				i915_modparams.edp_vswing == 1;
835 		} else {
836 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
837 			dev_priv->vbt.edp.low_vswing = vswing == 0;
838 		}
839 	}
840 }
841 
842 static void
843 parse_psr(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
844 {
845 	const struct bdb_psr *psr;
846 	const struct psr_table *psr_table;
847 	int panel_type = dev_priv->vbt.panel_type;
848 
849 	psr = find_section(bdb, BDB_PSR);
850 	if (!psr) {
851 		drm_dbg_kms(&dev_priv->drm, "No PSR BDB found.\n");
852 		return;
853 	}
854 
855 	psr_table = &psr->psr_table[panel_type];
856 
857 	dev_priv->vbt.psr.full_link = psr_table->full_link;
858 	dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
859 
860 	/* Allowed VBT values goes from 0 to 15 */
861 	dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
862 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
863 
864 	switch (psr_table->lines_to_wait) {
865 	case 0:
866 		dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
867 		break;
868 	case 1:
869 		dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
870 		break;
871 	case 2:
872 		dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
873 		break;
874 	case 3:
875 		dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
876 		break;
877 	default:
878 		drm_dbg_kms(&dev_priv->drm,
879 			    "VBT has unknown PSR lines to wait %u\n",
880 			    psr_table->lines_to_wait);
881 		break;
882 	}
883 
884 	/*
885 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
886 	 * Old decimal value is wake up time in multiples of 100 us.
887 	 */
888 	if (bdb->version >= 205 &&
889 	    (IS_GEN9_BC(dev_priv) || IS_GEMINILAKE(dev_priv) ||
890 	     INTEL_GEN(dev_priv) >= 10)) {
891 		switch (psr_table->tp1_wakeup_time) {
892 		case 0:
893 			dev_priv->vbt.psr.tp1_wakeup_time_us = 500;
894 			break;
895 		case 1:
896 			dev_priv->vbt.psr.tp1_wakeup_time_us = 100;
897 			break;
898 		case 3:
899 			dev_priv->vbt.psr.tp1_wakeup_time_us = 0;
900 			break;
901 		default:
902 			drm_dbg_kms(&dev_priv->drm,
903 				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
904 				    psr_table->tp1_wakeup_time);
905 			/* fallthrough */
906 		case 2:
907 			dev_priv->vbt.psr.tp1_wakeup_time_us = 2500;
908 			break;
909 		}
910 
911 		switch (psr_table->tp2_tp3_wakeup_time) {
912 		case 0:
913 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 500;
914 			break;
915 		case 1:
916 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 100;
917 			break;
918 		case 3:
919 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 0;
920 			break;
921 		default:
922 			drm_dbg_kms(&dev_priv->drm,
923 				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
924 				    psr_table->tp2_tp3_wakeup_time);
925 			/* fallthrough */
926 		case 2:
927 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
928 		break;
929 		}
930 	} else {
931 		dev_priv->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
932 		dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
933 	}
934 
935 	if (bdb->version >= 226) {
936 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
937 
938 		wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
939 		switch (wakeup_time) {
940 		case 0:
941 			wakeup_time = 500;
942 			break;
943 		case 1:
944 			wakeup_time = 100;
945 			break;
946 		case 3:
947 			wakeup_time = 50;
948 			break;
949 		default:
950 		case 2:
951 			wakeup_time = 2500;
952 			break;
953 		}
954 		dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
955 	} else {
956 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
957 		dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = dev_priv->vbt.psr.tp2_tp3_wakeup_time_us;
958 	}
959 }
960 
961 static void parse_dsi_backlight_ports(struct drm_i915_private *dev_priv,
962 				      u16 version, enum port port)
963 {
964 	if (!dev_priv->vbt.dsi.config->dual_link || version < 197) {
965 		dev_priv->vbt.dsi.bl_ports = BIT(port);
966 		if (dev_priv->vbt.dsi.config->cabc_supported)
967 			dev_priv->vbt.dsi.cabc_ports = BIT(port);
968 
969 		return;
970 	}
971 
972 	switch (dev_priv->vbt.dsi.config->dl_dcs_backlight_ports) {
973 	case DL_DCS_PORT_A:
974 		dev_priv->vbt.dsi.bl_ports = BIT(PORT_A);
975 		break;
976 	case DL_DCS_PORT_C:
977 		dev_priv->vbt.dsi.bl_ports = BIT(PORT_C);
978 		break;
979 	default:
980 	case DL_DCS_PORT_A_AND_C:
981 		dev_priv->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
982 		break;
983 	}
984 
985 	if (!dev_priv->vbt.dsi.config->cabc_supported)
986 		return;
987 
988 	switch (dev_priv->vbt.dsi.config->dl_dcs_cabc_ports) {
989 	case DL_DCS_PORT_A:
990 		dev_priv->vbt.dsi.cabc_ports = BIT(PORT_A);
991 		break;
992 	case DL_DCS_PORT_C:
993 		dev_priv->vbt.dsi.cabc_ports = BIT(PORT_C);
994 		break;
995 	default:
996 	case DL_DCS_PORT_A_AND_C:
997 		dev_priv->vbt.dsi.cabc_ports =
998 					BIT(PORT_A) | BIT(PORT_C);
999 		break;
1000 	}
1001 }
1002 
1003 static void
1004 parse_mipi_config(struct drm_i915_private *dev_priv,
1005 		  const struct bdb_header *bdb)
1006 {
1007 	const struct bdb_mipi_config *start;
1008 	const struct mipi_config *config;
1009 	const struct mipi_pps_data *pps;
1010 	int panel_type = dev_priv->vbt.panel_type;
1011 	enum port port;
1012 
1013 	/* parse MIPI blocks only if LFP type is MIPI */
1014 	if (!intel_bios_is_dsi_present(dev_priv, &port))
1015 		return;
1016 
1017 	/* Initialize this to undefined indicating no generic MIPI support */
1018 	dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1019 
1020 	/* Block #40 is already parsed and panel_fixed_mode is
1021 	 * stored in dev_priv->lfp_lvds_vbt_mode
1022 	 * resuse this when needed
1023 	 */
1024 
1025 	/* Parse #52 for panel index used from panel_type already
1026 	 * parsed
1027 	 */
1028 	start = find_section(bdb, BDB_MIPI_CONFIG);
1029 	if (!start) {
1030 		drm_dbg_kms(&dev_priv->drm, "No MIPI config BDB found");
1031 		return;
1032 	}
1033 
1034 	drm_dbg(&dev_priv->drm, "Found MIPI Config block, panel index = %d\n",
1035 		panel_type);
1036 
1037 	/*
1038 	 * get hold of the correct configuration block and pps data as per
1039 	 * the panel_type as index
1040 	 */
1041 	config = &start->config[panel_type];
1042 	pps = &start->pps[panel_type];
1043 
1044 	/* store as of now full data. Trim when we realise all is not needed */
1045 	dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1046 	if (!dev_priv->vbt.dsi.config)
1047 		return;
1048 
1049 	dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1050 	if (!dev_priv->vbt.dsi.pps) {
1051 		kfree(dev_priv->vbt.dsi.config);
1052 		return;
1053 	}
1054 
1055 	parse_dsi_backlight_ports(dev_priv, bdb->version, port);
1056 
1057 	/* FIXME is the 90 vs. 270 correct? */
1058 	switch (config->rotation) {
1059 	case ENABLE_ROTATION_0:
1060 		/*
1061 		 * Most (all?) VBTs claim 0 degrees despite having
1062 		 * an upside down panel, thus we do not trust this.
