xref: /linux/drivers/gpu/drm/i915/display/intel_bios.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_dp_helper.h>
29 #include <drm/i915_drm.h>
30 
31 #include "display/intel_display.h"
32 #include "display/intel_display_types.h"
33 #include "display/intel_gmbus.h"
34 
35 #include "i915_drv.h"
36 
37 #define _INTEL_BIOS_PRIVATE
38 #include "intel_vbt_defs.h"
39 
40 /**
41  * DOC: Video BIOS Table (VBT)
42  *
43  * The Video BIOS Table, or VBT, provides platform and board specific
44  * configuration information to the driver that is not discoverable or available
45  * through other means. The configuration is mostly related to display
46  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
47  * the PCI ROM.
48  *
49  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
50  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
51  * contain the actual configuration information. The VBT Header, and thus the
52  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
53  * BDB Header. The data blocks are concatenated after the BDB Header. The data
54  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
55  * data. (Block 53, the MIPI Sequence Block is an exception.)
56  *
57  * The driver parses the VBT during load. The relevant information is stored in
58  * driver private data for ease of use, and the actual VBT is not read after
59  * that.
60  */
61 
62 /* Wrapper for VBT child device config */
63 struct display_device_data {
64 	struct child_device_config child;
65 	struct dsc_compression_parameters_entry *dsc;
66 	struct list_head node;
67 };
68 
69 #define	SLAVE_ADDR1	0x70
70 #define	SLAVE_ADDR2	0x72
71 
72 /* Get BDB block size given a pointer to Block ID. */
73 static u32 _get_blocksize(const u8 *block_base)
74 {
75 	/* The MIPI Sequence Block v3+ has a separate size field. */
76 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
77 		return *((const u32 *)(block_base + 4));
78 	else
79 		return *((const u16 *)(block_base + 1));
80 }
81 
82 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
83 static u32 get_blocksize(const void *block_data)
84 {
85 	return _get_blocksize(block_data - 3);
86 }
87 
88 static const void *
89 find_section(const void *_bdb, enum bdb_block_id section_id)
90 {
91 	const struct bdb_header *bdb = _bdb;
92 	const u8 *base = _bdb;
93 	int index = 0;
94 	u32 total, current_size;
95 	enum bdb_block_id current_id;
96 
97 	/* skip to first section */
98 	index += bdb->header_size;
99 	total = bdb->bdb_size;
100 
101 	/* walk the sections looking for section_id */
102 	while (index + 3 < total) {
103 		current_id = *(base + index);
104 		current_size = _get_blocksize(base + index);
105 		index += 3;
106 
107 		if (index + current_size > total)
108 			return NULL;
109 
110 		if (current_id == section_id)
111 			return base + index;
112 
113 		index += current_size;
114 	}
115 
116 	return NULL;
117 }
118 
119 static void
120 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
121 			const struct lvds_dvo_timing *dvo_timing)
122 {
123 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
124 		dvo_timing->hactive_lo;
125 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
126 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
127 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
128 		((dvo_timing->hsync_pulse_width_hi << 8) |
129 			dvo_timing->hsync_pulse_width_lo);
130 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
131 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
132 
133 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
134 		dvo_timing->vactive_lo;
135 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
136 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
137 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
138 		((dvo_timing->vsync_pulse_width_hi << 4) |
139 			dvo_timing->vsync_pulse_width_lo);
140 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
141 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
142 	panel_fixed_mode->clock = dvo_timing->clock * 10;
143 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
144 
145 	if (dvo_timing->hsync_positive)
146 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
147 	else
148 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
149 
150 	if (dvo_timing->vsync_positive)
151 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
152 	else
153 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
154 
155 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
156 		dvo_timing->himage_lo;
157 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
158 		dvo_timing->vimage_lo;
159 
160 	/* Some VBTs have bogus h/vtotal values */
161 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
162 		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
163 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
164 		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
165 
166 	drm_mode_set_name(panel_fixed_mode);
167 }
168 
169 static const struct lvds_dvo_timing *
170 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
171 		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
172 		    int index)
173 {
174 	/*
175 	 * the size of fp_timing varies on the different platform.
176 	 * So calculate the DVO timing relative offset in LVDS data
177 	 * entry to get the DVO timing entry
178 	 */
179 
180 	int lfp_data_size =
181 		lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
182 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
183 	int dvo_timing_offset =
184 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
185 		lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
186 	char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
187 
188 	return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
189 }
190 
191 /* get lvds_fp_timing entry
192  * this function may return NULL if the corresponding entry is invalid
193  */
194 static const struct lvds_fp_timing *
195 get_lvds_fp_timing(const struct bdb_header *bdb,
196 		   const struct bdb_lvds_lfp_data *data,
197 		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
198 		   int index)
199 {
200 	size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
201 	u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
202 	size_t ofs;
203 
204 	if (index >= ARRAY_SIZE(ptrs->ptr))
205 		return NULL;
206 	ofs = ptrs->ptr[index].fp_timing_offset;
207 	if (ofs < data_ofs ||
208 	    ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
209 		return NULL;
210 	return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
211 }
212 
213 /* Parse general panel options */
214 static void
215 parse_panel_options(struct drm_i915_private *dev_priv,
216 		    const struct bdb_header *bdb)
217 {
218 	const struct bdb_lvds_options *lvds_options;
219 	int panel_type;
220 	int drrs_mode;
221 	int ret;
222 
223 	lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
224 	if (!lvds_options)
225 		return;
226 
227 	dev_priv->vbt.lvds_dither = lvds_options->pixel_dither;
228 
229 	ret = intel_opregion_get_panel_type(dev_priv);
230 	if (ret >= 0) {
231 		drm_WARN_ON(&dev_priv->drm, ret > 0xf);
232 		panel_type = ret;
233 		drm_dbg_kms(&dev_priv->drm, "Panel type: %d (OpRegion)\n",
234 			    panel_type);
235 	} else {
236 		if (lvds_options->panel_type > 0xf) {
237 			drm_dbg_kms(&dev_priv->drm,
238 				    "Invalid VBT panel type 0x%x\n",
239 				    lvds_options->panel_type);
240 			return;
241 		}
242 		panel_type = lvds_options->panel_type;
243 		drm_dbg_kms(&dev_priv->drm, "Panel type: %d (VBT)\n",
244 			    panel_type);
245 	}
246 
247 	dev_priv->vbt.panel_type = panel_type;
248 
249 	drrs_mode = (lvds_options->dps_panel_type_bits
250 				>> (panel_type * 2)) & MODE_MASK;
251 	/*
252 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
253 	 * The below piece of code is required to adjust vbt.drrs_type
254 	 * to match the enum drrs_support_type.
