1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <linux/firmware.h> 29 30 #include <drm/display/drm_dp_helper.h> 31 #include <drm/display/drm_dsc_helper.h> 32 #include <drm/drm_edid.h> 33 34 #include "i915_drv.h" 35 #include "i915_reg.h" 36 #include "intel_display.h" 37 #include "intel_display_types.h" 38 #include "intel_gmbus.h" 39 40 #define _INTEL_BIOS_PRIVATE 41 #include "intel_vbt_defs.h" 42 43 /** 44 * DOC: Video BIOS Table (VBT) 45 * 46 * The Video BIOS Table, or VBT, provides platform and board specific 47 * configuration information to the driver that is not discoverable or available 48 * through other means. The configuration is mostly related to display 49 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 50 * the PCI ROM. 51 * 52 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 53 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 54 * contain the actual configuration information. The VBT Header, and thus the 55 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 56 * BDB Header. The data blocks are concatenated after the BDB Header. The data 57 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 58 * data. (Block 53, the MIPI Sequence Block is an exception.) 59 * 60 * The driver parses the VBT during load. The relevant information is stored in 61 * driver private data for ease of use, and the actual VBT is not read after 62 * that. 63 */ 64 65 /* Wrapper for VBT child device config */ 66 struct intel_bios_encoder_data { 67 struct drm_i915_private *i915; 68 69 struct child_device_config child; 70 struct dsc_compression_parameters_entry *dsc; 71 struct list_head node; 72 }; 73 74 #define SLAVE_ADDR1 0x70 75 #define SLAVE_ADDR2 0x72 76 77 /* Get BDB block size given a pointer to Block ID. */ 78 static u32 _get_blocksize(const u8 *block_base) 79 { 80 /* The MIPI Sequence Block v3+ has a separate size field. */ 81 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 82 return *((const u32 *)(block_base + 4)); 83 else 84 return *((const u16 *)(block_base + 1)); 85 } 86 87 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 88 static u32 get_blocksize(const void *block_data) 89 { 90 return _get_blocksize(block_data - 3); 91 } 92 93 static const void * 94 find_raw_section(const void *_bdb, enum bdb_block_id section_id) 95 { 96 const struct bdb_header *bdb = _bdb; 97 const u8 *base = _bdb; 98 int index = 0; 99 u32 total, current_size; 100 enum bdb_block_id current_id; 101 102 /* skip to first section */ 103 index += bdb->header_size; 104 total = bdb->bdb_size; 105 106 /* walk the sections looking for section_id */ 107 while (index + 3 < total) { 108 current_id = *(base + index); 109 current_size = _get_blocksize(base + index); 110 index += 3; 111 112 if (index + current_size > total) 113 return NULL; 114 115 if (current_id == section_id) 116 return base + index; 117 118 index += current_size; 119 } 120 121 return NULL; 122 } 123 124 /* 125 * Offset from the start of BDB to the start of the 126 * block data (just past the block header). 127 */ 128 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) 129 { 130 const void *block; 131 132 block = find_raw_section(bdb, section_id); 133 if (!block) 134 return 0; 135 136 return block - bdb; 137 } 138 139 struct bdb_block_entry { 140 struct list_head node; 141 enum bdb_block_id section_id; 142 u8 data[]; 143 }; 144 145 static const void * 146 bdb_find_section(struct drm_i915_private *i915, 147 enum bdb_block_id section_id) 148 { 149 struct bdb_block_entry *entry; 150 151 list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) { 152 if (entry->section_id == section_id) 153 return entry->data + 3; 154 } 155 156 return NULL; 157 } 158 159 static const struct { 160 enum bdb_block_id section_id; 161 size_t min_size; 162 } bdb_blocks[] = { 163 { .section_id = BDB_GENERAL_FEATURES, 164 .min_size = sizeof(struct bdb_general_features), }, 165 { .section_id = BDB_GENERAL_DEFINITIONS, 166 .min_size = sizeof(struct bdb_general_definitions), }, 167 { .section_id = BDB_PSR, 168 .min_size = sizeof(struct bdb_psr), }, 169 { .section_id = BDB_DRIVER_FEATURES, 170 .min_size = sizeof(struct bdb_driver_features), }, 171 { .section_id = BDB_SDVO_LVDS_OPTIONS, 172 .min_size = sizeof(struct bdb_sdvo_lvds_options), }, 173 { .section_id = BDB_SDVO_PANEL_DTDS, 174 .min_size = sizeof(struct bdb_sdvo_panel_dtds), }, 175 { .section_id = BDB_EDP, 176 .min_size = sizeof(struct bdb_edp), }, 177 { .section_id = BDB_LVDS_OPTIONS, 178 .min_size = sizeof(struct bdb_lvds_options), }, 179 /* 180 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS, 181 * so keep the two ordered. 182 */ 183 { .section_id = BDB_LVDS_LFP_DATA_PTRS, 184 .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), }, 185 { .section_id = BDB_LVDS_LFP_DATA, 186 .min_size = 0, /* special case */ }, 187 { .section_id = BDB_LVDS_BACKLIGHT, 188 .min_size = sizeof(struct bdb_lfp_backlight_data), }, 189 { .section_id = BDB_LFP_POWER, 190 .min_size = sizeof(struct bdb_lfp_power), }, 191 { .section_id = BDB_MIPI_CONFIG, 192 .min_size = sizeof(struct bdb_mipi_config), }, 193 { .section_id = BDB_MIPI_SEQUENCE, 194 .min_size = sizeof(struct bdb_mipi_sequence) }, 195 { .section_id = BDB_COMPRESSION_PARAMETERS, 196 .min_size = sizeof(struct bdb_compression_parameters), }, 197 { .section_id = BDB_GENERIC_DTD, 198 .min_size = sizeof(struct bdb_generic_dtd), }, 199 }; 200 201 static size_t lfp_data_min_size(struct drm_i915_private *i915) 202 { 203 const struct bdb_lvds_lfp_data_ptrs *ptrs; 204 size_t size; 205 206 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 207 if (!ptrs) 208 return 0; 209 210 size = sizeof(struct bdb_lvds_lfp_data); 211 if (ptrs->panel_name.table_size) 212 size = max(size, ptrs->panel_name.offset + 213 sizeof(struct bdb_lvds_lfp_data_tail)); 214 215 return size; 216 } 217 218 static bool validate_lfp_data_ptrs(const void *bdb, 219 const struct bdb_lvds_lfp_data_ptrs *ptrs) 220 { 221 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; 222 int data_block_size, lfp_data_size; 223 const void *data_block; 224 int i; 225 226 data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 227 if (!data_block) 228 return false; 229 230 data_block_size = get_blocksize(data_block); 231 if (data_block_size == 0) 232 return false; 233 234 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ 235 if (ptrs->lvds_entries != 3) 236 return false; 237 238 fp_timing_size = ptrs->ptr[0].fp_timing.table_size; 239 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; 240 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; 241 panel_name_size = ptrs->panel_name.table_size; 242 243 /* fp_timing has variable size */ 244 if (fp_timing_size < 32 || 245 dvo_timing_size != sizeof(struct lvds_dvo_timing) || 246 panel_pnp_id_size != sizeof(struct lvds_pnp_id)) 247 return false; 248 249 /* panel_name is not present in old VBTs */ 250 if (panel_name_size != 0 && 251 panel_name_size != sizeof(struct lvds_lfp_panel_name)) 252 return false; 253 254 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; 255 if (16 * lfp_data_size > data_block_size) 256 return false; 257 258 /* make sure the table entries have uniform size */ 259 for (i = 1; i < 16; i++) { 260 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || 261 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || 262 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) 263 return false; 264 265 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || 266 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || 267 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) 268 return false; 269 } 270 271 /* 272 * Except for vlv/chv machines all real VBTs seem to have 6 273 * unaccounted bytes in the fp_timing table. And it doesn't 274 * appear to be a really intentional hole as the fp_timing 275 * 0xffff terminator is always within those 6 missing bytes. 276 */ 277 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size) 278 fp_timing_size += 6; 279 280 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size) 281 return false; 282 283 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset || 284 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || 285 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) 286 return false; 287 288 /* make sure the tables fit inside the data block */ 289 for (i = 0; i < 16; i++) { 290 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || 291 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || 292 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) 293 return false; 294 } 295 296 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) 297 return false; 298 299 /* make sure fp_timing terminators are present at expected locations */ 300 for (i = 0; i < 16; i++) { 301 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset + 302 fp_timing_size - 2; 303 304 if (*t != 0xffff) 305 return false; 306 } 307 308 return true; 309 } 310 311 /* make the data table offsets relative to the data block */ 312 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) 313 { 314 struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block; 315 u32 offset; 316 int i; 317 318 offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA); 319 320 for (i = 0; i < 16; i++) { 321 if (ptrs->ptr[i].fp_timing.offset < offset || 322 ptrs->ptr[i].dvo_timing.offset < offset || 323 ptrs->ptr[i].panel_pnp_id.offset < offset) 324 return false; 325 326 ptrs->ptr[i].fp_timing.offset -= offset; 327 ptrs->ptr[i].dvo_timing.offset -= offset; 328 ptrs->ptr[i].panel_pnp_id.offset -= offset; 329 } 330 331 if (ptrs->panel_name.table_size) { 332 if (ptrs->panel_name.offset < offset) 333 return false; 334 335 ptrs->panel_name.offset -= offset; 336 } 337 338 return validate_lfp_data_ptrs(bdb, ptrs); 339 } 340 341 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table, 342 int table_size, int total_size) 343 { 344 if (total_size < table_size) 345 return total_size; 346 347 table->table_size = table_size; 348 table->offset = total_size - table_size; 349 350 return total_size - table_size; 351 } 352 353 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next, 354 const struct lvds_lfp_data_ptr_table *prev, 355 int size) 356 { 357 next->table_size = prev->table_size; 358 next->offset = prev->offset + size; 359 } 360 361 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915, 362 const void *bdb) 363 { 364 int i, size, table_size, block_size, offset, fp_timing_size; 365 struct bdb_lvds_lfp_data_ptrs *ptrs; 366 const void *block; 367 void *ptrs_block; 368 369 /* 370 * The hardcoded fp_timing_size is only valid for 371 * modernish VBTs. All older VBTs definitely should 372 * include block 41 and thus we don't need to 373 * generate one. 374 */ 375 if (i915->display.vbt.version < 155) 376 return NULL; 377 378 fp_timing_size = 38; 379 380 block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 381 if (!block) 382 return NULL; 383 384 drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n"); 385 386 block_size = get_blocksize(block); 387 388 size = fp_timing_size + sizeof(struct lvds_dvo_timing) + 389 sizeof(struct lvds_pnp_id); 390 if (size * 16 > block_size) 391 return NULL; 392 393 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); 394 if (!ptrs_block) 395 return NULL; 396 397 *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS; 398 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); 399 ptrs = ptrs_block + 3; 400 401 table_size = sizeof(struct lvds_pnp_id); 402 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); 403 404 table_size = sizeof(struct lvds_dvo_timing); 405 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); 406 407 table_size = fp_timing_size; 408 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); 409 410 if (ptrs->ptr[0].fp_timing.table_size) 411 ptrs->lvds_entries++; 412 if (ptrs->ptr[0].dvo_timing.table_size) 413 ptrs->lvds_entries++; 414 if (ptrs->ptr[0].panel_pnp_id.table_size) 415 ptrs->lvds_entries++; 416 417 if (size != 0 || ptrs->lvds_entries != 3) { 418 kfree(ptrs_block); 419 return NULL; 420 } 421 422 size = fp_timing_size + sizeof(struct lvds_dvo_timing) + 423 sizeof(struct lvds_pnp_id); 424 for (i = 1; i < 16; i++) { 425 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); 426 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); 427 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); 428 } 429 430 table_size = sizeof(struct lvds_lfp_panel_name); 431 432 if (16 * (size + table_size) <= block_size) { 433 ptrs->panel_name.table_size = table_size; 434 ptrs->panel_name.offset = size * 16; 435 } 436 437 offset = block - bdb; 438 439 for (i = 0; i < 16; i++) { 440 ptrs->ptr[i].fp_timing.offset += offset; 441 ptrs->ptr[i].dvo_timing.offset += offset; 442 ptrs->ptr[i].panel_pnp_id.offset += offset; 443 } 444 445 if (ptrs->panel_name.table_size) 446 ptrs->panel_name.offset += offset; 447 448 return ptrs_block; 449 } 450 451 static void 452 init_bdb_block(struct drm_i915_private *i915, 453 const void *bdb, enum bdb_block_id section_id, 454 size_t min_size) 455 { 456 struct bdb_block_entry *entry; 457 void *temp_block = NULL; 458 const void *block; 459 size_t block_size; 460 461 block = find_raw_section(bdb, section_id); 462 463 /* Modern VBTs lack the LFP data table pointers block, make one up */ 464 if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) { 465 temp_block = generate_lfp_data_ptrs(i915, bdb); 466 if (temp_block) 467 block = temp_block + 3; 468 } 469 if (!block) 470 return; 471 472 drm_WARN(&i915->drm, min_size == 0, 473 "Block %d min_size is zero\n", section_id); 474 475 block_size = get_blocksize(block); 476 477 /* 478 * Version number and new block size are considered 479 * part of the header for MIPI sequenece block v3+. 