1063 		 */
1064 		dev_priv->vbt.dsi.orientation =
1065 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1066 		break;
1067 	case ENABLE_ROTATION_90:
1068 		dev_priv->vbt.dsi.orientation =
1069 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1070 		break;
1071 	case ENABLE_ROTATION_180:
1072 		dev_priv->vbt.dsi.orientation =
1073 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1074 		break;
1075 	case ENABLE_ROTATION_270:
1076 		dev_priv->vbt.dsi.orientation =
1077 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1078 		break;
1079 	}
1080 
1081 	/* We have mandatory mipi config blocks. Initialize as generic panel */
1082 	dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1083 }
1084 
1085 /* Find the sequence block and size for the given panel. */
1086 static const u8 *
1087 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1088 			  u16 panel_id, u32 *seq_size)
1089 {
1090 	u32 total = get_blocksize(sequence);
1091 	const u8 *data = &sequence->data[0];
1092 	u8 current_id;
1093 	u32 current_size;
1094 	int header_size = sequence->version >= 3 ? 5 : 3;
1095 	int index = 0;
1096 	int i;
1097 
1098 	/* skip new block size */
1099 	if (sequence->version >= 3)
1100 		data += 4;
1101 
1102 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1103 		if (index + header_size > total) {
1104 			DRM_ERROR("Invalid sequence block (header)\n");
1105 			return NULL;
1106 		}
1107 
1108 		current_id = *(data + index);
1109 		if (sequence->version >= 3)
1110 			current_size = *((const u32 *)(data + index + 1));
1111 		else
1112 			current_size = *((const u16 *)(data + index + 1));
1113 
1114 		index += header_size;
1115 
1116 		if (index + current_size > total) {
1117 			DRM_ERROR("Invalid sequence block\n");
1118 			return NULL;
1119 		}
1120 
1121 		if (current_id == panel_id) {
1122 			*seq_size = current_size;
1123 			return data + index;
1124 		}
1125 
1126 		index += current_size;
1127 	}
1128 
1129 	DRM_ERROR("Sequence block detected but no valid configuration\n");
1130 
1131 	return NULL;
1132 }
1133 
1134 static int goto_next_sequence(const u8 *data, int index, int total)
1135 {
1136 	u16 len;
1137 
1138 	/* Skip Sequence Byte. */
1139 	for (index = index + 1; index < total; index += len) {
1140 		u8 operation_byte = *(data + index);
1141 		index++;
1142 
1143 		switch (operation_byte) {
1144 		case MIPI_SEQ_ELEM_END:
1145 			return index;
1146 		case MIPI_SEQ_ELEM_SEND_PKT:
1147 			if (index + 4 > total)
1148 				return 0;
1149 
1150 			len = *((const u16 *)(data + index + 2)) + 4;
1151 			break;
1152 		case MIPI_SEQ_ELEM_DELAY:
1153 			len = 4;
1154 			break;
1155 		case MIPI_SEQ_ELEM_GPIO:
1156 			len = 2;
1157 			break;
1158 		case MIPI_SEQ_ELEM_I2C:
1159 			if (index + 7 > total)
1160 				return 0;
1161 			len = *(data + index + 6) + 7;
1162 			break;
1163 		default:
1164 			DRM_ERROR("Unknown operation byte\n");
1165 			return 0;
1166 		}
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1173 {
1174 	int seq_end;
1175 	u16 len;
1176 	u32 size_of_sequence;
1177 
1178 	/*
1179 	 * Could skip sequence based on Size of Sequence alone, but also do some
1180 	 * checking on the structure.
1181 	 */
1182 	if (total < 5) {
1183 		DRM_ERROR("Too small sequence size\n");
1184 		return 0;
1185 	}
1186 
1187 	/* Skip Sequence Byte. */
1188 	index++;
1189 
1190 	/*
1191 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1192 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1193 	 * byte.
1194 	 */
1195 	size_of_sequence = *((const u32 *)(data + index));
1196 	index += 4;
1197 
1198 	seq_end = index + size_of_sequence;
1199 	if (seq_end > total) {
1200 		DRM_ERROR("Invalid sequence size\n");
1201 		return 0;
1202 	}
1203 
1204 	for (; index < total; index += len) {
1205 		u8 operation_byte = *(data + index);
1206 		index++;
1207 
1208 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1209 			if (index != seq_end) {
1210 				DRM_ERROR("Invalid element structure\n");
1211 				return 0;
1212 			}
1213 			return index;
1214 		}
1215 
1216 		len = *(data + index);
1217 		index++;
1218 
1219 		/*
1220 		 * FIXME: Would be nice to check elements like for v1/v2 in
1221 		 * goto_next_sequence() above.
1222 		 */
1223 		switch (operation_byte) {
1224 		case MIPI_SEQ_ELEM_SEND_PKT:
1225 		case MIPI_SEQ_ELEM_DELAY:
1226 		case MIPI_SEQ_ELEM_GPIO:
1227 		case MIPI_SEQ_ELEM_I2C:
1228 		case MIPI_SEQ_ELEM_SPI:
1229 		case MIPI_SEQ_ELEM_PMIC:
1230 			break;
1231 		default:
1232 			DRM_ERROR("Unknown operation byte %u\n",
1233 				  operation_byte);
1234 			break;
1235 		}
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 /*
1242  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1243  * skip all delay + gpio operands and stop at the first DSI packet op.
1244  */
1245 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *dev_priv)
1246 {
1247 	const u8 *data = dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1248 	int index, len;
1249 
1250 	if (drm_WARN_ON(&dev_priv->drm,
1251 			!data || dev_priv->vbt.dsi.seq_version != 1))
1252 		return 0;
1253 
1254 	/* index = 1 to skip sequence byte */
1255 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1256 		switch (data[index]) {
1257 		case MIPI_SEQ_ELEM_SEND_PKT:
1258 			return index == 1 ? 0 : index;
1259 		case MIPI_SEQ_ELEM_DELAY:
1260 			len = 5; /* 1 byte for operand + uint32 */
1261 			break;
1262 		case MIPI_SEQ_ELEM_GPIO:
1263 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1264 			break;
1265 		default:
1266 			return 0;
1267 		}
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 /*
1274  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1275  * The deassert must be done before calling intel_dsi_device_ready, so for
1276  * these devices we split the init OTP sequence into a deassert sequence and
1277  * the actual init OTP part.