255 	 */
256 	switch (drrs_mode) {
257 	case 0:
258 		dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT;
259 		drm_dbg_kms(&dev_priv->drm, "DRRS supported mode is static\n");
260 		break;
261 	case 2:
262 		dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
263 		drm_dbg_kms(&dev_priv->drm,
264 			    "DRRS supported mode is seamless\n");
265 		break;
266 	default:
267 		dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
268 		drm_dbg_kms(&dev_priv->drm,
269 			    "DRRS not supported (VBT input)\n");
270 		break;
271 	}
272 }
273 
274 /* Try to find integrated panel timing data */
275 static void
276 parse_lfp_panel_dtd(struct drm_i915_private *dev_priv,
277 		    const struct bdb_header *bdb)
278 {
279 	const struct bdb_lvds_lfp_data *lvds_lfp_data;
280 	const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
281 	const struct lvds_dvo_timing *panel_dvo_timing;
282 	const struct lvds_fp_timing *fp_timing;
283 	struct drm_display_mode *panel_fixed_mode;
284 	int panel_type = dev_priv->vbt.panel_type;
285 
286 	lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
287 	if (!lvds_lfp_data)
288 		return;
289 
290 	lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
291 	if (!lvds_lfp_data_ptrs)
292 		return;
293 
294 	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
295 					       lvds_lfp_data_ptrs,
296 					       panel_type);
297 
298 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
299 	if (!panel_fixed_mode)
300 		return;
301 
302 	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
303 
304 	dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
305 
306 	drm_dbg_kms(&dev_priv->drm,
307 		    "Found panel mode in BIOS VBT legacy lfp table:\n");
308 	drm_mode_debug_printmodeline(panel_fixed_mode);
309 
310 	fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
311 				       lvds_lfp_data_ptrs,
312 				       panel_type);
313 	if (fp_timing) {
314 		/* check the resolution, just to be sure */
315 		if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
316 		    fp_timing->y_res == panel_fixed_mode->vdisplay) {
317 			dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
318 			drm_dbg_kms(&dev_priv->drm,
319 				    "VBT initial LVDS value %x\n",
320 				    dev_priv->vbt.bios_lvds_val);
321 		}
322 	}
323 }
324 
325 static void
326 parse_generic_dtd(struct drm_i915_private *dev_priv,
327 		  const struct bdb_header *bdb)
328 {
329 	const struct bdb_generic_dtd *generic_dtd;
330 	const struct generic_dtd_entry *dtd;
331 	struct drm_display_mode *panel_fixed_mode;
332 	int num_dtd;
333 
334 	generic_dtd = find_section(bdb, BDB_GENERIC_DTD);
335 	if (!generic_dtd)
336 		return;
337 
338 	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
339 		drm_err(&dev_priv->drm, "GDTD size %u is too small.\n",
340 			generic_dtd->gdtd_size);
341 		return;
342 	} else if (generic_dtd->gdtd_size !=
343 		   sizeof(struct generic_dtd_entry)) {
344 		drm_err(&dev_priv->drm, "Unexpected GDTD size %u\n",
345 			generic_dtd->gdtd_size);
346 		/* DTD has unknown fields, but keep going */
347 	}
348 
349 	num_dtd = (get_blocksize(generic_dtd) -
350 		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
351 	if (dev_priv->vbt.panel_type >= num_dtd) {
352 		drm_err(&dev_priv->drm,
353 			"Panel type %d not found in table of %d DTD's\n",
354 			dev_priv->vbt.panel_type, num_dtd);
355 		return;
356 	}
357 
358 	dtd = &generic_dtd->dtd[dev_priv->vbt.panel_type];
359 
360 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
361 	if (!panel_fixed_mode)
362 		return;
363 
364 	panel_fixed_mode->hdisplay = dtd->hactive;
365 	panel_fixed_mode->hsync_start =
366 		panel_fixed_mode->hdisplay + dtd->hfront_porch;
367 	panel_fixed_mode->hsync_end =
368 		panel_fixed_mode->hsync_start + dtd->hsync;
369 	panel_fixed_mode->htotal =
370 		panel_fixed_mode->hdisplay + dtd->hblank;
371 
372 	panel_fixed_mode->vdisplay = dtd->vactive;
373 	panel_fixed_mode->vsync_start =
374 		panel_fixed_mode->vdisplay + dtd->vfront_porch;
375 	panel_fixed_mode->vsync_end =
376 		panel_fixed_mode->vsync_start + dtd->vsync;
377 	panel_fixed_mode->vtotal =
378 		panel_fixed_mode->vdisplay + dtd->vblank;
379 
380 	panel_fixed_mode->clock = dtd->pixel_clock;
381 	panel_fixed_mode->width_mm = dtd->width_mm;
382 	panel_fixed_mode->height_mm = dtd->height_mm;
383 
384 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
385 	drm_mode_set_name(panel_fixed_mode);
386 
387 	if (dtd->hsync_positive_polarity)
388 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
389 	else
390 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
391 
392 	if (dtd->vsync_positive_polarity)
393 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
394 	else
395 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
396 
397 	drm_dbg_kms(&dev_priv->drm,
398 		    "Found panel mode in BIOS VBT generic dtd table:\n");
399 	drm_mode_debug_printmodeline(panel_fixed_mode);
400 
401 	dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
402 }
403 
404 static void
405 parse_panel_dtd(struct drm_i915_private *dev_priv,