480 */ 481 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3) 482 block_size += 5; 483 484 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), 485 GFP_KERNEL); 486 if (!entry) { 487 kfree(temp_block); 488 return; 489 } 490 491 entry->section_id = section_id; 492 memcpy(entry->data, block - 3, block_size + 3); 493 494 kfree(temp_block); 495 496 drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n", 497 section_id, block_size, min_size); 498 499 if (section_id == BDB_LVDS_LFP_DATA_PTRS && 500 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { 501 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n"); 502 kfree(entry); 503 return; 504 } 505 506 list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks); 507 } 508 509 static void init_bdb_blocks(struct drm_i915_private *i915, 510 const void *bdb) 511 { 512 int i; 513 514 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { 515 enum bdb_block_id section_id = bdb_blocks[i].section_id; 516 size_t min_size = bdb_blocks[i].min_size; 517 518 if (section_id == BDB_LVDS_LFP_DATA) 519 min_size = lfp_data_min_size(i915); 520 521 init_bdb_block(i915, bdb, section_id, min_size); 522 } 523 } 524 525 static void 526 fill_detail_timing_data(struct drm_i915_private *i915, 527 struct drm_display_mode *panel_fixed_mode, 528 const struct lvds_dvo_timing *dvo_timing) 529 { 530 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 531 dvo_timing->hactive_lo; 532 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 533 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 534 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 535 ((dvo_timing->hsync_pulse_width_hi << 8) | 536 dvo_timing->hsync_pulse_width_lo); 537 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 538 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 539 540 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 541 dvo_timing->vactive_lo; 542 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 543 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 544 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 545 ((dvo_timing->vsync_pulse_width_hi << 4) | 546 dvo_timing->vsync_pulse_width_lo); 547 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 548 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 549 panel_fixed_mode->clock = dvo_timing->clock * 10; 550 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 551 552 if (dvo_timing->hsync_positive) 553 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 554 else 555 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 556 557 if (dvo_timing->vsync_positive) 558 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 559 else 560 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 561 562 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 563 dvo_timing->himage_lo; 564 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 565 dvo_timing->vimage_lo; 566 567 /* Some VBTs have bogus h/vsync_end values */ 568 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) { 569 drm_dbg_kms(&i915->drm, "reducing hsync_end %d->%d\n", 570 panel_fixed_mode->hsync_end, panel_fixed_mode->htotal); 571 panel_fixed_mode->hsync_end = panel_fixed_mode->htotal; 572 } 573 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) { 574 drm_dbg_kms(&i915->drm, "reducing vsync_end %d->%d\n", 575 panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal); 576 panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal; 577 } 578 579 drm_mode_set_name(panel_fixed_mode); 580 } 581 582 static const struct lvds_dvo_timing * 583 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data, 584 const struct bdb_lvds_lfp_data_ptrs *ptrs, 585 int index) 586 { 587 return (const void *)data + ptrs->ptr[index].dvo_timing.offset; 588 } 589 590 static const struct lvds_fp_timing * 591 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data, 592 const struct bdb_lvds_lfp_data_ptrs *ptrs, 593 int index) 594 { 595 return (const void *)data + ptrs->ptr[index].fp_timing.offset; 596 } 597 598 static const struct drm_edid_product_id * 599 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data, 600 const struct bdb_lvds_lfp_data_ptrs *ptrs, 601 int index) 602 { 603 /* These two are supposed to have the same layout in memory. */ 604 BUILD_BUG_ON(sizeof(struct lvds_pnp_id) != sizeof(struct drm_edid_product_id)); 605 606 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; 607 } 608 609 static const struct bdb_lvds_lfp_data_tail * 610 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data, 611 const struct bdb_lvds_lfp_data_ptrs *ptrs) 612 { 613 if (ptrs->panel_name.table_size) 614 return (const void *)data + ptrs->panel_name.offset; 615 else 616 return NULL; 617 } 618 619 static int opregion_get_panel_type(struct drm_i915_private *i915, 620 const struct intel_bios_encoder_data *devdata, 621 const struct drm_edid *drm_edid, bool use_fallback) 622 { 623 return intel_opregion_get_panel_type(i915); 624 } 625 626 static int vbt_get_panel_type(struct drm_i915_private *i915, 627 const struct intel_bios_encoder_data *devdata, 628 const struct drm_edid *drm_edid, bool use_fallback) 629 { 630 const struct bdb_lvds_options *lvds_options; 631 632 lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS); 633 if (!lvds_options) 634 return -1; 635 636 if (lvds_options->panel_type > 0xf && 637 lvds_options->panel_type != 0xff) { 638 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n", 639 lvds_options->panel_type); 640 return -1; 641 } 642 643 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) 644 return lvds_options->panel_type2; 645 646 drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); 647 648 return lvds_options->panel_type; 649 } 650 651 static int pnpid_get_panel_type(struct drm_i915_private *i915, 652 const struct intel_bios_encoder_data *devdata, 653 const struct drm_edid *drm_edid, bool use_fallback) 654 { 655 const struct bdb_lvds_lfp_data *data; 656 const struct bdb_lvds_lfp_data_ptrs *ptrs; 657 struct drm_edid_product_id product_id, product_id_nodate; 658 struct drm_printer p; 659 int i, best = -1; 660 661 if (!drm_edid) 662 return -1; 663 664 drm_edid_get_product_id(drm_edid, &product_id); 665 666 product_id_nodate = product_id; 667 product_id_nodate.week_of_manufacture = 0; 668 product_id_nodate.year_of_manufacture = 0; 669 670 p = drm_dbg_printer(&i915->drm, DRM_UT_KMS, "EDID"); 671 drm_edid_print_product_id(&p, &product_id, true); 672 673 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 674 if (!ptrs) 675 return -1; 676 677 data = bdb_find_section(i915, BDB_LVDS_LFP_DATA); 678 if (!data) 679 return -1; 680 681 for (i = 0; i < 16; i++) { 682 const struct drm_edid_product_id *vbt_id = 683 get_lvds_pnp_id(data, ptrs, i); 684 685 /* full match? */ 686 if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id))) 687 return i; 688 689 /* 690 * Accept a match w/o date if no full match is found, 691 * and the VBT entry does not specify a date. 692 */ 693 if (best < 0 && 694 !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id))) 695 best = i; 696 } 697 698 return best; 699 } 700 701 static int fallback_get_panel_type(struct drm_i915_private *i915, 702 const struct intel_bios_encoder_data *devdata, 703 const struct drm_edid *drm_edid, bool use_fallback) 704 { 705 return use_fallback ? 0 : -1; 706 } 707 708 enum panel_type { 709 PANEL_TYPE_OPREGION, 710 PANEL_TYPE_VBT, 711 PANEL_TYPE_PNPID, 712 PANEL_TYPE_FALLBACK, 713 }; 714 715 static int get_panel_type(struct drm_i915_private *i915, 716 const struct intel_bios_encoder_data *devdata, 717 const struct drm_edid *drm_edid, bool use_fallback) 718 { 719 struct { 720 const char *name; 721 int (*get_panel_type)(struct drm_i915_private *i915, 722 const struct intel_bios_encoder_data *devdata, 723 const struct drm_edid *drm_edid, bool use_fallback); 724 int panel_type; 725 } panel_types[] = { 726 [PANEL_TYPE_OPREGION] = { 727 .name = "OpRegion", 728 .get_panel_type = opregion_get_panel_type, 729 }, 730 [PANEL_TYPE_VBT] = { 731 .name = "VBT", 732 .get_panel_type = vbt_get_panel_type, 733 }, 734 [PANEL_TYPE_PNPID] = { 735 .name = "PNPID", 736 .get_panel_type = pnpid_get_panel_type, 737 }, 738 [PANEL_TYPE_FALLBACK] = { 739 .name = "fallback", 740 .get_panel_type = fallback_get_panel_type, 741 }, 742 }; 743 int i; 744 745 for (i = 0; i < ARRAY_SIZE(panel_types); i++) { 746 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, 747 drm_edid, use_fallback); 748 749 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf && 750 panel_types[i].panel_type != 0xff); 751 752 if (panel_types[i].panel_type >= 0) 753 drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n", 754 panel_types[i].name, panel_types[i].panel_type); 755 } 756 757 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) 758 i = PANEL_TYPE_OPREGION; 759 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && 760 panel_types[PANEL_TYPE_PNPID].panel_type >= 0) 761 i = PANEL_TYPE_PNPID; 762 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && 763 panel_types[PANEL_TYPE_VBT].panel_type >= 0) 764 i = PANEL_TYPE_VBT; 765 else 766 i = PANEL_TYPE_FALLBACK; 767 768 drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n", 769 panel_types[i].name, panel_types[i].panel_type); 770 771 return panel_types[i].panel_type; 772 } 773 774 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) 775 { 776 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); 777 } 778 779 static bool panel_bool(unsigned int value, int panel_type) 780 { 781 return panel_bits(value, panel_type, 1); 782 } 783 784 /* Parse general panel options */ 785 static void 786 parse_panel_options(struct drm_i915_private *i915, 787 struct intel_panel *panel) 788 { 789 const struct bdb_lvds_options *lvds_options; 790 int panel_type = panel->vbt.panel_type; 791 int drrs_mode; 792 793 lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS); 794 if (!lvds_options) 795 return; 796 797 panel->vbt.lvds_dither = lvds_options->pixel_dither; 798 799 /* 800 * Empirical evidence indicates the block size can be 801 * either 4,14,16,24+ bytes. For older VBTs no clear 802 * relationship between the block size vs. BDB version. 803 */ 804 if (get_blocksize(lvds_options) < 16) 805 return; 806 807 drrs_mode = panel_bits(lvds_options->dps_panel_type_bits, 808 panel_type, 2); 809 /* 810 * VBT has static DRRS = 0 and seamless DRRS = 2. 811 * The below piece of code is required to adjust vbt.drrs_type 812 * to match the enum drrs_support_type. 813 */ 814 switch (drrs_mode) { 815 case 0: 816 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 817 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n"); 818 break; 819 case 2: 820 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; 821 drm_dbg_kms(&i915->drm, 822 "DRRS supported mode is seamless\n"); 823 break; 824 default: 825 panel->vbt.drrs_type = DRRS_TYPE_NONE; 826 drm_dbg_kms(&i915->drm, 827 "DRRS not supported (VBT input)\n"); 828 break; 829 } 830 } 831 832 static void 833 parse_lfp_panel_dtd(struct drm_i915_private *i915, 834 struct intel_panel *panel, 835 const struct bdb_lvds_lfp_data *lvds_lfp_data, 836 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs) 837 { 838 const struct lvds_dvo_timing *panel_dvo_timing; 839 const struct lvds_fp_timing *fp_timing; 840 struct drm_display_mode *panel_fixed_mode; 841 int panel_type = panel->vbt.panel_type; 842 843 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, 844 lvds_lfp_data_ptrs, 845 panel_type); 846 847 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 848 if (!panel_fixed_mode) 849 return; 850 851 fill_detail_timing_data(i915, panel_fixed_mode, panel_dvo_timing); 852 853 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 854 855 drm_dbg_kms(&i915->drm, 856 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", 857 DRM_MODE_ARG(panel_fixed_mode)); 858 859 fp_timing = get_lvds_fp_timing(lvds_lfp_data, 860 lvds_lfp_data_ptrs, 861 panel_type); 862 863 /* check the resolution, just to be sure */ 864 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 865 fp_timing->y_res == panel_fixed_mode->vdisplay) { 866 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 867 drm_dbg_kms(&i915->drm, 868 "VBT initial LVDS value %x\n", 869 panel->vbt.bios_lvds_val); 870 } 871 } 872 873 static void 874 parse_lfp_data(struct drm_i915_private *i915, 875 struct intel_panel *panel) 876 { 877 const struct bdb_lvds_lfp_data *data; 878 const struct bdb_lvds_lfp_data_tail *tail; 879 const struct bdb_lvds_lfp_data_ptrs *ptrs; 880 const struct drm_edid_product_id *pnp_id; 881 struct drm_printer p; 882 int panel_type = panel->vbt.panel_type; 883 884 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 885 if (!ptrs) 886 return; 887 888 data = bdb_find_section(i915, BDB_LVDS_LFP_DATA); 889 if (!data) 890 return; 891 892 if (!panel->vbt.lfp_lvds_vbt_mode) 893 parse_lfp_panel_dtd(i915, panel, data, ptrs); 894 895 pnp_id = get_lvds_pnp_id(data, ptrs, panel_type); 896 897 p = drm_dbg_printer(&i915->drm, DRM_UT_KMS, "Panel"); 898 drm_edid_print_product_id(&p, pnp_id, false); 899 900 tail = get_lfp_data_tail(data, ptrs); 901 if (!tail) 902 return; 903 904 drm_dbg_kms(&i915->drm, "Panel name: %.*s\n", 905 (int)sizeof(tail->panel_name[0].name), 906 tail->panel_name[panel_type].name); 907 908 if (i915->display.vbt.version >= 188) { 909 panel->vbt.seamless_drrs_min_refresh_rate = 910 tail->seamless_drrs_min_refresh_rate[panel_type]; 911 drm_dbg_kms(&i915->drm, 912 "Seamless DRRS min refresh rate: %d Hz\n", 913 panel->vbt.seamless_drrs_min_refresh_rate); 914 } 915 } 916 917 static void 918 parse_generic_dtd(struct drm_i915_private *i915, 919 struct intel_panel *panel) 920 { 921 const struct bdb_generic_dtd *generic_dtd; 922 const struct generic_dtd_entry *dtd; 923 struct drm_display_mode *panel_fixed_mode; 924 int num_dtd; 925 926 /* 927 * Older VBTs provided DTD information for internal displays through 928 * the "LFP panel tables" block (42). As of VBT revision 229 the 929 * DTD information should be provided via a newer "generic DTD" 930 * block (58). Just to be safe, we'll try the new generic DTD block 931 * first on VBT >= 229, but still fall back to trying the old LFP 932 * block if that fails. 933 */ 934 if (i915->display.vbt.version < 229) 935 return; 936 937 generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD); 938 if (!generic_dtd) 939 return; 940 941 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 942 drm_err(&i915->drm, "GDTD size %u is too small.