1278  */
1279 static void fixup_mipi_sequences(struct drm_i915_private *dev_priv)
1280 {
1281 	u8 *init_otp;
1282 	int len;
1283 
1284 	/* Limit this to VLV for now. */
1285 	if (!IS_VALLEYVIEW(dev_priv))
1286 		return;
1287 
1288 	/* Limit this to v1 vid-mode sequences */
1289 	if (dev_priv->vbt.dsi.config->is_cmd_mode ||
1290 	    dev_priv->vbt.dsi.seq_version != 1)
1291 		return;
1292 
1293 	/* Only do this if there are otp and assert seqs and no deassert seq */
1294 	if (!dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1295 	    !dev_priv->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1296 	    dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1297 		return;
1298 
1299 	/* The deassert-sequence ends at the first DSI packet */
1300 	len = get_init_otp_deassert_fragment_len(dev_priv);
1301 	if (!len)
1302 		return;
1303 
1304 	drm_dbg_kms(&dev_priv->drm,
1305 		    "Using init OTP fragment to deassert reset\n");
1306 
1307 	/* Copy the fragment, update seq byte and terminate it */
1308 	init_otp = (u8 *)dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1309 	dev_priv->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1310 	if (!dev_priv->vbt.dsi.deassert_seq)
1311 		return;
1312 	dev_priv->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1313 	dev_priv->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1314 	/* Use the copy for deassert */
1315 	dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1316 		dev_priv->vbt.dsi.deassert_seq;
1317 	/* Replace the last byte of the fragment with init OTP seq byte */
1318 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1319 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1320 	dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1321 }
1322 
1323 static void
1324 parse_mipi_sequence(struct drm_i915_private *dev_priv,
1325 		    const struct bdb_header *bdb)
1326 {
1327 	int panel_type = dev_priv->vbt.panel_type;
1328 	const struct bdb_mipi_sequence *sequence;
1329 	const u8 *seq_data;
1330 	u32 seq_size;
1331 	u8 *data;
1332 	int index = 0;
1333 
1334 	/* Only our generic panel driver uses the sequence block. */
1335 	if (dev_priv->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1336 		return;
1337 
1338 	sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
1339 	if (!sequence) {
1340 		drm_dbg_kms(&dev_priv->drm,
1341 			    "No MIPI Sequence found, parsing complete\n");
1342 		return;
1343 	}
1344 
1345 	/* Fail gracefully for forward incompatible sequence block. */
1346 	if (sequence->version >= 4) {
1347 		drm_err(&dev_priv->drm,
1348 			"Unable to parse MIPI Sequence Block v%u\n",
1349 			sequence->version);
1350 		return;
1351 	}
1352 
1353 	drm_dbg(&dev_priv->drm, "Found MIPI sequence block v%u\n",
1354 		sequence->version);
1355 
1356 	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1357 	if (!seq_data)
1358 		return;
1359 
1360 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1361 	if (!data)
1362 		return;
1363 
1364 	/* Parse the sequences, store pointers to each sequence. */
1365 	for (;;) {
1366 		u8 seq_id = *(data + index);
1367 		if (seq_id == MIPI_SEQ_END)
1368 			break;
1369 
1370 		if (seq_id >= MIPI_SEQ_MAX) {
1371 			drm_err(&dev_priv->drm, "Unknown sequence %u\n",
1372 				seq_id);
1373 			goto err;
1374 		}
1375 
1376 		/* Log about presence of sequences we won't run. */
1377 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1378 			drm_dbg_kms(&dev_priv->drm,
1379 				    "Unsupported sequence %u\n", seq_id);
1380 
1381 		dev_priv->vbt.dsi.sequence[seq_id] = data + index;
1382 
1383 		if (sequence->version >= 3)
1384 			index = goto_next_sequence_v3(data, index, seq_size);
1385 		else
1386 			index = goto_next_sequence(data, index, seq_size);
1387 		if (!index) {
1388 			drm_err(&dev_priv->drm, "Invalid sequence %u\n",
1389 				seq_id);
1390 			goto err;
1391 		}
1392 	}
1393 
1394 	dev_priv->vbt.dsi.data = data;
1395 	dev_priv->vbt.dsi.size = seq_size;
1396 	dev_priv->vbt.dsi.seq_version = sequence->version;
1397 
1398 	fixup_mipi_sequences(dev_priv);
1399 
1400 	drm_dbg(&dev_priv->drm, "MIPI related VBT parsing complete\n");
1401 	return;
1402 
1403 err:
1404 	kfree(data);
1405 	memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence));
1406 }
1407 
1408 static void
1409 parse_compression_parameters(struct drm_i915_private *i915,
1410 			     const struct bdb_header *bdb)
1411 {
1412 	const struct bdb_compression_parameters *params;
1413 	struct display_device_data *devdata;
1414 	const struct child_device_config *child;
1415 	u16 block_size;
1416 	int index;
1417 
1418 	if (bdb->version < 198)
1419 		return;
1420 
1421 	params = find_section(bdb, BDB_COMPRESSION_PARAMETERS);
1422 	if (params) {
1423 		/* Sanity checks */
1424 		if (params->entry_size != sizeof(params->data[0])) {
1425 			drm_dbg_kms(&i915->drm,
1426 				    "VBT: unsupported compression param entry size\n");
1427 			return;
1428 		}
1429 
1430 		block_size = get_blocksize(params);
1431 		if (block_size < sizeof(*params)) {
1432 			drm_dbg_kms(&i915->drm,
1433 				    "VBT: expected 16 compression param entries\n");
1434 			return;
1435 		}
1436 	}
1437 
1438 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
1439 		child = &devdata->child;
1440 
1441 		if (!child->compression_enable)
1442 			continue;
1443 
1444 		if (!params) {
1445 			drm_dbg_kms(&i915->drm,
1446 				    "VBT: compression params not available\n");
1447 			continue;
1448 		}
1449 
1450 		if (child->compression_method_cps) {
1451 			drm_dbg_kms(&i915->drm,
1452 				    "VBT: CPS compression not supported\n");
1453 			continue;
1454 		}
1455 
1456 		index = child->compression_structure_index;
1457 
1458 		devdata->dsc = kmemdup(&params->data[index],
1459 				       sizeof(*devdata->dsc), GFP_KERNEL);
1460 	}
1461 }
1462 
1463 static u8 translate_iboost(u8 val)
1464 {
1465 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1466 
1467 	if (val >= ARRAY_SIZE(mapping)) {
1468 		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1469 		return 0;
1470 	}
1471 	return mapping[val];
1472 }
1473 
1474 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
1475 {
1476 	const struct ddi_vbt_port_info *info;
1477 	enum port port;
1478 
1479 	for_each_port(port) {
1480 		info = &i915->vbt.ddi_port_info[port];
1481 
1482 		if (info->child && ddc_pin == info->alternate_ddc_pin)
1483 			return port;
1484 	}
1485 
1486 	return PORT_NONE;
1487 }
1488 
1489 static void sanitize_ddc_pin(struct drm_i915_private *dev_priv,
1490 			     enum port port)
1491 {
1492 	struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1493 	enum port p;
1494 
1495 	if (!info->alternate_ddc_pin)
1496 		return;
1497 
1498 	p = get_port_by_ddc_pin(dev_priv, info->alternate_ddc_pin);
1499 	if (p != PORT_NONE) {
1500 		drm_dbg_kms(&dev_priv->drm,
1501 			    "port %c trying to use the same DDC pin (0x%x) as port %c, "
1502 			    "disabling port %c DVI/HDMI support\n",
1503 			    port_name(port), info->alternate_ddc_pin,
1504 			    port_name(p), port_name(p));
1505 
1506 		/*
1507 		 * If we have multiple ports supposedly sharing the
1508 		 * pin, then dvi/hdmi couldn't exist on the shared
1509 		 * port. Otherwise they share the same ddc bin and
1510 		 * system couldn't communicate with them separately.
1511 		 *
1512 		 * Give inverse child device order the priority,
1513 		 * last one wins. Yes, there are real machines
1514 		 * (eg. Asrock B250M-HDV) where VBT has both
1515 		 * port A and port E with the same AUX ch and
1516 		 * we must pick port E :(
1517 		 */
1518 		info = &dev_priv->vbt.ddi_port_info[p];
1519 
1520 		info->supports_dvi = false;
1521 		info->supports_hdmi = false;
1522 		info->alternate_ddc_pin = 0;
1523 	}
1524 }
1525 
1526 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
1527 {
1528 	const struct ddi_vbt_port_info *info;
1529 	enum port port;
1530 
1531 	for_each_port(port) {
1532 		info = &i915->vbt.ddi_port_info[port];
1533 
1534 		if (info->child && aux_ch == info->alternate_aux_channel)
1535 			return port;
1536 	}
1537 
1538 	return PORT_NONE;
1539 }
1540 
1541 static void sanitize_aux_ch(struct drm_i915_private *dev_priv,
1542 			    enum port port)
1543 {
1544 	struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1545 	enum port p;
1546 
1547 	if (!info->alternate_aux_channel)
1548 		return;
1549 
1550 	p = get_port_by_aux_ch(dev_priv, info->alternate_aux_channel);
1551 	if (p != PORT_NONE) {
1552 		drm_dbg_kms(&dev_priv->drm,
1553 			    "port %c trying to use the same AUX CH (0x%x) as port %c, "
1554 			    "disabling port %c DP support\n",
1555 			    port_name(port), info->alternate_aux_channel,
1556 			    port_name(p), port_name(p));
1557 
1558 		/*
1559 		 * If we have multiple ports supposedlt sharing the
1560 		 * aux channel, then DP couldn't exist on the shared
1561 		 * port. Otherwise they share the same aux channel
1562 		 * and system couldn't communicate with them separately.
