1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <linux/debugfs.h> 29 #include <linux/firmware.h> 30 31 #include <drm/display/drm_dp_helper.h> 32 #include <drm/display/drm_dsc_helper.h> 33 #include <drm/drm_edid.h> 34 #include <drm/drm_fixed.h> 35 36 #include "soc/intel_rom.h" 37 38 #include "i915_drv.h" 39 #include "intel_display.h" 40 #include "intel_display_core.h" 41 #include "intel_display_rpm.h" 42 #include "intel_display_types.h" 43 #include "intel_gmbus.h" 44 45 #define _INTEL_BIOS_PRIVATE 46 #include "intel_vbt_defs.h" 47 48 /** 49 * DOC: Video BIOS Table (VBT) 50 * 51 * The Video BIOS Table, or VBT, provides platform and board specific 52 * configuration information to the driver that is not discoverable or available 53 * through other means. The configuration is mostly related to display 54 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 55 * the PCI ROM. 56 * 57 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 58 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 59 * contain the actual configuration information. The VBT Header, and thus the 60 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 61 * BDB Header. The data blocks are concatenated after the BDB Header. The data 62 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 63 * data. (Block 53, the MIPI Sequence Block is an exception.) 64 * 65 * The driver parses the VBT during load. The relevant information is stored in 66 * driver private data for ease of use, and the actual VBT is not read after 67 * that. 68 */ 69 70 /* Wrapper for VBT child device config */ 71 struct intel_bios_encoder_data { 72 struct intel_display *display; 73 74 struct child_device_config child; 75 struct dsc_compression_parameters_entry *dsc; 76 struct list_head node; 77 }; 78 79 #define TARGET_ADDR1 0x70 80 #define TARGET_ADDR2 0x72 81 82 /* Get BDB block size given a pointer to Block ID. */ 83 static u32 _get_blocksize(const u8 *block_base) 84 { 85 /* The MIPI Sequence Block v3+ has a separate size field. */ 86 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 87 return *((const u32 *)(block_base + 4)); 88 else 89 return *((const u16 *)(block_base + 1)); 90 } 91 92 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 93 static u32 get_blocksize(const void *block_data) 94 { 95 return _get_blocksize(block_data - 3); 96 } 97 98 static const void * 99 find_raw_section(const void *_bdb, enum bdb_block_id section_id) 100 { 101 const struct bdb_header *bdb = _bdb; 102 const u8 *base = _bdb; 103 int index = 0; 104 u32 total, current_size; 105 enum bdb_block_id current_id; 106 107 /* skip to first section */ 108 index += bdb->header_size; 109 total = bdb->bdb_size; 110 111 /* walk the sections looking for section_id */ 112 while (index + 3 < total) { 113 current_id = *(base + index); 114 current_size = _get_blocksize(base + index); 115 index += 3; 116 117 if (index + current_size > total) 118 return NULL; 119 120 if (current_id == section_id) 121 return base + index; 122 123 index += current_size; 124 } 125 126 return NULL; 127 } 128 129 /* 130 * Offset from the start of BDB to the start of the 131 * block data (just past the block header). 132 */ 133 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) 134 { 135 const void *block; 136 137 block = find_raw_section(bdb, section_id); 138 if (!block) 139 return 0; 140 141 return block - bdb; 142 } 143 144 struct bdb_block_entry { 145 struct list_head node; 146 enum bdb_block_id section_id; 147 u8 data[]; 148 }; 149 150 static const void * 151 bdb_find_section(struct intel_display *display, 152 enum bdb_block_id section_id) 153 { 154 struct bdb_block_entry *entry; 155 156 list_for_each_entry(entry, &display->vbt.bdb_blocks, node) { 157 if (entry->section_id == section_id) 158 return entry->data + 3; 159 } 160 161 return NULL; 162 } 163 164 static const struct { 165 enum bdb_block_id section_id; 166 size_t min_size; 167 } bdb_blocks[] = { 168 { .section_id = BDB_GENERAL_FEATURES, 169 .min_size = sizeof(struct bdb_general_features), }, 170 { .section_id = BDB_GENERAL_DEFINITIONS, 171 .min_size = sizeof(struct bdb_general_definitions), }, 172 { .section_id = BDB_PSR, 173 .min_size = sizeof(struct bdb_psr), }, 174 { .section_id = BDB_DRIVER_FEATURES, 175 .min_size = sizeof(struct bdb_driver_features), }, 176 { .section_id = BDB_SDVO_LVDS_OPTIONS, 177 .min_size = sizeof(struct bdb_sdvo_lvds_options), }, 178 { .section_id = BDB_SDVO_LVDS_DTD, 179 .min_size = sizeof(struct bdb_sdvo_lvds_dtd), }, 180 { .section_id = BDB_EDP, 181 .min_size = sizeof(struct bdb_edp), }, 182 { .section_id = BDB_LFP_OPTIONS, 183 .min_size = sizeof(struct bdb_lfp_options), }, 184 /* 185 * BDB_LFP_DATA depends on BDB_LFP_DATA_PTRS, 186 * so keep the two ordered. 187 */ 188 { .section_id = BDB_LFP_DATA_PTRS, 189 .min_size = sizeof(struct bdb_lfp_data_ptrs), }, 190 { .section_id = BDB_LFP_DATA, 191 .min_size = 0, /* special case */ }, 192 { .section_id = BDB_LFP_BACKLIGHT, 193 .min_size = sizeof(struct bdb_lfp_backlight), }, 194 { .section_id = BDB_LFP_POWER, 195 .min_size = sizeof(struct bdb_lfp_power), }, 196 { .section_id = BDB_MIPI_CONFIG, 197 .min_size = sizeof(struct bdb_mipi_config), }, 198 { .section_id = BDB_MIPI_SEQUENCE, 199 .min_size = sizeof(struct bdb_mipi_sequence) }, 200 { .section_id = BDB_COMPRESSION_PARAMETERS, 201 .min_size = sizeof(struct bdb_compression_parameters), }, 202 { .section_id = BDB_GENERIC_DTD, 203 .min_size = sizeof(struct bdb_generic_dtd), }, 204 }; 205 206 static size_t lfp_data_min_size(struct intel_display *display) 207 { 208 const struct bdb_lfp_data_ptrs *ptrs; 209 size_t size; 210 211 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 212 if (!ptrs) 213 return 0; 214 215 size = sizeof(struct bdb_lfp_data); 216 if (ptrs->panel_name.table_size) 217 size = max(size, ptrs->panel_name.offset + 218 sizeof(struct bdb_lfp_data_tail)); 219 220 return size; 221 } 222 223 static bool validate_lfp_data_ptrs(const void *bdb, 224 const struct bdb_lfp_data_ptrs *ptrs) 225 { 226 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; 227 int data_block_size, lfp_data_size; 228 const void *data_block; 229 int i; 230 231 data_block = find_raw_section(bdb, BDB_LFP_DATA); 232 if (!data_block) 233 return false; 234 235 data_block_size = get_blocksize(data_block); 236 if (data_block_size == 0) 237 return false; 238 239 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ 240 if (ptrs->num_entries != 3) 241 return false; 242 243 fp_timing_size = ptrs->ptr[0].fp_timing.table_size; 244 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; 245 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; 246 panel_name_size = ptrs->panel_name.table_size; 247 248 /* fp_timing has variable size */ 249 if (fp_timing_size < 32 || 250 dvo_timing_size != sizeof(struct bdb_edid_dtd) || 251 panel_pnp_id_size != sizeof(struct bdb_edid_pnp_id)) 252 return false; 253 254 /* panel_name is not present in old VBTs */ 255 if (panel_name_size != 0 && 256 panel_name_size != sizeof(struct bdb_edid_product_name)) 257 return false; 258 259 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; 260 if (16 * lfp_data_size > data_block_size) 261 return false; 262 263 /* make sure the table entries have uniform size */ 264 for (i = 1; i < 16; i++) { 265 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || 266 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || 267 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) 268 return false; 269 270 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || 271 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || 272 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) 273 return false; 274 } 275 276 /* 277 * Except for vlv/chv machines all real VBTs seem to have 6 278 * unaccounted bytes in the fp_timing table. And it doesn't 279 * appear to be a really intentional hole as the fp_timing 280 * 0xffff terminator is always within those 6 missing bytes. 281 */ 282 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size) 283 fp_timing_size += 6; 284 285 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size) 286 return false; 287 288 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset || 289 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || 290 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) 291 return false; 292 293 /* make sure the tables fit inside the data block */ 294 for (i = 0; i < 16; i++) { 295 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || 296 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || 297 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) 298 return false; 299 } 300 301 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) 302 return false; 303 304 /* make sure fp_timing terminators are present at expected locations */ 305 for (i = 0; i < 16; i++) { 306 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset + 307 fp_timing_size - 2; 308 309 if (*t != 0xffff) 310 return false; 311 } 312 313 return true; 314 } 315 316 /* make the data table offsets relative to the data block */ 317 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) 318 { 319 struct bdb_lfp_data_ptrs *ptrs = ptrs_block; 320 u32 offset; 321 int i; 322 323 offset = raw_block_offset(bdb, BDB_LFP_DATA); 324 325 for (i = 0; i < 16; i++) { 326 if (ptrs->ptr[i].fp_timing.offset < offset || 327 ptrs->ptr[i].dvo_timing.offset < offset || 328 ptrs->ptr[i].panel_pnp_id.offset < offset) 329 return false; 330 331 ptrs->ptr[i].fp_timing.offset -= offset; 332 ptrs->ptr[i].dvo_timing.offset -= offset; 333 ptrs->ptr[i].panel_pnp_id.offset -= offset; 334 } 335 336 if (ptrs->panel_name.table_size) { 337 if (ptrs->panel_name.offset < offset) 338 return false; 339 340 ptrs->panel_name.offset -= offset; 341 } 342 343 return validate_lfp_data_ptrs(bdb, ptrs); 344 } 345 346 static int make_lfp_data_ptr(struct lfp_data_ptr_table *table, 347 int table_size, int total_size) 348 { 349 if (total_size < table_size) 350 return total_size; 351 352 table->table_size = table_size; 353 table->offset = total_size - table_size; 354 355 return total_size - table_size; 356 } 357 358 static void next_lfp_data_ptr(struct lfp_data_ptr_table *next, 359 const struct lfp_data_ptr_table *prev, 360 int size) 361 { 362 next->table_size = prev->table_size; 363 next->offset = prev->offset + size; 364 } 365 366 static void *generate_lfp_data_ptrs(struct intel_display *display, 367 const void *bdb) 368 { 369 int i, size, table_size, block_size, offset, fp_timing_size; 370 struct bdb_lfp_data_ptrs *ptrs; 371 const void *block; 372 void *ptrs_block; 373 374 /* 375 * The hardcoded fp_timing_size is only valid for 376 * modernish VBTs. All older VBTs definitely should 377 * include block 41 and thus we don't need to 378 * generate one. 379 */ 380 if (display->vbt.version < 155) 381 return NULL; 382 383 fp_timing_size = 38; 384 385 block = find_raw_section(bdb, BDB_LFP_DATA); 386 if (!block) 387 return NULL; 388 389 drm_dbg_kms(display->drm, "Generating LFP data table pointers\n"); 390 391 block_size = get_blocksize(block); 392 393 size = fp_timing_size + sizeof(struct bdb_edid_dtd) + 394 sizeof(struct bdb_edid_pnp_id); 395 if (size * 16 > block_size) 396 return NULL; 397 398 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); 399 if (!ptrs_block) 400 return NULL; 401 402 *(u8 *)(ptrs_block + 0) = BDB_LFP_DATA_PTRS; 403 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); 404 ptrs = ptrs_block + 3; 405 406 table_size = sizeof(struct bdb_edid_pnp_id); 407 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); 408 409 table_size = sizeof(struct bdb_edid_dtd); 410 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); 411 412 table_size = fp_timing_size; 413 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); 414 415 if (ptrs->ptr[0].fp_timing.table_size) 416 ptrs->num_entries++; 417 if (ptrs->ptr[0].dvo_timing.table_size) 418 ptrs->num_entries++; 419 if (ptrs->ptr[0].panel_pnp_id.table_size) 420 ptrs->num_entries++; 421 422 if (size != 0 || ptrs->num_entries != 3) { 423 kfree(ptrs_block); 424 return NULL; 425 } 426 427 size = fp_timing_size + sizeof(struct bdb_edid_dtd) + 428 sizeof(struct bdb_edid_pnp_id); 429 for (i = 1; i < 16; i++) { 430 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); 431 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); 432 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); 433 } 434 435 table_size = sizeof(struct bdb_edid_product_name); 436 437 if (16 * (size + table_size) <= block_size) { 438 ptrs->panel_name.table_size = table_size; 439 ptrs->panel_name.offset = size * 16; 440 } 441 442 offset = block - bdb; 443 444 for (i = 0; i < 16; i++) { 445 ptrs->ptr[i].fp_timing.offset += offset; 446 ptrs->ptr[i].dvo_timing.offset += offset; 447 ptrs->ptr[i].panel_pnp_id.offset += offset; 448 } 449 450 if (ptrs->panel_name.table_size) 451 ptrs->panel_name.offset += offset; 452 453 return ptrs_block; 454 } 455 456 static void 457 init_bdb_block(struct intel_display *display, 458 const void *bdb, enum bdb_block_id section_id, 459 size_t min_size) 460 { 461 struct bdb_block_entry *entry; 462 void *temp_block = NULL; 463 const void *block; 464 size_t block_size; 465 466 block = find_raw_section(bdb, section_id); 467 468 /* Modern VBTs lack the LFP data table pointers block, make one up */ 469 if (!block && section_id == BDB_LFP_DATA_PTRS) { 470 temp_block = generate_lfp_data_ptrs(display, bdb); 471 if (temp_block) 472 block = temp_block + 3; 473 } 474 if (!block) 475 return; 476 477 drm_WARN(display->drm, min_size == 0, 478 "Block %d min_size is zero\n", section_id); 479 480 block_size = get_blocksize(block); 481 482 /* 483 * Version number and new block size are considered 484 * part of the header for MIPI sequenece block v3+. 