xref: /linux/drivers/gpu/drm/i915/display/intel_bios.c (revision 5ce42b5de461c3154f61a023b191dd6b77ee66c0)
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/firmware.h>
29 
30 #include <drm/display/drm_dp_helper.h>
31 #include <drm/display/drm_dsc_helper.h>
32 #include <drm/drm_edid.h>
33 #include <drm/drm_fixed.h>
34 
35 #include "i915_drv.h"
36 #include "i915_reg.h"
37 #include "intel_display.h"
38 #include "intel_display_types.h"
39 #include "intel_gmbus.h"
40 #include "intel_uncore.h"
41 
42 #define _INTEL_BIOS_PRIVATE
43 #include "intel_vbt_defs.h"
44 
45 /**
46  * DOC: Video BIOS Table (VBT)
47  *
48  * The Video BIOS Table, or VBT, provides platform and board specific
49  * configuration information to the driver that is not discoverable or available
50  * through other means. The configuration is mostly related to display
51  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
52  * the PCI ROM.
53  *
54  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
55  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
56  * contain the actual configuration information. The VBT Header, and thus the
57  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
58  * BDB Header. The data blocks are concatenated after the BDB Header. The data
59  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
60  * data. (Block 53, the MIPI Sequence Block is an exception.)
61  *
62  * The driver parses the VBT during load. The relevant information is stored in
63  * driver private data for ease of use, and the actual VBT is not read after
64  * that.
65  */
66 
67 /* Wrapper for VBT child device config */
68 struct intel_bios_encoder_data {
69 	struct intel_display *display;
70 
71 	struct child_device_config child;
72 	struct dsc_compression_parameters_entry *dsc;
73 	struct list_head node;
74 };
75 
76 #define	TARGET_ADDR1	0x70
77 #define	TARGET_ADDR2	0x72
78 
79 /* Get BDB block size given a pointer to Block ID. */
80 static u32 _get_blocksize(const u8 *block_base)
81 {
82 	/* The MIPI Sequence Block v3+ has a separate size field. */
83 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
84 		return *((const u32 *)(block_base + 4));
85 	else
86 		return *((const u16 *)(block_base + 1));
87 }
88 
89 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
90 static u32 get_blocksize(const void *block_data)
91 {
92 	return _get_blocksize(block_data - 3);
93 }
94 
95 static const void *
96 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
97 {
98 	const struct bdb_header *bdb = _bdb;
99 	const u8 *base = _bdb;
100 	int index = 0;
101 	u32 total, current_size;
102 	enum bdb_block_id current_id;
103 
104 	/* skip to first section */
105 	index += bdb->header_size;
106 	total = bdb->bdb_size;
107 
108 	/* walk the sections looking for section_id */
109 	while (index + 3 < total) {
110 		current_id = *(base + index);
111 		current_size = _get_blocksize(base + index);
112 		index += 3;
113 
114 		if (index + current_size > total)
115 			return NULL;
116 
117 		if (current_id == section_id)
118 			return base + index;
119 
120 		index += current_size;
121 	}
122 
123 	return NULL;
124 }
125 
126 /*
127  * Offset from the start of BDB to the start of the
128  * block data (just past the block header).
129  */
130 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
131 {
132 	const void *block;
133 
134 	block = find_raw_section(bdb, section_id);
135 	if (!block)
136 		return 0;
137 
138 	return block - bdb;
139 }
140 
141 struct bdb_block_entry {
142 	struct list_head node;
143 	enum bdb_block_id section_id;
144 	u8 data[];
145 };
146 
147 static const void *
148 bdb_find_section(struct intel_display *display,
149 		 enum bdb_block_id section_id)
150 {
151 	struct bdb_block_entry *entry;
152 
153 	list_for_each_entry(entry, &display->vbt.bdb_blocks, node) {
154 		if (entry->section_id == section_id)
155 			return entry->data + 3;
156 	}
157 
158 	return NULL;
159 }
160 
161 static const struct {
162 	enum bdb_block_id section_id;
163 	size_t min_size;
164 } bdb_blocks[] = {
165 	{ .section_id = BDB_GENERAL_FEATURES,
166 	  .min_size = sizeof(struct bdb_general_features), },
167 	{ .section_id = BDB_GENERAL_DEFINITIONS,
168 	  .min_size = sizeof(struct bdb_general_definitions), },
169 	{ .section_id = BDB_PSR,
170 	  .min_size = sizeof(struct bdb_psr), },
171 	{ .section_id = BDB_DRIVER_FEATURES,
172 	  .min_size = sizeof(struct bdb_driver_features), },
173 	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
174 	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
175 	{ .section_id = BDB_SDVO_LVDS_DTD,
176 	  .min_size = sizeof(struct bdb_sdvo_lvds_dtd), },
177 	{ .section_id = BDB_EDP,
178 	  .min_size = sizeof(struct bdb_edp), },
179 	{ .section_id = BDB_LFP_OPTIONS,
180 	  .min_size = sizeof(struct bdb_lfp_options), },
181 	/*
182 	 * BDB_LFP_DATA depends on BDB_LFP_DATA_PTRS,
183 	 * so keep the two ordered.
184 	 */
185 	{ .section_id = BDB_LFP_DATA_PTRS,
186 	  .min_size = sizeof(struct bdb_lfp_data_ptrs), },
187 	{ .section_id = BDB_LFP_DATA,
188 	  .min_size = 0, /* special case */ },
189 	{ .section_id = BDB_LFP_BACKLIGHT,
190 	  .min_size = sizeof(struct bdb_lfp_backlight), },
191 	{ .section_id = BDB_LFP_POWER,
192 	  .min_size = sizeof(struct bdb_lfp_power), },
193 	{ .section_id = BDB_MIPI_CONFIG,
194 	  .min_size = sizeof(struct bdb_mipi_config), },
195 	{ .section_id = BDB_MIPI_SEQUENCE,
196 	  .min_size = sizeof(struct bdb_mipi_sequence) },
197 	{ .section_id = BDB_COMPRESSION_PARAMETERS,
198 	  .min_size = sizeof(struct bdb_compression_parameters), },
199 	{ .section_id = BDB_GENERIC_DTD,
200 	  .min_size = sizeof(struct bdb_generic_dtd), },
201 };
202 
203 static size_t lfp_data_min_size(struct intel_display *display)
204 {
205 	const struct bdb_lfp_data_ptrs *ptrs;
206 	size_t size;
207 
208 	ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
209 	if (!ptrs)
210 		return 0;
211 
212 	size = sizeof(struct bdb_lfp_data);
213 	if (ptrs->panel_name.table_size)
214 		size = max(size, ptrs->panel_name.offset +
215 			   sizeof(struct bdb_lfp_data_tail));
216 
217 	return size;
218 }
219 
220 static bool validate_lfp_data_ptrs(const void *bdb,
221 				   const struct bdb_lfp_data_ptrs *ptrs)
222 {
223 	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
224 	int data_block_size, lfp_data_size;
225 	const void *data_block;
226 	int i;
227 
228 	data_block = find_raw_section(bdb, BDB_LFP_DATA);
229 	if (!data_block)
230 		return false;
231 
232 	data_block_size = get_blocksize(data_block);
233 	if (data_block_size == 0)
234 		return false;
235 
236 	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
237 	if (ptrs->num_entries != 3)
238 		return false;
239 
240 	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
241 	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
242 	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
243 	panel_name_size = ptrs->panel_name.table_size;
244 
245 	/* fp_timing has variable size */
246 	if (fp_timing_size < 32 ||
247 	    dvo_timing_size != sizeof(struct bdb_edid_dtd) ||
248 	    panel_pnp_id_size != sizeof(struct bdb_edid_pnp_id))
249 		return false;
250 
251 	/* panel_name is not present in old VBTs */
252 	if (panel_name_size != 0 &&
253 	    panel_name_size != sizeof(struct bdb_edid_product_name))
254 		return false;
255 
256 	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
257 	if (16 * lfp_data_size > data_block_size)
258 		return false;
259 
260 	/* make sure the table entries have uniform size */
261 	for (i = 1; i < 16; i++) {
262 		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
263 		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
264 		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
265 			return false;
266 
267 		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
268 		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
269 		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
270 			return false;
271 	}
272 
273 	/*
274 	 * Except for vlv/chv machines all real VBTs seem to have 6
275 	 * unaccounted bytes in the fp_timing table. And it doesn't
276 	 * appear to be a really intentional hole as the fp_timing
277 	 * 0xffff terminator is always within those 6 missing bytes.
278 	 */
279 	if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
280 		fp_timing_size += 6;
281 
282 	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
283 		return false;
284 
285 	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
286 	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
287 	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
288 		return false;
289 
290 	/* make sure the tables fit inside the data block */
291 	for (i = 0; i < 16; i++) {
292 		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
293 		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
294 		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
295 			return false;
296 	}
297 
298 	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
299 		return false;
300 
301 	/* make sure fp_timing terminators are present at expected locations */
302 	for (i = 0; i < 16; i++) {
303 		const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
304 			fp_timing_size - 2;
305 
306 		if (*t != 0xffff)
307 			return false;
308 	}
309 
310 	return true;
311 }
312 
313 /* make the data table offsets relative to the data block */
314 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
315 {
316 	struct bdb_lfp_data_ptrs *ptrs = ptrs_block;
317 	u32 offset;
318 	int i;
319 
320 	offset = raw_block_offset(bdb, BDB_LFP_DATA);
321 
322 	for (i = 0; i < 16; i++) {
323 		if (ptrs->ptr[i].fp_timing.offset < offset ||
324 		    ptrs->ptr[i].dvo_timing.offset < offset ||
325 		    ptrs->ptr[i].panel_pnp_id.offset < offset)
326 			return false;
327 
328 		ptrs->ptr[i].fp_timing.offset -= offset;
329 		ptrs->ptr[i].dvo_timing.offset -= offset;
330 		ptrs->ptr[i].panel_pnp_id.offset -= offset;
331 	}
332 
333 	if (ptrs->panel_name.table_size) {
334 		if (ptrs->panel_name.offset < offset)
335 			return false;
336 
337 		ptrs->panel_name.offset -= offset;
338 	}
339 
340 	return validate_lfp_data_ptrs(bdb, ptrs);
341 }
342 
343 static int make_lfp_data_ptr(struct lfp_data_ptr_table *table,
344 			     int table_size, int total_size)
345 {
346 	if (total_size < table_size)
347 		return total_size;
348 
349 	table->table_size = table_size;
350 	table->offset = total_size - table_size;
351 
352 	return total_size - table_size;
353 }
354 
355 static void next_lfp_data_ptr(struct lfp_data_ptr_table *next,
356 			      const struct lfp_data_ptr_table *prev,
357 			      int size)
358 {
359 	next->table_size = prev->table_size;
360 	next->offset = prev->offset + size;
361 }
362 
363 static void *generate_lfp_data_ptrs(struct intel_display *display,
364 				    const void *bdb)
365 {
366 	int i, size, table_size, block_size, offset, fp_timing_size;
367 	struct bdb_lfp_data_ptrs *ptrs;
368 	const void *block;
369 	void *ptrs_block;
370 
371 	/*
372 	 * The hardcoded fp_timing_size is only valid for
373 	 * modernish VBTs. All older VBTs definitely should
374 	 * include block 41 and thus we don't need to
375 	 * generate one.
376 	 */
377 	if (display->vbt.version < 155)
378 		return NULL;
379 
380 	fp_timing_size = 38;
381 
382 	block = find_raw_section(bdb, BDB_LFP_DATA);
383 	if (!block)
384 		return NULL;
385 
386 	drm_dbg_kms(display->drm, "Generating LFP data table pointers\n");
387 
388 	block_size = get_blocksize(block);
389 
390 	size = fp_timing_size + sizeof(struct bdb_edid_dtd) +
391 		sizeof(struct bdb_edid_pnp_id);
392 	if (size * 16 > block_size)
393 		return NULL;
394 
395 	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
396 	if (!ptrs_block)
397 		return NULL;
398 
399 	*(u8 *)(ptrs_block + 0) = BDB_LFP_DATA_PTRS;
400 	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
401 	ptrs = ptrs_block + 3;
402 
403 	table_size = sizeof(struct bdb_edid_pnp_id);
404 	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
405 
406 	table_size = sizeof(struct bdb_edid_dtd);
407 	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
408 
409 	table_size = fp_timing_size;
410 	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
411 
412 	if (ptrs->ptr[0].fp_timing.table_size)
413 		ptrs->num_entries++;
414 	if (ptrs->ptr[0].dvo_timing.table_size)
415 		ptrs->num_entries++;
416 	if (ptrs->ptr[0].panel_pnp_id.table_size)
417 		ptrs->num_entries++;
418 
419 	if (size != 0 || ptrs->num_entries != 3) {
420 		kfree(ptrs_block);
421 		return NULL;
422 	}
423 
424 	size = fp_timing_size + sizeof(struct bdb_edid_dtd) +
425 		sizeof(struct bdb_edid_pnp_id);
426 	for (i = 1; i < 16; i++) {
427 		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
428 		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
429 		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
430 	}
431 
432 	table_size = sizeof(struct bdb_edid_product_name);
433 
434 	if (16 * (size + table_size) <= block_size) {
435 		ptrs->panel_name.table_size = table_size;
436 		ptrs->panel_name.offset = size * 16;
437 	}
438 
439 	offset = block - bdb;
440 
441 	for (i = 0; i < 16; i++) {
442 		ptrs->ptr[i].fp_timing.offset += offset;
443 		ptrs->ptr[i].dvo_timing.offset += offset;
444 		ptrs->ptr[i].panel_pnp_id.offset += offset;
445 	}
446 
447 	if (ptrs->panel_name.table_size)
448 		ptrs->panel_name.offset += offset;
449 
450 	return ptrs_block;
451 }
452 
453 static void
454 init_bdb_block(struct intel_display *display,
455 	       const void *bdb, enum bdb_block_id section_id,
456 	       size_t min_size)
457 {
458 	struct bdb_block_entry *entry;
459 	void *temp_block = NULL;
460 	const void *block;
461 	size_t block_size;
462 
463 	block = find_raw_section(bdb, section_id);
464 
465 	/* Modern VBTs lack the LFP data table pointers block, make one up */
466 	if (!block && section_id == BDB_LFP_DATA_PTRS) {
467 		temp_block = generate_lfp_data_ptrs(display, bdb);
468 		if (temp_block)
469 			block = temp_block + 3;
470 	}
471 	if (!block)
472 		return;
473 
474 	drm_WARN(display->drm, min_size == 0,
475 		 "Block %d min_size is zero\n", section_id);
476 
477 	block_size = get_blocksize(block);
478 
479 	/*
480 	 * Version number and new block size are considered
481 	 * part of the header for MIPI sequenece block v3+.