1563 		 *
1564 		 * Give inverse child device order the priority,
1565 		 * last one wins. Yes, there are real machines
1566 		 * (eg. Asrock B250M-HDV) where VBT has both
1567 		 * port A and port E with the same AUX ch and
1568 		 * we must pick port E :(
1569 		 */
1570 		info = &dev_priv->vbt.ddi_port_info[p];
1571 
1572 		info->supports_dp = false;
1573 		info->alternate_aux_channel = 0;
1574 	}
1575 }
1576 
1577 static const u8 cnp_ddc_pin_map[] = {
1578 	[0] = 0, /* N/A */
1579 	[DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1580 	[DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1581 	[DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1582 	[DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1583 };
1584 
1585 static const u8 icp_ddc_pin_map[] = {
1586 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1587 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1588 	[TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
1589 	[ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1590 	[ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1591 	[ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1592 	[ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1593 	[TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
1594 	[TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
1595 };
1596 
1597 static u8 map_ddc_pin(struct drm_i915_private *dev_priv, u8 vbt_pin)
1598 {
1599 	const u8 *ddc_pin_map;
1600 	int n_entries;
1601 
1602 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) {
1603 		ddc_pin_map = icp_ddc_pin_map;
1604 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
1605 	} else if (HAS_PCH_CNP(dev_priv)) {
1606 		ddc_pin_map = cnp_ddc_pin_map;
1607 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
1608 	} else {
1609 		/* Assuming direct map */
1610 		return vbt_pin;
1611 	}
1612 
1613 	if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
1614 		return ddc_pin_map[vbt_pin];
1615 
1616 	drm_dbg_kms(&dev_priv->drm,
1617 		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
1618 		    vbt_pin);
1619 	return 0;
1620 }
1621 
1622 static enum port dvo_port_to_port(u8 dvo_port)
1623 {
1624 	/*
1625 	 * Each DDI port can have more than one value on the "DVO Port" field,
1626 	 * so look for all the possible values for each port.
1627 	 */
1628 	static const int dvo_ports[][3] = {
1629 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1},
1630 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1},
1631 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1},
1632 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1},
1633 		[PORT_E] = { DVO_PORT_CRT, DVO_PORT_HDMIE, DVO_PORT_DPE},
1634 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1},
1635 		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1},
1636 	};
1637 	enum port port;
1638 	int i;
1639 
1640 	for (port = PORT_A; port < ARRAY_SIZE(dvo_ports); port++) {
1641 		for (i = 0; i < ARRAY_SIZE(dvo_ports[port]); i++) {
1642 			if (dvo_ports[port][i] == -1)
1643 				break;
1644 
1645 			if (dvo_port == dvo_ports[port][i])
1646 				return port;
1647 		}
1648 	}
1649 
1650 	return PORT_NONE;
1651 }
1652 
1653 static void parse_ddi_port(struct drm_i915_private *dev_priv,
1654 			   struct display_device_data *devdata,
1655 			   u8 bdb_version)
1656 {
1657 	const struct child_device_config *child = &devdata->child;
1658 	struct ddi_vbt_port_info *info;
1659 	bool is_dvi, is_hdmi, is_dp, is_edp, is_crt;
1660 	enum port port;
1661 
1662 	port = dvo_port_to_port(child->dvo_port);
1663 	if (port == PORT_NONE)
1664 		return;
1665 
1666 	info = &dev_priv->vbt.ddi_port_info[port];
1667 
1668 	if (info->child) {
1669 		drm_dbg_kms(&dev_priv->drm,
1670 			    "More than one child device for port %c in VBT, using the first.\n",
1671 			    port_name(port));
1672 		return;
1673 	}
1674 
1675 	is_dvi = child->device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1676 	is_dp = child->device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1677 	is_crt = child->device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1678 	is_hdmi = is_dvi && (child->device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1679 	is_edp = is_dp && (child->device_type & DEVICE_TYPE_INTERNAL_CONNECTOR);
1680 
1681 	if (port == PORT_A && is_dvi && INTEL_GEN(dev_priv) < 12) {
1682 		drm_dbg_kms(&dev_priv->drm,
1683 			    "VBT claims port A supports DVI%s, ignoring\n",
1684 			    is_hdmi ? "/HDMI" : "");
1685 		is_dvi = false;
1686 		is_hdmi = false;
1687 	}
1688 
1689 	info->supports_dvi = is_dvi;
1690 	info->supports_hdmi = is_hdmi;
1691 	info->supports_dp = is_dp;
1692 	info->supports_edp = is_edp;
1693 
1694 	if (bdb_version >= 195)
1695 		info->supports_typec_usb = child->dp_usb_type_c;
1696 
1697 	if (bdb_version >= 209)
1698 		info->supports_tbt = child->tbt;
1699 
1700 	drm_dbg_kms(&dev_priv->drm,
1701 		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
1702 		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
1703 		    HAS_LSPCON(dev_priv) && child->lspcon,
1704 		    info->supports_typec_usb, info->supports_tbt,
1705 		    devdata->dsc != NULL);
1706 
1707 	if (is_dvi) {
1708 		u8 ddc_pin;
1709 
1710 		ddc_pin = map_ddc_pin(dev_priv, child->ddc_pin);
1711 		if (intel_gmbus_is_valid_pin(dev_priv, ddc_pin)) {
1712 			info->alternate_ddc_pin = ddc_pin;
1713 			sanitize_ddc_pin(dev_priv, port);
1714 		} else {
1715 			drm_dbg_kms(&dev_priv->drm,
1716 				    "Port %c has invalid DDC pin %d, "
1717 				    "sticking to defaults\n",
1718 				    port_name(port), ddc_pin);
1719 		}
1720 	}
1721 
1722 	if (is_dp) {
1723 		info->alternate_aux_channel = child->aux_channel;
1724 
1725 		sanitize_aux_ch(dev_priv, port);
1726 	}
1727 
1728 	if (bdb_version >= 158) {
1729 		/* The VBT HDMI level shift values match the table we have. */
1730 		u8 hdmi_level_shift = child->hdmi_level_shifter_value;
1731 		drm_dbg_kms(&dev_priv->drm,
1732 			    "VBT HDMI level shift for port %c: %d\n",
1733 			    port_name(port),
1734 			    hdmi_level_shift);
1735 		info->hdmi_level_shift = hdmi_level_shift;
1736 		info->hdmi_level_shift_set = true;
1737 	}
1738 
1739 	if (bdb_version >= 204) {
1740 		int max_tmds_clock;
1741 
1742 		switch (child->hdmi_max_data_rate) {
1743 		default:
1744 			MISSING_CASE(child->hdmi_max_data_rate);
1745 			/* fall through */
1746 		case HDMI_MAX_DATA_RATE_PLATFORM:
1747 			max_tmds_clock = 0;
1748 			break;
1749 		case HDMI_MAX_DATA_RATE_297:
1750 			max_tmds_clock = 297000;
1751 			break;
1752 		case HDMI_MAX_DATA_RATE_165:
1753 			max_tmds_clock = 165000;
1754 			break;
1755 		}
1756 
1757 		if (max_tmds_clock)
1758 			drm_dbg_kms(&dev_priv->drm,
1759 				    "VBT HDMI max TMDS clock for port %c: %d kHz\n",
1760 				    port_name(port), max_tmds_clock);
1761 		info->max_tmds_clock = max_tmds_clock;
1762 	}
1763 
1764 	/* Parse the I_boost config for SKL and above */
1765 	if (bdb_version >= 196 && child->iboost) {
1766 		info->dp_boost_level = translate_iboost(child->dp_iboost_level);
