xref: /linux/drivers/gpu/drm/i915/display/intel_bios.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/debugfs.h>
29 #include <linux/firmware.h>
30 
31 #include <drm/display/drm_dp_helper.h>
32 #include <drm/display/drm_dsc_helper.h>
33 #include <drm/drm_edid.h>
34 #include <drm/drm_fixed.h>
35 
36 #include "soc/intel_rom.h"
37 
38 #include "i915_drv.h"
39 #include "intel_display.h"
40 #include "intel_display_types.h"
41 #include "intel_gmbus.h"
42 
43 #define _INTEL_BIOS_PRIVATE
44 #include "intel_vbt_defs.h"
45 
46 /**
47  * DOC: Video BIOS Table (VBT)
48  *
49  * The Video BIOS Table, or VBT, provides platform and board specific
50  * configuration information to the driver that is not discoverable or available
51  * through other means. The configuration is mostly related to display
52  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
53  * the PCI ROM.
54  *
55  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
56  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
57  * contain the actual configuration information. The VBT Header, and thus the
58  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
59  * BDB Header. The data blocks are concatenated after the BDB Header. The data
60  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
61  * data. (Block 53, the MIPI Sequence Block is an exception.)
62  *
63  * The driver parses the VBT during load. The relevant information is stored in
64  * driver private data for ease of use, and the actual VBT is not read after
65  * that.
66  */
67 
68 /* Wrapper for VBT child device config */
69 struct intel_bios_encoder_data {
70 	struct intel_display *display;
71 
72 	struct child_device_config child;
73 	struct dsc_compression_parameters_entry *dsc;
74 	struct list_head node;
75 };
76 
77 #define	TARGET_ADDR1	0x70
78 #define	TARGET_ADDR2	0x72
79 
80 /* Get BDB block size given a pointer to Block ID. */
81 static u32 _get_blocksize(const u8 *block_base)
82 {
83 	/* The MIPI Sequence Block v3+ has a separate size field. */
84 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
85 		return *((const u32 *)(block_base + 4));
86 	else
87 		return *((const u16 *)(block_base + 1));
88 }
89 
90 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
91 static u32 get_blocksize(const void *block_data)
92 {
93 	return _get_blocksize(block_data - 3);
94 }
95 
96 static const void *
97 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
98 {
99 	const struct bdb_header *bdb = _bdb;
100 	const u8 *base = _bdb;
101 	int index = 0;
102 	u32 total, current_size;
103 	enum bdb_block_id current_id;
104 
105 	/* skip to first section */
106 	index += bdb->header_size;
107 	total = bdb->bdb_size;
108 
109 	/* walk the sections looking for section_id */
110 	while (index + 3 < total) {
111 		current_id = *(base + index);
112 		current_size = _get_blocksize(base + index);
113 		index += 3;
114 
115 		if (index + current_size > total)
116 			return NULL;
117 
118 		if (current_id == section_id)
119 			return base + index;
120 
121 		index += current_size;
122 	}
123 
124 	return NULL;
125 }
126 
127 /*
128  * Offset from the start of BDB to the start of the
129  * block data (just past the block header).
130  */
131 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
132 {
133 	const void *block;
134 
135 	block = find_raw_section(bdb, section_id);
136 	if (!block)
137 		return 0;
138 
139 	return block - bdb;
140 }
141 
142 struct bdb_block_entry {
143 	struct list_head node;
144 	enum bdb_block_id section_id;
145 	u8 data[];
146 };
147 
148 static const void *
149 bdb_find_section(struct intel_display *display,
150 		 enum bdb_block_id section_id)
151 {
152 	struct bdb_block_entry *entry;
153 
154 	list_for_each_entry(entry, &display->vbt.bdb_blocks, node) {
155 		if (entry->section_id == section_id)
156 			return entry->data + 3;
157 	}
158 
159 	return NULL;
160 }
161 
162 static const struct {
163 	enum bdb_block_id section_id;
164 	size_t min_size;
165 } bdb_blocks[] = {
166 	{ .section_id = BDB_GENERAL_FEATURES,
167 	  .min_size = sizeof(struct bdb_general_features), },
168 	{ .section_id = BDB_GENERAL_DEFINITIONS,
169 	  .min_size = sizeof(struct bdb_general_definitions), },
170 	{ .section_id = BDB_PSR,
171 	  .min_size = sizeof(struct bdb_psr), },
172 	{ .section_id = BDB_DRIVER_FEATURES,
173 	  .min_size = sizeof(struct bdb_driver_features), },
174 	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
175 	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
176 	{ .section_id = BDB_SDVO_LVDS_DTD,
177 	  .min_size = sizeof(struct bdb_sdvo_lvds_dtd), },
178 	{ .section_id = BDB_EDP,
179 	  .min_size = sizeof(struct bdb_edp), },
180 	{ .section_id = BDB_LFP_OPTIONS,
181 	  .min_size = sizeof(struct bdb_lfp_options), },
182 	/*
183 	 * BDB_LFP_DATA depends on BDB_LFP_DATA_PTRS,
184 	 * so keep the two ordered.
185 	 */
186 	{ .section_id = BDB_LFP_DATA_PTRS,
187 	  .min_size = sizeof(struct bdb_lfp_data_ptrs), },
188 	{ .section_id = BDB_LFP_DATA,
189 	  .min_size = 0, /* special case */ },
190 	{ .section_id = BDB_LFP_BACKLIGHT,
191 	  .min_size = sizeof(struct bdb_lfp_backlight), },
192 	{ .section_id = BDB_LFP_POWER,
193 	  .min_size = sizeof(struct bdb_lfp_power), },
194 	{ .section_id = BDB_MIPI_CONFIG,
195 	  .min_size = sizeof(struct bdb_mipi_config), },
196 	{ .section_id = BDB_MIPI_SEQUENCE,
197 	  .min_size = sizeof(struct bdb_mipi_sequence) },
198 	{ .section_id = BDB_COMPRESSION_PARAMETERS,
199 	  .min_size = sizeof(struct bdb_compression_parameters), },
200 	{ .section_id = BDB_GENERIC_DTD,
201 	  .min_size = sizeof(struct bdb_generic_dtd), },
202 };
203 
204 static size_t lfp_data_min_size(struct intel_display *display)
205 {
206 	const struct bdb_lfp_data_ptrs *ptrs;
207 	size_t size;
208 
209 	ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
210 	if (!ptrs)
211 		return 0;
212 
213 	size = sizeof(struct bdb_lfp_data);
214 	if (ptrs->panel_name.table_size)
215 		size = max(size, ptrs->panel_name.offset +
216 			   sizeof(struct bdb_lfp_data_tail));
217 
218 	return size;
219 }
220 
221 static bool validate_lfp_data_ptrs(const void *bdb,
222 				   const struct bdb_lfp_data_ptrs *ptrs)
223 {
224 	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
225 	int data_block_size, lfp_data_size;
226 	const void *data_block;
227 	int i;
228 
229 	data_block = find_raw_section(bdb, BDB_LFP_DATA);
230 	if (!data_block)
231 		return false;
232 
233 	data_block_size = get_blocksize(data_block);
234 	if (data_block_size == 0)
235 		return false;
236 
237 	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
238 	if (ptrs->num_entries != 3)
239 		return false;
240 
241 	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
242 	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
243 	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
244 	panel_name_size = ptrs->panel_name.table_size;
245 
246 	/* fp_timing has variable size */
247 	if (fp_timing_size < 32 ||
248 	    dvo_timing_size != sizeof(struct bdb_edid_dtd) ||
249 	    panel_pnp_id_size != sizeof(struct bdb_edid_pnp_id))
250 		return false;
251 
252 	/* panel_name is not present in old VBTs */
253 	if (panel_name_size != 0 &&
254 	    panel_name_size != sizeof(struct bdb_edid_product_name))
255 		return false;
256 
257 	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
258 	if (16 * lfp_data_size > data_block_size)
259 		return false;
260 
261 	/* make sure the table entries have uniform size */
262 	for (i = 1; i < 16; i++) {
263 		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
264 		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
265 		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
266 			return false;
267 
268 		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
269 		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
270 		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
271 			return false;
272 	}
273 
274 	/*
275 	 * Except for vlv/chv machines all real VBTs seem to have 6
276 	 * unaccounted bytes in the fp_timing table. And it doesn't
277 	 * appear to be a really intentional hole as the fp_timing
278 	 * 0xffff terminator is always within those 6 missing bytes.
279 	 */
280 	if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
281 		fp_timing_size += 6;
282 
283 	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
284 		return false;
285 
286 	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
287 	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
288 	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
289 		return false;
290 
291 	/* make sure the tables fit inside the data block */
292 	for (i = 0; i < 16; i++) {
293 		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
294 		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
295 		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
296 			return false;
297 	}
298 
299 	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
300 		return false;
301 
302 	/* make sure fp_timing terminators are present at expected locations */
303 	for (i = 0; i < 16; i++) {
304 		const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
305 			fp_timing_size - 2;
306 
307 		if (*t != 0xffff)
308 			return false;
309 	}
310 
311 	return true;
312 }
313 
314 /* make the data table offsets relative to the data block */
315 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
316 {
317 	struct bdb_lfp_data_ptrs *ptrs = ptrs_block;
318 	u32 offset;
319 	int i;
320 
321 	offset = raw_block_offset(bdb, BDB_LFP_DATA);
322 
323 	for (i = 0; i < 16; i++) {
324 		if (ptrs->ptr[i].fp_timing.offset < offset ||
325 		    ptrs->ptr[i].dvo_timing.offset < offset ||
326 		    ptrs->ptr[i].panel_pnp_id.offset < offset)
327 			return false;
328 
329 		ptrs->ptr[i].fp_timing.offset -= offset;
330 		ptrs->ptr[i].dvo_timing.offset -= offset;
331 		ptrs->ptr[i].panel_pnp_id.offset -= offset;
332 	}
333 
334 	if (ptrs->panel_name.table_size) {
335 		if (ptrs->panel_name.offset < offset)
336 			return false;
337 
338 		ptrs->panel_name.offset -= offset;
339 	}
340 
341 	return validate_lfp_data_ptrs(bdb, ptrs);
342 }
343 
344 static int make_lfp_data_ptr(struct lfp_data_ptr_table *table,
345 			     int table_size, int total_size)
346 {
347 	if (total_size < table_size)
348 		return total_size;
349 
350 	table->table_size = table_size;
351 	table->offset = total_size - table_size;
352 
353 	return total_size - table_size;
354 }
355 
356 static void next_lfp_data_ptr(struct lfp_data_ptr_table *next,
357 			      const struct lfp_data_ptr_table *prev,
358 			      int size)
359 {
360 	next->table_size = prev->table_size;
361 	next->offset = prev->offset + size;
362 }
363 
364 static void *generate_lfp_data_ptrs(struct intel_display *display,
365 				    const void *bdb)
366 {
367 	int i, size, table_size, block_size, offset, fp_timing_size;
368 	struct bdb_lfp_data_ptrs *ptrs;
369 	const void *block;
370 	void *ptrs_block;
371 
372 	/*
373 	 * The hardcoded fp_timing_size is only valid for
374 	 * modernish VBTs. All older VBTs definitely should
375 	 * include block 41 and thus we don't need to
376 	 * generate one.
377 	 */
378 	if (display->vbt.version < 155)
379 		return NULL;
380 
381 	fp_timing_size = 38;
382 
383 	block = find_raw_section(bdb, BDB_LFP_DATA);
384 	if (!block)
385 		return NULL;
386 
387 	drm_dbg_kms(display->drm, "Generating LFP data table pointers\n");
388 
389 	block_size = get_blocksize(block);
390 
391 	size = fp_timing_size + sizeof(struct bdb_edid_dtd) +
392 		sizeof(struct bdb_edid_pnp_id);
393 	if (size * 16 > block_size)
394 		return NULL;
395 
396 	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
397 	if (!ptrs_block)
398 		return NULL;
399 
400 	*(u8 *)(ptrs_block + 0) = BDB_LFP_DATA_PTRS;
401 	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
402 	ptrs = ptrs_block + 3;
403 
404 	table_size = sizeof(struct bdb_edid_pnp_id);
405 	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
406 
407 	table_size = sizeof(struct bdb_edid_dtd);
408 	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
409 
410 	table_size = fp_timing_size;
411 	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
412 
413 	if (ptrs->ptr[0].fp_timing.table_size)
414 		ptrs->num_entries++;
415 	if (ptrs->ptr[0].dvo_timing.table_size)
416 		ptrs->num_entries++;
417 	if (ptrs->ptr[0].panel_pnp_id.table_size)
418 		ptrs->num_entries++;
419 
420 	if (size != 0 || ptrs->num_entries != 3) {
421 		kfree(ptrs_block);
422 		return NULL;
423 	}
424 
425 	size = fp_timing_size + sizeof(struct bdb_edid_dtd) +
426 		sizeof(struct bdb_edid_pnp_id);
427 	for (i = 1; i < 16; i++) {
428 		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
429 		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
430 		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
431 	}
432 
433 	table_size = sizeof(struct bdb_edid_product_name);
434 
435 	if (16 * (size + table_size) <= block_size) {
436 		ptrs->panel_name.table_size = table_size;
437 		ptrs->panel_name.offset = size * 16;
438 	}
439 
440 	offset = block - bdb;
441 
442 	for (i = 0; i < 16; i++) {
443 		ptrs->ptr[i].fp_timing.offset += offset;
444 		ptrs->ptr[i].dvo_timing.offset += offset;
445 		ptrs->ptr[i].panel_pnp_id.offset += offset;
446 	}
447 
448 	if (ptrs->panel_name.table_size)
449 		ptrs->panel_name.offset += offset;
450 
451 	return ptrs_block;
452 }
453 
454 static void
455 init_bdb_block(struct intel_display *display,
456 	       const void *bdb, enum bdb_block_id section_id,
457 	       size_t min_size)
458 {
459 	struct bdb_block_entry *entry;
460 	void *temp_block = NULL;
461 	const void *block;
462 	size_t block_size;
463 
464 	block = find_raw_section(bdb, section_id);
465 
466 	/* Modern VBTs lack the LFP data table pointers block, make one up */
467 	if (!block && section_id == BDB_LFP_DATA_PTRS) {
468 		temp_block = generate_lfp_data_ptrs(display, bdb);
469 		if (temp_block)
470 			block = temp_block + 3;
471 	}
472 	if (!block)
473 		return;
474 
475 	drm_WARN(display->drm, min_size == 0,
476 		 "Block %d min_size is zero\n", section_id);
477 
478 	block_size = get_blocksize(block);
479 
480 	/*
481 	 * Version number and new block size are considered
482 	 * part of the header for MIPI sequenece block v3+.