482 	 */
483 	if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
484 		block_size += 5;
485 
486 	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
487 			GFP_KERNEL);
488 	if (!entry) {
489 		kfree(temp_block);
490 		return;
491 	}
492 
493 	entry->section_id = section_id;
494 	memcpy(entry->data, block - 3, block_size + 3);
495 
496 	kfree(temp_block);
497 
498 	drm_dbg_kms(display->drm,
499 		    "Found BDB block %d (size %zu, min size %zu)\n",
500 		    section_id, block_size, min_size);
501 
502 	if (section_id == BDB_LFP_DATA_PTRS &&
503 	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
504 		drm_err(display->drm,
505 			"VBT has malformed LFP data table pointers\n");
506 		kfree(entry);
507 		return;
508 	}
509 
510 	list_add_tail(&entry->node, &display->vbt.bdb_blocks);
511 }
512 
513 static void init_bdb_blocks(struct intel_display *display,
514 			    const void *bdb)
515 {
516 	int i;
517 
518 	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
519 		enum bdb_block_id section_id = bdb_blocks[i].section_id;
520 		size_t min_size = bdb_blocks[i].min_size;
521 
522 		if (section_id == BDB_LFP_DATA)
523 			min_size = lfp_data_min_size(display);
524 
525 		init_bdb_block(display, bdb, section_id, min_size);
526 	}
527 }
528 
529 static void
530 fill_detail_timing_data(struct intel_display *display,
531 			struct drm_display_mode *panel_fixed_mode,
532 			const struct bdb_edid_dtd *dvo_timing)
533 {
534 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
535 		dvo_timing->hactive_lo;
536 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
537 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
538 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
539 		((dvo_timing->hsync_pulse_width_hi << 8) |
540 			dvo_timing->hsync_pulse_width_lo);
541 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
542 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
543 
544 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
545 		dvo_timing->vactive_lo;
546 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
547 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
548 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
549 		((dvo_timing->vsync_pulse_width_hi << 4) |
550 			dvo_timing->vsync_pulse_width_lo);
551 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
552 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
553 	panel_fixed_mode->clock = dvo_timing->clock * 10;
554 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
555 
556 	if (dvo_timing->hsync_positive)
557 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
558 	else
559 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
560 
561 	if (dvo_timing->vsync_positive)
562 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
563 	else
564 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
565 
566 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
567 		dvo_timing->himage_lo;
568 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
569 		dvo_timing->vimage_lo;
570 
571 	/* Some VBTs have bogus h/vsync_end values */
572 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) {
573 		drm_dbg_kms(display->drm, "reducing hsync_end %d->%d\n",
574 			    panel_fixed_mode->hsync_end, panel_fixed_mode->htotal);
575 		panel_fixed_mode->hsync_end = panel_fixed_mode->htotal;
576 	}
577 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) {
578 		drm_dbg_kms(display->drm, "reducing vsync_end %d->%d\n",
579 			    panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal);
580 		panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal;
581 	}
582 
583 	drm_mode_set_name(panel_fixed_mode);
584 }
585 
586 static const struct bdb_edid_dtd *
587 get_lfp_dvo_timing(const struct bdb_lfp_data *data,
588 		   const struct bdb_lfp_data_ptrs *ptrs,
589 		   int index)
590 {
591 	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
592 }
593 
594 static const struct fp_timing *
595 get_lfp_fp_timing(const struct bdb_lfp_data *data,
596 		  const struct bdb_lfp_data_ptrs *ptrs,
597 		  int index)
598 {
599 	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
600 }
601 
602 static const struct drm_edid_product_id *
603 get_lfp_pnp_id(const struct bdb_lfp_data *data,
604 	       const struct bdb_lfp_data_ptrs *ptrs,
605 	       int index)
606 {
607 	/* These two are supposed to have the same layout in memory. */
608 	BUILD_BUG_ON(sizeof(struct bdb_edid_pnp_id) != sizeof(struct drm_edid_product_id));
609 
610 	return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
611 }
612 
613 static const struct bdb_lfp_data_tail *
614 get_lfp_data_tail(const struct bdb_lfp_data *data,
615 		  const struct bdb_lfp_data_ptrs *ptrs)
616 {
617 	if (ptrs->panel_name.table_size)
618 		return (const void *)data + ptrs->panel_name.offset;
619 	else
620 		return NULL;
621 }
622 
623 static int opregion_get_panel_type(struct intel_display *display,
624 				   const struct intel_bios_encoder_data *devdata,
625 				   const struct drm_edid *drm_edid, bool use_fallback)
626 {
627 	return intel_opregion_get_panel_type(display);
628 }
629 
630 static int vbt_get_panel_type(struct intel_display *display,
631 			      const struct intel_bios_encoder_data *devdata,
632 			      const struct drm_edid *drm_edid, bool use_fallback)
633 {
634 	const struct bdb_lfp_options *lfp_options;
635 
636 	lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS);
637 	if (!lfp_options)
638 		return -1;
639 
640 	if (lfp_options->panel_type > 0xf &&
641 	    lfp_options->panel_type != 0xff) {
642 		drm_dbg_kms(display->drm, "Invalid VBT panel type 0x%x\n",
643 			    lfp_options->panel_type);
644 		return -1;
645 	}
646 
647 	if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
648 		return lfp_options->panel_type2;
649 
650 	drm_WARN_ON(display->drm,
651 		    devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
652 
653 	return lfp_options->panel_type;
654 }
655 
656 static int pnpid_get_panel_type(struct intel_display *display,
657 				const struct intel_bios_encoder_data *devdata,
658 				const struct drm_edid *drm_edid, bool use_fallback)
659 {
660 	const struct bdb_lfp_data *data;
661 	const struct bdb_lfp_data_ptrs *ptrs;
662 	struct drm_edid_product_id product_id, product_id_nodate;
663 	struct drm_printer p;
664 	int i, best = -1;
665 
666 	if (!drm_edid)
667 		return -1;
668 
669 	drm_edid_get_product_id(drm_edid, &product_id);
670 
671 	product_id_nodate = product_id;
672 	product_id_nodate.week_of_manufacture = 0;
673 	product_id_nodate.year_of_manufacture = 0;
674 
675 	p = drm_dbg_printer(display->drm, DRM_UT_KMS, "EDID");
676 	drm_edid_print_product_id(&p, &product_id, true);
677 
678 	ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
679 	if (!ptrs)
680 		return -1;
681 
682 	data = bdb_find_section(display, BDB_LFP_DATA);
683 	if (!data)
684 		return -1;
685 
686 	for (i = 0; i < 16; i++) {
687 		const struct drm_edid_product_id *vbt_id =
688 			get_lfp_pnp_id(data, ptrs, i);
689 
690 		/* full match? */
691 		if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id)))
692 			return i;
693 
694 		/*
695 		 * Accept a match w/o date if no full match is found,
696 		 * and the VBT entry does not specify a date.
697 		 */
698 		if (best < 0 &&
699 		    !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id)))
700 			best = i;
701 	}
702 
703 	return best;
704 }
705 
706 static int fallback_get_panel_type(struct intel_display *display,
707 				   const struct intel_bios_encoder_data *devdata,
708 				   const struct drm_edid *drm_edid, bool use_fallback)
709 {
710 	return use_fallback ? 0 : -1;
711 }
712 
713 enum panel_type {
714 	PANEL_TYPE_OPREGION,
715 	PANEL_TYPE_VBT,
716 	PANEL_TYPE_PNPID,
717 	PANEL_TYPE_FALLBACK,
718 };
719 
720 static int get_panel_type(struct intel_display *display,
721 			  const struct intel_bios_encoder_data *devdata,
722 			  const struct drm_edid *drm_edid, bool use_fallback)
723 {
724 	struct {
725 		const char *name;
726 		int (*get_panel_type)(struct intel_display *display,
727 				      const struct intel_bios_encoder_data *devdata,
728 				      const struct drm_edid *drm_edid, bool use_fallback);
729 		int panel_type;
730 	} panel_types[] = {
731 		[PANEL_TYPE_OPREGION] = {
732 			.name = "OpRegion",
733 			.get_panel_type = opregion_get_panel_type,
734 		},
735 		[PANEL_TYPE_VBT] = {
736 			.name = "VBT",
737 			.get_panel_type = vbt_get_panel_type,
738 		},
739 		[PANEL_TYPE_PNPID] = {
740 			.name = "PNPID",
741 			.get_panel_type = pnpid_get_panel_type,
742 		},
743 		[PANEL_TYPE_FALLBACK] = {
744 			.name = "fallback",
745 			.get_panel_type = fallback_get_panel_type,
746 		},
747 	};
748 	int i;
749 
750 	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
751 		panel_types[i].panel_type = panel_types[i].get_panel_type(display, devdata,
752 									  drm_edid, use_fallback);
753 
754 		drm_WARN_ON(display->drm, panel_types[i].panel_type > 0xf &&
755 			    panel_types[i].panel_type != 0xff);
756 
757 		if (panel_types[i].panel_type >= 0)
758 			drm_dbg_kms(display->drm, "Panel type (%s): %d\n",
759 				    panel_types[i].name, panel_types[i].panel_type);
760 	}
761 
762 	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
763 		i = PANEL_TYPE_OPREGION;
764 	else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
765 		 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
766 		i = PANEL_TYPE_PNPID;
767 	else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
768 		 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
769 		i = PANEL_TYPE_VBT;
770 	else
771 		i = PANEL_TYPE_FALLBACK;
772 
773 	drm_dbg_kms(display->drm, "Selected panel type (%s): %d\n",
774 		    panel_types[i].name, panel_types[i].panel_type);
775 
776 	return panel_types[i].panel_type;
777 }
778 
779 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
780 {
781 	return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
782 }
783 
784 static bool panel_bool(unsigned int value, int panel_type)
785 {
786 	return panel_bits(value, panel_type, 1);
787 }
788 
789 /* Parse general panel options */
790 static void
791 parse_panel_options(struct intel_display *display,
792 		    struct intel_panel *panel)
793 {
794 	const struct bdb_lfp_options *lfp_options;
795 	int panel_type = panel->vbt.panel_type;
796 	int drrs_mode;
797 
798 	lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS);
799 	if (!lfp_options)
800 		return;
801 
802 	panel->vbt.lvds_dither = lfp_options->pixel_dither;
803 
804 	/*
805 	 * Empirical evidence indicates the block size can be
806 	 * either 4,14,16,24+ bytes. For older VBTs no clear
807 	 * relationship between the block size vs. BDB version.
808 	 */
809 	if (get_blocksize(lfp_options) < 16)
810 		return;
811 
812 	drrs_mode = panel_bits(lfp_options->dps_panel_type_bits,
813 			       panel_type, 2);
814 	/*
815 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
816 	 * The below piece of code is required to adjust vbt.drrs_type
817 	 * to match the enum drrs_support_type.
818 	 */
819 	switch (drrs_mode) {
820 	case 0:
821 		panel->vbt.drrs_type = DRRS_TYPE_STATIC;
822 		drm_dbg_kms(display->drm, "DRRS supported mode is static\n");
823 		break;
824 	case 2:
825 		panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
826 		drm_dbg_kms(display->drm,
827 			    "DRRS supported mode is seamless\n");
828 		break;
829 	default:
830 		panel->vbt.drrs_type = DRRS_TYPE_NONE;
831 		drm_dbg_kms(display->drm,
832 			    "DRRS not supported (VBT input)\n");
833 		break;
834 	}
835 }
836 
837 static void
838 parse_lfp_panel_dtd(struct intel_display *display,
839 		    struct intel_panel *panel,
840 		    const struct bdb_lfp_data *lfp_data,
841 		    const struct bdb_lfp_data_ptrs *lfp_data_ptrs)
842 {
843 	const struct bdb_edid_dtd *panel_dvo_timing;
844 	const struct fp_timing *fp_timing;
845 	struct drm_display_mode *panel_fixed_mode;
846 	int panel_type = panel->vbt.panel_type;
847 
848 	panel_dvo_timing = get_lfp_dvo_timing(lfp_data,
849 					      lfp_data_ptrs,
850 					      panel_type);
851 
852 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
853 	if (!panel_fixed_mode)
854 		return;
855 
856 	fill_detail_timing_data(display, panel_fixed_mode, panel_dvo_timing);
857 
858 	panel->vbt.lfp_vbt_mode = panel_fixed_mode;
859 
860 	drm_dbg_kms(display->drm,
861 		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
862 		    DRM_MODE_ARG(panel_fixed_mode));
863 
864 	fp_timing = get_lfp_fp_timing(lfp_data,
865 				      lfp_data_ptrs,
866 				      panel_type);
867 
868 	/* check the resolution, just to be sure */
869 	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
870 	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
871 		panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
872 		drm_dbg_kms(display->drm,
873 			    "VBT initial LVDS value %x\n",
874 			    panel->vbt.bios_lvds_val);
875 	}
876 }
877 
878 static void
879 parse_lfp_data(struct intel_display *display,
880 	       struct intel_panel *panel)
881 {
882 	const struct bdb_lfp_data *data;
883 	const struct bdb_lfp_data_tail *tail;
884 	const struct bdb_lfp_data_ptrs *ptrs;
885 	const struct drm_edid_product_id *pnp_id;
886 	struct drm_printer p;
887 	int panel_type = panel->vbt.panel_type;
888 
889 	ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
890 	if (!ptrs)
891 		return;
892 
893 	data = bdb_find_section(display, BDB_LFP_DATA);
894 	if (!data)
895 		return;
896 
897 	if (!panel->vbt.lfp_vbt_mode)
898 		parse_lfp_panel_dtd(display, panel, data, ptrs);
899 
900 	pnp_id = get_lfp_pnp_id(data, ptrs, panel_type);
901 
902 	p = drm_dbg_printer(display->drm, DRM_UT_KMS, "Panel");
903 	drm_edid_print_product_id(&p, pnp_id, false);
904 
905 	tail = get_lfp_data_tail(data, ptrs);
906 	if (!tail)
907 		return;
908 
909 	drm_dbg_kms(display->drm, "Panel name: %.*s\n",
910 		    (int)sizeof(tail->panel_name[0].name),
911 		    tail->panel_name[panel_type].name);
912 
913 	if (display->vbt.version >= 188) {
914 		panel->vbt.seamless_drrs_min_refresh_rate =
915 			tail->seamless_drrs_min_refresh_rate[panel_type];
916 		drm_dbg_kms(display->drm,
917 			    "Seamless DRRS min refresh rate: %d Hz\n",
918 			    panel->vbt.seamless_drrs_min_refresh_rate);
919 	}
920 }
921 
922 static void
923 parse_generic_dtd(struct intel_display *display,
924 		  struct intel_panel *panel)
925 {
926 	const struct bdb_generic_dtd *generic_dtd;
927 	const struct generic_dtd_entry *dtd;
928 	struct drm_display_mode *panel_fixed_mode;
929 	int num_dtd;
930 
931 	/*
932 	 * Older VBTs provided DTD information for internal displays through
933 	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
934 	 * DTD information should be provided via a newer "generic DTD"
935 	 * block (58).  Just to be safe, we'll try the new generic DTD block
936 	 * first on VBT >= 229, but still fall back to trying the old LFP
937 	 * block if that fails.