\n", 943 generic_dtd->gdtd_size); 944 return; 945 } else if (generic_dtd->gdtd_size != 946 sizeof(struct generic_dtd_entry)) { 947 drm_err(&i915->drm, "Unexpected GDTD size %u\n", 948 generic_dtd->gdtd_size); 949 /* DTD has unknown fields, but keep going */ 950 } 951 952 num_dtd = (get_blocksize(generic_dtd) - 953 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 954 if (panel->vbt.panel_type >= num_dtd) { 955 drm_err(&i915->drm, 956 "Panel type %d not found in table of %d DTD's\n", 957 panel->vbt.panel_type, num_dtd); 958 return; 959 } 960 961 dtd = &generic_dtd->dtd[panel->vbt.panel_type]; 962 963 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 964 if (!panel_fixed_mode) 965 return; 966 967 panel_fixed_mode->hdisplay = dtd->hactive; 968 panel_fixed_mode->hsync_start = 969 panel_fixed_mode->hdisplay + dtd->hfront_porch; 970 panel_fixed_mode->hsync_end = 971 panel_fixed_mode->hsync_start + dtd->hsync; 972 panel_fixed_mode->htotal = 973 panel_fixed_mode->hdisplay + dtd->hblank; 974 975 panel_fixed_mode->vdisplay = dtd->vactive; 976 panel_fixed_mode->vsync_start = 977 panel_fixed_mode->vdisplay + dtd->vfront_porch; 978 panel_fixed_mode->vsync_end = 979 panel_fixed_mode->vsync_start + dtd->vsync; 980 panel_fixed_mode->vtotal = 981 panel_fixed_mode->vdisplay + dtd->vblank; 982 983 panel_fixed_mode->clock = dtd->pixel_clock; 984 panel_fixed_mode->width_mm = dtd->width_mm; 985 panel_fixed_mode->height_mm = dtd->height_mm; 986 987 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 988 drm_mode_set_name(panel_fixed_mode); 989 990 if (dtd->hsync_positive_polarity) 991 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 992 else 993 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 994 995 if (dtd->vsync_positive_polarity) 996 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 997 else 998 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 999 1000 drm_dbg_kms(&i915->drm, 1001 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", 1002 DRM_MODE_ARG(panel_fixed_mode)); 1003 1004 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 1005 } 1006 1007 static void 1008 parse_lfp_backlight(struct drm_i915_private *i915, 1009 struct intel_panel *panel) 1010 { 1011 const struct bdb_lfp_backlight_data *backlight_data; 1012 const struct lfp_backlight_data_entry *entry; 1013 int panel_type = panel->vbt.panel_type; 1014 u16 level; 1015 1016 backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT); 1017 if (!backlight_data) 1018 return; 1019 1020 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 1021 drm_dbg_kms(&i915->drm, 1022 "Unsupported backlight data entry size %u\n", 1023 backlight_data->entry_size); 1024 return; 1025 } 1026 1027 entry = &backlight_data->data[panel_type]; 1028 1029 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 1030 if (!panel->vbt.backlight.present) { 1031 drm_dbg_kms(&i915->drm, 1032 "PWM backlight not present in VBT (type %u)\n", 1033 entry->type); 1034 return; 1035 } 1036 1037 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 1038 panel->vbt.backlight.controller = 0; 1039 if (i915->display.vbt.version >= 191) { 1040 size_t exp_size; 1041 1042 if (i915->display.vbt.version >= 236) 1043 exp_size = sizeof(struct bdb_lfp_backlight_data); 1044 else if (i915->display.vbt.version >= 234) 1045 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234; 1046 else 1047 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191; 1048 1049 if (get_blocksize(backlight_data) >= exp_size) { 1050 const struct lfp_backlight_control_method *method; 1051 1052 method = &backlight_data->backlight_control[panel_type]; 1053 panel->vbt.backlight.type = method->type; 1054 panel->vbt.backlight.controller = method->controller; 1055 } 1056 } 1057 1058 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 1059 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; 1060 1061 if (i915->display.vbt.version >= 234) { 1062 u16 min_level; 1063 bool scale; 1064 1065 level = backlight_data->brightness_level[panel_type].level; 1066 min_level = backlight_data->brightness_min_level[panel_type].level; 1067 1068 if (i915->display.vbt.version >= 236) 1069 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 1070 else 1071 scale = level > 255; 1072 1073 if (scale) 1074 min_level = min_level / 255; 1075 1076 if (min_level > 255) { 1077 drm_warn(&i915->drm, "Brightness min level > 255\n"); 1078 level = 255; 1079 } 1080 panel->vbt.backlight.min_brightness = min_level; 1081 1082 panel->vbt.backlight.brightness_precision_bits = 1083 backlight_data->brightness_precision_bits[panel_type]; 1084 } else { 1085 level = backlight_data->level[panel_type]; 1086 panel->vbt.backlight.min_brightness = entry->min_brightness; 1087 } 1088 1089 if (i915->display.vbt.version >= 239) 1090 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 1091 DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100); 1092 else 1093 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30; 1094 1095 drm_dbg_kms(&i915->drm, 1096 "VBT backlight PWM modulation frequency %u Hz, " 1097 "active %s, min brightness %u, level %u, controller %u\n", 1098 panel->vbt.backlight.pwm_freq_hz, 1099 panel->vbt.backlight.active_low_pwm ? "low" : "high", 1100 panel->vbt.backlight.min_brightness, 1101 level, 1102 panel->vbt.backlight.controller); 1103 } 1104 1105 /* Try to find sdvo panel data */ 1106 static void 1107 parse_sdvo_panel_data(struct drm_i915_private *i915, 1108 struct intel_panel *panel) 1109 { 1110 const struct bdb_sdvo_panel_dtds *dtds; 1111 struct drm_display_mode *panel_fixed_mode; 1112 int index; 1113 1114 index = i915->display.params.vbt_sdvo_panel_type; 1115 if (index == -2) { 1116 drm_dbg_kms(&i915->drm, 1117 "Ignore SDVO panel mode from BIOS VBT tables.\n"); 1118 return; 1119 } 1120 1121 if (index == -1) { 1122 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 1123 1124 sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS); 1125 if (!sdvo_lvds_options) 1126 return; 1127 1128 index = sdvo_lvds_options->panel_type; 1129 } 1130 1131 dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS); 1132 if (!dtds) 1133 return; 1134 1135 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 1136 if (!panel_fixed_mode) 1137 return; 1138 1139 fill_detail_timing_data(i915, panel_fixed_mode, &dtds->dtds[index]); 1140 1141 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 1142 1143 drm_dbg_kms(&i915->drm, 1144 "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n", 1145 DRM_MODE_ARG(panel_fixed_mode)); 1146 } 1147 1148 static int intel_bios_ssc_frequency(struct drm_i915_private *i915, 1149 bool alternate) 1150 { 1151 switch (DISPLAY_VER(i915)) { 1152 case 2: 1153 return alternate ? 66667 : 48000; 1154 case 3: 1155 case 4: 1156 return alternate ? 100000 : 96000; 1157 default: 1158 return alternate ? 100000 : 120000; 1159 } 1160 } 1161 1162 static void 1163 parse_general_features(struct drm_i915_private *i915) 1164 { 1165 const struct bdb_general_features *general; 1166 1167 general = bdb_find_section(i915, BDB_GENERAL_FEATURES); 1168 if (!general) 1169 return; 1170 1171 i915->display.vbt.int_tv_support = general->int_tv_support; 1172 /* int_crt_support can't be trusted on earlier platforms */ 1173 if (i915->display.vbt.version >= 155 && 1174 (HAS_DDI(i915) || IS_VALLEYVIEW(i915))) 1175 i915->display.vbt.int_crt_support = general->int_crt_support; 1176 i915->display.vbt.lvds_use_ssc = general->enable_ssc; 1177 i915->display.vbt.lvds_ssc_freq = 1178 intel_bios_ssc_frequency(i915, general->ssc_freq); 1179 i915->display.vbt.display_clock_mode = general->display_clock_mode; 1180 i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 1181 if (i915->display.vbt.version >= 181) { 1182 i915->display.vbt.orientation = general->rotate_180 ? 1183 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 1184 DRM_MODE_PANEL_ORIENTATION_NORMAL; 1185 } else { 1186 i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1187 } 1188 1189 if (i915->display.vbt.version >= 249 && general->afc_startup_config) { 1190 i915->display.vbt.override_afc_startup = true; 1191 i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7; 1192 } 1193 1194 drm_dbg_kms(&i915->drm, 1195 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 1196 i915->display.vbt.int_tv_support, 1197 i915->display.vbt.int_crt_support, 1198 i915->display.vbt.lvds_use_ssc, 1199 i915->display.vbt.lvds_ssc_freq, 1200 i915->display.vbt.display_clock_mode, 1201 i915->display.vbt.fdi_rx_polarity_inverted); 1202 } 1203 1204 static const struct child_device_config * 1205 child_device_ptr(const struct bdb_general_definitions *defs, int i) 1206 { 1207 return (const void *) &defs->devices[i * defs->child_dev_size]; 1208 } 1209 1210 static void 1211 parse_sdvo_device_mapping(struct drm_i915_private *i915) 1212 { 1213 const struct intel_bios_encoder_data *devdata; 1214 int count = 0; 1215 1216 /* 1217 * Only parse SDVO mappings on gens that could have SDVO. This isn't 1218 * accurate and doesn't have to be, as long as it's not too strict. 1219 */ 1220 if (!IS_DISPLAY_VER(i915, 3, 7)) { 1221 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n"); 1222 return; 1223 } 1224 1225 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 1226 const struct child_device_config *child = &devdata->child; 1227 struct sdvo_device_mapping *mapping; 1228 1229 if (child->slave_addr != SLAVE_ADDR1 && 1230 child->slave_addr != SLAVE_ADDR2) { 1231 /* 1232 * If the slave address is neither 0x70 nor 0x72, 1233 * it is not a SDVO device. Skip it. 1234 */ 1235 continue; 1236 } 1237 if (child->dvo_port != DEVICE_PORT_DVOB && 1238 child->dvo_port != DEVICE_PORT_DVOC) { 1239 /* skip the incorrect SDVO port */ 1240 drm_dbg_kms(&i915->drm, 1241 "Incorrect SDVO port. Skip it\n"); 1242 continue; 1243 } 1244 drm_dbg_kms(&i915->drm, 1245 "the SDVO device with slave addr %2x is found on" 1246 " %s port\n", 1247 child->slave_addr, 1248 (child->dvo_port == DEVICE_PORT_DVOB) ? 1249 "SDVOB" : "SDVOC"); 1250 mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1]; 1251 if (!mapping->initialized) { 1252 mapping->dvo_port = child->dvo_port; 1253 mapping->slave_addr = child->slave_addr; 1254 mapping->dvo_wiring = child->dvo_wiring; 1255 mapping->ddc_pin = child->ddc_pin; 1256 mapping->i2c_pin = child->i2c_pin; 1257 mapping->initialized = 1; 1258 drm_dbg_kms(&i915->drm, 1259 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 1260 mapping->dvo_port, mapping->slave_addr, 1261 mapping->dvo_wiring, mapping->ddc_pin, 1262 mapping->i2c_pin); 1263 } else { 1264 drm_dbg_kms(&i915->drm, 1265 "Maybe one SDVO port is shared by " 1266 "two SDVO device.\n"); 1267 } 1268 if (child->slave2_addr) { 1269 /* Maybe this is a SDVO device with multiple inputs */ 1270 /* And the mapping info is not added */ 1271 drm_dbg_kms(&i915->drm, 1272 "there exists the slave2_addr. Maybe this" 1273 " is a SDVO device with multiple inputs.\n"); 1274 } 1275 count++; 1276 } 1277 1278 if (!count) { 1279 /* No SDVO device info is found */ 1280 drm_dbg_kms(&i915->drm, 1281 "No SDVO device info is found in VBT\n"); 1282 } 1283 } 1284 1285 static void 1286 parse_driver_features(struct drm_i915_private *i915) 1287 { 1288 const struct bdb_driver_features *driver; 1289 1290 driver = bdb_find_section(i915, BDB_DRIVER_FEATURES); 1291 if (!driver) 1292 return; 1293 1294 if (DISPLAY_VER(i915) >= 5) { 1295 /* 1296 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 1297 * to mean "eDP". The VBT spec doesn't agree with that 1298 * interpretation, but real world VBTs seem to. 1299 */ 1300 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 1301 i915->display.vbt.int_lvds_support = 0; 1302 } else { 1303 /* 1304 * FIXME it's not clear which BDB version has the LVDS config 1305 * bits defined. Revision history in the VBT spec says: 1306 * "0.92 | Add two definitions for VBT value of LVDS Active 1307 * Config (00b and 11b values defined) | 06/13/2005" 1308 * but does not the specify the BDB version. 1309 * 1310 * So far version 134 (on i945gm) is the oldest VBT observed 1311 * in the wild with the bits correctly populated. Version 1312 * 108 (on i85x) does not have the bits correctly populated. 1313 */ 1314 if (i915->display.vbt.version >= 134 && 1315 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 1316 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 1317 i915->display.vbt.int_lvds_support = 0; 1318 } 1319 } 1320 1321 static void 1322 parse_panel_driver_features(struct drm_i915_private *i915, 1323 struct intel_panel *panel) 1324 { 1325 const struct bdb_driver_features *driver; 1326 1327 driver = bdb_find_section(i915, BDB_DRIVER_FEATURES); 1328 if (!driver) 1329 return; 1330 1331 if (i915->display.vbt.version < 228) { 1332 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n", 1333 driver->drrs_enabled); 1334 /* 1335 * If DRRS is not supported, drrs_type has to be set to 0. 1336 * This is because, VBT is configured in such a way that 1337 * static DRRS is 0 and DRRS not supported is represented by 1338 * driver->drrs_enabled=false 1339 */ 1340 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1341 /* 1342 * FIXME Should DMRRS perhaps be treated as seamless 1343 * but without the automatic downclocking? 1344 */ 1345 if (driver->dmrrs_enabled) 1346 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1347 else 1348 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1349 } 1350 1351 panel->vbt.psr.enable = driver->psr_enabled; 1352 } 1353 } 1354 1355 static void 1356 parse_power_conservation_features(struct drm_i915_private *i915, 1357 struct intel_panel *panel) 1358 { 1359 const struct bdb_lfp_power *power; 1360 u8 panel_type = panel->vbt.panel_type; 1361 1362 panel->vbt.vrr = true; /* matches Windows behaviour */ 1363 1364 if (i915->display.vbt.version < 228) 1365 return; 1366 1367 power = bdb_find_section(i915, BDB_LFP_POWER); 1368 if (!power) 1369 return; 1370 1371 panel->vbt.psr.enable = panel_bool(power->psr, panel_type); 1372 1373 /* 1374 * If DRRS is not supported, drrs_type has to be set to 0. 1375 * This is because, VBT is configured in such a way that 1376 * static DRRS is 0 and DRRS not supported is represented by 1377 * power->drrs & BIT(panel_type)=false 1378 */ 1379 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1380 /* 1381 * FIXME Should DMRRS perhaps be treated as seamless 1382 * but without the automatic downclocking? 