483 	 */
484 	if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
485 		block_size += 5;
486 
487 	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
488 			GFP_KERNEL);
489 	if (!entry) {
490 		kfree(temp_block);
491 		return;
492 	}
493 
494 	entry->section_id = section_id;
495 	memcpy(entry->data, block - 3, block_size + 3);
496 
497 	kfree(temp_block);
498 
499 	drm_dbg_kms(display->drm,
500 		    "Found BDB block %d (size %zu, min size %zu)\n",
501 		    section_id, block_size, min_size);
502 
503 	if (section_id == BDB_LFP_DATA_PTRS &&
504 	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
505 		drm_err(display->drm,
506 			"VBT has malformed LFP data table pointers\n");
507 		kfree(entry);
508 		return;
509 	}
510 
511 	list_add_tail(&entry->node, &display->vbt.bdb_blocks);
512 }
513 
514 static void init_bdb_blocks(struct intel_display *display,
515 			    const void *bdb)
516 {
517 	int i;
518 
519 	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
520 		enum bdb_block_id section_id = bdb_blocks[i].section_id;
521 		size_t min_size = bdb_blocks[i].min_size;
522 
523 		if (section_id == BDB_LFP_DATA)
524 			min_size = lfp_data_min_size(display);
525 
526 		init_bdb_block(display, bdb, section_id, min_size);
527 	}
528 }
529 
530 static void
531 fill_detail_timing_data(struct intel_display *display,
532 			struct drm_display_mode *panel_fixed_mode,
533 			const struct bdb_edid_dtd *dvo_timing)
534 {
535 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
536 		dvo_timing->hactive_lo;
537 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
538 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
539 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
540 		((dvo_timing->hsync_pulse_width_hi << 8) |
541 			dvo_timing->hsync_pulse_width_lo);
542 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
543 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
544 
545 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
546 		dvo_timing->vactive_lo;
547 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
548 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
549 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
550 		((dvo_timing->vsync_pulse_width_hi << 4) |
551 			dvo_timing->vsync_pulse_width_lo);
552 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
553 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
554 	panel_fixed_mode->clock = dvo_timing->clock * 10;
555 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
556 
557 	if (dvo_timing->hsync_positive)
558 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
559 	else
560 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
561 
562 	if (dvo_timing->vsync_positive)
563 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
564 	else
565 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
566 
567 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
568 		dvo_timing->himage_lo;
569 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
570 		dvo_timing->vimage_lo;
571 
572 	/* Some VBTs have bogus h/vsync_end values */
573 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) {
574 		drm_dbg_kms(display->drm, "reducing hsync_end %d->%d\n",
575 			    panel_fixed_mode->hsync_end, panel_fixed_mode->htotal);
576 		panel_fixed_mode->hsync_end = panel_fixed_mode->htotal;
577 	}
578 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) {
579 		drm_dbg_kms(display->drm, "reducing vsync_end %d->%d\n",
580 			    panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal);
581 		panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal;
582 	}
583 
584 	drm_mode_set_name(panel_fixed_mode);
585 }
586 
587 static const struct bdb_edid_dtd *
588 get_lfp_dvo_timing(const struct bdb_lfp_data *data,
589 		   const struct bdb_lfp_data_ptrs *ptrs,
590 		   int index)
591 {
592 	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
593 }
594 
595 static const struct fp_timing *
596 get_lfp_fp_timing(const struct bdb_lfp_data *data,
597 		  const struct bdb_lfp_data_ptrs *ptrs,
598 		  int index)
599 {
600 	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
601 }
602 
603 static const struct drm_edid_product_id *
604 get_lfp_pnp_id(const struct bdb_lfp_data *data,
605 	       const struct bdb_lfp_data_ptrs *ptrs,
606 	       int index)
607 {
608 	/* These two are supposed to have the same layout in memory. */
609 	BUILD_BUG_ON(sizeof(struct bdb_edid_pnp_id) != sizeof(struct drm_edid_product_id));
610 
611 	return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
612 }
613 
614 static const struct bdb_lfp_data_tail *
615 get_lfp_data_tail(const struct bdb_lfp_data *data,
616 		  const struct bdb_lfp_data_ptrs *ptrs)
617 {
618 	if (ptrs->panel_name.table_size)
619 		return (const void *)data + ptrs->panel_name.offset;
620 	else
621 		return NULL;
622 }
623 
624 static int opregion_get_panel_type(struct intel_display *display,
625 				   const struct intel_bios_encoder_data *devdata,
626 				   const struct drm_edid *drm_edid, bool use_fallback)
627 {
628 	return intel_opregion_get_panel_type(display);
629 }
630 
631 static int vbt_get_panel_type(struct intel_display *display,
632 			      const struct intel_bios_encoder_data *devdata,
633 			      const struct drm_edid *drm_edid, bool use_fallback)
634 {
635 	const struct bdb_lfp_options *lfp_options;
636 
637 	lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS);
638 	if (!lfp_options)
639 		return -1;
640 
641 	if (lfp_options->panel_type > 0xf &&
642 	    lfp_options->panel_type != 0xff) {
643 		drm_dbg_kms(display->drm, "Invalid VBT panel type 0x%x\n",
644 			    lfp_options->panel_type);
645 		return -1;
646 	}
647 
648 	if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
649 		return lfp_options->panel_type2;
650 
651 	drm_WARN_ON(display->drm,
652 		    devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
653 
654 	return lfp_options->panel_type;
655 }
656 
657 static int pnpid_get_panel_type(struct intel_display *display,
658 				const struct intel_bios_encoder_data *devdata,
659 				const struct drm_edid *drm_edid, bool use_fallback)
660 {
661 	const struct bdb_lfp_data *data;
662 	const struct bdb_lfp_data_ptrs *ptrs;
663 	struct drm_edid_product_id product_id, product_id_nodate;
664 	struct drm_printer p;
665 	int i, best = -1;
666 
667 	if (!drm_edid)
668 		return -1;
669 
670 	drm_edid_get_product_id(drm_edid, &product_id);
671 
672 	product_id_nodate = product_id;
673 	product_id_nodate.week_of_manufacture = 0;
674 	product_id_nodate.year_of_manufacture = 0;
675 
676 	p = drm_dbg_printer(display->drm, DRM_UT_KMS, "EDID");
677 	drm_edid_print_product_id(&p, &product_id, true);
678 
679 	ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
680 	if (!ptrs)
681 		return -1;
682 
683 	data = bdb_find_section(display, BDB_LFP_DATA);
684 	if (!data)
685 		return -1;
686 
687 	for (i = 0; i < 16; i++) {
688 		const struct drm_edid_product_id *vbt_id =
689 			get_lfp_pnp_id(data, ptrs, i);
690 
691 		/* full match? */
692 		if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id)))
693 			return i;
694 
695 		/*
696 		 * Accept a match w/o date if no full match is found,
697 		 * and the VBT entry does not specify a date.
698 		 */
699 		if (best < 0 &&
700 		    !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id)))
701 			best = i;
702 	}
703 
704 	return best;
705 }
706 
707 static int fallback_get_panel_type(struct intel_display *display,
708 				   const struct intel_bios_encoder_data *devdata,
709 				   const struct drm_edid *drm_edid, bool use_fallback)
710 {
711 	return use_fallback ? 0 : -1;
712 }
713 
714 enum panel_type {
715 	PANEL_TYPE_OPREGION,
716 	PANEL_TYPE_VBT,
717 	PANEL_TYPE_PNPID,
718 	PANEL_TYPE_FALLBACK,
719 };
720 
721 static int get_panel_type(struct intel_display *display,
722 			  const struct intel_bios_encoder_data *devdata,
723 			  const struct drm_edid *drm_edid, bool use_fallback)
724 {
725 	struct {
726 		const char *name;
727 		int (*get_panel_type)(struct intel_display *display,
728 				      const struct intel_bios_encoder_data *devdata,
729 				      const struct drm_edid *drm_edid, bool use_fallback);
730 		int panel_type;
731 	} panel_types[] = {
732 		[PANEL_TYPE_OPREGION] = {
733 			.name = "OpRegion",
734 			.get_panel_type = opregion_get_panel_type,
735 		},
736 		[PANEL_TYPE_VBT] = {
737 			.name = "VBT",
738 			.get_panel_type = vbt_get_panel_type,
739 		},
740 		[PANEL_TYPE_PNPID] = {
741 			.name = "PNPID",
742 			.get_panel_type = pnpid_get_panel_type,
743 		},
744 		[PANEL_TYPE_FALLBACK] = {
745 			.name = "fallback",
746 			.get_panel_type = fallback_get_panel_type,
747 		},
748 	};
749 	int i;
750 
751 	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
752 		panel_types[i].panel_type = panel_types[i].get_panel_type(display, devdata,
753 									  drm_edid, use_fallback);
754 
755 		drm_WARN_ON(display->drm, panel_types[i].panel_type > 0xf &&
756 			    panel_types[i].panel_type != 0xff);
757 
758 		if (panel_types[i].panel_type >= 0)
759 			drm_dbg_kms(display->drm, "Panel type (%s): %d\n",
760 				    panel_types[i].name, panel_types[i].panel_type);
761 	}
762 
763 	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
764 		i = PANEL_TYPE_OPREGION;
765 	else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
766 		 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
767 		i = PANEL_TYPE_PNPID;
768 	else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
769 		 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
770 		i = PANEL_TYPE_VBT;
771 	else
772 		i = PANEL_TYPE_FALLBACK;
773 
774 	drm_dbg_kms(display->drm, "Selected panel type (%s): %d\n",
775 		    panel_types[i].name, panel_types[i].panel_type);
776 
777 	return panel_types[i].panel_type;
778 }
779 
780 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
781 {
782 	return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
783 }
784 
785 static bool panel_bool(unsigned int value, int panel_type)
786 {
787 	return panel_bits(value, panel_type, 1);
788 }
789 
790 /* Parse general panel options */
791 static void
792 parse_panel_options(struct intel_display *display,
793 		    struct intel_panel *panel)
794 {
795 	const struct bdb_lfp_options *lfp_options;
796 	int panel_type = panel->vbt.panel_type;
797 	int drrs_mode;
798 
799 	lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS);
800 	if (!lfp_options)
801 		return;
802 
803 	panel->vbt.lvds_dither = lfp_options->pixel_dither;
804 
805 	/*
806 	 * Empirical evidence indicates the block size can be
807 	 * either 4,14,16,24+ bytes. For older VBTs no clear
808 	 * relationship between the block size vs. BDB version.
809 	 */
810 	if (get_blocksize(lfp_options) < 16)
811 		return;
812 
813 	drrs_mode = panel_bits(lfp_options->dps_panel_type_bits,
814 			       panel_type, 2);
815 	/*
816 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
817 	 * The below piece of code is required to adjust vbt.drrs_type
818 	 * to match the enum drrs_support_type.
819 	 */
820 	switch (drrs_mode) {
821 	case 0:
822 		panel->vbt.drrs_type = DRRS_TYPE_STATIC;
823 		drm_dbg_kms(display->drm, "DRRS supported mode is static\n");
824 		break;
825 	case 2:
826 		panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
827 		drm_dbg_kms(display->drm,
828 			    "DRRS supported mode is seamless\n");
829 		break;
830 	default:
831 		panel->vbt.drrs_type = DRRS_TYPE_NONE;
832 		drm_dbg_kms(display->drm,
833 			    "DRRS not supported (VBT input)\n");
834 		break;
835 	}
836 }
837 
838 static void
839 parse_lfp_panel_dtd(struct intel_display *display,
840 		    struct intel_panel *panel,
841 		    const struct bdb_lfp_data *lfp_data,
842 		    const struct bdb_lfp_data_ptrs *lfp_data_ptrs)
843 {
844 	const struct bdb_edid_dtd *panel_dvo_timing;
845 	const struct fp_timing *fp_timing;
846 	struct drm_display_mode *panel_fixed_mode;
847 	int panel_type = panel->vbt.panel_type;
848 
849 	panel_dvo_timing = get_lfp_dvo_timing(lfp_data,
850 					      lfp_data_ptrs,
851 					      panel_type);
852 
853 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
854 	if (!panel_fixed_mode)
855 		return;
856 
857 	fill_detail_timing_data(display, panel_fixed_mode, panel_dvo_timing);
858 
859 	panel->vbt.lfp_vbt_mode = panel_fixed_mode;
860 
861 	drm_dbg_kms(display->drm,
862 		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
863 		    DRM_MODE_ARG(panel_fixed_mode));
864 
865 	fp_timing = get_lfp_fp_timing(lfp_data,
866 				      lfp_data_ptrs,
867 				      panel_type);
868 
869 	/* check the resolution, just to be sure */
870 	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
871 	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
872 		panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
873 		drm_dbg_kms(display->drm,
874 			    "VBT initial LVDS value %x\n",
875 			    panel->vbt.bios_lvds_val);
876 	}
877 }
878 
879 static void
880 parse_lfp_data(struct intel_display *display,
881 	       struct intel_panel *panel)
882 {
883 	const struct bdb_lfp_data *data;
884 	const struct bdb_lfp_data_tail *tail;
885 	const struct bdb_lfp_data_ptrs *ptrs;
886 	const struct drm_edid_product_id *pnp_id;
887 	struct drm_printer p;
888 	int panel_type = panel->vbt.panel_type;
889 
890 	ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
891 	if (!ptrs)
892 		return;
893 
894 	data = bdb_find_section(display, BDB_LFP_DATA);
895 	if (!data)
896 		return;
897 
898 	if (!panel->vbt.lfp_vbt_mode)
899 		parse_lfp_panel_dtd(display, panel, data, ptrs);
900 
901 	pnp_id = get_lfp_pnp_id(data, ptrs, panel_type);
902 
903 	p = drm_dbg_printer(display->drm, DRM_UT_KMS, "Panel");
904 	drm_edid_print_product_id(&p, pnp_id, false);
905 
906 	tail = get_lfp_data_tail(data, ptrs);
907 	if (!tail)
908 		return;
909 
910 	drm_dbg_kms(display->drm, "Panel name: %.*s\n",
911 		    (int)sizeof(tail->panel_name[0].name),
912 		    tail->panel_name[panel_type].name);
913 
914 	if (display->vbt.version >= 188) {
915 		panel->vbt.seamless_drrs_min_refresh_rate =
916 			tail->seamless_drrs_min_refresh_rate[panel_type];
917 		drm_dbg_kms(display->drm,
918 			    "Seamless DRRS min refresh rate: %d Hz\n",
919 			    panel->vbt.seamless_drrs_min_refresh_rate);
920 	}
921 }
922 
923 static void
924 parse_generic_dtd(struct intel_display *display,
925 		  struct intel_panel *panel)
926 {
927 	const struct bdb_generic_dtd *generic_dtd;
928 	const struct generic_dtd_entry *dtd;
929 	struct drm_display_mode *panel_fixed_mode;
930 	int num_dtd;
931 
932 	/*
933 	 * Older VBTs provided DTD information for internal displays through
934 	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
935 	 * DTD information should be provided via a newer "generic DTD"
936 	 * block (58).  Just to be safe, we'll try the new generic DTD block
937 	 * first on VBT >= 229, but still fall back to trying the old LFP
938 	 * block if that fails.