938 	 */
939 	if (display->vbt.version < 229)
940 		return;
941 
942 	generic_dtd = bdb_find_section(display, BDB_GENERIC_DTD);
943 	if (!generic_dtd)
944 		return;
945 
946 	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
947 		drm_err(display->drm, "GDTD size %u is too small.\n",
948 			generic_dtd->gdtd_size);
949 		return;
950 	} else if (generic_dtd->gdtd_size !=
951 		   sizeof(struct generic_dtd_entry)) {
952 		drm_err(display->drm, "Unexpected GDTD size %u\n",
953 			generic_dtd->gdtd_size);
954 		/* DTD has unknown fields, but keep going */
955 	}
956 
957 	num_dtd = (get_blocksize(generic_dtd) -
958 		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
959 	if (panel->vbt.panel_type >= num_dtd) {
960 		drm_err(display->drm,
961 			"Panel type %d not found in table of %d DTD's\n",
962 			panel->vbt.panel_type, num_dtd);
963 		return;
964 	}
965 
966 	dtd = &generic_dtd->dtd[panel->vbt.panel_type];
967 
968 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
969 	if (!panel_fixed_mode)
970 		return;
971 
972 	panel_fixed_mode->hdisplay = dtd->hactive;
973 	panel_fixed_mode->hsync_start =
974 		panel_fixed_mode->hdisplay + dtd->hfront_porch;
975 	panel_fixed_mode->hsync_end =
976 		panel_fixed_mode->hsync_start + dtd->hsync;
977 	panel_fixed_mode->htotal =
978 		panel_fixed_mode->hdisplay + dtd->hblank;
979 
980 	panel_fixed_mode->vdisplay = dtd->vactive;
981 	panel_fixed_mode->vsync_start =
982 		panel_fixed_mode->vdisplay + dtd->vfront_porch;
983 	panel_fixed_mode->vsync_end =
984 		panel_fixed_mode->vsync_start + dtd->vsync;
985 	panel_fixed_mode->vtotal =
986 		panel_fixed_mode->vdisplay + dtd->vblank;
987 
988 	panel_fixed_mode->clock = dtd->pixel_clock;
989 	panel_fixed_mode->width_mm = dtd->width_mm;
990 	panel_fixed_mode->height_mm = dtd->height_mm;
991 
992 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
993 	drm_mode_set_name(panel_fixed_mode);
994 
995 	if (dtd->hsync_positive_polarity)
996 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
997 	else
998 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
999 
1000 	if (dtd->vsync_positive_polarity)
1001 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
1002 	else
1003 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
1004 
1005 	drm_dbg_kms(display->drm,
1006 		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1007 		    DRM_MODE_ARG(panel_fixed_mode));
1008 
1009 	panel->vbt.lfp_vbt_mode = panel_fixed_mode;
1010 }
1011 
1012 static void
1013 parse_lfp_backlight(struct intel_display *display,
1014 		    struct intel_panel *panel)
1015 {
1016 	const struct bdb_lfp_backlight *backlight_data;
1017 	const struct lfp_backlight_data_entry *entry;
1018 	int panel_type = panel->vbt.panel_type;
1019 	u16 level;
1020 
1021 	backlight_data = bdb_find_section(display, BDB_LFP_BACKLIGHT);
1022 	if (!backlight_data)
1023 		return;
1024 
1025 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1026 		drm_dbg_kms(display->drm,
1027 			    "Unsupported backlight data entry size %u\n",
1028 			    backlight_data->entry_size);
1029 		return;
1030 	}
1031 
1032 	entry = &backlight_data->data[panel_type];
1033 
1034 	panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1035 	if (!panel->vbt.backlight.present) {
1036 		drm_dbg_kms(display->drm,
1037 			    "PWM backlight not present in VBT (type %u)\n",
1038 			    entry->type);
1039 		return;
1040 	}
1041 
1042 	panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1043 	panel->vbt.backlight.controller = 0;
1044 	if (display->vbt.version >= 191) {
1045 		const struct lfp_backlight_control_method *method;
1046 
1047 		method = &backlight_data->backlight_control[panel_type];
1048 		panel->vbt.backlight.type = method->type;
1049 		panel->vbt.backlight.controller = method->controller;
1050 	}
1051 
1052 	panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1053 	panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1054 
1055 	if (display->vbt.version >= 234) {
1056 		u16 min_level;
1057 		bool scale;
1058 
1059 		level = backlight_data->brightness_level[panel_type].level;
1060 		min_level = backlight_data->brightness_min_level[panel_type].level;
1061 
1062 		if (display->vbt.version >= 236)
1063 			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1064 		else
1065 			scale = level > 255;
1066 
1067 		if (scale)
1068 			min_level = min_level / 255;
1069 
1070 		if (min_level > 255) {
1071 			drm_warn(display->drm, "Brightness min level > 255\n");
1072 			level = 255;
1073 		}
1074 		panel->vbt.backlight.min_brightness = min_level;
1075 
1076 		panel->vbt.backlight.brightness_precision_bits =
1077 			backlight_data->brightness_precision_bits[panel_type];
1078 	} else {
1079 		level = backlight_data->level[panel_type];
1080 		panel->vbt.backlight.min_brightness = entry->min_brightness;
1081 	}
1082 
1083 	if (display->vbt.version >= 239)
1084 		panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1085 			DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1086 	else
1087 		panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1088 
1089 	drm_dbg_kms(display->drm,
1090 		    "VBT backlight PWM modulation frequency %u Hz, "
1091 		    "active %s, min brightness %u, level %u, controller %u\n",
1092 		    panel->vbt.backlight.pwm_freq_hz,
1093 		    panel->vbt.backlight.active_low_pwm ? "low" : "high",
1094 		    panel->vbt.backlight.min_brightness,
1095 		    level,
1096 		    panel->vbt.backlight.controller);
1097 }
1098 
1099 static void
1100 parse_sdvo_lvds_data(struct intel_display *display,
1101 		     struct intel_panel *panel)
1102 {
1103 	const struct bdb_sdvo_lvds_dtd *dtd;
1104 	struct drm_display_mode *panel_fixed_mode;
1105 	int index;
1106 
1107 	index = display->params.vbt_sdvo_panel_type;
1108 	if (index == -2) {
1109 		drm_dbg_kms(display->drm,
1110 			    "Ignore SDVO LVDS mode from BIOS VBT tables.\n");
1111 		return;
1112 	}
1113 
1114 	if (index == -1) {
1115 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1116 
1117 		sdvo_lvds_options = bdb_find_section(display, BDB_SDVO_LVDS_OPTIONS);
1118 		if (!sdvo_lvds_options)
1119 			return;
1120 
1121 		index = sdvo_lvds_options->panel_type;
1122 	}
1123 
1124 	dtd = bdb_find_section(display, BDB_SDVO_LVDS_DTD);
1125 	if (!dtd)
1126 		return;
1127 
1128 	/*
1129 	 * This should not happen, as long as the panel_type
1130 	 * enumeration doesn't grow over 4 items.  But if it does, it
1131 	 * could lead to hard-to-detect bugs, so better double-check
1132 	 * it here to be sure.
1133 	 */
1134 	if (index >= ARRAY_SIZE(dtd->dtd)) {
1135 		drm_err(display->drm,
1136 			"index %d is larger than dtd->dtd[4] array\n",
1137 			index);
1138 		return;
1139 	}
1140 
1141 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1142 	if (!panel_fixed_mode)
1143 		return;
1144 
1145 	fill_detail_timing_data(display, panel_fixed_mode, &dtd->dtd[index]);
1146 
1147 	panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1148 
1149 	drm_dbg_kms(display->drm,
1150 		    "Found SDVO LVDS mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1151 		    DRM_MODE_ARG(panel_fixed_mode));
1152 }
1153 
1154 static int intel_bios_ssc_frequency(struct intel_display *display,
1155 				    bool alternate)
1156 {
1157 	switch (DISPLAY_VER(display)) {
1158 	case 2:
1159 		return alternate ? 66667 : 48000;
1160 	case 3:
1161 	case 4:
1162 		return alternate ? 100000 : 96000;
1163 	default:
1164 		return alternate ? 100000 : 120000;
1165 	}
1166 }
1167 
1168 static void
1169 parse_general_features(struct intel_display *display)
1170 {
1171 	struct drm_i915_private *i915 = to_i915(display->drm);
1172 	const struct bdb_general_features *general;
1173 
1174 	general = bdb_find_section(display, BDB_GENERAL_FEATURES);
1175 	if (!general)
1176 		return;
1177 
1178 	display->vbt.int_tv_support = general->int_tv_support;
1179 	/* int_crt_support can't be trusted on earlier platforms */
1180 	if (display->vbt.version >= 155 &&
1181 	    (HAS_DDI(display) || IS_VALLEYVIEW(i915)))
1182 		display->vbt.int_crt_support = general->int_crt_support;
1183 	display->vbt.lvds_use_ssc = general->enable_ssc;
1184 	display->vbt.lvds_ssc_freq =
1185 		intel_bios_ssc_frequency(display, general->ssc_freq);
1186 	display->vbt.display_clock_mode = general->display_clock_mode;
1187 	display->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1188 	if (display->vbt.version >= 181) {
1189 		display->vbt.orientation = general->rotate_180 ?
1190 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1191 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1192 	} else {
1193 		display->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1194 	}
1195 
1196 	if (display->vbt.version >= 249 && general->afc_startup_config) {
1197 		display->vbt.override_afc_startup = true;
1198 		display->vbt.override_afc_startup_val = general->afc_startup_config == 1 ? 0 : 7;
1199 	}
1200 
1201 	drm_dbg_kms(display->drm,
1202 		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1203 		    display->vbt.int_tv_support,
1204 		    display->vbt.int_crt_support,
1205 		    display->vbt.lvds_use_ssc,
1206 		    display->vbt.lvds_ssc_freq,
1207 		    display->vbt.display_clock_mode,
1208 		    display->vbt.fdi_rx_polarity_inverted);
1209 }
1210 
1211 static const struct child_device_config *
1212 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1213 {
1214 	return (const void *) &defs->devices[i * defs->child_dev_size];
1215 }
1216 
1217 static void
1218 parse_sdvo_device_mapping(struct intel_display *display)
1219 {
1220 	const struct intel_bios_encoder_data *devdata;
1221 	int count = 0;
1222 
1223 	/*
1224 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1225 	 * accurate and doesn't have to be, as long as it's not too strict.
1226 	 */
1227 	if (!IS_DISPLAY_VER(display, 3, 7)) {
1228 		drm_dbg_kms(display->drm, "Skipping SDVO device mapping\n");
1229 		return;
1230 	}
1231 
1232 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
1233 		const struct child_device_config *child = &devdata->child;
1234 		struct sdvo_device_mapping *mapping;
1235 
1236 		if (child->target_addr != TARGET_ADDR1 &&
1237 		    child->target_addr != TARGET_ADDR2) {
1238 			/*
1239 			 * If the target address is neither 0x70 nor 0x72,
1240 			 * it is not a SDVO device. Skip it.
1241 			 */
1242 			continue;
1243 		}
1244 		if (child->dvo_port != DEVICE_PORT_DVOB &&
1245 		    child->dvo_port != DEVICE_PORT_DVOC) {
1246 			/* skip the incorrect SDVO port */
1247 			drm_dbg_kms(display->drm,
1248 				    "Incorrect SDVO port. Skip it\n");
1249 			continue;
1250 		}
1251 		drm_dbg_kms(display->drm,
1252 			    "the SDVO device with target addr %2x is found on"
1253 			    " %s port\n",
1254 			    child->target_addr,
1255 			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1256 			    "SDVOB" : "SDVOC");
1257 		mapping = &display->vbt.sdvo_mappings[child->dvo_port - 1];
1258 		if (!mapping->initialized) {
1259 			mapping->dvo_port = child->dvo_port;
1260 			mapping->target_addr = child->target_addr;
1261 			mapping->dvo_wiring = child->dvo_wiring;
1262 			mapping->ddc_pin = child->ddc_pin;
1263 			mapping->i2c_pin = child->i2c_pin;
1264 			mapping->initialized = 1;
1265 			drm_dbg_kms(display->drm,
1266 				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1267 				    mapping->dvo_port, mapping->target_addr,
1268 				    mapping->dvo_wiring, mapping->ddc_pin,
1269 				    mapping->i2c_pin);
1270 		} else {
1271 			drm_dbg_kms(display->drm,
1272 				    "Maybe one SDVO port is shared by "
1273 				    "two SDVO device.\n");
1274 		}
1275 		if (child->target2_addr) {
1276 			/* Maybe this is a SDVO device with multiple inputs */
1277 			/* And the mapping info is not added */
1278 			drm_dbg_kms(display->drm,
1279 				    "there exists the target2_addr. Maybe this"
1280 				    " is a SDVO device with multiple inputs.\n");
1281 		}
1282 		count++;
1283 	}
1284 
1285 	if (!count) {
1286 		/* No SDVO device info is found */
1287 		drm_dbg_kms(display->drm,
1288 			    "No SDVO device info is found in VBT\n");
1289 	}
1290 }
1291 
1292 static void
1293 parse_driver_features(struct intel_display *display)
1294 {
1295 	const struct bdb_driver_features *driver;
1296 
1297 	driver = bdb_find_section(display, BDB_DRIVER_FEATURES);
1298 	if (!driver)
1299 		return;
1300 
1301 	if (DISPLAY_VER(display) >= 5) {
1302 		/*
1303 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1304 		 * to mean "eDP". The VBT spec doesn't agree with that
1305 		 * interpretation, but real world VBTs seem to.
1306 		 */
1307 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1308 			display->vbt.int_lvds_support = 0;
1309 	} else {
1310 		/*
1311 		 * FIXME it's not clear which BDB version has the LVDS config
1312 		 * bits defined. Revision history in the VBT spec says:
1313 		 * "0.92 | Add two definitions for VBT value of LVDS Active
1314 		 *  Config (00b and 11b values defined) | 06/13/2005"
1315 		 * but does not the specify the BDB version.
1316 		 *
1317 		 * So far version 134 (on i945gm) is the oldest VBT observed
1318 		 * in the wild with the bits correctly populated. Version
1319 		 * 108 (on i85x) does not have the bits correctly populated.
1320 		 */
1321 		if (display->vbt.version >= 134 &&
1322 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1323 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1324 			display->vbt.int_lvds_support = 0;
1325 	}
1326 }
1327 
1328 static void
1329 parse_panel_driver_features(struct intel_display *display,
1330 			    struct intel_panel *panel)
1331 {
1332 	const struct bdb_driver_features *driver;
1333 
1334 	driver = bdb_find_section(display, BDB_DRIVER_FEATURES);
1335 	if (!driver)
1336 		return;
1337 
1338 	if (display->vbt.version < 228) {
1339 		drm_dbg_kms(display->drm, "DRRS State Enabled:%d\n",
1340 			    driver->drrs_enabled);
1341 		/*
1342 		 * If DRRS is not supported, drrs_type has to be set to 0.
1343 		 * This is because, VBT is configured in such a way that
1344 		 * static DRRS is 0 and DRRS not supported is represented by
1345 		 * driver->drrs_enabled=false
1346 		 */
1347 		if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1348 			/*
1349 			 * FIXME Should DMRRS perhaps be treated as seamless
1350 			 * but without the automatic downclocking?
1351 			 */
1352 			if (driver->dmrrs_enabled)
1353 				panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1354 			else
1355 				panel->vbt.drrs_type = DRRS_TYPE_NONE;
1356 		}
1357 
1358 		panel->vbt.psr.enable = driver->psr_enabled;
1359 	}
1360 }
1361 
1362 static void
1363 parse_power_conservation_features(struct intel_display *display,
1364 				  struct intel_panel *panel)
1365 {
1366 	const struct bdb_lfp_power *power;
1367 	u8 panel_type = panel->vbt.panel_type;
1368 
1369 	panel->vbt.vrr = true; /* matches Windows behaviour */
1370 
1371 	if (display->vbt.version < 228)
1372 		return;
1373 
1374 	power = bdb_find_section(display, BDB_LFP_POWER);
1375 	if (!power)
1376 		return;
1377 
1378 	panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1379 
1380 	/*
1381 	 * If DRRS is not supported, drrs_type has to be set to 0.
1382 	 * This is because, VBT is configured in such a way that
1383 	 * static DRRS is 0 and DRRS not supported is represented by
1384 	 * power->drrs & BIT(panel_type)=false
1385 	 */
1386 	if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1387 		/*
1388 		 * FIXME Should DMRRS perhaps be treated as seamless
1389 		 * but without the automatic downclocking?
