xref: /linux/drivers/gpu/drm/i915/display/intel_bios.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/display/drm_dp_helper.h>
29 #include <drm/display/drm_dsc_helper.h>
30 #include <drm/drm_edid.h>
31 
32 #include "i915_drv.h"
33 #include "i915_reg.h"
34 #include "intel_display.h"
35 #include "intel_display_types.h"
36 #include "intel_gmbus.h"
37 
38 #define _INTEL_BIOS_PRIVATE
39 #include "intel_vbt_defs.h"
40 
41 /**
42  * DOC: Video BIOS Table (VBT)
43  *
44  * The Video BIOS Table, or VBT, provides platform and board specific
45  * configuration information to the driver that is not discoverable or available
46  * through other means. The configuration is mostly related to display
47  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
48  * the PCI ROM.
49  *
50  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
51  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
52  * contain the actual configuration information. The VBT Header, and thus the
53  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
54  * BDB Header. The data blocks are concatenated after the BDB Header. The data
55  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
56  * data. (Block 53, the MIPI Sequence Block is an exception.)
57  *
58  * The driver parses the VBT during load. The relevant information is stored in
59  * driver private data for ease of use, and the actual VBT is not read after
60  * that.
61  */
62 
63 /* Wrapper for VBT child device config */
64 struct intel_bios_encoder_data {
65 	struct drm_i915_private *i915;
66 
67 	struct child_device_config child;
68 	struct dsc_compression_parameters_entry *dsc;
69 	struct list_head node;
70 };
71 
72 #define	SLAVE_ADDR1	0x70
73 #define	SLAVE_ADDR2	0x72
74 
75 /* Get BDB block size given a pointer to Block ID. */
76 static u32 _get_blocksize(const u8 *block_base)
77 {
78 	/* The MIPI Sequence Block v3+ has a separate size field. */
79 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
80 		return *((const u32 *)(block_base + 4));
81 	else
82 		return *((const u16 *)(block_base + 1));
83 }
84 
85 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
86 static u32 get_blocksize(const void *block_data)
87 {
88 	return _get_blocksize(block_data - 3);
89 }
90 
91 static const void *
92 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
93 {
94 	const struct bdb_header *bdb = _bdb;
95 	const u8 *base = _bdb;
96 	int index = 0;
97 	u32 total, current_size;
98 	enum bdb_block_id current_id;
99 
100 	/* skip to first section */
101 	index += bdb->header_size;
102 	total = bdb->bdb_size;
103 
104 	/* walk the sections looking for section_id */
105 	while (index + 3 < total) {
106 		current_id = *(base + index);
107 		current_size = _get_blocksize(base + index);
108 		index += 3;
109 
110 		if (index + current_size > total)
111 			return NULL;
112 
113 		if (current_id == section_id)
114 			return base + index;
115 
116 		index += current_size;
117 	}
118 
119 	return NULL;
120 }
121 
122 /*
123  * Offset from the start of BDB to the start of the
124  * block data (just past the block header).
125  */
126 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
127 {
128 	const void *block;
129 
130 	block = find_raw_section(bdb, section_id);
131 	if (!block)
132 		return 0;
133 
134 	return block - bdb;
135 }
136 
137 struct bdb_block_entry {
138 	struct list_head node;
139 	enum bdb_block_id section_id;
140 	u8 data[];
141 };
142 
143 static const void *
144 bdb_find_section(struct drm_i915_private *i915,
145 		 enum bdb_block_id section_id)
146 {
147 	struct bdb_block_entry *entry;
148 
149 	list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
150 		if (entry->section_id == section_id)
151 			return entry->data + 3;
152 	}
153 
154 	return NULL;
155 }
156 
157 static const struct {
158 	enum bdb_block_id section_id;
159 	size_t min_size;
160 } bdb_blocks[] = {
161 	{ .section_id = BDB_GENERAL_FEATURES,
162 	  .min_size = sizeof(struct bdb_general_features), },
163 	{ .section_id = BDB_GENERAL_DEFINITIONS,
164 	  .min_size = sizeof(struct bdb_general_definitions), },
165 	{ .section_id = BDB_PSR,
166 	  .min_size = sizeof(struct bdb_psr), },
167 	{ .section_id = BDB_DRIVER_FEATURES,
168 	  .min_size = sizeof(struct bdb_driver_features), },
169 	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
170 	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
171 	{ .section_id = BDB_SDVO_PANEL_DTDS,
172 	  .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
173 	{ .section_id = BDB_EDP,
174 	  .min_size = sizeof(struct bdb_edp), },
175 	{ .section_id = BDB_LVDS_OPTIONS,
176 	  .min_size = sizeof(struct bdb_lvds_options), },
177 	/*
178 	 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
179 	 * so keep the two ordered.
180 	 */
181 	{ .section_id = BDB_LVDS_LFP_DATA_PTRS,
182 	  .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
183 	{ .section_id = BDB_LVDS_LFP_DATA,
184 	  .min_size = 0, /* special case */ },
185 	{ .section_id = BDB_LVDS_BACKLIGHT,
186 	  .min_size = sizeof(struct bdb_lfp_backlight_data), },
187 	{ .section_id = BDB_LFP_POWER,
188 	  .min_size = sizeof(struct bdb_lfp_power), },
189 	{ .section_id = BDB_MIPI_CONFIG,
190 	  .min_size = sizeof(struct bdb_mipi_config), },
191 	{ .section_id = BDB_MIPI_SEQUENCE,
192 	  .min_size = sizeof(struct bdb_mipi_sequence) },
193 	{ .section_id = BDB_COMPRESSION_PARAMETERS,
194 	  .min_size = sizeof(struct bdb_compression_parameters), },
195 	{ .section_id = BDB_GENERIC_DTD,
196 	  .min_size = sizeof(struct bdb_generic_dtd), },
197 };
198 
199 static size_t lfp_data_min_size(struct drm_i915_private *i915)
200 {
201 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
202 	size_t size;
203 
204 	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
205 	if (!ptrs)
206 		return 0;
207 
208 	size = sizeof(struct bdb_lvds_lfp_data);
209 	if (ptrs->panel_name.table_size)
210 		size = max(size, ptrs->panel_name.offset +
211 			   sizeof(struct bdb_lvds_lfp_data_tail));
212 
213 	return size;
214 }
215 
216 static bool validate_lfp_data_ptrs(const void *bdb,
217 				   const struct bdb_lvds_lfp_data_ptrs *ptrs)
218 {
219 	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
220 	int data_block_size, lfp_data_size;
221 	const void *data_block;
222 	int i;
223 
224 	data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
225 	if (!data_block)
226 		return false;
227 
228 	data_block_size = get_blocksize(data_block);
229 	if (data_block_size == 0)
230 		return false;
231 
232 	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
233 	if (ptrs->lvds_entries != 3)
234 		return false;
235 
236 	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
237 	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
238 	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
239 	panel_name_size = ptrs->panel_name.table_size;
240 
241 	/* fp_timing has variable size */
242 	if (fp_timing_size < 32 ||
243 	    dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
244 	    panel_pnp_id_size != sizeof(struct lvds_pnp_id))
245 		return false;
246 
247 	/* panel_name is not present in old VBTs */
248 	if (panel_name_size != 0 &&
249 	    panel_name_size != sizeof(struct lvds_lfp_panel_name))
250 		return false;
251 
252 	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
253 	if (16 * lfp_data_size > data_block_size)
254 		return false;
255 
256 	/* make sure the table entries have uniform size */
257 	for (i = 1; i < 16; i++) {
258 		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
259 		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
260 		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
261 			return false;
262 
263 		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
264 		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
265 		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
266 			return false;
267 	}
268 
269 	/*
270 	 * Except for vlv/chv machines all real VBTs seem to have 6
271 	 * unaccounted bytes in the fp_timing table. And it doesn't
272 	 * appear to be a really intentional hole as the fp_timing
273 	 * 0xffff terminator is always within those 6 missing bytes.
274 	 */
275 	if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
276 		fp_timing_size += 6;
277 
278 	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
279 		return false;
280 
281 	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
282 	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
283 	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
284 		return false;
285 
286 	/* make sure the tables fit inside the data block */
287 	for (i = 0; i < 16; i++) {
288 		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
289 		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
290 		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
291 			return false;
292 	}
293 
294 	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
295 		return false;
296 
297 	/* make sure fp_timing terminators are present at expected locations */
298 	for (i = 0; i < 16; i++) {
299 		const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
300 			fp_timing_size - 2;
301 
302 		if (*t != 0xffff)
303 			return false;
304 	}
305 
306 	return true;
307 }
308 
309 /* make the data table offsets relative to the data block */
310 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
311 {
312 	struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
313 	u32 offset;
314 	int i;
315 
316 	offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
317 
318 	for (i = 0; i < 16; i++) {
319 		if (ptrs->ptr[i].fp_timing.offset < offset ||
320 		    ptrs->ptr[i].dvo_timing.offset < offset ||
321 		    ptrs->ptr[i].panel_pnp_id.offset < offset)
322 			return false;
323 
324 		ptrs->ptr[i].fp_timing.offset -= offset;
325 		ptrs->ptr[i].dvo_timing.offset -= offset;
326 		ptrs->ptr[i].panel_pnp_id.offset -= offset;
327 	}
328 
329 	if (ptrs->panel_name.table_size) {
330 		if (ptrs->panel_name.offset < offset)
331 			return false;
332 
333 		ptrs->panel_name.offset -= offset;
334 	}
335 
336 	return validate_lfp_data_ptrs(bdb, ptrs);
337 }
338 
339 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
340 			     int table_size, int total_size)
341 {
342 	if (total_size < table_size)
343 		return total_size;
344 
345 	table->table_size = table_size;
346 	table->offset = total_size - table_size;
347 
348 	return total_size - table_size;
349 }
350 
351 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
352 			      const struct lvds_lfp_data_ptr_table *prev,
353 			      int size)
354 {
355 	next->table_size = prev->table_size;
356 	next->offset = prev->offset + size;
357 }
358 
359 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
360 				    const void *bdb)
361 {
362 	int i, size, table_size, block_size, offset, fp_timing_size;
363 	struct bdb_lvds_lfp_data_ptrs *ptrs;
364 	const void *block;
365 	void *ptrs_block;
366 
367 	/*
368 	 * The hardcoded fp_timing_size is only valid for
369 	 * modernish VBTs. All older VBTs definitely should
370 	 * include block 41 and thus we don't need to
371 	 * generate one.
372 	 */
373 	if (i915->display.vbt.version < 155)
374 		return NULL;
375 
376 	fp_timing_size = 38;
377 
378 	block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
379 	if (!block)
380 		return NULL;
381 
382 	drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
383 
384 	block_size = get_blocksize(block);
385 
386 	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
387 		sizeof(struct lvds_pnp_id);
388 	if (size * 16 > block_size)
389 		return NULL;
390 
391 	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
392 	if (!ptrs_block)
393 		return NULL;
394 
395 	*(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
396 	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
397 	ptrs = ptrs_block + 3;
398 
399 	table_size = sizeof(struct lvds_pnp_id);
400 	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
401 
402 	table_size = sizeof(struct lvds_dvo_timing);
403 	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
404 
405 	table_size = fp_timing_size;
406 	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
407 
408 	if (ptrs->ptr[0].fp_timing.table_size)
409 		ptrs->lvds_entries++;
410 	if (ptrs->ptr[0].dvo_timing.table_size)
411 		ptrs->lvds_entries++;
412 	if (ptrs->ptr[0].panel_pnp_id.table_size)
413 		ptrs->lvds_entries++;
414 
415 	if (size != 0 || ptrs->lvds_entries != 3) {
416 		kfree(ptrs_block);
417 		return NULL;
418 	}
419 
420 	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
421 		sizeof(struct lvds_pnp_id);
422 	for (i = 1; i < 16; i++) {
423 		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
424 		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
425 		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
426 	}
427 
428 	table_size = sizeof(struct lvds_lfp_panel_name);
429 
430 	if (16 * (size + table_size) <= block_size) {
431 		ptrs->panel_name.table_size = table_size;
432 		ptrs->panel_name.offset = size * 16;
433 	}
434 
435 	offset = block - bdb;
436 
437 	for (i = 0; i < 16; i++) {
438 		ptrs->ptr[i].fp_timing.offset += offset;
439 		ptrs->ptr[i].dvo_timing.offset += offset;
440 		ptrs->ptr[i].panel_pnp_id.offset += offset;
441 	}
442 
443 	if (ptrs->panel_name.table_size)
444 		ptrs->panel_name.offset += offset;
445 
446 	return ptrs_block;
447 }
448 
449 static void
450 init_bdb_block(struct drm_i915_private *i915,
451 	       const void *bdb, enum bdb_block_id section_id,
452 	       size_t min_size)
453 {
454 	struct bdb_block_entry *entry;
455 	void *temp_block = NULL;
456 	const void *block;
457 	size_t block_size;
458 
459 	block = find_raw_section(bdb, section_id);
460 
461 	/* Modern VBTs lack the LFP data table pointers block, make one up */
462 	if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
463 		temp_block = generate_lfp_data_ptrs(i915, bdb);
464 		if (temp_block)
465 			block = temp_block + 3;
466 	}
467 	if (!block)
468 		return;
469 
470 	drm_WARN(&i915->drm, min_size == 0,
471 		 "Block %d min_size is zero\n", section_id);
472 
473 	block_size = get_blocksize(block);
474 
475 	/*
476 	 * Version number and new block size are considered
477 	 * part of the header for MIPI sequenece block v3+.