939 	 */
940 	if (display->vbt.version < 229)
941 		return;
942 
943 	generic_dtd = bdb_find_section(display, BDB_GENERIC_DTD);
944 	if (!generic_dtd)
945 		return;
946 
947 	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
948 		drm_err(display->drm, "GDTD size %u is too small.\n",
949 			generic_dtd->gdtd_size);
950 		return;
951 	} else if (generic_dtd->gdtd_size !=
952 		   sizeof(struct generic_dtd_entry)) {
953 		drm_err(display->drm, "Unexpected GDTD size %u\n",
954 			generic_dtd->gdtd_size);
955 		/* DTD has unknown fields, but keep going */
956 	}
957 
958 	num_dtd = (get_blocksize(generic_dtd) -
959 		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
960 	if (panel->vbt.panel_type >= num_dtd) {
961 		drm_err(display->drm,
962 			"Panel type %d not found in table of %d DTD's\n",
963 			panel->vbt.panel_type, num_dtd);
964 		return;
965 	}
966 
967 	dtd = &generic_dtd->dtd[panel->vbt.panel_type];
968 
969 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
970 	if (!panel_fixed_mode)
971 		return;
972 
973 	panel_fixed_mode->hdisplay = dtd->hactive;
974 	panel_fixed_mode->hsync_start =
975 		panel_fixed_mode->hdisplay + dtd->hfront_porch;
976 	panel_fixed_mode->hsync_end =
977 		panel_fixed_mode->hsync_start + dtd->hsync;
978 	panel_fixed_mode->htotal =
979 		panel_fixed_mode->hdisplay + dtd->hblank;
980 
981 	panel_fixed_mode->vdisplay = dtd->vactive;
982 	panel_fixed_mode->vsync_start =
983 		panel_fixed_mode->vdisplay + dtd->vfront_porch;
984 	panel_fixed_mode->vsync_end =
985 		panel_fixed_mode->vsync_start + dtd->vsync;
986 	panel_fixed_mode->vtotal =
987 		panel_fixed_mode->vdisplay + dtd->vblank;
988 
989 	panel_fixed_mode->clock = dtd->pixel_clock;
990 	panel_fixed_mode->width_mm = dtd->width_mm;
991 	panel_fixed_mode->height_mm = dtd->height_mm;
992 
993 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
994 	drm_mode_set_name(panel_fixed_mode);
995 
996 	if (dtd->hsync_positive_polarity)
997 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
998 	else
999 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
1000 
1001 	if (dtd->vsync_positive_polarity)
1002 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
1003 	else
1004 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
1005 
1006 	drm_dbg_kms(display->drm,
1007 		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1008 		    DRM_MODE_ARG(panel_fixed_mode));
1009 
1010 	panel->vbt.lfp_vbt_mode = panel_fixed_mode;
1011 }
1012 
1013 static void
1014 parse_lfp_backlight(struct intel_display *display,
1015 		    struct intel_panel *panel)
1016 {
1017 	const struct bdb_lfp_backlight *backlight_data;
1018 	const struct lfp_backlight_data_entry *entry;
1019 	int panel_type = panel->vbt.panel_type;
1020 	u16 level;
1021 
1022 	backlight_data = bdb_find_section(display, BDB_LFP_BACKLIGHT);
1023 	if (!backlight_data)
1024 		return;
1025 
1026 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1027 		drm_dbg_kms(display->drm,
1028 			    "Unsupported backlight data entry size %u\n",
1029 			    backlight_data->entry_size);
1030 		return;
1031 	}
1032 
1033 	entry = &backlight_data->data[panel_type];
1034 
1035 	panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1036 	if (!panel->vbt.backlight.present) {
1037 		drm_dbg_kms(display->drm,
1038 			    "PWM backlight not present in VBT (type %u)\n",
1039 			    entry->type);
1040 		return;
1041 	}
1042 
1043 	panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1044 	panel->vbt.backlight.controller = 0;
1045 	if (display->vbt.version >= 191) {
1046 		const struct lfp_backlight_control_method *method;
1047 
1048 		method = &backlight_data->backlight_control[panel_type];
1049 		panel->vbt.backlight.type = method->type;
1050 		panel->vbt.backlight.controller = method->controller;
1051 	}
1052 
1053 	panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1054 	panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1055 
1056 	if (display->vbt.version >= 234) {
1057 		u16 min_level;
1058 		bool scale;
1059 
1060 		level = backlight_data->brightness_level[panel_type].level;
1061 		min_level = backlight_data->brightness_min_level[panel_type].level;
1062 
1063 		if (display->vbt.version >= 236)
1064 			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1065 		else
1066 			scale = level > 255;
1067 
1068 		if (scale)
1069 			min_level = min_level / 255;
1070 
1071 		if (min_level > 255) {
1072 			drm_warn(display->drm, "Brightness min level > 255\n");
1073 			level = 255;
1074 		}
1075 		panel->vbt.backlight.min_brightness = min_level;
1076 
1077 		panel->vbt.backlight.brightness_precision_bits =
1078 			backlight_data->brightness_precision_bits[panel_type];
1079 	} else {
1080 		level = backlight_data->level[panel_type];
1081 		panel->vbt.backlight.min_brightness = entry->min_brightness;
1082 	}
1083 
1084 	if (display->vbt.version >= 239)
1085 		panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1086 			DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1087 	else
1088 		panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1089 
1090 	drm_dbg_kms(display->drm,
1091 		    "VBT backlight PWM modulation frequency %u Hz, "
1092 		    "active %s, min brightness %u, level %u, controller %u\n",
1093 		    panel->vbt.backlight.pwm_freq_hz,
1094 		    panel->vbt.backlight.active_low_pwm ? "low" : "high",
1095 		    panel->vbt.backlight.min_brightness,
1096 		    level,
1097 		    panel->vbt.backlight.controller);
1098 }
1099 
1100 static void
1101 parse_sdvo_lvds_data(struct intel_display *display,
1102 		     struct intel_panel *panel)
1103 {
1104 	const struct bdb_sdvo_lvds_dtd *dtd;
1105 	struct drm_display_mode *panel_fixed_mode;
1106 	int index;
1107 
1108 	index = display->params.vbt_sdvo_panel_type;
1109 	if (index == -2) {
1110 		drm_dbg_kms(display->drm,
1111 			    "Ignore SDVO LVDS mode from BIOS VBT tables.\n");
1112 		return;
1113 	}
1114 
1115 	if (index == -1) {
1116 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1117 
1118 		sdvo_lvds_options = bdb_find_section(display, BDB_SDVO_LVDS_OPTIONS);
1119 		if (!sdvo_lvds_options)
1120 			return;
1121 
1122 		index = sdvo_lvds_options->panel_type;
1123 	}
1124 
1125 	dtd = bdb_find_section(display, BDB_SDVO_LVDS_DTD);
1126 	if (!dtd)
1127 		return;
1128 
1129 	/*
1130 	 * This should not happen, as long as the panel_type
1131 	 * enumeration doesn't grow over 4 items.  But if it does, it
1132 	 * could lead to hard-to-detect bugs, so better double-check
1133 	 * it here to be sure.
1134 	 */
1135 	if (index >= ARRAY_SIZE(dtd->dtd)) {
1136 		drm_err(display->drm,
1137 			"index %d is larger than dtd->dtd[4] array\n",
1138 			index);
1139 		return;
1140 	}
1141 
1142 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1143 	if (!panel_fixed_mode)
1144 		return;
1145 
1146 	fill_detail_timing_data(display, panel_fixed_mode, &dtd->dtd[index]);
1147 
1148 	panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1149 
1150 	drm_dbg_kms(display->drm,
1151 		    "Found SDVO LVDS mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1152 		    DRM_MODE_ARG(panel_fixed_mode));
1153 }
1154 
1155 static int intel_bios_ssc_frequency(struct intel_display *display,
1156 				    bool alternate)
1157 {
1158 	switch (DISPLAY_VER(display)) {
1159 	case 2:
1160 		return alternate ? 66667 : 48000;
1161 	case 3:
1162 	case 4:
1163 		return alternate ? 100000 : 96000;
1164 	default:
1165 		return alternate ? 100000 : 120000;
1166 	}
1167 }
1168 
1169 static void
1170 parse_general_features(struct intel_display *display)
1171 {
1172 	const struct bdb_general_features *general;
1173 
1174 	general = bdb_find_section(display, BDB_GENERAL_FEATURES);
1175 	if (!general)
1176 		return;
1177 
1178 	display->vbt.int_tv_support = general->int_tv_support;
1179 	/* int_crt_support can't be trusted on earlier platforms */
1180 	if (display->vbt.version >= 155 &&
1181 	    (HAS_DDI(display) || display->platform.valleyview))
1182 		display->vbt.int_crt_support = general->int_crt_support;
1183 	display->vbt.lvds_use_ssc = general->enable_ssc;
1184 	display->vbt.lvds_ssc_freq =
1185 		intel_bios_ssc_frequency(display, general->ssc_freq);
1186 	display->vbt.display_clock_mode = general->display_clock_mode;
1187 	display->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1188 	if (display->vbt.version >= 181) {
1189 		display->vbt.orientation = general->rotate_180 ?
1190 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1191 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1192 	} else {
1193 		display->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1194 	}
1195 
1196 	if (display->vbt.version >= 249 && general->afc_startup_config) {
1197 		display->vbt.override_afc_startup = true;
1198 		display->vbt.override_afc_startup_val = general->afc_startup_config == 1 ? 0 : 7;
1199 	}
1200 
1201 	drm_dbg_kms(display->drm,
1202 		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1203 		    display->vbt.int_tv_support,
1204 		    display->vbt.int_crt_support,
1205 		    display->vbt.lvds_use_ssc,
1206 		    display->vbt.lvds_ssc_freq,
1207 		    display->vbt.display_clock_mode,
1208 		    display->vbt.fdi_rx_polarity_inverted);
1209 }
1210 
1211 static const struct child_device_config *
1212 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1213 {
1214 	return (const void *) &defs->devices[i * defs->child_dev_size];
1215 }
1216 
1217 static void
1218 parse_sdvo_device_mapping(struct intel_display *display)
1219 {
1220 	const struct intel_bios_encoder_data *devdata;
1221 	int count = 0;
1222 
1223 	/*
1224 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1225 	 * accurate and doesn't have to be, as long as it's not too strict.
1226 	 */
1227 	if (!IS_DISPLAY_VER(display, 3, 7)) {
1228 		drm_dbg_kms(display->drm, "Skipping SDVO device mapping\n");
1229 		return;
1230 	}
1231 
1232 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
1233 		const struct child_device_config *child = &devdata->child;
1234 		struct sdvo_device_mapping *mapping;
1235 
1236 		if (child->target_addr != TARGET_ADDR1 &&
1237 		    child->target_addr != TARGET_ADDR2) {
1238 			/*
1239 			 * If the target address is neither 0x70 nor 0x72,
1240 			 * it is not a SDVO device. Skip it.
1241 			 */
1242 			continue;
1243 		}
1244 		if (child->dvo_port != DEVICE_PORT_DVOB &&
1245 		    child->dvo_port != DEVICE_PORT_DVOC) {
1246 			/* skip the incorrect SDVO port */
1247 			drm_dbg_kms(display->drm,
1248 				    "Incorrect SDVO port. Skip it\n");
1249 			continue;
1250 		}
1251 		drm_dbg_kms(display->drm,
1252 			    "the SDVO device with target addr %2x is found on"
1253 			    " %s port\n",
1254 			    child->target_addr,
1255 			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1256 			    "SDVOB" : "SDVOC");
1257 		mapping = &display->vbt.sdvo_mappings[child->dvo_port - 1];
1258 		if (!mapping->initialized) {
1259 			mapping->dvo_port = child->dvo_port;
1260 			mapping->target_addr = child->target_addr;
1261 			mapping->dvo_wiring = child->dvo_wiring;
1262 			mapping->ddc_pin = child->ddc_pin;
1263 			mapping->i2c_pin = child->i2c_pin;
1264 			mapping->initialized = 1;
1265 			drm_dbg_kms(display->drm,
1266 				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1267 				    mapping->dvo_port, mapping->target_addr,
1268 				    mapping->dvo_wiring, mapping->ddc_pin,
1269 				    mapping->i2c_pin);
1270 		} else {
1271 			drm_dbg_kms(display->drm,
1272 				    "Maybe one SDVO port is shared by "
1273 				    "two SDVO device.\n");
1274 		}
1275 		if (child->target2_addr) {
1276 			/* Maybe this is a SDVO device with multiple inputs */
1277 			/* And the mapping info is not added */
1278 			drm_dbg_kms(display->drm,
1279 				    "there exists the target2_addr. Maybe this"
1280 				    " is a SDVO device with multiple inputs.\n");
1281 		}
1282 		count++;
1283 	}
1284 
1285 	if (!count) {
1286 		/* No SDVO device info is found */
1287 		drm_dbg_kms(display->drm,
1288 			    "No SDVO device info is found in VBT\n");
1289 	}
1290 }
1291 
1292 static void
1293 parse_driver_features(struct intel_display *display)
1294 {
1295 	const struct bdb_driver_features *driver;
1296 
1297 	driver = bdb_find_section(display, BDB_DRIVER_FEATURES);
1298 	if (!driver)
1299 		return;
1300 
1301 	if (DISPLAY_VER(display) >= 5) {
1302 		/*
1303 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1304 		 * to mean "eDP". The VBT spec doesn't agree with that
1305 		 * interpretation, but real world VBTs seem to.
1306 		 */
1307 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1308 			display->vbt.int_lvds_support = 0;
1309 	} else {
1310 		/*
1311 		 * FIXME it's not clear which BDB version has the LVDS config
1312 		 * bits defined. Revision history in the VBT spec says:
1313 		 * "0.92 | Add two definitions for VBT value of LVDS Active
1314 		 *  Config (00b and 11b values defined) | 06/13/2005"
1315 		 * but does not the specify the BDB version.
1316 		 *
1317 		 * So far version 134 (on i945gm) is the oldest VBT observed
1318 		 * in the wild with the bits correctly populated. Version
1319 		 * 108 (on i85x) does not have the bits correctly populated.
1320 		 */
1321 		if (display->vbt.version >= 134 &&
1322 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1323 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1324 			display->vbt.int_lvds_support = 0;
1325 	}
1326 }
1327 
1328 static void
1329 parse_panel_driver_features(struct intel_display *display,
1330 			    struct intel_panel *panel)
1331 {
1332 	const struct bdb_driver_features *driver;
1333 
1334 	driver = bdb_find_section(display, BDB_DRIVER_FEATURES);
1335 	if (!driver)
1336 		return;
1337 
1338 	if (display->vbt.version < 228) {
1339 		drm_dbg_kms(display->drm, "DRRS State Enabled:%d\n",
1340 			    driver->drrs_enabled);
1341 		/*
1342 		 * If DRRS is not supported, drrs_type has to be set to 0.
1343 		 * This is because, VBT is configured in such a way that
1344 		 * static DRRS is 0 and DRRS not supported is represented by
1345 		 * driver->drrs_enabled=false
1346 		 */
1347 		if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1348 			/*
1349 			 * FIXME Should DMRRS perhaps be treated as seamless
1350 			 * but without the automatic downclocking?
1351 			 */
1352 			if (driver->dmrrs_enabled)
1353 				panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1354 			else
1355 				panel->vbt.drrs_type = DRRS_TYPE_NONE;
1356 		}
1357 
1358 		panel->vbt.psr.enable = driver->psr_enabled;
1359 	}
1360 }
1361 
1362 static void
1363 parse_power_conservation_features(struct intel_display *display,
1364 				  struct intel_panel *panel)
1365 {
1366 	const struct bdb_lfp_power *power;
1367 	u8 panel_type = panel->vbt.panel_type;
1368 
1369 	panel->vbt.vrr = true; /* matches Windows behaviour */
1370 
1371 	if (display->vbt.version < 228)
1372 		return;
1373 
1374 	power = bdb_find_section(display, BDB_LFP_POWER);
1375 	if (!power)
1376 		return;
1377 
1378 	panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1379 
1380 	/*
1381 	 * If DRRS is not supported, drrs_type has to be set to 0.