1390 		 */
1391 		if (panel_bool(power->dmrrs, panel_type))
1392 			panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1393 		else
1394 			panel->vbt.drrs_type = DRRS_TYPE_NONE;
1395 	}
1396 
1397 	if (display->vbt.version >= 232)
1398 		panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1399 
1400 	if (display->vbt.version >= 233)
1401 		panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1402 					    panel_type);
1403 }
1404 
1405 static void
1406 parse_edp(struct intel_display *display,
1407 	  struct intel_panel *panel)
1408 {
1409 	const struct bdb_edp *edp;
1410 	const struct edp_power_seq *edp_pps;
1411 	const struct edp_fast_link_params *edp_link_params;
1412 	int panel_type = panel->vbt.panel_type;
1413 
1414 	edp = bdb_find_section(display, BDB_EDP);
1415 	if (!edp)
1416 		return;
1417 
1418 	switch (panel_bits(edp->color_depth, panel_type, 2)) {
1419 	case EDP_18BPP:
1420 		panel->vbt.edp.bpp = 18;
1421 		break;
1422 	case EDP_24BPP:
1423 		panel->vbt.edp.bpp = 24;
1424 		break;
1425 	case EDP_30BPP:
1426 		panel->vbt.edp.bpp = 30;
1427 		break;
1428 	}
1429 
1430 	/* Get the eDP sequencing and link info */
1431 	edp_pps = &edp->power_seqs[panel_type];
1432 	edp_link_params = &edp->fast_link_params[panel_type];
1433 
1434 	panel->vbt.edp.pps = *edp_pps;
1435 
1436 	if (display->vbt.version >= 224) {
1437 		panel->vbt.edp.rate =
1438 			edp->edp_fast_link_training_rate[panel_type] * 20;
1439 	} else {
1440 		switch (edp_link_params->rate) {
1441 		case EDP_RATE_1_62:
1442 			panel->vbt.edp.rate = 162000;
1443 			break;
1444 		case EDP_RATE_2_7:
1445 			panel->vbt.edp.rate = 270000;
1446 			break;
1447 		case EDP_RATE_5_4:
1448 			panel->vbt.edp.rate = 540000;
1449 			break;
1450 		default:
1451 			drm_dbg_kms(display->drm,
1452 				    "VBT has unknown eDP link rate value %u\n",
1453 				    edp_link_params->rate);
1454 			break;
1455 		}
1456 	}
1457 
1458 	switch (edp_link_params->lanes) {
1459 	case EDP_LANE_1:
1460 		panel->vbt.edp.lanes = 1;
1461 		break;
1462 	case EDP_LANE_2:
1463 		panel->vbt.edp.lanes = 2;
1464 		break;
1465 	case EDP_LANE_4:
1466 		panel->vbt.edp.lanes = 4;
1467 		break;
1468 	default:
1469 		drm_dbg_kms(display->drm,
1470 			    "VBT has unknown eDP lane count value %u\n",
1471 			    edp_link_params->lanes);
1472 		break;
1473 	}
1474 
1475 	switch (edp_link_params->preemphasis) {
1476 	case EDP_PREEMPHASIS_NONE:
1477 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1478 		break;
1479 	case EDP_PREEMPHASIS_3_5dB:
1480 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1481 		break;
1482 	case EDP_PREEMPHASIS_6dB:
1483 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1484 		break;
1485 	case EDP_PREEMPHASIS_9_5dB:
1486 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1487 		break;
1488 	default:
1489 		drm_dbg_kms(display->drm,
1490 			    "VBT has unknown eDP pre-emphasis value %u\n",
1491 			    edp_link_params->preemphasis);
1492 		break;
1493 	}
1494 
1495 	switch (edp_link_params->vswing) {
1496 	case EDP_VSWING_0_4V:
1497 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1498 		break;
1499 	case EDP_VSWING_0_6V:
1500 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1501 		break;
1502 	case EDP_VSWING_0_8V:
1503 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1504 		break;
1505 	case EDP_VSWING_1_2V:
1506 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1507 		break;
1508 	default:
1509 		drm_dbg_kms(display->drm,
1510 			    "VBT has unknown eDP voltage swing value %u\n",
1511 			    edp_link_params->vswing);
1512 		break;
1513 	}
1514 
1515 	if (display->vbt.version >= 173) {
1516 		u8 vswing;
1517 
1518 		/* Don't read from VBT if module parameter has valid value*/
1519 		if (display->params.edp_vswing) {
1520 			panel->vbt.edp.low_vswing =
1521 				display->params.edp_vswing == 1;
1522 		} else {
1523 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1524 			panel->vbt.edp.low_vswing = vswing == 0;
1525 		}
1526 	}
1527 
1528 	panel->vbt.edp.drrs_msa_timing_delay =
1529 		panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1530 
1531 	if (display->vbt.version >= 244)
1532 		panel->vbt.edp.max_link_rate =
1533 			edp->edp_max_port_link_rate[panel_type] * 20;
1534 
1535 	if (display->vbt.version >= 251)
1536 		panel->vbt.edp.dsc_disable =
1537 			panel_bool(edp->edp_dsc_disable, panel_type);
1538 }
1539 
1540 static void
1541 parse_psr(struct intel_display *display,
1542 	  struct intel_panel *panel)
1543 {
1544 	struct drm_i915_private *i915 = to_i915(display->drm);
1545 	const struct bdb_psr *psr;
1546 	const struct psr_table *psr_table;
1547 	int panel_type = panel->vbt.panel_type;
1548 
1549 	psr = bdb_find_section(display, BDB_PSR);
1550 	if (!psr) {
1551 		drm_dbg_kms(display->drm, "No PSR BDB found.\n");
1552 		return;
1553 	}
1554 
1555 	psr_table = &psr->psr_table[panel_type];
1556 
1557 	panel->vbt.psr.full_link = psr_table->full_link;
1558 	panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1559 
1560 	/* Allowed VBT values goes from 0 to 15 */
1561 	panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1562 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1563 
1564 	/*
1565 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1566 	 * Old decimal value is wake up time in multiples of 100 us.
1567 	 */
1568 	if (display->vbt.version >= 205 &&
1569 	    (DISPLAY_VER(display) >= 9 && !IS_BROXTON(i915))) {
1570 		switch (psr_table->tp1_wakeup_time) {
1571 		case 0:
1572 			panel->vbt.psr.tp1_wakeup_time_us = 500;
1573 			break;
1574 		case 1:
1575 			panel->vbt.psr.tp1_wakeup_time_us = 100;
1576 			break;
1577 		case 3:
1578 			panel->vbt.psr.tp1_wakeup_time_us = 0;
1579 			break;
1580 		default:
1581 			drm_dbg_kms(display->drm,
1582 				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1583 				    psr_table->tp1_wakeup_time);
1584 			fallthrough;
1585 		case 2:
1586 			panel->vbt.psr.tp1_wakeup_time_us = 2500;
1587 			break;
1588 		}
1589 
1590 		switch (psr_table->tp2_tp3_wakeup_time) {
1591 		case 0:
1592 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1593 			break;
1594 		case 1:
1595 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1596 			break;
1597 		case 3:
1598 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1599 			break;
1600 		default:
1601 			drm_dbg_kms(display->drm,
1602 				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1603 				    psr_table->tp2_tp3_wakeup_time);
1604 			fallthrough;
1605 		case 2:
1606 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1607 		break;
1608 		}
1609 	} else {
1610 		panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1611 		panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1612 	}
1613 
1614 	if (display->vbt.version >= 226) {
1615 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1616 
1617 		wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1618 		switch (wakeup_time) {
1619 		case 0:
1620 			wakeup_time = 500;
1621 			break;
1622 		case 1:
1623 			wakeup_time = 100;
1624 			break;
1625 		case 3:
1626 			wakeup_time = 50;
1627 			break;
1628 		default:
1629 		case 2:
1630 			wakeup_time = 2500;
1631 			break;
1632 		}
1633 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1634 	} else {
1635 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1636 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1637 	}
1638 }
1639 
1640 static void parse_dsi_backlight_ports(struct intel_display *display,
1641 				      struct intel_panel *panel,
1642 				      enum port port)
1643 {
1644 	enum port port_bc = DISPLAY_VER(display) >= 11 ? PORT_B : PORT_C;
1645 
1646 	if (!panel->vbt.dsi.config->dual_link || display->vbt.version < 197) {
1647 		panel->vbt.dsi.bl_ports = BIT(port);
1648 		if (panel->vbt.dsi.config->cabc_supported)
1649 			panel->vbt.dsi.cabc_ports = BIT(port);
1650 
1651 		return;
1652 	}
1653 
1654 	switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1655 	case DL_DCS_PORT_A:
1656 		panel->vbt.dsi.bl_ports = BIT(PORT_A);
1657 		break;
1658 	case DL_DCS_PORT_C:
1659 		panel->vbt.dsi.bl_ports = BIT(port_bc);
1660 		break;
1661 	default:
1662 	case DL_DCS_PORT_A_AND_C:
1663 		panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1664 		break;
1665 	}
1666 
1667 	if (!panel->vbt.dsi.config->cabc_supported)
1668 		return;
1669 
1670 	switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1671 	case DL_DCS_PORT_A:
1672 		panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1673 		break;
1674 	case DL_DCS_PORT_C:
1675 		panel->vbt.dsi.cabc_ports = BIT(port_bc);
1676 		break;
1677 	default:
1678 	case DL_DCS_PORT_A_AND_C:
1679 		panel->vbt.dsi.cabc_ports =
1680 					BIT(PORT_A) | BIT(port_bc);
1681 		break;
1682 	}
1683 }
1684 
1685 static void
1686 parse_mipi_config(struct intel_display *display,
1687 		  struct intel_panel *panel)
1688 {
1689 	const struct bdb_mipi_config *start;
1690 	const struct mipi_config *config;
1691 	const struct mipi_pps_data *pps;
1692 	int panel_type = panel->vbt.panel_type;
1693 	enum port port;
1694 
1695 	/* parse MIPI blocks only if LFP type is MIPI */
1696 	if (!intel_bios_is_dsi_present(display, &port))
1697 		return;
1698 
1699 	/* Initialize this to undefined indicating no generic MIPI support */
1700 	panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1701 
1702 	start = bdb_find_section(display, BDB_MIPI_CONFIG);
1703 	if (!start) {
1704 		drm_dbg_kms(display->drm, "No MIPI config BDB found");
1705 		return;
1706 	}
1707 
1708 	drm_dbg(display->drm, "Found MIPI Config block, panel index = %d\n",
1709 		panel_type);
1710 
1711 	/*
1712 	 * get hold of the correct configuration block and pps data as per
1713 	 * the panel_type as index
1714 	 */
1715 	config = &start->config[panel_type];
1716 	pps = &start->pps[panel_type];
1717 
1718 	/* store as of now full data. Trim when we realise all is not needed */
1719 	panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1720 	if (!panel->vbt.dsi.config)
1721 		return;
1722 
1723 	panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1724 	if (!panel->vbt.dsi.pps) {
1725 		kfree(panel->vbt.dsi.config);
1726 		return;
1727 	}
1728 
1729 	parse_dsi_backlight_ports(display, panel, port);
1730 
1731 	/* FIXME is the 90 vs. 270 correct? */
1732 	switch (config->rotation) {
1733 	case ENABLE_ROTATION_0:
1734 		/*
1735 		 * Most (all?) VBTs claim 0 degrees despite having
1736 		 * an upside down panel, thus we do not trust this.
1737 		 */
1738 		panel->vbt.dsi.orientation =
1739 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1740 		break;
1741 	case ENABLE_ROTATION_90:
1742 		panel->vbt.dsi.orientation =
1743 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1744 		break;
1745 	case ENABLE_ROTATION_180:
1746 		panel->vbt.dsi.orientation =
1747 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1748 		break;
1749 	case ENABLE_ROTATION_270:
1750 		panel->vbt.dsi.orientation =
1751 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1752 		break;
1753 	}
1754 
1755 	/* We have mandatory mipi config blocks. Initialize as generic panel */
1756 	panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1757 }
1758 
1759 /* Find the sequence block and size for the given panel. */
1760 static const u8 *
1761 find_panel_sequence_block(struct intel_display *display,
1762 			  const struct bdb_mipi_sequence *sequence,
1763 			  u16 panel_id, u32 *seq_size)
1764 {
1765 	u32 total = get_blocksize(sequence);
1766 	const u8 *data = &sequence->data[0];
1767 	u8 current_id;
1768 	u32 current_size;
1769 	int header_size = sequence->version >= 3 ? 5 : 3;
1770 	int index = 0;
1771 	int i;
1772 
1773 	/* skip new block size */
1774 	if (sequence->version >= 3)
1775 		data += 4;
1776 
1777 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1778 		if (index + header_size > total) {
1779 			drm_err(display->drm,
1780 				"Invalid sequence block (header)\n");
1781 			return NULL;
1782 		}
1783 
1784 		current_id = *(data + index);
1785 		if (sequence->version >= 3)
1786 			current_size = *((const u32 *)(data + index + 1));
1787 		else
1788 			current_size = *((const u16 *)(data + index + 1));
1789 
1790 		index += header_size;
1791 
1792 		if (index + current_size > total) {
1793 			drm_err(display->drm, "Invalid sequence block\n");
1794 			return NULL;
1795 		}
1796 
1797 		if (current_id == panel_id) {
1798 			*seq_size = current_size;
1799 			return data + index;
1800 		}
1801 
1802 		index += current_size;
1803 	}
1804 
1805 	drm_err(display->drm,
1806 		"Sequence block detected but no valid configuration\n");
1807 
1808 	return NULL;
1809 }
1810 
1811 static int goto_next_sequence(struct intel_display *display,
1812 			      const u8 *data, int index, int total)
1813 {
1814 	u16 len;
1815 
1816 	/* Skip Sequence Byte. */
1817 	for (index = index + 1; index < total; index += len) {
1818 		u8 operation_byte = *(data + index);
1819 		index++;
1820 
1821 		switch (operation_byte) {
1822 		case MIPI_SEQ_ELEM_END:
1823 			return index;
1824 		case MIPI_SEQ_ELEM_SEND_PKT:
1825 			if (index + 4 > total)
1826 				return 0;
1827 
1828 			len = *((const u16 *)(data + index + 2)) + 4;
1829 			break;
1830 		case MIPI_SEQ_ELEM_DELAY:
1831 			len = 4;
1832 			break;
1833 		case MIPI_SEQ_ELEM_GPIO:
1834 			len = 2;
1835 			break;
1836 		case MIPI_SEQ_ELEM_I2C:
1837 			if (index + 7 > total)
1838 				return 0;
1839 			len = *(data + index + 6) + 7;
1840 			break;
1841 		default:
1842 			drm_err(display->drm, "Unknown operation byte\n");
1843 			return 0;
1844 		}
1845 	}
1846 
1847 	return 0;
1848 }
1849 
1850 static int goto_next_sequence_v3(struct intel_display *display,
1851 				 const u8 *data, int index, int total)
1852 {
1853 	int seq_end;
1854 	u16 len;
1855 	u32 size_of_sequence;
1856 
1857 	/*
1858 	 * Could skip sequence based on Size of Sequence alone, but also do some
1859 	 * checking on the structure.
1860 	 */
1861 	if (total < 5) {
1862 		drm_err(display->drm, "Too small sequence size\n");
1863 		return 0;
1864 	}
1865 
1866 	/* Skip Sequence Byte. */
1867 	index++;
1868 
1869 	/*
1870 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1871 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1872 	 * byte.