485 */ 486 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3) 487 block_size += 5; 488 489 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), 490 GFP_KERNEL); 491 if (!entry) { 492 kfree(temp_block); 493 return; 494 } 495 496 entry->section_id = section_id; 497 memcpy(entry->data, block - 3, block_size + 3); 498 499 kfree(temp_block); 500 501 drm_dbg_kms(display->drm, 502 "Found BDB block %d (size %zu, min size %zu)\n", 503 section_id, block_size, min_size); 504 505 if (section_id == BDB_LFP_DATA_PTRS && 506 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { 507 drm_err(display->drm, 508 "VBT has malformed LFP data table pointers\n"); 509 kfree(entry); 510 return; 511 } 512 513 list_add_tail(&entry->node, &display->vbt.bdb_blocks); 514 } 515 516 static void init_bdb_blocks(struct intel_display *display, 517 const void *bdb) 518 { 519 int i; 520 521 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { 522 enum bdb_block_id section_id = bdb_blocks[i].section_id; 523 size_t min_size = bdb_blocks[i].min_size; 524 525 if (section_id == BDB_LFP_DATA) 526 min_size = lfp_data_min_size(display); 527 528 init_bdb_block(display, bdb, section_id, min_size); 529 } 530 } 531 532 static void 533 fill_detail_timing_data(struct intel_display *display, 534 struct drm_display_mode *panel_fixed_mode, 535 const struct bdb_edid_dtd *dvo_timing) 536 { 537 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 538 dvo_timing->hactive_lo; 539 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 540 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 541 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 542 ((dvo_timing->hsync_pulse_width_hi << 8) | 543 dvo_timing->hsync_pulse_width_lo); 544 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 545 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 546 547 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 548 dvo_timing->vactive_lo; 549 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 550 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 551 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 552 ((dvo_timing->vsync_pulse_width_hi << 4) | 553 dvo_timing->vsync_pulse_width_lo); 554 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 555 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 556 panel_fixed_mode->clock = dvo_timing->clock * 10; 557 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 558 559 if (dvo_timing->hsync_positive) 560 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 561 else 562 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 563 564 if (dvo_timing->vsync_positive) 565 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 566 else 567 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 568 569 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 570 dvo_timing->himage_lo; 571 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 572 dvo_timing->vimage_lo; 573 574 /* Some VBTs have bogus h/vsync_end values */ 575 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) { 576 drm_dbg_kms(display->drm, "reducing hsync_end %d->%d\n", 577 panel_fixed_mode->hsync_end, panel_fixed_mode->htotal); 578 panel_fixed_mode->hsync_end = panel_fixed_mode->htotal; 579 } 580 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) { 581 drm_dbg_kms(display->drm, "reducing vsync_end %d->%d\n", 582 panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal); 583 panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal; 584 } 585 586 drm_mode_set_name(panel_fixed_mode); 587 } 588 589 static const struct bdb_edid_dtd * 590 get_lfp_dvo_timing(const struct bdb_lfp_data *data, 591 const struct bdb_lfp_data_ptrs *ptrs, 592 int index) 593 { 594 return (const void *)data + ptrs->ptr[index].dvo_timing.offset; 595 } 596 597 static const struct fp_timing * 598 get_lfp_fp_timing(const struct bdb_lfp_data *data, 599 const struct bdb_lfp_data_ptrs *ptrs, 600 int index) 601 { 602 return (const void *)data + ptrs->ptr[index].fp_timing.offset; 603 } 604 605 static const struct drm_edid_product_id * 606 get_lfp_pnp_id(const struct bdb_lfp_data *data, 607 const struct bdb_lfp_data_ptrs *ptrs, 608 int index) 609 { 610 /* These two are supposed to have the same layout in memory. */ 611 BUILD_BUG_ON(sizeof(struct bdb_edid_pnp_id) != sizeof(struct drm_edid_product_id)); 612 613 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; 614 } 615 616 static const struct bdb_lfp_data_tail * 617 get_lfp_data_tail(const struct bdb_lfp_data *data, 618 const struct bdb_lfp_data_ptrs *ptrs) 619 { 620 if (ptrs->panel_name.table_size) 621 return (const void *)data + ptrs->panel_name.offset; 622 else 623 return NULL; 624 } 625 626 static int opregion_get_panel_type(struct intel_display *display, 627 const struct intel_bios_encoder_data *devdata, 628 const struct drm_edid *drm_edid, bool use_fallback) 629 { 630 return intel_opregion_get_panel_type(display); 631 } 632 633 static int vbt_get_panel_type(struct intel_display *display, 634 const struct intel_bios_encoder_data *devdata, 635 const struct drm_edid *drm_edid, bool use_fallback) 636 { 637 const struct bdb_lfp_options *lfp_options; 638 639 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS); 640 if (!lfp_options) 641 return -1; 642 643 if (lfp_options->panel_type > 0xf && 644 lfp_options->panel_type != 0xff) { 645 drm_dbg_kms(display->drm, "Invalid VBT panel type 0x%x\n", 646 lfp_options->panel_type); 647 return -1; 648 } 649 650 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) 651 return lfp_options->panel_type2; 652 653 drm_WARN_ON(display->drm, 654 devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); 655 656 return lfp_options->panel_type; 657 } 658 659 static int pnpid_get_panel_type(struct intel_display *display, 660 const struct intel_bios_encoder_data *devdata, 661 const struct drm_edid *drm_edid, bool use_fallback) 662 { 663 const struct bdb_lfp_data *data; 664 const struct bdb_lfp_data_ptrs *ptrs; 665 struct drm_edid_product_id product_id, product_id_nodate; 666 struct drm_printer p; 667 int i, best = -1; 668 669 if (!drm_edid) 670 return -1; 671 672 drm_edid_get_product_id(drm_edid, &product_id); 673 674 product_id_nodate = product_id; 675 product_id_nodate.week_of_manufacture = 0; 676 product_id_nodate.year_of_manufacture = 0; 677 678 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "EDID"); 679 drm_edid_print_product_id(&p, &product_id, true); 680 681 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 682 if (!ptrs) 683 return -1; 684 685 data = bdb_find_section(display, BDB_LFP_DATA); 686 if (!data) 687 return -1; 688 689 for (i = 0; i < 16; i++) { 690 const struct drm_edid_product_id *vbt_id = 691 get_lfp_pnp_id(data, ptrs, i); 692 693 /* full match? */ 694 if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id))) 695 return i; 696 697 /* 698 * Accept a match w/o date if no full match is found, 699 * and the VBT entry does not specify a date. 700 */ 701 if (best < 0 && 702 !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id))) 703 best = i; 704 } 705 706 return best; 707 } 708 709 static int fallback_get_panel_type(struct intel_display *display, 710 const struct intel_bios_encoder_data *devdata, 711 const struct drm_edid *drm_edid, bool use_fallback) 712 { 713 return use_fallback ? 0 : -1; 714 } 715 716 enum panel_type { 717 PANEL_TYPE_OPREGION, 718 PANEL_TYPE_VBT, 719 PANEL_TYPE_PNPID, 720 PANEL_TYPE_FALLBACK, 721 }; 722 723 static int get_panel_type(struct intel_display *display, 724 const struct intel_bios_encoder_data *devdata, 725 const struct drm_edid *drm_edid, bool use_fallback) 726 { 727 struct { 728 const char *name; 729 int (*get_panel_type)(struct intel_display *display, 730 const struct intel_bios_encoder_data *devdata, 731 const struct drm_edid *drm_edid, bool use_fallback); 732 int panel_type; 733 } panel_types[] = { 734 [PANEL_TYPE_OPREGION] = { 735 .name = "OpRegion", 736 .get_panel_type = opregion_get_panel_type, 737 }, 738 [PANEL_TYPE_VBT] = { 739 .name = "VBT", 740 .get_panel_type = vbt_get_panel_type, 741 }, 742 [PANEL_TYPE_PNPID] = { 743 .name = "PNPID", 744 .get_panel_type = pnpid_get_panel_type, 745 }, 746 [PANEL_TYPE_FALLBACK] = { 747 .name = "fallback", 748 .get_panel_type = fallback_get_panel_type, 749 }, 750 }; 751 int i; 752 753 for (i = 0; i < ARRAY_SIZE(panel_types); i++) { 754 panel_types[i].panel_type = panel_types[i].get_panel_type(display, devdata, 755 drm_edid, use_fallback); 756 757 drm_WARN_ON(display->drm, panel_types[i].panel_type > 0xf && 758 panel_types[i].panel_type != 0xff); 759 760 if (panel_types[i].panel_type >= 0) 761 drm_dbg_kms(display->drm, "Panel type (%s): %d\n", 762 panel_types[i].name, panel_types[i].panel_type); 763 } 764 765 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) 766 i = PANEL_TYPE_OPREGION; 767 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && 768 panel_types[PANEL_TYPE_PNPID].panel_type >= 0) 769 i = PANEL_TYPE_PNPID; 770 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && 771 panel_types[PANEL_TYPE_VBT].panel_type >= 0) 772 i = PANEL_TYPE_VBT; 773 else 774 i = PANEL_TYPE_FALLBACK; 775 776 drm_dbg_kms(display->drm, "Selected panel type (%s): %d\n", 777 panel_types[i].name, panel_types[i].panel_type); 778 779 return panel_types[i].panel_type; 780 } 781 782 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) 783 { 784 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); 785 } 786 787 static bool panel_bool(unsigned int value, int panel_type) 788 { 789 return panel_bits(value, panel_type, 1); 790 } 791 792 /* Parse general panel options */ 793 static void 794 parse_panel_options(struct intel_display *display, 795 struct intel_panel *panel) 796 { 797 const struct bdb_lfp_options *lfp_options; 798 int panel_type = panel->vbt.panel_type; 799 int drrs_mode; 800 801 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS); 802 if (!lfp_options) 803 return; 804 805 panel->vbt.lvds_dither = lfp_options->pixel_dither; 806 807 /* 808 * Empirical evidence indicates the block size can be 809 * either 4,14,16,24+ bytes. For older VBTs no clear 810 * relationship between the block size vs. BDB version. 811 */ 812 if (get_blocksize(lfp_options) < 16) 813 return; 814 815 drrs_mode = panel_bits(lfp_options->dps_panel_type_bits, 816 panel_type, 2); 817 /* 818 * VBT has static DRRS = 0 and seamless DRRS = 2. 819 * The below piece of code is required to adjust vbt.drrs_type 820 * to match the enum drrs_support_type. 821 */ 822 switch (drrs_mode) { 823 case 0: 824 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 825 drm_dbg_kms(display->drm, "DRRS supported mode is static\n"); 826 break; 827 case 2: 828 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; 829 drm_dbg_kms(display->drm, 830 "DRRS supported mode is seamless\n"); 831 break; 832 default: 833 panel->vbt.drrs_type = DRRS_TYPE_NONE; 834 drm_dbg_kms(display->drm, 835 "DRRS not supported (VBT input)\n"); 836 break; 837 } 838 } 839 840 static void 841 parse_lfp_panel_dtd(struct intel_display *display, 842 struct intel_panel *panel, 843 const struct bdb_lfp_data *lfp_data, 844 const struct bdb_lfp_data_ptrs *lfp_data_ptrs) 845 { 846 const struct bdb_edid_dtd *panel_dvo_timing; 847 const struct fp_timing *fp_timing; 848 struct drm_display_mode *panel_fixed_mode; 849 int panel_type = panel->vbt.panel_type; 850 851 panel_dvo_timing = get_lfp_dvo_timing(lfp_data, 852 lfp_data_ptrs, 853 panel_type); 854 855 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 856 if (!panel_fixed_mode) 857 return; 858 859 fill_detail_timing_data(display, panel_fixed_mode, panel_dvo_timing); 860 861 panel->vbt.lfp_vbt_mode = panel_fixed_mode; 862 863 drm_dbg_kms(display->drm, 864 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", 865 DRM_MODE_ARG(panel_fixed_mode)); 866 867 fp_timing = get_lfp_fp_timing(lfp_data, 868 lfp_data_ptrs, 869 panel_type); 870 871 /* check the resolution, just to be sure */ 872 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 873 fp_timing->y_res == panel_fixed_mode->vdisplay) { 874 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 875 drm_dbg_kms(display->drm, 876 "VBT initial LVDS value %x\n", 877 panel->vbt.bios_lvds_val); 878 } 879 } 880 881 static void 882 parse_lfp_data(struct intel_display *display, 883 struct intel_panel *panel) 884 { 885 const struct bdb_lfp_data *data; 886 const struct bdb_lfp_data_tail *tail; 887 const struct bdb_lfp_data_ptrs *ptrs; 888 const struct drm_edid_product_id *pnp_id; 889 struct drm_printer p; 890 int panel_type = panel->vbt.panel_type; 891 892 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 893 if (!ptrs) 894 return; 895 896 data = bdb_find_section(display, BDB_LFP_DATA); 897 if (!data) 898 return; 899 900 if (!panel->vbt.lfp_vbt_mode) 901 parse_lfp_panel_dtd(display, panel, data, ptrs); 902 903 pnp_id = get_lfp_pnp_id(data, ptrs, panel_type); 904 905 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "Panel"); 906 drm_edid_print_product_id(&p, pnp_id, false); 907 908 tail = get_lfp_data_tail(data, ptrs); 909 if (!tail) 910 return; 911 912 drm_dbg_kms(display->drm, "Panel name: %.*s\n", 913 (int)sizeof(tail->panel_name[0].name), 914 tail->panel_name[panel_type].name); 915 916 if (display->vbt.version >= 188) { 917 panel->vbt.seamless_drrs_min_refresh_rate = 918 tail->seamless_drrs_min_refresh_rate[panel_type]; 919 drm_dbg_kms(display->drm, 920 "Seamless DRRS min refresh rate: %d Hz\n", 921 panel->vbt.seamless_drrs_min_refresh_rate); 922 } 923 } 924 925 static void 926 parse_generic_dtd(struct intel_display *display, 927 struct intel_panel *panel) 928 { 929 const struct bdb_generic_dtd *generic_dtd; 930 const struct generic_dtd_entry *dtd; 931 struct drm_display_mode *panel_fixed_mode; 932 int num_dtd; 933 934 /* 935 * Older VBTs provided DTD information for internal displays through 936 * the "LFP panel tables" block (42). As of VBT revision 229 the 937 * DTD information should be provided via a newer "generic DTD" 938 * block (58). Just to be safe, we'll try the new generic DTD block 939 * first on VBT >= 229, but still fall back to trying the old LFP 940 * block if that fails. 941 */ 942 if (display->vbt.version < 229) 943 return; 944 945 generic_dtd = bdb_find_section(display, BDB_GENERIC_DTD); 946 if (!generic_dtd) 947 return; 948 949 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 950 drm_err(display->drm, "GDTD size %u is too small.