1382 	 * This is because, VBT is configured in such a way that
1383 	 * static DRRS is 0 and DRRS not supported is represented by
1384 	 * power->drrs & BIT(panel_type)=false
1385 	 */
1386 	if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1387 		/*
1388 		 * FIXME Should DMRRS perhaps be treated as seamless
1389 		 * but without the automatic downclocking?
1390 		 */
1391 		if (panel_bool(power->dmrrs, panel_type))
1392 			panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1393 		else
1394 			panel->vbt.drrs_type = DRRS_TYPE_NONE;
1395 	}
1396 
1397 	if (display->vbt.version >= 232)
1398 		panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1399 
1400 	if (display->vbt.version >= 233)
1401 		panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1402 					    panel_type);
1403 }
1404 
1405 static void
1406 parse_edp(struct intel_display *display,
1407 	  struct intel_panel *panel)
1408 {
1409 	const struct bdb_edp *edp;
1410 	const struct edp_power_seq *edp_pps;
1411 	const struct edp_fast_link_params *edp_link_params;
1412 	int panel_type = panel->vbt.panel_type;
1413 
1414 	edp = bdb_find_section(display, BDB_EDP);
1415 	if (!edp)
1416 		return;
1417 
1418 	switch (panel_bits(edp->color_depth, panel_type, 2)) {
1419 	case EDP_18BPP:
1420 		panel->vbt.edp.bpp = 18;
1421 		break;
1422 	case EDP_24BPP:
1423 		panel->vbt.edp.bpp = 24;
1424 		break;
1425 	case EDP_30BPP:
1426 		panel->vbt.edp.bpp = 30;
1427 		break;
1428 	}
1429 
1430 	/* Get the eDP sequencing and link info */
1431 	edp_pps = &edp->power_seqs[panel_type];
1432 	edp_link_params = &edp->fast_link_params[panel_type];
1433 
1434 	panel->vbt.edp.pps = *edp_pps;
1435 
1436 	if (display->vbt.version >= 224) {
1437 		panel->vbt.edp.rate =
1438 			edp->edp_fast_link_training_rate[panel_type] * 20;
1439 	} else {
1440 		switch (edp_link_params->rate) {
1441 		case EDP_RATE_1_62:
1442 			panel->vbt.edp.rate = 162000;
1443 			break;
1444 		case EDP_RATE_2_7:
1445 			panel->vbt.edp.rate = 270000;
1446 			break;
1447 		case EDP_RATE_5_4:
1448 			panel->vbt.edp.rate = 540000;
1449 			break;
1450 		default:
1451 			drm_dbg_kms(display->drm,
1452 				    "VBT has unknown eDP link rate value %u\n",
1453 				    edp_link_params->rate);
1454 			break;
1455 		}
1456 	}
1457 
1458 	switch (edp_link_params->lanes) {
1459 	case EDP_LANE_1:
1460 		panel->vbt.edp.lanes = 1;
1461 		break;
1462 	case EDP_LANE_2:
1463 		panel->vbt.edp.lanes = 2;
1464 		break;
1465 	case EDP_LANE_4:
1466 		panel->vbt.edp.lanes = 4;
1467 		break;
1468 	default:
1469 		drm_dbg_kms(display->drm,
1470 			    "VBT has unknown eDP lane count value %u\n",
1471 			    edp_link_params->lanes);
1472 		break;
1473 	}
1474 
1475 	switch (edp_link_params->preemphasis) {
1476 	case EDP_PREEMPHASIS_NONE:
1477 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1478 		break;
1479 	case EDP_PREEMPHASIS_3_5dB:
1480 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1481 		break;
1482 	case EDP_PREEMPHASIS_6dB:
1483 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1484 		break;
1485 	case EDP_PREEMPHASIS_9_5dB:
1486 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1487 		break;
1488 	default:
1489 		drm_dbg_kms(display->drm,
1490 			    "VBT has unknown eDP pre-emphasis value %u\n",
1491 			    edp_link_params->preemphasis);
1492 		break;
1493 	}
1494 
1495 	switch (edp_link_params->vswing) {
1496 	case EDP_VSWING_0_4V:
1497 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1498 		break;
1499 	case EDP_VSWING_0_6V:
1500 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1501 		break;
1502 	case EDP_VSWING_0_8V:
1503 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1504 		break;
1505 	case EDP_VSWING_1_2V:
1506 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1507 		break;
1508 	default:
1509 		drm_dbg_kms(display->drm,
1510 			    "VBT has unknown eDP voltage swing value %u\n",
1511 			    edp_link_params->vswing);
1512 		break;
1513 	}
1514 
1515 	if (display->vbt.version >= 173) {
1516 		u8 vswing;
1517 
1518 		/* Don't read from VBT if module parameter has valid value*/
1519 		if (display->params.edp_vswing) {
1520 			panel->vbt.edp.low_vswing =
1521 				display->params.edp_vswing == 1;
1522 		} else {
1523 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1524 			panel->vbt.edp.low_vswing = vswing == 0;
1525 		}
1526 	}
1527 
1528 	panel->vbt.edp.drrs_msa_timing_delay =
1529 		panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1530 
1531 	if (display->vbt.version >= 244)
1532 		panel->vbt.edp.max_link_rate =
1533 			edp->edp_max_port_link_rate[panel_type] * 20;
1534 
1535 	if (display->vbt.version >= 251)
1536 		panel->vbt.edp.dsc_disable =
1537 			panel_bool(edp->edp_dsc_disable, panel_type);
1538 }
1539 
1540 static void
1541 parse_psr(struct intel_display *display,
1542 	  struct intel_panel *panel)
1543 {
1544 	const struct bdb_psr *psr;
1545 	const struct psr_table *psr_table;
1546 	int panel_type = panel->vbt.panel_type;
1547 
1548 	psr = bdb_find_section(display, BDB_PSR);
1549 	if (!psr) {
1550 		drm_dbg_kms(display->drm, "No PSR BDB found.\n");
1551 		return;
1552 	}
1553 
1554 	psr_table = &psr->psr_table[panel_type];
1555 
1556 	panel->vbt.psr.full_link = psr_table->full_link;
1557 	panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1558 
1559 	/* Allowed VBT values goes from 0 to 15 */
1560 	panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1561 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1562 
1563 	/*
1564 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1565 	 * Old decimal value is wake up time in multiples of 100 us.
1566 	 */
1567 	if (display->vbt.version >= 205 &&
1568 	    (DISPLAY_VER(display) >= 9 && !display->platform.broxton)) {
1569 		switch (psr_table->tp1_wakeup_time) {
1570 		case 0:
1571 			panel->vbt.psr.tp1_wakeup_time_us = 500;
1572 			break;
1573 		case 1:
1574 			panel->vbt.psr.tp1_wakeup_time_us = 100;
1575 			break;
1576 		case 3:
1577 			panel->vbt.psr.tp1_wakeup_time_us = 0;
1578 			break;
1579 		default:
1580 			drm_dbg_kms(display->drm,
1581 				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1582 				    psr_table->tp1_wakeup_time);
1583 			fallthrough;
1584 		case 2:
1585 			panel->vbt.psr.tp1_wakeup_time_us = 2500;
1586 			break;
1587 		}
1588 
1589 		switch (psr_table->tp2_tp3_wakeup_time) {
1590 		case 0:
1591 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1592 			break;
1593 		case 1:
1594 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1595 			break;
1596 		case 3:
1597 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1598 			break;
1599 		default:
1600 			drm_dbg_kms(display->drm,
1601 				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1602 				    psr_table->tp2_tp3_wakeup_time);
1603 			fallthrough;
1604 		case 2:
1605 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1606 		break;
1607 		}
1608 	} else {
1609 		panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1610 		panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1611 	}
1612 
1613 	if (display->vbt.version >= 226) {
1614 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1615 
1616 		wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1617 		switch (wakeup_time) {
1618 		case 0:
1619 			wakeup_time = 500;
1620 			break;
1621 		case 1:
1622 			wakeup_time = 100;
1623 			break;
1624 		case 3:
1625 			wakeup_time = 50;
1626 			break;
1627 		default:
1628 		case 2:
1629 			wakeup_time = 2500;
1630 			break;
1631 		}
1632 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1633 	} else {
1634 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1635 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1636 	}
1637 }
1638 
1639 static void parse_dsi_backlight_ports(struct intel_display *display,
1640 				      struct intel_panel *panel,
1641 				      enum port port)
1642 {
1643 	enum port port_bc = DISPLAY_VER(display) >= 11 ? PORT_B : PORT_C;
1644 
1645 	if (!panel->vbt.dsi.config->dual_link || display->vbt.version < 197) {
1646 		panel->vbt.dsi.bl_ports = BIT(port);
1647 		if (panel->vbt.dsi.config->cabc_supported)
1648 			panel->vbt.dsi.cabc_ports = BIT(port);
1649 
1650 		return;
1651 	}
1652 
1653 	switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1654 	case DL_DCS_PORT_A:
1655 		panel->vbt.dsi.bl_ports = BIT(PORT_A);
1656 		break;
1657 	case DL_DCS_PORT_C:
1658 		panel->vbt.dsi.bl_ports = BIT(port_bc);
1659 		break;
1660 	default:
1661 	case DL_DCS_PORT_A_AND_C:
1662 		panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1663 		break;
1664 	}
1665 
1666 	if (!panel->vbt.dsi.config->cabc_supported)
1667 		return;
1668 
1669 	switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1670 	case DL_DCS_PORT_A:
1671 		panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1672 		break;
1673 	case DL_DCS_PORT_C:
1674 		panel->vbt.dsi.cabc_ports = BIT(port_bc);
1675 		break;
1676 	default:
1677 	case DL_DCS_PORT_A_AND_C:
1678 		panel->vbt.dsi.cabc_ports =
1679 					BIT(PORT_A) | BIT(port_bc);
1680 		break;
1681 	}
1682 }
1683 
1684 static void
1685 parse_mipi_config(struct intel_display *display,
1686 		  struct intel_panel *panel)
1687 {
1688 	const struct bdb_mipi_config *start;
1689 	const struct mipi_config *config;
1690 	const struct mipi_pps_data *pps;
1691 	int panel_type = panel->vbt.panel_type;
1692 	enum port port;
1693 
1694 	/* parse MIPI blocks only if LFP type is MIPI */
1695 	if (!intel_bios_is_dsi_present(display, &port))
1696 		return;
1697 
1698 	/* Initialize this to undefined indicating no generic MIPI support */
1699 	panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1700 
1701 	start = bdb_find_section(display, BDB_MIPI_CONFIG);
1702 	if (!start) {
1703 		drm_dbg_kms(display->drm, "No MIPI config BDB found");
1704 		return;
1705 	}
1706 
1707 	drm_dbg_kms(display->drm, "Found MIPI Config block, panel index = %d\n",
1708 		    panel_type);
1709 
1710 	/*
1711 	 * get hold of the correct configuration block and pps data as per
1712 	 * the panel_type as index
1713 	 */
1714 	config = &start->config[panel_type];
1715 	pps = &start->pps[panel_type];
1716 
1717 	/* store as of now full data. Trim when we realise all is not needed */
1718 	panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1719 	if (!panel->vbt.dsi.config)
1720 		return;
1721 
1722 	panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1723 	if (!panel->vbt.dsi.pps) {
1724 		kfree(panel->vbt.dsi.config);
1725 		return;
1726 	}
1727 
1728 	parse_dsi_backlight_ports(display, panel, port);
1729 
1730 	/* FIXME is the 90 vs. 270 correct? */
1731 	switch (config->rotation) {
1732 	case ENABLE_ROTATION_0:
1733 		/*
1734 		 * Most (all?) VBTs claim 0 degrees despite having
1735 		 * an upside down panel, thus we do not trust this.
1736 		 */
1737 		panel->vbt.dsi.orientation =
1738 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1739 		break;
1740 	case ENABLE_ROTATION_90:
1741 		panel->vbt.dsi.orientation =
1742 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1743 		break;
1744 	case ENABLE_ROTATION_180:
1745 		panel->vbt.dsi.orientation =
1746 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1747 		break;
1748 	case ENABLE_ROTATION_270:
1749 		panel->vbt.dsi.orientation =
1750 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1751 		break;
1752 	}
1753 
1754 	/* We have mandatory mipi config blocks. Initialize as generic panel */
1755 	panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1756 }
1757 
1758 /* Find the sequence block and size for the given panel. */
1759 static const u8 *
1760 find_panel_sequence_block(struct intel_display *display,
1761 			  const struct bdb_mipi_sequence *sequence,
1762 			  u16 panel_id, u32 *seq_size)
1763 {
1764 	u32 total = get_blocksize(sequence);
1765 	const u8 *data = &sequence->data[0];
1766 	u8 current_id;
1767 	u32 current_size;
1768 	int header_size = sequence->version >= 3 ? 5 : 3;
1769 	int index = 0;
1770 	int i;
1771 
1772 	/* skip new block size */
1773 	if (sequence->version >= 3)
1774 		data += 4;
1775 
1776 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1777 		if (index + header_size > total) {
1778 			drm_err(display->drm,
1779 				"Invalid sequence block (header)\n");
1780 			return NULL;
1781 		}
1782 
1783 		current_id = *(data + index);
1784 		if (sequence->version >= 3)
1785 			current_size = *((const u32 *)(data + index + 1));
1786 		else
1787 			current_size = *((const u16 *)(data + index + 1));
1788 
1789 		index += header_size;
1790 
1791 		if (index + current_size > total) {
1792 			drm_err(display->drm, "Invalid sequence block\n");
1793 			return NULL;
1794 		}
1795 
1796 		if (current_id == panel_id) {
1797 			*seq_size = current_size;
1798 			return data + index;
1799 		}
1800 
1801 		index += current_size;
1802 	}
1803 
1804 	drm_err(display->drm,
1805 		"Sequence block detected but no valid configuration\n");
1806 
1807 	return NULL;
1808 }
1809 
1810 static int goto_next_sequence(struct intel_display *display,
1811 			      const u8 *data, int index, int total)
1812 {
1813 	u16 len;
1814 
1815 	/* Skip Sequence Byte. */
1816 	for (index = index + 1; index < total; index += len) {
1817 		u8 operation_byte = *(data + index);
1818 		index++;
1819 
1820 		switch (operation_byte) {
1821 		case MIPI_SEQ_ELEM_END:
1822 			return index;
1823 		case MIPI_SEQ_ELEM_SEND_PKT:
1824 			if (index + 4 > total)
1825 				return 0;
1826 
1827 			len = *((const u16 *)(data + index + 2)) + 4;
1828 			break;
1829 		case MIPI_SEQ_ELEM_DELAY:
1830 			len = 4;
1831 			break;
1832 		case MIPI_SEQ_ELEM_GPIO:
1833 			len = 2;
1834 			break;
1835 		case MIPI_SEQ_ELEM_I2C:
1836 			if (index + 7 > total)
1837 				return 0;
1838 			len = *(data + index + 6) + 7;
1839 			break;
1840 		default:
1841 			drm_err(display->drm, "Unknown operation byte\n");
1842 			return 0;
1843 		}
1844 	}
1845 
1846 	return 0;
1847 }
1848 
1849 static int goto_next_sequence_v3(struct intel_display *display,
1850 				 const u8 *data, int index, int total)
1851 {
1852 	int seq_end;
1853 	u16 len;
1854 	u32 size_of_sequence;
1855 
1856 	/*
1857 	 * Could skip sequence based on Size of Sequence alone, but also do some
1858 	 * checking on the structure.