406 		const struct bdb_header *bdb)
407 {
408 	/*
409 	 * Older VBTs provided provided DTD information for internal displays
410 	 * through the "LFP panel DTD" block (42).  As of VBT revision 229,
411 	 * that block is now deprecated and DTD information should be provided
412 	 * via a newer "generic DTD" block (58).  Just to be safe, we'll
413 	 * try the new generic DTD block first on VBT >= 229, but still fall
414 	 * back to trying the old LFP block if that fails.
415 	 */
416 	if (bdb->version >= 229)
417 		parse_generic_dtd(dev_priv, bdb);
418 	if (!dev_priv->vbt.lfp_lvds_vbt_mode)
419 		parse_lfp_panel_dtd(dev_priv, bdb);
420 }
421 
422 static void
423 parse_lfp_backlight(struct drm_i915_private *dev_priv,
424 		    const struct bdb_header *bdb)
425 {
426 	const struct bdb_lfp_backlight_data *backlight_data;
427 	const struct lfp_backlight_data_entry *entry;
428 	int panel_type = dev_priv->vbt.panel_type;
429 
430 	backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
431 	if (!backlight_data)
432 		return;
433 
434 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
435 		drm_dbg_kms(&dev_priv->drm,
436 			    "Unsupported backlight data entry size %u\n",
437 			    backlight_data->entry_size);
438 		return;
439 	}
440 
441 	entry = &backlight_data->data[panel_type];
442 
443 	dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
444 	if (!dev_priv->vbt.backlight.present) {
445 		drm_dbg_kms(&dev_priv->drm,
446 			    "PWM backlight not present in VBT (type %u)\n",
447 			    entry->type);
448 		return;
449 	}
450 
451 	dev_priv->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
452 	if (bdb->version >= 191 &&
453 	    get_blocksize(backlight_data) >= sizeof(*backlight_data)) {
454 		const struct lfp_backlight_control_method *method;
455 
456 		method = &backlight_data->backlight_control[panel_type];
457 		dev_priv->vbt.backlight.type = method->type;
458 		dev_priv->vbt.backlight.controller = method->controller;
459 	}
460 
461 	dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
462 	dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm;
463 	dev_priv->vbt.backlight.min_brightness = entry->min_brightness;
464 	drm_dbg_kms(&dev_priv->drm,
465 		    "VBT backlight PWM modulation frequency %u Hz, "
466 		    "active %s, min brightness %u, level %u, controller %u\n",
467 		    dev_priv->vbt.backlight.pwm_freq_hz,
468 		    dev_priv->vbt.backlight.active_low_pwm ? "low" : "high",
469 		    dev_priv->vbt.backlight.min_brightness,
470 		    backlight_data->level[panel_type],
471 		    dev_priv->vbt.backlight.controller);
472 }
473 
474 /* Try to find sdvo panel data */
475 static void
476 parse_sdvo_panel_data(struct drm_i915_private *dev_priv,
477 		      const struct bdb_header *bdb)
478 {
479 	const struct bdb_sdvo_panel_dtds *dtds;
480 	struct drm_display_mode *panel_fixed_mode;
481 	int index;
482 
483 	index = i915_modparams.vbt_sdvo_panel_type;
484 	if (index == -2) {
485 		drm_dbg_kms(&dev_priv->drm,
486 			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
487 		return;
488 	}
489 
490 	if (index == -1) {
491 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
492 
493 		sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
494 		if (!sdvo_lvds_options)
495 			return;
496 
497 		index = sdvo_lvds_options->panel_type;
498 	}
499 
500 	dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS);
501 	if (!dtds)
502 		return;
503 
504 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
505 	if (!panel_fixed_mode)
506 		return;
507 
508 	fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
509 
510 	dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
511 
512 	drm_dbg_kms(&dev_priv->drm,
513 		    "Found SDVO panel mode in BIOS VBT tables:\n");
514 	drm_mode_debug_printmodeline(panel_fixed_mode);
515 }
516 
517 static int intel_bios_ssc_frequency(struct drm_i915_private *dev_priv,
518 				    bool alternate)
519 {
520 	switch (INTEL_GEN(dev_priv)) {
521 	case 2:
522 		return alternate ? 66667 : 48000;
523 	case 3:
524 	case 4:
525 		return alternate ? 100000 : 96000;
526 	default:
527 		return alternate ? 100000 : 120000;
528 	}
529 }
530 
531 static void
532 parse_general_features(struct drm_i915_private *dev_priv,
533 		       const struct bdb_header *bdb)
534 {
535 	const struct bdb_general_features *general;
536 
537 	general = find_section(bdb, BDB_GENERAL_FEATURES);
538 	if (!general)
539 		return;
540 
541 	dev_priv->vbt.int_tv_support = general->int_tv_support;
542 	/* int_crt_support can't be trusted on earlier platforms */
543 	if (bdb->version >= 155 &&
544 	    (HAS_DDI(dev_priv) || IS_VALLEYVIEW(dev_priv)))
545 		dev_priv->vbt.int_crt_support = general->int_crt_support;
546 	dev_priv->vbt.lvds_use_ssc = general->enable_ssc;
547 	dev_priv->vbt.lvds_ssc_freq =
548 		intel_bios_ssc_frequency(dev_priv, general->ssc_freq);
549 	dev_priv->vbt.display_clock_mode = general->display_clock_mode;
550 	dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
551 	if (bdb->version >= 181) {
552 		dev_priv->vbt.orientation = general->rotate_180 ?