478 	 */
479 	if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
480 		block_size += 5;
481 
482 	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
483 			GFP_KERNEL);
484 	if (!entry) {
485 		kfree(temp_block);
486 		return;
487 	}
488 
489 	entry->section_id = section_id;
490 	memcpy(entry->data, block - 3, block_size + 3);
491 
492 	kfree(temp_block);
493 
494 	drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
495 		    section_id, block_size, min_size);
496 
497 	if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
498 	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
499 		drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
500 		kfree(entry);
501 		return;
502 	}
503 
504 	list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
505 }
506 
507 static void init_bdb_blocks(struct drm_i915_private *i915,
508 			    const void *bdb)
509 {
510 	int i;
511 
512 	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
513 		enum bdb_block_id section_id = bdb_blocks[i].section_id;
514 		size_t min_size = bdb_blocks[i].min_size;
515 
516 		if (section_id == BDB_LVDS_LFP_DATA)
517 			min_size = lfp_data_min_size(i915);
518 
519 		init_bdb_block(i915, bdb, section_id, min_size);
520 	}
521 }
522 
523 static void
524 fill_detail_timing_data(struct drm_i915_private *i915,
525 			struct drm_display_mode *panel_fixed_mode,
526 			const struct lvds_dvo_timing *dvo_timing)
527 {
528 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
529 		dvo_timing->hactive_lo;
530 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
531 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
532 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
533 		((dvo_timing->hsync_pulse_width_hi << 8) |
534 			dvo_timing->hsync_pulse_width_lo);
535 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
536 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
537 
538 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
539 		dvo_timing->vactive_lo;
540 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
541 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
542 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
543 		((dvo_timing->vsync_pulse_width_hi << 4) |
544 			dvo_timing->vsync_pulse_width_lo);
545 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
546 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
547 	panel_fixed_mode->clock = dvo_timing->clock * 10;
548 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
549 
550 	if (dvo_timing->hsync_positive)
551 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
552 	else
553 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
554 
555 	if (dvo_timing->vsync_positive)
556 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
557 	else
558 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
559 
560 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
561 		dvo_timing->himage_lo;
562 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
563 		dvo_timing->vimage_lo;
564 
565 	/* Some VBTs have bogus h/vsync_end values */
566 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) {
567 		drm_dbg_kms(&i915->drm, "reducing hsync_end %d->%d\n",
568 			    panel_fixed_mode->hsync_end, panel_fixed_mode->htotal);
569 		panel_fixed_mode->hsync_end = panel_fixed_mode->htotal;
570 	}
571 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) {
572 		drm_dbg_kms(&i915->drm, "reducing vsync_end %d->%d\n",
573 			    panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal);
574 		panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal;
575 	}
576 
577 	drm_mode_set_name(panel_fixed_mode);
578 }
579 
580 static const struct lvds_dvo_timing *
581 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
582 		    const struct bdb_lvds_lfp_data_ptrs *ptrs,
583 		    int index)
584 {
585 	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
586 }
587 
588 static const struct lvds_fp_timing *
589 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
590 		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
591 		   int index)
592 {
593 	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
594 }
595 
596 static const struct lvds_pnp_id *
597 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
598 		const struct bdb_lvds_lfp_data_ptrs *ptrs,
599 		int index)
600 {
601 	return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
602 }
603 
604 static const struct bdb_lvds_lfp_data_tail *
605 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
606 		  const struct bdb_lvds_lfp_data_ptrs *ptrs)
607 {
608 	if (ptrs->panel_name.table_size)
609 		return (const void *)data + ptrs->panel_name.offset;
610 	else
611 		return NULL;
612 }
613 
614 static void dump_pnp_id(struct drm_i915_private *i915,
615 			const struct lvds_pnp_id *pnp_id,
616 			const char *name)
617 {
618 	u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
619 	char vend[4];
620 
621 	drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
622 		    name, drm_edid_decode_mfg_id(mfg_name, vend),
623 		    pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
624 		    pnp_id->mfg_week, pnp_id->mfg_year + 1990);
625 }
626 
627 static int opregion_get_panel_type(struct drm_i915_private *i915,
628 				   const struct intel_bios_encoder_data *devdata,
629 				   const struct drm_edid *drm_edid, bool use_fallback)
630 {
631 	return intel_opregion_get_panel_type(i915);
632 }
633 
634 static int vbt_get_panel_type(struct drm_i915_private *i915,
635 			      const struct intel_bios_encoder_data *devdata,
636 			      const struct drm_edid *drm_edid, bool use_fallback)
637 {
638 	const struct bdb_lvds_options *lvds_options;
639 
640 	lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
641 	if (!lvds_options)
642 		return -1;
643 
644 	if (lvds_options->panel_type > 0xf &&
645 	    lvds_options->panel_type != 0xff) {
646 		drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
647 			    lvds_options->panel_type);
648 		return -1;
649 	}
650 
651 	if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
652 		return lvds_options->panel_type2;
653 
654 	drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
655 
656 	return lvds_options->panel_type;
657 }
658 
659 static int pnpid_get_panel_type(struct drm_i915_private *i915,
660 				const struct intel_bios_encoder_data *devdata,
661 				const struct drm_edid *drm_edid, bool use_fallback)
662 {
663 	const struct bdb_lvds_lfp_data *data;
664 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
665 	const struct lvds_pnp_id *edid_id;
666 	struct lvds_pnp_id edid_id_nodate;
667 	const struct edid *edid = drm_edid_raw(drm_edid); /* FIXME */
668 	int i, best = -1;
669 
670 	if (!edid)
671 		return -1;
672 
673 	edid_id = (const void *)&edid->mfg_id[0];
674 
675 	edid_id_nodate = *edid_id;
676 	edid_id_nodate.mfg_week = 0;
677 	edid_id_nodate.mfg_year = 0;
678 
679 	dump_pnp_id(i915, edid_id, "EDID");
680 
681 	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
682 	if (!ptrs)
683 		return -1;
684 
685 	data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
686 	if (!data)
687 		return -1;
688 
689 	for (i = 0; i < 16; i++) {
690 		const struct lvds_pnp_id *vbt_id =
691 			get_lvds_pnp_id(data, ptrs, i);
692 
693 		/* full match? */
694 		if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
695 			return i;
696 
697 		/*
698 		 * Accept a match w/o date if no full match is found,
699 		 * and the VBT entry does not specify a date.
700 		 */
701 		if (best < 0 &&
702 		    !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
703 			best = i;
704 	}
705 
706 	return best;
707 }
708 
709 static int fallback_get_panel_type(struct drm_i915_private *i915,
710 				   const struct intel_bios_encoder_data *devdata,
711 				   const struct drm_edid *drm_edid, bool use_fallback)
712 {
713 	return use_fallback ? 0 : -1;
714 }
715 
716 enum panel_type {
717 	PANEL_TYPE_OPREGION,
718 	PANEL_TYPE_VBT,
719 	PANEL_TYPE_PNPID,
720 	PANEL_TYPE_FALLBACK,
721 };
722 
723 static int get_panel_type(struct drm_i915_private *i915,
724 			  const struct intel_bios_encoder_data *devdata,
725 			  const struct drm_edid *drm_edid, bool use_fallback)
726 {
727 	struct {
728 		const char *name;
729 		int (*get_panel_type)(struct drm_i915_private *i915,
730 				      const struct intel_bios_encoder_data *devdata,
731 				      const struct drm_edid *drm_edid, bool use_fallback);
732 		int panel_type;
733 	} panel_types[] = {
734 		[PANEL_TYPE_OPREGION] = {
735 			.name = "OpRegion",
736 			.get_panel_type = opregion_get_panel_type,
737 		},
738 		[PANEL_TYPE_VBT] = {
739 			.name = "VBT",
740 			.get_panel_type = vbt_get_panel_type,
741 		},
742 		[PANEL_TYPE_PNPID] = {
743 			.name = "PNPID",
744 			.get_panel_type = pnpid_get_panel_type,
745 		},
746 		[PANEL_TYPE_FALLBACK] = {
747 			.name = "fallback",
748 			.get_panel_type = fallback_get_panel_type,
749 		},
750 	};
751 	int i;
752 
753 	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
754 		panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata,
755 									  drm_edid, use_fallback);
756 
757 		drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
758 			    panel_types[i].panel_type != 0xff);
759 
760 		if (panel_types[i].panel_type >= 0)
761 			drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
762 				    panel_types[i].name, panel_types[i].panel_type);
763 	}
764 
765 	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
766 		i = PANEL_TYPE_OPREGION;
767 	else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
768 		 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
769 		i = PANEL_TYPE_PNPID;
770 	else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
771 		 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
772 		i = PANEL_TYPE_VBT;
773 	else
774 		i = PANEL_TYPE_FALLBACK;
775 
776 	drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
777 		    panel_types[i].name, panel_types[i].panel_type);
778 
779 	return panel_types[i].panel_type;
780 }
781 
782 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
783 {
784 	return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
785 }
786 
787 static bool panel_bool(unsigned int value, int panel_type)
788 {
789 	return panel_bits(value, panel_type, 1);
790 }
791 
792 /* Parse general panel options */
793 static void
794 parse_panel_options(struct drm_i915_private *i915,
795 		    struct intel_panel *panel)
796 {
797 	const struct bdb_lvds_options *lvds_options;
798 	int panel_type = panel->vbt.panel_type;
799 	int drrs_mode;
800 
801 	lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
802 	if (!lvds_options)
803 		return;
804 
805 	panel->vbt.lvds_dither = lvds_options->pixel_dither;
806 
807 	/*
808 	 * Empirical evidence indicates the block size can be
809 	 * either 4,14,16,24+ bytes. For older VBTs no clear
810 	 * relationship between the block size vs. BDB version.
811 	 */
812 	if (get_blocksize(lvds_options) < 16)
813 		return;
814 
815 	drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
816 			       panel_type, 2);
817 	/*
818 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
819 	 * The below piece of code is required to adjust vbt.drrs_type
820 	 * to match the enum drrs_support_type.
821 	 */
822 	switch (drrs_mode) {
823 	case 0:
824 		panel->vbt.drrs_type = DRRS_TYPE_STATIC;
825 		drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
826 		break;
827 	case 2:
828 		panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
829 		drm_dbg_kms(&i915->drm,
830 			    "DRRS supported mode is seamless\n");
831 		break;
832 	default:
833 		panel->vbt.drrs_type = DRRS_TYPE_NONE;
834 		drm_dbg_kms(&i915->drm,
835 			    "DRRS not supported (VBT input)\n");
836 		break;
837 	}
838 }
839 
840 static void
841 parse_lfp_panel_dtd(struct drm_i915_private *i915,
842 		    struct intel_panel *panel,
843 		    const struct bdb_lvds_lfp_data *lvds_lfp_data,
844 		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
845 {
846 	const struct lvds_dvo_timing *panel_dvo_timing;
847 	const struct lvds_fp_timing *fp_timing;
848 	struct drm_display_mode *panel_fixed_mode;
849 	int panel_type = panel->vbt.panel_type;
850 
851 	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
852 					       lvds_lfp_data_ptrs,
853 					       panel_type);
854 
855 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
856 	if (!panel_fixed_mode)
857 		return;
858 
859 	fill_detail_timing_data(i915, panel_fixed_mode, panel_dvo_timing);
860 
861 	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
862 
863 	drm_dbg_kms(&i915->drm,
864 		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
865 		    DRM_MODE_ARG(panel_fixed_mode));
866 
867 	fp_timing = get_lvds_fp_timing(lvds_lfp_data,
868 				       lvds_lfp_data_ptrs,
869 				       panel_type);
870 
871 	/* check the resolution, just to be sure */
872 	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
873 	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
874 		panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
875 		drm_dbg_kms(&i915->drm,
876 			    "VBT initial LVDS value %x\n",
877 			    panel->vbt.bios_lvds_val);
878 	}
879 }
880 
881 static void
882 parse_lfp_data(struct drm_i915_private *i915,
883 	       struct intel_panel *panel)
884 {
885 	const struct bdb_lvds_lfp_data *data;
886 	const struct bdb_lvds_lfp_data_tail *tail;
887 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
888 	const struct lvds_pnp_id *pnp_id;
889 	int panel_type = panel->vbt.panel_type;
890 
891 	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
892 	if (!ptrs)
893 		return;
894 
895 	data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
896 	if (!data)
897 		return;
898 
899 	if (!panel->vbt.lfp_lvds_vbt_mode)
900 		parse_lfp_panel_dtd(i915, panel, data, ptrs);
901 
902 	pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
903 	dump_pnp_id(i915, pnp_id, "Panel");
904 
905 	tail = get_lfp_data_tail(data, ptrs);
906 	if (!tail)
907 		return;
908 
909 	drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
910 		    (int)sizeof(tail->panel_name[0].name),
911 		    tail->panel_name[panel_type].name);
912 
913 	if (i915->display.vbt.version >= 188) {
914 		panel->vbt.seamless_drrs_min_refresh_rate =
915 			tail->seamless_drrs_min_refresh_rate[panel_type];
916 		drm_dbg_kms(&i915->drm,
917 			    "Seamless DRRS min refresh rate: %d Hz\n",
918 			    panel->vbt.seamless_drrs_min_refresh_rate);
919 	}
920 }
921 
922 static void
923 parse_generic_dtd(struct drm_i915_private *i915,
924 		  struct intel_panel *panel)
925 {
926 	const struct bdb_generic_dtd *generic_dtd;
927 	const struct generic_dtd_entry *dtd;
928 	struct drm_display_mode *panel_fixed_mode;
929 	int num_dtd;
930 
931 	/*
932 	 * Older VBTs provided DTD information for internal displays through
933 	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
934 	 * DTD information should be provided via a newer "generic DTD"
935 	 * block (58).  Just to be safe, we'll try the new generic DTD block
936 	 * first on VBT >= 229, but still fall back to trying the old LFP
937 	 * block if that fails.