1859 	 */
1860 	if (total < 5) {
1861 		drm_err(display->drm, "Too small sequence size\n");
1862 		return 0;
1863 	}
1864 
1865 	/* Skip Sequence Byte. */
1866 	index++;
1867 
1868 	/*
1869 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1870 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1871 	 * byte.
1872 	 */
1873 	size_of_sequence = *((const u32 *)(data + index));
1874 	index += 4;
1875 
1876 	seq_end = index + size_of_sequence;
1877 	if (seq_end > total) {
1878 		drm_err(display->drm, "Invalid sequence size\n");
1879 		return 0;
1880 	}
1881 
1882 	for (; index < total; index += len) {
1883 		u8 operation_byte = *(data + index);
1884 		index++;
1885 
1886 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1887 			if (index != seq_end) {
1888 				drm_err(display->drm,
1889 					"Invalid element structure\n");
1890 				return 0;
1891 			}
1892 			return index;
1893 		}
1894 
1895 		len = *(data + index);
1896 		index++;
1897 
1898 		/*
1899 		 * FIXME: Would be nice to check elements like for v1/v2 in
1900 		 * goto_next_sequence() above.
1901 		 */
1902 		switch (operation_byte) {
1903 		case MIPI_SEQ_ELEM_SEND_PKT:
1904 		case MIPI_SEQ_ELEM_DELAY:
1905 		case MIPI_SEQ_ELEM_GPIO:
1906 		case MIPI_SEQ_ELEM_I2C:
1907 		case MIPI_SEQ_ELEM_SPI:
1908 		case MIPI_SEQ_ELEM_PMIC:
1909 			break;
1910 		default:
1911 			drm_err(display->drm, "Unknown operation byte %u\n",
1912 				operation_byte);
1913 			break;
1914 		}
1915 	}
1916 
1917 	return 0;
1918 }
1919 
1920 /*
1921  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1922  * skip all delay + gpio operands and stop at the first DSI packet op.
1923  */
1924 static int get_init_otp_deassert_fragment_len(struct intel_display *display,
1925 					      struct intel_panel *panel)
1926 {
1927 	const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1928 	int index, len;
1929 
1930 	if (drm_WARN_ON(display->drm,
1931 			!data || panel->vbt.dsi.seq_version != 1))
1932 		return 0;
1933 
1934 	/* index = 1 to skip sequence byte */
1935 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1936 		switch (data[index]) {
1937 		case MIPI_SEQ_ELEM_SEND_PKT:
1938 			return index == 1 ? 0 : index;
1939 		case MIPI_SEQ_ELEM_DELAY:
1940 			len = 5; /* 1 byte for operand + uint32 */
1941 			break;
1942 		case MIPI_SEQ_ELEM_GPIO:
1943 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1944 			break;
1945 		default:
1946 			return 0;
1947 		}
1948 	}
1949 
1950 	return 0;
1951 }
1952 
1953 /*
1954  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1955  * The deassert must be done before calling intel_dsi_device_ready, so for
1956  * these devices we split the init OTP sequence into a deassert sequence and
1957  * the actual init OTP part.
1958  */
1959 static void vlv_fixup_mipi_sequences(struct intel_display *display,
1960 				     struct intel_panel *panel)
1961 {
1962 	u8 *init_otp;
1963 	int len;
1964 
1965 	/* Limit this to v1 vid-mode sequences */
1966 	if (panel->vbt.dsi.config->is_cmd_mode ||
1967 	    panel->vbt.dsi.seq_version != 1)
1968 		return;
1969 
1970 	/* Only do this if there are otp and assert seqs and no deassert seq */
1971 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1972 	    !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1973 	    panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1974 		return;
1975 
1976 	/* The deassert-sequence ends at the first DSI packet */
1977 	len = get_init_otp_deassert_fragment_len(display, panel);
1978 	if (!len)
1979 		return;
1980 
1981 	drm_dbg_kms(display->drm,
1982 		    "Using init OTP fragment to deassert reset\n");
1983 
1984 	/* Copy the fragment, update seq byte and terminate it */
1985 	init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1986 	panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1987 	if (!panel->vbt.dsi.deassert_seq)
1988 		return;
1989 	panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1990 	panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1991 	/* Use the copy for deassert */
1992 	panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1993 		panel->vbt.dsi.deassert_seq;
1994 	/* Replace the last byte of the fragment with init OTP seq byte */
1995 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1996 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1997 	panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1998 }
1999 
2000 /*
2001  * Some machines (eg. Lenovo 82TQ) appear to have broken
2002  * VBT sequences:
2003  * - INIT_OTP is not present at all
2004  * - what should be in INIT_OTP is in DISPLAY_ON
2005  * - what should be in DISPLAY_ON is in BACKLIGHT_ON
2006  *   (along with the actual backlight stuff)
2007  *
2008  * To make those work we simply swap DISPLAY_ON and INIT_OTP.
2009  *
2010  * TODO: Do we need to limit this to specific machines,
2011  *       or examine the contents of the sequences to
2012  *       avoid false positives?
2013  */
2014 static void icl_fixup_mipi_sequences(struct intel_display *display,
2015 				     struct intel_panel *panel)
2016 {
2017 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] &&
2018 	    panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) {
2019 		drm_dbg_kms(display->drm,
2020 			    "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n");
2021 
2022 		swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP],
2023 		     panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]);
2024 	}
2025 }
2026 
2027 static void fixup_mipi_sequences(struct intel_display *display,
2028 				 struct intel_panel *panel)
2029 {
2030 	if (DISPLAY_VER(display) >= 11)
2031 		icl_fixup_mipi_sequences(display, panel);
2032 	else if (display->platform.valleyview)
2033 		vlv_fixup_mipi_sequences(display, panel);
2034 }
2035 
2036 static void
2037 parse_mipi_sequence(struct intel_display *display,
2038 		    struct intel_panel *panel)
2039 {
2040 	int panel_type = panel->vbt.panel_type;
2041 	const struct bdb_mipi_sequence *sequence;
2042 	const u8 *seq_data;
2043 	u32 seq_size;
2044 	u8 *data;
2045 	int index = 0;
2046 
2047 	/* Only our generic panel driver uses the sequence block. */
2048 	if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2049 		return;
2050 
2051 	sequence = bdb_find_section(display, BDB_MIPI_SEQUENCE);
2052 	if (!sequence) {
2053 		drm_dbg_kms(display->drm,
2054 			    "No MIPI Sequence found, parsing complete\n");
2055 		return;
2056 	}
2057 
2058 	/* Fail gracefully for forward incompatible sequence block. */
2059 	if (sequence->version >= 4) {
2060 		drm_err(display->drm,
2061 			"Unable to parse MIPI Sequence Block v%u\n",
2062 			sequence->version);
2063 		return;
2064 	}
2065 
2066 	drm_dbg_kms(display->drm, "Found MIPI sequence block v%u\n",
2067 		    sequence->version);
2068 
2069 	seq_data = find_panel_sequence_block(display, sequence, panel_type, &seq_size);
2070 	if (!seq_data)
2071 		return;
2072 
2073 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2074 	if (!data)
2075 		return;
2076 
2077 	/* Parse the sequences, store pointers to each sequence. */
2078 	for (;;) {
2079 		u8 seq_id = *(data + index);
2080 		if (seq_id == MIPI_SEQ_END)
2081 			break;
2082 
2083 		if (seq_id >= MIPI_SEQ_MAX) {
2084 			drm_err(display->drm, "Unknown sequence %u\n",
2085 				seq_id);
2086 			goto err;
2087 		}
2088 
2089 		/* Log about presence of sequences we won't run. */
2090 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2091 			drm_dbg_kms(display->drm,
2092 				    "Unsupported sequence %u\n", seq_id);
2093 
2094 		panel->vbt.dsi.sequence[seq_id] = data + index;
2095 
2096 		if (sequence->version >= 3)
2097 			index = goto_next_sequence_v3(display, data, index, seq_size);
2098 		else
2099 			index = goto_next_sequence(display, data, index, seq_size);
2100 		if (!index) {
2101 			drm_err(display->drm, "Invalid sequence %u\n",
2102 				seq_id);
2103 			goto err;
2104 		}
2105 	}
2106 
2107 	panel->vbt.dsi.data = data;
2108 	panel->vbt.dsi.size = seq_size;
2109 	panel->vbt.dsi.seq_version = sequence->version;
2110 
2111 	fixup_mipi_sequences(display, panel);
2112 
2113 	drm_dbg_kms(display->drm, "MIPI related VBT parsing complete\n");
2114 	return;
2115 
2116 err:
2117 	kfree(data);
2118 	memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2119 }
2120 
2121 static void
2122 parse_compression_parameters(struct intel_display *display)
2123 {
2124 	const struct bdb_compression_parameters *params;
2125 	struct intel_bios_encoder_data *devdata;
2126 	u16 block_size;
2127 	int index;
2128 
2129 	if (display->vbt.version < 198)
2130 		return;
2131 
2132 	params = bdb_find_section(display, BDB_COMPRESSION_PARAMETERS);
2133 	if (params) {
2134 		/* Sanity checks */
2135 		if (params->entry_size != sizeof(params->data[0])) {
2136 			drm_dbg_kms(display->drm,
2137 				    "VBT: unsupported compression param entry size\n");
2138 			return;
2139 		}
2140 
2141 		block_size = get_blocksize(params);
2142 		if (block_size < sizeof(*params)) {
2143 			drm_dbg_kms(display->drm,
2144 				    "VBT: expected 16 compression param entries\n");
2145 			return;
2146 		}
2147 	}
2148 
2149 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
2150 		const struct child_device_config *child = &devdata->child;
2151 
2152 		if (!child->compression_enable)
2153 			continue;
2154 
2155 		if (!params) {
2156 			drm_dbg_kms(display->drm,
2157 				    "VBT: compression params not available\n");
2158 			continue;
2159 		}
2160 
2161 		if (child->compression_method_cps) {
2162 			drm_dbg_kms(display->drm,
2163 				    "VBT: CPS compression not supported\n");
2164 			continue;
2165 		}
2166 
2167 		index = child->compression_structure_index;
2168 
2169 		devdata->dsc = kmemdup(&params->data[index],
2170 				       sizeof(*devdata->dsc), GFP_KERNEL);
2171 	}
2172 }
2173 
2174 static u8 translate_iboost(struct intel_display *display, u8 val)
2175 {
2176 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2177 
2178 	if (val >= ARRAY_SIZE(mapping)) {
2179 		drm_dbg_kms(display->drm,
2180 			    "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2181 		return 0;
2182 	}
2183 	return mapping[val];
2184 }
2185 
2186 static const u8 cnp_ddc_pin_map[] = {
2187 	[0] = 0, /* N/A */
2188 	[GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2189 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2190 	[GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2191 	[GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2192 };
2193 
2194 static const u8 icp_ddc_pin_map[] = {
2195 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2196 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2197 	[GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2198 	[GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2199 	[GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2200 	[GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2201 	[GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2202 	[GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2203 	[GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2204 };
2205 
2206 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2207 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2208 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2209 	[GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2210 	[GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2211 };
2212 
2213 static const u8 adls_ddc_pin_map[] = {
2214 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2215 	[GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2216 	[GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2217 	[GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2218 	[GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2219 };
2220 
2221 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2222 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2223 	[GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2224 	[GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2225 };
2226 
2227 static const u8 adlp_ddc_pin_map[] = {
2228 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2229 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2230 	[GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2231 	[GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2232 	[GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2233 	[GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2234 };
2235 
2236 static u8 map_ddc_pin(struct intel_display *display, u8 vbt_pin)
2237 {
2238 	struct drm_i915_private *i915 = to_i915(display->drm);
2239 	const u8 *ddc_pin_map;
2240 	int i, n_entries;
2241 
2242 	if (INTEL_PCH_TYPE(i915) >= PCH_MTL || display->platform.alderlake_p) {
2243 		ddc_pin_map = adlp_ddc_pin_map;
2244 		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2245 	} else if (display->platform.alderlake_s) {
2246 		ddc_pin_map = adls_ddc_pin_map;
2247 		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2248 	} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2249 		return vbt_pin;
2250 	} else if (display->platform.rocketlake && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2251 		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2252 		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2253 	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(display) == 9) {
2254 		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2255 		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2256 	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2257 		ddc_pin_map = icp_ddc_pin_map;
2258 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2259 	} else if (HAS_PCH_CNP(i915)) {
2260 		ddc_pin_map = cnp_ddc_pin_map;
2261 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2262 	} else {
2263 		/* Assuming direct map */
2264 		return vbt_pin;
2265 	}
2266 
2267 	for (i = 0; i < n_entries; i++) {
2268 		if (ddc_pin_map[i] == vbt_pin)
2269 			return i;
2270 	}
2271 
2272 	drm_dbg_kms(display->drm,
2273 		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2274 		    vbt_pin);
2275 	return 0;
2276 }
2277 
2278 static u8 dvo_port_type(u8 dvo_port)
2279 {
2280 	switch (dvo_port) {
2281 	case DVO_PORT_HDMIA:
2282 	case DVO_PORT_HDMIB:
2283 	case DVO_PORT_HDMIC:
2284 	case DVO_PORT_HDMID:
2285 	case DVO_PORT_HDMIE:
2286 	case DVO_PORT_HDMIF:
2287 	case DVO_PORT_HDMIG:
2288 	case DVO_PORT_HDMIH:
2289 	case DVO_PORT_HDMII:
2290 		return DVO_PORT_HDMIA;
2291 	case DVO_PORT_DPA:
2292 	case DVO_PORT_DPB:
2293 	case DVO_PORT_DPC:
2294 	case DVO_PORT_DPD:
2295 	case DVO_PORT_DPE:
2296 	case DVO_PORT_DPF:
2297 	case DVO_PORT_DPG:
2298 	case DVO_PORT_DPH:
2299 	case DVO_PORT_DPI:
2300 		return DVO_PORT_DPA;
2301 	case DVO_PORT_MIPIA:
2302 	case DVO_PORT_MIPIB:
2303 	case DVO_PORT_MIPIC:
2304 	case DVO_PORT_MIPID:
2305 		return DVO_PORT_MIPIA;
2306 	default:
2307 		return dvo_port;
2308 	}
2309 }
2310 
2311 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2312 				    const int port_mapping[][3], u8 dvo_port)
2313 {
2314 	enum port port;
2315 	int i;
2316 
2317 	for (port = PORT_A; port < n_ports; port++) {
2318 		for (i = 0; i < n_dvo; i++) {
2319 			if (port_mapping[port][i] == -1)
2320 				break;
2321 
2322 			if (dvo_port == port_mapping[port][i])
2323 				return port;
2324 		}
2325 	}
2326 
2327 	return PORT_NONE;
2328 }
2329 
2330 static enum port dvo_port_to_port(struct intel_display *display,
2331 				  u8 dvo_port)
2332 {
2333 	/*
2334 	 * Each DDI port can have more than one value on the "DVO Port" field,
2335 	 * so look for all the possible values for each port.