1383 */ 1384 if (panel_bool(power->dmrrs, panel_type)) 1385 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1386 else 1387 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1388 } 1389 1390 if (i915->display.vbt.version >= 232) 1391 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); 1392 1393 if (i915->display.vbt.version >= 233) 1394 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, 1395 panel_type); 1396 } 1397 1398 static void 1399 parse_edp(struct drm_i915_private *i915, 1400 struct intel_panel *panel) 1401 { 1402 const struct bdb_edp *edp; 1403 const struct edp_power_seq *edp_pps; 1404 const struct edp_fast_link_params *edp_link_params; 1405 int panel_type = panel->vbt.panel_type; 1406 1407 edp = bdb_find_section(i915, BDB_EDP); 1408 if (!edp) 1409 return; 1410 1411 switch (panel_bits(edp->color_depth, panel_type, 2)) { 1412 case EDP_18BPP: 1413 panel->vbt.edp.bpp = 18; 1414 break; 1415 case EDP_24BPP: 1416 panel->vbt.edp.bpp = 24; 1417 break; 1418 case EDP_30BPP: 1419 panel->vbt.edp.bpp = 30; 1420 break; 1421 } 1422 1423 /* Get the eDP sequencing and link info */ 1424 edp_pps = &edp->power_seqs[panel_type]; 1425 edp_link_params = &edp->fast_link_params[panel_type]; 1426 1427 panel->vbt.edp.pps = *edp_pps; 1428 1429 if (i915->display.vbt.version >= 224) { 1430 panel->vbt.edp.rate = 1431 edp->edp_fast_link_training_rate[panel_type] * 20; 1432 } else { 1433 switch (edp_link_params->rate) { 1434 case EDP_RATE_1_62: 1435 panel->vbt.edp.rate = 162000; 1436 break; 1437 case EDP_RATE_2_7: 1438 panel->vbt.edp.rate = 270000; 1439 break; 1440 case EDP_RATE_5_4: 1441 panel->vbt.edp.rate = 540000; 1442 break; 1443 default: 1444 drm_dbg_kms(&i915->drm, 1445 "VBT has unknown eDP link rate value %u\n", 1446 edp_link_params->rate); 1447 break; 1448 } 1449 } 1450 1451 switch (edp_link_params->lanes) { 1452 case EDP_LANE_1: 1453 panel->vbt.edp.lanes = 1; 1454 break; 1455 case EDP_LANE_2: 1456 panel->vbt.edp.lanes = 2; 1457 break; 1458 case EDP_LANE_4: 1459 panel->vbt.edp.lanes = 4; 1460 break; 1461 default: 1462 drm_dbg_kms(&i915->drm, 1463 "VBT has unknown eDP lane count value %u\n", 1464 edp_link_params->lanes); 1465 break; 1466 } 1467 1468 switch (edp_link_params->preemphasis) { 1469 case EDP_PREEMPHASIS_NONE: 1470 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 1471 break; 1472 case EDP_PREEMPHASIS_3_5dB: 1473 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 1474 break; 1475 case EDP_PREEMPHASIS_6dB: 1476 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 1477 break; 1478 case EDP_PREEMPHASIS_9_5dB: 1479 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 1480 break; 1481 default: 1482 drm_dbg_kms(&i915->drm, 1483 "VBT has unknown eDP pre-emphasis value %u\n", 1484 edp_link_params->preemphasis); 1485 break; 1486 } 1487 1488 switch (edp_link_params->vswing) { 1489 case EDP_VSWING_0_4V: 1490 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 1491 break; 1492 case EDP_VSWING_0_6V: 1493 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 1494 break; 1495 case EDP_VSWING_0_8V: 1496 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 1497 break; 1498 case EDP_VSWING_1_2V: 1499 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 1500 break; 1501 default: 1502 drm_dbg_kms(&i915->drm, 1503 "VBT has unknown eDP voltage swing value %u\n", 1504 edp_link_params->vswing); 1505 break; 1506 } 1507 1508 if (i915->display.vbt.version >= 173) { 1509 u8 vswing; 1510 1511 /* Don't read from VBT if module parameter has valid value*/ 1512 if (i915->display.params.edp_vswing) { 1513 panel->vbt.edp.low_vswing = 1514 i915->display.params.edp_vswing == 1; 1515 } else { 1516 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 1517 panel->vbt.edp.low_vswing = vswing == 0; 1518 } 1519 } 1520 1521 panel->vbt.edp.drrs_msa_timing_delay = 1522 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); 1523 1524 if (i915->display.vbt.version >= 244) 1525 panel->vbt.edp.max_link_rate = 1526 edp->edp_max_port_link_rate[panel_type] * 20; 1527 } 1528 1529 static void 1530 parse_psr(struct drm_i915_private *i915, 1531 struct intel_panel *panel) 1532 { 1533 const struct bdb_psr *psr; 1534 const struct psr_table *psr_table; 1535 int panel_type = panel->vbt.panel_type; 1536 1537 psr = bdb_find_section(i915, BDB_PSR); 1538 if (!psr) { 1539 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n"); 1540 return; 1541 } 1542 1543 psr_table = &psr->psr_table[panel_type]; 1544 1545 panel->vbt.psr.full_link = psr_table->full_link; 1546 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 1547 1548 /* Allowed VBT values goes from 0 to 15 */ 1549 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 1550 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 1551 1552 /* 1553 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 1554 * Old decimal value is wake up time in multiples of 100 us. 1555 */ 1556 if (i915->display.vbt.version >= 205 && 1557 (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) { 1558 switch (psr_table->tp1_wakeup_time) { 1559 case 0: 1560 panel->vbt.psr.tp1_wakeup_time_us = 500; 1561 break; 1562 case 1: 1563 panel->vbt.psr.tp1_wakeup_time_us = 100; 1564 break; 1565 case 3: 1566 panel->vbt.psr.tp1_wakeup_time_us = 0; 1567 break; 1568 default: 1569 drm_dbg_kms(&i915->drm, 1570 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1571 psr_table->tp1_wakeup_time); 1572 fallthrough; 1573 case 2: 1574 panel->vbt.psr.tp1_wakeup_time_us = 2500; 1575 break; 1576 } 1577 1578 switch (psr_table->tp2_tp3_wakeup_time) { 1579 case 0: 1580 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; 1581 break; 1582 case 1: 1583 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; 1584 break; 1585 case 3: 1586 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; 1587 break; 1588 default: 1589 drm_dbg_kms(&i915->drm, 1590 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1591 psr_table->tp2_tp3_wakeup_time); 1592 fallthrough; 1593 case 2: 1594 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 1595 break; 1596 } 1597 } else { 1598 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 1599 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 1600 } 1601 1602 if (i915->display.vbt.version >= 226) { 1603 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 1604 1605 wakeup_time = panel_bits(wakeup_time, panel_type, 2); 1606 switch (wakeup_time) { 1607 case 0: 1608 wakeup_time = 500; 1609 break; 1610 case 1: 1611 wakeup_time = 100; 1612 break; 1613 case 3: 1614 wakeup_time = 50; 1615 break; 1616 default: 1617 case 2: 1618 wakeup_time = 2500; 1619 break; 1620 } 1621 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 1622 } else { 1623 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 1624 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; 1625 } 1626 } 1627 1628 static void parse_dsi_backlight_ports(struct drm_i915_private *i915, 1629 struct intel_panel *panel, 1630 enum port port) 1631 { 1632 enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C; 1633 1634 if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) { 1635 panel->vbt.dsi.bl_ports = BIT(port); 1636 if (panel->vbt.dsi.config->cabc_supported) 1637 panel->vbt.dsi.cabc_ports = BIT(port); 1638 1639 return; 1640 } 1641 1642 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { 1643 case DL_DCS_PORT_A: 1644 panel->vbt.dsi.bl_ports = BIT(PORT_A); 1645 break; 1646 case DL_DCS_PORT_C: 1647 panel->vbt.dsi.bl_ports = BIT(port_bc); 1648 break; 1649 default: 1650 case DL_DCS_PORT_A_AND_C: 1651 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); 1652 break; 1653 } 1654 1655 if (!panel->vbt.dsi.config->cabc_supported) 1656 return; 1657 1658 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { 1659 case DL_DCS_PORT_A: 1660 panel->vbt.dsi.cabc_ports = BIT(PORT_A); 1661 break; 1662 case DL_DCS_PORT_C: 1663 panel->vbt.dsi.cabc_ports = BIT(port_bc); 1664 break; 1665 default: 1666 case DL_DCS_PORT_A_AND_C: 1667 panel->vbt.dsi.cabc_ports = 1668 BIT(PORT_A) | BIT(port_bc); 1669 break; 1670 } 1671 } 1672 1673 static void 1674 parse_mipi_config(struct drm_i915_private *i915, 1675 struct intel_panel *panel) 1676 { 1677 const struct bdb_mipi_config *start; 1678 const struct mipi_config *config; 1679 const struct mipi_pps_data *pps; 1680 int panel_type = panel->vbt.panel_type; 1681 enum port port; 1682 1683 /* parse MIPI blocks only if LFP type is MIPI */ 1684 if (!intel_bios_is_dsi_present(i915, &port)) 1685 return; 1686 1687 /* Initialize this to undefined indicating no generic MIPI support */ 1688 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1689 1690 /* Block #40 is already parsed and panel_fixed_mode is 1691 * stored in i915->lfp_lvds_vbt_mode 1692 * resuse this when needed 1693 */ 1694 1695 /* Parse #52 for panel index used from panel_type already 1696 * parsed 1697 */ 1698 start = bdb_find_section(i915, BDB_MIPI_CONFIG); 1699 if (!start) { 1700 drm_dbg_kms(&i915->drm, "No MIPI config BDB found"); 1701 return; 1702 } 1703 1704 drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n", 1705 panel_type); 1706 1707 /* 1708 * get hold of the correct configuration block and pps data as per 1709 * the panel_type as index 1710 */ 1711 config = &start->config[panel_type]; 1712 pps = &start->pps[panel_type]; 1713 1714 /* store as of now full data. Trim when we realise all is not needed */ 1715 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1716 if (!panel->vbt.dsi.config) 1717 return; 1718 1719 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1720 if (!panel->vbt.dsi.pps) { 1721 kfree(panel->vbt.dsi.config); 1722 return; 1723 } 1724 1725 parse_dsi_backlight_ports(i915, panel, port); 1726 1727 /* FIXME is the 90 vs. 270 correct? */ 1728 switch (config->rotation) { 1729 case ENABLE_ROTATION_0: 1730 /* 1731 * Most (all?) VBTs claim 0 degrees despite having 1732 * an upside down panel, thus we do not trust this. 1733 */ 1734 panel->vbt.dsi.orientation = 1735 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1736 break; 1737 case ENABLE_ROTATION_90: 1738 panel->vbt.dsi.orientation = 1739 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1740 break; 1741 case ENABLE_ROTATION_180: 1742 panel->vbt.dsi.orientation = 1743 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1744 break; 1745 case ENABLE_ROTATION_270: 1746 panel->vbt.dsi.orientation = 1747 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1748 break; 1749 } 1750 1751 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1752 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1753 } 1754 1755 /* Find the sequence block and size for the given panel. */ 1756 static const u8 * 1757 find_panel_sequence_block(struct drm_i915_private *i915, 1758 const struct bdb_mipi_sequence *sequence, 1759 u16 panel_id, u32 *seq_size) 1760 { 1761 u32 total = get_blocksize(sequence); 1762 const u8 *data = &sequence->data[0]; 1763 u8 current_id; 1764 u32 current_size; 1765 int header_size = sequence->version >= 3 ? 5 : 3; 1766 int index = 0; 1767 int i; 1768 1769 /* skip new block size */ 1770 if (sequence->version >= 3) 1771 data += 4; 1772 1773 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1774 if (index + header_size > total) { 1775 drm_err(&i915->drm, "Invalid sequence block (header)\n"); 1776 return NULL; 1777 } 1778 1779 current_id = *(data + index); 1780 if (sequence->version >= 3) 1781 current_size = *((const u32 *)(data + index + 1)); 1782 else 1783 current_size = *((const u16 *)(data + index + 1)); 1784 1785 index += header_size; 1786 1787 if (index + current_size > total) { 1788 drm_err(&i915->drm, "Invalid sequence block\n"); 1789 return NULL; 1790 } 1791 1792 if (current_id == panel_id) { 1793 *seq_size = current_size; 1794 return data + index; 1795 } 1796 1797 index += current_size; 1798 } 1799 1800 drm_err(&i915->drm, "Sequence block detected but no valid configuration\n"); 1801 1802 return NULL; 1803 } 1804 1805 static int goto_next_sequence(struct drm_i915_private *i915, 1806 const u8 *data, int index, int total) 1807 { 1808 u16 len; 1809 1810 /* Skip Sequence Byte. */ 1811 for (index = index + 1; index < total; index += len) { 1812 u8 operation_byte = *(data + index); 1813 index++; 1814 1815 switch (operation_byte) { 1816 case MIPI_SEQ_ELEM_END: 1817 return index; 1818 case MIPI_SEQ_ELEM_SEND_PKT: 1819 if (index + 4 > total) 1820 return 0; 1821 1822 len = *((const u16 *)(data + index + 2)) + 4; 1823 break; 1824 case MIPI_SEQ_ELEM_DELAY: 1825 len = 4; 1826 break; 1827 case MIPI_SEQ_ELEM_GPIO: 1828 len = 2; 1829 break; 1830 case MIPI_SEQ_ELEM_I2C: 1831 if (index + 7 > total) 1832 return 0; 1833 len = *(data + index + 6) + 7; 1834 break; 1835 default: 1836 drm_err(&i915->drm, "Unknown operation byte\n"); 1837 return 0; 1838 } 1839 } 1840 1841 return 0; 1842 } 1843 1844 static int goto_next_sequence_v3(struct drm_i915_private *i915, 1845 const u8 *data, int index, int total) 1846 { 1847 int seq_end; 1848 u16 len; 1849 u32 size_of_sequence; 1850 1851 /* 1852 * Could skip sequence based on Size of Sequence alone, but also do some 1853 * checking on the structure. 1854 */ 1855 if (total < 5) { 1856 drm_err(&i915->drm, "Too small sequence size\n"); 1857 return 0; 1858 } 1859 1860 /* Skip Sequence Byte. */ 1861 index++; 1862 1863 /* 1864 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1865 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1866 * byte. 1867 */ 1868 size_of_sequence = *((const u32 *)(data + index)); 1869 index += 4; 1870 1871 seq_end = index + size_of_sequence; 1872 if (seq_end > total) { 1873 drm_err(&i915->drm, "Invalid sequence size\n"); 1874 return 0; 1875 } 1876 1877 for (; index < total; index += len) { 1878 u8 operation_byte = *(data + index); 1879 index++; 1880 1881 if (operation_byte == MIPI_SEQ_ELEM_END) { 1882 if (index != seq_end) { 1883 drm_err(&i915->drm, "Invalid element structure\n"); 1884 return 0; 1885 } 1886 return index; 1887 } 1888 1889 len = *(data + index); 1890 index++; 1891 1892 /* 1893 * FIXME: Would be nice to check elements like for v1/v2 in 1894 * goto_next_sequence() above. 