553 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
554 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
555 	} else {
556 		dev_priv->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
557 	}
558 	drm_dbg_kms(&dev_priv->drm,
559 		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
560 		    dev_priv->vbt.int_tv_support,
561 		    dev_priv->vbt.int_crt_support,
562 		    dev_priv->vbt.lvds_use_ssc,
563 		    dev_priv->vbt.lvds_ssc_freq,
564 		    dev_priv->vbt.display_clock_mode,
565 		    dev_priv->vbt.fdi_rx_polarity_inverted);
566 }
567 
568 static const struct child_device_config *
569 child_device_ptr(const struct bdb_general_definitions *defs, int i)
570 {
571 	return (const void *) &defs->devices[i * defs->child_dev_size];
572 }
573 
574 static void
575 parse_sdvo_device_mapping(struct drm_i915_private *dev_priv, u8 bdb_version)
576 {
577 	struct sdvo_device_mapping *mapping;
578 	const struct display_device_data *devdata;
579 	const struct child_device_config *child;
580 	int count = 0;
581 
582 	/*
583 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
584 	 * accurate and doesn't have to be, as long as it's not too strict.
585 	 */
586 	if (!IS_GEN_RANGE(dev_priv, 3, 7)) {
587 		drm_dbg_kms(&dev_priv->drm, "Skipping SDVO device mapping\n");
588 		return;
589 	}
590 
591 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
592 		child = &devdata->child;
593 
594 		if (child->slave_addr != SLAVE_ADDR1 &&
595 		    child->slave_addr != SLAVE_ADDR2) {
596 			/*
597 			 * If the slave address is neither 0x70 nor 0x72,
598 			 * it is not a SDVO device. Skip it.
599 			 */
600 			continue;
601 		}
602 		if (child->dvo_port != DEVICE_PORT_DVOB &&
603 		    child->dvo_port != DEVICE_PORT_DVOC) {
604 			/* skip the incorrect SDVO port */
605 			drm_dbg_kms(&dev_priv->drm,
606 				    "Incorrect SDVO port. Skip it\n");
607 			continue;
608 		}
609 		drm_dbg_kms(&dev_priv->drm,
610 			    "the SDVO device with slave addr %2x is found on"
611 			    " %s port\n",
612 			    child->slave_addr,
613 			    (child->dvo_port == DEVICE_PORT_DVOB) ?
614 			    "SDVOB" : "SDVOC");
615 		mapping = &dev_priv->vbt.sdvo_mappings[child->dvo_port - 1];
616 		if (!mapping->initialized) {
617 			mapping->dvo_port = child->dvo_port;
618 			mapping->slave_addr = child->slave_addr;
619 			mapping->dvo_wiring = child->dvo_wiring;
620 			mapping->ddc_pin = child->ddc_pin;
621 			mapping->i2c_pin = child->i2c_pin;
622 			mapping->initialized = 1;
623 			drm_dbg_kms(&dev_priv->drm,
624 				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
625 				    mapping->dvo_port, mapping->slave_addr,
626 				    mapping->dvo_wiring, mapping->ddc_pin,
627 				    mapping->i2c_pin);
628 		} else {
629 			drm_dbg_kms(&dev_priv->drm,
630 				    "Maybe one SDVO port is shared by "
631 				    "two SDVO device.\n");
632 		}
633 		if (child->slave2_addr) {
634 			/* Maybe this is a SDVO device with multiple inputs */
635 			/* And the mapping info is not added */
636 			drm_dbg_kms(&dev_priv->drm,
637 				    "there exists the slave2_addr. Maybe this"
638 				    " is a SDVO device with multiple inputs.\n");
639 		}
640 		count++;
641 	}
642 
643 	if (!count) {
644 		/* No SDVO device info is found */
645 		drm_dbg_kms(&dev_priv->drm,
646 			    "No SDVO device info is found in VBT\n");
647 	}
648 }
649 
650 static void
651 parse_driver_features(struct drm_i915_private *dev_priv,
652 		      const struct bdb_header *bdb)
653 {
654 	const struct bdb_driver_features *driver;
655 
656 	driver = find_section(bdb, BDB_DRIVER_FEATURES);
657 	if (!driver)
658 		return;
659 
660 	if (INTEL_GEN(dev_priv) >= 5) {
661 		/*
662 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
663 		 * to mean "eDP". The VBT spec doesn't agree with that
664 		 * interpretation, but real world VBTs seem to.