2336 	 */
2337 	static const int port_mapping[][3] = {
2338 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2339 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2340 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2341 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2342 		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2343 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2344 		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2345 		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2346 		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2347 	};
2348 	/*
2349 	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2350 	 * map to DDI A,B,TC1,TC2 respectively.
2351 	 */
2352 	static const int rkl_port_mapping[][3] = {
2353 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2354 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2355 		[PORT_C] = { -1 },
2356 		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2357 		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2358 	};
2359 	/*
2360 	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2361 	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2362 	 */
2363 	static const int adls_port_mapping[][3] = {
2364 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2365 		[PORT_B] = { -1 },
2366 		[PORT_C] = { -1 },
2367 		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2368 		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2369 		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2370 		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2371 	};
2372 	static const int xelpd_port_mapping[][3] = {
2373 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2374 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2375 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2376 		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2377 		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2378 		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2379 		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2380 		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2381 		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2382 	};
2383 
2384 	if (DISPLAY_VER(display) >= 13)
2385 		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2386 					  ARRAY_SIZE(xelpd_port_mapping[0]),
2387 					  xelpd_port_mapping,
2388 					  dvo_port);
2389 	else if (display->platform.alderlake_s)
2390 		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2391 					  ARRAY_SIZE(adls_port_mapping[0]),
2392 					  adls_port_mapping,
2393 					  dvo_port);
2394 	else if (display->platform.dg1 || display->platform.rocketlake)
2395 		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2396 					  ARRAY_SIZE(rkl_port_mapping[0]),
2397 					  rkl_port_mapping,
2398 					  dvo_port);
2399 	else
2400 		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2401 					  ARRAY_SIZE(port_mapping[0]),
2402 					  port_mapping,
2403 					  dvo_port);
2404 }
2405 
2406 static enum port
2407 dsi_dvo_port_to_port(struct intel_display *display, u8 dvo_port)
2408 {
2409 	switch (dvo_port) {
2410 	case DVO_PORT_MIPIA:
2411 		return PORT_A;
2412 	case DVO_PORT_MIPIC:
2413 		if (DISPLAY_VER(display) >= 11)
2414 			return PORT_B;
2415 		else
2416 			return PORT_C;
2417 	default:
2418 		return PORT_NONE;
2419 	}
2420 }
2421 
2422 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2423 {
2424 	struct intel_display *display = devdata->display;
2425 	const struct child_device_config *child = &devdata->child;
2426 	enum port port;
2427 
2428 	port = dvo_port_to_port(display, child->dvo_port);
2429 	if (port == PORT_NONE && DISPLAY_VER(display) >= 11)
2430 		port = dsi_dvo_port_to_port(display, child->dvo_port);
2431 
2432 	return port;
2433 }
2434 
2435 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2436 {
2437 	switch (vbt_max_link_rate) {
2438 	default:
2439 	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2440 		return 0;
2441 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2442 		return 2000000;
2443 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2444 		return 1350000;
2445 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2446 		return 1000000;
2447 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2448 		return 810000;
2449 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2450 		return 540000;
2451 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2452 		return 270000;
2453 	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2454 		return 162000;
2455 	}
2456 }
2457 
2458 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2459 {
2460 	switch (vbt_max_link_rate) {
2461 	default:
2462 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2463 		return 810000;
2464 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2465 		return 540000;
2466 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2467 		return 270000;
2468 	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2469 		return 162000;
2470 	}
2471 }
2472 
2473 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2474 {
2475 	if (!devdata || devdata->display->vbt.version < 216)
2476 		return 0;
2477 
2478 	if (devdata->display->vbt.version >= 230)
2479 		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2480 	else
2481 		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2482 }
2483 
2484 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2485 {
2486 	if (!devdata || devdata->display->vbt.version < 244)
2487 		return 0;
2488 
2489 	return devdata->child.dp_max_lane_count + 1;
2490 }
2491 
2492 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2493 				 enum port port)
2494 {
2495 	struct intel_display *display = devdata->display;
2496 	bool is_hdmi;
2497 
2498 	if (port != PORT_A || DISPLAY_VER(display) >= 12)
2499 		return;
2500 
2501 	if (!intel_bios_encoder_supports_dvi(devdata))
2502 		return;
2503 
2504 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2505 
2506 	drm_dbg_kms(display->drm, "VBT claims port A supports DVI%s, ignoring\n",
2507 		    is_hdmi ? "/HDMI" : "");
2508 
2509 	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2510 	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2511 }
2512 
2513 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata,
2514 				      enum port port)
2515 {
2516 	struct intel_display *display = devdata->display;
2517 
2518 	if (!intel_bios_encoder_supports_dvi(devdata))
2519 		return;
2520 
2521 	/*
2522 	 * Some BDW machines (eg. HP Pavilion 15-ab) shipped
2523 	 * with a HSW VBT where the level shifter value goes
2524 	 * up to 11, whereas the BDW max is 9.
2525 	 */
2526 	if (display->platform.broadwell && devdata->child.hdmi_level_shifter_value > 9) {
2527 		drm_dbg_kms(display->drm,
2528 			    "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n",
2529 			    port_name(port), devdata->child.hdmi_level_shifter_value, 9);
2530 
2531 		devdata->child.hdmi_level_shifter_value = 9;
2532 	}
2533 }
2534 
2535 static bool
2536 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2537 {
2538 	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2539 }
2540 
2541 bool
2542 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2543 {
2544 	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2545 }
2546 
2547 bool
2548 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2549 {
2550 	return intel_bios_encoder_supports_dvi(devdata) &&
2551 		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2552 }
2553 
2554 bool
2555 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2556 {
2557 	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2558 }
2559 
2560 bool
2561 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2562 {
2563 	return intel_bios_encoder_supports_dp(devdata) &&
2564 		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2565 }
2566 
2567 bool
2568 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2569 {
2570 	return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2571 }
2572 
2573 bool
2574 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2575 {
2576 	return devdata && HAS_LSPCON(devdata->display) && devdata->child.lspcon;
2577 }
2578 
2579 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
2580 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2581 {
2582 	if (!devdata || devdata->display->vbt.version < 158 ||
2583 	    DISPLAY_VER(devdata->display) >= 14)
2584 		return -1;
2585 
2586 	return devdata->child.hdmi_level_shifter_value;
2587 }
2588 
2589 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2590 {
2591 	if (!devdata || devdata->display->vbt.version < 204)
2592 		return 0;
2593 
2594 	switch (devdata->child.hdmi_max_data_rate) {
2595 	default:
2596 		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2597 		fallthrough;
2598 	case HDMI_MAX_DATA_RATE_PLATFORM:
2599 		return 0;
2600 	case HDMI_MAX_DATA_RATE_594:
2601 		return 594000;
2602 	case HDMI_MAX_DATA_RATE_340:
2603 		return 340000;
2604 	case HDMI_MAX_DATA_RATE_300:
2605 		return 300000;
2606 	case HDMI_MAX_DATA_RATE_297:
2607 		return 297000;
2608 	case HDMI_MAX_DATA_RATE_165:
2609 		return 165000;
2610 	}
2611 }
2612 
2613 static bool is_port_valid(struct intel_display *display, enum port port)
2614 {
2615 	/*
2616 	 * On some ICL SKUs port F is not present, but broken VBTs mark
2617 	 * the port as present. Only try to initialize port F for the
2618 	 * SKUs that may actually have it.
2619 	 */
2620 	if (port == PORT_F && display->platform.icelake)
2621 		return display->platform.icelake_port_f;
2622 
2623 	return true;
2624 }
2625 
2626 static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2627 {
2628 	struct intel_display *display = devdata->display;
2629 	const struct child_device_config *child = &devdata->child;
2630 	bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2631 	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2632 	enum port port;
2633 
2634 	port = intel_bios_encoder_port(devdata);
2635 	if (port == PORT_NONE)
2636 		return;
2637 
2638 	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2639 	is_dp = intel_bios_encoder_supports_dp(devdata);
2640 	is_crt = intel_bios_encoder_supports_crt(devdata);
2641 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2642 	is_edp = intel_bios_encoder_supports_edp(devdata);
2643 	is_dsi = intel_bios_encoder_supports_dsi(devdata);
2644 
2645 	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2646 	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2647 
2648 	drm_dbg_kms(display->drm,
2649 		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2650 		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2651 		    intel_bios_encoder_supports_dp_dual_mode(devdata),
2652 		    intel_bios_encoder_is_lspcon(devdata),
2653 		    supports_typec_usb, supports_tbt,
2654 		    devdata->dsc != NULL);
2655 
2656 	hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2657 	if (hdmi_level_shift >= 0) {
2658 		drm_dbg_kms(display->drm,
2659 			    "Port %c VBT HDMI level shift: %d\n",
2660 			    port_name(port), hdmi_level_shift);
2661 	}
2662 
2663 	max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2664 	if (max_tmds_clock)
2665 		drm_dbg_kms(display->drm,
2666 			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2667 			    port_name(port), max_tmds_clock);
2668 
2669 	/* I_boost config for SKL and above */
2670 	dp_boost_level = intel_bios_dp_boost_level(devdata);
2671 	if (dp_boost_level)
2672 		drm_dbg_kms(display->drm,
2673 			    "Port %c VBT (e)DP boost level: %d\n",
2674 			    port_name(port), dp_boost_level);
2675 
2676 	hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2677 	if (hdmi_boost_level)
2678 		drm_dbg_kms(display->drm,
2679 			    "Port %c VBT HDMI boost level: %d\n",
2680 			    port_name(port), hdmi_boost_level);
2681 
2682 	dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2683 	if (dp_max_link_rate)
2684 		drm_dbg_kms(display->drm,
2685 			    "Port %c VBT DP max link rate: %d\n",
2686 			    port_name(port), dp_max_link_rate);
2687 
2688 	/*
2689 	 * FIXME need to implement support for VBT
2690 	 * vswing/preemph tables should this ever trigger.
2691 	 */
2692 	drm_WARN(display->drm, child->use_vbt_vswing,
2693 		 "Port %c asks to use VBT vswing/preemph tables\n",
2694 		 port_name(port));
2695 }
2696 
2697 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2698 {
2699 	struct intel_display *display = devdata->display;
2700 	enum port port;
2701 
2702 	port = intel_bios_encoder_port(devdata);
2703 	if (port == PORT_NONE)
2704 		return;
2705 
2706 	if (!is_port_valid(display, port)) {
2707 		drm_dbg_kms(display->drm,
2708 			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2709 			    port_name(port));
2710 		return;
2711 	}
2712 
2713 	sanitize_device_type(devdata, port);
2714 	sanitize_hdmi_level_shift(devdata, port);
2715 }
2716 
2717 static bool has_ddi_port_info(struct intel_display *display)
2718 {
2719 	return DISPLAY_VER(display) >= 5 || display->platform.g4x;
2720 }
2721 
2722 static void parse_ddi_ports(struct intel_display *display)
2723 {
2724 	struct intel_bios_encoder_data *devdata;
2725 
2726 	if (!has_ddi_port_info(display))
2727 		return;
2728 
2729 	list_for_each_entry(devdata, &display->vbt.display_devices, node)
2730 		parse_ddi_port(devdata);
2731 
2732 	list_for_each_entry(devdata, &display->vbt.display_devices, node)
2733 		print_ddi_port(devdata);
2734 }
2735 
2736 static int child_device_expected_size(u16 version)
2737 {
2738 	BUILD_BUG_ON(sizeof(struct child_device_config) < 40);
2739 
2740 	if (version > 256)
2741 		return -ENOENT;
2742 	else if (version >= 256)
2743 		return 40;
2744 	else if (version >= 216)
2745 		return 39;
2746 	else if (version >= 196)
2747 		return 38;
2748 	else if (version >= 195)
2749 		return 37;
2750 	else if (version >= 111)
2751 		return LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2752 	else if (version >= 106)
2753 		return 27;
2754 	else
2755 		return 22;
2756 }
2757 
2758 static bool child_device_size_valid(struct intel_display *display, int size)
2759 {
2760 	int expected_size;
2761 
2762 	expected_size = child_device_expected_size(display->vbt.version);
2763 	if (expected_size < 0) {
2764 		expected_size = sizeof(struct child_device_config);
2765 		drm_dbg_kms(display->drm,
2766 			    "Expected child device config size for VBT version %u not known; assuming %d\n",
2767 			    display->vbt.version, expected_size);
2768 	}
2769 
2770 	/* Flag an error for unexpected size, but continue anyway. */
2771 	if (size != expected_size)
2772 		drm_err(display->drm,
2773 			"Unexpected child device config size %d (expected %d for VBT version %u)\n",
2774 			size, expected_size, display->vbt.version);
2775 
2776 	/* The legacy sized child device config is the minimum we need. */
2777 	if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2778 		drm_dbg_kms(display->drm,
2779 			    "Child device config size %d is too small.\n",
2780 			    size);
2781 		return false;
2782 	}
2783 
2784 	return true;
2785 }
2786 
2787 static void
2788 parse_general_definitions(struct intel_display *display)
2789 {
2790 	const struct bdb_general_definitions *defs;
2791 	struct intel_bios_encoder_data *devdata;
2792 	const struct child_device_config *child;
2793 	int i, child_device_num;
2794 	u16 block_size;
2795 	int bus_pin;
2796 
2797 	defs = bdb_find_section(display, BDB_GENERAL_DEFINITIONS);
2798 	if (!defs) {
2799 		drm_dbg_kms(display->drm,
2800 			    "No general definition block is found, no devices defined.\n");
2801 		return;
2802 	}
2803 
2804 	block_size = get_blocksize(defs);
2805 	if (block_size < sizeof(*defs)) {
2806 		drm_dbg_kms(display->drm,
2807 			    "General definitions block too small (%u)\n",
2808 			    block_size);
2809 		return;
2810 	}
2811 
2812 	bus_pin = defs->crt_ddc_gmbus_pin;
2813 	drm_dbg_kms(display->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2814 	if (intel_gmbus_is_valid_pin(display, bus_pin))
2815 		display->vbt.crt_ddc_pin = bus_pin;
2816 
2817 	if (!child_device_size_valid(display, defs->child_dev_size))
2818 		return;
2819 
2820 	/* get the number of child device */
2821 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2822 
2823 	for (i = 0; i < child_device_num; i++) {
2824 		child = child_device_ptr(defs, i);
2825 		if (!child->device_type)
2826 			continue;
2827 
2828 		drm_dbg_kms(display->drm,
2829 			    "Found VBT child device with type 0x%x\n",
2830 			    child->device_type);
2831 
2832 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2833 		if (!devdata)
2834 			break;
2835 
2836 		devdata->display = display;
2837 
2838 		/*
2839 		 * Copy as much as we know (sizeof) and is available
2840 		 * (child_dev_size) of the child device config. Accessing the
2841 		 * data must depend on VBT version.