1767 		drm_dbg_kms(&dev_priv->drm,
1768 			    "VBT (e)DP boost level for port %c: %d\n",
1769 			    port_name(port), info->dp_boost_level);
1770 		info->hdmi_boost_level = translate_iboost(child->hdmi_iboost_level);
1771 		drm_dbg_kms(&dev_priv->drm,
1772 			    "VBT HDMI boost level for port %c: %d\n",
1773 			    port_name(port), info->hdmi_boost_level);
1774 	}
1775 
1776 	/* DP max link rate for CNL+ */
1777 	if (bdb_version >= 216) {
1778 		switch (child->dp_max_link_rate) {
1779 		default:
1780 		case VBT_DP_MAX_LINK_RATE_HBR3:
1781 			info->dp_max_link_rate = 810000;
1782 			break;
1783 		case VBT_DP_MAX_LINK_RATE_HBR2:
1784 			info->dp_max_link_rate = 540000;
1785 			break;
1786 		case VBT_DP_MAX_LINK_RATE_HBR:
1787 			info->dp_max_link_rate = 270000;
1788 			break;
1789 		case VBT_DP_MAX_LINK_RATE_LBR:
1790 			info->dp_max_link_rate = 162000;
1791 			break;
1792 		}
1793 		drm_dbg_kms(&dev_priv->drm,
1794 			    "VBT DP max link rate for port %c: %d\n",
1795 			    port_name(port), info->dp_max_link_rate);
1796 	}
1797 
1798 	info->child = child;
1799 }
1800 
1801 static void parse_ddi_ports(struct drm_i915_private *dev_priv, u8 bdb_version)
1802 {
1803 	struct display_device_data *devdata;
1804 
1805 	if (!HAS_DDI(dev_priv) && !IS_CHERRYVIEW(dev_priv))
1806 		return;
1807 
1808 	if (bdb_version < 155)
1809 		return;
1810 
1811 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node)
1812 		parse_ddi_port(dev_priv, devdata, bdb_version);
1813 }
1814 
1815 static void
1816 parse_general_definitions(struct drm_i915_private *dev_priv,
1817 			  const struct bdb_header *bdb)
1818 {
1819 	const struct bdb_general_definitions *defs;
1820 	struct display_device_data *devdata;
1821 	const struct child_device_config *child;
1822 	int i, child_device_num;
1823 	u8 expected_size;
1824 	u16 block_size;
1825 	int bus_pin;
1826 
1827 	defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
1828 	if (!defs) {
1829 		drm_dbg_kms(&dev_priv->drm,
1830 			    "No general definition block is found, no devices defined.\n");
1831 		return;
1832 	}
1833 
1834 	block_size = get_blocksize(defs);
1835 	if (block_size < sizeof(*defs)) {
1836 		drm_dbg_kms(&dev_priv->drm,
1837 			    "General definitions block too small (%u)\n",
1838 			    block_size);
1839 		return;
1840 	}
1841 
1842 	bus_pin = defs->crt_ddc_gmbus_pin;
1843 	drm_dbg_kms(&dev_priv->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
1844 	if (intel_gmbus_is_valid_pin(dev_priv, bus_pin))
1845 		dev_priv->vbt.crt_ddc_pin = bus_pin;
1846 
1847 	if (bdb->version < 106) {
1848 		expected_size = 22;
1849 	} else if (bdb->version < 111) {
1850 		expected_size = 27;
1851 	} else if (bdb->version < 195) {
1852 		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
1853 	} else if (bdb->version == 195) {
1854 		expected_size = 37;
1855 	} else if (bdb->version <= 215) {
1856 		expected_size = 38;
1857 	} else if (bdb->version <= 229) {
1858 		expected_size = 39;
1859 	} else {
1860 		expected_size = sizeof(*child);
1861 		BUILD_BUG_ON(sizeof(*child) < 39);
1862 		drm_dbg(&dev_priv->drm,
1863 			"Expected child device config size for VBT version %u not known; assuming %u\n",
1864 			bdb->version, expected_size);
1865 	}
1866 
1867 	/* Flag an error for unexpected size, but continue anyway. */
1868 	if (defs->child_dev_size != expected_size)
1869 		drm_err(&dev_priv->drm,
1870 			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
1871 			defs->child_dev_size, expected_size, bdb->version);
1872 
1873 	/* The legacy sized child device config is the minimum we need. */
1874 	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
1875 		drm_dbg_kms(&dev_priv->drm,
1876 			    "Child device config size %u is too small.\n",
1877 			    defs->child_dev_size);
1878 		return;
1879 	}
1880 
1881 	/* get the number of child device */
1882 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
1883 
1884 	for (i = 0; i < child_device_num; i++) {
1885 		child = child_device_ptr(defs, i);
1886 		if (!child->device_type)
1887 			continue;
1888 
1889 		drm_dbg_kms(&dev_priv->drm,
1890 			    "Found VBT child device with type 0x%x\n",
1891 			    child->device_type);
1892 
1893 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
1894 		if (!devdata)
1895 			break;
1896 
1897 		/*
1898 		 * Copy as much as we know (sizeof) and is available
1899 		 * (child_dev_size) of the child device config. Accessing the
1900 		 * data must depend on VBT version.
1901 		 */
1902 		memcpy(&devdata->child, child,
1903 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
1904 
1905 		list_add_tail(&devdata->node, &dev_priv->vbt.display_devices);
1906 	}
1907 
1908 	if (list_empty(&dev_priv->vbt.display_devices))
1909 		drm_dbg_kms(&dev_priv->drm,
1910 			    "no child dev is parsed from VBT\n");
1911 }
1912 
1913 /* Common defaults which may be overridden by VBT. */
1914 static void
1915 init_vbt_defaults(struct drm_i915_private *dev_priv)
1916 {
1917 	dev_priv->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
1918 
1919 	/* Default to having backlight */
1920 	dev_priv->vbt.backlight.present = true;
1921 
1922 	/* LFP panel data */
1923 	dev_priv->vbt.lvds_dither = 1;
1924 
1925 	/* SDVO panel data */
1926 	dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1927 
1928 	/* general features */
1929 	dev_priv->vbt.int_tv_support = 1;
1930 	dev_priv->vbt.int_crt_support = 1;
1931 
1932 	/* driver features */
1933 	dev_priv->vbt.int_lvds_support = 1;
1934 
1935 	/* Default to using SSC */
1936 	dev_priv->vbt.lvds_use_ssc = 1;
1937 	/*
1938 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
1939 	 * clock for LVDS.
1940 	 */
1941 	dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev_priv,
1942 			!HAS_PCH_SPLIT(dev_priv));
1943 	drm_dbg_kms(&dev_priv->drm, "Set default to SSC at %d kHz\n",
1944 		    dev_priv->vbt.lvds_ssc_freq);
1945 }
1946 
1947 /* Defaults to initialize only if there is no VBT. */
1948 static void
1949 init_vbt_missing_defaults(struct drm_i915_private *dev_priv)
1950 {
1951 	enum port port;
1952 
1953 	for_each_port(port) {
1954 		struct ddi_vbt_port_info *info =
1955 			&dev_priv->vbt.ddi_port_info[port];
1956 		enum phy phy = intel_port_to_phy(dev_priv, port);
1957 
1958 		/*
1959 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
1960 		 * to detect it.
1961 		 */
1962 		if (intel_phy_is_tc(dev_priv, phy))
1963 			continue;
1964 
1965 		info->supports_dvi = (port != PORT_A && port != PORT_E);
1966 		info->supports_hdmi = info->supports_dvi;
1967 		info->supports_dp = (port != PORT_E);
1968 		info->supports_edp = (port == PORT_A);
1969 	}
1970 }
1971 
1972 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
1973 {
1974 	const void *_vbt = vbt;
1975 
1976 	return _vbt + vbt->bdb_offset;
1977 }
1978 
1979 /**
1980  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
1981  * @buf:	pointer to a buffer to validate
1982  * @size:	size of the buffer
1983  *
1984  * Returns true on valid VBT.