1895 */ 1896 switch (operation_byte) { 1897 case MIPI_SEQ_ELEM_SEND_PKT: 1898 case MIPI_SEQ_ELEM_DELAY: 1899 case MIPI_SEQ_ELEM_GPIO: 1900 case MIPI_SEQ_ELEM_I2C: 1901 case MIPI_SEQ_ELEM_SPI: 1902 case MIPI_SEQ_ELEM_PMIC: 1903 break; 1904 default: 1905 drm_err(&i915->drm, "Unknown operation byte %u\n", 1906 operation_byte); 1907 break; 1908 } 1909 } 1910 1911 return 0; 1912 } 1913 1914 /* 1915 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1916 * skip all delay + gpio operands and stop at the first DSI packet op. 1917 */ 1918 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915, 1919 struct intel_panel *panel) 1920 { 1921 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1922 int index, len; 1923 1924 if (drm_WARN_ON(&i915->drm, 1925 !data || panel->vbt.dsi.seq_version != 1)) 1926 return 0; 1927 1928 /* index = 1 to skip sequence byte */ 1929 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1930 switch (data[index]) { 1931 case MIPI_SEQ_ELEM_SEND_PKT: 1932 return index == 1 ? 0 : index; 1933 case MIPI_SEQ_ELEM_DELAY: 1934 len = 5; /* 1 byte for operand + uint32 */ 1935 break; 1936 case MIPI_SEQ_ELEM_GPIO: 1937 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1938 break; 1939 default: 1940 return 0; 1941 } 1942 } 1943 1944 return 0; 1945 } 1946 1947 /* 1948 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence. 1949 * The deassert must be done before calling intel_dsi_device_ready, so for 1950 * these devices we split the init OTP sequence into a deassert sequence and 1951 * the actual init OTP part. 1952 */ 1953 static void vlv_fixup_mipi_sequences(struct drm_i915_private *i915, 1954 struct intel_panel *panel) 1955 { 1956 u8 *init_otp; 1957 int len; 1958 1959 /* Limit this to v1 vid-mode sequences */ 1960 if (panel->vbt.dsi.config->is_cmd_mode || 1961 panel->vbt.dsi.seq_version != 1) 1962 return; 1963 1964 /* Only do this if there are otp and assert seqs and no deassert seq */ 1965 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1966 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1967 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1968 return; 1969 1970 /* The deassert-sequence ends at the first DSI packet */ 1971 len = get_init_otp_deassert_fragment_len(i915, panel); 1972 if (!len) 1973 return; 1974 1975 drm_dbg_kms(&i915->drm, 1976 "Using init OTP fragment to deassert reset\n"); 1977 1978 /* Copy the fragment, update seq byte and terminate it */ 1979 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1980 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1981 if (!panel->vbt.dsi.deassert_seq) 1982 return; 1983 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 1984 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 1985 /* Use the copy for deassert */ 1986 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 1987 panel->vbt.dsi.deassert_seq; 1988 /* Replace the last byte of the fragment with init OTP seq byte */ 1989 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 1990 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 1991 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 1992 } 1993 1994 /* 1995 * Some machines (eg. Lenovo 82TQ) appear to have broken 1996 * VBT sequences: 1997 * - INIT_OTP is not present at all 1998 * - what should be in INIT_OTP is in DISPLAY_ON 1999 * - what should be in DISPLAY_ON is in BACKLIGHT_ON 2000 * (along with the actual backlight stuff) 2001 * 2002 * To make those work we simply swap DISPLAY_ON and INIT_OTP. 2003 * 2004 * TODO: Do we need to limit this to specific machines, 2005 * or examine the contents of the sequences to 2006 * avoid false positives? 2007 */ 2008 static void icl_fixup_mipi_sequences(struct drm_i915_private *i915, 2009 struct intel_panel *panel) 2010 { 2011 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] && 2012 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) { 2013 drm_dbg_kms(&i915->drm, "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n"); 2014 2015 swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP], 2016 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]); 2017 } 2018 } 2019 2020 static void fixup_mipi_sequences(struct drm_i915_private *i915, 2021 struct intel_panel *panel) 2022 { 2023 if (DISPLAY_VER(i915) >= 11) 2024 icl_fixup_mipi_sequences(i915, panel); 2025 else if (IS_VALLEYVIEW(i915)) 2026 vlv_fixup_mipi_sequences(i915, panel); 2027 } 2028 2029 static void 2030 parse_mipi_sequence(struct drm_i915_private *i915, 2031 struct intel_panel *panel) 2032 { 2033 int panel_type = panel->vbt.panel_type; 2034 const struct bdb_mipi_sequence *sequence; 2035 const u8 *seq_data; 2036 u32 seq_size; 2037 u8 *data; 2038 int index = 0; 2039 2040 /* Only our generic panel driver uses the sequence block. */ 2041 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 2042 return; 2043 2044 sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE); 2045 if (!sequence) { 2046 drm_dbg_kms(&i915->drm, 2047 "No MIPI Sequence found, parsing complete\n"); 2048 return; 2049 } 2050 2051 /* Fail gracefully for forward incompatible sequence block. */ 2052 if (sequence->version >= 4) { 2053 drm_err(&i915->drm, 2054 "Unable to parse MIPI Sequence Block v%u\n", 2055 sequence->version); 2056 return; 2057 } 2058 2059 drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n", 2060 sequence->version); 2061 2062 seq_data = find_panel_sequence_block(i915, sequence, panel_type, &seq_size); 2063 if (!seq_data) 2064 return; 2065 2066 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 2067 if (!data) 2068 return; 2069 2070 /* Parse the sequences, store pointers to each sequence. */ 2071 for (;;) { 2072 u8 seq_id = *(data + index); 2073 if (seq_id == MIPI_SEQ_END) 2074 break; 2075 2076 if (seq_id >= MIPI_SEQ_MAX) { 2077 drm_err(&i915->drm, "Unknown sequence %u\n", 2078 seq_id); 2079 goto err; 2080 } 2081 2082 /* Log about presence of sequences we won't run. */ 2083 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 2084 drm_dbg_kms(&i915->drm, 2085 "Unsupported sequence %u\n", seq_id); 2086 2087 panel->vbt.dsi.sequence[seq_id] = data + index; 2088 2089 if (sequence->version >= 3) 2090 index = goto_next_sequence_v3(i915, data, index, seq_size); 2091 else 2092 index = goto_next_sequence(i915, data, index, seq_size); 2093 if (!index) { 2094 drm_err(&i915->drm, "Invalid sequence %u\n", 2095 seq_id); 2096 goto err; 2097 } 2098 } 2099 2100 panel->vbt.dsi.data = data; 2101 panel->vbt.dsi.size = seq_size; 2102 panel->vbt.dsi.seq_version = sequence->version; 2103 2104 fixup_mipi_sequences(i915, panel); 2105 2106 drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n"); 2107 return; 2108 2109 err: 2110 kfree(data); 2111 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); 2112 } 2113 2114 static void 2115 parse_compression_parameters(struct drm_i915_private *i915) 2116 { 2117 const struct bdb_compression_parameters *params; 2118 struct intel_bios_encoder_data *devdata; 2119 u16 block_size; 2120 int index; 2121 2122 if (i915->display.vbt.version < 198) 2123 return; 2124 2125 params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS); 2126 if (params) { 2127 /* Sanity checks */ 2128 if (params->entry_size != sizeof(params->data[0])) { 2129 drm_dbg_kms(&i915->drm, 2130 "VBT: unsupported compression param entry size\n"); 2131 return; 2132 } 2133 2134 block_size = get_blocksize(params); 2135 if (block_size < sizeof(*params)) { 2136 drm_dbg_kms(&i915->drm, 2137 "VBT: expected 16 compression param entries\n"); 2138 return; 2139 } 2140 } 2141 2142 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 2143 const struct child_device_config *child = &devdata->child; 2144 2145 if (!child->compression_enable) 2146 continue; 2147 2148 if (!params) { 2149 drm_dbg_kms(&i915->drm, 2150 "VBT: compression params not available\n"); 2151 continue; 2152 } 2153 2154 if (child->compression_method_cps) { 2155 drm_dbg_kms(&i915->drm, 2156 "VBT: CPS compression not supported\n"); 2157 continue; 2158 } 2159 2160 index = child->compression_structure_index; 2161 2162 devdata->dsc = kmemdup(¶ms->data[index], 2163 sizeof(*devdata->dsc), GFP_KERNEL); 2164 } 2165 } 2166 2167 static u8 translate_iboost(struct drm_i915_private *i915, u8 val) 2168 { 2169 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 2170 2171 if (val >= ARRAY_SIZE(mapping)) { 2172 drm_dbg_kms(&i915->drm, 2173 "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 2174 return 0; 2175 } 2176 return mapping[val]; 2177 } 2178 2179 static const u8 cnp_ddc_pin_map[] = { 2180 [0] = 0, /* N/A */ 2181 [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B, 2182 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C, 2183 [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */ 2184 [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */ 2185 }; 2186 2187 static const u8 icp_ddc_pin_map[] = { 2188 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2189 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2190 [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C, 2191 [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1, 2192 [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2, 2193 [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3, 2194 [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4, 2195 [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5, 2196 [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6, 2197 }; 2198 2199 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 2200 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2201 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2202 [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D, 2203 [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E, 2204 }; 2205 2206 static const u8 adls_ddc_pin_map[] = { 2207 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2208 [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1, 2209 [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2, 2210 [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3, 2211 [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4, 2212 }; 2213 2214 static const u8 gen9bc_tgp_ddc_pin_map[] = { 2215 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B, 2216 [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C, 2217 [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D, 2218 }; 2219 2220 static const u8 adlp_ddc_pin_map[] = { 2221 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2222 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2223 [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1, 2224 [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2, 2225 [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3, 2226 [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4, 2227 }; 2228 2229 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin) 2230 { 2231 const u8 *ddc_pin_map; 2232 int i, n_entries; 2233 2234 if (IS_DGFX(i915)) 2235 return vbt_pin; 2236 2237 if (INTEL_PCH_TYPE(i915) >= PCH_MTL || IS_ALDERLAKE_P(i915)) { 2238 ddc_pin_map = adlp_ddc_pin_map; 2239 n_entries = ARRAY_SIZE(adlp_ddc_pin_map); 2240 } else if (IS_ALDERLAKE_S(i915)) { 2241 ddc_pin_map = adls_ddc_pin_map; 2242 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 2243 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) { 2244 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 2245 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 2246 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) { 2247 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 2248 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 2249 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) { 2250 ddc_pin_map = icp_ddc_pin_map; 2251 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 2252 } else if (HAS_PCH_CNP(i915)) { 2253 ddc_pin_map = cnp_ddc_pin_map; 2254 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 2255 } else { 2256 /* Assuming direct map */ 2257 return vbt_pin; 2258 } 2259 2260 for (i = 0; i < n_entries; i++) { 2261 if (ddc_pin_map[i] == vbt_pin) 2262 return i; 2263 } 2264 2265 drm_dbg_kms(&i915->drm, 2266 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 2267 vbt_pin); 2268 return 0; 2269 } 2270 2271 static u8 dvo_port_type(u8 dvo_port) 2272 { 2273 switch (dvo_port) { 2274 case DVO_PORT_HDMIA: 2275 case DVO_PORT_HDMIB: 2276 case DVO_PORT_HDMIC: 2277 case DVO_PORT_HDMID: 2278 case DVO_PORT_HDMIE: 2279 case DVO_PORT_HDMIF: 2280 case DVO_PORT_HDMIG: 2281 case DVO_PORT_HDMIH: 2282 case DVO_PORT_HDMII: 2283 return DVO_PORT_HDMIA; 2284 case DVO_PORT_DPA: 2285 case DVO_PORT_DPB: 2286 case DVO_PORT_DPC: 2287 case DVO_PORT_DPD: 2288 case DVO_PORT_DPE: 2289 case DVO_PORT_DPF: 2290 case DVO_PORT_DPG: 2291 case DVO_PORT_DPH: 2292 case DVO_PORT_DPI: 2293 return DVO_PORT_DPA; 2294 case DVO_PORT_MIPIA: 2295 case DVO_PORT_MIPIB: 2296 case DVO_PORT_MIPIC: 2297 case DVO_PORT_MIPID: 2298 return DVO_PORT_MIPIA; 2299 default: 2300 return dvo_port; 2301 } 2302 } 2303 2304 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 2305 const int port_mapping[][3], u8 dvo_port) 2306 { 2307 enum port port; 2308 int i; 2309 2310 for (port = PORT_A; port < n_ports; port++) { 2311 for (i = 0; i < n_dvo; i++) { 2312 if (port_mapping[port][i] == -1) 2313 break; 2314 2315 if (dvo_port == port_mapping[port][i]) 2316 return port; 2317 } 2318 } 2319 2320 return PORT_NONE; 2321 } 2322 2323 static enum port dvo_port_to_port(struct drm_i915_private *i915, 2324 u8 dvo_port) 2325 { 2326 /* 2327 * Each DDI port can have more than one value on the "DVO Port" field, 2328 * so look for all the possible values for each port. 2329 */ 2330 static const int port_mapping[][3] = { 2331 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2332 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2333 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2334 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2335 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 2336 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2337 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2338 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2339 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2340 }; 2341 /* 2342 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 2343 * map to DDI A,B,TC1,TC2 respectively. 