1873 	 */
1874 	size_of_sequence = *((const u32 *)(data + index));
1875 	index += 4;
1876 
1877 	seq_end = index + size_of_sequence;
1878 	if (seq_end > total) {
1879 		drm_err(display->drm, "Invalid sequence size\n");
1880 		return 0;
1881 	}
1882 
1883 	for (; index < total; index += len) {
1884 		u8 operation_byte = *(data + index);
1885 		index++;
1886 
1887 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1888 			if (index != seq_end) {
1889 				drm_err(display->drm,
1890 					"Invalid element structure\n");
1891 				return 0;
1892 			}
1893 			return index;
1894 		}
1895 
1896 		len = *(data + index);
1897 		index++;
1898 
1899 		/*
1900 		 * FIXME: Would be nice to check elements like for v1/v2 in
1901 		 * goto_next_sequence() above.
1902 		 */
1903 		switch (operation_byte) {
1904 		case MIPI_SEQ_ELEM_SEND_PKT:
1905 		case MIPI_SEQ_ELEM_DELAY:
1906 		case MIPI_SEQ_ELEM_GPIO:
1907 		case MIPI_SEQ_ELEM_I2C:
1908 		case MIPI_SEQ_ELEM_SPI:
1909 		case MIPI_SEQ_ELEM_PMIC:
1910 			break;
1911 		default:
1912 			drm_err(display->drm, "Unknown operation byte %u\n",
1913 				operation_byte);
1914 			break;
1915 		}
1916 	}
1917 
1918 	return 0;
1919 }
1920 
1921 /*
1922  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1923  * skip all delay + gpio operands and stop at the first DSI packet op.
1924  */
1925 static int get_init_otp_deassert_fragment_len(struct intel_display *display,
1926 					      struct intel_panel *panel)
1927 {
1928 	const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1929 	int index, len;
1930 
1931 	if (drm_WARN_ON(display->drm,
1932 			!data || panel->vbt.dsi.seq_version != 1))
1933 		return 0;
1934 
1935 	/* index = 1 to skip sequence byte */
1936 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1937 		switch (data[index]) {
1938 		case MIPI_SEQ_ELEM_SEND_PKT:
1939 			return index == 1 ? 0 : index;
1940 		case MIPI_SEQ_ELEM_DELAY:
1941 			len = 5; /* 1 byte for operand + uint32 */
1942 			break;
1943 		case MIPI_SEQ_ELEM_GPIO:
1944 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1945 			break;
1946 		default:
1947 			return 0;
1948 		}
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 /*
1955  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1956  * The deassert must be done before calling intel_dsi_device_ready, so for
1957  * these devices we split the init OTP sequence into a deassert sequence and
1958  * the actual init OTP part.
1959  */
1960 static void vlv_fixup_mipi_sequences(struct intel_display *display,
1961 				     struct intel_panel *panel)
1962 {
1963 	u8 *init_otp;
1964 	int len;
1965 
1966 	/* Limit this to v1 vid-mode sequences */
1967 	if (panel->vbt.dsi.config->is_cmd_mode ||
1968 	    panel->vbt.dsi.seq_version != 1)
1969 		return;
1970 
1971 	/* Only do this if there are otp and assert seqs and no deassert seq */
1972 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1973 	    !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1974 	    panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1975 		return;
1976 
1977 	/* The deassert-sequence ends at the first DSI packet */
1978 	len = get_init_otp_deassert_fragment_len(display, panel);
1979 	if (!len)
1980 		return;
1981 
1982 	drm_dbg_kms(display->drm,
1983 		    "Using init OTP fragment to deassert reset\n");
1984 
1985 	/* Copy the fragment, update seq byte and terminate it */
1986 	init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1987 	panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1988 	if (!panel->vbt.dsi.deassert_seq)
1989 		return;
1990 	panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1991 	panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1992 	/* Use the copy for deassert */
1993 	panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1994 		panel->vbt.dsi.deassert_seq;
1995 	/* Replace the last byte of the fragment with init OTP seq byte */
1996 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1997 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1998 	panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1999 }
2000 
2001 /*
2002  * Some machines (eg. Lenovo 82TQ) appear to have broken
2003  * VBT sequences:
2004  * - INIT_OTP is not present at all
2005  * - what should be in INIT_OTP is in DISPLAY_ON
2006  * - what should be in DISPLAY_ON is in BACKLIGHT_ON
2007  *   (along with the actual backlight stuff)
2008  *
2009  * To make those work we simply swap DISPLAY_ON and INIT_OTP.
2010  *
2011  * TODO: Do we need to limit this to specific machines,
2012  *       or examine the contents of the sequences to
2013  *       avoid false positives?
2014  */
2015 static void icl_fixup_mipi_sequences(struct intel_display *display,
2016 				     struct intel_panel *panel)
2017 {
2018 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] &&
2019 	    panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) {
2020 		drm_dbg_kms(display->drm,
2021 			    "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n");
2022 
2023 		swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP],
2024 		     panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]);
2025 	}
2026 }
2027 
2028 static void fixup_mipi_sequences(struct intel_display *display,
2029 				 struct intel_panel *panel)
2030 {
2031 	struct drm_i915_private *i915 = to_i915(display->drm);
2032 
2033 	if (DISPLAY_VER(display) >= 11)
2034 		icl_fixup_mipi_sequences(display, panel);
2035 	else if (IS_VALLEYVIEW(i915))
2036 		vlv_fixup_mipi_sequences(display, panel);
2037 }
2038 
2039 static void
2040 parse_mipi_sequence(struct intel_display *display,
2041 		    struct intel_panel *panel)
2042 {
2043 	int panel_type = panel->vbt.panel_type;
2044 	const struct bdb_mipi_sequence *sequence;
2045 	const u8 *seq_data;
2046 	u32 seq_size;
2047 	u8 *data;
2048 	int index = 0;
2049 
2050 	/* Only our generic panel driver uses the sequence block. */
2051 	if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2052 		return;
2053 
2054 	sequence = bdb_find_section(display, BDB_MIPI_SEQUENCE);
2055 	if (!sequence) {
2056 		drm_dbg_kms(display->drm,
2057 			    "No MIPI Sequence found, parsing complete\n");
2058 		return;
2059 	}
2060 
2061 	/* Fail gracefully for forward incompatible sequence block. */
2062 	if (sequence->version >= 4) {
2063 		drm_err(display->drm,
2064 			"Unable to parse MIPI Sequence Block v%u\n",
2065 			sequence->version);
2066 		return;
2067 	}
2068 
2069 	drm_dbg(display->drm, "Found MIPI sequence block v%u\n",
2070 		sequence->version);
2071 
2072 	seq_data = find_panel_sequence_block(display, sequence, panel_type, &seq_size);
2073 	if (!seq_data)
2074 		return;
2075 
2076 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2077 	if (!data)
2078 		return;
2079 
2080 	/* Parse the sequences, store pointers to each sequence. */
2081 	for (;;) {
2082 		u8 seq_id = *(data + index);
2083 		if (seq_id == MIPI_SEQ_END)
2084 			break;
2085 
2086 		if (seq_id >= MIPI_SEQ_MAX) {
2087 			drm_err(display->drm, "Unknown sequence %u\n",
2088 				seq_id);
2089 			goto err;
2090 		}
2091 
2092 		/* Log about presence of sequences we won't run. */
2093 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2094 			drm_dbg_kms(display->drm,
2095 				    "Unsupported sequence %u\n", seq_id);
2096 
2097 		panel->vbt.dsi.sequence[seq_id] = data + index;
2098 
2099 		if (sequence->version >= 3)
2100 			index = goto_next_sequence_v3(display, data, index, seq_size);
2101 		else
2102 			index = goto_next_sequence(display, data, index, seq_size);
2103 		if (!index) {
2104 			drm_err(display->drm, "Invalid sequence %u\n",
2105 				seq_id);
2106 			goto err;
2107 		}
2108 	}
2109 
2110 	panel->vbt.dsi.data = data;
2111 	panel->vbt.dsi.size = seq_size;
2112 	panel->vbt.dsi.seq_version = sequence->version;
2113 
2114 	fixup_mipi_sequences(display, panel);
2115 
2116 	drm_dbg(display->drm, "MIPI related VBT parsing complete\n");
2117 	return;
2118 
2119 err:
2120 	kfree(data);
2121 	memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2122 }
2123 
2124 static void
2125 parse_compression_parameters(struct intel_display *display)
2126 {
2127 	const struct bdb_compression_parameters *params;
2128 	struct intel_bios_encoder_data *devdata;
2129 	u16 block_size;
2130 	int index;
2131 
2132 	if (display->vbt.version < 198)
2133 		return;
2134 
2135 	params = bdb_find_section(display, BDB_COMPRESSION_PARAMETERS);
2136 	if (params) {
2137 		/* Sanity checks */
2138 		if (params->entry_size != sizeof(params->data[0])) {
2139 			drm_dbg_kms(display->drm,
2140 				    "VBT: unsupported compression param entry size\n");
2141 			return;
2142 		}
2143 
2144 		block_size = get_blocksize(params);
2145 		if (block_size < sizeof(*params)) {
2146 			drm_dbg_kms(display->drm,
2147 				    "VBT: expected 16 compression param entries\n");
2148 			return;
2149 		}
2150 	}
2151 
2152 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
2153 		const struct child_device_config *child = &devdata->child;
2154 
2155 		if (!child->compression_enable)
2156 			continue;
2157 
2158 		if (!params) {
2159 			drm_dbg_kms(display->drm,
2160 				    "VBT: compression params not available\n");
2161 			continue;
2162 		}
2163 
2164 		if (child->compression_method_cps) {
2165 			drm_dbg_kms(display->drm,
2166 				    "VBT: CPS compression not supported\n");
2167 			continue;
2168 		}
2169 
2170 		index = child->compression_structure_index;
2171 
2172 		devdata->dsc = kmemdup(&params->data[index],
2173 				       sizeof(*devdata->dsc), GFP_KERNEL);
2174 	}
2175 }
2176 
2177 static u8 translate_iboost(struct intel_display *display, u8 val)
2178 {
2179 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2180 
2181 	if (val >= ARRAY_SIZE(mapping)) {
2182 		drm_dbg_kms(display->drm,
2183 			    "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2184 		return 0;
2185 	}
2186 	return mapping[val];
2187 }
2188 
2189 static const u8 cnp_ddc_pin_map[] = {
2190 	[0] = 0, /* N/A */
2191 	[GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2192 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2193 	[GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2194 	[GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2195 };
2196 
2197 static const u8 icp_ddc_pin_map[] = {
2198 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2199 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2200 	[GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2201 	[GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2202 	[GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2203 	[GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2204 	[GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2205 	[GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2206 	[GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2207 };
2208 
2209 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2210 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2211 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2212 	[GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2213 	[GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2214 };
2215 
2216 static const u8 adls_ddc_pin_map[] = {
2217 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2218 	[GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2219 	[GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2220 	[GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2221 	[GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2222 };
2223 
2224 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2225 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2226 	[GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2227 	[GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2228 };
2229 
2230 static const u8 adlp_ddc_pin_map[] = {
2231 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2232 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2233 	[GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2234 	[GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2235 	[GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2236 	[GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2237 };
2238 
2239 static u8 map_ddc_pin(struct intel_display *display, u8 vbt_pin)
2240 {
2241 	struct drm_i915_private *i915 = to_i915(display->drm);
2242 	const u8 *ddc_pin_map;
2243 	int i, n_entries;
2244 
2245 	if (INTEL_PCH_TYPE(i915) >= PCH_MTL || IS_ALDERLAKE_P(i915)) {
2246 		ddc_pin_map = adlp_ddc_pin_map;
2247 		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2248 	} else if (IS_ALDERLAKE_S(i915)) {
2249 		ddc_pin_map = adls_ddc_pin_map;
2250 		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2251 	} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2252 		return vbt_pin;
2253 	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2254 		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2255 		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2256 	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(display) == 9) {
2257 		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2258 		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2259 	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2260 		ddc_pin_map = icp_ddc_pin_map;
2261 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2262 	} else if (HAS_PCH_CNP(i915)) {
2263 		ddc_pin_map = cnp_ddc_pin_map;
2264 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2265 	} else {
2266 		/* Assuming direct map */
2267 		return vbt_pin;
2268 	}
2269 
2270 	for (i = 0; i < n_entries; i++) {
2271 		if (ddc_pin_map[i] == vbt_pin)
2272 			return i;
2273 	}
2274 
2275 	drm_dbg_kms(display->drm,
2276 		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2277 		    vbt_pin);
2278 	return 0;
2279 }
2280 
2281 static u8 dvo_port_type(u8 dvo_port)
2282 {
2283 	switch (dvo_port) {
2284 	case DVO_PORT_HDMIA:
2285 	case DVO_PORT_HDMIB:
2286 	case DVO_PORT_HDMIC:
2287 	case DVO_PORT_HDMID:
2288 	case DVO_PORT_HDMIE:
2289 	case DVO_PORT_HDMIF:
2290 	case DVO_PORT_HDMIG:
2291 	case DVO_PORT_HDMIH:
2292 	case DVO_PORT_HDMII:
2293 		return DVO_PORT_HDMIA;
2294 	case DVO_PORT_DPA:
2295 	case DVO_PORT_DPB:
2296 	case DVO_PORT_DPC:
2297 	case DVO_PORT_DPD:
2298 	case DVO_PORT_DPE:
2299 	case DVO_PORT_DPF:
2300 	case DVO_PORT_DPG:
2301 	case DVO_PORT_DPH:
2302 	case DVO_PORT_DPI:
2303 		return DVO_PORT_DPA;
2304 	case DVO_PORT_MIPIA:
2305 	case DVO_PORT_MIPIB:
2306 	case DVO_PORT_MIPIC:
2307 	case DVO_PORT_MIPID:
2308 		return DVO_PORT_MIPIA;
2309 	default:
2310 		return dvo_port;
2311 	}
2312 }
2313 
2314 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2315 				    const int port_mapping[][3], u8 dvo_port)
2316 {
2317 	enum port port;
2318 	int i;
2319 
2320 	for (port = PORT_A; port < n_ports; port++) {
2321 		for (i = 0; i < n_dvo; i++) {
2322 			if (port_mapping[port][i] == -1)
2323 				break;
2324 
2325 			if (dvo_port == port_mapping[port][i])
2326 				return port;
2327 		}
2328 	}
2329 
2330 	return PORT_NONE;
2331 }
2332 
2333 static enum port dvo_port_to_port(struct intel_display *display,
2334 				  u8 dvo_port)
2335 {
2336 	struct drm_i915_private *i915 = to_i915(display->drm);
2337 	/*
2338 	 * Each DDI port can have more than one value on the "DVO Port" field,
2339 	 * so look for all the possible values for each port.
2340 	 */
2341 	static const int port_mapping[][3] = {
2342 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2343 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2344 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2345 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2346 		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2347 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2348 		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2349 		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2350 		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2351 	};
2352 	/*
2353 	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2354 	 * map to DDI A,B,TC1,TC2 respectively.