1985  */
1986 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
1987 {
1988 	const struct vbt_header *vbt = buf;
1989 	const struct bdb_header *bdb;
1990 
1991 	if (!vbt)
1992 		return false;
1993 
1994 	if (sizeof(struct vbt_header) > size) {
1995 		DRM_DEBUG_DRIVER("VBT header incomplete\n");
1996 		return false;
1997 	}
1998 
1999 	if (memcmp(vbt->signature, "$VBT", 4)) {
2000 		DRM_DEBUG_DRIVER("VBT invalid signature\n");
2001 		return false;
2002 	}
2003 
2004 	if (vbt->vbt_size > size) {
2005 		DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2006 		return false;
2007 	}
2008 
2009 	size = vbt->vbt_size;
2010 
2011 	if (range_overflows_t(size_t,
2012 			      vbt->bdb_offset,
2013 			      sizeof(struct bdb_header),
2014 			      size)) {
2015 		DRM_DEBUG_DRIVER("BDB header incomplete\n");
2016 		return false;
2017 	}
2018 
2019 	bdb = get_bdb_header(vbt);
2020 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2021 		DRM_DEBUG_DRIVER("BDB incomplete\n");
2022 		return false;
2023 	}
2024 
2025 	return vbt;
2026 }
2027 
2028 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *dev_priv)
2029 {
2030 	struct pci_dev *pdev = dev_priv->drm.pdev;
2031 	void __iomem *p = NULL, *oprom;
2032 	struct vbt_header *vbt;
2033 	u16 vbt_size;
2034 	size_t i, size;
2035 
2036 	oprom = pci_map_rom(pdev, &size);
2037 	if (!oprom)
2038 		return NULL;
2039 
2040 	/* Scour memory looking for the VBT signature. */
2041 	for (i = 0; i + 4 < size; i += 4) {
2042 		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
2043 			continue;
2044 
2045 		p = oprom + i;
2046 		size -= i;
2047 		break;
2048 	}
2049 
2050 	if (!p)
2051 		goto err_unmap_oprom;
2052 
2053 	if (sizeof(struct vbt_header) > size) {
2054 		drm_dbg(&dev_priv->drm, "VBT header incomplete\n");
2055 		goto err_unmap_oprom;
2056 	}
2057 
2058 	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
2059 	if (vbt_size > size) {
2060 		drm_dbg(&dev_priv->drm,
2061 			"VBT incomplete (vbt_size overflows)\n");
2062 		goto err_unmap_oprom;
2063 	}
2064 
2065 	/* The rest will be validated by intel_bios_is_valid_vbt() */
2066 	vbt = kmalloc(vbt_size, GFP_KERNEL);
2067 	if (!vbt)
2068 		goto err_unmap_oprom;
2069 
2070 	memcpy_fromio(vbt, p, vbt_size);
2071 
2072 	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2073 		goto err_free_vbt;
2074 
2075 	pci_unmap_rom(pdev, oprom);
2076 
2077 	return vbt;
2078 
2079 err_free_vbt:
2080 	kfree(vbt);
2081 err_unmap_oprom:
2082 	pci_unmap_rom(pdev, oprom);
2083 
2084 	return NULL;
2085 }
2086 
2087 /**
2088  * intel_bios_init - find VBT and initialize settings from the BIOS
2089  * @dev_priv: i915 device instance
2090  *
2091  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
2092  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
2093  * initialize some defaults if the VBT is not present at all.
2094  */
2095 void intel_bios_init(struct drm_i915_private *dev_priv)
2096 {
2097 	const struct vbt_header *vbt = dev_priv->opregion.vbt;
2098 	struct vbt_header *oprom_vbt = NULL;
2099 	const struct bdb_header *bdb;
2100 
2101 	INIT_LIST_HEAD(&dev_priv->vbt.display_devices);
2102 
2103 	if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) {
2104 		drm_dbg_kms(&dev_priv->drm,
2105 			    "Skipping VBT init due to disabled display.\n");
2106 		return;
2107 	}
2108 
2109 	init_vbt_defaults(dev_priv);
2110 
2111 	/* If the OpRegion does not have VBT, look in PCI ROM. */
2112 	if (!vbt) {
2113 		oprom_vbt = oprom_get_vbt(dev_priv);
2114 		if (!oprom_vbt)
2115 			goto out;
2116 
2117 		vbt = oprom_vbt;
2118 
2119 		drm_dbg_kms(&dev_priv->drm, "Found valid VBT in PCI ROM\n");
2120 	}
2121 
2122 	bdb = get_bdb_header(vbt);
2123 
2124 	drm_dbg_kms(&dev_priv->drm,
2125 		    "VBT signature \"%.*s\", BDB version %d\n",
2126 		    (int)sizeof(vbt->signature), vbt->signature, bdb->version);
2127 
2128 	/* Grab useful general definitions */
2129 	parse_general_features(dev_priv, bdb);
2130 	parse_general_definitions(dev_priv, bdb);
2131 	parse_panel_options(dev_priv, bdb);
2132 	parse_panel_dtd(dev_priv, bdb);
2133 	parse_lfp_backlight(dev_priv, bdb);
2134 	parse_sdvo_panel_data(dev_priv, bdb);
2135 	parse_driver_features(dev_priv, bdb);
2136 	parse_power_conservation_features(dev_priv, bdb);
2137 	parse_edp(dev_priv, bdb);
2138 	parse_psr(dev_priv, bdb);
2139 	parse_mipi_config(dev_priv, bdb);
2140 	parse_mipi_sequence(dev_priv, bdb);
2141 
2142 	/* Depends on child device list */
2143 	parse_compression_parameters(dev_priv, bdb);
2144 
2145 	/* Further processing on pre-parsed data */
2146 	parse_sdvo_device_mapping(dev_priv, bdb->version);
2147 	parse_ddi_ports(dev_priv, bdb->version);
2148 
2149 out:
2150 	if (!vbt) {
2151 		drm_info(&dev_priv->drm,
2152 			 "Failed to find VBIOS tables (VBT)\n");
2153 		init_vbt_missing_defaults(dev_priv);
2154 	}
2155 
2156 	kfree(oprom_vbt);
2157 }
2158 
2159 /**
2160  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
2161  * @dev_priv: i915 device instance
2162  */
2163 void intel_bios_driver_remove(struct drm_i915_private *dev_priv)
2164 {
2165 	struct display_device_data *devdata, *n;
2166 
2167 	list_for_each_entry_safe(devdata, n, &dev_priv->vbt.display_devices, node) {
2168 		list_del(&devdata->node);
2169 		kfree(devdata->dsc);
2170 		kfree(devdata);
2171 	}
2172 
2173 	kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
2174 	dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
2175 	kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
2176 	dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
2177 	kfree(dev_priv->vbt.dsi.data);
2178 	dev_priv->vbt.dsi.data = NULL;
2179 	kfree(dev_priv->vbt.dsi.pps);
2180 	dev_priv->vbt.dsi.pps = NULL;
2181 	kfree(dev_priv->vbt.dsi.config);
2182 	dev_priv->vbt.dsi.config = NULL;
2183 	kfree(dev_priv->vbt.dsi.deassert_seq);
2184 	dev_priv->vbt.dsi.deassert_seq = NULL;
2185 }
2186 
2187 /**
2188  * intel_bios_is_tv_present - is integrated TV present in VBT
2189  * @dev_priv:	i915 device instance
2190  *
2191  * Return true if TV is present. If no child devices were parsed from VBT,
2192  * assume TV is present.
2193  */
2194 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv)
2195 {
2196 	const struct display_device_data *devdata;
2197 	const struct child_device_config *child;
2198 
2199 	if (!dev_priv->vbt.int_tv_support)
2200 		return false;
2201 
2202 	if (list_empty(&dev_priv->vbt.display_devices))
2203 		return true;
2204 
2205 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2206 		child = &devdata->child;
2207 
2208 		/*
2209 		 * If the device type is not TV, continue.