2344 */ 2345 static const int rkl_port_mapping[][3] = { 2346 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2347 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2348 [PORT_C] = { -1 }, 2349 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2350 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2351 }; 2352 /* 2353 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 2354 * PORT_F and PORT_G, we need to map that to correct VBT sections. 2355 */ 2356 static const int adls_port_mapping[][3] = { 2357 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2358 [PORT_B] = { -1 }, 2359 [PORT_C] = { -1 }, 2360 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2361 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2362 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2363 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2364 }; 2365 static const int xelpd_port_mapping[][3] = { 2366 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2367 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2368 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2369 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2370 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2371 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2372 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2373 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2374 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2375 }; 2376 2377 if (DISPLAY_VER(i915) >= 13) 2378 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 2379 ARRAY_SIZE(xelpd_port_mapping[0]), 2380 xelpd_port_mapping, 2381 dvo_port); 2382 else if (IS_ALDERLAKE_S(i915)) 2383 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 2384 ARRAY_SIZE(adls_port_mapping[0]), 2385 adls_port_mapping, 2386 dvo_port); 2387 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 2388 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 2389 ARRAY_SIZE(rkl_port_mapping[0]), 2390 rkl_port_mapping, 2391 dvo_port); 2392 else 2393 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 2394 ARRAY_SIZE(port_mapping[0]), 2395 port_mapping, 2396 dvo_port); 2397 } 2398 2399 static enum port 2400 dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port) 2401 { 2402 switch (dvo_port) { 2403 case DVO_PORT_MIPIA: 2404 return PORT_A; 2405 case DVO_PORT_MIPIC: 2406 if (DISPLAY_VER(i915) >= 11) 2407 return PORT_B; 2408 else 2409 return PORT_C; 2410 default: 2411 return PORT_NONE; 2412 } 2413 } 2414 2415 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata) 2416 { 2417 struct drm_i915_private *i915 = devdata->i915; 2418 const struct child_device_config *child = &devdata->child; 2419 enum port port; 2420 2421 port = dvo_port_to_port(i915, child->dvo_port); 2422 if (port == PORT_NONE && DISPLAY_VER(i915) >= 11) 2423 port = dsi_dvo_port_to_port(i915, child->dvo_port); 2424 2425 return port; 2426 } 2427 2428 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 2429 { 2430 switch (vbt_max_link_rate) { 2431 default: 2432 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 2433 return 0; 2434 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 2435 return 2000000; 2436 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 2437 return 1350000; 2438 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 2439 return 1000000; 2440 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 2441 return 810000; 2442 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 2443 return 540000; 2444 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 2445 return 270000; 2446 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 2447 return 162000; 2448 } 2449 } 2450 2451 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 2452 { 2453 switch (vbt_max_link_rate) { 2454 default: 2455 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 2456 return 810000; 2457 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 2458 return 540000; 2459 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 2460 return 270000; 2461 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 2462 return 162000; 2463 } 2464 } 2465 2466 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) 2467 { 2468 if (!devdata || devdata->i915->display.vbt.version < 216) 2469 return 0; 2470 2471 if (devdata->i915->display.vbt.version >= 230) 2472 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); 2473 else 2474 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); 2475 } 2476 2477 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata) 2478 { 2479 if (!devdata || devdata->i915->display.vbt.version < 244) 2480 return 0; 2481 2482 return devdata->child.dp_max_lane_count + 1; 2483 } 2484 2485 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 2486 enum port port) 2487 { 2488 struct drm_i915_private *i915 = devdata->i915; 2489 bool is_hdmi; 2490 2491 if (port != PORT_A || DISPLAY_VER(i915) >= 12) 2492 return; 2493 2494 if (!intel_bios_encoder_supports_dvi(devdata)) 2495 return; 2496 2497 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2498 2499 drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n", 2500 is_hdmi ? "/HDMI" : ""); 2501 2502 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2503 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2504 } 2505 2506 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata, 2507 enum port port) 2508 { 2509 struct drm_i915_private *i915 = devdata->i915; 2510 2511 if (!intel_bios_encoder_supports_dvi(devdata)) 2512 return; 2513 2514 /* 2515 * Some BDW machines (eg. HP Pavilion 15-ab) shipped 2516 * with a HSW VBT where the level shifter value goes 2517 * up to 11, whereas the BDW max is 9. 2518 */ 2519 if (IS_BROADWELL(i915) && devdata->child.hdmi_level_shifter_value > 9) { 2520 drm_dbg_kms(&i915->drm, "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n", 2521 port_name(port), devdata->child.hdmi_level_shifter_value, 9); 2522 2523 devdata->child.hdmi_level_shifter_value = 9; 2524 } 2525 } 2526 2527 static bool 2528 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 2529 { 2530 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 2531 } 2532 2533 bool 2534 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 2535 { 2536 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 2537 } 2538 2539 bool 2540 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 2541 { 2542 return intel_bios_encoder_supports_dvi(devdata) && 2543 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 2544 } 2545 2546 bool 2547 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 2548 { 2549 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2550 } 2551 2552 bool 2553 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 2554 { 2555 return intel_bios_encoder_supports_dp(devdata) && 2556 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 2557 } 2558 2559 bool 2560 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata) 2561 { 2562 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT; 2563 } 2564 2565 bool 2566 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata) 2567 { 2568 return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon; 2569 } 2570 2571 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ 2572 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) 2573 { 2574 if (!devdata || devdata->i915->display.vbt.version < 158 || 2575 DISPLAY_VER(devdata->i915) >= 14) 2576 return -1; 2577 2578 return devdata->child.hdmi_level_shifter_value; 2579 } 2580 2581 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata) 2582 { 2583 if (!devdata || devdata->i915->display.vbt.version < 204) 2584 return 0; 2585 2586 switch (devdata->child.hdmi_max_data_rate) { 2587 default: 2588 MISSING_CASE(devdata->child.hdmi_max_data_rate); 2589 fallthrough; 2590 case HDMI_MAX_DATA_RATE_PLATFORM: 2591 return 0; 2592 case HDMI_MAX_DATA_RATE_594: 2593 return 594000; 2594 case HDMI_MAX_DATA_RATE_340: 2595 return 340000; 2596 case HDMI_MAX_DATA_RATE_300: 2597 return 300000; 2598 case HDMI_MAX_DATA_RATE_297: 2599 return 297000; 2600 case HDMI_MAX_DATA_RATE_165: 2601 return 165000; 2602 } 2603 } 2604 2605 static bool is_port_valid(struct drm_i915_private *i915, enum port port) 2606 { 2607 /* 2608 * On some ICL SKUs port F is not present, but broken VBTs mark 2609 * the port as present. Only try to initialize port F for the 2610 * SKUs that may actually have it. 2611 */ 2612 if (port == PORT_F && IS_ICELAKE(i915)) 2613 return IS_ICL_WITH_PORT_F(i915); 2614 2615 return true; 2616 } 2617 2618 static void print_ddi_port(const struct intel_bios_encoder_data *devdata) 2619 { 2620 struct drm_i915_private *i915 = devdata->i915; 2621 const struct child_device_config *child = &devdata->child; 2622 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt; 2623 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; 2624 enum port port; 2625 2626 port = intel_bios_encoder_port(devdata); 2627 if (port == PORT_NONE) 2628 return; 2629 2630 is_dvi = intel_bios_encoder_supports_dvi(devdata); 2631 is_dp = intel_bios_encoder_supports_dp(devdata); 2632 is_crt = intel_bios_encoder_supports_crt(devdata); 2633 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2634 is_edp = intel_bios_encoder_supports_edp(devdata); 2635 is_dsi = intel_bios_encoder_supports_dsi(devdata); 2636 2637 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 2638 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 2639 2640 drm_dbg_kms(&i915->drm, 2641 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 2642 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi, 2643 intel_bios_encoder_supports_dp_dual_mode(devdata), 2644 intel_bios_encoder_is_lspcon(devdata), 2645 supports_typec_usb, supports_tbt, 2646 devdata->dsc != NULL); 2647 2648 hdmi_level_shift = intel_bios_hdmi_level_shift(devdata); 2649 if (hdmi_level_shift >= 0) { 2650 drm_dbg_kms(&i915->drm, 2651 "Port %c VBT HDMI level shift: %d\n", 2652 port_name(port), hdmi_level_shift); 2653 } 2654 2655 max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata); 2656 if (max_tmds_clock) 2657 drm_dbg_kms(&i915->drm, 2658 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 2659 port_name(port), max_tmds_clock); 2660 2661 /* I_boost config for SKL and above */ 2662 dp_boost_level = intel_bios_dp_boost_level(devdata); 2663 if (dp_boost_level) 2664 drm_dbg_kms(&i915->drm, 2665 "Port %c VBT (e)DP boost level: %d\n", 2666 port_name(port), dp_boost_level); 2667 2668 hdmi_boost_level = intel_bios_hdmi_boost_level(devdata); 2669 if (hdmi_boost_level) 2670 drm_dbg_kms(&i915->drm, 2671 "Port %c VBT HDMI boost level: %d\n", 2672 port_name(port), hdmi_boost_level); 2673 2674 dp_max_link_rate = intel_bios_dp_max_link_rate(devdata); 2675 if (dp_max_link_rate) 2676 drm_dbg_kms(&i915->drm, 2677 "Port %c VBT DP max link rate: %d\n", 2678 port_name(port), dp_max_link_rate); 2679 2680 /* 2681 * FIXME need to implement support for VBT 2682 * vswing/preemph tables should this ever trigger. 2683 */ 2684 drm_WARN(&i915->drm, child->use_vbt_vswing, 2685 "Port %c asks to use VBT vswing/preemph tables\n", 2686 port_name(port)); 2687 } 2688 2689 static void parse_ddi_port(struct intel_bios_encoder_data *devdata) 2690 { 2691 struct drm_i915_private *i915 = devdata->i915; 2692 enum port port; 2693 2694 port = intel_bios_encoder_port(devdata); 2695 if (port == PORT_NONE) 2696 return; 2697 2698 if (!is_port_valid(i915, port)) { 2699 drm_dbg_kms(&i915->drm, 2700 "VBT reports port %c as supported, but that can't be true: skipping\n", 2701 port_name(port)); 2702 return; 2703 } 2704 2705 sanitize_device_type(devdata, port); 2706 sanitize_hdmi_level_shift(devdata, port); 2707 } 2708 2709 static bool has_ddi_port_info(struct drm_i915_private *i915) 2710 { 2711 return DISPLAY_VER(i915) >= 5 || IS_G4X(i915); 2712 } 2713 2714 static void parse_ddi_ports(struct drm_i915_private *i915) 2715 { 2716 struct intel_bios_encoder_data *devdata; 2717 2718 if (!has_ddi_port_info(i915)) 2719 return; 2720 2721 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 2722 parse_ddi_port(devdata); 2723 2724 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 2725 print_ddi_port(devdata); 2726 } 2727 2728 static int child_device_expected_size(u16 version) 2729 { 2730 BUILD_BUG_ON(sizeof(struct child_device_config) < 40); 2731 2732 if (version > 256) 2733 return -ENOENT; 2734 else if (version >= 256) 2735 return 40; 2736 else if (version >= 216) 2737 return 39; 2738 else if (version >= 196) 2739 return 38; 2740 else if (version >= 195) 2741 return 37; 2742 else if (version >= 111) 2743 return LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2744 else if (version >= 106) 2745 return 27; 2746 else 2747 return 22; 2748 } 2749 2750 static bool child_device_size_valid(struct drm_i915_private *i915, int size) 2751 { 2752 int expected_size; 2753 2754 expected_size = child_device_expected_size(i915->display.vbt.version); 2755 if (expected_size < 0) { 2756 expected_size = sizeof(struct child_device_config); 2757 drm_dbg(&i915->drm, 2758 "Expected child device config size for VBT version %u not known; assuming %d\n", 2759 i915->display.vbt.version, expected_size); 2760 } 2761 2762 /* Flag an error for unexpected size, but continue anyway. */ 2763 if (size != expected_size) 2764 drm_err(&i915->drm, 2765 "Unexpected child device config size %d (expected %d for VBT version %u)\n", 2766 size, expected_size, i915->display.vbt.version); 2767 2768 /* The legacy sized child device config is the minimum we need. */ 2769 if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2770 drm_dbg_kms(&i915->drm, 2771 "Child device config size %d is too small.\n", 2772 size); 2773 return false; 2774 } 2775 2776 return true; 2777 } 2778 2779 static void 2780 parse_general_definitions(struct drm_i915_private *i915) 2781 { 2782 const struct bdb_general_definitions *defs; 2783 struct intel_bios_encoder_data *devdata; 2784 const struct child_device_config *child; 2785 int i, child_device_num; 2786 u16 block_size; 2787 int bus_pin; 2788 2789 defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS); 2790 if (!defs) { 2791 drm_dbg_kms(&i915->drm, 2792 "No general definition block is found, no devices defined.