2842 		 */
2843 		memcpy(&devdata->child, child,
2844 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2845 
2846 		list_add_tail(&devdata->node, &display->vbt.display_devices);
2847 	}
2848 
2849 	if (list_empty(&display->vbt.display_devices))
2850 		drm_dbg_kms(display->drm,
2851 			    "no child dev is parsed from VBT\n");
2852 }
2853 
2854 /* Common defaults which may be overridden by VBT. */
2855 static void
2856 init_vbt_defaults(struct intel_display *display)
2857 {
2858 	struct drm_i915_private *i915 = to_i915(display->drm);
2859 
2860 	display->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2861 
2862 	/* general features */
2863 	display->vbt.int_tv_support = 1;
2864 	display->vbt.int_crt_support = 1;
2865 
2866 	/* driver features */
2867 	display->vbt.int_lvds_support = 1;
2868 
2869 	/* Default to using SSC */
2870 	display->vbt.lvds_use_ssc = 1;
2871 	/*
2872 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2873 	 * clock for LVDS.
2874 	 */
2875 	display->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(display,
2876 							      !HAS_PCH_SPLIT(i915));
2877 	drm_dbg_kms(display->drm, "Set default to SSC at %d kHz\n",
2878 		    display->vbt.lvds_ssc_freq);
2879 }
2880 
2881 /* Common defaults which may be overridden by VBT. */
2882 static void
2883 init_vbt_panel_defaults(struct intel_panel *panel)
2884 {
2885 	/* Default to having backlight */
2886 	panel->vbt.backlight.present = true;
2887 
2888 	/* LFP panel data */
2889 	panel->vbt.lvds_dither = true;
2890 }
2891 
2892 /* Defaults to initialize only if there is no VBT. */
2893 static void
2894 init_vbt_missing_defaults(struct intel_display *display)
2895 {
2896 	struct drm_i915_private *i915 = to_i915(display->drm);
2897 	unsigned int ports = DISPLAY_RUNTIME_INFO(display)->port_mask;
2898 	enum port port;
2899 
2900 	if (!HAS_DDI(display) && !display->platform.cherryview)
2901 		return;
2902 
2903 	for_each_port_masked(port, ports) {
2904 		struct intel_bios_encoder_data *devdata;
2905 		struct child_device_config *child;
2906 		enum phy phy = intel_port_to_phy(i915, port);
2907 
2908 		/*
2909 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2910 		 * to detect it.
2911 		 */
2912 		if (intel_phy_is_tc(i915, phy))
2913 			continue;
2914 
2915 		/* Create fake child device config */
2916 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2917 		if (!devdata)
2918 			break;
2919 
2920 		devdata->display = display;
2921 		child = &devdata->child;
2922 
2923 		if (port == PORT_F)
2924 			child->dvo_port = DVO_PORT_HDMIF;
2925 		else if (port == PORT_E)
2926 			child->dvo_port = DVO_PORT_HDMIE;
2927 		else
2928 			child->dvo_port = DVO_PORT_HDMIA + port;
2929 
2930 		if (port != PORT_A && port != PORT_E)
2931 			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2932 
2933 		if (port != PORT_E)
2934 			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2935 
2936 		if (port == PORT_A)
2937 			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2938 
2939 		list_add_tail(&devdata->node, &display->vbt.display_devices);
2940 
2941 		drm_dbg_kms(display->drm,
2942 			    "Generating default VBT child device with type 0x%04x on port %c\n",
2943 			    child->device_type, port_name(port));
2944 	}
2945 
2946 	/* Bypass some minimum baseline VBT version checks */
2947 	display->vbt.version = 155;
2948 }
2949 
2950 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2951 {
2952 	const void *_vbt = vbt;
2953 
2954 	return _vbt + vbt->bdb_offset;
2955 }
2956 
2957 static const char vbt_signature[] = "$VBT";
2958 static const int vbt_signature_len = 4;
2959 
2960 /**
2961  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2962  * @display:	display device
2963  * @buf:	pointer to a buffer to validate
2964  * @size:	size of the buffer
2965  *
2966  * Returns true on valid VBT.
2967  */
2968 bool intel_bios_is_valid_vbt(struct intel_display *display,
2969 			     const void *buf, size_t size)
2970 {
2971 	const struct vbt_header *vbt = buf;
2972 	const struct bdb_header *bdb;
2973 
2974 	if (!vbt)
2975 		return false;
2976 
2977 	if (sizeof(struct vbt_header) > size) {
2978 		drm_dbg_kms(display->drm, "VBT header incomplete\n");
2979 		return false;
2980 	}
2981 
2982 	if (memcmp(vbt->signature, vbt_signature, vbt_signature_len)) {
2983 		drm_dbg_kms(display->drm, "VBT invalid signature\n");
2984 		return false;
2985 	}
2986 
2987 	if (vbt->vbt_size > size) {
2988 		drm_dbg_kms(display->drm,
2989 			    "VBT incomplete (vbt_size overflows)\n");
2990 		return false;
2991 	}
2992 
2993 	size = vbt->vbt_size;
2994 
2995 	if (range_overflows_t(size_t,
2996 			      vbt->bdb_offset,
2997 			      sizeof(struct bdb_header),
2998 			      size)) {
2999 		drm_dbg_kms(display->drm, "BDB header incomplete\n");
3000 		return false;
3001 	}
3002 
3003 	bdb = get_bdb_header(vbt);
3004 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
3005 		drm_dbg_kms(display->drm, "BDB incomplete\n");
3006 		return false;
3007 	}
3008 
3009 	return vbt;
3010 }
3011 
3012 static struct vbt_header *firmware_get_vbt(struct intel_display *display,
3013 					   size_t *size)
3014 {
3015 	struct vbt_header *vbt = NULL;
3016 	const struct firmware *fw = NULL;
3017 	const char *name = display->params.vbt_firmware;
3018 	int ret;
3019 
3020 	if (!name || !*name)
3021 		return NULL;
3022 
3023 	ret = request_firmware(&fw, name, display->drm->dev);
3024 	if (ret) {
3025 		drm_err(display->drm,
3026 			"Requesting VBT firmware \"%s\" failed (%d)\n",
3027 			name, ret);
3028 		return NULL;
3029 	}
3030 
3031 	if (intel_bios_is_valid_vbt(display, fw->data, fw->size)) {
3032 		vbt = kmemdup(fw->data, fw->size, GFP_KERNEL);
3033 		if (vbt) {
3034 			drm_dbg_kms(display->drm,
3035 				    "Found valid VBT firmware \"%s\"\n", name);
3036 			if (size)
3037 				*size = fw->size;
3038 		}
3039 	} else {
3040 		drm_dbg_kms(display->drm, "Invalid VBT firmware \"%s\"\n",
3041 			    name);
3042 	}
3043 
3044 	release_firmware(fw);
3045 
3046 	return vbt;
3047 }
3048 
3049 static struct vbt_header *oprom_get_vbt(struct intel_display *display,
3050 					struct intel_rom *rom,
3051 					size_t *size, const char *type)
3052 {
3053 	struct vbt_header *vbt;
3054 	size_t vbt_size;
3055 	loff_t offset;
3056 
3057 	if (!rom)
3058 		return NULL;
3059 
3060 	BUILD_BUG_ON(vbt_signature_len != sizeof(vbt_signature) - 1);
3061 	BUILD_BUG_ON(vbt_signature_len != sizeof(u32));
3062 
3063 	offset = intel_rom_find(rom, *(const u32 *)vbt_signature);
3064 	if (offset < 0)
3065 		goto err_free_rom;
3066 
3067 	if (sizeof(struct vbt_header) > intel_rom_size(rom) - offset) {
3068 		drm_dbg_kms(display->drm, "VBT header incomplete\n");
3069 		goto err_free_rom;
3070 	}
3071 
3072 	BUILD_BUG_ON(sizeof(vbt->vbt_size) != sizeof(u16));
3073 
3074 	vbt_size = intel_rom_read16(rom, offset + offsetof(struct vbt_header, vbt_size));
3075 	if (vbt_size > intel_rom_size(rom) - offset) {
3076 		drm_dbg_kms(display->drm, "VBT incomplete (vbt_size overflows)\n");
3077 		goto err_free_rom;
3078 	}
3079 
3080 	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3081 	if (!vbt)
3082 		goto err_free_rom;
3083 
3084 	intel_rom_read_block(rom, vbt, offset, vbt_size);
3085 
3086 	if (!intel_bios_is_valid_vbt(display, vbt, vbt_size))
3087 		goto err_free_vbt;
3088 
3089 	drm_dbg_kms(display->drm, "Found valid VBT in %s\n", type);
3090 
3091 	if (size)
3092 		*size = vbt_size;
3093 
3094 	intel_rom_free(rom);
3095 
3096 	return vbt;
3097 
3098 err_free_vbt:
3099 	kfree(vbt);
3100 err_free_rom:
3101 	intel_rom_free(rom);
3102 	return NULL;
3103 }
3104 
3105 static const struct vbt_header *intel_bios_get_vbt(struct intel_display *display,
3106 						   size_t *sizep)
3107 {
3108 	struct drm_i915_private *i915 = to_i915(display->drm);
3109 	const struct vbt_header *vbt = NULL;
3110 	intel_wakeref_t wakeref;
3111 
3112 	vbt = firmware_get_vbt(display, sizep);
3113 
3114 	if (!vbt)
3115 		vbt = intel_opregion_get_vbt(display, sizep);
3116 
3117 	/*
3118 	 * If the OpRegion does not have VBT, look in SPI flash
3119 	 * through MMIO or PCI mapping
3120 	 */
3121 	if (!vbt && IS_DGFX(i915))
3122 		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
3123 			vbt = oprom_get_vbt(display, intel_rom_spi(i915), sizep, "SPI flash");
3124 
3125 	if (!vbt)
3126 		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
3127 			vbt = oprom_get_vbt(display, intel_rom_pci(i915), sizep, "PCI ROM");
3128 
3129 	return vbt;
3130 }
3131 
3132 /**
3133  * intel_bios_init - find VBT and initialize settings from the BIOS
3134  * @display: display device instance
3135  *
3136  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3137  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3138  * initialize some defaults if the VBT is not present at all.
3139  */
3140 void intel_bios_init(struct intel_display *display)
3141 {
3142 	const struct vbt_header *vbt;
3143 	const struct bdb_header *bdb;
3144 
3145 	INIT_LIST_HEAD(&display->vbt.display_devices);
3146 	INIT_LIST_HEAD(&display->vbt.bdb_blocks);
3147 
3148 	if (!HAS_DISPLAY(display)) {
3149 		drm_dbg_kms(display->drm,
3150 			    "Skipping VBT init due to disabled display.\n");
3151 		return;
3152 	}
3153 
3154 	init_vbt_defaults(display);
3155 
3156 	vbt = intel_bios_get_vbt(display, NULL);
3157 
3158 	if (!vbt)
3159 		goto out;
3160 
3161 	bdb = get_bdb_header(vbt);
3162 	display->vbt.version = bdb->version;
3163 
3164 	drm_dbg_kms(display->drm,
3165 		    "VBT signature \"%.*s\", BDB version %d\n",
3166 		    (int)sizeof(vbt->signature), vbt->signature,
3167 		    display->vbt.version);
3168 
3169 	init_bdb_blocks(display, bdb);
3170 
3171 	/* Grab useful general definitions */
3172 	parse_general_features(display);
3173 	parse_general_definitions(display);
3174 	parse_driver_features(display);
3175 
3176 	/* Depends on child device list */
3177 	parse_compression_parameters(display);
3178 
3179 out:
3180 	if (!vbt) {
3181 		drm_info(display->drm,
3182 			 "Failed to find VBIOS tables (VBT)\n");
3183 		init_vbt_missing_defaults(display);
3184 	}
3185 
3186 	/* Further processing on pre-parsed or generated child device data */
3187 	parse_sdvo_device_mapping(display);
3188 	parse_ddi_ports(display);
3189 
3190 	kfree(vbt);
3191 }
3192 
3193 static void intel_bios_init_panel(struct intel_display *display,
3194 				  struct intel_panel *panel,
3195 				  const struct intel_bios_encoder_data *devdata,
3196 				  const struct drm_edid *drm_edid,
3197 				  bool use_fallback)
3198 {
3199 	/* already have it? */
3200 	if (panel->vbt.panel_type >= 0) {
3201 		drm_WARN_ON(display->drm, !use_fallback);
3202 		return;
3203 	}
3204 
3205 	panel->vbt.panel_type = get_panel_type(display, devdata,
3206 					       drm_edid, use_fallback);
3207 	if (panel->vbt.panel_type < 0) {
3208 		drm_WARN_ON(display->drm, use_fallback);
3209 		return;
3210 	}
3211 
3212 	init_vbt_panel_defaults(panel);
3213 
3214 	parse_panel_options(display, panel);
3215 	parse_generic_dtd(display, panel);
3216 	parse_lfp_data(display, panel);
3217 	parse_lfp_backlight(display, panel);
3218 	parse_sdvo_lvds_data(display, panel);
3219 	parse_panel_driver_features(display, panel);
3220 	parse_power_conservation_features(display, panel);
3221 	parse_edp(display, panel);
3222 	parse_psr(display, panel);
3223 	parse_mipi_config(display, panel);
3224 	parse_mipi_sequence(display, panel);
3225 }
3226 
3227 void intel_bios_init_panel_early(struct intel_display *display,
3228 				 struct intel_panel *panel,
3229 				 const struct intel_bios_encoder_data *devdata)
3230 {
3231 	intel_bios_init_panel(display, panel, devdata, NULL, false);
3232 }
3233 
3234 void intel_bios_init_panel_late(struct intel_display *display,
3235 				struct intel_panel *panel,
3236 				const struct intel_bios_encoder_data *devdata,
3237 				const struct drm_edid *drm_edid)
3238 {
3239 	intel_bios_init_panel(display, panel, devdata, drm_edid, true);
3240 }
3241 
3242 /**
3243  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3244  * @display: display device instance
3245  */
3246 void intel_bios_driver_remove(struct intel_display *display)
3247 {
3248 	struct intel_bios_encoder_data *devdata, *nd;
3249 	struct bdb_block_entry *entry, *ne;
3250 
3251 	list_for_each_entry_safe(devdata, nd, &display->vbt.display_devices,
3252 				 node) {
3253 		list_del(&devdata->node);
3254 		kfree(devdata->dsc);
3255 		kfree(devdata);
3256 	}
3257 
3258 	list_for_each_entry_safe(entry, ne, &display->vbt.bdb_blocks, node) {
3259 		list_del(&entry->node);
3260 		kfree(entry);
3261 	}
3262 }
3263 
3264 void intel_bios_fini_panel(struct intel_panel *panel)
3265 {
3266 	kfree(panel->vbt.sdvo_lvds_vbt_mode);
3267 	panel->vbt.sdvo_lvds_vbt_mode = NULL;
3268 	kfree(panel->vbt.lfp_vbt_mode);
3269 	panel->vbt.lfp_vbt_mode = NULL;
3270 	kfree(panel->vbt.dsi.data);
3271 	panel->vbt.dsi.data = NULL;
3272 	kfree(panel->vbt.dsi.pps);
3273 	panel->vbt.dsi.pps = NULL;
3274 	kfree(panel->vbt.dsi.config);
3275 	panel->vbt.dsi.config = NULL;
3276 	kfree(panel->vbt.dsi.deassert_seq);
3277 	panel->vbt.dsi.deassert_seq = NULL;
3278 }
3279 
3280 /**
3281  * intel_bios_is_tv_present - is integrated TV present in VBT
3282  * @display: display device instance
3283  *
3284  * Return true if TV is present. If no child devices were parsed from VBT,
3285  * assume TV is present.