2210 		 */
2211 		switch (child->device_type) {
2212 		case DEVICE_TYPE_INT_TV:
2213 		case DEVICE_TYPE_TV:
2214 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
2215 			break;
2216 		default:
2217 			continue;
2218 		}
2219 		/* Only when the addin_offset is non-zero, it is regarded
2220 		 * as present.
2221 		 */
2222 		if (child->addin_offset)
2223 			return true;
2224 	}
2225 
2226 	return false;
2227 }
2228 
2229 /**
2230  * intel_bios_is_lvds_present - is LVDS present in VBT
2231  * @dev_priv:	i915 device instance
2232  * @i2c_pin:	i2c pin for LVDS if present
2233  *
2234  * Return true if LVDS is present. If no child devices were parsed from VBT,
2235  * assume LVDS is present.
2236  */
2237 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin)
2238 {
2239 	const struct display_device_data *devdata;
2240 	const struct child_device_config *child;
2241 
2242 	if (list_empty(&dev_priv->vbt.display_devices))
2243 		return true;
2244 
2245 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2246 		child = &devdata->child;
2247 
2248 		/* If the device type is not LFP, continue.
2249 		 * We have to check both the new identifiers as well as the
2250 		 * old for compatibility with some BIOSes.
2251 		 */
2252 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
2253 		    child->device_type != DEVICE_TYPE_LFP)
2254 			continue;
2255 
2256 		if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin))
2257 			*i2c_pin = child->i2c_pin;
2258 
2259 		/* However, we cannot trust the BIOS writers to populate
2260 		 * the VBT correctly.  Since LVDS requires additional
2261 		 * information from AIM blocks, a non-zero addin offset is
2262 		 * a good indicator that the LVDS is actually present.
2263 		 */
2264 		if (child->addin_offset)
2265 			return true;
2266 
2267 		/* But even then some BIOS writers perform some black magic
2268 		 * and instantiate the device without reference to any
2269 		 * additional data.  Trust that if the VBT was written into
2270 		 * the OpRegion then they have validated the LVDS's existence.
2271 		 */
2272 		if (dev_priv->opregion.vbt)
2273 			return true;
2274 	}
2275 
2276 	return false;
2277 }
2278 
2279 /**
2280  * intel_bios_is_port_present - is the specified digital port present
2281  * @dev_priv:	i915 device instance
2282  * @port:	port to check
2283  *
2284  * Return true if the device in %port is present.
2285  */
2286 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port)
2287 {
2288 	const struct display_device_data *devdata;
2289 	const struct child_device_config *child;
2290 	static const struct {
2291 		u16 dp, hdmi;
2292 	} port_mapping[] = {
2293 		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2294 		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2295 		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2296 		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2297 		[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2298 	};
2299 
2300 	if (HAS_DDI(dev_priv)) {
2301 		const struct ddi_vbt_port_info *port_info =
2302 			&dev_priv->vbt.ddi_port_info[port];
2303 
2304 		return port_info->child;
2305 	}
2306 
2307 	/* FIXME maybe deal with port A as well? */
2308 	if (drm_WARN_ON(&dev_priv->drm,
2309 			port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
2310 		return false;
2311 
2312 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2313 		child = &devdata->child;
2314 
2315 		if ((child->dvo_port == port_mapping[port].dp ||
2316 		     child->dvo_port == port_mapping[port].hdmi) &&
2317 		    (child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
2318 					   DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
2319 			return true;
2320 	}
2321 
2322 	return false;
2323 }
2324 
2325 /**
2326  * intel_bios_is_port_edp - is the device in given port eDP
2327  * @dev_priv:	i915 device instance
2328  * @port:	port to check
2329  *
2330  * Return true if the device in %port is eDP.
2331  */
2332 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
2333 {
2334 	const struct display_device_data *devdata;
2335 	const struct child_device_config *child;
2336 	static const short port_mapping[] = {
2337 		[PORT_B] = DVO_PORT_DPB,
2338 		[PORT_C] = DVO_PORT_DPC,
2339 		[PORT_D] = DVO_PORT_DPD,
2340 		[PORT_E] = DVO_PORT_DPE,
2341 		[PORT_F] = DVO_PORT_DPF,
2342 	};
2343 
2344 	if (HAS_DDI(dev_priv))
2345 		return dev_priv->vbt.ddi_port_info[port].supports_edp;
2346 
2347 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2348 		child = &devdata->child;
2349 
2350 		if (child->dvo_port == port_mapping[port] &&
2351 		    (child->device_type & DEVICE_TYPE_eDP_BITS) ==
2352 		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
2353 			return true;
2354 	}
2355 
2356 	return false;
2357 }
2358 
2359 static bool child_dev_is_dp_dual_mode(const struct child_device_config *child,
2360 				      enum port port)
2361 {
2362 	static const struct {
2363 		u16 dp, hdmi;
2364 	} port_mapping[] = {
2365 		/*
2366 		 * Buggy VBTs may declare DP ports as having
2367 		 * HDMI type dvo_port :( So let's check both.
2368 		 */
2369 		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2370 		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2371 		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2372 		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2373 		[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2374 	};
2375 
2376 	if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
2377 		return false;
2378 
2379 	if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
2380 	    (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
2381 		return false;
2382 
2383 	if (child->dvo_port == port_mapping[port].dp)
2384 		return true;
2385 
2386 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
2387 	if (child->dvo_port == port_mapping[port].hdmi &&
2388 	    child->aux_channel != 0)
2389 		return true;
2390 
2391 	return false;
2392 }
2393 
2394 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv,
2395 				     enum port port)
2396 {
2397 	const struct display_device_data *devdata;
2398 
2399 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2400 		if (child_dev_is_dp_dual_mode(&devdata->child, port))
2401 			return true;
2402 	}
2403 
2404 	return false;
2405 }
2406 
2407 /**
2408  * intel_bios_is_dsi_present - is DSI present in VBT
2409  * @dev_priv:	i915 device instance
2410  * @port:	port for DSI if present
2411  *
2412  * Return true if DSI is present, and return the port in %port.
2413  */
2414 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv,
2415 			       enum port *port)
2416 {
2417 	const struct display_device_data *devdata;
2418 	const struct child_device_config *child;
2419 	u8 dvo_port;
2420 
2421 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2422 		child = &devdata->child;
2423 
2424 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2425 			continue;
2426 
2427 		dvo_port = child->dvo_port;
2428 
2429 		if (dvo_port == DVO_PORT_MIPIA ||
2430 		    (dvo_port == DVO_PORT_MIPIB && INTEL_GEN(dev_priv) >= 11) ||
2431 		    (dvo_port == DVO_PORT_MIPIC && INTEL_GEN(dev_priv) < 11)) {
2432 			if (port)
2433 				*port = dvo_port - DVO_PORT_MIPIA;
2434 			return true;
2435 		} else if (dvo_port == DVO_PORT_MIPIB ||
2436 			   dvo_port == DVO_PORT_MIPIC ||
2437 			   dvo_port == DVO_PORT_MIPID) {
2438 			drm_dbg_kms(&dev_priv->drm,
2439 				    "VBT has unsupported DSI port %c\n",
2440 				    port_name(dvo_port - DVO_PORT_MIPIA));
2441 		}
2442 	}
2443 
2444 	return false;
2445 }
2446 
2447 static void fill_dsc(struct intel_crtc_state *crtc_state,
2448 		     struct dsc_compression_parameters_entry *dsc,
2449 		     int dsc_max_bpc)
2450 {
2451 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2452 	int bpc = 8;
2453 
2454 	vdsc_cfg->dsc_version_major = dsc->version_major;
2455 	vdsc_cfg->dsc_version_minor = dsc->version_minor;
2456 
2457 	if (dsc->support_12bpc && dsc_max_bpc >= 12)
2458 		bpc = 12;
2459 	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
2460 		bpc = 10;
2461 	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
2462 		bpc = 8;
2463 	else
2464 		DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
2465 			      dsc_max_bpc);
2466 
2467 	crtc_state->pipe_bpp = bpc * 3;
2468 
2469 	crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
2470 					     VBT_DSC_MAX_BPP(dsc->max_bpp));
2471 
2472 	/*
2473 	 * FIXME: This is ugly, and slice count should take DSC engine
2474 	 * throughput etc. into account.