\n", 951 generic_dtd->gdtd_size); 952 return; 953 } else if (generic_dtd->gdtd_size != 954 sizeof(struct generic_dtd_entry)) { 955 drm_err(display->drm, "Unexpected GDTD size %u\n", 956 generic_dtd->gdtd_size); 957 /* DTD has unknown fields, but keep going */ 958 } 959 960 num_dtd = (get_blocksize(generic_dtd) - 961 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 962 if (panel->vbt.panel_type >= num_dtd) { 963 drm_err(display->drm, 964 "Panel type %d not found in table of %d DTD's\n", 965 panel->vbt.panel_type, num_dtd); 966 return; 967 } 968 969 dtd = &generic_dtd->dtd[panel->vbt.panel_type]; 970 971 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 972 if (!panel_fixed_mode) 973 return; 974 975 panel_fixed_mode->hdisplay = dtd->hactive; 976 panel_fixed_mode->hsync_start = 977 panel_fixed_mode->hdisplay + dtd->hfront_porch; 978 panel_fixed_mode->hsync_end = 979 panel_fixed_mode->hsync_start + dtd->hsync; 980 panel_fixed_mode->htotal = 981 panel_fixed_mode->hdisplay + dtd->hblank; 982 983 panel_fixed_mode->vdisplay = dtd->vactive; 984 panel_fixed_mode->vsync_start = 985 panel_fixed_mode->vdisplay + dtd->vfront_porch; 986 panel_fixed_mode->vsync_end = 987 panel_fixed_mode->vsync_start + dtd->vsync; 988 panel_fixed_mode->vtotal = 989 panel_fixed_mode->vdisplay + dtd->vblank; 990 991 panel_fixed_mode->clock = dtd->pixel_clock; 992 panel_fixed_mode->width_mm = dtd->width_mm; 993 panel_fixed_mode->height_mm = dtd->height_mm; 994 995 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 996 drm_mode_set_name(panel_fixed_mode); 997 998 if (dtd->hsync_positive_polarity) 999 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 1000 else 1001 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 1002 1003 if (dtd->vsync_positive_polarity) 1004 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 1005 else 1006 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 1007 1008 drm_dbg_kms(display->drm, 1009 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", 1010 DRM_MODE_ARG(panel_fixed_mode)); 1011 1012 panel->vbt.lfp_vbt_mode = panel_fixed_mode; 1013 } 1014 1015 static void 1016 parse_lfp_backlight(struct intel_display *display, 1017 struct intel_panel *panel) 1018 { 1019 const struct bdb_lfp_backlight *backlight_data; 1020 const struct lfp_backlight_data_entry *entry; 1021 int panel_type = panel->vbt.panel_type; 1022 u16 level; 1023 1024 backlight_data = bdb_find_section(display, BDB_LFP_BACKLIGHT); 1025 if (!backlight_data) 1026 return; 1027 1028 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 1029 drm_dbg_kms(display->drm, 1030 "Unsupported backlight data entry size %u\n", 1031 backlight_data->entry_size); 1032 return; 1033 } 1034 1035 entry = &backlight_data->data[panel_type]; 1036 1037 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 1038 if (!panel->vbt.backlight.present) { 1039 drm_dbg_kms(display->drm, 1040 "PWM backlight not present in VBT (type %u)\n", 1041 entry->type); 1042 return; 1043 } 1044 1045 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 1046 panel->vbt.backlight.controller = 0; 1047 if (display->vbt.version >= 191) { 1048 const struct lfp_backlight_control_method *method; 1049 1050 method = &backlight_data->backlight_control[panel_type]; 1051 panel->vbt.backlight.type = method->type; 1052 panel->vbt.backlight.controller = method->controller; 1053 } 1054 1055 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 1056 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; 1057 1058 if (display->vbt.version >= 234) { 1059 u16 min_level; 1060 bool scale; 1061 1062 level = backlight_data->brightness_level[panel_type].level; 1063 min_level = backlight_data->brightness_min_level[panel_type].level; 1064 1065 if (display->vbt.version >= 236) 1066 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 1067 else 1068 scale = level > 255; 1069 1070 if (scale) 1071 min_level = min_level / 255; 1072 1073 if (min_level > 255) { 1074 drm_warn(display->drm, "Brightness min level > 255\n"); 1075 level = 255; 1076 } 1077 panel->vbt.backlight.min_brightness = min_level; 1078 1079 panel->vbt.backlight.brightness_precision_bits = 1080 backlight_data->brightness_precision_bits[panel_type]; 1081 } else { 1082 level = backlight_data->level[panel_type]; 1083 panel->vbt.backlight.min_brightness = entry->min_brightness; 1084 } 1085 1086 if (display->vbt.version >= 239) 1087 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 1088 DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100); 1089 else 1090 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30; 1091 1092 drm_dbg_kms(display->drm, 1093 "VBT backlight PWM modulation frequency %u Hz, " 1094 "active %s, min brightness %u, level %u, controller %u\n", 1095 panel->vbt.backlight.pwm_freq_hz, 1096 panel->vbt.backlight.active_low_pwm ? "low" : "high", 1097 panel->vbt.backlight.min_brightness, 1098 level, 1099 panel->vbt.backlight.controller); 1100 } 1101 1102 static void 1103 parse_sdvo_lvds_data(struct intel_display *display, 1104 struct intel_panel *panel) 1105 { 1106 const struct bdb_sdvo_lvds_dtd *dtd; 1107 struct drm_display_mode *panel_fixed_mode; 1108 int index; 1109 1110 index = display->params.vbt_sdvo_panel_type; 1111 if (index == -2) { 1112 drm_dbg_kms(display->drm, 1113 "Ignore SDVO LVDS mode from BIOS VBT tables.\n"); 1114 return; 1115 } 1116 1117 if (index == -1) { 1118 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 1119 1120 sdvo_lvds_options = bdb_find_section(display, BDB_SDVO_LVDS_OPTIONS); 1121 if (!sdvo_lvds_options) 1122 return; 1123 1124 index = sdvo_lvds_options->panel_type; 1125 } 1126 1127 dtd = bdb_find_section(display, BDB_SDVO_LVDS_DTD); 1128 if (!dtd) 1129 return; 1130 1131 /* 1132 * This should not happen, as long as the panel_type 1133 * enumeration doesn't grow over 4 items. But if it does, it 1134 * could lead to hard-to-detect bugs, so better double-check 1135 * it here to be sure. 1136 */ 1137 if (index >= ARRAY_SIZE(dtd->dtd)) { 1138 drm_err(display->drm, 1139 "index %d is larger than dtd->dtd[4] array\n", 1140 index); 1141 return; 1142 } 1143 1144 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 1145 if (!panel_fixed_mode) 1146 return; 1147 1148 fill_detail_timing_data(display, panel_fixed_mode, &dtd->dtd[index]); 1149 1150 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 1151 1152 drm_dbg_kms(display->drm, 1153 "Found SDVO LVDS mode in BIOS VBT tables: " DRM_MODE_FMT "\n", 1154 DRM_MODE_ARG(panel_fixed_mode)); 1155 } 1156 1157 static int intel_bios_ssc_frequency(struct intel_display *display, 1158 bool alternate) 1159 { 1160 switch (DISPLAY_VER(display)) { 1161 case 2: 1162 return alternate ? 66667 : 48000; 1163 case 3: 1164 case 4: 1165 return alternate ? 100000 : 96000; 1166 default: 1167 return alternate ? 100000 : 120000; 1168 } 1169 } 1170 1171 static void 1172 parse_general_features(struct intel_display *display) 1173 { 1174 const struct bdb_general_features *general; 1175 1176 general = bdb_find_section(display, BDB_GENERAL_FEATURES); 1177 if (!general) 1178 return; 1179 1180 display->vbt.int_tv_support = general->int_tv_support; 1181 /* int_crt_support can't be trusted on earlier platforms */ 1182 if (display->vbt.version >= 155 && 1183 (HAS_DDI(display) || display->platform.valleyview)) 1184 display->vbt.int_crt_support = general->int_crt_support; 1185 display->vbt.lvds_use_ssc = general->enable_ssc; 1186 display->vbt.lvds_ssc_freq = 1187 intel_bios_ssc_frequency(display, general->ssc_freq); 1188 display->vbt.display_clock_mode = general->display_clock_mode; 1189 display->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 1190 if (display->vbt.version >= 181) { 1191 display->vbt.orientation = general->rotate_180 ? 1192 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 1193 DRM_MODE_PANEL_ORIENTATION_NORMAL; 1194 } else { 1195 display->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1196 } 1197 1198 if (display->vbt.version >= 249 && general->afc_startup_config) { 1199 display->vbt.override_afc_startup = true; 1200 display->vbt.override_afc_startup_val = general->afc_startup_config == 1 ? 0 : 7; 1201 } 1202 1203 drm_dbg_kms(display->drm, 1204 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 1205 display->vbt.int_tv_support, 1206 display->vbt.int_crt_support, 1207 display->vbt.lvds_use_ssc, 1208 display->vbt.lvds_ssc_freq, 1209 display->vbt.display_clock_mode, 1210 display->vbt.fdi_rx_polarity_inverted); 1211 } 1212 1213 static const struct child_device_config * 1214 child_device_ptr(const struct bdb_general_definitions *defs, int i) 1215 { 1216 return (const void *) &defs->devices[i * defs->child_dev_size]; 1217 } 1218 1219 static void 1220 parse_sdvo_device_mapping(struct intel_display *display) 1221 { 1222 const struct intel_bios_encoder_data *devdata; 1223 int count = 0; 1224 1225 /* 1226 * Only parse SDVO mappings on gens that could have SDVO. This isn't 1227 * accurate and doesn't have to be, as long as it's not too strict. 1228 */ 1229 if (!IS_DISPLAY_VER(display, 3, 7)) { 1230 drm_dbg_kms(display->drm, "Skipping SDVO device mapping\n"); 1231 return; 1232 } 1233 1234 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 1235 const struct child_device_config *child = &devdata->child; 1236 struct sdvo_device_mapping *mapping; 1237 1238 if (child->target_addr != TARGET_ADDR1 && 1239 child->target_addr != TARGET_ADDR2) { 1240 /* 1241 * If the target address is neither 0x70 nor 0x72, 1242 * it is not a SDVO device. Skip it. 1243 */ 1244 continue; 1245 } 1246 if (child->dvo_port != DEVICE_PORT_DVOB && 1247 child->dvo_port != DEVICE_PORT_DVOC) { 1248 /* skip the incorrect SDVO port */ 1249 drm_dbg_kms(display->drm, 1250 "Incorrect SDVO port. Skip it\n"); 1251 continue; 1252 } 1253 drm_dbg_kms(display->drm, 1254 "the SDVO device with target addr %2x is found on" 1255 " %s port\n", 1256 child->target_addr, 1257 (child->dvo_port == DEVICE_PORT_DVOB) ? 1258 "SDVOB" : "SDVOC"); 1259 mapping = &display->vbt.sdvo_mappings[child->dvo_port - 1]; 1260 if (!mapping->initialized) { 1261 mapping->dvo_port = child->dvo_port; 1262 mapping->target_addr = child->target_addr; 1263 mapping->dvo_wiring = child->dvo_wiring; 1264 mapping->ddc_pin = child->ddc_pin; 1265 mapping->i2c_pin = child->i2c_pin; 1266 mapping->initialized = 1; 1267 drm_dbg_kms(display->drm, 1268 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 1269 mapping->dvo_port, mapping->target_addr, 1270 mapping->dvo_wiring, mapping->ddc_pin, 1271 mapping->i2c_pin); 1272 } else { 1273 drm_dbg_kms(display->drm, 1274 "Maybe one SDVO port is shared by " 1275 "two SDVO device.\n"); 1276 } 1277 if (child->target2_addr) { 1278 /* Maybe this is a SDVO device with multiple inputs */ 1279 /* And the mapping info is not added */ 1280 drm_dbg_kms(display->drm, 1281 "there exists the target2_addr. Maybe this" 1282 " is a SDVO device with multiple inputs.\n"); 1283 } 1284 count++; 1285 } 1286 1287 if (!count) { 1288 /* No SDVO device info is found */ 1289 drm_dbg_kms(display->drm, 1290 "No SDVO device info is found in VBT\n"); 1291 } 1292 } 1293 1294 static void 1295 parse_driver_features(struct intel_display *display) 1296 { 1297 const struct bdb_driver_features *driver; 1298 1299 driver = bdb_find_section(display, BDB_DRIVER_FEATURES); 1300 if (!driver) 1301 return; 1302 1303 if (DISPLAY_VER(display) >= 5) { 1304 /* 1305 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 1306 * to mean "eDP". The VBT spec doesn't agree with that 1307 * interpretation, but real world VBTs seem to. 1308 */ 1309 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 1310 display->vbt.int_lvds_support = 0; 1311 } else { 1312 /* 1313 * FIXME it's not clear which BDB version has the LVDS config 1314 * bits defined. Revision history in the VBT spec says: 1315 * "0.92 | Add two definitions for VBT value of LVDS Active 1316 * Config (00b and 11b values defined) | 06/13/2005" 1317 * but does not the specify the BDB version. 1318 * 1319 * So far version 134 (on i945gm) is the oldest VBT observed 1320 * in the wild with the bits correctly populated. Version 1321 * 108 (on i85x) does not have the bits correctly populated. 1322 */ 1323 if (display->vbt.version >= 134 && 1324 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 1325 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 1326 display->vbt.int_lvds_support = 0; 1327 } 1328 } 1329 1330 static void 1331 parse_panel_driver_features(struct intel_display *display, 1332 struct intel_panel *panel) 1333 { 1334 const struct bdb_driver_features *driver; 1335 1336 driver = bdb_find_section(display, BDB_DRIVER_FEATURES); 1337 if (!driver) 1338 return; 1339 1340 if (display->vbt.version < 228) { 1341 drm_dbg_kms(display->drm, "DRRS State Enabled:%d\n", 1342 driver->drrs_enabled); 1343 /* 1344 * If DRRS is not supported, drrs_type has to be set to 0. 1345 * This is because, VBT is configured in such a way that 1346 * static DRRS is 0 and DRRS not supported is represented by 1347 * driver->drrs_enabled=false 1348 */ 1349 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1350 /* 1351 * FIXME Should DMRRS perhaps be treated as seamless 1352 * but without the automatic downclocking? 1353 */ 1354 if (driver->dmrrs_enabled) 1355 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1356 else 1357 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1358 } 1359 1360 panel->vbt.psr.enable = driver->psr_enabled; 1361 } 1362 } 1363 1364 static void 1365 parse_power_conservation_features(struct intel_display *display, 1366 struct intel_panel *panel) 1367 { 1368 const struct bdb_lfp_power *power; 1369 u8 panel_type = panel->vbt.panel_type; 1370 1371 panel->vbt.vrr = true; /* matches Windows behaviour */ 1372 1373 if (display->vbt.version < 228) 1374 return; 1375 1376 power = bdb_find_section(display, BDB_LFP_POWER); 1377 if (!power) 1378 return; 1379 1380 panel->vbt.psr.enable = panel_bool(power->psr, panel_type); 1381 1382 /* 1383 * If DRRS is not supported, drrs_type has to be set to 0. 1384 * This is because, VBT is configured in such a way that 1385 * static DRRS is 0 and DRRS not supported is represented by 1386 * power->drrs & BIT(panel_type)=false 1387 */ 1388 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1389 /* 1390 * FIXME Should DMRRS perhaps be treated as seamless 1391 * but without the automatic downclocking? 