665 		 */
666 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
667 			dev_priv->vbt.int_lvds_support = 0;
668 	} else {
669 		/*
670 		 * FIXME it's not clear which BDB version has the LVDS config
671 		 * bits defined. Revision history in the VBT spec says:
672 		 * "0.92 | Add two definitions for VBT value of LVDS Active
673 		 *  Config (00b and 11b values defined) | 06/13/2005"
674 		 * but does not the specify the BDB version.
675 		 *
676 		 * So far version 134 (on i945gm) is the oldest VBT observed
677 		 * in the wild with the bits correctly populated. Version
678 		 * 108 (on i85x) does not have the bits correctly populated.
679 		 */
680 		if (bdb->version >= 134 &&
681 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
682 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
683 			dev_priv->vbt.int_lvds_support = 0;
684 	}
685 
686 	if (bdb->version < 228) {
687 		drm_dbg_kms(&dev_priv->drm, "DRRS State Enabled:%d\n",
688 			    driver->drrs_enabled);
689 		/*
690 		 * If DRRS is not supported, drrs_type has to be set to 0.
691 		 * This is because, VBT is configured in such a way that
692 		 * static DRRS is 0 and DRRS not supported is represented by
693 		 * driver->drrs_enabled=false
694 		 */
695 		if (!driver->drrs_enabled)
696 			dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
697 
698 		dev_priv->vbt.psr.enable = driver->psr_enabled;
699 	}
700 }
701 
702 static void
703 parse_power_conservation_features(struct drm_i915_private *dev_priv,
704 				  const struct bdb_header *bdb)
705 {
706 	const struct bdb_lfp_power *power;
707 	u8 panel_type = dev_priv->vbt.panel_type;
708 
709 	if (bdb->version < 228)
710 		return;
711 
712 	power = find_section(bdb, BDB_LFP_POWER);
713 	if (!power)
714 		return;
715 
716 	dev_priv->vbt.psr.enable = power->psr & BIT(panel_type);
717 
718 	/*
719 	 * If DRRS is not supported, drrs_type has to be set to 0.
720 	 * This is because, VBT is configured in such a way that
721 	 * static DRRS is 0 and DRRS not supported is represented by
722 	 * power->drrs & BIT(panel_type)=false
723 	 */
724 	if (!(power->drrs & BIT(panel_type)))
725 		dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
726 }
727 
728 static void
729 parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
730 {
731 	const struct bdb_edp *edp;
732 	const struct edp_power_seq *edp_pps;
733 	const struct edp_fast_link_params *edp_link_params;
734 	int panel_type = dev_priv->vbt.panel_type;
735 
736 	edp = find_section(bdb, BDB_EDP);
737 	if (!edp)
738 		return;
739 
740 	switch ((edp->color_depth >> (panel_type * 2)) & 3) {
741 	case EDP_18BPP:
742 		dev_priv->vbt.edp.bpp = 18;
743 		break;
744 	case EDP_24BPP:
745 		dev_priv->vbt.edp.bpp = 24;
746 		break;
747 	case EDP_30BPP:
748 		dev_priv->vbt.edp.bpp = 30;
749 		break;
750 	}
751 
752 	/* Get the eDP sequencing and link info */
753 	edp_pps = &edp->power_seqs[panel_type];
754 	edp_link_params = &edp->fast_link_params[panel_type];
755 
756 	dev_priv->vbt.edp.pps = *edp_pps;
757 
758 	switch (edp_link_params->rate) {
759 	case EDP_RATE_1_62:
760 		dev_priv->vbt.edp.rate = DP_LINK_BW_1_62;
761 		break;
762 	case EDP_RATE_2_7:
763 		dev_priv->vbt.edp.rate = DP_LINK_BW_2_7;
764 		break;
765 	default:
766 		drm_dbg_kms(&dev_priv->drm,
767 			    "VBT has unknown eDP link rate value %u\n",
768 			     edp_link_params->rate);
769 		break;
770 	}
771 
772 	switch (edp_link_params->lanes) {
773 	case EDP_LANE_1:
774 		dev_priv->vbt.edp.lanes = 1;
775 		break;
776 	case EDP_LANE_2:
777 		dev_priv->vbt.edp.lanes = 2;
778 		break;
779 	case EDP_LANE_4:
780 		dev_priv->vbt.edp.lanes = 4;
781 		break;
782 	default:
783 		drm_dbg_kms(&dev_priv->drm,
784 			    "VBT has unknown eDP lane count value %u\n",
785 			    edp_link_params->lanes);
786 		break;
787 	}
788 
789 	switch (edp_link_params->preemphasis) {
790 	case EDP_PREEMPHASIS_NONE:
791 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
792 		break;
793 	case EDP_PREEMPHASIS_3_5dB:
794 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
795 		break;
796 	case EDP_PREEMPHASIS_6dB:
797 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
798 		break;
799 	case EDP_PREEMPHASIS_9_5dB:
800 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
801 		break;
802 	default:
803 		drm_dbg_kms(&dev_priv->drm,
804 			    "VBT has unknown eDP pre-emphasis value %u\n",
805 			    edp_link_params->preemphasis);
806 		break;
807 	}
808 
809 	switch (edp_link_params->vswing) {
810 	case EDP_VSWING_0_4V:
811 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
812 		break;
813 	case EDP_VSWING_0_6V:
814 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
815 		break;
816 	case EDP_VSWING_0_8V:
817 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
818 		break;
819 	case EDP_VSWING_1_2V:
820 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
821 		break;
822 	default:
823 		drm_dbg_kms(&dev_priv->drm,
824 			    "VBT has unknown eDP voltage swing value %u\n",
825 			    edp_link_params->vswing);
826 		break;
827 	}
828 
829 	if (bdb->version >= 173) {
830 		u8 vswing;
831 