938 	 */
939 	if (i915->display.vbt.version < 229)
940 		return;
941 
942 	generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD);
943 	if (!generic_dtd)
944 		return;
945 
946 	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
947 		drm_err(&i915->drm, "GDTD size %u is too small.\n",
948 			generic_dtd->gdtd_size);
949 		return;
950 	} else if (generic_dtd->gdtd_size !=
951 		   sizeof(struct generic_dtd_entry)) {
952 		drm_err(&i915->drm, "Unexpected GDTD size %u\n",
953 			generic_dtd->gdtd_size);
954 		/* DTD has unknown fields, but keep going */
955 	}
956 
957 	num_dtd = (get_blocksize(generic_dtd) -
958 		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
959 	if (panel->vbt.panel_type >= num_dtd) {
960 		drm_err(&i915->drm,
961 			"Panel type %d not found in table of %d DTD's\n",
962 			panel->vbt.panel_type, num_dtd);
963 		return;
964 	}
965 
966 	dtd = &generic_dtd->dtd[panel->vbt.panel_type];
967 
968 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
969 	if (!panel_fixed_mode)
970 		return;
971 
972 	panel_fixed_mode->hdisplay = dtd->hactive;
973 	panel_fixed_mode->hsync_start =
974 		panel_fixed_mode->hdisplay + dtd->hfront_porch;
975 	panel_fixed_mode->hsync_end =
976 		panel_fixed_mode->hsync_start + dtd->hsync;
977 	panel_fixed_mode->htotal =
978 		panel_fixed_mode->hdisplay + dtd->hblank;
979 
980 	panel_fixed_mode->vdisplay = dtd->vactive;
981 	panel_fixed_mode->vsync_start =
982 		panel_fixed_mode->vdisplay + dtd->vfront_porch;
983 	panel_fixed_mode->vsync_end =
984 		panel_fixed_mode->vsync_start + dtd->vsync;
985 	panel_fixed_mode->vtotal =
986 		panel_fixed_mode->vdisplay + dtd->vblank;
987 
988 	panel_fixed_mode->clock = dtd->pixel_clock;
989 	panel_fixed_mode->width_mm = dtd->width_mm;
990 	panel_fixed_mode->height_mm = dtd->height_mm;
991 
992 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
993 	drm_mode_set_name(panel_fixed_mode);
994 
995 	if (dtd->hsync_positive_polarity)
996 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
997 	else
998 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
999 
1000 	if (dtd->vsync_positive_polarity)
1001 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
1002 	else
1003 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
1004 
1005 	drm_dbg_kms(&i915->drm,
1006 		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1007 		    DRM_MODE_ARG(panel_fixed_mode));
1008 
1009 	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
1010 }
1011 
1012 static void
1013 parse_lfp_backlight(struct drm_i915_private *i915,
1014 		    struct intel_panel *panel)
1015 {
1016 	const struct bdb_lfp_backlight_data *backlight_data;
1017 	const struct lfp_backlight_data_entry *entry;
1018 	int panel_type = panel->vbt.panel_type;
1019 	u16 level;
1020 
1021 	backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT);
1022 	if (!backlight_data)
1023 		return;
1024 
1025 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1026 		drm_dbg_kms(&i915->drm,
1027 			    "Unsupported backlight data entry size %u\n",
1028 			    backlight_data->entry_size);
1029 		return;
1030 	}
1031 
1032 	entry = &backlight_data->data[panel_type];
1033 
1034 	panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1035 	if (!panel->vbt.backlight.present) {
1036 		drm_dbg_kms(&i915->drm,
1037 			    "PWM backlight not present in VBT (type %u)\n",
1038 			    entry->type);
1039 		return;
1040 	}
1041 
1042 	panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1043 	panel->vbt.backlight.controller = 0;
1044 	if (i915->display.vbt.version >= 191) {
1045 		size_t exp_size;
1046 
1047 		if (i915->display.vbt.version >= 236)
1048 			exp_size = sizeof(struct bdb_lfp_backlight_data);
1049 		else if (i915->display.vbt.version >= 234)
1050 			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
1051 		else
1052 			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
1053 
1054 		if (get_blocksize(backlight_data) >= exp_size) {
1055 			const struct lfp_backlight_control_method *method;
1056 
1057 			method = &backlight_data->backlight_control[panel_type];
1058 			panel->vbt.backlight.type = method->type;
1059 			panel->vbt.backlight.controller = method->controller;
1060 		}
1061 	}
1062 
1063 	panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1064 	panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1065 
1066 	if (i915->display.vbt.version >= 234) {
1067 		u16 min_level;
1068 		bool scale;
1069 
1070 		level = backlight_data->brightness_level[panel_type].level;
1071 		min_level = backlight_data->brightness_min_level[panel_type].level;
1072 
1073 		if (i915->display.vbt.version >= 236)
1074 			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1075 		else
1076 			scale = level > 255;
1077 
1078 		if (scale)
1079 			min_level = min_level / 255;
1080 
1081 		if (min_level > 255) {
1082 			drm_warn(&i915->drm, "Brightness min level > 255\n");
1083 			level = 255;
1084 		}
1085 		panel->vbt.backlight.min_brightness = min_level;
1086 
1087 		panel->vbt.backlight.brightness_precision_bits =
1088 			backlight_data->brightness_precision_bits[panel_type];
1089 	} else {
1090 		level = backlight_data->level[panel_type];
1091 		panel->vbt.backlight.min_brightness = entry->min_brightness;
1092 	}
1093 
1094 	if (i915->display.vbt.version >= 239)
1095 		panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1096 			DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1097 	else
1098 		panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1099 
1100 	drm_dbg_kms(&i915->drm,
1101 		    "VBT backlight PWM modulation frequency %u Hz, "
1102 		    "active %s, min brightness %u, level %u, controller %u\n",
1103 		    panel->vbt.backlight.pwm_freq_hz,
1104 		    panel->vbt.backlight.active_low_pwm ? "low" : "high",
1105 		    panel->vbt.backlight.min_brightness,
1106 		    level,
1107 		    panel->vbt.backlight.controller);
1108 }
1109 
1110 /* Try to find sdvo panel data */
1111 static void
1112 parse_sdvo_panel_data(struct drm_i915_private *i915,
1113 		      struct intel_panel *panel)
1114 {
1115 	const struct bdb_sdvo_panel_dtds *dtds;
1116 	struct drm_display_mode *panel_fixed_mode;
1117 	int index;
1118 
1119 	index = i915->params.vbt_sdvo_panel_type;
1120 	if (index == -2) {
1121 		drm_dbg_kms(&i915->drm,
1122 			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
1123 		return;
1124 	}
1125 
1126 	if (index == -1) {
1127 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1128 
1129 		sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1130 		if (!sdvo_lvds_options)
1131 			return;
1132 
1133 		index = sdvo_lvds_options->panel_type;
1134 	}
1135 
1136 	dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS);
1137 	if (!dtds)
1138 		return;
1139 
1140 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1141 	if (!panel_fixed_mode)
1142 		return;
1143 
1144 	fill_detail_timing_data(i915, panel_fixed_mode, &dtds->dtds[index]);
1145 
1146 	panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1147 
1148 	drm_dbg_kms(&i915->drm,
1149 		    "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1150 		    DRM_MODE_ARG(panel_fixed_mode));
1151 }
1152 
1153 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1154 				    bool alternate)
1155 {
1156 	switch (DISPLAY_VER(i915)) {
1157 	case 2:
1158 		return alternate ? 66667 : 48000;
1159 	case 3:
1160 	case 4:
1161 		return alternate ? 100000 : 96000;
1162 	default:
1163 		return alternate ? 100000 : 120000;
1164 	}
1165 }
1166 
1167 static void
1168 parse_general_features(struct drm_i915_private *i915)
1169 {
1170 	const struct bdb_general_features *general;
1171 
1172 	general = bdb_find_section(i915, BDB_GENERAL_FEATURES);
1173 	if (!general)
1174 		return;
1175 
1176 	i915->display.vbt.int_tv_support = general->int_tv_support;
1177 	/* int_crt_support can't be trusted on earlier platforms */
1178 	if (i915->display.vbt.version >= 155 &&
1179 	    (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1180 		i915->display.vbt.int_crt_support = general->int_crt_support;
1181 	i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1182 	i915->display.vbt.lvds_ssc_freq =
1183 		intel_bios_ssc_frequency(i915, general->ssc_freq);
1184 	i915->display.vbt.display_clock_mode = general->display_clock_mode;
1185 	i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1186 	if (i915->display.vbt.version >= 181) {
1187 		i915->display.vbt.orientation = general->rotate_180 ?
1188 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1189 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1190 	} else {
1191 		i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1192 	}
1193 
1194 	if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1195 		i915->display.vbt.override_afc_startup = true;
1196 		i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1197 	}
1198 
1199 	drm_dbg_kms(&i915->drm,
1200 		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1201 		    i915->display.vbt.int_tv_support,
1202 		    i915->display.vbt.int_crt_support,
1203 		    i915->display.vbt.lvds_use_ssc,
1204 		    i915->display.vbt.lvds_ssc_freq,
1205 		    i915->display.vbt.display_clock_mode,
1206 		    i915->display.vbt.fdi_rx_polarity_inverted);
1207 }
1208 
1209 static const struct child_device_config *
1210 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1211 {
1212 	return (const void *) &defs->devices[i * defs->child_dev_size];
1213 }
1214 
1215 static void
1216 parse_sdvo_device_mapping(struct drm_i915_private *i915)
1217 {
1218 	const struct intel_bios_encoder_data *devdata;
1219 	int count = 0;
1220 
1221 	/*
1222 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1223 	 * accurate and doesn't have to be, as long as it's not too strict.
1224 	 */
1225 	if (!IS_DISPLAY_VER(i915, 3, 7)) {
1226 		drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1227 		return;
1228 	}
1229 
1230 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1231 		const struct child_device_config *child = &devdata->child;
1232 		struct sdvo_device_mapping *mapping;
1233 
1234 		if (child->slave_addr != SLAVE_ADDR1 &&
1235 		    child->slave_addr != SLAVE_ADDR2) {
1236 			/*
1237 			 * If the slave address is neither 0x70 nor 0x72,
1238 			 * it is not a SDVO device. Skip it.
1239 			 */
1240 			continue;
1241 		}
1242 		if (child->dvo_port != DEVICE_PORT_DVOB &&
1243 		    child->dvo_port != DEVICE_PORT_DVOC) {
1244 			/* skip the incorrect SDVO port */
1245 			drm_dbg_kms(&i915->drm,
1246 				    "Incorrect SDVO port. Skip it\n");
1247 			continue;
1248 		}
1249 		drm_dbg_kms(&i915->drm,
1250 			    "the SDVO device with slave addr %2x is found on"
1251 			    " %s port\n",
1252 			    child->slave_addr,
1253 			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1254 			    "SDVOB" : "SDVOC");
1255 		mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1256 		if (!mapping->initialized) {
1257 			mapping->dvo_port = child->dvo_port;
1258 			mapping->slave_addr = child->slave_addr;
1259 			mapping->dvo_wiring = child->dvo_wiring;
1260 			mapping->ddc_pin = child->ddc_pin;
1261 			mapping->i2c_pin = child->i2c_pin;
1262 			mapping->initialized = 1;
1263 			drm_dbg_kms(&i915->drm,
1264 				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1265 				    mapping->dvo_port, mapping->slave_addr,
1266 				    mapping->dvo_wiring, mapping->ddc_pin,
1267 				    mapping->i2c_pin);
1268 		} else {
1269 			drm_dbg_kms(&i915->drm,
1270 				    "Maybe one SDVO port is shared by "
1271 				    "two SDVO device.\n");
1272 		}
1273 		if (child->slave2_addr) {
1274 			/* Maybe this is a SDVO device with multiple inputs */
1275 			/* And the mapping info is not added */
1276 			drm_dbg_kms(&i915->drm,
1277 				    "there exists the slave2_addr. Maybe this"
1278 				    " is a SDVO device with multiple inputs.\n");
1279 		}
1280 		count++;
1281 	}
1282 
1283 	if (!count) {
1284 		/* No SDVO device info is found */
1285 		drm_dbg_kms(&i915->drm,
1286 			    "No SDVO device info is found in VBT\n");
1287 	}
1288 }
1289 
1290 static void
1291 parse_driver_features(struct drm_i915_private *i915)
1292 {
1293 	const struct bdb_driver_features *driver;
1294 
1295 	driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1296 	if (!driver)
1297 		return;
1298 
1299 	if (DISPLAY_VER(i915) >= 5) {
1300 		/*
1301 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1302 		 * to mean "eDP". The VBT spec doesn't agree with that
1303 		 * interpretation, but real world VBTs seem to.
1304 		 */
1305 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1306 			i915->display.vbt.int_lvds_support = 0;
1307 	} else {
1308 		/*
1309 		 * FIXME it's not clear which BDB version has the LVDS config
1310 		 * bits defined. Revision history in the VBT spec says:
1311 		 * "0.92 | Add two definitions for VBT value of LVDS Active
1312 		 *  Config (00b and 11b values defined) | 06/13/2005"
1313 		 * but does not the specify the BDB version.
1314 		 *
1315 		 * So far version 134 (on i945gm) is the oldest VBT observed
1316 		 * in the wild with the bits correctly populated. Version
1317 		 * 108 (on i85x) does not have the bits correctly populated.
1318 		 */
1319 		if (i915->display.vbt.version >= 134 &&
1320 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1321 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1322 			i915->display.vbt.int_lvds_support = 0;
1323 	}
1324 }
1325 
1326 static void
1327 parse_panel_driver_features(struct drm_i915_private *i915,
1328 			    struct intel_panel *panel)
1329 {
1330 	const struct bdb_driver_features *driver;
1331 
1332 	driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1333 	if (!driver)
1334 		return;
1335 
1336 	if (i915->display.vbt.version < 228) {
1337 		drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1338 			    driver->drrs_enabled);
1339 		/*
1340 		 * If DRRS is not supported, drrs_type has to be set to 0.