2355 	 */
2356 	static const int rkl_port_mapping[][3] = {
2357 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2358 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2359 		[PORT_C] = { -1 },
2360 		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2361 		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2362 	};
2363 	/*
2364 	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2365 	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2366 	 */
2367 	static const int adls_port_mapping[][3] = {
2368 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2369 		[PORT_B] = { -1 },
2370 		[PORT_C] = { -1 },
2371 		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2372 		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2373 		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2374 		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2375 	};
2376 	static const int xelpd_port_mapping[][3] = {
2377 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2378 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2379 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2380 		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2381 		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2382 		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2383 		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2384 		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2385 		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2386 	};
2387 
2388 	if (DISPLAY_VER(display) >= 13)
2389 		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2390 					  ARRAY_SIZE(xelpd_port_mapping[0]),
2391 					  xelpd_port_mapping,
2392 					  dvo_port);
2393 	else if (IS_ALDERLAKE_S(i915))
2394 		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2395 					  ARRAY_SIZE(adls_port_mapping[0]),
2396 					  adls_port_mapping,
2397 					  dvo_port);
2398 	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2399 		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2400 					  ARRAY_SIZE(rkl_port_mapping[0]),
2401 					  rkl_port_mapping,
2402 					  dvo_port);
2403 	else
2404 		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2405 					  ARRAY_SIZE(port_mapping[0]),
2406 					  port_mapping,
2407 					  dvo_port);
2408 }
2409 
2410 static enum port
2411 dsi_dvo_port_to_port(struct intel_display *display, u8 dvo_port)
2412 {
2413 	switch (dvo_port) {
2414 	case DVO_PORT_MIPIA:
2415 		return PORT_A;
2416 	case DVO_PORT_MIPIC:
2417 		if (DISPLAY_VER(display) >= 11)
2418 			return PORT_B;
2419 		else
2420 			return PORT_C;
2421 	default:
2422 		return PORT_NONE;
2423 	}
2424 }
2425 
2426 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2427 {
2428 	struct intel_display *display = devdata->display;
2429 	const struct child_device_config *child = &devdata->child;
2430 	enum port port;
2431 
2432 	port = dvo_port_to_port(display, child->dvo_port);
2433 	if (port == PORT_NONE && DISPLAY_VER(display) >= 11)
2434 		port = dsi_dvo_port_to_port(display, child->dvo_port);
2435 
2436 	return port;
2437 }
2438 
2439 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2440 {
2441 	switch (vbt_max_link_rate) {
2442 	default:
2443 	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2444 		return 0;
2445 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2446 		return 2000000;
2447 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2448 		return 1350000;
2449 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2450 		return 1000000;
2451 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2452 		return 810000;
2453 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2454 		return 540000;
2455 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2456 		return 270000;
2457 	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2458 		return 162000;
2459 	}
2460 }
2461 
2462 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2463 {
2464 	switch (vbt_max_link_rate) {
2465 	default:
2466 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2467 		return 810000;
2468 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2469 		return 540000;
2470 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2471 		return 270000;
2472 	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2473 		return 162000;
2474 	}
2475 }
2476 
2477 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2478 {
2479 	if (!devdata || devdata->display->vbt.version < 216)
2480 		return 0;
2481 
2482 	if (devdata->display->vbt.version >= 230)
2483 		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2484 	else
2485 		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2486 }
2487 
2488 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2489 {
2490 	if (!devdata || devdata->display->vbt.version < 244)
2491 		return 0;
2492 
2493 	return devdata->child.dp_max_lane_count + 1;
2494 }
2495 
2496 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2497 				 enum port port)
2498 {
2499 	struct intel_display *display = devdata->display;
2500 	bool is_hdmi;
2501 
2502 	if (port != PORT_A || DISPLAY_VER(display) >= 12)
2503 		return;
2504 
2505 	if (!intel_bios_encoder_supports_dvi(devdata))
2506 		return;
2507 
2508 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2509 
2510 	drm_dbg_kms(display->drm, "VBT claims port A supports DVI%s, ignoring\n",
2511 		    is_hdmi ? "/HDMI" : "");
2512 
2513 	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2514 	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2515 }
2516 
2517 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata,
2518 				      enum port port)
2519 {
2520 	struct intel_display *display = devdata->display;
2521 	struct drm_i915_private *i915 = to_i915(display->drm);
2522 
2523 	if (!intel_bios_encoder_supports_dvi(devdata))
2524 		return;
2525 
2526 	/*
2527 	 * Some BDW machines (eg. HP Pavilion 15-ab) shipped
2528 	 * with a HSW VBT where the level shifter value goes
2529 	 * up to 11, whereas the BDW max is 9.
2530 	 */
2531 	if (IS_BROADWELL(i915) && devdata->child.hdmi_level_shifter_value > 9) {
2532 		drm_dbg_kms(display->drm,
2533 			    "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n",
2534 			    port_name(port), devdata->child.hdmi_level_shifter_value, 9);
2535 
2536 		devdata->child.hdmi_level_shifter_value = 9;
2537 	}
2538 }
2539 
2540 static bool
2541 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2542 {
2543 	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2544 }
2545 
2546 bool
2547 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2548 {
2549 	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2550 }
2551 
2552 bool
2553 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2554 {
2555 	return intel_bios_encoder_supports_dvi(devdata) &&
2556 		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2557 }
2558 
2559 bool
2560 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2561 {
2562 	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2563 }
2564 
2565 bool
2566 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2567 {
2568 	return intel_bios_encoder_supports_dp(devdata) &&
2569 		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2570 }
2571 
2572 bool
2573 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2574 {
2575 	return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2576 }
2577 
2578 bool
2579 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2580 {
2581 	return devdata && HAS_LSPCON(devdata->display) && devdata->child.lspcon;
2582 }
2583 
2584 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
2585 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2586 {
2587 	if (!devdata || devdata->display->vbt.version < 158 ||
2588 	    DISPLAY_VER(devdata->display) >= 14)
2589 		return -1;
2590 
2591 	return devdata->child.hdmi_level_shifter_value;
2592 }
2593 
2594 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2595 {
2596 	if (!devdata || devdata->display->vbt.version < 204)
2597 		return 0;
2598 
2599 	switch (devdata->child.hdmi_max_data_rate) {
2600 	default:
2601 		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2602 		fallthrough;
2603 	case HDMI_MAX_DATA_RATE_PLATFORM:
2604 		return 0;
2605 	case HDMI_MAX_DATA_RATE_594:
2606 		return 594000;
2607 	case HDMI_MAX_DATA_RATE_340:
2608 		return 340000;
2609 	case HDMI_MAX_DATA_RATE_300:
2610 		return 300000;
2611 	case HDMI_MAX_DATA_RATE_297:
2612 		return 297000;
2613 	case HDMI_MAX_DATA_RATE_165:
2614 		return 165000;
2615 	}
2616 }
2617 
2618 static bool is_port_valid(struct intel_display *display, enum port port)
2619 {
2620 	struct drm_i915_private *i915 = to_i915(display->drm);
2621 	/*
2622 	 * On some ICL SKUs port F is not present, but broken VBTs mark
2623 	 * the port as present. Only try to initialize port F for the
2624 	 * SKUs that may actually have it.
2625 	 */
2626 	if (port == PORT_F && IS_ICELAKE(i915))
2627 		return IS_ICL_WITH_PORT_F(i915);
2628 
2629 	return true;
2630 }
2631 
2632 static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2633 {
2634 	struct intel_display *display = devdata->display;
2635 	const struct child_device_config *child = &devdata->child;
2636 	bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2637 	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2638 	enum port port;
2639 
2640 	port = intel_bios_encoder_port(devdata);
2641 	if (port == PORT_NONE)
2642 		return;
2643 
2644 	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2645 	is_dp = intel_bios_encoder_supports_dp(devdata);
2646 	is_crt = intel_bios_encoder_supports_crt(devdata);
2647 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2648 	is_edp = intel_bios_encoder_supports_edp(devdata);
2649 	is_dsi = intel_bios_encoder_supports_dsi(devdata);
2650 
2651 	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2652 	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2653 
2654 	drm_dbg_kms(display->drm,
2655 		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2656 		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2657 		    intel_bios_encoder_supports_dp_dual_mode(devdata),
2658 		    intel_bios_encoder_is_lspcon(devdata),
2659 		    supports_typec_usb, supports_tbt,
2660 		    devdata->dsc != NULL);
2661 
2662 	hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2663 	if (hdmi_level_shift >= 0) {
2664 		drm_dbg_kms(display->drm,
2665 			    "Port %c VBT HDMI level shift: %d\n",
2666 			    port_name(port), hdmi_level_shift);
2667 	}
2668 
2669 	max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2670 	if (max_tmds_clock)
2671 		drm_dbg_kms(display->drm,
2672 			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2673 			    port_name(port), max_tmds_clock);
2674 
2675 	/* I_boost config for SKL and above */
2676 	dp_boost_level = intel_bios_dp_boost_level(devdata);
2677 	if (dp_boost_level)
2678 		drm_dbg_kms(display->drm,
2679 			    "Port %c VBT (e)DP boost level: %d\n",
2680 			    port_name(port), dp_boost_level);
2681 
2682 	hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2683 	if (hdmi_boost_level)
2684 		drm_dbg_kms(display->drm,
2685 			    "Port %c VBT HDMI boost level: %d\n",
2686 			    port_name(port), hdmi_boost_level);
2687 
2688 	dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2689 	if (dp_max_link_rate)
2690 		drm_dbg_kms(display->drm,
2691 			    "Port %c VBT DP max link rate: %d\n",
2692 			    port_name(port), dp_max_link_rate);
2693 
2694 	/*
2695 	 * FIXME need to implement support for VBT
2696 	 * vswing/preemph tables should this ever trigger.
2697 	 */
2698 	drm_WARN(display->drm, child->use_vbt_vswing,
2699 		 "Port %c asks to use VBT vswing/preemph tables\n",
2700 		 port_name(port));
2701 }
2702 
2703 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2704 {
2705 	struct intel_display *display = devdata->display;
2706 	enum port port;
2707 
2708 	port = intel_bios_encoder_port(devdata);
2709 	if (port == PORT_NONE)
2710 		return;
2711 
2712 	if (!is_port_valid(display, port)) {
2713 		drm_dbg_kms(display->drm,
2714 			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2715 			    port_name(port));
2716 		return;
2717 	}
2718 
2719 	sanitize_device_type(devdata, port);
2720 	sanitize_hdmi_level_shift(devdata, port);
2721 }
2722 
2723 static bool has_ddi_port_info(struct intel_display *display)
2724 {
2725 	struct drm_i915_private *i915 = to_i915(display->drm);
2726 
2727 	return DISPLAY_VER(display) >= 5 || IS_G4X(i915);
2728 }
2729 
2730 static void parse_ddi_ports(struct intel_display *display)
2731 {
2732 	struct intel_bios_encoder_data *devdata;
2733 
2734 	if (!has_ddi_port_info(display))
2735 		return;
2736 
2737 	list_for_each_entry(devdata, &display->vbt.display_devices, node)
2738 		parse_ddi_port(devdata);
2739 
2740 	list_for_each_entry(devdata, &display->vbt.display_devices, node)
2741 		print_ddi_port(devdata);
2742 }
2743 
2744 static int child_device_expected_size(u16 version)
2745 {
2746 	BUILD_BUG_ON(sizeof(struct child_device_config) < 40);
2747 
2748 	if (version > 256)
2749 		return -ENOENT;
2750 	else if (version >= 256)
2751 		return 40;
2752 	else if (version >= 216)
2753 		return 39;
2754 	else if (version >= 196)
2755 		return 38;
2756 	else if (version >= 195)
2757 		return 37;
2758 	else if (version >= 111)
2759 		return LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2760 	else if (version >= 106)
2761 		return 27;
2762 	else
2763 		return 22;
2764 }
2765 
2766 static bool child_device_size_valid(struct intel_display *display, int size)
2767 {
2768 	int expected_size;
2769 
2770 	expected_size = child_device_expected_size(display->vbt.version);
2771 	if (expected_size < 0) {
2772 		expected_size = sizeof(struct child_device_config);
2773 		drm_dbg(display->drm,
2774 			"Expected child device config size for VBT version %u not known; assuming %d\n",
2775 			display->vbt.version, expected_size);
2776 	}
2777 
2778 	/* Flag an error for unexpected size, but continue anyway. */
2779 	if (size != expected_size)
2780 		drm_err(display->drm,
2781 			"Unexpected child device config size %d (expected %d for VBT version %u)\n",
2782 			size, expected_size, display->vbt.version);
2783 
2784 	/* The legacy sized child device config is the minimum we need. */
2785 	if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2786 		drm_dbg_kms(display->drm,
2787 			    "Child device config size %d is too small.\n",
2788 			    size);
2789 		return false;
2790 	}
2791 
2792 	return true;
2793 }
2794 
2795 static void
2796 parse_general_definitions(struct intel_display *display)
2797 {
2798 	struct drm_i915_private *i915 = to_i915(display->drm);
2799 	const struct bdb_general_definitions *defs;
2800 	struct intel_bios_encoder_data *devdata;
2801 	const struct child_device_config *child;
2802 	int i, child_device_num;
2803 	u16 block_size;
2804 	int bus_pin;
2805 
2806 	defs = bdb_find_section(display, BDB_GENERAL_DEFINITIONS);
2807 	if (!defs) {
2808 		drm_dbg_kms(display->drm,
2809 			    "No general definition block is found, no devices defined.\n");
2810 		return;
2811 	}
2812 
2813 	block_size = get_blocksize(defs);
2814 	if (block_size < sizeof(*defs)) {
2815 		drm_dbg_kms(display->drm,
2816 			    "General definitions block too small (%u)\n",
2817 			    block_size);
2818 		return;
2819 	}
2820 
2821 	bus_pin = defs->crt_ddc_gmbus_pin;
2822 	drm_dbg_kms(display->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2823 	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2824 		display->vbt.crt_ddc_pin = bus_pin;
2825 
2826 	if (!child_device_size_valid(display, defs->child_dev_size))
2827 		return;
2828 
2829 	/* get the number of child device */
2830 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2831 
2832 	for (i = 0; i < child_device_num; i++) {
2833 		child = child_device_ptr(defs, i);
2834 		if (!child->device_type)
2835 			continue;
2836 
2837 		drm_dbg_kms(display->drm,
2838 			    "Found VBT child device with type 0x%x\n",
2839 			    child->device_type);
2840 
2841 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2842 		if (!devdata)
2843 			break;
2844 
2845 		devdata->display = display;
2846 
2847 		/*
2848 		 * Copy as much as we know (sizeof) and is available
2849 		 * (child_dev_size) of the child device config. Accessing the
2850 		 * data must depend on VBT version.
2851 		 */
2852 		memcpy(&devdata->child, child,
2853 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2854 
2855 		list_add_tail(&devdata->node, &display->vbt.display_devices);
2856 	}
2857 
2858 	if (list_empty(&display->vbt.display_devices))
2859 		drm_dbg_kms(display->drm,
2860 			    "no child dev is parsed from VBT\n");
2861 }
2862 
2863 /* Common defaults which may be overridden by VBT. */
2864 static void
2865 init_vbt_defaults(struct intel_display *display)
2866 {
2867 	struct drm_i915_private *i915 = to_i915(display->drm);
2868 
2869 	display->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2870 
2871 	/* general features */
2872 	display->vbt.int_tv_support = 1;
2873 	display->vbt.int_crt_support = 1;
2874 
2875 	/* driver features */
2876 	display->vbt.int_lvds_support = 1;
2877 
2878 	/* Default to using SSC */
2879 	display->vbt.lvds_use_ssc = 1;
2880 	/*
2881 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2882 	 * clock for LVDS.