832 		/* Don't read from VBT if module parameter has valid value*/
833 		if (i915_modparams.edp_vswing) {
834 			dev_priv->vbt.edp.low_vswing =
835 				i915_modparams.edp_vswing == 1;
836 		} else {
837 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
838 			dev_priv->vbt.edp.low_vswing = vswing == 0;
839 		}
840 	}
841 }
842 
843 static void
844 parse_psr(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
845 {
846 	const struct bdb_psr *psr;
847 	const struct psr_table *psr_table;
848 	int panel_type = dev_priv->vbt.panel_type;
849 
850 	psr = find_section(bdb, BDB_PSR);
851 	if (!psr) {
852 		drm_dbg_kms(&dev_priv->drm, "No PSR BDB found.\n");
853 		return;
854 	}
855 
856 	psr_table = &psr->psr_table[panel_type];
857 
858 	dev_priv->vbt.psr.full_link = psr_table->full_link;
859 	dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
860 
861 	/* Allowed VBT values goes from 0 to 15 */
862 	dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
863 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
864 
865 	switch (psr_table->lines_to_wait) {
866 	case 0:
867 		dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
868 		break;
869 	case 1:
870 		dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
871 		break;
872 	case 2:
873 		dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
874 		break;
875 	case 3:
876 		dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
877 		break;
878 	default:
879 		drm_dbg_kms(&dev_priv->drm,
880 			    "VBT has unknown PSR lines to wait %u\n",
881 			    psr_table->lines_to_wait);
882 		break;
883 	}
884 
885 	/*
886 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
887 	 * Old decimal value is wake up time in multiples of 100 us.
888 	 */
889 	if (bdb->version >= 205 &&
890 	    (IS_GEN9_BC(dev_priv) || IS_GEMINILAKE(dev_priv) ||
891 	     INTEL_GEN(dev_priv) >= 10)) {
892 		switch (psr_table->tp1_wakeup_time) {
893 		case 0:
894 			dev_priv->vbt.psr.tp1_wakeup_time_us = 500;
895 			break;
896 		case 1:
897 			dev_priv->vbt.psr.tp1_wakeup_time_us = 100;
898 			break;
899 		case 3:
900 			dev_priv->vbt.psr.tp1_wakeup_time_us = 0;
901 			break;
902 		default:
903 			drm_dbg_kms(&dev_priv->drm,
904 				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
905 				    psr_table->tp1_wakeup_time);
906 			/* fallthrough */
907 		case 2:
908 			dev_priv->vbt.psr.tp1_wakeup_time_us = 2500;
909 			break;
910 		}
911 
912 		switch (psr_table->tp2_tp3_wakeup_time) {
913 		case 0:
914 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 500;
915 			break;
916 		case 1:
917 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 100;
918 			break;
919 		case 3:
920 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 0;
921 			break;
922 		default:
923 			drm_dbg_kms(&dev_priv->drm,
924 				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
925 				    psr_table->tp2_tp3_wakeup_time);
926 			/* fallthrough */
927 		case 2:
928 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
929 		break;
930 		}
931 	} else {
932 		dev_priv->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
933 		dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
934 	}
935 
936 	if (bdb->version >= 226) {
937 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
938 
939 		wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
940 		switch (wakeup_time) {
941 		case 0:
942 			wakeup_time = 500;
943 			break;
944 		case 1:
945 			wakeup_time = 100;
946 			break;
947 		case 3:
948 			wakeup_time = 50;
949 			break;
950 		default:
951 		case 2:
952 			wakeup_time = 2500;
953 			break;
954 		}
955 		dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
956 	} else {
957 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
958 		dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = dev_priv->vbt.psr.tp2_tp3_wakeup_time_us;
959 	}
960 }
961 
962 static void parse_dsi_backlight_ports(struct drm_i915_private *dev_priv,
963 				      u16 version, enum port port)
964 {
965 	if (!dev_priv->vbt.dsi.config->dual_link || version < 197) {
966 		dev_priv->vbt.dsi.bl_ports = BIT(port);
967 		if (dev_priv->vbt.dsi.config->cabc_supported)
968 			dev_priv->vbt.dsi.cabc_ports = BIT(port);
969 
970 		return;
971 	}
972 
973 	switch (dev_priv->vbt.dsi.config->dl_dcs_backlight_ports) {
974 	case DL_DCS_PORT_A:
975 		dev_priv->vbt.dsi.bl_ports = BIT(PORT_A);
976 		break;
977 	case DL_DCS_PORT_C:
978 		dev_priv->vbt.dsi.bl_ports = BIT(PORT_C);
979 		break;
980 	default:
981 	case DL_DCS_PORT_A_AND_C:
982 		dev_priv->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
983 		break;
984 	}
985 
986 	if (!dev_priv->vbt.dsi.config->cabc_supported)
987 		return;
988 
989 	switch (dev_priv->vbt.dsi.config->dl_dcs_cabc_ports) {
990 	case DL_DCS_PORT_A:
991 		dev_priv->vbt.dsi.cabc_ports = BIT(PORT_A);
992 		break;
993 	case DL_DCS_PORT_C:
994 		dev_priv->vbt.dsi.cabc_ports = BIT(PORT_C);
995 		break;
996 	default:
997 	case DL_DCS_PORT_A_AND_C:
998 		dev_priv->vbt.dsi.cabc_ports =
999 					BIT(PORT_A) | BIT(PORT_C);
1000 		break;
1001 	}
1002 }
1003 
1004 static void
1005 parse_mipi_config(struct drm_i915_private *dev_priv,