1341 		 * This is because, VBT is configured in such a way that
1342 		 * static DRRS is 0 and DRRS not supported is represented by
1343 		 * driver->drrs_enabled=false
1344 		 */
1345 		if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1346 			/*
1347 			 * FIXME Should DMRRS perhaps be treated as seamless
1348 			 * but without the automatic downclocking?
1349 			 */
1350 			if (driver->dmrrs_enabled)
1351 				panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1352 			else
1353 				panel->vbt.drrs_type = DRRS_TYPE_NONE;
1354 		}
1355 
1356 		panel->vbt.psr.enable = driver->psr_enabled;
1357 	}
1358 }
1359 
1360 static void
1361 parse_power_conservation_features(struct drm_i915_private *i915,
1362 				  struct intel_panel *panel)
1363 {
1364 	const struct bdb_lfp_power *power;
1365 	u8 panel_type = panel->vbt.panel_type;
1366 
1367 	panel->vbt.vrr = true; /* matches Windows behaviour */
1368 
1369 	if (i915->display.vbt.version < 228)
1370 		return;
1371 
1372 	power = bdb_find_section(i915, BDB_LFP_POWER);
1373 	if (!power)
1374 		return;
1375 
1376 	panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1377 
1378 	/*
1379 	 * If DRRS is not supported, drrs_type has to be set to 0.
1380 	 * This is because, VBT is configured in such a way that
1381 	 * static DRRS is 0 and DRRS not supported is represented by
1382 	 * power->drrs & BIT(panel_type)=false
1383 	 */
1384 	if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1385 		/*
1386 		 * FIXME Should DMRRS perhaps be treated as seamless
1387 		 * but without the automatic downclocking?
1388 		 */
1389 		if (panel_bool(power->dmrrs, panel_type))
1390 			panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1391 		else
1392 			panel->vbt.drrs_type = DRRS_TYPE_NONE;
1393 	}
1394 
1395 	if (i915->display.vbt.version >= 232)
1396 		panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1397 
1398 	if (i915->display.vbt.version >= 233)
1399 		panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1400 					    panel_type);
1401 }
1402 
1403 static void
1404 parse_edp(struct drm_i915_private *i915,
1405 	  struct intel_panel *panel)
1406 {
1407 	const struct bdb_edp *edp;
1408 	const struct edp_power_seq *edp_pps;
1409 	const struct edp_fast_link_params *edp_link_params;
1410 	int panel_type = panel->vbt.panel_type;
1411 
1412 	edp = bdb_find_section(i915, BDB_EDP);
1413 	if (!edp)
1414 		return;
1415 
1416 	switch (panel_bits(edp->color_depth, panel_type, 2)) {
1417 	case EDP_18BPP:
1418 		panel->vbt.edp.bpp = 18;
1419 		break;
1420 	case EDP_24BPP:
1421 		panel->vbt.edp.bpp = 24;
1422 		break;
1423 	case EDP_30BPP:
1424 		panel->vbt.edp.bpp = 30;
1425 		break;
1426 	}
1427 
1428 	/* Get the eDP sequencing and link info */
1429 	edp_pps = &edp->power_seqs[panel_type];
1430 	edp_link_params = &edp->fast_link_params[panel_type];
1431 
1432 	panel->vbt.edp.pps = *edp_pps;
1433 
1434 	if (i915->display.vbt.version >= 224) {
1435 		panel->vbt.edp.rate =
1436 			edp->edp_fast_link_training_rate[panel_type] * 20;
1437 	} else {
1438 		switch (edp_link_params->rate) {
1439 		case EDP_RATE_1_62:
1440 			panel->vbt.edp.rate = 162000;
1441 			break;
1442 		case EDP_RATE_2_7:
1443 			panel->vbt.edp.rate = 270000;
1444 			break;
1445 		case EDP_RATE_5_4:
1446 			panel->vbt.edp.rate = 540000;
1447 			break;
1448 		default:
1449 			drm_dbg_kms(&i915->drm,
1450 				    "VBT has unknown eDP link rate value %u\n",
1451 				    edp_link_params->rate);
1452 			break;
1453 		}
1454 	}
1455 
1456 	switch (edp_link_params->lanes) {
1457 	case EDP_LANE_1:
1458 		panel->vbt.edp.lanes = 1;
1459 		break;
1460 	case EDP_LANE_2:
1461 		panel->vbt.edp.lanes = 2;
1462 		break;
1463 	case EDP_LANE_4:
1464 		panel->vbt.edp.lanes = 4;
1465 		break;
1466 	default:
1467 		drm_dbg_kms(&i915->drm,
1468 			    "VBT has unknown eDP lane count value %u\n",
1469 			    edp_link_params->lanes);
1470 		break;
1471 	}
1472 
1473 	switch (edp_link_params->preemphasis) {
1474 	case EDP_PREEMPHASIS_NONE:
1475 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1476 		break;
1477 	case EDP_PREEMPHASIS_3_5dB:
1478 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1479 		break;
1480 	case EDP_PREEMPHASIS_6dB:
1481 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1482 		break;
1483 	case EDP_PREEMPHASIS_9_5dB:
1484 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1485 		break;
1486 	default:
1487 		drm_dbg_kms(&i915->drm,
1488 			    "VBT has unknown eDP pre-emphasis value %u\n",
1489 			    edp_link_params->preemphasis);
1490 		break;
1491 	}
1492 
1493 	switch (edp_link_params->vswing) {
1494 	case EDP_VSWING_0_4V:
1495 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1496 		break;
1497 	case EDP_VSWING_0_6V:
1498 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1499 		break;
1500 	case EDP_VSWING_0_8V:
1501 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1502 		break;
1503 	case EDP_VSWING_1_2V:
1504 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1505 		break;
1506 	default:
1507 		drm_dbg_kms(&i915->drm,
1508 			    "VBT has unknown eDP voltage swing value %u\n",
1509 			    edp_link_params->vswing);
1510 		break;
1511 	}
1512 
1513 	if (i915->display.vbt.version >= 173) {
1514 		u8 vswing;
1515 
1516 		/* Don't read from VBT if module parameter has valid value*/
1517 		if (i915->params.edp_vswing) {
1518 			panel->vbt.edp.low_vswing =
1519 				i915->params.edp_vswing == 1;
1520 		} else {
1521 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1522 			panel->vbt.edp.low_vswing = vswing == 0;
1523 		}
1524 	}
1525 
1526 	panel->vbt.edp.drrs_msa_timing_delay =
1527 		panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1528 
1529 	if (i915->display.vbt.version >= 244)
1530 		panel->vbt.edp.max_link_rate =
1531 			edp->edp_max_port_link_rate[panel_type] * 20;
1532 }
1533 
1534 static void
1535 parse_psr(struct drm_i915_private *i915,
1536 	  struct intel_panel *panel)
1537 {
1538 	const struct bdb_psr *psr;
1539 	const struct psr_table *psr_table;
1540 	int panel_type = panel->vbt.panel_type;
1541 
1542 	psr = bdb_find_section(i915, BDB_PSR);
1543 	if (!psr) {
1544 		drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1545 		return;
1546 	}
1547 
1548 	psr_table = &psr->psr_table[panel_type];
1549 
1550 	panel->vbt.psr.full_link = psr_table->full_link;
1551 	panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1552 
1553 	/* Allowed VBT values goes from 0 to 15 */
1554 	panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1555 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1556 
1557 	/*
1558 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1559 	 * Old decimal value is wake up time in multiples of 100 us.
1560 	 */
1561 	if (i915->display.vbt.version >= 205 &&
1562 	    (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1563 		switch (psr_table->tp1_wakeup_time) {
1564 		case 0:
1565 			panel->vbt.psr.tp1_wakeup_time_us = 500;
1566 			break;
1567 		case 1:
1568 			panel->vbt.psr.tp1_wakeup_time_us = 100;
1569 			break;
1570 		case 3:
1571 			panel->vbt.psr.tp1_wakeup_time_us = 0;
1572 			break;
1573 		default:
1574 			drm_dbg_kms(&i915->drm,
1575 				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1576 				    psr_table->tp1_wakeup_time);
1577 			fallthrough;
1578 		case 2:
1579 			panel->vbt.psr.tp1_wakeup_time_us = 2500;
1580 			break;
1581 		}
1582 
1583 		switch (psr_table->tp2_tp3_wakeup_time) {
1584 		case 0:
1585 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1586 			break;
1587 		case 1:
1588 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1589 			break;
1590 		case 3:
1591 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1592 			break;
1593 		default:
1594 			drm_dbg_kms(&i915->drm,
1595 				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1596 				    psr_table->tp2_tp3_wakeup_time);
1597 			fallthrough;
1598 		case 2:
1599 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1600 		break;
1601 		}
1602 	} else {
1603 		panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1604 		panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1605 	}
1606 
1607 	if (i915->display.vbt.version >= 226) {
1608 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1609 
1610 		wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1611 		switch (wakeup_time) {
1612 		case 0:
1613 			wakeup_time = 500;
1614 			break;
1615 		case 1:
1616 			wakeup_time = 100;
1617 			break;
1618 		case 3:
1619 			wakeup_time = 50;
1620 			break;
1621 		default:
1622 		case 2:
1623 			wakeup_time = 2500;
1624 			break;
1625 		}
1626 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1627 	} else {
1628 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1629 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1630 	}
1631 }
1632 
1633 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1634 				      struct intel_panel *panel,
1635 				      enum port port)
1636 {
1637 	enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1638 
1639 	if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1640 		panel->vbt.dsi.bl_ports = BIT(port);
1641 		if (panel->vbt.dsi.config->cabc_supported)
1642 			panel->vbt.dsi.cabc_ports = BIT(port);
1643 
1644 		return;
1645 	}
1646 
1647 	switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1648 	case DL_DCS_PORT_A:
1649 		panel->vbt.dsi.bl_ports = BIT(PORT_A);
1650 		break;
1651 	case DL_DCS_PORT_C:
1652 		panel->vbt.dsi.bl_ports = BIT(port_bc);
1653 		break;
1654 	default:
1655 	case DL_DCS_PORT_A_AND_C:
1656 		panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1657 		break;
1658 	}
1659 
1660 	if (!panel->vbt.dsi.config->cabc_supported)
1661 		return;
1662 
1663 	switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1664 	case DL_DCS_PORT_A:
1665 		panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1666 		break;
1667 	case DL_DCS_PORT_C:
1668 		panel->vbt.dsi.cabc_ports = BIT(port_bc);
1669 		break;
1670 	default:
1671 	case DL_DCS_PORT_A_AND_C:
1672 		panel->vbt.dsi.cabc_ports =
1673 					BIT(PORT_A) | BIT(port_bc);
1674 		break;
1675 	}
1676 }
1677 
1678 static void
1679 parse_mipi_config(struct drm_i915_private *i915,
1680 		  struct intel_panel *panel)
1681 {
1682 	const struct bdb_mipi_config *start;
1683 	const struct mipi_config *config;
1684 	const struct mipi_pps_data *pps;
1685 	int panel_type = panel->vbt.panel_type;
1686 	enum port port;
1687 
1688 	/* parse MIPI blocks only if LFP type is MIPI */
1689 	if (!intel_bios_is_dsi_present(i915, &port))
1690 		return;
1691 
1692 	/* Initialize this to undefined indicating no generic MIPI support */
1693 	panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1694 
1695 	/* Block #40 is already parsed and panel_fixed_mode is
1696 	 * stored in i915->lfp_lvds_vbt_mode
1697 	 * resuse this when needed
1698 	 */
1699 
1700 	/* Parse #52 for panel index used from panel_type already
1701 	 * parsed
1702 	 */
1703 	start = bdb_find_section(i915, BDB_MIPI_CONFIG);
1704 	if (!start) {
1705 		drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1706 		return;
1707 	}
1708 
1709 	drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1710 		panel_type);
1711 
1712 	/*
1713 	 * get hold of the correct configuration block and pps data as per
1714 	 * the panel_type as index
1715 	 */
1716 	config = &start->config[panel_type];
1717 	pps = &start->pps[panel_type];
1718 
1719 	/* store as of now full data. Trim when we realise all is not needed */
1720 	panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1721 	if (!panel->vbt.dsi.config)
1722 		return;
1723 
1724 	panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1725 	if (!panel->vbt.dsi.pps) {
1726 		kfree(panel->vbt.dsi.config);
1727 		return;
1728 	}
1729 
1730 	parse_dsi_backlight_ports(i915, panel, port);
1731 
1732 	/* FIXME is the 90 vs. 270 correct? */
1733 	switch (config->rotation) {
1734 	case ENABLE_ROTATION_0:
1735 		/*
1736 		 * Most (all?) VBTs claim 0 degrees despite having
1737 		 * an upside down panel, thus we do not trust this.