1392 */ 1393 if (panel_bool(power->dmrrs, panel_type)) 1394 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1395 else 1396 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1397 } 1398 1399 if (display->vbt.version >= 232) 1400 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); 1401 1402 if (display->vbt.version >= 233) 1403 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, 1404 panel_type); 1405 } 1406 1407 static void vbt_edp_to_pps_delays(struct intel_pps_delays *pps, 1408 const struct edp_power_seq *edp_pps) 1409 { 1410 pps->power_up = edp_pps->t1_t3; 1411 pps->backlight_on = edp_pps->t8; 1412 pps->backlight_off = edp_pps->t9; 1413 pps->power_down = edp_pps->t10; 1414 pps->power_cycle = edp_pps->t11_t12; 1415 } 1416 1417 static void 1418 parse_edp(struct intel_display *display, 1419 struct intel_panel *panel) 1420 { 1421 const struct bdb_edp *edp; 1422 const struct edp_fast_link_params *edp_link_params; 1423 int panel_type = panel->vbt.panel_type; 1424 1425 edp = bdb_find_section(display, BDB_EDP); 1426 if (!edp) 1427 return; 1428 1429 switch (panel_bits(edp->color_depth, panel_type, 2)) { 1430 case EDP_18BPP: 1431 panel->vbt.edp.bpp = 18; 1432 break; 1433 case EDP_24BPP: 1434 panel->vbt.edp.bpp = 24; 1435 break; 1436 case EDP_30BPP: 1437 panel->vbt.edp.bpp = 30; 1438 break; 1439 } 1440 1441 /* Get the eDP sequencing and link info */ 1442 edp_link_params = &edp->fast_link_params[panel_type]; 1443 1444 vbt_edp_to_pps_delays(&panel->vbt.edp.pps, 1445 &edp->power_seqs[panel_type]); 1446 1447 if (display->vbt.version >= 224) { 1448 panel->vbt.edp.rate = 1449 edp->edp_fast_link_training_rate[panel_type] * 20; 1450 } else { 1451 switch (edp_link_params->rate) { 1452 case EDP_RATE_1_62: 1453 panel->vbt.edp.rate = 162000; 1454 break; 1455 case EDP_RATE_2_7: 1456 panel->vbt.edp.rate = 270000; 1457 break; 1458 case EDP_RATE_5_4: 1459 panel->vbt.edp.rate = 540000; 1460 break; 1461 default: 1462 drm_dbg_kms(display->drm, 1463 "VBT has unknown eDP link rate value %u\n", 1464 edp_link_params->rate); 1465 break; 1466 } 1467 } 1468 1469 switch (edp_link_params->lanes) { 1470 case EDP_LANE_1: 1471 panel->vbt.edp.lanes = 1; 1472 break; 1473 case EDP_LANE_2: 1474 panel->vbt.edp.lanes = 2; 1475 break; 1476 case EDP_LANE_4: 1477 panel->vbt.edp.lanes = 4; 1478 break; 1479 default: 1480 drm_dbg_kms(display->drm, 1481 "VBT has unknown eDP lane count value %u\n", 1482 edp_link_params->lanes); 1483 break; 1484 } 1485 1486 switch (edp_link_params->preemphasis) { 1487 case EDP_PREEMPHASIS_NONE: 1488 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 1489 break; 1490 case EDP_PREEMPHASIS_3_5dB: 1491 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 1492 break; 1493 case EDP_PREEMPHASIS_6dB: 1494 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 1495 break; 1496 case EDP_PREEMPHASIS_9_5dB: 1497 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 1498 break; 1499 default: 1500 drm_dbg_kms(display->drm, 1501 "VBT has unknown eDP pre-emphasis value %u\n", 1502 edp_link_params->preemphasis); 1503 break; 1504 } 1505 1506 switch (edp_link_params->vswing) { 1507 case EDP_VSWING_0_4V: 1508 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 1509 break; 1510 case EDP_VSWING_0_6V: 1511 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 1512 break; 1513 case EDP_VSWING_0_8V: 1514 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 1515 break; 1516 case EDP_VSWING_1_2V: 1517 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 1518 break; 1519 default: 1520 drm_dbg_kms(display->drm, 1521 "VBT has unknown eDP voltage swing value %u\n", 1522 edp_link_params->vswing); 1523 break; 1524 } 1525 1526 if (display->vbt.version >= 173) { 1527 u8 vswing; 1528 1529 /* Don't read from VBT if module parameter has valid value*/ 1530 if (display->params.edp_vswing) { 1531 panel->vbt.edp.low_vswing = 1532 display->params.edp_vswing == 1; 1533 } else { 1534 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 1535 panel->vbt.edp.low_vswing = vswing == 0; 1536 } 1537 } 1538 1539 panel->vbt.edp.drrs_msa_timing_delay = 1540 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); 1541 1542 if (display->vbt.version >= 244) 1543 panel->vbt.edp.max_link_rate = 1544 edp->edp_max_port_link_rate[panel_type] * 20; 1545 1546 if (display->vbt.version >= 251) 1547 panel->vbt.edp.dsc_disable = 1548 panel_bool(edp->edp_dsc_disable, panel_type); 1549 } 1550 1551 static void 1552 parse_psr(struct intel_display *display, 1553 struct intel_panel *panel) 1554 { 1555 const struct bdb_psr *psr; 1556 const struct psr_table *psr_table; 1557 int panel_type = panel->vbt.panel_type; 1558 1559 psr = bdb_find_section(display, BDB_PSR); 1560 if (!psr) { 1561 drm_dbg_kms(display->drm, "No PSR BDB found.\n"); 1562 return; 1563 } 1564 1565 psr_table = &psr->psr_table[panel_type]; 1566 1567 panel->vbt.psr.full_link = psr_table->full_link; 1568 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 1569 1570 /* Allowed VBT values goes from 0 to 15 */ 1571 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 1572 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 1573 1574 /* 1575 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 1576 * Old decimal value is wake up time in multiples of 100 us. 1577 */ 1578 if (display->vbt.version >= 205 && 1579 (DISPLAY_VER(display) >= 9 && !display->platform.broxton)) { 1580 switch (psr_table->tp1_wakeup_time) { 1581 case 0: 1582 panel->vbt.psr.tp1_wakeup_time_us = 500; 1583 break; 1584 case 1: 1585 panel->vbt.psr.tp1_wakeup_time_us = 100; 1586 break; 1587 case 3: 1588 panel->vbt.psr.tp1_wakeup_time_us = 0; 1589 break; 1590 default: 1591 drm_dbg_kms(display->drm, 1592 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1593 psr_table->tp1_wakeup_time); 1594 fallthrough; 1595 case 2: 1596 panel->vbt.psr.tp1_wakeup_time_us = 2500; 1597 break; 1598 } 1599 1600 switch (psr_table->tp2_tp3_wakeup_time) { 1601 case 0: 1602 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; 1603 break; 1604 case 1: 1605 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; 1606 break; 1607 case 3: 1608 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; 1609 break; 1610 default: 1611 drm_dbg_kms(display->drm, 1612 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1613 psr_table->tp2_tp3_wakeup_time); 1614 fallthrough; 1615 case 2: 1616 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 1617 break; 1618 } 1619 } else { 1620 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 1621 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 1622 } 1623 1624 if (display->vbt.version >= 226) { 1625 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 1626 1627 wakeup_time = panel_bits(wakeup_time, panel_type, 2); 1628 switch (wakeup_time) { 1629 case 0: 1630 wakeup_time = 500; 1631 break; 1632 case 1: 1633 wakeup_time = 100; 1634 break; 1635 case 3: 1636 wakeup_time = 50; 1637 break; 1638 default: 1639 case 2: 1640 wakeup_time = 2500; 1641 break; 1642 } 1643 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 1644 } else { 1645 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 1646 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; 1647 } 1648 } 1649 1650 static void parse_dsi_backlight_ports(struct intel_display *display, 1651 struct intel_panel *panel, 1652 enum port port) 1653 { 1654 enum port port_bc = DISPLAY_VER(display) >= 11 ? PORT_B : PORT_C; 1655 1656 if (!panel->vbt.dsi.config->dual_link || display->vbt.version < 197) { 1657 panel->vbt.dsi.bl_ports = BIT(port); 1658 if (panel->vbt.dsi.config->cabc_supported) 1659 panel->vbt.dsi.cabc_ports = BIT(port); 1660 1661 return; 1662 } 1663 1664 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { 1665 case DL_DCS_PORT_A: 1666 panel->vbt.dsi.bl_ports = BIT(PORT_A); 1667 break; 1668 case DL_DCS_PORT_C: 1669 panel->vbt.dsi.bl_ports = BIT(port_bc); 1670 break; 1671 default: 1672 case DL_DCS_PORT_A_AND_C: 1673 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); 1674 break; 1675 } 1676 1677 if (!panel->vbt.dsi.config->cabc_supported) 1678 return; 1679 1680 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { 1681 case DL_DCS_PORT_A: 1682 panel->vbt.dsi.cabc_ports = BIT(PORT_A); 1683 break; 1684 case DL_DCS_PORT_C: 1685 panel->vbt.dsi.cabc_ports = BIT(port_bc); 1686 break; 1687 default: 1688 case DL_DCS_PORT_A_AND_C: 1689 panel->vbt.dsi.cabc_ports = 1690 BIT(PORT_A) | BIT(port_bc); 1691 break; 1692 } 1693 } 1694 1695 static void 1696 parse_mipi_config(struct intel_display *display, 1697 struct intel_panel *panel) 1698 { 1699 const struct bdb_mipi_config *start; 1700 const struct mipi_config *config; 1701 const struct mipi_pps_data *pps; 1702 int panel_type = panel->vbt.panel_type; 1703 enum port port; 1704 1705 /* parse MIPI blocks only if LFP type is MIPI */ 1706 if (!intel_bios_is_dsi_present(display, &port)) 1707 return; 1708 1709 /* Initialize this to undefined indicating no generic MIPI support */ 1710 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1711 1712 start = bdb_find_section(display, BDB_MIPI_CONFIG); 1713 if (!start) { 1714 drm_dbg_kms(display->drm, "No MIPI config BDB found"); 1715 return; 1716 } 1717 1718 drm_dbg_kms(display->drm, "Found MIPI Config block, panel index = %d\n", 1719 panel_type); 1720 1721 /* 1722 * get hold of the correct configuration block and pps data as per 1723 * the panel_type as index 1724 */ 1725 config = &start->config[panel_type]; 1726 pps = &start->pps[panel_type]; 1727 1728 /* store as of now full data. Trim when we realise all is not needed */ 1729 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1730 if (!panel->vbt.dsi.config) 1731 return; 1732 1733 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1734 if (!panel->vbt.dsi.pps) { 1735 kfree(panel->vbt.dsi.config); 1736 return; 1737 } 1738 1739 parse_dsi_backlight_ports(display, panel, port); 1740 1741 /* FIXME is the 90 vs. 270 correct? */ 1742 switch (config->rotation) { 1743 case ENABLE_ROTATION_0: 1744 /* 1745 * Most (all?) VBTs claim 0 degrees despite having 1746 * an upside down panel, thus we do not trust this. 1747 */ 1748 panel->vbt.dsi.orientation = 1749 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1750 break; 1751 case ENABLE_ROTATION_90: 1752 panel->vbt.dsi.orientation = 1753 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1754 break; 1755 case ENABLE_ROTATION_180: 1756 panel->vbt.dsi.orientation = 1757 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1758 break; 1759 case ENABLE_ROTATION_270: 1760 panel->vbt.dsi.orientation = 1761 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1762 break; 1763 } 1764 1765 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1766 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1767 } 1768 1769 /* Find the sequence block and size for the given panel. */ 1770 static const u8 * 1771 find_panel_sequence_block(struct intel_display *display, 1772 const struct bdb_mipi_sequence *sequence, 1773 u16 panel_id, u32 *seq_size) 1774 { 1775 u32 total = get_blocksize(sequence); 1776 const u8 *data = &sequence->data[0]; 1777 u8 current_id; 1778 u32 current_size; 1779 int header_size = sequence->version >= 3 ? 5 : 3; 1780 int index = 0; 1781 int i; 1782 1783 /* skip new block size */ 1784 if (sequence->version >= 3) 1785 data += 4; 1786 1787 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1788 if (index + header_size > total) { 1789 drm_err(display->drm, 1790 "Invalid sequence block (header)\n"); 1791 return NULL; 1792 } 1793 1794 current_id = *(data + index); 1795 if (sequence->version >= 3) 1796 current_size = *((const u32 *)(data + index + 1)); 1797 else 1798 current_size = *((const u16 *)(data + index + 1)); 1799 1800 index += header_size; 1801 1802 if (index + current_size > total) { 1803 drm_err(display->drm, "Invalid sequence block\n"); 1804 return NULL; 1805 } 1806 1807 if (current_id == panel_id) { 1808 *seq_size = current_size; 1809 return data + index; 1810 } 1811 1812 index += current_size; 1813 } 1814 1815 drm_err(display->drm, 1816 "Sequence block detected but no valid configuration\n"); 1817 1818 return NULL; 1819 } 1820 1821 static int goto_next_sequence(struct intel_display *display, 1822 const u8 *data, int index, int total) 1823 { 1824 u16 len; 1825 1826 /* Skip Sequence Byte. */ 1827 for (index = index + 1; index < total; index += len) { 1828 u8 operation_byte = *(data + index); 1829 index++; 1830 1831 switch (operation_byte) { 1832 case MIPI_SEQ_ELEM_END: 1833 return index; 1834 case MIPI_SEQ_ELEM_SEND_PKT: 1835 if (index + 4 > total) 1836 return 0; 1837 1838 len = *((const u16 *)(data + index + 2)) + 4; 1839 break; 1840 case MIPI_SEQ_ELEM_DELAY: 1841 len = 4; 1842 break; 1843 case MIPI_SEQ_ELEM_GPIO: 1844 len = 2; 1845 break; 1846 case MIPI_SEQ_ELEM_I2C: 1847 if (index + 7 > total) 1848 return 0; 1849 len = *(data + index + 6) + 7; 1850 break; 1851 default: 1852 drm_err(display->drm, "Unknown operation byte\n"); 1853 return 0; 1854 } 1855 } 1856 1857 return 0; 1858 } 1859 1860 static int goto_next_sequence_v3(struct intel_display *display, 1861 const u8 *data, int index, int total) 1862 { 1863 int seq_end; 1864 u16 len; 1865 u32 size_of_sequence; 1866 1867 /* 1868 * Could skip sequence based on Size of Sequence alone, but also do some 1869 * checking on the structure. 1870 */ 1871 if (total < 5) { 1872 drm_err(display->drm, "Too small sequence size\n"); 1873 return 0; 1874 } 1875 1876 /* Skip Sequence Byte. */ 1877 index++; 1878 1879 /* 1880 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1881 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1882 * byte. 1883 */ 1884 size_of_sequence = *((const u32 *)(data + index)); 1885 index += 4; 1886 1887 seq_end = index + size_of_sequence; 1888 if (seq_end > total) { 1889 drm_err(display->drm, "Invalid sequence size\n"); 1890 return 0; 1891 } 1892 1893 for (; index < total; index += len) { 1894 u8 operation_byte = *(data + index); 1895 index++; 1896 1897 if (operation_byte == MIPI_SEQ_ELEM_END) { 1898 if (index != seq_end) { 1899 drm_err(display->drm, 1900 "Invalid element structure\n"); 1901 return 0; 1902 } 1903 return index; 1904 } 1905 1906 len = *(data + index); 1907 index++; 1908 1909 /* 1910 * FIXME: Would be nice to check elements like for v1/v2 in 1911 * goto_next_sequence() above. 