1006 		  const struct bdb_header *bdb)
1007 {
1008 	const struct bdb_mipi_config *start;
1009 	const struct mipi_config *config;
1010 	const struct mipi_pps_data *pps;
1011 	int panel_type = dev_priv->vbt.panel_type;
1012 	enum port port;
1013 
1014 	/* parse MIPI blocks only if LFP type is MIPI */
1015 	if (!intel_bios_is_dsi_present(dev_priv, &port))
1016 		return;
1017 
1018 	/* Initialize this to undefined indicating no generic MIPI support */
1019 	dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1020 
1021 	/* Block #40 is already parsed and panel_fixed_mode is
1022 	 * stored in dev_priv->lfp_lvds_vbt_mode
1023 	 * resuse this when needed
1024 	 */
1025 
1026 	/* Parse #52 for panel index used from panel_type already
1027 	 * parsed
1028 	 */
1029 	start = find_section(bdb, BDB_MIPI_CONFIG);
1030 	if (!start) {
1031 		drm_dbg_kms(&dev_priv->drm, "No MIPI config BDB found");
1032 		return;
1033 	}
1034 
1035 	drm_dbg(&dev_priv->drm, "Found MIPI Config block, panel index = %d\n",
1036 		panel_type);
1037 
1038 	/*
1039 	 * get hold of the correct configuration block and pps data as per
1040 	 * the panel_type as index
1041 	 */
1042 	config = &start->config[panel_type];
1043 	pps = &start->pps[panel_type];
1044 
1045 	/* store as of now full data. Trim when we realise all is not needed */
1046 	dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1047 	if (!dev_priv->vbt.dsi.config)
1048 		return;
1049 
1050 	dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1051 	if (!dev_priv->vbt.dsi.pps) {
1052 		kfree(dev_priv->vbt.dsi.config);
1053 		return;
1054 	}
1055 
1056 	parse_dsi_backlight_ports(dev_priv, bdb->version, port);
1057 
1058 	/* FIXME is the 90 vs. 270 correct? */
1059 	switch (config->rotation) {
1060 	case ENABLE_ROTATION_0:
1061 		/*
1062 		 * Most (all?) VBTs claim 0 degrees despite having
1063 		 * an upside down panel, thus we do not trust this.
1064 		 */
1065 		dev_priv->vbt.dsi.orientation =
1066 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1067 		break;
1068 	case ENABLE_ROTATION_90:
1069 		dev_priv->vbt.dsi.orientation =
1070 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1071 		break;
1072 	case ENABLE_ROTATION_180:
1073 		dev_priv->vbt.dsi.orientation =
1074 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1075 		break;
1076 	case ENABLE_ROTATION_270:
1077 		dev_priv->vbt.dsi.orientation =
1078 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1079 		break;
1080 	}
1081 
1082 	/* We have mandatory mipi config blocks. Initialize as generic panel */
1083 	dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1084 }
1085 
1086 /* Find the sequence block and size for the given panel. */
1087 static const u8 *
1088 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1089 			  u16 panel_id, u32 *seq_size)
1090 {
1091 	u32 total = get_blocksize(sequence);
1092 	const u8 *data = &sequence->data[0];
1093 	u8 current_id;
1094 	u32 current_size;
1095 	int header_size = sequence->version >= 3 ? 5 : 3;
1096 	int index = 0;
1097 	int i;
1098 
1099 	/* skip new block size */
1100 	if (sequence->version >= 3)
1101 		data += 4;
1102 
1103 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1104 		if (index + header_size > total) {
1105 			DRM_ERROR("Invalid sequence block (header)\n");
1106 			return NULL;
1107 		}
1108 
1109 		current_id = *(data + index);
1110 		if (sequence->version >= 3)
1111 			current_size = *((const u32 *)(data + index + 1));
1112 		else
1113 			current_size = *((const u16 *)(data + index + 1));
1114 
1115 		index += header_size;
1116 
1117 		if (index + current_size > total) {
1118 			DRM_ERROR("Invalid sequence block\n");
1119 			return NULL;
1120 		}
1121 
1122 		if (current_id == panel_id) {
1123 			*seq_size = current_size;
1124 			return data + index;
1125 		}
1126 
1127 		index += current_size;
1128 	}
1129 
1130 	DRM_ERROR("Sequence block detected but no valid configuration\n");
1131 
1132 	return NULL;
1133 }
1134 
1135 static int goto_next_sequence(const u8 *data, int index, int total)
1136 {
1137 	u16 len;
1138 
1139 	/* Skip Sequence Byte. */
1140 	for (index = index + 1; index < total; index += len) {
1141 		u8 operation_byte = *(data + index);
1142 		index++;
1143 
1144 		switch (operation_byte) {
1145 		case MIPI_SEQ_ELEM_END:
1146 			return index;
1147 		case MIPI_SEQ_ELEM_SEND_PKT:
1148 			if (index + 4 > total)
1149 				return 0;
1150 
1151 			len = *((const u16 *)(data + index + 2)) + 4;
1152 			break;
1153 		case MIPI_SEQ_ELEM_DELAY:
1154 			len = 4;
1155 			break;
1156 		case MIPI_SEQ_ELEM_GPIO:
1157 			len = 2;
1158 			break;
1159 		case MIPI_SEQ_ELEM_I2C:
1160 			if (index + 7 > total)
1161 				return 0;
1162 			len = *(data + index + 6) + 7;
1163 			break;
1164 		default:
1165 			DRM_ERROR("Unknown operation byte\n");
1166 			return 0;
1167 		}
1168 	}
1169 
1170 	return 0;
1171 }
1172 
1173 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1174 {
1175 	int seq_end;
1176 	u16 len;
1177 	u32 size_of_sequence;
1178 
1179 	/*
1180 	 * Could skip sequence based on Size of Sequence alone, but also do some
1181 	 * checking on the structure.