1738 		 */
1739 		panel->vbt.dsi.orientation =
1740 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1741 		break;
1742 	case ENABLE_ROTATION_90:
1743 		panel->vbt.dsi.orientation =
1744 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1745 		break;
1746 	case ENABLE_ROTATION_180:
1747 		panel->vbt.dsi.orientation =
1748 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1749 		break;
1750 	case ENABLE_ROTATION_270:
1751 		panel->vbt.dsi.orientation =
1752 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1753 		break;
1754 	}
1755 
1756 	/* We have mandatory mipi config blocks. Initialize as generic panel */
1757 	panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1758 }
1759 
1760 /* Find the sequence block and size for the given panel. */
1761 static const u8 *
1762 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1763 			  u16 panel_id, u32 *seq_size)
1764 {
1765 	u32 total = get_blocksize(sequence);
1766 	const u8 *data = &sequence->data[0];
1767 	u8 current_id;
1768 	u32 current_size;
1769 	int header_size = sequence->version >= 3 ? 5 : 3;
1770 	int index = 0;
1771 	int i;
1772 
1773 	/* skip new block size */
1774 	if (sequence->version >= 3)
1775 		data += 4;
1776 
1777 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1778 		if (index + header_size > total) {
1779 			DRM_ERROR("Invalid sequence block (header)\n");
1780 			return NULL;
1781 		}
1782 
1783 		current_id = *(data + index);
1784 		if (sequence->version >= 3)
1785 			current_size = *((const u32 *)(data + index + 1));
1786 		else
1787 			current_size = *((const u16 *)(data + index + 1));
1788 
1789 		index += header_size;
1790 
1791 		if (index + current_size > total) {
1792 			DRM_ERROR("Invalid sequence block\n");
1793 			return NULL;
1794 		}
1795 
1796 		if (current_id == panel_id) {
1797 			*seq_size = current_size;
1798 			return data + index;
1799 		}
1800 
1801 		index += current_size;
1802 	}
1803 
1804 	DRM_ERROR("Sequence block detected but no valid configuration\n");
1805 
1806 	return NULL;
1807 }
1808 
1809 static int goto_next_sequence(const u8 *data, int index, int total)
1810 {
1811 	u16 len;
1812 
1813 	/* Skip Sequence Byte. */
1814 	for (index = index + 1; index < total; index += len) {
1815 		u8 operation_byte = *(data + index);
1816 		index++;
1817 
1818 		switch (operation_byte) {
1819 		case MIPI_SEQ_ELEM_END:
1820 			return index;
1821 		case MIPI_SEQ_ELEM_SEND_PKT:
1822 			if (index + 4 > total)
1823 				return 0;
1824 
1825 			len = *((const u16 *)(data + index + 2)) + 4;
1826 			break;
1827 		case MIPI_SEQ_ELEM_DELAY:
1828 			len = 4;
1829 			break;
1830 		case MIPI_SEQ_ELEM_GPIO:
1831 			len = 2;
1832 			break;
1833 		case MIPI_SEQ_ELEM_I2C:
1834 			if (index + 7 > total)
1835 				return 0;
1836 			len = *(data + index + 6) + 7;
1837 			break;
1838 		default:
1839 			DRM_ERROR("Unknown operation byte\n");
1840 			return 0;
1841 		}
1842 	}
1843 
1844 	return 0;
1845 }
1846 
1847 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1848 {
1849 	int seq_end;
1850 	u16 len;
1851 	u32 size_of_sequence;
1852 
1853 	/*
1854 	 * Could skip sequence based on Size of Sequence alone, but also do some
1855 	 * checking on the structure.
1856 	 */
1857 	if (total < 5) {
1858 		DRM_ERROR("Too small sequence size\n");
1859 		return 0;
1860 	}
1861 
1862 	/* Skip Sequence Byte. */
1863 	index++;
1864 
1865 	/*
1866 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1867 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1868 	 * byte.
1869 	 */
1870 	size_of_sequence = *((const u32 *)(data + index));
1871 	index += 4;
1872 
1873 	seq_end = index + size_of_sequence;
1874 	if (seq_end > total) {
1875 		DRM_ERROR("Invalid sequence size\n");
1876 		return 0;
1877 	}
1878 
1879 	for (; index < total; index += len) {
1880 		u8 operation_byte = *(data + index);
1881 		index++;
1882 
1883 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1884 			if (index != seq_end) {
1885 				DRM_ERROR("Invalid element structure\n");
1886 				return 0;
1887 			}
1888 			return index;
1889 		}
1890 
1891 		len = *(data + index);
1892 		index++;
1893 
1894 		/*
1895 		 * FIXME: Would be nice to check elements like for v1/v2 in
1896 		 * goto_next_sequence() above.
1897 		 */
1898 		switch (operation_byte) {
1899 		case MIPI_SEQ_ELEM_SEND_PKT:
1900 		case MIPI_SEQ_ELEM_DELAY:
1901 		case MIPI_SEQ_ELEM_GPIO:
1902 		case MIPI_SEQ_ELEM_I2C:
1903 		case MIPI_SEQ_ELEM_SPI:
1904 		case MIPI_SEQ_ELEM_PMIC:
1905 			break;
1906 		default:
1907 			DRM_ERROR("Unknown operation byte %u\n",
1908 				  operation_byte);
1909 			break;
1910 		}
1911 	}
1912 
1913 	return 0;
1914 }
1915 
1916 /*
1917  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1918  * skip all delay + gpio operands and stop at the first DSI packet op.
1919  */
1920 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1921 					      struct intel_panel *panel)
1922 {
1923 	const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1924 	int index, len;
1925 
1926 	if (drm_WARN_ON(&i915->drm,
1927 			!data || panel->vbt.dsi.seq_version != 1))
1928 		return 0;
1929 
1930 	/* index = 1 to skip sequence byte */
1931 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1932 		switch (data[index]) {
1933 		case MIPI_SEQ_ELEM_SEND_PKT:
1934 			return index == 1 ? 0 : index;
1935 		case MIPI_SEQ_ELEM_DELAY:
1936 			len = 5; /* 1 byte for operand + uint32 */
1937 			break;
1938 		case MIPI_SEQ_ELEM_GPIO:
1939 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1940 			break;
1941 		default:
1942 			return 0;
1943 		}
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 /*
1950  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1951  * The deassert must be done before calling intel_dsi_device_ready, so for
1952  * these devices we split the init OTP sequence into a deassert sequence and
1953  * the actual init OTP part.
1954  */
1955 static void fixup_mipi_sequences(struct drm_i915_private *i915,
1956 				 struct intel_panel *panel)
1957 {
1958 	u8 *init_otp;
1959 	int len;
1960 
1961 	/* Limit this to VLV for now. */
1962 	if (!IS_VALLEYVIEW(i915))
1963 		return;
1964 
1965 	/* Limit this to v1 vid-mode sequences */
1966 	if (panel->vbt.dsi.config->is_cmd_mode ||
1967 	    panel->vbt.dsi.seq_version != 1)
1968 		return;
1969 
1970 	/* Only do this if there are otp and assert seqs and no deassert seq */
1971 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1972 	    !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1973 	    panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1974 		return;
1975 
1976 	/* The deassert-sequence ends at the first DSI packet */
1977 	len = get_init_otp_deassert_fragment_len(i915, panel);
1978 	if (!len)
1979 		return;
1980 
1981 	drm_dbg_kms(&i915->drm,
1982 		    "Using init OTP fragment to deassert reset\n");
1983 
1984 	/* Copy the fragment, update seq byte and terminate it */
1985 	init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1986 	panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1987 	if (!panel->vbt.dsi.deassert_seq)
1988 		return;
1989 	panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1990 	panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1991 	/* Use the copy for deassert */
1992 	panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1993 		panel->vbt.dsi.deassert_seq;
1994 	/* Replace the last byte of the fragment with init OTP seq byte */
1995 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1996 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1997 	panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1998 }
1999 
2000 static void
2001 parse_mipi_sequence(struct drm_i915_private *i915,
2002 		    struct intel_panel *panel)
2003 {
2004 	int panel_type = panel->vbt.panel_type;
2005 	const struct bdb_mipi_sequence *sequence;
2006 	const u8 *seq_data;
2007 	u32 seq_size;
2008 	u8 *data;
2009 	int index = 0;
2010 
2011 	/* Only our generic panel driver uses the sequence block. */
2012 	if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2013 		return;
2014 
2015 	sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE);
2016 	if (!sequence) {
2017 		drm_dbg_kms(&i915->drm,
2018 			    "No MIPI Sequence found, parsing complete\n");
2019 		return;
2020 	}
2021 
2022 	/* Fail gracefully for forward incompatible sequence block. */
2023 	if (sequence->version >= 4) {
2024 		drm_err(&i915->drm,
2025 			"Unable to parse MIPI Sequence Block v%u\n",
2026 			sequence->version);
2027 		return;
2028 	}
2029 
2030 	drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2031 		sequence->version);
2032 
2033 	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
2034 	if (!seq_data)
2035 		return;
2036 
2037 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2038 	if (!data)
2039 		return;
2040 
2041 	/* Parse the sequences, store pointers to each sequence. */
2042 	for (;;) {
2043 		u8 seq_id = *(data + index);
2044 		if (seq_id == MIPI_SEQ_END)
2045 			break;
2046 
2047 		if (seq_id >= MIPI_SEQ_MAX) {
2048 			drm_err(&i915->drm, "Unknown sequence %u\n",
2049 				seq_id);
2050 			goto err;
2051 		}
2052 
2053 		/* Log about presence of sequences we won't run. */
2054 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2055 			drm_dbg_kms(&i915->drm,
2056 				    "Unsupported sequence %u\n", seq_id);
2057 
2058 		panel->vbt.dsi.sequence[seq_id] = data + index;
2059 
2060 		if (sequence->version >= 3)
2061 			index = goto_next_sequence_v3(data, index, seq_size);
2062 		else
2063 			index = goto_next_sequence(data, index, seq_size);
2064 		if (!index) {
2065 			drm_err(&i915->drm, "Invalid sequence %u\n",
2066 				seq_id);
2067 			goto err;
2068 		}
2069 	}
2070 
2071 	panel->vbt.dsi.data = data;
2072 	panel->vbt.dsi.size = seq_size;
2073 	panel->vbt.dsi.seq_version = sequence->version;
2074 
2075 	fixup_mipi_sequences(i915, panel);
2076 
2077 	drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2078 	return;
2079 
2080 err:
2081 	kfree(data);
2082 	memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2083 }
2084 
2085 static void
2086 parse_compression_parameters(struct drm_i915_private *i915)
2087 {
2088 	const struct bdb_compression_parameters *params;
2089 	struct intel_bios_encoder_data *devdata;
2090 	u16 block_size;
2091 	int index;
2092 
2093 	if (i915->display.vbt.version < 198)
2094 		return;
2095 
2096 	params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS);
2097 	if (params) {
2098 		/* Sanity checks */
2099 		if (params->entry_size != sizeof(params->data[0])) {
2100 			drm_dbg_kms(&i915->drm,
2101 				    "VBT: unsupported compression param entry size\n");
2102 			return;
2103 		}
2104 
2105 		block_size = get_blocksize(params);
2106 		if (block_size < sizeof(*params)) {
2107 			drm_dbg_kms(&i915->drm,
2108 				    "VBT: expected 16 compression param entries\n");
2109 			return;
2110 		}
2111 	}
2112 
2113 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2114 		const struct child_device_config *child = &devdata->child;
2115 
2116 		if (!child->compression_enable)
2117 			continue;
2118 
2119 		if (!params) {
2120 			drm_dbg_kms(&i915->drm,
2121 				    "VBT: compression params not available\n");
2122 			continue;
2123 		}
2124 
2125 		if (child->compression_method_cps) {
2126 			drm_dbg_kms(&i915->drm,
2127 				    "VBT: CPS compression not supported\n");
2128 			continue;
2129 		}
2130 
2131 		index = child->compression_structure_index;
2132 
2133 		devdata->dsc = kmemdup(&params->data[index],
2134 				       sizeof(*devdata->dsc), GFP_KERNEL);
2135 	}
2136 }
2137 
2138 static u8 translate_iboost(u8 val)
2139 {
2140 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2141 
2142 	if (val >= ARRAY_SIZE(mapping)) {
2143 		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2144 		return 0;
2145 	}
2146 	return mapping[val];
2147 }
2148 
2149 static const u8 cnp_ddc_pin_map[] = {
2150 	[0] = 0, /* N/A */
2151 	[GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2152 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2153 	[GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2154 	[GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2155 };
2156 
2157 static const u8 icp_ddc_pin_map[] = {
2158 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2159 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2160 	[GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2161 	[GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2162 	[GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2163 	[GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2164 	[GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2165 	[GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2166 	[GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2167 };
2168 
2169 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2170 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2171 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2172 	[GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2173 	[GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2174 };
2175 
2176 static const u8 adls_ddc_pin_map[] = {
2177 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2178 	[GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2179 	[GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2180 	[GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2181 	[GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2182 };
2183 
2184 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2185 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2186 	[GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2187 	[GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2188 };
2189 
2190 static const u8 adlp_ddc_pin_map[] = {
2191 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2192 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2193 	[GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2194 	[GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2195 	[GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2196 	[GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2197 };
2198 
2199 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2200 {
2201 	const u8 *ddc_pin_map;
2202 	int i, n_entries;
2203 
2204 	if (INTEL_PCH_TYPE(i915) >= PCH_LNL || HAS_PCH_MTP(i915) ||
2205 	    IS_ALDERLAKE_P(i915)) {
2206 		ddc_pin_map = adlp_ddc_pin_map;
2207 		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2208 	} else if (IS_ALDERLAKE_S(i915)) {
2209 		ddc_pin_map = adls_ddc_pin_map;
2210 		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2211 	} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2212 		return vbt_pin;
2213 	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2214 		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2215 		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2216 	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2217 		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2218 		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2219 	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2220 		ddc_pin_map = icp_ddc_pin_map;
2221 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2222 	} else if (HAS_PCH_CNP(i915)) {
2223 		ddc_pin_map = cnp_ddc_pin_map;
2224 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2225 	} else {
2226 		/* Assuming direct map */
2227 		return vbt_pin;
2228 	}
2229 
2230 	for (i = 0; i < n_entries; i++) {
2231 		if (ddc_pin_map[i] == vbt_pin)
2232 			return i;
2233 	}
2234 
2235 	drm_dbg_kms(&i915->drm,
2236 		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2237 		    vbt_pin);
2238 	return 0;
2239 }
2240 
2241 static u8 dvo_port_type(u8 dvo_port)
2242 {
2243 	switch (dvo_port) {
2244 	case DVO_PORT_HDMIA:
2245 	case DVO_PORT_HDMIB:
2246 	case DVO_PORT_HDMIC:
2247 	case DVO_PORT_HDMID:
2248 	case DVO_PORT_HDMIE:
2249 	case DVO_PORT_HDMIF:
2250 	case DVO_PORT_HDMIG:
2251 	case DVO_PORT_HDMIH:
2252 	case DVO_PORT_HDMII:
2253 		return DVO_PORT_HDMIA;
2254 	case DVO_PORT_DPA:
2255 	case DVO_PORT_DPB:
2256 	case DVO_PORT_DPC:
2257 	case DVO_PORT_DPD:
2258 	case DVO_PORT_DPE:
2259 	case DVO_PORT_DPF:
2260 	case DVO_PORT_DPG:
2261 	case DVO_PORT_DPH:
2262 	case DVO_PORT_DPI:
2263 		return DVO_PORT_DPA;
2264 	case DVO_PORT_MIPIA:
2265 	case DVO_PORT_MIPIB:
2266 	case DVO_PORT_MIPIC:
2267 	case DVO_PORT_MIPID:
2268 		return DVO_PORT_MIPIA;
2269 	default:
2270 		return dvo_port;
2271 	}
2272 }
2273 
2274 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2275 				    const int port_mapping[][3], u8 dvo_port)
2276 {
2277 	enum port port;
2278 	int i;
2279 
2280 	for (port = PORT_A; port < n_ports; port++) {
2281 		for (i = 0; i < n_dvo; i++) {
2282 			if (port_mapping[port][i] == -1)
2283 				break;
2284 
2285 			if (dvo_port == port_mapping[port][i])
2286 				return port;
2287 		}
2288 	}
2289 
2290 	return PORT_NONE;
2291 }
2292 
2293 static enum port dvo_port_to_port(struct drm_i915_private *i915,
2294 				  u8 dvo_port)
2295 {
2296 	/*
2297 	 * Each DDI port can have more than one value on the "DVO Port" field,
2298 	 * so look for all the possible values for each port.