3286  */
3287 bool intel_bios_is_tv_present(struct intel_display *display)
3288 {
3289 	const struct intel_bios_encoder_data *devdata;
3290 
3291 	if (!display->vbt.int_tv_support)
3292 		return false;
3293 
3294 	if (list_empty(&display->vbt.display_devices))
3295 		return true;
3296 
3297 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3298 		const struct child_device_config *child = &devdata->child;
3299 
3300 		/*
3301 		 * If the device type is not TV, continue.
3302 		 */
3303 		switch (child->device_type) {
3304 		case DEVICE_TYPE_INT_TV:
3305 		case DEVICE_TYPE_TV:
3306 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3307 			break;
3308 		default:
3309 			continue;
3310 		}
3311 		/* Only when the addin_offset is non-zero, it is regarded
3312 		 * as present.
3313 		 */
3314 		if (child->addin_offset)
3315 			return true;
3316 	}
3317 
3318 	return false;
3319 }
3320 
3321 /**
3322  * intel_bios_is_lvds_present - is LVDS present in VBT
3323  * @display: display device instance
3324  * @i2c_pin:	i2c pin for LVDS if present
3325  *
3326  * Return true if LVDS is present. If no child devices were parsed from VBT,
3327  * assume LVDS is present.
3328  */
3329 bool intel_bios_is_lvds_present(struct intel_display *display, u8 *i2c_pin)
3330 {
3331 	const struct intel_bios_encoder_data *devdata;
3332 
3333 	if (list_empty(&display->vbt.display_devices))
3334 		return true;
3335 
3336 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3337 		const struct child_device_config *child = &devdata->child;
3338 
3339 		/* If the device type is not LFP, continue.
3340 		 * We have to check both the new identifiers as well as the
3341 		 * old for compatibility with some BIOSes.
3342 		 */
3343 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3344 		    child->device_type != DEVICE_TYPE_LFP)
3345 			continue;
3346 
3347 		if (intel_gmbus_is_valid_pin(display, child->i2c_pin))
3348 			*i2c_pin = child->i2c_pin;
3349 
3350 		/* However, we cannot trust the BIOS writers to populate
3351 		 * the VBT correctly.  Since LVDS requires additional
3352 		 * information from AIM blocks, a non-zero addin offset is
3353 		 * a good indicator that the LVDS is actually present.
3354 		 */
3355 		if (child->addin_offset)
3356 			return true;
3357 
3358 		/* But even then some BIOS writers perform some black magic
3359 		 * and instantiate the device without reference to any
3360 		 * additional data.  Trust that if the VBT was written into
3361 		 * the OpRegion then they have validated the LVDS's existence.
3362 		 */
3363 		return intel_opregion_vbt_present(display);
3364 	}
3365 
3366 	return false;
3367 }
3368 
3369 /**
3370  * intel_bios_is_port_present - is the specified digital port present
3371  * @display: display device instance
3372  * @port:	port to check
3373  *
3374  * Return true if the device in %port is present.
3375  */
3376 bool intel_bios_is_port_present(struct intel_display *display, enum port port)
3377 {
3378 	const struct intel_bios_encoder_data *devdata;
3379 
3380 	if (WARN_ON(!has_ddi_port_info(display)))
3381 		return true;
3382 
3383 	if (!is_port_valid(display, port))
3384 		return false;
3385 
3386 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3387 		const struct child_device_config *child = &devdata->child;
3388 
3389 		if (dvo_port_to_port(display, child->dvo_port) == port)
3390 			return true;
3391 	}
3392 
3393 	return false;
3394 }
3395 
3396 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3397 {
3398 	const struct child_device_config *child = &devdata->child;
3399 
3400 	if (!devdata)
3401 		return false;
3402 
3403 	if (!intel_bios_encoder_supports_dp(devdata) ||
3404 	    !intel_bios_encoder_supports_hdmi(devdata))
3405 		return false;
3406 
3407 	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3408 		return true;
3409 
3410 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3411 	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3412 	    child->aux_channel != 0)
3413 		return true;
3414 
3415 	return false;
3416 }
3417 
3418 /**
3419  * intel_bios_is_dsi_present - is DSI present in VBT
3420  * @display: display device instance
3421  * @port:	port for DSI if present
3422  *
3423  * Return true if DSI is present, and return the port in %port.
3424  */
3425 bool intel_bios_is_dsi_present(struct intel_display *display,
3426 			       enum port *port)
3427 {
3428 	const struct intel_bios_encoder_data *devdata;
3429 
3430 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3431 		const struct child_device_config *child = &devdata->child;
3432 		u8 dvo_port = child->dvo_port;
3433 
3434 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3435 			continue;
3436 
3437 		if (dsi_dvo_port_to_port(display, dvo_port) == PORT_NONE) {
3438 			drm_dbg_kms(display->drm,
3439 				    "VBT has unsupported DSI port %c\n",
3440 				    port_name(dvo_port - DVO_PORT_MIPIA));
3441 			continue;
3442 		}
3443 
3444 		if (port)
3445 			*port = dsi_dvo_port_to_port(display, dvo_port);
3446 		return true;
3447 	}
3448 
3449 	return false;
3450 }
3451 
3452 static void fill_dsc(struct intel_crtc_state *crtc_state,
3453 		     struct dsc_compression_parameters_entry *dsc,
3454 		     int dsc_max_bpc)
3455 {
3456 	struct intel_display *display = to_intel_display(crtc_state);
3457 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3458 	int bpc = 8;
3459 
3460 	vdsc_cfg->dsc_version_major = dsc->version_major;
3461 	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3462 
3463 	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3464 		bpc = 12;
3465 	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3466 		bpc = 10;
3467 	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3468 		bpc = 8;
3469 	else
3470 		drm_dbg_kms(display->drm, "VBT: Unsupported BPC %d for DCS\n",
3471 			    dsc_max_bpc);
3472 
3473 	crtc_state->pipe_bpp = bpc * 3;
3474 
3475 	crtc_state->dsc.compressed_bpp_x16 = fxp_q4_from_int(min(crtc_state->pipe_bpp,
3476 								 VBT_DSC_MAX_BPP(dsc->max_bpp)));
3477 
3478 	/*
3479 	 * FIXME: This is ugly, and slice count should take DSC engine
3480 	 * throughput etc. into account.
3481 	 *
3482 	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3483 	 */
3484 	if (dsc->slices_per_line & BIT(2)) {
3485 		crtc_state->dsc.slice_count = 4;
3486 	} else if (dsc->slices_per_line & BIT(1)) {
3487 		crtc_state->dsc.slice_count = 2;
3488 	} else {
3489 		/* FIXME */
3490 		if (!(dsc->slices_per_line & BIT(0)))
3491 			drm_dbg_kms(display->drm,
3492 				    "VBT: Unsupported DSC slice count for DSI\n");
3493 
3494 		crtc_state->dsc.slice_count = 1;
3495 	}
3496 
3497 	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3498 	    crtc_state->dsc.slice_count != 0)
3499 		drm_dbg_kms(display->drm,
3500 			    "VBT: DSC hdisplay %d not divisible by slice count %d\n",
3501 			    crtc_state->hw.adjusted_mode.crtc_hdisplay,
3502 			    crtc_state->dsc.slice_count);
3503 
3504 	/*
3505 	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3506 	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3507 	 */
3508 	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3509 							    dsc->rc_buffer_size);
3510 
3511 	/* FIXME: DSI spec says bpc + 1 for this one */
3512 	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3513 
3514 	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3515 
3516 	vdsc_cfg->slice_height = dsc->slice_height;
3517 }
3518 
3519 /* FIXME: initially DSI specific */
3520 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3521 			       struct intel_crtc_state *crtc_state,
3522 			       int dsc_max_bpc)
3523 {
3524 	struct intel_display *display = to_intel_display(encoder);
3525 	const struct intel_bios_encoder_data *devdata;
3526 
3527 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3528 		const struct child_device_config *child = &devdata->child;
3529 
3530 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3531 			continue;
3532 
3533 		if (dsi_dvo_port_to_port(display, child->dvo_port) == encoder->port) {
3534 			if (!devdata->dsc)
3535 				return false;
3536 
3537 			fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3538 
3539 			return true;
3540 		}
3541 	}
3542 
3543 	return false;
3544 }
3545 
3546 static const u8 adlp_aux_ch_map[] = {
3547 	[AUX_CH_A] = DP_AUX_A,
3548 	[AUX_CH_B] = DP_AUX_B,
3549 	[AUX_CH_C] = DP_AUX_C,
3550 	[AUX_CH_D_XELPD] = DP_AUX_D,
3551 	[AUX_CH_E_XELPD] = DP_AUX_E,
3552 	[AUX_CH_USBC1] = DP_AUX_F,
3553 	[AUX_CH_USBC2] = DP_AUX_G,
3554 	[AUX_CH_USBC3] = DP_AUX_H,
3555 	[AUX_CH_USBC4] = DP_AUX_I,
3556 };
3557 
3558 /*
3559  * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3560  * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3561  */
3562 static const u8 adls_aux_ch_map[] = {
3563 	[AUX_CH_A] = DP_AUX_A,
3564 	[AUX_CH_USBC1] = DP_AUX_B,
3565 	[AUX_CH_USBC2] = DP_AUX_C,
3566 	[AUX_CH_USBC3] = DP_AUX_D,
3567 	[AUX_CH_USBC4] = DP_AUX_E,
3568 };
3569 
3570 /*
3571  * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3572  * map to DDI A,B,TC1,TC2 respectively.
3573  */
3574 static const u8 rkl_aux_ch_map[] = {
3575 	[AUX_CH_A] = DP_AUX_A,
3576 	[AUX_CH_B] = DP_AUX_B,
3577 	[AUX_CH_USBC1] = DP_AUX_C,
3578 	[AUX_CH_USBC2] = DP_AUX_D,
3579 };
3580 
3581 static const u8 direct_aux_ch_map[] = {
3582 	[AUX_CH_A] = DP_AUX_A,
3583 	[AUX_CH_B] = DP_AUX_B,
3584 	[AUX_CH_C] = DP_AUX_C,
3585 	[AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3586 	[AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3587 	[AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3588 	[AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3589 	[AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3590 	[AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3591 };
3592 
3593 static enum aux_ch map_aux_ch(struct intel_display *display, u8 aux_channel)
3594 {
3595 	const u8 *aux_ch_map;
3596 	int i, n_entries;
3597 
3598 	if (DISPLAY_VER(display) >= 13) {
3599 		aux_ch_map = adlp_aux_ch_map;
3600 		n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3601 	} else if (display->platform.alderlake_s) {
3602 		aux_ch_map = adls_aux_ch_map;
3603 		n_entries = ARRAY_SIZE(adls_aux_ch_map);
3604 	} else if (display->platform.dg1 || display->platform.rocketlake) {
3605 		aux_ch_map = rkl_aux_ch_map;
3606 		n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3607 	} else {
3608 		aux_ch_map = direct_aux_ch_map;
3609 		n_entries = ARRAY_SIZE(direct_aux_ch_map);
3610 	}
3611 
3612 	for (i = 0; i < n_entries; i++) {
3613 		if (aux_ch_map[i] == aux_channel)
3614 			return i;
3615 	}
3616 
3617 	drm_dbg_kms(display->drm,
3618 		    "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3619 		    aux_channel);
3620 
3621 	return AUX_CH_NONE;
3622 }
3623 
3624 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3625 {
3626 	if (!devdata || !devdata->child.aux_channel)
3627 		return AUX_CH_NONE;
3628 
3629 	return map_aux_ch(devdata->display, devdata->child.aux_channel);
3630 }
3631 
3632 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3633 {
3634 	struct intel_display *display;
3635 	u8 aux_channel;
3636 	int count = 0;
3637 
3638 	if (!devdata || !devdata->child.aux_channel)
3639 		return false;
3640 
3641 	display = devdata->display;
3642 	aux_channel = devdata->child.aux_channel;
3643 
3644 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3645 		if (intel_bios_encoder_supports_dp(devdata) &&
3646 		    aux_channel == devdata->child.aux_channel)
3647 			count++;
3648 	}
3649 
3650 	return count > 1;
3651 }
3652 
3653 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3654 {
3655 	if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost)
3656 		return 0;
3657 
3658 	return translate_iboost(devdata->display, devdata->child.dp_iboost_level);
3659 }
3660 
3661 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3662 {
3663 	if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost)
3664 		return 0;
3665 
3666 	return translate_iboost(devdata->display, devdata->child.hdmi_iboost_level);
3667 }
3668 
3669 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3670 {
3671 	if (!devdata || !devdata->child.ddc_pin)
3672 		return 0;
3673 
3674 	return map_ddc_pin(devdata->display, devdata->child.ddc_pin);
3675 }
3676 
3677 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3678 {
3679 	return devdata->display->vbt.version >= 195 && devdata->child.dp_usb_type_c;
3680 }
3681 
3682 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3683 {
3684 	return devdata->display->vbt.version >= 209 && devdata->child.tbt;
3685 }
3686 
3687 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3688 {
3689 	return devdata && devdata->child.lane_reversal;
3690 }
3691 
3692 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3693 {
3694 	return devdata && devdata->child.hpd_invert;
3695 }
3696 
3697 const struct intel_bios_encoder_data *
3698 intel_bios_encoder_data_lookup(struct intel_display *display, enum port port)
3699 {
3700 	struct intel_bios_encoder_data *devdata;
3701 
3702 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3703 		if (intel_bios_encoder_port(devdata) == port)
3704 			return devdata;
3705 	}
3706 
3707 	return NULL;
3708 }
3709 
3710 void intel_bios_for_each_encoder(struct intel_display *display,
3711 				 void (*func)(struct intel_display *display,
3712 					      const struct intel_bios_encoder_data *devdata))
3713 {
3714 	struct intel_bios_encoder_data *devdata;
3715 
3716 	list_for_each_entry(devdata, &display->vbt.display_devices, node)
3717 		func(display, devdata);
3718 }
3719 
3720 static int intel_bios_vbt_show(struct seq_file *m, void *unused)
3721 {
3722 	struct intel_display *display = m->private;
3723 	const void *vbt;
3724 	size_t vbt_size;
3725 
3726 	vbt = intel_bios_get_vbt(display, &vbt_size);
3727 
3728 	if (vbt) {
3729 		seq_write(m, vbt, vbt_size);
3730 		kfree(vbt);
3731 	}
3732 
3733 	return 0;
3734 }
3735 
3736 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt);
3737 
3738 void intel_bios_debugfs_register(struct intel_display *display)
3739 {
3740 	struct drm_minor *minor = display->drm->primary;
3741 
3742 	debugfs_create_file("i915_vbt", 0444, minor->debugfs_root,
3743 			    display, &intel_bios_vbt_fops);
3744 }
3745