2883 	 */
2884 	display->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(display,
2885 							      !HAS_PCH_SPLIT(i915));
2886 	drm_dbg_kms(display->drm, "Set default to SSC at %d kHz\n",
2887 		    display->vbt.lvds_ssc_freq);
2888 }
2889 
2890 /* Common defaults which may be overridden by VBT. */
2891 static void
2892 init_vbt_panel_defaults(struct intel_panel *panel)
2893 {
2894 	/* Default to having backlight */
2895 	panel->vbt.backlight.present = true;
2896 
2897 	/* LFP panel data */
2898 	panel->vbt.lvds_dither = true;
2899 }
2900 
2901 /* Defaults to initialize only if there is no VBT. */
2902 static void
2903 init_vbt_missing_defaults(struct intel_display *display)
2904 {
2905 	struct drm_i915_private *i915 = to_i915(display->drm);
2906 	unsigned int ports = DISPLAY_RUNTIME_INFO(display)->port_mask;
2907 	enum port port;
2908 
2909 	if (!HAS_DDI(display) && !IS_CHERRYVIEW(i915))
2910 		return;
2911 
2912 	for_each_port_masked(port, ports) {
2913 		struct intel_bios_encoder_data *devdata;
2914 		struct child_device_config *child;
2915 		enum phy phy = intel_port_to_phy(i915, port);
2916 
2917 		/*
2918 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2919 		 * to detect it.
2920 		 */
2921 		if (intel_phy_is_tc(i915, phy))
2922 			continue;
2923 
2924 		/* Create fake child device config */
2925 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2926 		if (!devdata)
2927 			break;
2928 
2929 		devdata->display = display;
2930 		child = &devdata->child;
2931 
2932 		if (port == PORT_F)
2933 			child->dvo_port = DVO_PORT_HDMIF;
2934 		else if (port == PORT_E)
2935 			child->dvo_port = DVO_PORT_HDMIE;
2936 		else
2937 			child->dvo_port = DVO_PORT_HDMIA + port;
2938 
2939 		if (port != PORT_A && port != PORT_E)
2940 			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2941 
2942 		if (port != PORT_E)
2943 			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2944 
2945 		if (port == PORT_A)
2946 			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2947 
2948 		list_add_tail(&devdata->node, &display->vbt.display_devices);
2949 
2950 		drm_dbg_kms(display->drm,
2951 			    "Generating default VBT child device with type 0x%04x on port %c\n",
2952 			    child->device_type, port_name(port));
2953 	}
2954 
2955 	/* Bypass some minimum baseline VBT version checks */
2956 	display->vbt.version = 155;
2957 }
2958 
2959 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2960 {
2961 	const void *_vbt = vbt;
2962 
2963 	return _vbt + vbt->bdb_offset;
2964 }
2965 
2966 /**
2967  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2968  * @display:	display device
2969  * @buf:	pointer to a buffer to validate
2970  * @size:	size of the buffer
2971  *
2972  * Returns true on valid VBT.
2973  */
2974 bool intel_bios_is_valid_vbt(struct intel_display *display,
2975 			     const void *buf, size_t size)
2976 {
2977 	const struct vbt_header *vbt = buf;
2978 	const struct bdb_header *bdb;
2979 
2980 	if (!vbt)
2981 		return false;
2982 
2983 	if (sizeof(struct vbt_header) > size) {
2984 		drm_dbg_kms(display->drm, "VBT header incomplete\n");
2985 		return false;
2986 	}
2987 
2988 	if (memcmp(vbt->signature, "$VBT", 4)) {
2989 		drm_dbg_kms(display->drm, "VBT invalid signature\n");
2990 		return false;
2991 	}
2992 
2993 	if (vbt->vbt_size > size) {
2994 		drm_dbg_kms(display->drm,
2995 			    "VBT incomplete (vbt_size overflows)\n");
2996 		return false;
2997 	}
2998 
2999 	size = vbt->vbt_size;
3000 
3001 	if (range_overflows_t(size_t,
3002 			      vbt->bdb_offset,
3003 			      sizeof(struct bdb_header),
3004 			      size)) {
3005 		drm_dbg_kms(display->drm, "BDB header incomplete\n");
3006 		return false;
3007 	}
3008 
3009 	bdb = get_bdb_header(vbt);
3010 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
3011 		drm_dbg_kms(display->drm, "BDB incomplete\n");
3012 		return false;
3013 	}
3014 
3015 	return vbt;
3016 }
3017 
3018 static struct vbt_header *firmware_get_vbt(struct intel_display *display,
3019 					   size_t *size)
3020 {
3021 	struct vbt_header *vbt = NULL;
3022 	const struct firmware *fw = NULL;
3023 	const char *name = display->params.vbt_firmware;
3024 	int ret;
3025 
3026 	if (!name || !*name)
3027 		return NULL;
3028 
3029 	ret = request_firmware(&fw, name, display->drm->dev);
3030 	if (ret) {
3031 		drm_err(display->drm,
3032 			"Requesting VBT firmware \"%s\" failed (%d)\n",
3033 			name, ret);
3034 		return NULL;
3035 	}
3036 
3037 	if (intel_bios_is_valid_vbt(display, fw->data, fw->size)) {
3038 		vbt = kmemdup(fw->data, fw->size, GFP_KERNEL);
3039 		if (vbt) {
3040 			drm_dbg_kms(display->drm,
3041 				    "Found valid VBT firmware \"%s\"\n", name);
3042 			if (size)
3043 				*size = fw->size;
3044 		}
3045 	} else {
3046 		drm_dbg_kms(display->drm, "Invalid VBT firmware \"%s\"\n",
3047 			    name);
3048 	}
3049 
3050 	release_firmware(fw);
3051 
3052 	return vbt;
3053 }
3054 
3055 static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset)
3056 {
3057 	intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset);
3058 
3059 	return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER);
3060 }
3061 
3062 static struct vbt_header *spi_oprom_get_vbt(struct intel_display *display,
3063 					    size_t *size)
3064 {
3065 	struct drm_i915_private *i915 = to_i915(display->drm);
3066 	u32 count, data, found, store = 0;
3067 	u32 static_region, oprom_offset;
3068 	u32 oprom_size = 0x200000;
3069 	u16 vbt_size;
3070 	u32 *vbt;
3071 
3072 	static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
3073 	static_region &= OPTIONROM_SPI_REGIONID_MASK;
3074 	intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
3075 
3076 	oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
3077 	oprom_offset &= OROM_OFFSET_MASK;
3078 
3079 	for (count = 0; count < oprom_size; count += 4) {
3080 		data = intel_spi_read(&i915->uncore, oprom_offset + count);
3081 		if (data == *((const u32 *)"$VBT")) {
3082 			found = oprom_offset + count;
3083 			break;
3084 		}
3085 	}
3086 
3087 	if (count >= oprom_size)
3088 		goto err_not_found;
3089 
3090 	/* Get VBT size and allocate space for the VBT */
3091 	vbt_size = intel_spi_read(&i915->uncore,
3092 				  found + offsetof(struct vbt_header, vbt_size));
3093 	vbt_size &= 0xffff;
3094 
3095 	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3096 	if (!vbt)
3097 		goto err_not_found;
3098 
3099 	for (count = 0; count < vbt_size; count += 4)
3100 		*(vbt + store++) = intel_spi_read(&i915->uncore, found + count);
3101 
3102 	if (!intel_bios_is_valid_vbt(display, vbt, vbt_size))
3103 		goto err_free_vbt;
3104 
3105 	drm_dbg_kms(display->drm, "Found valid VBT in SPI flash\n");
3106 
3107 	if (size)
3108 		*size = vbt_size;
3109 
3110 	return (struct vbt_header *)vbt;
3111 
3112 err_free_vbt:
3113 	kfree(vbt);
3114 err_not_found:
3115 	return NULL;
3116 }
3117 
3118 static struct vbt_header *oprom_get_vbt(struct intel_display *display,
3119 					size_t *sizep)
3120 {
3121 	struct pci_dev *pdev = to_pci_dev(display->drm->dev);
3122 	void __iomem *p = NULL, *oprom;
3123 	struct vbt_header *vbt;
3124 	u16 vbt_size;
3125 	size_t i, size;
3126 
3127 	oprom = pci_map_rom(pdev, &size);
3128 	if (!oprom)
3129 		return NULL;
3130 
3131 	/* Scour memory looking for the VBT signature. */
3132 	for (i = 0; i + 4 < size; i += 4) {
3133 		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3134 			continue;
3135 
3136 		p = oprom + i;
3137 		size -= i;
3138 		break;
3139 	}
3140 
3141 	if (!p)
3142 		goto err_unmap_oprom;
3143 
3144 	if (sizeof(struct vbt_header) > size) {
3145 		drm_dbg(display->drm, "VBT header incomplete\n");
3146 		goto err_unmap_oprom;
3147 	}
3148 
3149 	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3150 	if (vbt_size > size) {
3151 		drm_dbg(display->drm,
3152 			"VBT incomplete (vbt_size overflows)\n");
3153 		goto err_unmap_oprom;
3154 	}
3155 
3156 	/* The rest will be validated by intel_bios_is_valid_vbt() */
3157 	vbt = kmalloc(vbt_size, GFP_KERNEL);
3158 	if (!vbt)
3159 		goto err_unmap_oprom;
3160 
3161 	memcpy_fromio(vbt, p, vbt_size);
3162 
3163 	if (!intel_bios_is_valid_vbt(display, vbt, vbt_size))
3164 		goto err_free_vbt;
3165 
3166 	pci_unmap_rom(pdev, oprom);
3167 
3168 	if (sizep)
3169 		*sizep = vbt_size;
3170 
3171 	drm_dbg_kms(display->drm, "Found valid VBT in PCI ROM\n");
3172 
3173 	return vbt;
3174 
3175 err_free_vbt:
3176 	kfree(vbt);
3177 err_unmap_oprom:
3178 	pci_unmap_rom(pdev, oprom);
3179 
3180 	return NULL;
3181 }
3182 
3183 static const struct vbt_header *intel_bios_get_vbt(struct intel_display *display,
3184 						   size_t *sizep)
3185 {
3186 	struct drm_i915_private *i915 = to_i915(display->drm);
3187 	const struct vbt_header *vbt = NULL;
3188 	intel_wakeref_t wakeref;
3189 
3190 	vbt = firmware_get_vbt(display, sizep);
3191 
3192 	if (!vbt)
3193 		vbt = intel_opregion_get_vbt(display, sizep);
3194 
3195 	/*
3196 	 * If the OpRegion does not have VBT, look in SPI flash
3197 	 * through MMIO or PCI mapping
3198 	 */
3199 	if (!vbt && IS_DGFX(i915))
3200 		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
3201 			vbt = spi_oprom_get_vbt(display, sizep);
3202 
3203 	if (!vbt)
3204 		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
3205 			vbt = oprom_get_vbt(display, sizep);
3206 
3207 	return vbt;
3208 }
3209 
3210 /**
3211  * intel_bios_init - find VBT and initialize settings from the BIOS
3212  * @display: display device instance
3213  *
3214  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3215  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3216  * initialize some defaults if the VBT is not present at all.
3217  */
3218 void intel_bios_init(struct intel_display *display)
3219 {
3220 	const struct vbt_header *vbt;
3221 	const struct bdb_header *bdb;
3222 
3223 	INIT_LIST_HEAD(&display->vbt.display_devices);
3224 	INIT_LIST_HEAD(&display->vbt.bdb_blocks);
3225 
3226 	if (!HAS_DISPLAY(display)) {
3227 		drm_dbg_kms(display->drm,
3228 			    "Skipping VBT init due to disabled display.\n");
3229 		return;
3230 	}
3231 
3232 	init_vbt_defaults(display);
3233 
3234 	vbt = intel_bios_get_vbt(display, NULL);
3235 
3236 	if (!vbt)
3237 		goto out;
3238 
3239 	bdb = get_bdb_header(vbt);
3240 	display->vbt.version = bdb->version;
3241 
3242 	drm_dbg_kms(display->drm,
3243 		    "VBT signature \"%.*s\", BDB version %d\n",
3244 		    (int)sizeof(vbt->signature), vbt->signature,
3245 		    display->vbt.version);
3246 
3247 	init_bdb_blocks(display, bdb);
3248 
3249 	/* Grab useful general definitions */
3250 	parse_general_features(display);
3251 	parse_general_definitions(display);
3252 	parse_driver_features(display);
3253 
3254 	/* Depends on child device list */
3255 	parse_compression_parameters(display);
3256 
3257 out:
3258 	if (!vbt) {
3259 		drm_info(display->drm,
3260 			 "Failed to find VBIOS tables (VBT)\n");
3261 		init_vbt_missing_defaults(display);
3262 	}
3263 
3264 	/* Further processing on pre-parsed or generated child device data */
3265 	parse_sdvo_device_mapping(display);
3266 	parse_ddi_ports(display);
3267 
3268 	kfree(vbt);
3269 }
3270 
3271 static void intel_bios_init_panel(struct intel_display *display,
3272 				  struct intel_panel *panel,
3273 				  const struct intel_bios_encoder_data *devdata,
3274 				  const struct drm_edid *drm_edid,
3275 				  bool use_fallback)
3276 {
3277 	/* already have it? */
3278 	if (panel->vbt.panel_type >= 0) {
3279 		drm_WARN_ON(display->drm, !use_fallback);
3280 		return;
3281 	}
3282 
3283 	panel->vbt.panel_type = get_panel_type(display, devdata,
3284 					       drm_edid, use_fallback);
3285 	if (panel->vbt.panel_type < 0) {
3286 		drm_WARN_ON(display->drm, use_fallback);
3287 		return;
3288 	}
3289 
3290 	init_vbt_panel_defaults(panel);
3291 
3292 	parse_panel_options(display, panel);
3293 	parse_generic_dtd(display, panel);
3294 	parse_lfp_data(display, panel);
3295 	parse_lfp_backlight(display, panel);
3296 	parse_sdvo_lvds_data(display, panel);
3297 	parse_panel_driver_features(display, panel);
3298 	parse_power_conservation_features(display, panel);
3299 	parse_edp(display, panel);
3300 	parse_psr(display, panel);
3301 	parse_mipi_config(display, panel);
3302 	parse_mipi_sequence(display, panel);
3303 }
3304 
3305 void intel_bios_init_panel_early(struct intel_display *display,
3306 				 struct intel_panel *panel,
3307 				 const struct intel_bios_encoder_data *devdata)
3308 {
3309 	intel_bios_init_panel(display, panel, devdata, NULL, false);
3310 }
3311 
3312 void intel_bios_init_panel_late(struct intel_display *display,
3313 				struct intel_panel *panel,
3314 				const struct intel_bios_encoder_data *devdata,
3315 				const struct drm_edid *drm_edid)
3316 {
3317 	intel_bios_init_panel(display, panel, devdata, drm_edid, true);
3318 }
3319 
3320 /**
3321  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3322  * @display: display device instance
3323  */
3324 void intel_bios_driver_remove(struct intel_display *display)
3325 {
3326 	struct intel_bios_encoder_data *devdata, *nd;
3327 	struct bdb_block_entry *entry, *ne;
3328 
3329 	list_for_each_entry_safe(devdata, nd, &display->vbt.display_devices,
3330 				 node) {
3331 		list_del(&devdata->node);
3332 		kfree(devdata->dsc);
3333 		kfree(devdata);
3334 	}
3335 
3336 	list_for_each_entry_safe(entry, ne, &display->vbt.bdb_blocks, node) {
3337 		list_del(&entry->node);
3338 		kfree(entry);
3339 	}
3340 }
3341 
3342 void intel_bios_fini_panel(struct intel_panel *panel)
3343 {
3344 	kfree(panel->vbt.sdvo_lvds_vbt_mode);
3345 	panel->vbt.sdvo_lvds_vbt_mode = NULL;
3346 	kfree(panel->vbt.lfp_vbt_mode);
3347 	panel->vbt.lfp_vbt_mode = NULL;
3348 	kfree(panel->vbt.dsi.data);
3349 	panel->vbt.dsi.data = NULL;
3350 	kfree(panel->vbt.dsi.pps);
3351 	panel->vbt.dsi.pps = NULL;
3352 	kfree(panel->vbt.dsi.config);
3353 	panel->vbt.dsi.config = NULL;
3354 	kfree(panel->vbt.dsi.deassert_seq);
3355 	panel->vbt.dsi.deassert_seq = NULL;
3356 }
3357 
3358 /**
3359  * intel_bios_is_tv_present - is integrated TV present in VBT
3360  * @display: display device instance
3361  *
3362  * Return true if TV is present. If no child devices were parsed from VBT,
3363  * assume TV is present.