2299 	 */
2300 	static const int port_mapping[][3] = {
2301 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2302 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2303 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2304 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2305 		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2306 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2307 		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2308 		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2309 		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2310 	};
2311 	/*
2312 	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2313 	 * map to DDI A,B,TC1,TC2 respectively.
2314 	 */
2315 	static const int rkl_port_mapping[][3] = {
2316 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2317 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2318 		[PORT_C] = { -1 },
2319 		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2320 		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2321 	};
2322 	/*
2323 	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2324 	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2325 	 */
2326 	static const int adls_port_mapping[][3] = {
2327 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2328 		[PORT_B] = { -1 },
2329 		[PORT_C] = { -1 },
2330 		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2331 		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2332 		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2333 		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2334 	};
2335 	static const int xelpd_port_mapping[][3] = {
2336 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2337 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2338 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2339 		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2340 		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2341 		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2342 		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2343 		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2344 		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2345 	};
2346 
2347 	if (DISPLAY_VER(i915) >= 13)
2348 		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2349 					  ARRAY_SIZE(xelpd_port_mapping[0]),
2350 					  xelpd_port_mapping,
2351 					  dvo_port);
2352 	else if (IS_ALDERLAKE_S(i915))
2353 		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2354 					  ARRAY_SIZE(adls_port_mapping[0]),
2355 					  adls_port_mapping,
2356 					  dvo_port);
2357 	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2358 		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2359 					  ARRAY_SIZE(rkl_port_mapping[0]),
2360 					  rkl_port_mapping,
2361 					  dvo_port);
2362 	else
2363 		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2364 					  ARRAY_SIZE(port_mapping[0]),
2365 					  port_mapping,
2366 					  dvo_port);
2367 }
2368 
2369 static enum port
2370 dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port)
2371 {
2372 	switch (dvo_port) {
2373 	case DVO_PORT_MIPIA:
2374 		return PORT_A;
2375 	case DVO_PORT_MIPIC:
2376 		if (DISPLAY_VER(i915) >= 11)
2377 			return PORT_B;
2378 		else
2379 			return PORT_C;
2380 	default:
2381 		return PORT_NONE;
2382 	}
2383 }
2384 
2385 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2386 {
2387 	struct drm_i915_private *i915 = devdata->i915;
2388 	const struct child_device_config *child = &devdata->child;
2389 	enum port port;
2390 
2391 	port = dvo_port_to_port(i915, child->dvo_port);
2392 	if (port == PORT_NONE && DISPLAY_VER(i915) >= 11)
2393 		port = dsi_dvo_port_to_port(i915, child->dvo_port);
2394 
2395 	return port;
2396 }
2397 
2398 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2399 {
2400 	switch (vbt_max_link_rate) {
2401 	default:
2402 	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2403 		return 0;
2404 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2405 		return 2000000;
2406 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2407 		return 1350000;
2408 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2409 		return 1000000;
2410 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2411 		return 810000;
2412 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2413 		return 540000;
2414 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2415 		return 270000;
2416 	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2417 		return 162000;
2418 	}
2419 }
2420 
2421 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2422 {
2423 	switch (vbt_max_link_rate) {
2424 	default:
2425 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2426 		return 810000;
2427 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2428 		return 540000;
2429 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2430 		return 270000;
2431 	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2432 		return 162000;
2433 	}
2434 }
2435 
2436 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2437 {
2438 	if (!devdata || devdata->i915->display.vbt.version < 216)
2439 		return 0;
2440 
2441 	if (devdata->i915->display.vbt.version >= 230)
2442 		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2443 	else
2444 		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2445 }
2446 
2447 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2448 {
2449 	if (!devdata || devdata->i915->display.vbt.version < 244)
2450 		return 0;
2451 
2452 	return devdata->child.dp_max_lane_count + 1;
2453 }
2454 
2455 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2456 				 enum port port)
2457 {
2458 	struct drm_i915_private *i915 = devdata->i915;
2459 	bool is_hdmi;
2460 
2461 	if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2462 		return;
2463 
2464 	if (!intel_bios_encoder_supports_dvi(devdata))
2465 		return;
2466 
2467 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2468 
2469 	drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2470 		    is_hdmi ? "/HDMI" : "");
2471 
2472 	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2473 	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2474 }
2475 
2476 static bool
2477 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2478 {
2479 	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2480 }
2481 
2482 bool
2483 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2484 {
2485 	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2486 }
2487 
2488 bool
2489 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2490 {
2491 	return intel_bios_encoder_supports_dvi(devdata) &&
2492 		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2493 }
2494 
2495 bool
2496 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2497 {
2498 	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2499 }
2500 
2501 bool
2502 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2503 {
2504 	return intel_bios_encoder_supports_dp(devdata) &&
2505 		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2506 }
2507 
2508 bool
2509 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2510 {
2511 	return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2512 }
2513 
2514 bool
2515 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2516 {
2517 	return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon;
2518 }
2519 
2520 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
2521 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2522 {
2523 	if (!devdata || devdata->i915->display.vbt.version < 158 ||
2524 	    DISPLAY_VER(devdata->i915) >= 14)
2525 		return -1;
2526 
2527 	return devdata->child.hdmi_level_shifter_value;
2528 }
2529 
2530 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2531 {
2532 	if (!devdata || devdata->i915->display.vbt.version < 204)
2533 		return 0;
2534 
2535 	switch (devdata->child.hdmi_max_data_rate) {
2536 	default:
2537 		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2538 		fallthrough;
2539 	case HDMI_MAX_DATA_RATE_PLATFORM:
2540 		return 0;
2541 	case HDMI_MAX_DATA_RATE_594:
2542 		return 594000;
2543 	case HDMI_MAX_DATA_RATE_340:
2544 		return 340000;
2545 	case HDMI_MAX_DATA_RATE_300:
2546 		return 300000;
2547 	case HDMI_MAX_DATA_RATE_297:
2548 		return 297000;
2549 	case HDMI_MAX_DATA_RATE_165:
2550 		return 165000;
2551 	}
2552 }
2553 
2554 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2555 {
2556 	/*
2557 	 * On some ICL SKUs port F is not present, but broken VBTs mark
2558 	 * the port as present. Only try to initialize port F for the
2559 	 * SKUs that may actually have it.
2560 	 */
2561 	if (port == PORT_F && IS_ICELAKE(i915))
2562 		return IS_ICL_WITH_PORT_F(i915);
2563 
2564 	return true;
2565 }
2566 
2567 static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2568 {
2569 	struct drm_i915_private *i915 = devdata->i915;
2570 	const struct child_device_config *child = &devdata->child;
2571 	bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2572 	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2573 	enum port port;
2574 
2575 	port = intel_bios_encoder_port(devdata);
2576 	if (port == PORT_NONE)
2577 		return;
2578 
2579 	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2580 	is_dp = intel_bios_encoder_supports_dp(devdata);
2581 	is_crt = intel_bios_encoder_supports_crt(devdata);
2582 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2583 	is_edp = intel_bios_encoder_supports_edp(devdata);
2584 	is_dsi = intel_bios_encoder_supports_dsi(devdata);
2585 
2586 	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2587 	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2588 
2589 	drm_dbg_kms(&i915->drm,
2590 		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2591 		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2592 		    intel_bios_encoder_supports_dp_dual_mode(devdata),
2593 		    intel_bios_encoder_is_lspcon(devdata),
2594 		    supports_typec_usb, supports_tbt,
2595 		    devdata->dsc != NULL);
2596 
2597 	hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2598 	if (hdmi_level_shift >= 0) {
2599 		drm_dbg_kms(&i915->drm,
2600 			    "Port %c VBT HDMI level shift: %d\n",
2601 			    port_name(port), hdmi_level_shift);
2602 	}
2603 
2604 	max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2605 	if (max_tmds_clock)
2606 		drm_dbg_kms(&i915->drm,
2607 			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2608 			    port_name(port), max_tmds_clock);
2609 
2610 	/* I_boost config for SKL and above */
2611 	dp_boost_level = intel_bios_dp_boost_level(devdata);
2612 	if (dp_boost_level)
2613 		drm_dbg_kms(&i915->drm,
2614 			    "Port %c VBT (e)DP boost level: %d\n",
2615 			    port_name(port), dp_boost_level);
2616 
2617 	hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2618 	if (hdmi_boost_level)
2619 		drm_dbg_kms(&i915->drm,
2620 			    "Port %c VBT HDMI boost level: %d\n",
2621 			    port_name(port), hdmi_boost_level);
2622 
2623 	dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2624 	if (dp_max_link_rate)
2625 		drm_dbg_kms(&i915->drm,
2626 			    "Port %c VBT DP max link rate: %d\n",
2627 			    port_name(port), dp_max_link_rate);
2628 
2629 	/*
2630 	 * FIXME need to implement support for VBT
2631 	 * vswing/preemph tables should this ever trigger.
2632 	 */
2633 	drm_WARN(&i915->drm, child->use_vbt_vswing,
2634 		 "Port %c asks to use VBT vswing/preemph tables\n",
2635 		 port_name(port));
2636 }
2637 
2638 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2639 {
2640 	struct drm_i915_private *i915 = devdata->i915;
2641 	enum port port;
2642 
2643 	port = intel_bios_encoder_port(devdata);
2644 	if (port == PORT_NONE)
2645 		return;
2646 
2647 	if (!is_port_valid(i915, port)) {
2648 		drm_dbg_kms(&i915->drm,
2649 			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2650 			    port_name(port));
2651 		return;
2652 	}
2653 
2654 	sanitize_device_type(devdata, port);
2655 }
2656 
2657 static bool has_ddi_port_info(struct drm_i915_private *i915)
2658 {
2659 	return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2660 }
2661 
2662 static void parse_ddi_ports(struct drm_i915_private *i915)
2663 {
2664 	struct intel_bios_encoder_data *devdata;
2665 
2666 	if (!has_ddi_port_info(i915))
2667 		return;
2668 
2669 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2670 		parse_ddi_port(devdata);
2671 
2672 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2673 		print_ddi_port(devdata);
2674 }
2675 
2676 static void
2677 parse_general_definitions(struct drm_i915_private *i915)
2678 {
2679 	const struct bdb_general_definitions *defs;
2680 	struct intel_bios_encoder_data *devdata;
2681 	const struct child_device_config *child;
2682 	int i, child_device_num;
2683 	u8 expected_size;
2684 	u16 block_size;
2685 	int bus_pin;
2686 
2687 	defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS);
2688 	if (!defs) {
2689 		drm_dbg_kms(&i915->drm,
2690 			    "No general definition block is found, no devices defined.\n");
2691 		return;
2692 	}
2693 
2694 	block_size = get_blocksize(defs);
2695 	if (block_size < sizeof(*defs)) {
2696 		drm_dbg_kms(&i915->drm,
2697 			    "General definitions block too small (%u)\n",
2698 			    block_size);
2699 		return;
2700 	}
2701 
2702 	bus_pin = defs->crt_ddc_gmbus_pin;
2703 	drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2704 	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2705 		i915->display.vbt.crt_ddc_pin = bus_pin;
2706 
2707 	if (i915->display.vbt.version < 106) {
2708 		expected_size = 22;
2709 	} else if (i915->display.vbt.version < 111) {
2710 		expected_size = 27;
2711 	} else if (i915->display.vbt.version < 195) {
2712 		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2713 	} else if (i915->display.vbt.version == 195) {
2714 		expected_size = 37;
2715 	} else if (i915->display.vbt.version <= 215) {
2716 		expected_size = 38;
2717 	} else if (i915->display.vbt.version <= 250) {
2718 		expected_size = 39;
2719 	} else {
2720 		expected_size = sizeof(*child);
2721 		BUILD_BUG_ON(sizeof(*child) < 39);
2722 		drm_dbg(&i915->drm,
2723 			"Expected child device config size for VBT version %u not known; assuming %u\n",
2724 			i915->display.vbt.version, expected_size);
2725 	}
2726 
2727 	/* Flag an error for unexpected size, but continue anyway. */
2728 	if (defs->child_dev_size != expected_size)
2729 		drm_err(&i915->drm,
2730 			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
2731 			defs->child_dev_size, expected_size, i915->display.vbt.version);
2732 
2733 	/* The legacy sized child device config is the minimum we need. */
2734 	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2735 		drm_dbg_kms(&i915->drm,
2736 			    "Child device config size %u is too small.\n",
2737 			    defs->child_dev_size);
2738 		return;
2739 	}
2740 
2741 	/* get the number of child device */
2742 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2743 
2744 	for (i = 0; i < child_device_num; i++) {
2745 		child = child_device_ptr(defs, i);
2746 		if (!child->device_type)
2747 			continue;
2748 
2749 		drm_dbg_kms(&i915->drm,
2750 			    "Found VBT child device with type 0x%x\n",
2751 			    child->device_type);
2752 
2753 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2754 		if (!devdata)
2755 			break;
2756 
2757 		devdata->i915 = i915;
2758 
2759 		/*
2760 		 * Copy as much as we know (sizeof) and is available
2761 		 * (child_dev_size) of the child device config. Accessing the
2762 		 * data must depend on VBT version.