2475 	 *
2476 	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
2477 	 */
2478 	if (dsc->slices_per_line & BIT(2)) {
2479 		crtc_state->dsc.slice_count = 4;
2480 	} else if (dsc->slices_per_line & BIT(1)) {
2481 		crtc_state->dsc.slice_count = 2;
2482 	} else {
2483 		/* FIXME */
2484 		if (!(dsc->slices_per_line & BIT(0)))
2485 			DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
2486 
2487 		crtc_state->dsc.slice_count = 1;
2488 	}
2489 
2490 	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
2491 	    crtc_state->dsc.slice_count != 0)
2492 		DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
2493 			      crtc_state->hw.adjusted_mode.crtc_hdisplay,
2494 			      crtc_state->dsc.slice_count);
2495 
2496 	/*
2497 	 * FIXME: Use VBT rc_buffer_block_size and rc_buffer_size for the
2498 	 * implementation specific physical rate buffer size. Currently we use
2499 	 * the required rate buffer model size calculated in
2500 	 * drm_dsc_compute_rc_parameters() according to VESA DSC Annex E.
2501 	 *
2502 	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
2503 	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. The DP DSC
2504 	 * implementation should also use the DPCD (or perhaps VBT for eDP)
2505 	 * provided value for the buffer size.
2506 	 */
2507 
2508 	/* FIXME: DSI spec says bpc + 1 for this one */
2509 	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
2510 
2511 	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
2512 
2513 	vdsc_cfg->slice_height = dsc->slice_height;
2514 }
2515 
2516 /* FIXME: initially DSI specific */
2517 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
2518 			       struct intel_crtc_state *crtc_state,
2519 			       int dsc_max_bpc)
2520 {
2521 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2522 	const struct display_device_data *devdata;
2523 	const struct child_device_config *child;
2524 
2525 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2526 		child = &devdata->child;
2527 
2528 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2529 			continue;
2530 
2531 		if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
2532 			if (!devdata->dsc)
2533 				return false;
2534 
2535 			if (crtc_state)
2536 				fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
2537 
2538 			return true;
2539 		}
2540 	}
2541 
2542 	return false;
2543 }
2544 
2545 /**
2546  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
2547  * @i915:	i915 device instance
2548  * @port:	port to check
2549  *
2550  * Return true if HPD should be inverted for %port.
2551  */
2552 bool
2553 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
2554 				enum port port)
2555 {
2556 	const struct child_device_config *child =
2557 		i915->vbt.ddi_port_info[port].child;
2558 
2559 	if (drm_WARN_ON_ONCE(&i915->drm, !IS_GEN9_LP(i915)))
2560 		return false;
2561 
2562 	return child && child->hpd_invert;
2563 }
2564 
2565 /**
2566  * intel_bios_is_lspcon_present - if LSPCON is attached on %port
2567  * @i915:	i915 device instance
2568  * @port:	port to check
2569  *
2570  * Return true if LSPCON is present on this port
2571  */
2572 bool
2573 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
2574 			     enum port port)
2575 {
2576 	const struct child_device_config *child =
2577 		i915->vbt.ddi_port_info[port].child;
2578 
2579 	return HAS_LSPCON(i915) && child && child->lspcon;
2580 }
2581 
2582 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv,
2583 				   enum port port)
2584 {
2585 	const struct ddi_vbt_port_info *info =
2586 		&dev_priv->vbt.ddi_port_info[port];
2587 	enum aux_ch aux_ch;
2588 
2589 	if (!info->alternate_aux_channel) {
2590 		aux_ch = (enum aux_ch)port;
2591 
2592 		drm_dbg_kms(&dev_priv->drm,
2593 			    "using AUX %c for port %c (platform default)\n",
2594 			    aux_ch_name(aux_ch), port_name(port));
2595 		return aux_ch;
2596 	}
2597 
2598 	switch (info->alternate_aux_channel) {
2599 	case DP_AUX_A:
2600 		aux_ch = AUX_CH_A;
2601 		break;
2602 	case DP_AUX_B:
2603 		aux_ch = AUX_CH_B;
2604 		break;
2605 	case DP_AUX_C:
2606 		aux_ch = AUX_CH_C;
2607 		break;
2608 	case DP_AUX_D:
2609 		aux_ch = AUX_CH_D;
2610 		break;
2611 	case DP_AUX_E:
2612 		aux_ch = AUX_CH_E;
2613 		break;
2614 	case DP_AUX_F:
2615 		aux_ch = AUX_CH_F;
2616 		break;
2617 	case DP_AUX_G:
2618 		aux_ch = AUX_CH_G;
2619 		break;
2620 	default:
2621 		MISSING_CASE(info->alternate_aux_channel);
2622 		aux_ch = AUX_CH_A;
2623 		break;
2624 	}
2625 
2626 	drm_dbg_kms(&dev_priv->drm, "using AUX %c for port %c (VBT)\n",
2627 		    aux_ch_name(aux_ch), port_name(port));
2628 
2629 	return aux_ch;
2630 }
2631 
2632 int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
2633 {
2634 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2635 
2636 	return i915->vbt.ddi_port_info[encoder->port].max_tmds_clock;
2637 }
2638 
2639 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
2640 {
2641 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2642 	const struct ddi_vbt_port_info *info =
2643 		&i915->vbt.ddi_port_info[encoder->port];
2644 
2645 	return info->hdmi_level_shift_set ? info->hdmi_level_shift : -1;
2646 }
2647 
2648 int intel_bios_dp_boost_level(struct intel_encoder *encoder)
2649 {
2650 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2651 
2652 	return i915->vbt.ddi_port_info[encoder->port].dp_boost_level;
2653 }
2654 
2655 int intel_bios_hdmi_boost_level(struct intel_encoder *encoder)
2656 {
2657 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2658 
2659 	return i915->vbt.ddi_port_info[encoder->port].hdmi_boost_level;
2660 }
2661 
2662 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
2663 {
2664 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2665 
2666 	return i915->vbt.ddi_port_info[encoder->port].dp_max_link_rate;
2667 }
2668 
2669 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
2670 {
2671 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2672 
2673 	return i915->vbt.ddi_port_info[encoder->port].alternate_ddc_pin;
2674 }
2675 
2676 bool intel_bios_port_supports_dvi(struct drm_i915_private *i915, enum port port)
2677 {
2678 	return i915->vbt.ddi_port_info[port].supports_dvi;
2679 }
2680 
2681 bool intel_bios_port_supports_hdmi(struct drm_i915_private *i915, enum port port)
2682 {
2683 	return i915->vbt.ddi_port_info[port].supports_hdmi;
2684 }
2685 
2686 bool intel_bios_port_supports_dp(struct drm_i915_private *i915, enum port port)
2687 {
2688 	return i915->vbt.ddi_port_info[port].supports_dp;
2689 }
2690 
2691 bool intel_bios_port_supports_typec_usb(struct drm_i915_private *i915,
2692 					enum port port)
2693 {
2694 	return i915->vbt.ddi_port_info[port].supports_typec_usb;
2695 }
2696 
2697 bool intel_bios_port_supports_tbt(struct drm_i915_private *i915, enum port port)
2698 {
2699 	return i915->vbt.ddi_port_info[port].supports_tbt;
2700 }
2701