3364  */
3365 bool intel_bios_is_tv_present(struct intel_display *display)
3366 {
3367 	const struct intel_bios_encoder_data *devdata;
3368 
3369 	if (!display->vbt.int_tv_support)
3370 		return false;
3371 
3372 	if (list_empty(&display->vbt.display_devices))
3373 		return true;
3374 
3375 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3376 		const struct child_device_config *child = &devdata->child;
3377 
3378 		/*
3379 		 * If the device type is not TV, continue.
3380 		 */
3381 		switch (child->device_type) {
3382 		case DEVICE_TYPE_INT_TV:
3383 		case DEVICE_TYPE_TV:
3384 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3385 			break;
3386 		default:
3387 			continue;
3388 		}
3389 		/* Only when the addin_offset is non-zero, it is regarded
3390 		 * as present.
3391 		 */
3392 		if (child->addin_offset)
3393 			return true;
3394 	}
3395 
3396 	return false;
3397 }
3398 
3399 /**
3400  * intel_bios_is_lvds_present - is LVDS present in VBT
3401  * @display: display device instance
3402  * @i2c_pin:	i2c pin for LVDS if present
3403  *
3404  * Return true if LVDS is present. If no child devices were parsed from VBT,
3405  * assume LVDS is present.
3406  */
3407 bool intel_bios_is_lvds_present(struct intel_display *display, u8 *i2c_pin)
3408 {
3409 	struct drm_i915_private *i915 = to_i915(display->drm);
3410 	const struct intel_bios_encoder_data *devdata;
3411 
3412 	if (list_empty(&display->vbt.display_devices))
3413 		return true;
3414 
3415 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3416 		const struct child_device_config *child = &devdata->child;
3417 
3418 		/* If the device type is not LFP, continue.
3419 		 * We have to check both the new identifiers as well as the
3420 		 * old for compatibility with some BIOSes.
3421 		 */
3422 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3423 		    child->device_type != DEVICE_TYPE_LFP)
3424 			continue;
3425 
3426 		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3427 			*i2c_pin = child->i2c_pin;
3428 
3429 		/* However, we cannot trust the BIOS writers to populate
3430 		 * the VBT correctly.  Since LVDS requires additional
3431 		 * information from AIM blocks, a non-zero addin offset is
3432 		 * a good indicator that the LVDS is actually present.
3433 		 */
3434 		if (child->addin_offset)
3435 			return true;
3436 
3437 		/* But even then some BIOS writers perform some black magic
3438 		 * and instantiate the device without reference to any
3439 		 * additional data.  Trust that if the VBT was written into
3440 		 * the OpRegion then they have validated the LVDS's existence.
3441 		 */
3442 		return intel_opregion_vbt_present(display);
3443 	}
3444 
3445 	return false;
3446 }
3447 
3448 /**
3449  * intel_bios_is_port_present - is the specified digital port present
3450  * @display: display device instance
3451  * @port:	port to check
3452  *
3453  * Return true if the device in %port is present.
3454  */
3455 bool intel_bios_is_port_present(struct intel_display *display, enum port port)
3456 {
3457 	const struct intel_bios_encoder_data *devdata;
3458 
3459 	if (WARN_ON(!has_ddi_port_info(display)))
3460 		return true;
3461 
3462 	if (!is_port_valid(display, port))
3463 		return false;
3464 
3465 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3466 		const struct child_device_config *child = &devdata->child;
3467 
3468 		if (dvo_port_to_port(display, child->dvo_port) == port)
3469 			return true;
3470 	}
3471 
3472 	return false;
3473 }
3474 
3475 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3476 {
3477 	const struct child_device_config *child = &devdata->child;
3478 
3479 	if (!devdata)
3480 		return false;
3481 
3482 	if (!intel_bios_encoder_supports_dp(devdata) ||
3483 	    !intel_bios_encoder_supports_hdmi(devdata))
3484 		return false;
3485 
3486 	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3487 		return true;
3488 
3489 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3490 	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3491 	    child->aux_channel != 0)
3492 		return true;
3493 
3494 	return false;
3495 }
3496 
3497 /**
3498  * intel_bios_is_dsi_present - is DSI present in VBT
3499  * @display: display device instance
3500  * @port:	port for DSI if present
3501  *
3502  * Return true if DSI is present, and return the port in %port.
3503  */
3504 bool intel_bios_is_dsi_present(struct intel_display *display,
3505 			       enum port *port)
3506 {
3507 	const struct intel_bios_encoder_data *devdata;
3508 
3509 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3510 		const struct child_device_config *child = &devdata->child;
3511 		u8 dvo_port = child->dvo_port;
3512 
3513 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3514 			continue;
3515 
3516 		if (dsi_dvo_port_to_port(display, dvo_port) == PORT_NONE) {
3517 			drm_dbg_kms(display->drm,
3518 				    "VBT has unsupported DSI port %c\n",
3519 				    port_name(dvo_port - DVO_PORT_MIPIA));
3520 			continue;
3521 		}
3522 
3523 		if (port)
3524 			*port = dsi_dvo_port_to_port(display, dvo_port);
3525 		return true;
3526 	}
3527 
3528 	return false;
3529 }
3530 
3531 static void fill_dsc(struct intel_crtc_state *crtc_state,
3532 		     struct dsc_compression_parameters_entry *dsc,
3533 		     int dsc_max_bpc)
3534 {
3535 	struct intel_display *display = to_intel_display(crtc_state);
3536 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3537 	int bpc = 8;
3538 
3539 	vdsc_cfg->dsc_version_major = dsc->version_major;
3540 	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3541 
3542 	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3543 		bpc = 12;
3544 	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3545 		bpc = 10;
3546 	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3547 		bpc = 8;
3548 	else
3549 		drm_dbg_kms(display->drm, "VBT: Unsupported BPC %d for DCS\n",
3550 			    dsc_max_bpc);
3551 
3552 	crtc_state->pipe_bpp = bpc * 3;
3553 
3554 	crtc_state->dsc.compressed_bpp_x16 = fxp_q4_from_int(min(crtc_state->pipe_bpp,
3555 								 VBT_DSC_MAX_BPP(dsc->max_bpp)));
3556 
3557 	/*
3558 	 * FIXME: This is ugly, and slice count should take DSC engine
3559 	 * throughput etc. into account.
3560 	 *
3561 	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3562 	 */
3563 	if (dsc->slices_per_line & BIT(2)) {
3564 		crtc_state->dsc.slice_count = 4;
3565 	} else if (dsc->slices_per_line & BIT(1)) {
3566 		crtc_state->dsc.slice_count = 2;
3567 	} else {
3568 		/* FIXME */
3569 		if (!(dsc->slices_per_line & BIT(0)))
3570 			drm_dbg_kms(display->drm,
3571 				    "VBT: Unsupported DSC slice count for DSI\n");
3572 
3573 		crtc_state->dsc.slice_count = 1;
3574 	}
3575 
3576 	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3577 	    crtc_state->dsc.slice_count != 0)
3578 		drm_dbg_kms(display->drm,
3579 			    "VBT: DSC hdisplay %d not divisible by slice count %d\n",
3580 			    crtc_state->hw.adjusted_mode.crtc_hdisplay,
3581 			    crtc_state->dsc.slice_count);
3582 
3583 	/*
3584 	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3585 	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3586 	 */
3587 	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3588 							    dsc->rc_buffer_size);
3589 
3590 	/* FIXME: DSI spec says bpc + 1 for this one */
3591 	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3592 
3593 	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3594 
3595 	vdsc_cfg->slice_height = dsc->slice_height;
3596 }
3597 
3598 /* FIXME: initially DSI specific */
3599 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3600 			       struct intel_crtc_state *crtc_state,
3601 			       int dsc_max_bpc)
3602 {
3603 	struct intel_display *display = to_intel_display(encoder);
3604 	const struct intel_bios_encoder_data *devdata;
3605 
3606 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3607 		const struct child_device_config *child = &devdata->child;
3608 
3609 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3610 			continue;
3611 
3612 		if (dsi_dvo_port_to_port(display, child->dvo_port) == encoder->port) {
3613 			if (!devdata->dsc)
3614 				return false;
3615 
3616 			fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3617 
3618 			return true;
3619 		}
3620 	}
3621 
3622 	return false;
3623 }
3624 
3625 static const u8 adlp_aux_ch_map[] = {
3626 	[AUX_CH_A] = DP_AUX_A,
3627 	[AUX_CH_B] = DP_AUX_B,
3628 	[AUX_CH_C] = DP_AUX_C,
3629 	[AUX_CH_D_XELPD] = DP_AUX_D,
3630 	[AUX_CH_E_XELPD] = DP_AUX_E,
3631 	[AUX_CH_USBC1] = DP_AUX_F,
3632 	[AUX_CH_USBC2] = DP_AUX_G,
3633 	[AUX_CH_USBC3] = DP_AUX_H,
3634 	[AUX_CH_USBC4] = DP_AUX_I,
3635 };
3636 
3637 /*
3638  * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3639  * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3640  */
3641 static const u8 adls_aux_ch_map[] = {
3642 	[AUX_CH_A] = DP_AUX_A,
3643 	[AUX_CH_USBC1] = DP_AUX_B,
3644 	[AUX_CH_USBC2] = DP_AUX_C,
3645 	[AUX_CH_USBC3] = DP_AUX_D,
3646 	[AUX_CH_USBC4] = DP_AUX_E,
3647 };
3648 
3649 /*
3650  * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3651  * map to DDI A,B,TC1,TC2 respectively.
3652  */
3653 static const u8 rkl_aux_ch_map[] = {
3654 	[AUX_CH_A] = DP_AUX_A,
3655 	[AUX_CH_B] = DP_AUX_B,
3656 	[AUX_CH_USBC1] = DP_AUX_C,
3657 	[AUX_CH_USBC2] = DP_AUX_D,
3658 };
3659 
3660 static const u8 direct_aux_ch_map[] = {
3661 	[AUX_CH_A] = DP_AUX_A,
3662 	[AUX_CH_B] = DP_AUX_B,
3663 	[AUX_CH_C] = DP_AUX_C,
3664 	[AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3665 	[AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3666 	[AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3667 	[AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3668 	[AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3669 	[AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3670 };
3671 
3672 static enum aux_ch map_aux_ch(struct intel_display *display, u8 aux_channel)
3673 {
3674 	struct drm_i915_private *i915 = to_i915(display->drm);
3675 	const u8 *aux_ch_map;
3676 	int i, n_entries;
3677 
3678 	if (DISPLAY_VER(display) >= 13) {
3679 		aux_ch_map = adlp_aux_ch_map;
3680 		n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3681 	} else if (IS_ALDERLAKE_S(i915)) {
3682 		aux_ch_map = adls_aux_ch_map;
3683 		n_entries = ARRAY_SIZE(adls_aux_ch_map);
3684 	} else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) {
3685 		aux_ch_map = rkl_aux_ch_map;
3686 		n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3687 	} else {
3688 		aux_ch_map = direct_aux_ch_map;
3689 		n_entries = ARRAY_SIZE(direct_aux_ch_map);
3690 	}
3691 
3692 	for (i = 0; i < n_entries; i++) {
3693 		if (aux_ch_map[i] == aux_channel)
3694 			return i;
3695 	}
3696 
3697 	drm_dbg_kms(display->drm,
3698 		    "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3699 		    aux_channel);
3700 
3701 	return AUX_CH_NONE;
3702 }
3703 
3704 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3705 {
3706 	if (!devdata || !devdata->child.aux_channel)
3707 		return AUX_CH_NONE;
3708 
3709 	return map_aux_ch(devdata->display, devdata->child.aux_channel);
3710 }
3711 
3712 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3713 {
3714 	struct intel_display *display;
3715 	u8 aux_channel;
3716 	int count = 0;
3717 
3718 	if (!devdata || !devdata->child.aux_channel)
3719 		return false;
3720 
3721 	display = devdata->display;
3722 	aux_channel = devdata->child.aux_channel;
3723 
3724 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3725 		if (intel_bios_encoder_supports_dp(devdata) &&
3726 		    aux_channel == devdata->child.aux_channel)
3727 			count++;
3728 	}
3729 
3730 	return count > 1;
3731 }
3732 
3733 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3734 {
3735 	if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost)
3736 		return 0;
3737 
3738 	return translate_iboost(devdata->display, devdata->child.dp_iboost_level);
3739 }
3740 
3741 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3742 {
3743 	if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost)
3744 		return 0;
3745 
3746 	return translate_iboost(devdata->display, devdata->child.hdmi_iboost_level);
3747 }
3748 
3749 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3750 {
3751 	if (!devdata || !devdata->child.ddc_pin)
3752 		return 0;
3753 
3754 	return map_ddc_pin(devdata->display, devdata->child.ddc_pin);
3755 }
3756 
3757 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3758 {
3759 	return devdata->display->vbt.version >= 195 && devdata->child.dp_usb_type_c;
3760 }
3761 
3762 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3763 {
3764 	return devdata->display->vbt.version >= 209 && devdata->child.tbt;
3765 }
3766 
3767 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3768 {
3769 	return devdata && devdata->child.lane_reversal;
3770 }
3771 
3772 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3773 {
3774 	return devdata && devdata->child.hpd_invert;
3775 }
3776 
3777 const struct intel_bios_encoder_data *
3778 intel_bios_encoder_data_lookup(struct intel_display *display, enum port port)
3779 {
3780 	struct intel_bios_encoder_data *devdata;
3781 
3782 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3783 		if (intel_bios_encoder_port(devdata) == port)
3784 			return devdata;
3785 	}
3786 
3787 	return NULL;
3788 }
3789 
3790 void intel_bios_for_each_encoder(struct intel_display *display,
3791 				 void (*func)(struct intel_display *display,
3792 					      const struct intel_bios_encoder_data *devdata))
3793 {
3794 	struct intel_bios_encoder_data *devdata;
3795 
3796 	list_for_each_entry(devdata, &display->vbt.display_devices, node)
3797 		func(display, devdata);
3798 }
3799 
3800 static int intel_bios_vbt_show(struct seq_file *m, void *unused)
3801 {
3802 	struct intel_display *display = m->private;
3803 	const void *vbt;
3804 	size_t vbt_size;
3805 
3806 	vbt = intel_bios_get_vbt(display, &vbt_size);
3807 
3808 	if (vbt) {
3809 		seq_write(m, vbt, vbt_size);
3810 		kfree(vbt);
3811 	}
3812 
3813 	return 0;
3814 }
3815 
3816 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt);
3817 
3818 void intel_bios_debugfs_register(struct intel_display *display)
3819 {
3820 	struct drm_minor *minor = display->drm->primary;
3821 
3822 	debugfs_create_file("i915_vbt", 0444, minor->debugfs_root,
3823 			    display, &intel_bios_vbt_fops);
3824 }
3825