\n"); 2793 return; 2794 } 2795 2796 block_size = get_blocksize(defs); 2797 if (block_size < sizeof(*defs)) { 2798 drm_dbg_kms(&i915->drm, 2799 "General definitions block too small (%u)\n", 2800 block_size); 2801 return; 2802 } 2803 2804 bus_pin = defs->crt_ddc_gmbus_pin; 2805 drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2806 if (intel_gmbus_is_valid_pin(i915, bus_pin)) 2807 i915->display.vbt.crt_ddc_pin = bus_pin; 2808 2809 if (!child_device_size_valid(i915, defs->child_dev_size)) 2810 return; 2811 2812 /* get the number of child device */ 2813 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2814 2815 for (i = 0; i < child_device_num; i++) { 2816 child = child_device_ptr(defs, i); 2817 if (!child->device_type) 2818 continue; 2819 2820 drm_dbg_kms(&i915->drm, 2821 "Found VBT child device with type 0x%x\n", 2822 child->device_type); 2823 2824 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2825 if (!devdata) 2826 break; 2827 2828 devdata->i915 = i915; 2829 2830 /* 2831 * Copy as much as we know (sizeof) and is available 2832 * (child_dev_size) of the child device config. Accessing the 2833 * data must depend on VBT version. 2834 */ 2835 memcpy(&devdata->child, child, 2836 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2837 2838 list_add_tail(&devdata->node, &i915->display.vbt.display_devices); 2839 } 2840 2841 if (list_empty(&i915->display.vbt.display_devices)) 2842 drm_dbg_kms(&i915->drm, 2843 "no child dev is parsed from VBT\n"); 2844 } 2845 2846 /* Common defaults which may be overridden by VBT. */ 2847 static void 2848 init_vbt_defaults(struct drm_i915_private *i915) 2849 { 2850 i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2851 2852 /* general features */ 2853 i915->display.vbt.int_tv_support = 1; 2854 i915->display.vbt.int_crt_support = 1; 2855 2856 /* driver features */ 2857 i915->display.vbt.int_lvds_support = 1; 2858 2859 /* Default to using SSC */ 2860 i915->display.vbt.lvds_use_ssc = 1; 2861 /* 2862 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2863 * clock for LVDS. 2864 */ 2865 i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915, 2866 !HAS_PCH_SPLIT(i915)); 2867 drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n", 2868 i915->display.vbt.lvds_ssc_freq); 2869 } 2870 2871 /* Common defaults which may be overridden by VBT. */ 2872 static void 2873 init_vbt_panel_defaults(struct intel_panel *panel) 2874 { 2875 /* Default to having backlight */ 2876 panel->vbt.backlight.present = true; 2877 2878 /* LFP panel data */ 2879 panel->vbt.lvds_dither = true; 2880 } 2881 2882 /* Defaults to initialize only if there is no VBT. */ 2883 static void 2884 init_vbt_missing_defaults(struct drm_i915_private *i915) 2885 { 2886 unsigned int ports = DISPLAY_RUNTIME_INFO(i915)->port_mask; 2887 enum port port; 2888 2889 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915)) 2890 return; 2891 2892 for_each_port_masked(port, ports) { 2893 struct intel_bios_encoder_data *devdata; 2894 struct child_device_config *child; 2895 enum phy phy = intel_port_to_phy(i915, port); 2896 2897 /* 2898 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2899 * to detect it. 2900 */ 2901 if (intel_phy_is_tc(i915, phy)) 2902 continue; 2903 2904 /* Create fake child device config */ 2905 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2906 if (!devdata) 2907 break; 2908 2909 devdata->i915 = i915; 2910 child = &devdata->child; 2911 2912 if (port == PORT_F) 2913 child->dvo_port = DVO_PORT_HDMIF; 2914 else if (port == PORT_E) 2915 child->dvo_port = DVO_PORT_HDMIE; 2916 else 2917 child->dvo_port = DVO_PORT_HDMIA + port; 2918 2919 if (port != PORT_A && port != PORT_E) 2920 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2921 2922 if (port != PORT_E) 2923 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2924 2925 if (port == PORT_A) 2926 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2927 2928 list_add_tail(&devdata->node, &i915->display.vbt.display_devices); 2929 2930 drm_dbg_kms(&i915->drm, 2931 "Generating default VBT child device with type 0x04%x on port %c\n", 2932 child->device_type, port_name(port)); 2933 } 2934 2935 /* Bypass some minimum baseline VBT version checks */ 2936 i915->display.vbt.version = 155; 2937 } 2938 2939 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2940 { 2941 const void *_vbt = vbt; 2942 2943 return _vbt + vbt->bdb_offset; 2944 } 2945 2946 /** 2947 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2948 * @i915: the device 2949 * @buf: pointer to a buffer to validate 2950 * @size: size of the buffer 2951 * 2952 * Returns true on valid VBT. 2953 */ 2954 bool intel_bios_is_valid_vbt(struct drm_i915_private *i915, 2955 const void *buf, size_t size) 2956 { 2957 const struct vbt_header *vbt = buf; 2958 const struct bdb_header *bdb; 2959 2960 if (!vbt) 2961 return false; 2962 2963 if (sizeof(struct vbt_header) > size) { 2964 drm_dbg_kms(&i915->drm, "VBT header incomplete\n"); 2965 return false; 2966 } 2967 2968 if (memcmp(vbt->signature, "$VBT", 4)) { 2969 drm_dbg_kms(&i915->drm, "VBT invalid signature\n"); 2970 return false; 2971 } 2972 2973 if (vbt->vbt_size > size) { 2974 drm_dbg_kms(&i915->drm, "VBT incomplete (vbt_size overflows)\n"); 2975 return false; 2976 } 2977 2978 size = vbt->vbt_size; 2979 2980 if (range_overflows_t(size_t, 2981 vbt->bdb_offset, 2982 sizeof(struct bdb_header), 2983 size)) { 2984 drm_dbg_kms(&i915->drm, "BDB header incomplete\n"); 2985 return false; 2986 } 2987 2988 bdb = get_bdb_header(vbt); 2989 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 2990 drm_dbg_kms(&i915->drm, "BDB incomplete\n"); 2991 return false; 2992 } 2993 2994 return vbt; 2995 } 2996 2997 static struct vbt_header *firmware_get_vbt(struct drm_i915_private *i915, 2998 size_t *size) 2999 { 3000 struct vbt_header *vbt = NULL; 3001 const struct firmware *fw = NULL; 3002 const char *name = i915->display.params.vbt_firmware; 3003 int ret; 3004 3005 if (!name || !*name) 3006 return NULL; 3007 3008 ret = request_firmware(&fw, name, i915->drm.dev); 3009 if (ret) { 3010 drm_err(&i915->drm, 3011 "Requesting VBT firmware \"%s\" failed (%d)\n", 3012 name, ret); 3013 return NULL; 3014 } 3015 3016 if (intel_bios_is_valid_vbt(i915, fw->data, fw->size)) { 3017 vbt = kmemdup(fw->data, fw->size, GFP_KERNEL); 3018 if (vbt) { 3019 drm_dbg_kms(&i915->drm, 3020 "Found valid VBT firmware \"%s\"\n", name); 3021 if (size) 3022 *size = fw->size; 3023 } 3024 } else { 3025 drm_dbg_kms(&i915->drm, "Invalid VBT firmware \"%s\"\n", 3026 name); 3027 } 3028 3029 release_firmware(fw); 3030 3031 return vbt; 3032 } 3033 3034 static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset) 3035 { 3036 intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset); 3037 3038 return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER); 3039 } 3040 3041 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915, 3042 size_t *size) 3043 { 3044 u32 count, data, found, store = 0; 3045 u32 static_region, oprom_offset; 3046 u32 oprom_size = 0x200000; 3047 u16 vbt_size; 3048 u32 *vbt; 3049 3050 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS); 3051 static_region &= OPTIONROM_SPI_REGIONID_MASK; 3052 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region); 3053 3054 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET); 3055 oprom_offset &= OROM_OFFSET_MASK; 3056 3057 for (count = 0; count < oprom_size; count += 4) { 3058 data = intel_spi_read(&i915->uncore, oprom_offset + count); 3059 if (data == *((const u32 *)"$VBT")) { 3060 found = oprom_offset + count; 3061 break; 3062 } 3063 } 3064 3065 if (count >= oprom_size) 3066 goto err_not_found; 3067 3068 /* Get VBT size and allocate space for the VBT */ 3069 vbt_size = intel_spi_read(&i915->uncore, 3070 found + offsetof(struct vbt_header, vbt_size)); 3071 vbt_size &= 0xffff; 3072 3073 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); 3074 if (!vbt) 3075 goto err_not_found; 3076 3077 for (count = 0; count < vbt_size; count += 4) 3078 *(vbt + store++) = intel_spi_read(&i915->uncore, found + count); 3079 3080 if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size)) 3081 goto err_free_vbt; 3082 3083 drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n"); 3084 3085 if (size) 3086 *size = vbt_size; 3087 3088 return (struct vbt_header *)vbt; 3089 3090 err_free_vbt: 3091 kfree(vbt); 3092 err_not_found: 3093 return NULL; 3094 } 3095 3096 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915, 3097 size_t *sizep) 3098 { 3099 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 3100 void __iomem *p = NULL, *oprom; 3101 struct vbt_header *vbt; 3102 u16 vbt_size; 3103 size_t i, size; 3104 3105 oprom = pci_map_rom(pdev, &size); 3106 if (!oprom) 3107 return NULL; 3108 3109 /* Scour memory looking for the VBT signature. */ 3110 for (i = 0; i + 4 < size; i += 4) { 3111 if (ioread32(oprom + i) != *((const u32 *)"$VBT")) 3112 continue; 3113 3114 p = oprom + i; 3115 size -= i; 3116 break; 3117 } 3118 3119 if (!p) 3120 goto err_unmap_oprom; 3121 3122 if (sizeof(struct vbt_header) > size) { 3123 drm_dbg(&i915->drm, "VBT header incomplete\n"); 3124 goto err_unmap_oprom; 3125 } 3126 3127 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size)); 3128 if (vbt_size > size) { 3129 drm_dbg(&i915->drm, 3130 "VBT incomplete (vbt_size overflows)\n"); 3131 goto err_unmap_oprom; 3132 } 3133 3134 /* The rest will be validated by intel_bios_is_valid_vbt() */ 3135 vbt = kmalloc(vbt_size, GFP_KERNEL); 3136 if (!vbt) 3137 goto err_unmap_oprom; 3138 3139 memcpy_fromio(vbt, p, vbt_size); 3140 3141 if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size)) 3142 goto err_free_vbt; 3143 3144 pci_unmap_rom(pdev, oprom); 3145 3146 if (sizep) 3147 *sizep = vbt_size; 3148 3149 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n"); 3150 3151 return vbt; 3152 3153 err_free_vbt: 3154 kfree(vbt); 3155 err_unmap_oprom: 3156 pci_unmap_rom(pdev, oprom); 3157 3158 return NULL; 3159 } 3160 3161 static const struct vbt_header *intel_bios_get_vbt(struct drm_i915_private *i915, 3162 size_t *sizep) 3163 { 3164 const struct vbt_header *vbt = NULL; 3165 intel_wakeref_t wakeref; 3166 3167 vbt = firmware_get_vbt(i915, sizep); 3168 3169 if (!vbt) 3170 vbt = intel_opregion_get_vbt(i915, sizep); 3171 3172 /* 3173 * If the OpRegion does not have VBT, look in SPI flash 3174 * through MMIO or PCI mapping 3175 */ 3176 if (!vbt && IS_DGFX(i915)) 3177 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 3178 vbt = spi_oprom_get_vbt(i915, sizep); 3179 3180 if (!vbt) 3181 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 3182 vbt = oprom_get_vbt(i915, sizep); 3183 3184 return vbt; 3185 } 3186 3187 /** 3188 * intel_bios_init - find VBT and initialize settings from the BIOS 3189 * @i915: i915 device instance 3190 * 3191 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 3192 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 3193 * initialize some defaults if the VBT is not present at all. 3194 */ 3195 void intel_bios_init(struct drm_i915_private *i915) 3196 { 3197 const struct vbt_header *vbt; 3198 const struct bdb_header *bdb; 3199 3200 INIT_LIST_HEAD(&i915->display.vbt.display_devices); 3201 INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks); 3202 3203 if (!HAS_DISPLAY(i915)) { 3204 drm_dbg_kms(&i915->drm, 3205 "Skipping VBT init due to disabled display.\n"); 3206 return; 3207 } 3208 3209 init_vbt_defaults(i915); 3210 3211 vbt = intel_bios_get_vbt(i915, NULL); 3212 3213 if (!vbt) 3214 goto out; 3215 3216 bdb = get_bdb_header(vbt); 3217 i915->display.vbt.version = bdb->version; 3218 3219 drm_dbg_kms(&i915->drm, 3220 "VBT signature \"%.*s\", BDB version %d\n", 3221 (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version); 3222 3223 init_bdb_blocks(i915, bdb); 3224 3225 /* Grab useful general definitions */ 3226 parse_general_features(i915); 3227 parse_general_definitions(i915); 3228 parse_driver_features(i915); 3229 3230 /* Depends on child device list */ 3231 parse_compression_parameters(i915); 3232 3233 out: 3234 if (!vbt) { 3235 drm_info(&i915->drm, 3236 "Failed to find VBIOS tables (VBT)\n"); 3237 init_vbt_missing_defaults(i915); 3238 } 3239 3240 /* Further processing on pre-parsed or generated child device data */ 3241 parse_sdvo_device_mapping(i915); 3242 parse_ddi_ports(i915); 3243 3244 kfree(vbt); 3245 } 3246 3247 static void intel_bios_init_panel(struct drm_i915_private *i915, 3248 struct intel_panel *panel, 3249 const struct intel_bios_encoder_data *devdata, 3250 const struct drm_edid *drm_edid, 3251 bool use_fallback) 3252 { 3253 /* already have it? */ 3254 if (panel->vbt.panel_type >= 0) { 3255 drm_WARN_ON(&i915->drm, !use_fallback); 3256 return; 3257 } 3258 3259 panel->vbt.panel_type = get_panel_type(i915, devdata, 3260 drm_edid, use_fallback); 3261 if (panel->vbt.panel_type < 0) { 3262 drm_WARN_ON(&i915->drm, use_fallback); 3263 return; 3264 } 3265 3266 init_vbt_panel_defaults(panel); 3267 3268 parse_panel_options(i915, panel); 3269 parse_generic_dtd(i915, panel); 3270 parse_lfp_data(i915, panel); 3271 parse_lfp_backlight(i915, panel); 3272 parse_sdvo_panel_data(i915, panel); 3273 parse_panel_driver_features(i915, panel); 3274 parse_power_conservation_features(i915, panel); 3275 parse_edp(i915, panel); 3276 parse_psr(i915, panel); 3277 parse_mipi_config(i915, panel); 3278 parse_mipi_sequence(i915, panel); 3279 } 3280 3281 void intel_bios_init_panel_early(struct drm_i915_private *i915, 3282 struct intel_panel *panel, 3283 const struct intel_bios_encoder_data *devdata) 3284 { 3285 intel_bios_init_panel(i915, panel, devdata, NULL, false); 3286 } 3287 3288 void intel_bios_init_panel_late(struct drm_i915_private *i915, 3289 struct intel_panel *panel, 3290 const struct intel_bios_encoder_data *devdata, 3291 const struct drm_edid *drm_edid) 3292 { 3293 intel_bios_init_panel(i915, panel, devdata, drm_edid, true); 3294 } 3295 3296 /** 3297 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 3298 * @i915: i915 device instance 3299 */ 3300 void intel_bios_driver_remove(struct drm_i915_private *i915) 3301 { 3302 struct intel_bios_encoder_data *devdata, *nd; 3303 struct bdb_block_entry *entry, *ne; 3304 3305 list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) { 3306 list_del(&devdata->node); 3307 kfree(devdata->dsc); 3308 kfree(devdata); 3309 } 3310 3311 list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) { 3312 list_del(&entry->node); 3313 kfree(entry); 3314 } 3315 } 3316 3317 void intel_bios_fini_panel(struct intel_panel *panel) 3318 { 3319 kfree(panel->vbt.sdvo_lvds_vbt_mode); 3320 panel->vbt.sdvo_lvds_vbt_mode = NULL; 3321 kfree(panel->vbt.lfp_lvds_vbt_mode); 3322 panel->vbt.lfp_lvds_vbt_mode = NULL; 3323 kfree(panel->vbt.dsi.data); 3324 panel->vbt.dsi.data = NULL; 3325 kfree(panel->vbt.dsi.pps); 3326 panel->vbt.dsi.pps = NULL; 3327 kfree(panel->vbt.dsi.config); 3328 panel->vbt.dsi.config = NULL; 3329 kfree(panel->vbt.dsi.deassert_seq); 3330 panel->vbt.dsi.deassert_seq = NULL; 3331 } 3332 3333 /** 3334 * intel_bios_is_tv_present - is integrated TV present in VBT 3335 * @i915: i915 device instance 3336 * 3337 * Return true if TV is present. If no child devices were parsed from VBT, 3338 * assume TV is present. 