2763 		 */
2764 		memcpy(&devdata->child, child,
2765 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2766 
2767 		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2768 	}
2769 
2770 	if (list_empty(&i915->display.vbt.display_devices))
2771 		drm_dbg_kms(&i915->drm,
2772 			    "no child dev is parsed from VBT\n");
2773 }
2774 
2775 /* Common defaults which may be overridden by VBT. */
2776 static void
2777 init_vbt_defaults(struct drm_i915_private *i915)
2778 {
2779 	i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2780 
2781 	/* general features */
2782 	i915->display.vbt.int_tv_support = 1;
2783 	i915->display.vbt.int_crt_support = 1;
2784 
2785 	/* driver features */
2786 	i915->display.vbt.int_lvds_support = 1;
2787 
2788 	/* Default to using SSC */
2789 	i915->display.vbt.lvds_use_ssc = 1;
2790 	/*
2791 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2792 	 * clock for LVDS.
2793 	 */
2794 	i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2795 								   !HAS_PCH_SPLIT(i915));
2796 	drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2797 		    i915->display.vbt.lvds_ssc_freq);
2798 }
2799 
2800 /* Common defaults which may be overridden by VBT. */
2801 static void
2802 init_vbt_panel_defaults(struct intel_panel *panel)
2803 {
2804 	/* Default to having backlight */
2805 	panel->vbt.backlight.present = true;
2806 
2807 	/* LFP panel data */
2808 	panel->vbt.lvds_dither = true;
2809 }
2810 
2811 /* Defaults to initialize only if there is no VBT. */
2812 static void
2813 init_vbt_missing_defaults(struct drm_i915_private *i915)
2814 {
2815 	enum port port;
2816 	int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2817 		    BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2818 
2819 	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2820 		return;
2821 
2822 	for_each_port_masked(port, ports) {
2823 		struct intel_bios_encoder_data *devdata;
2824 		struct child_device_config *child;
2825 		enum phy phy = intel_port_to_phy(i915, port);
2826 
2827 		/*
2828 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2829 		 * to detect it.
2830 		 */
2831 		if (intel_phy_is_tc(i915, phy))
2832 			continue;
2833 
2834 		/* Create fake child device config */
2835 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2836 		if (!devdata)
2837 			break;
2838 
2839 		devdata->i915 = i915;
2840 		child = &devdata->child;
2841 
2842 		if (port == PORT_F)
2843 			child->dvo_port = DVO_PORT_HDMIF;
2844 		else if (port == PORT_E)
2845 			child->dvo_port = DVO_PORT_HDMIE;
2846 		else
2847 			child->dvo_port = DVO_PORT_HDMIA + port;
2848 
2849 		if (port != PORT_A && port != PORT_E)
2850 			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2851 
2852 		if (port != PORT_E)
2853 			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2854 
2855 		if (port == PORT_A)
2856 			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2857 
2858 		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2859 
2860 		drm_dbg_kms(&i915->drm,
2861 			    "Generating default VBT child device with type 0x04%x on port %c\n",
2862 			    child->device_type, port_name(port));
2863 	}
2864 
2865 	/* Bypass some minimum baseline VBT version checks */
2866 	i915->display.vbt.version = 155;
2867 }
2868 
2869 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2870 {
2871 	const void *_vbt = vbt;
2872 
2873 	return _vbt + vbt->bdb_offset;
2874 }
2875 
2876 /**
2877  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2878  * @buf:	pointer to a buffer to validate
2879  * @size:	size of the buffer
2880  *
2881  * Returns true on valid VBT.
2882  */
2883 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2884 {
2885 	const struct vbt_header *vbt = buf;
2886 	const struct bdb_header *bdb;
2887 
2888 	if (!vbt)
2889 		return false;
2890 
2891 	if (sizeof(struct vbt_header) > size) {
2892 		DRM_DEBUG_DRIVER("VBT header incomplete\n");
2893 		return false;
2894 	}
2895 
2896 	if (memcmp(vbt->signature, "$VBT", 4)) {
2897 		DRM_DEBUG_DRIVER("VBT invalid signature\n");
2898 		return false;
2899 	}
2900 
2901 	if (vbt->vbt_size > size) {
2902 		DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2903 		return false;
2904 	}
2905 
2906 	size = vbt->vbt_size;
2907 
2908 	if (range_overflows_t(size_t,
2909 			      vbt->bdb_offset,
2910 			      sizeof(struct bdb_header),
2911 			      size)) {
2912 		DRM_DEBUG_DRIVER("BDB header incomplete\n");
2913 		return false;
2914 	}
2915 
2916 	bdb = get_bdb_header(vbt);
2917 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2918 		DRM_DEBUG_DRIVER("BDB incomplete\n");
2919 		return false;
2920 	}
2921 
2922 	return vbt;
2923 }
2924 
2925 static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset)
2926 {
2927 	intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset);
2928 
2929 	return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER);
2930 }
2931 
2932 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2933 {
2934 	u32 count, data, found, store = 0;
2935 	u32 static_region, oprom_offset;
2936 	u32 oprom_size = 0x200000;
2937 	u16 vbt_size;
2938 	u32 *vbt;
2939 
2940 	static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
2941 	static_region &= OPTIONROM_SPI_REGIONID_MASK;
2942 	intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
2943 
2944 	oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
2945 	oprom_offset &= OROM_OFFSET_MASK;
2946 
2947 	for (count = 0; count < oprom_size; count += 4) {
2948 		data = intel_spi_read(&i915->uncore, oprom_offset + count);
2949 		if (data == *((const u32 *)"$VBT")) {
2950 			found = oprom_offset + count;
2951 			break;
2952 		}
2953 	}
2954 
2955 	if (count >= oprom_size)
2956 		goto err_not_found;
2957 
2958 	/* Get VBT size and allocate space for the VBT */
2959 	vbt_size = intel_spi_read(&i915->uncore,
2960 				  found + offsetof(struct vbt_header, vbt_size));
2961 	vbt_size &= 0xffff;
2962 
2963 	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
2964 	if (!vbt)
2965 		goto err_not_found;
2966 
2967 	for (count = 0; count < vbt_size; count += 4)
2968 		*(vbt + store++) = intel_spi_read(&i915->uncore, found + count);
2969 
2970 	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2971 		goto err_free_vbt;
2972 
2973 	drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
2974 
2975 	return (struct vbt_header *)vbt;
2976 
2977 err_free_vbt:
2978 	kfree(vbt);
2979 err_not_found:
2980 	return NULL;
2981 }
2982 
2983 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
2984 {
2985 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
2986 	void __iomem *p = NULL, *oprom;
2987 	struct vbt_header *vbt;
2988 	u16 vbt_size;
2989 	size_t i, size;
2990 
2991 	oprom = pci_map_rom(pdev, &size);
2992 	if (!oprom)
2993 		return NULL;
2994 
2995 	/* Scour memory looking for the VBT signature. */
2996 	for (i = 0; i + 4 < size; i += 4) {
2997 		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
2998 			continue;
2999 
3000 		p = oprom + i;
3001 		size -= i;
3002 		break;
3003 	}
3004 
3005 	if (!p)
3006 		goto err_unmap_oprom;
3007 
3008 	if (sizeof(struct vbt_header) > size) {
3009 		drm_dbg(&i915->drm, "VBT header incomplete\n");
3010 		goto err_unmap_oprom;
3011 	}
3012 
3013 	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3014 	if (vbt_size > size) {
3015 		drm_dbg(&i915->drm,
3016 			"VBT incomplete (vbt_size overflows)\n");
3017 		goto err_unmap_oprom;
3018 	}
3019 
3020 	/* The rest will be validated by intel_bios_is_valid_vbt() */
3021 	vbt = kmalloc(vbt_size, GFP_KERNEL);
3022 	if (!vbt)
3023 		goto err_unmap_oprom;
3024 
3025 	memcpy_fromio(vbt, p, vbt_size);
3026 
3027 	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3028 		goto err_free_vbt;
3029 
3030 	pci_unmap_rom(pdev, oprom);
3031 
3032 	drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3033 
3034 	return vbt;
3035 
3036 err_free_vbt:
3037 	kfree(vbt);
3038 err_unmap_oprom:
3039 	pci_unmap_rom(pdev, oprom);
3040 
3041 	return NULL;
3042 }
3043 
3044 /**
3045  * intel_bios_init - find VBT and initialize settings from the BIOS
3046  * @i915: i915 device instance
3047  *
3048  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3049  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3050  * initialize some defaults if the VBT is not present at all.
3051  */
3052 void intel_bios_init(struct drm_i915_private *i915)
3053 {
3054 	const struct vbt_header *vbt = i915->display.opregion.vbt;
3055 	struct vbt_header *oprom_vbt = NULL;
3056 	const struct bdb_header *bdb;
3057 
3058 	INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3059 	INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3060 
3061 	if (!HAS_DISPLAY(i915)) {
3062 		drm_dbg_kms(&i915->drm,
3063 			    "Skipping VBT init due to disabled display.\n");
3064 		return;
3065 	}
3066 
3067 	init_vbt_defaults(i915);
3068 
3069 	/*
3070 	 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3071 	 * PCI mapping
3072 	 */
3073 	if (!vbt && IS_DGFX(i915)) {
3074 		oprom_vbt = spi_oprom_get_vbt(i915);
3075 		vbt = oprom_vbt;
3076 	}
3077 
3078 	if (!vbt) {
3079 		oprom_vbt = oprom_get_vbt(i915);
3080 		vbt = oprom_vbt;
3081 	}
3082 
3083 	if (!vbt)
3084 		goto out;
3085 
3086 	bdb = get_bdb_header(vbt);
3087 	i915->display.vbt.version = bdb->version;
3088 
3089 	drm_dbg_kms(&i915->drm,
3090 		    "VBT signature \"%.*s\", BDB version %d\n",
3091 		    (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3092 
3093 	init_bdb_blocks(i915, bdb);
3094 
3095 	/* Grab useful general definitions */
3096 	parse_general_features(i915);
3097 	parse_general_definitions(i915);
3098 	parse_driver_features(i915);
3099 
3100 	/* Depends on child device list */
3101 	parse_compression_parameters(i915);
3102 
3103 out:
3104 	if (!vbt) {
3105 		drm_info(&i915->drm,
3106 			 "Failed to find VBIOS tables (VBT)\n");
3107 		init_vbt_missing_defaults(i915);
3108 	}
3109 
3110 	/* Further processing on pre-parsed or generated child device data */
3111 	parse_sdvo_device_mapping(i915);
3112 	parse_ddi_ports(i915);
3113 
3114 	kfree(oprom_vbt);
3115 }
3116 
3117 static void intel_bios_init_panel(struct drm_i915_private *i915,
3118 				  struct intel_panel *panel,
3119 				  const struct intel_bios_encoder_data *devdata,
3120 				  const struct drm_edid *drm_edid,
3121 				  bool use_fallback)
3122 {
3123 	/* already have it? */
3124 	if (panel->vbt.panel_type >= 0) {
3125 		drm_WARN_ON(&i915->drm, !use_fallback);
3126 		return;
3127 	}
3128 
3129 	panel->vbt.panel_type = get_panel_type(i915, devdata,
3130 					       drm_edid, use_fallback);
3131 	if (panel->vbt.panel_type < 0) {
3132 		drm_WARN_ON(&i915->drm, use_fallback);
3133 		return;
3134 	}
3135 
3136 	init_vbt_panel_defaults(panel);
3137 
3138 	parse_panel_options(i915, panel);
3139 	parse_generic_dtd(i915, panel);
3140 	parse_lfp_data(i915, panel);
3141 	parse_lfp_backlight(i915, panel);
3142 	parse_sdvo_panel_data(i915, panel);
3143 	parse_panel_driver_features(i915, panel);
3144 	parse_power_conservation_features(i915, panel);
3145 	parse_edp(i915, panel);
3146 	parse_psr(i915, panel);
3147 	parse_mipi_config(i915, panel);
3148 	parse_mipi_sequence(i915, panel);
3149 }
3150 
3151 void intel_bios_init_panel_early(struct drm_i915_private *i915,
3152 				 struct intel_panel *panel,
3153 				 const struct intel_bios_encoder_data *devdata)
3154 {
3155 	intel_bios_init_panel(i915, panel, devdata, NULL, false);
3156 }
3157 
3158 void intel_bios_init_panel_late(struct drm_i915_private *i915,
3159 				struct intel_panel *panel,
3160 				const struct intel_bios_encoder_data *devdata,
3161 				const struct drm_edid *drm_edid)
3162 {
3163 	intel_bios_init_panel(i915, panel, devdata, drm_edid, true);
3164 }
3165 
3166 /**
3167  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3168  * @i915: i915 device instance
3169  */
3170 void intel_bios_driver_remove(struct drm_i915_private *i915)
3171 {
3172 	struct intel_bios_encoder_data *devdata, *nd;
3173 	struct bdb_block_entry *entry, *ne;
3174 
3175 	list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3176 		list_del(&devdata->node);
3177 		kfree(devdata->dsc);
3178 		kfree(devdata);
3179 	}
3180 
3181 	list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3182 		list_del(&entry->node);
3183 		kfree(entry);
3184 	}
3185 }
3186 
3187 void intel_bios_fini_panel(struct intel_panel *panel)
3188 {
3189 	kfree(panel->vbt.sdvo_lvds_vbt_mode);
3190 	panel->vbt.sdvo_lvds_vbt_mode = NULL;
3191 	kfree(panel->vbt.lfp_lvds_vbt_mode);
3192 	panel->vbt.lfp_lvds_vbt_mode = NULL;
3193 	kfree(panel->vbt.dsi.data);
3194 	panel->vbt.dsi.data = NULL;
3195 	kfree(panel->vbt.dsi.pps);
3196 	panel->vbt.dsi.pps = NULL;
3197 	kfree(panel->vbt.dsi.config);
3198 	panel->vbt.dsi.config = NULL;
3199 	kfree(panel->vbt.dsi.deassert_seq);
3200 	panel->vbt.dsi.deassert_seq = NULL;
3201 }
3202 
3203 /**
3204  * intel_bios_is_tv_present - is integrated TV present in VBT
3205  * @i915: i915 device instance
3206  *
3207  * Return true if TV is present. If no child devices were parsed from VBT,
3208  * assume TV is present.