1912 */ 1913 switch (operation_byte) { 1914 case MIPI_SEQ_ELEM_SEND_PKT: 1915 case MIPI_SEQ_ELEM_DELAY: 1916 case MIPI_SEQ_ELEM_GPIO: 1917 case MIPI_SEQ_ELEM_I2C: 1918 case MIPI_SEQ_ELEM_SPI: 1919 case MIPI_SEQ_ELEM_PMIC: 1920 break; 1921 default: 1922 drm_err(display->drm, "Unknown operation byte %u\n", 1923 operation_byte); 1924 break; 1925 } 1926 } 1927 1928 return 0; 1929 } 1930 1931 /* 1932 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1933 * skip all delay + gpio operands and stop at the first DSI packet op. 1934 */ 1935 static int get_init_otp_deassert_fragment_len(struct intel_display *display, 1936 struct intel_panel *panel) 1937 { 1938 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1939 int index, len; 1940 1941 if (drm_WARN_ON(display->drm, 1942 !data || panel->vbt.dsi.seq_version >= 3)) 1943 return 0; 1944 1945 /* index = 1 to skip sequence byte */ 1946 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1947 switch (data[index]) { 1948 case MIPI_SEQ_ELEM_SEND_PKT: 1949 return index == 1 ? 0 : index; 1950 case MIPI_SEQ_ELEM_DELAY: 1951 len = 5; /* 1 byte for operand + uint32 */ 1952 break; 1953 case MIPI_SEQ_ELEM_GPIO: 1954 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1955 break; 1956 default: 1957 return 0; 1958 } 1959 } 1960 1961 return 0; 1962 } 1963 1964 /* 1965 * Some v1/v2 VBT MIPI sequences do the deassert in the init OTP sequence. 1966 * The deassert must be done before calling intel_dsi_device_ready, so for 1967 * these devices we split the init OTP sequence into a deassert sequence and 1968 * the actual init OTP part. 1969 */ 1970 static void vlv_fixup_mipi_sequences(struct intel_display *display, 1971 struct intel_panel *panel) 1972 { 1973 u8 *init_otp; 1974 int len; 1975 1976 /* Limit this to v1/v2 vid-mode sequences */ 1977 if (panel->vbt.dsi.config->is_cmd_mode || 1978 panel->vbt.dsi.seq_version >= 3) 1979 return; 1980 1981 /* Only do this if there are otp and assert seqs and no deassert seq */ 1982 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1983 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1984 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1985 return; 1986 1987 /* The deassert-sequence ends at the first DSI packet */ 1988 len = get_init_otp_deassert_fragment_len(display, panel); 1989 if (!len) 1990 return; 1991 1992 drm_dbg_kms(display->drm, 1993 "Using init OTP fragment to deassert reset\n"); 1994 1995 /* Copy the fragment, update seq byte and terminate it */ 1996 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1997 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1998 if (!panel->vbt.dsi.deassert_seq) 1999 return; 2000 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 2001 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 2002 /* Use the copy for deassert */ 2003 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 2004 panel->vbt.dsi.deassert_seq; 2005 /* Replace the last byte of the fragment with init OTP seq byte */ 2006 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 2007 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 2008 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 2009 } 2010 2011 /* 2012 * Some machines (eg. Lenovo 82TQ) appear to have broken 2013 * VBT sequences: 2014 * - INIT_OTP is not present at all 2015 * - what should be in INIT_OTP is in DISPLAY_ON 2016 * - what should be in DISPLAY_ON is in BACKLIGHT_ON 2017 * (along with the actual backlight stuff) 2018 * 2019 * To make those work we simply swap DISPLAY_ON and INIT_OTP. 2020 * 2021 * TODO: Do we need to limit this to specific machines, 2022 * or examine the contents of the sequences to 2023 * avoid false positives? 2024 */ 2025 static void icl_fixup_mipi_sequences(struct intel_display *display, 2026 struct intel_panel *panel) 2027 { 2028 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] && 2029 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) { 2030 drm_dbg_kms(display->drm, 2031 "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n"); 2032 2033 swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP], 2034 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]); 2035 } 2036 } 2037 2038 static void fixup_mipi_sequences(struct intel_display *display, 2039 struct intel_panel *panel) 2040 { 2041 if (DISPLAY_VER(display) >= 11) 2042 icl_fixup_mipi_sequences(display, panel); 2043 else if (display->platform.valleyview) 2044 vlv_fixup_mipi_sequences(display, panel); 2045 } 2046 2047 static void 2048 parse_mipi_sequence(struct intel_display *display, 2049 struct intel_panel *panel) 2050 { 2051 int panel_type = panel->vbt.panel_type; 2052 const struct bdb_mipi_sequence *sequence; 2053 const u8 *seq_data; 2054 u32 seq_size; 2055 u8 *data; 2056 int index = 0; 2057 2058 /* Only our generic panel driver uses the sequence block. */ 2059 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 2060 return; 2061 2062 sequence = bdb_find_section(display, BDB_MIPI_SEQUENCE); 2063 if (!sequence) { 2064 drm_dbg_kms(display->drm, 2065 "No MIPI Sequence found, parsing complete\n"); 2066 return; 2067 } 2068 2069 /* Fail gracefully for forward incompatible sequence block. */ 2070 if (sequence->version >= 4) { 2071 drm_err(display->drm, 2072 "Unable to parse MIPI Sequence Block v%u\n", 2073 sequence->version); 2074 return; 2075 } 2076 2077 drm_dbg_kms(display->drm, "Found MIPI sequence block v%u\n", 2078 sequence->version); 2079 2080 seq_data = find_panel_sequence_block(display, sequence, panel_type, &seq_size); 2081 if (!seq_data) 2082 return; 2083 2084 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 2085 if (!data) 2086 return; 2087 2088 /* Parse the sequences, store pointers to each sequence. */ 2089 for (;;) { 2090 u8 seq_id = *(data + index); 2091 if (seq_id == MIPI_SEQ_END) 2092 break; 2093 2094 if (seq_id >= MIPI_SEQ_MAX) { 2095 drm_err(display->drm, "Unknown sequence %u\n", 2096 seq_id); 2097 goto err; 2098 } 2099 2100 /* Log about presence of sequences we won't run. */ 2101 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 2102 drm_dbg_kms(display->drm, 2103 "Unsupported sequence %u\n", seq_id); 2104 2105 panel->vbt.dsi.sequence[seq_id] = data + index; 2106 2107 if (sequence->version >= 3) 2108 index = goto_next_sequence_v3(display, data, index, seq_size); 2109 else 2110 index = goto_next_sequence(display, data, index, seq_size); 2111 if (!index) { 2112 drm_err(display->drm, "Invalid sequence %u\n", 2113 seq_id); 2114 goto err; 2115 } 2116 } 2117 2118 panel->vbt.dsi.data = data; 2119 panel->vbt.dsi.size = seq_size; 2120 panel->vbt.dsi.seq_version = sequence->version; 2121 2122 fixup_mipi_sequences(display, panel); 2123 2124 drm_dbg_kms(display->drm, "MIPI related VBT parsing complete\n"); 2125 return; 2126 2127 err: 2128 kfree(data); 2129 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); 2130 } 2131 2132 static void 2133 parse_compression_parameters(struct intel_display *display) 2134 { 2135 const struct bdb_compression_parameters *params; 2136 struct intel_bios_encoder_data *devdata; 2137 u16 block_size; 2138 int index; 2139 2140 if (display->vbt.version < 198) 2141 return; 2142 2143 params = bdb_find_section(display, BDB_COMPRESSION_PARAMETERS); 2144 if (params) { 2145 /* Sanity checks */ 2146 if (params->entry_size != sizeof(params->data[0])) { 2147 drm_dbg_kms(display->drm, 2148 "VBT: unsupported compression param entry size\n"); 2149 return; 2150 } 2151 2152 block_size = get_blocksize(params); 2153 if (block_size < sizeof(*params)) { 2154 drm_dbg_kms(display->drm, 2155 "VBT: expected 16 compression param entries\n"); 2156 return; 2157 } 2158 } 2159 2160 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 2161 const struct child_device_config *child = &devdata->child; 2162 2163 if (!child->compression_enable) 2164 continue; 2165 2166 if (!params) { 2167 drm_dbg_kms(display->drm, 2168 "VBT: compression params not available\n"); 2169 continue; 2170 } 2171 2172 if (child->compression_method_cps) { 2173 drm_dbg_kms(display->drm, 2174 "VBT: CPS compression not supported\n"); 2175 continue; 2176 } 2177 2178 index = child->compression_structure_index; 2179 2180 devdata->dsc = kmemdup(¶ms->data[index], 2181 sizeof(*devdata->dsc), GFP_KERNEL); 2182 } 2183 } 2184 2185 static u8 translate_iboost(struct intel_display *display, u8 val) 2186 { 2187 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 2188 2189 if (val >= ARRAY_SIZE(mapping)) { 2190 drm_dbg_kms(display->drm, 2191 "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 2192 return 0; 2193 } 2194 return mapping[val]; 2195 } 2196 2197 static const u8 cnp_ddc_pin_map[] = { 2198 [0] = 0, /* N/A */ 2199 [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B, 2200 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C, 2201 [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */ 2202 [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */ 2203 }; 2204 2205 static const u8 icp_ddc_pin_map[] = { 2206 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2207 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2208 [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C, 2209 [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1, 2210 [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2, 2211 [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3, 2212 [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4, 2213 [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5, 2214 [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6, 2215 }; 2216 2217 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 2218 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2219 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2220 [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D, 2221 [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E, 2222 }; 2223 2224 static const u8 adls_ddc_pin_map[] = { 2225 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2226 [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1, 2227 [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2, 2228 [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3, 2229 [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4, 2230 }; 2231 2232 static const u8 gen9bc_tgp_ddc_pin_map[] = { 2233 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B, 2234 [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C, 2235 [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D, 2236 }; 2237 2238 static const u8 adlp_ddc_pin_map[] = { 2239 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2240 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2241 [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1, 2242 [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2, 2243 [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3, 2244 [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4, 2245 }; 2246 2247 static u8 map_ddc_pin(struct intel_display *display, u8 vbt_pin) 2248 { 2249 const u8 *ddc_pin_map; 2250 int i, n_entries; 2251 2252 if (INTEL_PCH_TYPE(display) >= PCH_MTL || display->platform.alderlake_p) { 2253 ddc_pin_map = adlp_ddc_pin_map; 2254 n_entries = ARRAY_SIZE(adlp_ddc_pin_map); 2255 } else if (display->platform.alderlake_s) { 2256 ddc_pin_map = adls_ddc_pin_map; 2257 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 2258 } else if (INTEL_PCH_TYPE(display) >= PCH_DG1) { 2259 return vbt_pin; 2260 } else if (display->platform.rocketlake && INTEL_PCH_TYPE(display) == PCH_TGP) { 2261 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 2262 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 2263 } else if (HAS_PCH_TGP(display) && DISPLAY_VER(display) == 9) { 2264 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 2265 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 2266 } else if (INTEL_PCH_TYPE(display) >= PCH_ICP) { 2267 ddc_pin_map = icp_ddc_pin_map; 2268 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 2269 } else if (HAS_PCH_CNP(display)) { 2270 ddc_pin_map = cnp_ddc_pin_map; 2271 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 2272 } else { 2273 /* Assuming direct map */ 2274 return vbt_pin; 2275 } 2276 2277 for (i = 0; i < n_entries; i++) { 2278 if (ddc_pin_map[i] == vbt_pin) 2279 return i; 2280 } 2281 2282 drm_dbg_kms(display->drm, 2283 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 2284 vbt_pin); 2285 return 0; 2286 } 2287 2288 static u8 dvo_port_type(u8 dvo_port) 2289 { 2290 switch (dvo_port) { 2291 case DVO_PORT_HDMIA: 2292 case DVO_PORT_HDMIB: 2293 case DVO_PORT_HDMIC: 2294 case DVO_PORT_HDMID: 2295 case DVO_PORT_HDMIE: 2296 case DVO_PORT_HDMIF: 2297 case DVO_PORT_HDMIG: 2298 case DVO_PORT_HDMIH: 2299 case DVO_PORT_HDMII: 2300 return DVO_PORT_HDMIA; 2301 case DVO_PORT_DPA: 2302 case DVO_PORT_DPB: 2303 case DVO_PORT_DPC: 2304 case DVO_PORT_DPD: 2305 case DVO_PORT_DPE: 2306 case DVO_PORT_DPF: 2307 case DVO_PORT_DPG: 2308 case DVO_PORT_DPH: 2309 case DVO_PORT_DPI: 2310 return DVO_PORT_DPA; 2311 case DVO_PORT_MIPIA: 2312 case DVO_PORT_MIPIB: 2313 case DVO_PORT_MIPIC: 2314 case DVO_PORT_MIPID: 2315 return DVO_PORT_MIPIA; 2316 default: 2317 return dvo_port; 2318 } 2319 } 2320 2321 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 2322 const int port_mapping[][3], u8 dvo_port) 2323 { 2324 enum port port; 2325 int i; 2326 2327 for (port = PORT_A; port < n_ports; port++) { 2328 for (i = 0; i < n_dvo; i++) { 2329 if (port_mapping[port][i] == -1) 2330 break; 2331 2332 if (dvo_port == port_mapping[port][i]) 2333 return port; 2334 } 2335 } 2336 2337 return PORT_NONE; 2338 } 2339 2340 static enum port dvo_port_to_port(struct intel_display *display, 2341 u8 dvo_port) 2342 { 2343 /* 2344 * Each DDI port can have more than one value on the "DVO Port" field, 2345 * so look for all the possible values for each port. 2346 */ 2347 static const int port_mapping[][3] = { 2348 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2349 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2350 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2351 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2352 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 2353 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2354 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2355 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2356 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2357 }; 2358 /* 2359 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 2360 * map to DDI A,B,TC1,TC2 respectively. 