3339 */ 3340 bool intel_bios_is_tv_present(struct drm_i915_private *i915) 3341 { 3342 const struct intel_bios_encoder_data *devdata; 3343 3344 if (!i915->display.vbt.int_tv_support) 3345 return false; 3346 3347 if (list_empty(&i915->display.vbt.display_devices)) 3348 return true; 3349 3350 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3351 const struct child_device_config *child = &devdata->child; 3352 3353 /* 3354 * If the device type is not TV, continue. 3355 */ 3356 switch (child->device_type) { 3357 case DEVICE_TYPE_INT_TV: 3358 case DEVICE_TYPE_TV: 3359 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 3360 break; 3361 default: 3362 continue; 3363 } 3364 /* Only when the addin_offset is non-zero, it is regarded 3365 * as present. 3366 */ 3367 if (child->addin_offset) 3368 return true; 3369 } 3370 3371 return false; 3372 } 3373 3374 /** 3375 * intel_bios_is_lvds_present - is LVDS present in VBT 3376 * @i915: i915 device instance 3377 * @i2c_pin: i2c pin for LVDS if present 3378 * 3379 * Return true if LVDS is present. If no child devices were parsed from VBT, 3380 * assume LVDS is present. 3381 */ 3382 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin) 3383 { 3384 const struct intel_bios_encoder_data *devdata; 3385 3386 if (list_empty(&i915->display.vbt.display_devices)) 3387 return true; 3388 3389 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3390 const struct child_device_config *child = &devdata->child; 3391 3392 /* If the device type is not LFP, continue. 3393 * We have to check both the new identifiers as well as the 3394 * old for compatibility with some BIOSes. 3395 */ 3396 if (child->device_type != DEVICE_TYPE_INT_LFP && 3397 child->device_type != DEVICE_TYPE_LFP) 3398 continue; 3399 3400 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin)) 3401 *i2c_pin = child->i2c_pin; 3402 3403 /* However, we cannot trust the BIOS writers to populate 3404 * the VBT correctly. Since LVDS requires additional 3405 * information from AIM blocks, a non-zero addin offset is 3406 * a good indicator that the LVDS is actually present. 3407 */ 3408 if (child->addin_offset) 3409 return true; 3410 3411 /* But even then some BIOS writers perform some black magic 3412 * and instantiate the device without reference to any 3413 * additional data. Trust that if the VBT was written into 3414 * the OpRegion then they have validated the LVDS's existence. 3415 */ 3416 return intel_opregion_vbt_present(i915); 3417 } 3418 3419 return false; 3420 } 3421 3422 /** 3423 * intel_bios_is_port_present - is the specified digital port present 3424 * @i915: i915 device instance 3425 * @port: port to check 3426 * 3427 * Return true if the device in %port is present. 3428 */ 3429 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port) 3430 { 3431 const struct intel_bios_encoder_data *devdata; 3432 3433 if (WARN_ON(!has_ddi_port_info(i915))) 3434 return true; 3435 3436 if (!is_port_valid(i915, port)) 3437 return false; 3438 3439 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3440 const struct child_device_config *child = &devdata->child; 3441 3442 if (dvo_port_to_port(i915, child->dvo_port) == port) 3443 return true; 3444 } 3445 3446 return false; 3447 } 3448 3449 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) 3450 { 3451 const struct child_device_config *child = &devdata->child; 3452 3453 if (!devdata) 3454 return false; 3455 3456 if (!intel_bios_encoder_supports_dp(devdata) || 3457 !intel_bios_encoder_supports_hdmi(devdata)) 3458 return false; 3459 3460 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) 3461 return true; 3462 3463 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 3464 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && 3465 child->aux_channel != 0) 3466 return true; 3467 3468 return false; 3469 } 3470 3471 /** 3472 * intel_bios_is_dsi_present - is DSI present in VBT 3473 * @i915: i915 device instance 3474 * @port: port for DSI if present 3475 * 3476 * Return true if DSI is present, and return the port in %port. 3477 */ 3478 bool intel_bios_is_dsi_present(struct drm_i915_private *i915, 3479 enum port *port) 3480 { 3481 const struct intel_bios_encoder_data *devdata; 3482 3483 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3484 const struct child_device_config *child = &devdata->child; 3485 u8 dvo_port = child->dvo_port; 3486 3487 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3488 continue; 3489 3490 if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) { 3491 drm_dbg_kms(&i915->drm, 3492 "VBT has unsupported DSI port %c\n", 3493 port_name(dvo_port - DVO_PORT_MIPIA)); 3494 continue; 3495 } 3496 3497 if (port) 3498 *port = dsi_dvo_port_to_port(i915, dvo_port); 3499 return true; 3500 } 3501 3502 return false; 3503 } 3504 3505 static void fill_dsc(struct intel_crtc_state *crtc_state, 3506 struct dsc_compression_parameters_entry *dsc, 3507 int dsc_max_bpc) 3508 { 3509 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 3510 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 3511 int bpc = 8; 3512 3513 vdsc_cfg->dsc_version_major = dsc->version_major; 3514 vdsc_cfg->dsc_version_minor = dsc->version_minor; 3515 3516 if (dsc->support_12bpc && dsc_max_bpc >= 12) 3517 bpc = 12; 3518 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 3519 bpc = 10; 3520 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 3521 bpc = 8; 3522 else 3523 drm_dbg_kms(&i915->drm, "VBT: Unsupported BPC %d for DCS\n", 3524 dsc_max_bpc); 3525 3526 crtc_state->pipe_bpp = bpc * 3; 3527 3528 crtc_state->dsc.compressed_bpp_x16 = to_bpp_x16(min(crtc_state->pipe_bpp, 3529 VBT_DSC_MAX_BPP(dsc->max_bpp))); 3530 3531 /* 3532 * FIXME: This is ugly, and slice count should take DSC engine 3533 * throughput etc. into account. 3534 * 3535 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 3536 */ 3537 if (dsc->slices_per_line & BIT(2)) { 3538 crtc_state->dsc.slice_count = 4; 3539 } else if (dsc->slices_per_line & BIT(1)) { 3540 crtc_state->dsc.slice_count = 2; 3541 } else { 3542 /* FIXME */ 3543 if (!(dsc->slices_per_line & BIT(0))) 3544 drm_dbg_kms(&i915->drm, "VBT: Unsupported DSC slice count for DSI\n"); 3545 3546 crtc_state->dsc.slice_count = 1; 3547 } 3548 3549 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 3550 crtc_state->dsc.slice_count != 0) 3551 drm_dbg_kms(&i915->drm, "VBT: DSC hdisplay %d not divisible by slice count %d\n", 3552 crtc_state->hw.adjusted_mode.crtc_hdisplay, 3553 crtc_state->dsc.slice_count); 3554 3555 /* 3556 * The VBT rc_buffer_block_size and rc_buffer_size definitions 3557 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 3558 */ 3559 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 3560 dsc->rc_buffer_size); 3561 3562 /* FIXME: DSI spec says bpc + 1 for this one */ 3563 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 3564 3565 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 3566 3567 vdsc_cfg->slice_height = dsc->slice_height; 3568 } 3569 3570 /* FIXME: initially DSI specific */ 3571 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 3572 struct intel_crtc_state *crtc_state, 3573 int dsc_max_bpc) 3574 { 3575 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3576 const struct intel_bios_encoder_data *devdata; 3577 3578 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3579 const struct child_device_config *child = &devdata->child; 3580 3581 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3582 continue; 3583 3584 if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) { 3585 if (!devdata->dsc) 3586 return false; 3587 3588 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 3589 3590 return true; 3591 } 3592 } 3593 3594 return false; 3595 } 3596 3597 static const u8 adlp_aux_ch_map[] = { 3598 [AUX_CH_A] = DP_AUX_A, 3599 [AUX_CH_B] = DP_AUX_B, 3600 [AUX_CH_C] = DP_AUX_C, 3601 [AUX_CH_D_XELPD] = DP_AUX_D, 3602 [AUX_CH_E_XELPD] = DP_AUX_E, 3603 [AUX_CH_USBC1] = DP_AUX_F, 3604 [AUX_CH_USBC2] = DP_AUX_G, 3605 [AUX_CH_USBC3] = DP_AUX_H, 3606 [AUX_CH_USBC4] = DP_AUX_I, 3607 }; 3608 3609 /* 3610 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 3611 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 3612 */ 3613 static const u8 adls_aux_ch_map[] = { 3614 [AUX_CH_A] = DP_AUX_A, 3615 [AUX_CH_USBC1] = DP_AUX_B, 3616 [AUX_CH_USBC2] = DP_AUX_C, 3617 [AUX_CH_USBC3] = DP_AUX_D, 3618 [AUX_CH_USBC4] = DP_AUX_E, 3619 }; 3620 3621 /* 3622 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 3623 * map to DDI A,B,TC1,TC2 respectively. 3624 */ 3625 static const u8 rkl_aux_ch_map[] = { 3626 [AUX_CH_A] = DP_AUX_A, 3627 [AUX_CH_B] = DP_AUX_B, 3628 [AUX_CH_USBC1] = DP_AUX_C, 3629 [AUX_CH_USBC2] = DP_AUX_D, 3630 }; 3631 3632 static const u8 direct_aux_ch_map[] = { 3633 [AUX_CH_A] = DP_AUX_A, 3634 [AUX_CH_B] = DP_AUX_B, 3635 [AUX_CH_C] = DP_AUX_C, 3636 [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */ 3637 [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */ 3638 [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */ 3639 [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */ 3640 [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */ 3641 [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */ 3642 }; 3643 3644 static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel) 3645 { 3646 const u8 *aux_ch_map; 3647 int i, n_entries; 3648 3649 if (DISPLAY_VER(i915) >= 13) { 3650 aux_ch_map = adlp_aux_ch_map; 3651 n_entries = ARRAY_SIZE(adlp_aux_ch_map); 3652 } else if (IS_ALDERLAKE_S(i915)) { 3653 aux_ch_map = adls_aux_ch_map; 3654 n_entries = ARRAY_SIZE(adls_aux_ch_map); 3655 } else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) { 3656 aux_ch_map = rkl_aux_ch_map; 3657 n_entries = ARRAY_SIZE(rkl_aux_ch_map); 3658 } else { 3659 aux_ch_map = direct_aux_ch_map; 3660 n_entries = ARRAY_SIZE(direct_aux_ch_map); 3661 } 3662 3663 for (i = 0; i < n_entries; i++) { 3664 if (aux_ch_map[i] == aux_channel) 3665 return i; 3666 } 3667 3668 drm_dbg_kms(&i915->drm, 3669 "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n", 3670 aux_channel); 3671 3672 return AUX_CH_NONE; 3673 } 3674 3675 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata) 3676 { 3677 if (!devdata || !devdata->child.aux_channel) 3678 return AUX_CH_NONE; 3679 3680 return map_aux_ch(devdata->i915, devdata->child.aux_channel); 3681 } 3682 3683 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata) 3684 { 3685 struct drm_i915_private *i915; 3686 u8 aux_channel; 3687 int count = 0; 3688 3689 if (!devdata || !devdata->child.aux_channel) 3690 return false; 3691 3692 i915 = devdata->i915; 3693 aux_channel = devdata->child.aux_channel; 3694 3695 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3696 if (intel_bios_encoder_supports_dp(devdata) && 3697 aux_channel == devdata->child.aux_channel) 3698 count++; 3699 } 3700 3701 return count > 1; 3702 } 3703 3704 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata) 3705 { 3706 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) 3707 return 0; 3708 3709 return translate_iboost(devdata->i915, devdata->child.dp_iboost_level); 3710 } 3711 3712 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 3713 { 3714 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) 3715 return 0; 3716 3717 return translate_iboost(devdata->i915, devdata->child.hdmi_iboost_level); 3718 } 3719 3720 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata) 3721 { 3722 if (!devdata || !devdata->child.ddc_pin) 3723 return 0; 3724 3725 return map_ddc_pin(devdata->i915, devdata->child.ddc_pin); 3726 } 3727 3728 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 3729 { 3730 return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c; 3731 } 3732 3733 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 3734 { 3735 return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt; 3736 } 3737 3738 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata) 3739 { 3740 return devdata && devdata->child.lane_reversal; 3741 } 3742 3743 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata) 3744 { 3745 return devdata && devdata->child.hpd_invert; 3746 } 3747 3748 const struct intel_bios_encoder_data * 3749 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port) 3750 { 3751 struct intel_bios_encoder_data *devdata; 3752 3753 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3754 if (intel_bios_encoder_port(devdata) == port) 3755 return devdata; 3756 } 3757 3758 return NULL; 3759 } 3760 3761 void intel_bios_for_each_encoder(struct drm_i915_private *i915, 3762 void (*func)(struct drm_i915_private *i915, 3763 const struct intel_bios_encoder_data *devdata)) 3764 { 3765 struct intel_bios_encoder_data *devdata; 3766 3767 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 3768 func(i915, devdata); 3769 } 3770 3771 static int intel_bios_vbt_show(struct seq_file *m, void *unused) 3772 { 3773 struct drm_i915_private *i915 = m->private; 3774 const void *vbt; 3775 size_t vbt_size; 3776 3777 vbt = intel_bios_get_vbt(i915, &vbt_size); 3778 3779 if (vbt) { 3780 seq_write(m, vbt, vbt_size); 3781 kfree(vbt); 3782 } 3783 3784 return 0; 3785 } 3786 3787 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt); 3788 3789 void intel_bios_debugfs_register(struct drm_i915_private *i915) 3790 { 3791 struct drm_minor *minor = i915->drm.primary; 3792 3793 debugfs_create_file("i915_vbt", 0444, minor->debugfs_root, 3794 i915, &intel_bios_vbt_fops); 3795 } 3796