3209  */
3210 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3211 {
3212 	const struct intel_bios_encoder_data *devdata;
3213 
3214 	if (!i915->display.vbt.int_tv_support)
3215 		return false;
3216 
3217 	if (list_empty(&i915->display.vbt.display_devices))
3218 		return true;
3219 
3220 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3221 		const struct child_device_config *child = &devdata->child;
3222 
3223 		/*
3224 		 * If the device type is not TV, continue.
3225 		 */
3226 		switch (child->device_type) {
3227 		case DEVICE_TYPE_INT_TV:
3228 		case DEVICE_TYPE_TV:
3229 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3230 			break;
3231 		default:
3232 			continue;
3233 		}
3234 		/* Only when the addin_offset is non-zero, it is regarded
3235 		 * as present.
3236 		 */
3237 		if (child->addin_offset)
3238 			return true;
3239 	}
3240 
3241 	return false;
3242 }
3243 
3244 /**
3245  * intel_bios_is_lvds_present - is LVDS present in VBT
3246  * @i915:	i915 device instance
3247  * @i2c_pin:	i2c pin for LVDS if present
3248  *
3249  * Return true if LVDS is present. If no child devices were parsed from VBT,
3250  * assume LVDS is present.
3251  */
3252 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3253 {
3254 	const struct intel_bios_encoder_data *devdata;
3255 
3256 	if (list_empty(&i915->display.vbt.display_devices))
3257 		return true;
3258 
3259 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3260 		const struct child_device_config *child = &devdata->child;
3261 
3262 		/* If the device type is not LFP, continue.
3263 		 * We have to check both the new identifiers as well as the
3264 		 * old for compatibility with some BIOSes.
3265 		 */
3266 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3267 		    child->device_type != DEVICE_TYPE_LFP)
3268 			continue;
3269 
3270 		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3271 			*i2c_pin = child->i2c_pin;
3272 
3273 		/* However, we cannot trust the BIOS writers to populate
3274 		 * the VBT correctly.  Since LVDS requires additional
3275 		 * information from AIM blocks, a non-zero addin offset is
3276 		 * a good indicator that the LVDS is actually present.
3277 		 */
3278 		if (child->addin_offset)
3279 			return true;
3280 
3281 		/* But even then some BIOS writers perform some black magic
3282 		 * and instantiate the device without reference to any
3283 		 * additional data.  Trust that if the VBT was written into
3284 		 * the OpRegion then they have validated the LVDS's existence.
3285 		 */
3286 		if (i915->display.opregion.vbt)
3287 			return true;
3288 	}
3289 
3290 	return false;
3291 }
3292 
3293 /**
3294  * intel_bios_is_port_present - is the specified digital port present
3295  * @i915:	i915 device instance
3296  * @port:	port to check
3297  *
3298  * Return true if the device in %port is present.
3299  */
3300 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3301 {
3302 	const struct intel_bios_encoder_data *devdata;
3303 
3304 	if (WARN_ON(!has_ddi_port_info(i915)))
3305 		return true;
3306 
3307 	if (!is_port_valid(i915, port))
3308 		return false;
3309 
3310 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3311 		const struct child_device_config *child = &devdata->child;
3312 
3313 		if (dvo_port_to_port(i915, child->dvo_port) == port)
3314 			return true;
3315 	}
3316 
3317 	return false;
3318 }
3319 
3320 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3321 {
3322 	const struct child_device_config *child = &devdata->child;
3323 
3324 	if (!intel_bios_encoder_supports_dp(devdata) ||
3325 	    !intel_bios_encoder_supports_hdmi(devdata))
3326 		return false;
3327 
3328 	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3329 		return true;
3330 
3331 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3332 	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3333 	    child->aux_channel != 0)
3334 		return true;
3335 
3336 	return false;
3337 }
3338 
3339 /**
3340  * intel_bios_is_dsi_present - is DSI present in VBT
3341  * @i915:	i915 device instance
3342  * @port:	port for DSI if present
3343  *
3344  * Return true if DSI is present, and return the port in %port.
3345  */
3346 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3347 			       enum port *port)
3348 {
3349 	const struct intel_bios_encoder_data *devdata;
3350 
3351 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3352 		const struct child_device_config *child = &devdata->child;
3353 		u8 dvo_port = child->dvo_port;
3354 
3355 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3356 			continue;
3357 
3358 		if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) {
3359 			drm_dbg_kms(&i915->drm,
3360 				    "VBT has unsupported DSI port %c\n",
3361 				    port_name(dvo_port - DVO_PORT_MIPIA));
3362 			continue;
3363 		}
3364 
3365 		if (port)
3366 			*port = dsi_dvo_port_to_port(i915, dvo_port);
3367 		return true;
3368 	}
3369 
3370 	return false;
3371 }
3372 
3373 static void fill_dsc(struct intel_crtc_state *crtc_state,
3374 		     struct dsc_compression_parameters_entry *dsc,
3375 		     int dsc_max_bpc)
3376 {
3377 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3378 	int bpc = 8;
3379 
3380 	vdsc_cfg->dsc_version_major = dsc->version_major;
3381 	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3382 
3383 	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3384 		bpc = 12;
3385 	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3386 		bpc = 10;
3387 	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3388 		bpc = 8;
3389 	else
3390 		DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
3391 			      dsc_max_bpc);
3392 
3393 	crtc_state->pipe_bpp = bpc * 3;
3394 
3395 	crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
3396 					     VBT_DSC_MAX_BPP(dsc->max_bpp));
3397 
3398 	/*
3399 	 * FIXME: This is ugly, and slice count should take DSC engine
3400 	 * throughput etc. into account.
3401 	 *
3402 	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3403 	 */
3404 	if (dsc->slices_per_line & BIT(2)) {
3405 		crtc_state->dsc.slice_count = 4;
3406 	} else if (dsc->slices_per_line & BIT(1)) {
3407 		crtc_state->dsc.slice_count = 2;
3408 	} else {
3409 		/* FIXME */
3410 		if (!(dsc->slices_per_line & BIT(0)))
3411 			DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
3412 
3413 		crtc_state->dsc.slice_count = 1;
3414 	}
3415 
3416 	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3417 	    crtc_state->dsc.slice_count != 0)
3418 		DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
3419 			      crtc_state->hw.adjusted_mode.crtc_hdisplay,
3420 			      crtc_state->dsc.slice_count);
3421 
3422 	/*
3423 	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3424 	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3425 	 */
3426 	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3427 							    dsc->rc_buffer_size);
3428 
3429 	/* FIXME: DSI spec says bpc + 1 for this one */
3430 	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3431 
3432 	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3433 
3434 	vdsc_cfg->slice_height = dsc->slice_height;
3435 }
3436 
3437 /* FIXME: initially DSI specific */
3438 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3439 			       struct intel_crtc_state *crtc_state,
3440 			       int dsc_max_bpc)
3441 {
3442 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3443 	const struct intel_bios_encoder_data *devdata;
3444 
3445 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3446 		const struct child_device_config *child = &devdata->child;
3447 
3448 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3449 			continue;
3450 
3451 		if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) {
3452 			if (!devdata->dsc)
3453 				return false;
3454 
3455 			if (crtc_state)
3456 				fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3457 
3458 			return true;
3459 		}
3460 	}
3461 
3462 	return false;
3463 }
3464 
3465 static const u8 adlp_aux_ch_map[] = {
3466 	[AUX_CH_A] = DP_AUX_A,
3467 	[AUX_CH_B] = DP_AUX_B,
3468 	[AUX_CH_C] = DP_AUX_C,
3469 	[AUX_CH_D_XELPD] = DP_AUX_D,
3470 	[AUX_CH_E_XELPD] = DP_AUX_E,
3471 	[AUX_CH_USBC1] = DP_AUX_F,
3472 	[AUX_CH_USBC2] = DP_AUX_G,
3473 	[AUX_CH_USBC3] = DP_AUX_H,
3474 	[AUX_CH_USBC4] = DP_AUX_I,
3475 };
3476 
3477 /*
3478  * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3479  * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3480  */
3481 static const u8 adls_aux_ch_map[] = {
3482 	[AUX_CH_A] = DP_AUX_A,
3483 	[AUX_CH_USBC1] = DP_AUX_B,
3484 	[AUX_CH_USBC2] = DP_AUX_C,
3485 	[AUX_CH_USBC3] = DP_AUX_D,
3486 	[AUX_CH_USBC4] = DP_AUX_E,
3487 };
3488 
3489 /*
3490  * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3491  * map to DDI A,B,TC1,TC2 respectively.
3492  */
3493 static const u8 rkl_aux_ch_map[] = {
3494 	[AUX_CH_A] = DP_AUX_A,
3495 	[AUX_CH_B] = DP_AUX_B,
3496 	[AUX_CH_USBC1] = DP_AUX_C,
3497 	[AUX_CH_USBC2] = DP_AUX_D,
3498 };
3499 
3500 static const u8 direct_aux_ch_map[] = {
3501 	[AUX_CH_A] = DP_AUX_A,
3502 	[AUX_CH_B] = DP_AUX_B,
3503 	[AUX_CH_C] = DP_AUX_C,
3504 	[AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3505 	[AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3506 	[AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3507 	[AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3508 	[AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3509 	[AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3510 };
3511 
3512 static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel)
3513 {
3514 	const u8 *aux_ch_map;
3515 	int i, n_entries;
3516 
3517 	if (DISPLAY_VER(i915) >= 13) {
3518 		aux_ch_map = adlp_aux_ch_map;
3519 		n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3520 	} else if (IS_ALDERLAKE_S(i915)) {
3521 		aux_ch_map = adls_aux_ch_map;
3522 		n_entries = ARRAY_SIZE(adls_aux_ch_map);
3523 	} else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) {
3524 		aux_ch_map = rkl_aux_ch_map;
3525 		n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3526 	} else {
3527 		aux_ch_map = direct_aux_ch_map;
3528 		n_entries = ARRAY_SIZE(direct_aux_ch_map);
3529 	}
3530 
3531 	for (i = 0; i < n_entries; i++) {
3532 		if (aux_ch_map[i] == aux_channel)
3533 			return i;
3534 	}
3535 
3536 	drm_dbg_kms(&i915->drm,
3537 		    "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3538 		    aux_channel);
3539 
3540 	return AUX_CH_NONE;
3541 }
3542 
3543 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3544 {
3545 	if (!devdata || !devdata->child.aux_channel)
3546 		return AUX_CH_NONE;
3547 
3548 	return map_aux_ch(devdata->i915, devdata->child.aux_channel);
3549 }
3550 
3551 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3552 {
3553 	struct drm_i915_private *i915;
3554 	u8 aux_channel;
3555 	int count = 0;
3556 
3557 	if (!devdata || !devdata->child.aux_channel)
3558 		return false;
3559 
3560 	i915 = devdata->i915;
3561 	aux_channel = devdata->child.aux_channel;
3562 
3563 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3564 		if (intel_bios_encoder_supports_dp(devdata) &&
3565 		    aux_channel == devdata->child.aux_channel)
3566 			count++;
3567 	}
3568 
3569 	return count > 1;
3570 }
3571 
3572 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3573 {
3574 	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3575 		return 0;
3576 
3577 	return translate_iboost(devdata->child.dp_iboost_level);
3578 }
3579 
3580 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3581 {
3582 	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3583 		return 0;
3584 
3585 	return translate_iboost(devdata->child.hdmi_iboost_level);
3586 }
3587 
3588 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3589 {
3590 	if (!devdata || !devdata->child.ddc_pin)
3591 		return 0;
3592 
3593 	return map_ddc_pin(devdata->i915, devdata->child.ddc_pin);
3594 }
3595 
3596 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3597 {
3598 	return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3599 }
3600 
3601 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3602 {
3603 	return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3604 }
3605 
3606 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3607 {
3608 	return devdata && devdata->child.lane_reversal;
3609 }
3610 
3611 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3612 {
3613 	return devdata && devdata->child.hpd_invert;
3614 }
3615 
3616 const struct intel_bios_encoder_data *
3617 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3618 {
3619 	struct intel_bios_encoder_data *devdata;
3620 
3621 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3622 		if (intel_bios_encoder_port(devdata) == port)
3623 			return devdata;
3624 	}
3625 
3626 	return NULL;
3627 }
3628 
3629 void intel_bios_for_each_encoder(struct drm_i915_private *i915,
3630 				 void (*func)(struct drm_i915_private *i915,
3631 					      const struct intel_bios_encoder_data *devdata))
3632 {
3633 	struct intel_bios_encoder_data *devdata;
3634 
3635 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
3636 		func(i915, devdata);
3637 }
3638