2361 */ 2362 static const int rkl_port_mapping[][3] = { 2363 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2364 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2365 [PORT_C] = { -1 }, 2366 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2367 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2368 }; 2369 /* 2370 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 2371 * PORT_F and PORT_G, we need to map that to correct VBT sections. 2372 */ 2373 static const int adls_port_mapping[][3] = { 2374 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2375 [PORT_B] = { -1 }, 2376 [PORT_C] = { -1 }, 2377 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2378 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2379 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2380 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2381 }; 2382 static const int xelpd_port_mapping[][3] = { 2383 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2384 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2385 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2386 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2387 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2388 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2389 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2390 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2391 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2392 }; 2393 2394 if (DISPLAY_VER(display) >= 13) 2395 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 2396 ARRAY_SIZE(xelpd_port_mapping[0]), 2397 xelpd_port_mapping, 2398 dvo_port); 2399 else if (display->platform.alderlake_s) 2400 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 2401 ARRAY_SIZE(adls_port_mapping[0]), 2402 adls_port_mapping, 2403 dvo_port); 2404 else if (display->platform.dg1 || display->platform.rocketlake) 2405 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 2406 ARRAY_SIZE(rkl_port_mapping[0]), 2407 rkl_port_mapping, 2408 dvo_port); 2409 else 2410 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 2411 ARRAY_SIZE(port_mapping[0]), 2412 port_mapping, 2413 dvo_port); 2414 } 2415 2416 static enum port 2417 dsi_dvo_port_to_port(struct intel_display *display, u8 dvo_port) 2418 { 2419 switch (dvo_port) { 2420 case DVO_PORT_MIPIA: 2421 return PORT_A; 2422 case DVO_PORT_MIPIC: 2423 if (DISPLAY_VER(display) >= 11) 2424 return PORT_B; 2425 else 2426 return PORT_C; 2427 default: 2428 return PORT_NONE; 2429 } 2430 } 2431 2432 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata) 2433 { 2434 struct intel_display *display = devdata->display; 2435 const struct child_device_config *child = &devdata->child; 2436 enum port port; 2437 2438 port = dvo_port_to_port(display, child->dvo_port); 2439 if (port == PORT_NONE && DISPLAY_VER(display) >= 11) 2440 port = dsi_dvo_port_to_port(display, child->dvo_port); 2441 2442 return port; 2443 } 2444 2445 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 2446 { 2447 switch (vbt_max_link_rate) { 2448 default: 2449 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 2450 return 0; 2451 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 2452 return 2000000; 2453 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 2454 return 1350000; 2455 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 2456 return 1000000; 2457 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 2458 return 810000; 2459 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 2460 return 540000; 2461 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 2462 return 270000; 2463 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 2464 return 162000; 2465 } 2466 } 2467 2468 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 2469 { 2470 switch (vbt_max_link_rate) { 2471 default: 2472 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 2473 return 810000; 2474 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 2475 return 540000; 2476 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 2477 return 270000; 2478 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 2479 return 162000; 2480 } 2481 } 2482 2483 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) 2484 { 2485 if (!devdata || devdata->display->vbt.version < 216) 2486 return 0; 2487 2488 if (devdata->display->vbt.version >= 230) 2489 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); 2490 else 2491 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); 2492 } 2493 2494 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata) 2495 { 2496 if (!devdata || devdata->display->vbt.version < 244) 2497 return 0; 2498 2499 return devdata->child.dp_max_lane_count + 1; 2500 } 2501 2502 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 2503 enum port port) 2504 { 2505 struct intel_display *display = devdata->display; 2506 bool is_hdmi; 2507 2508 if (port != PORT_A || DISPLAY_VER(display) >= 12) 2509 return; 2510 2511 if (!intel_bios_encoder_supports_dvi(devdata)) 2512 return; 2513 2514 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2515 2516 drm_dbg_kms(display->drm, "VBT claims port A supports DVI%s, ignoring\n", 2517 is_hdmi ? "/HDMI" : ""); 2518 2519 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2520 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2521 } 2522 2523 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata, 2524 enum port port) 2525 { 2526 struct intel_display *display = devdata->display; 2527 2528 if (!intel_bios_encoder_supports_dvi(devdata)) 2529 return; 2530 2531 /* 2532 * Some BDW machines (eg. HP Pavilion 15-ab) shipped 2533 * with a HSW VBT where the level shifter value goes 2534 * up to 11, whereas the BDW max is 9. 2535 */ 2536 if (display->platform.broadwell && devdata->child.hdmi_level_shifter_value > 9) { 2537 drm_dbg_kms(display->drm, 2538 "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n", 2539 port_name(port), devdata->child.hdmi_level_shifter_value, 9); 2540 2541 devdata->child.hdmi_level_shifter_value = 9; 2542 } 2543 } 2544 2545 static bool 2546 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 2547 { 2548 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 2549 } 2550 2551 bool 2552 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 2553 { 2554 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 2555 } 2556 2557 bool 2558 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 2559 { 2560 return intel_bios_encoder_supports_dvi(devdata) && 2561 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 2562 } 2563 2564 bool 2565 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 2566 { 2567 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2568 } 2569 2570 bool 2571 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 2572 { 2573 return intel_bios_encoder_supports_dp(devdata) && 2574 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 2575 } 2576 2577 bool 2578 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata) 2579 { 2580 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT; 2581 } 2582 2583 bool 2584 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata) 2585 { 2586 return devdata && HAS_LSPCON(devdata->display) && devdata->child.lspcon; 2587 } 2588 2589 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ 2590 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) 2591 { 2592 if (!devdata || devdata->display->vbt.version < 158 || 2593 DISPLAY_VER(devdata->display) >= 14) 2594 return -1; 2595 2596 return devdata->child.hdmi_level_shifter_value; 2597 } 2598 2599 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata) 2600 { 2601 if (!devdata || devdata->display->vbt.version < 204) 2602 return 0; 2603 2604 switch (devdata->child.hdmi_max_data_rate) { 2605 default: 2606 MISSING_CASE(devdata->child.hdmi_max_data_rate); 2607 fallthrough; 2608 case HDMI_MAX_DATA_RATE_PLATFORM: 2609 return 0; 2610 case HDMI_MAX_DATA_RATE_594: 2611 return 594000; 2612 case HDMI_MAX_DATA_RATE_340: 2613 return 340000; 2614 case HDMI_MAX_DATA_RATE_300: 2615 return 300000; 2616 case HDMI_MAX_DATA_RATE_297: 2617 return 297000; 2618 case HDMI_MAX_DATA_RATE_165: 2619 return 165000; 2620 } 2621 } 2622 2623 static bool is_port_valid(struct intel_display *display, enum port port) 2624 { 2625 /* 2626 * On some ICL SKUs port F is not present, but broken VBTs mark 2627 * the port as present. Only try to initialize port F for the 2628 * SKUs that may actually have it. 2629 */ 2630 if (port == PORT_F && display->platform.icelake) 2631 return display->platform.icelake_port_f; 2632 2633 return true; 2634 } 2635 2636 static void print_ddi_port(const struct intel_bios_encoder_data *devdata) 2637 { 2638 struct intel_display *display = devdata->display; 2639 const struct child_device_config *child = &devdata->child; 2640 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt; 2641 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; 2642 enum port port; 2643 2644 port = intel_bios_encoder_port(devdata); 2645 if (port == PORT_NONE) 2646 return; 2647 2648 is_dvi = intel_bios_encoder_supports_dvi(devdata); 2649 is_dp = intel_bios_encoder_supports_dp(devdata); 2650 is_crt = intel_bios_encoder_supports_crt(devdata); 2651 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2652 is_edp = intel_bios_encoder_supports_edp(devdata); 2653 is_dsi = intel_bios_encoder_supports_dsi(devdata); 2654 2655 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 2656 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 2657 2658 drm_dbg_kms(display->drm, 2659 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 2660 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi, 2661 intel_bios_encoder_supports_dp_dual_mode(devdata), 2662 intel_bios_encoder_is_lspcon(devdata), 2663 supports_typec_usb, supports_tbt, 2664 devdata->dsc != NULL); 2665 2666 hdmi_level_shift = intel_bios_hdmi_level_shift(devdata); 2667 if (hdmi_level_shift >= 0) { 2668 drm_dbg_kms(display->drm, 2669 "Port %c VBT HDMI level shift: %d\n", 2670 port_name(port), hdmi_level_shift); 2671 } 2672 2673 max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata); 2674 if (max_tmds_clock) 2675 drm_dbg_kms(display->drm, 2676 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 2677 port_name(port), max_tmds_clock); 2678 2679 /* I_boost config for SKL and above */ 2680 dp_boost_level = intel_bios_dp_boost_level(devdata); 2681 if (dp_boost_level) 2682 drm_dbg_kms(display->drm, 2683 "Port %c VBT (e)DP boost level: %d\n", 2684 port_name(port), dp_boost_level); 2685 2686 hdmi_boost_level = intel_bios_hdmi_boost_level(devdata); 2687 if (hdmi_boost_level) 2688 drm_dbg_kms(display->drm, 2689 "Port %c VBT HDMI boost level: %d\n", 2690 port_name(port), hdmi_boost_level); 2691 2692 dp_max_link_rate = intel_bios_dp_max_link_rate(devdata); 2693 if (dp_max_link_rate) 2694 drm_dbg_kms(display->drm, 2695 "Port %c VBT DP max link rate: %d\n", 2696 port_name(port), dp_max_link_rate); 2697 2698 /* 2699 * FIXME need to implement support for VBT 2700 * vswing/preemph tables should this ever trigger. 2701 */ 2702 drm_WARN(display->drm, child->use_vbt_vswing, 2703 "Port %c asks to use VBT vswing/preemph tables\n", 2704 port_name(port)); 2705 } 2706 2707 static void parse_ddi_port(struct intel_bios_encoder_data *devdata) 2708 { 2709 struct intel_display *display = devdata->display; 2710 enum port port; 2711 2712 port = intel_bios_encoder_port(devdata); 2713 if (port == PORT_NONE) 2714 return; 2715 2716 if (!is_port_valid(display, port)) { 2717 drm_dbg_kms(display->drm, 2718 "VBT reports port %c as supported, but that can't be true: skipping\n", 2719 port_name(port)); 2720 return; 2721 } 2722 2723 sanitize_device_type(devdata, port); 2724 sanitize_hdmi_level_shift(devdata, port); 2725 } 2726 2727 static bool has_ddi_port_info(struct intel_display *display) 2728 { 2729 return DISPLAY_VER(display) >= 5 || display->platform.g4x; 2730 } 2731 2732 static void parse_ddi_ports(struct intel_display *display) 2733 { 2734 struct intel_bios_encoder_data *devdata; 2735 2736 if (!has_ddi_port_info(display)) 2737 return; 2738 2739 list_for_each_entry(devdata, &display->vbt.display_devices, node) 2740 parse_ddi_port(devdata); 2741 2742 list_for_each_entry(devdata, &display->vbt.display_devices, node) 2743 print_ddi_port(devdata); 2744 } 2745 2746 static int child_device_expected_size(u16 version) 2747 { 2748 BUILD_BUG_ON(sizeof(struct child_device_config) < 40); 2749 2750 if (version > 256) 2751 return -ENOENT; 2752 else if (version >= 256) 2753 return 40; 2754 else if (version >= 216) 2755 return 39; 2756 else if (version >= 196) 2757 return 38; 2758 else if (version >= 195) 2759 return 37; 2760 else if (version >= 111) 2761 return LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2762 else if (version >= 106) 2763 return 27; 2764 else 2765 return 22; 2766 } 2767 2768 static bool child_device_size_valid(struct intel_display *display, int size) 2769 { 2770 int expected_size; 2771 2772 expected_size = child_device_expected_size(display->vbt.version); 2773 if (expected_size < 0) { 2774 expected_size = sizeof(struct child_device_config); 2775 drm_dbg_kms(display->drm, 2776 "Expected child device config size for VBT version %u not known; assuming %d\n", 2777 display->vbt.version, expected_size); 2778 } 2779 2780 /* Flag an error for unexpected size, but continue anyway. */ 2781 if (size != expected_size) 2782 drm_err(display->drm, 2783 "Unexpected child device config size %d (expected %d for VBT version %u)\n", 2784 size, expected_size, display->vbt.version); 2785 2786 /* The legacy sized child device config is the minimum we need. */ 2787 if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2788 drm_dbg_kms(display->drm, 2789 "Child device config size %d is too small.\n", 2790 size); 2791 return false; 2792 } 2793 2794 return true; 2795 } 2796 2797 static void 2798 parse_general_definitions(struct intel_display *display) 2799 { 2800 const struct bdb_general_definitions *defs; 2801 struct intel_bios_encoder_data *devdata; 2802 const struct child_device_config *child; 2803 int i, child_device_num; 2804 u16 block_size; 2805 int bus_pin; 2806 2807 defs = bdb_find_section(display, BDB_GENERAL_DEFINITIONS); 2808 if (!defs) { 2809 drm_dbg_kms(display->drm, 2810 "No general definition block is found, no devices defined.\n"); 2811 return; 2812 } 2813 2814 block_size = get_blocksize(defs); 2815 if (block_size < sizeof(*defs)) { 2816 drm_dbg_kms(display->drm, 2817 "General definitions block too small (%u)\n", 2818 block_size); 2819 return; 2820 } 2821 2822 bus_pin = defs->crt_ddc_gmbus_pin; 2823 drm_dbg_kms(display->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2824 if (intel_gmbus_is_valid_pin(display, bus_pin)) 2825 display->vbt.crt_ddc_pin = bus_pin; 2826 2827 if (!child_device_size_valid(display, defs->child_dev_size)) 2828 return; 2829 2830 /* get the number of child device */ 2831 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2832 2833 for (i = 0; i < child_device_num; i++) { 2834 child = child_device_ptr(defs, i); 2835 if (!child->device_type) 2836 continue; 2837 2838 drm_dbg_kms(display->drm, 2839 "Found VBT child device with type 0x%x\n", 2840 child->device_type); 2841 2842 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2843 if (!devdata) 2844 break; 2845 2846 devdata->display = display; 2847 2848 /* 2849 * Copy as much as we know (sizeof) and is available 2850 * (child_dev_size) of the child device config. Accessing the 2851 * data must depend on VBT version. 2852 */ 2853 memcpy(&devdata->child, child, 2854 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2855 2856 list_add_tail(&devdata->node, &display->vbt.display_devices); 2857 } 2858 2859 if (list_empty(&display->vbt.display_devices)) 2860 drm_dbg_kms(display->drm, 2861 "no child dev is parsed from VBT\n"); 2862 } 2863 2864 /* Common defaults which may be overridden by VBT. */ 2865 static void 2866 init_vbt_defaults(struct intel_display *display) 2867 { 2868 display->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2869 2870 /* general features */ 2871 display->vbt.int_tv_support = 1; 2872 display->vbt.int_crt_support = 1; 2873 2874 /* driver features */ 2875 display->vbt.int_lvds_support = 1; 2876 2877 /* Default to using SSC */ 2878 display->vbt.lvds_use_ssc = 1; 2879 /* 2880 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2881 * clock for LVDS. 2882 */ 2883 display->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(display, 2884 !HAS_PCH_SPLIT(display)); 2885 drm_dbg_kms(display->drm, "Set default to SSC at %d kHz\n", 2886 display->vbt.lvds_ssc_freq); 2887 } 2888 2889 /* Common defaults which may be overridden by VBT. */ 2890 static void 2891 init_vbt_panel_defaults(struct intel_panel *panel) 2892 { 2893 /* Default to having backlight */ 2894 panel->vbt.backlight.present = true; 2895 2896 /* LFP panel data */ 2897 panel->vbt.lvds_dither = true; 2898 } 2899 2900 /* Defaults to initialize only if there is no VBT. */ 2901 static void 2902 init_vbt_missing_defaults(struct intel_display *display) 2903 { 2904 unsigned int ports = DISPLAY_RUNTIME_INFO(display)->port_mask; 2905 enum port port; 2906 2907 if (!HAS_DDI(display) && !display->platform.cherryview) 2908 return; 2909 2910 for_each_port_masked(port, ports) { 2911 struct intel_bios_encoder_data *devdata; 2912 struct child_device_config *child; 2913 enum phy phy = intel_port_to_phy(display, port); 2914 2915 /* 2916 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2917 * to detect it. 2918 */ 2919 if (intel_phy_is_tc(display, phy)) 2920 continue; 2921 2922 /* Create fake child device config */ 2923 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2924 if (!devdata) 2925 break; 2926 2927 devdata->display = display; 2928 child = &devdata->child; 2929 2930 if (port == PORT_F) 2931 child->dvo_port = DVO_PORT_HDMIF; 2932 else if (port == PORT_E) 2933 child->dvo_port = DVO_PORT_HDMIE; 2934 else 2935 child->dvo_port = DVO_PORT_HDMIA + port; 2936 2937 if (port != PORT_A && port != PORT_E) 2938 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2939 2940 if (port != PORT_E) 2941 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2942 2943 if (port == PORT_A) 2944 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2945 2946 list_add_tail(&devdata->node, &display->vbt.display_devices); 2947 2948 drm_dbg_kms(display->drm, 2949 "Generating default VBT child device with type 0x%04x on port %c\n", 2950 child->device_type, port_name(port)); 2951 } 2952 2953 /* Bypass some minimum baseline VBT version checks */ 2954 display->vbt.version = 155; 2955 } 2956 2957 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2958 { 2959 const void *_vbt = vbt; 2960 2961 return _vbt + vbt->bdb_offset; 2962 } 2963 2964 static const char vbt_signature[] = "$VBT"; 2965 static const int vbt_signature_len = 4; 2966 2967 /** 2968 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2969 * @display: display device 2970 * @buf: pointer to a buffer to validate 2971 * @size: size of the buffer 2972 * 2973 * Returns true on valid VBT. 2974 */ 2975 bool intel_bios_is_valid_vbt(struct intel_display *display, 2976 const void *buf, size_t size) 2977 { 2978 const struct vbt_header *vbt = buf; 2979 const struct bdb_header *bdb; 2980 2981 if (!vbt) 2982 return false; 2983 2984 if (sizeof(struct vbt_header) > size) { 2985 drm_dbg_kms(display->drm, "VBT header incomplete\n"); 2986 return false; 2987 } 2988 2989 if (memcmp(vbt->signature, vbt_signature, vbt_signature_len)) { 2990 drm_dbg_kms(display->drm, "VBT invalid signature\n"); 2991 return false; 2992 } 2993 2994 if (vbt->vbt_size > size) { 2995 drm_dbg_kms(display->drm, 2996 "VBT incomplete (vbt_size overflows)\n"); 2997 return false; 2998 } 2999 3000 size = vbt->vbt_size; 3001 3002 if (range_overflows_t(size_t, 3003 vbt->bdb_offset, 3004 sizeof(struct bdb_header), 3005 size)) { 3006 drm_dbg_kms(display->drm, "BDB header incomplete\n"); 3007 return false; 3008 } 3009 3010 bdb = get_bdb_header(vbt); 3011 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 3012 drm_dbg_kms(display->drm, "BDB incomplete\n"); 3013 return false; 3014 } 3015 3016 return vbt; 3017 } 3018 3019 static struct vbt_header *firmware_get_vbt(struct intel_display *display, 3020 size_t *size) 3021 { 3022 struct vbt_header *vbt = NULL; 3023 const struct firmware *fw = NULL; 3024 const char *name = display->params.vbt_firmware; 3025 int ret; 3026 3027 if (!name || !*name) 3028 return NULL; 3029 3030 ret = request_firmware(&fw, name, display->drm->dev); 3031 if (ret) { 3032 drm_err(display->drm, 3033 "Requesting VBT firmware \"%s\" failed (%d)\n", 3034 name, ret); 3035 return NULL; 3036 } 3037 3038 if (intel_bios_is_valid_vbt(display, fw->data, fw->size)) { 3039 vbt = kmemdup(fw->data, fw->size, GFP_KERNEL); 3040 if (vbt) { 3041 drm_dbg_kms(display->drm, 3042 "Found valid VBT firmware \"%s\"\n", name); 3043 if (size) 3044 *size = fw->size; 3045 } 3046 } else { 3047 drm_dbg_kms(display->drm, "Invalid VBT firmware \"%s\"\n", 3048 name); 3049 } 3050 3051 release_firmware(fw); 3052 3053 return vbt; 3054 } 3055 3056 static struct vbt_header *oprom_get_vbt(struct intel_display *display, 3057 struct intel_rom *rom, 3058 size_t *size, const char *type) 3059 { 3060 struct vbt_header *vbt; 3061 size_t vbt_size; 3062 loff_t offset; 3063 3064 if (!rom) 3065 return NULL; 3066 3067 BUILD_BUG_ON(vbt_signature_len != sizeof(vbt_signature) - 1); 3068 BUILD_BUG_ON(vbt_signature_len != sizeof(u32)); 3069 3070 offset = intel_rom_find(rom, *(const u32 *)vbt_signature); 3071 if (offset < 0) 3072 goto err_free_rom; 3073 3074 if (sizeof(struct vbt_header) > intel_rom_size(rom) - offset) { 3075 drm_dbg_kms(display->drm, "VBT header incomplete\n"); 3076 goto err_free_rom; 3077 } 3078 3079 BUILD_BUG_ON(sizeof(vbt->vbt_size) != sizeof(u16)); 3080 3081 vbt_size = intel_rom_read16(rom, offset + offsetof(struct vbt_header, vbt_size)); 3082 if (vbt_size > intel_rom_size(rom) - offset) { 3083 drm_dbg_kms(display->drm, "VBT incomplete (vbt_size overflows)\n"); 3084 goto err_free_rom; 3085 } 3086 3087 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); 3088 if (!vbt) 3089 goto err_free_rom; 3090 3091 intel_rom_read_block(rom, vbt, offset, vbt_size); 3092 3093 if (!intel_bios_is_valid_vbt(display, vbt, vbt_size)) 3094 goto err_free_vbt; 3095 3096 drm_dbg_kms(display->drm, "Found valid VBT in %s\n", type); 3097 3098 if (size) 3099 *size = vbt_size; 3100 3101 intel_rom_free(rom); 3102 3103 return vbt; 3104 3105 err_free_vbt: 3106 kfree(vbt); 3107 err_free_rom: 3108 intel_rom_free(rom); 3109 return NULL; 3110 } 3111 3112 static const struct vbt_header *intel_bios_get_vbt(struct intel_display *display, 3113 size_t *sizep) 3114 { 3115 struct drm_i915_private *i915 = to_i915(display->drm); 3116 const struct vbt_header *vbt = NULL; 3117 3118 vbt = firmware_get_vbt(display, sizep); 3119 3120 if (!vbt) 3121 vbt = intel_opregion_get_vbt(display, sizep); 3122 3123 /* 3124 * If the OpRegion does not have VBT, look in SPI flash 3125 * through MMIO or PCI mapping 3126 */ 3127 if (!vbt && display->platform.dgfx) 3128 with_intel_display_rpm(display) 3129 vbt = oprom_get_vbt(display, intel_rom_spi(i915), sizep, "SPI flash"); 3130 3131 if (!vbt) 3132 with_intel_display_rpm(display) 3133 vbt = oprom_get_vbt(display, intel_rom_pci(i915), sizep, "PCI ROM"); 3134 3135 return vbt; 3136 } 3137 3138 /** 3139 * intel_bios_init - find VBT and initialize settings from the BIOS 3140 * @display: display device instance 3141 * 3142 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 3143 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 3144 * initialize some defaults if the VBT is not present at all. 3145 */ 3146 void intel_bios_init(struct intel_display *display) 3147 { 3148 const struct vbt_header *vbt; 3149 const struct bdb_header *bdb; 3150 3151 INIT_LIST_HEAD(&display->vbt.display_devices); 3152 INIT_LIST_HEAD(&display->vbt.bdb_blocks); 3153 3154 if (!HAS_DISPLAY(display)) { 3155 drm_dbg_kms(display->drm, 3156 "Skipping VBT init due to disabled display.\n"); 3157 return; 3158 } 3159 3160 init_vbt_defaults(display); 3161 3162 vbt = intel_bios_get_vbt(display, NULL); 3163 3164 if (!vbt) 3165 goto out; 3166 3167 bdb = get_bdb_header(vbt); 3168 display->vbt.version = bdb->version; 3169 3170 drm_dbg_kms(display->drm, 3171 "VBT signature \"%.*s\", BDB version %d\n", 3172 (int)sizeof(vbt->signature), vbt->signature, 3173 display->vbt.version); 3174 3175 init_bdb_blocks(display, bdb); 3176 3177 /* Grab useful general definitions */ 3178 parse_general_features(display); 3179 parse_general_definitions(display); 3180 parse_driver_features(display); 3181 3182 /* Depends on child device list */ 3183 parse_compression_parameters(display); 3184 3185 out: 3186 if (!vbt) { 3187 drm_info(display->drm, 3188 "Failed to find VBIOS tables (VBT)\n"); 3189 init_vbt_missing_defaults(display); 3190 } 3191 3192 /* Further processing on pre-parsed or generated child device data */ 3193 parse_sdvo_device_mapping(display); 3194 parse_ddi_ports(display); 3195 3196 kfree(vbt); 3197 } 3198 3199 static void intel_bios_init_panel(struct intel_display *display, 3200 struct intel_panel *panel, 3201 const struct intel_bios_encoder_data *devdata, 3202 const struct drm_edid *drm_edid, 3203 bool use_fallback) 3204 { 3205 /* already have it? */ 3206 if (panel->vbt.panel_type >= 0) { 3207 drm_WARN_ON(display->drm, !use_fallback); 3208 return; 3209 } 3210 3211 panel->vbt.panel_type = get_panel_type(display, devdata, 3212 drm_edid, use_fallback); 3213 if (panel->vbt.panel_type < 0) { 3214 drm_WARN_ON(display->drm, use_fallback); 3215 return; 3216 } 3217 3218 init_vbt_panel_defaults(panel); 3219 3220 parse_panel_options(display, panel); 3221 parse_generic_dtd(display, panel); 3222 parse_lfp_data(display, panel); 3223 parse_lfp_backlight(display, panel); 3224 parse_sdvo_lvds_data(display, panel); 3225 parse_panel_driver_features(display, panel); 3226 parse_power_conservation_features(display, panel); 3227 parse_edp(display, panel); 3228 parse_psr(display, panel); 3229 parse_mipi_config(display, panel); 3230 parse_mipi_sequence(display, panel); 3231 } 3232 3233 void intel_bios_init_panel_early(struct intel_display *display, 3234 struct intel_panel *panel, 3235 const struct intel_bios_encoder_data *devdata) 3236 { 3237 intel_bios_init_panel(display, panel, devdata, NULL, false); 3238 } 3239 3240 void intel_bios_init_panel_late(struct intel_display *display, 3241 struct intel_panel *panel, 3242 const struct intel_bios_encoder_data *devdata, 3243 const struct drm_edid *drm_edid) 3244 { 3245 intel_bios_init_panel(display, panel, devdata, drm_edid, true); 3246 } 3247 3248 /** 3249 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 3250 * @display: display device instance 3251 */ 3252 void intel_bios_driver_remove(struct intel_display *display) 3253 { 3254 struct intel_bios_encoder_data *devdata, *nd; 3255 struct bdb_block_entry *entry, *ne; 3256 3257 list_for_each_entry_safe(devdata, nd, &display->vbt.display_devices, 3258 node) { 3259 list_del(&devdata->node); 3260 kfree(devdata->dsc); 3261 kfree(devdata); 3262 } 3263 3264 list_for_each_entry_safe(entry, ne, &display->vbt.bdb_blocks, node) { 3265 list_del(&entry->node); 3266 kfree(entry); 3267 } 3268 } 3269 3270 void intel_bios_fini_panel(struct intel_panel *panel) 3271 { 3272 kfree(panel->vbt.sdvo_lvds_vbt_mode); 3273 panel->vbt.sdvo_lvds_vbt_mode = NULL; 3274 kfree(panel->vbt.lfp_vbt_mode); 3275 panel->vbt.lfp_vbt_mode = NULL; 3276 kfree(panel->vbt.dsi.data); 3277 panel->vbt.dsi.data = NULL; 3278 kfree(panel->vbt.dsi.pps); 3279 panel->vbt.dsi.pps = NULL; 3280 kfree(panel->vbt.dsi.config); 3281 panel->vbt.dsi.config = NULL; 3282 kfree(panel->vbt.dsi.deassert_seq); 3283 panel->vbt.dsi.deassert_seq = NULL; 3284 } 3285 3286 /** 3287 * intel_bios_is_tv_present - is integrated TV present in VBT 3288 * @display: display device instance 3289 * 3290 * Return true if TV is present. If no child devices were parsed from VBT, 3291 * assume TV is present. 3292 */ 3293 bool intel_bios_is_tv_present(struct intel_display *display) 3294 { 3295 const struct intel_bios_encoder_data *devdata; 3296 3297 if (!display->vbt.int_tv_support) 3298 return false; 3299 3300 if (list_empty(&display->vbt.display_devices)) 3301 return true; 3302 3303 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3304 const struct child_device_config *child = &devdata->child; 3305 3306 /* 3307 * If the device type is not TV, continue. 3308 */ 3309 switch (child->device_type) { 3310 case DEVICE_TYPE_INT_TV: 3311 case DEVICE_TYPE_TV: 3312 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 3313 break; 3314 default: 3315 continue; 3316 } 3317 /* Only when the addin_offset is non-zero, it is regarded 3318 * as present. 3319 */ 3320 if (child->addin_offset) 3321 return true; 3322 } 3323 3324 return false; 3325 } 3326 3327 /** 3328 * intel_bios_is_lvds_present - is LVDS present in VBT 3329 * @display: display device instance 3330 * @i2c_pin: i2c pin for LVDS if present 3331 * 3332 * Return true if LVDS is present. If no child devices were parsed from VBT, 3333 * assume LVDS is present. 3334 */ 3335 bool intel_bios_is_lvds_present(struct intel_display *display, u8 *i2c_pin) 3336 { 3337 const struct intel_bios_encoder_data *devdata; 3338 3339 if (list_empty(&display->vbt.display_devices)) 3340 return true; 3341 3342 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3343 const struct child_device_config *child = &devdata->child; 3344 3345 /* If the device type is not LFP, continue. 3346 * We have to check both the new identifiers as well as the 3347 * old for compatibility with some BIOSes. 3348 */ 3349 if (child->device_type != DEVICE_TYPE_INT_LFP && 3350 child->device_type != DEVICE_TYPE_LFP) 3351 continue; 3352 3353 if (intel_gmbus_is_valid_pin(display, child->i2c_pin)) 3354 *i2c_pin = child->i2c_pin; 3355 3356 /* However, we cannot trust the BIOS writers to populate 3357 * the VBT correctly. Since LVDS requires additional 3358 * information from AIM blocks, a non-zero addin offset is 3359 * a good indicator that the LVDS is actually present. 3360 */ 3361 if (child->addin_offset) 3362 return true; 3363 3364 /* But even then some BIOS writers perform some black magic 3365 * and instantiate the device without reference to any 3366 * additional data. Trust that if the VBT was written into 3367 * the OpRegion then they have validated the LVDS's existence. 3368 */ 3369 return intel_opregion_vbt_present(display); 3370 } 3371 3372 return false; 3373 } 3374 3375 /** 3376 * intel_bios_is_port_present - is the specified digital port present 3377 * @display: display device instance 3378 * @port: port to check 3379 * 3380 * Return true if the device in %port is present. 3381 */ 3382 bool intel_bios_is_port_present(struct intel_display *display, enum port port) 3383 { 3384 const struct intel_bios_encoder_data *devdata; 3385 3386 if (WARN_ON(!has_ddi_port_info(display))) 3387 return true; 3388 3389 if (!is_port_valid(display, port)) 3390 return false; 3391 3392 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3393 const struct child_device_config *child = &devdata->child; 3394 3395 if (dvo_port_to_port(display, child->dvo_port) == port) 3396 return true; 3397 } 3398 3399 return false; 3400 } 3401 3402 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) 3403 { 3404 const struct child_device_config *child = &devdata->child; 3405 3406 if (!devdata) 3407 return false; 3408 3409 if (!intel_bios_encoder_supports_dp(devdata) || 3410 !intel_bios_encoder_supports_hdmi(devdata)) 3411 return false; 3412 3413 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) 3414 return true; 3415 3416 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 3417 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && 3418 child->aux_channel != 0) 3419 return true; 3420 3421 return false; 3422 } 3423 3424 /** 3425 * intel_bios_is_dsi_present - is DSI present in VBT 3426 * @display: display device instance 3427 * @port: port for DSI if present 3428 * 3429 * Return true if DSI is present, and return the port in %port. 3430 */ 3431 bool intel_bios_is_dsi_present(struct intel_display *display, 3432 enum port *port) 3433 { 3434 const struct intel_bios_encoder_data *devdata; 3435 3436 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3437 const struct child_device_config *child = &devdata->child; 3438 u8 dvo_port = child->dvo_port; 3439 3440 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3441 continue; 3442 3443 if (dsi_dvo_port_to_port(display, dvo_port) == PORT_NONE) { 3444 drm_dbg_kms(display->drm, 3445 "VBT has unsupported DSI port %c\n", 3446 port_name(dvo_port - DVO_PORT_MIPIA)); 3447 continue; 3448 } 3449 3450 if (port) 3451 *port = dsi_dvo_port_to_port(display, dvo_port); 3452 return true; 3453 } 3454 3455 return false; 3456 } 3457 3458 static void fill_dsc(struct intel_crtc_state *crtc_state, 3459 struct dsc_compression_parameters_entry *dsc, 3460 int dsc_max_bpc) 3461 { 3462 struct intel_display *display = to_intel_display(crtc_state); 3463 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 3464 int bpc = 8; 3465 3466 vdsc_cfg->dsc_version_major = dsc->version_major; 3467 vdsc_cfg->dsc_version_minor = dsc->version_minor; 3468 3469 if (dsc->support_12bpc && dsc_max_bpc >= 12) 3470 bpc = 12; 3471 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 3472 bpc = 10; 3473 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 3474 bpc = 8; 3475 else 3476 drm_dbg_kms(display->drm, "VBT: Unsupported BPC %d for DCS\n", 3477 dsc_max_bpc); 3478 3479 crtc_state->pipe_bpp = bpc * 3; 3480 3481 crtc_state->dsc.compressed_bpp_x16 = fxp_q4_from_int(min(crtc_state->pipe_bpp, 3482 VBT_DSC_MAX_BPP(dsc->max_bpp))); 3483 3484 /* 3485 * FIXME: This is ugly, and slice count should take DSC engine 3486 * throughput etc. into account. 3487 * 3488 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 3489 */ 3490 if (dsc->slices_per_line & BIT(2)) { 3491 crtc_state->dsc.slice_count = 4; 3492 } else if (dsc->slices_per_line & BIT(1)) { 3493 crtc_state->dsc.slice_count = 2; 3494 } else { 3495 /* FIXME */ 3496 if (!(dsc->slices_per_line & BIT(0))) 3497 drm_dbg_kms(display->drm, 3498 "VBT: Unsupported DSC slice count for DSI\n"); 3499 3500 crtc_state->dsc.slice_count = 1; 3501 } 3502 3503 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 3504 crtc_state->dsc.slice_count != 0) 3505 drm_dbg_kms(display->drm, 3506 "VBT: DSC hdisplay %d not divisible by slice count %d\n", 3507 crtc_state->hw.adjusted_mode.crtc_hdisplay, 3508 crtc_state->dsc.slice_count); 3509 3510 /* 3511 * The VBT rc_buffer_block_size and rc_buffer_size definitions 3512 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 3513 */ 3514 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 3515 dsc->rc_buffer_size); 3516 3517 /* FIXME: DSI spec says bpc + 1 for this one */ 3518 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 3519 3520 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 3521 3522 vdsc_cfg->slice_height = dsc->slice_height; 3523 } 3524 3525 /* FIXME: initially DSI specific */ 3526 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 3527 struct intel_crtc_state *crtc_state, 3528 int dsc_max_bpc) 3529 { 3530 struct intel_display *display = to_intel_display(encoder); 3531 const struct intel_bios_encoder_data *devdata; 3532 3533 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3534 const struct child_device_config *child = &devdata->child; 3535 3536 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3537 continue; 3538 3539 if (dsi_dvo_port_to_port(display, child->dvo_port) == encoder->port) { 3540 if (!devdata->dsc) 3541 return false; 3542 3543 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 3544 3545 return true; 3546 } 3547 } 3548 3549 return false; 3550 } 3551 3552 static const u8 adlp_aux_ch_map[] = { 3553 [AUX_CH_A] = DP_AUX_A, 3554 [AUX_CH_B] = DP_AUX_B, 3555 [AUX_CH_C] = DP_AUX_C, 3556 [AUX_CH_D_XELPD] = DP_AUX_D, 3557 [AUX_CH_E_XELPD] = DP_AUX_E, 3558 [AUX_CH_USBC1] = DP_AUX_F, 3559 [AUX_CH_USBC2] = DP_AUX_G, 3560 [AUX_CH_USBC3] = DP_AUX_H, 3561 [AUX_CH_USBC4] = DP_AUX_I, 3562 }; 3563 3564 /* 3565 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 3566 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 3567 */ 3568 static const u8 adls_aux_ch_map[] = { 3569 [AUX_CH_A] = DP_AUX_A, 3570 [AUX_CH_USBC1] = DP_AUX_B, 3571 [AUX_CH_USBC2] = DP_AUX_C, 3572 [AUX_CH_USBC3] = DP_AUX_D, 3573 [AUX_CH_USBC4] = DP_AUX_E, 3574 }; 3575 3576 /* 3577 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 3578 * map to DDI A,B,TC1,TC2 respectively. 3579 */ 3580 static const u8 rkl_aux_ch_map[] = { 3581 [AUX_CH_A] = DP_AUX_A, 3582 [AUX_CH_B] = DP_AUX_B, 3583 [AUX_CH_USBC1] = DP_AUX_C, 3584 [AUX_CH_USBC2] = DP_AUX_D, 3585 }; 3586 3587 static const u8 direct_aux_ch_map[] = { 3588 [AUX_CH_A] = DP_AUX_A, 3589 [AUX_CH_B] = DP_AUX_B, 3590 [AUX_CH_C] = DP_AUX_C, 3591 [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */ 3592 [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */ 3593 [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */ 3594 [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */ 3595 [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */ 3596 [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */ 3597 }; 3598 3599 static enum aux_ch map_aux_ch(struct intel_display *display, u8 aux_channel) 3600 { 3601 const u8 *aux_ch_map; 3602 int i, n_entries; 3603 3604 if (DISPLAY_VER(display) >= 13) { 3605 aux_ch_map = adlp_aux_ch_map; 3606 n_entries = ARRAY_SIZE(adlp_aux_ch_map); 3607 } else if (display->platform.alderlake_s) { 3608 aux_ch_map = adls_aux_ch_map; 3609 n_entries = ARRAY_SIZE(adls_aux_ch_map); 3610 } else if (display->platform.dg1 || display->platform.rocketlake) { 3611 aux_ch_map = rkl_aux_ch_map; 3612 n_entries = ARRAY_SIZE(rkl_aux_ch_map); 3613 } else { 3614 aux_ch_map = direct_aux_ch_map; 3615 n_entries = ARRAY_SIZE(direct_aux_ch_map); 3616 } 3617 3618 for (i = 0; i < n_entries; i++) { 3619 if (aux_ch_map[i] == aux_channel) 3620 return i; 3621 } 3622 3623 drm_dbg_kms(display->drm, 3624 "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n", 3625 aux_channel); 3626 3627 return AUX_CH_NONE; 3628 } 3629 3630 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata) 3631 { 3632 if (!devdata || !devdata->child.aux_channel) 3633 return AUX_CH_NONE; 3634 3635 return map_aux_ch(devdata->display, devdata->child.aux_channel); 3636 } 3637 3638 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata) 3639 { 3640 struct intel_display *display; 3641 u8 aux_channel; 3642 int count = 0; 3643 3644 if (!devdata || !devdata->child.aux_channel) 3645 return false; 3646 3647 display = devdata->display; 3648 aux_channel = devdata->child.aux_channel; 3649 3650 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3651 if (intel_bios_encoder_supports_dp(devdata) && 3652 aux_channel == devdata->child.aux_channel) 3653 count++; 3654 } 3655 3656 return count > 1; 3657 } 3658 3659 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata) 3660 { 3661 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost) 3662 return 0; 3663 3664 return translate_iboost(devdata->display, devdata->child.dp_iboost_level); 3665 } 3666 3667 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 3668 { 3669 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost) 3670 return 0; 3671 3672 return translate_iboost(devdata->display, devdata->child.hdmi_iboost_level); 3673 } 3674 3675 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata) 3676 { 3677 if (!devdata || !devdata->child.ddc_pin) 3678 return 0; 3679 3680 return map_ddc_pin(devdata->display, devdata->child.ddc_pin); 3681 } 3682 3683 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 3684 { 3685 return devdata->display->vbt.version >= 195 && devdata->child.dp_usb_type_c; 3686 } 3687 3688 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 3689 { 3690 return devdata->display->vbt.version >= 209 && devdata->child.tbt; 3691 } 3692 3693 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata) 3694 { 3695 return devdata && devdata->child.lane_reversal; 3696 } 3697 3698 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata) 3699 { 3700 return devdata && devdata->child.hpd_invert; 3701 } 3702 3703 const struct intel_bios_encoder_data * 3704 intel_bios_encoder_data_lookup(struct intel_display *display, enum port port) 3705 { 3706 struct intel_bios_encoder_data *devdata; 3707 3708 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3709 if (intel_bios_encoder_port(devdata) == port) 3710 return devdata; 3711 } 3712 3713 return NULL; 3714 } 3715 3716 void intel_bios_for_each_encoder(struct intel_display *display, 3717 void (*func)(struct intel_display *display, 3718 const struct intel_bios_encoder_data *devdata)) 3719 { 3720 struct intel_bios_encoder_data *devdata; 3721 3722 list_for_each_entry(devdata, &display->vbt.display_devices, node) 3723 func(display, devdata); 3724 } 3725 3726 static int intel_bios_vbt_show(struct seq_file *m, void *unused) 3727 { 3728 struct intel_display *display = m->private; 3729 const void *vbt; 3730 size_t vbt_size; 3731 3732 vbt = intel_bios_get_vbt(display, &vbt_size); 3733 3734 if (vbt) { 3735 seq_write(m, vbt, vbt_size); 3736 kfree(vbt); 3737 } 3738 3739 return 0; 3740 } 3741 3742 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt); 3743 3744 void intel_bios_debugfs_register(struct intel_display *display) 3745 { 3746 struct drm_minor *minor = display->drm->primary; 3747 3748 debugfs_create_file("i915_vbt", 0444, minor->debugfs_root, 3749 display, &intel_bios_vbt_fops); 3750 } 3751