1182 	 */
1183 	if (total < 5) {
1184 		DRM_ERROR("Too small sequence size\n");
1185 		return 0;
1186 	}
1187 
1188 	/* Skip Sequence Byte. */
1189 	index++;
1190 
1191 	/*
1192 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1193 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1194 	 * byte.
1195 	 */
1196 	size_of_sequence = *((const u32 *)(data + index));
1197 	index += 4;
1198 
1199 	seq_end = index + size_of_sequence;
1200 	if (seq_end > total) {
1201 		DRM_ERROR("Invalid sequence size\n");
1202 		return 0;
1203 	}
1204 
1205 	for (; index < total; index += len) {
1206 		u8 operation_byte = *(data + index);
1207 		index++;
1208 
1209 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1210 			if (index != seq_end) {
1211 				DRM_ERROR("Invalid element structure\n");
1212 				return 0;
1213 			}
1214 			return index;
1215 		}
1216 
1217 		len = *(data + index);
1218 		index++;
1219 
1220 		/*
1221 		 * FIXME: Would be nice to check elements like for v1/v2 in
1222 		 * goto_next_sequence() above.
1223 		 */
1224 		switch (operation_byte) {
1225 		case MIPI_SEQ_ELEM_SEND_PKT:
1226 		case MIPI_SEQ_ELEM_DELAY:
1227 		case MIPI_SEQ_ELEM_GPIO:
1228 		case MIPI_SEQ_ELEM_I2C:
1229 		case MIPI_SEQ_ELEM_SPI:
1230 		case MIPI_SEQ_ELEM_PMIC:
1231 			break;
1232 		default:
1233 			DRM_ERROR("Unknown operation byte %u\n",
1234 				  operation_byte);
1235 			break;
1236 		}
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 /*
1243  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1244  * skip all delay + gpio operands and stop at the first DSI packet op.
1245  */
1246 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *dev_priv)
1247 {
1248 	const u8 *data = dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1249 	int index, len;
1250 
1251 	if (drm_WARN_ON(&dev_priv->drm,
1252 			!data || dev_priv->vbt.dsi.seq_version != 1))
1253 		return 0;
1254 
1255 	/* index = 1 to skip sequence byte */
1256 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1257 		switch (data[index]) {
1258 		case MIPI_SEQ_ELEM_SEND_PKT:
1259 			return index == 1 ? 0 : index;
1260 		case MIPI_SEQ_ELEM_DELAY:
1261 			len = 5; /* 1 byte for operand + uint32 */
1262 			break;
1263 		case MIPI_SEQ_ELEM_GPIO:
1264 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1265 			break;
1266 		default:
1267 			return 0;
1268 		}
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 /*
1275  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1276  * The deassert must be done before calling intel_dsi_device_ready, so for
1277  * these devices we split the init OTP sequence into a deassert sequence and
1278  * the actual init OTP part.
1279  */
1280 static void fixup_mipi_sequences(struct drm_i915_private *dev_priv)
1281 {
1282 	u8 *init_otp;
1283 	int len;
1284 
1285 	/* Limit this to VLV for now. */
1286 	if (!IS_VALLEYVIEW(dev_priv))
1287 		return;
1288 
1289 	/* Limit this to v1 vid-mode sequences */
1290 	if (dev_priv->vbt.dsi.config->is_cmd_mode ||
1291 	    dev_priv->vbt.dsi.seq_version != 1)
1292 		return;
1293 
1294 	/* Only do this if there are otp and assert seqs and no deassert seq */
1295 	if (!dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1296 	    !dev_priv->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1297 	    dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1298 		return;
1299 
1300 	/* The deassert-sequence ends at the first DSI packet */
1301 	len = get_init_otp_deassert_fragment_len(dev_priv);
1302 	if (!len)
1303 		return;
1304 
1305 	drm_dbg_kms(&dev_priv->drm,
1306 		    "Using init OTP fragment to deassert reset\n");
1307 
1308 	/* Copy the fragment, update seq byte and terminate it */
1309 	init_otp = (u8 *)dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1310 	dev_priv->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1311 	if (!dev_priv->vbt.dsi.deassert_seq)
1312 		return;
1313 	dev_priv->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1314 	dev_priv->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1315 	/* Use the copy for deassert */
1316 	dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1317 		dev_priv->vbt.dsi.deassert_seq;
1318 	/* Replace the last byte of the fragment with init OTP seq byte */
1319 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1320 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1321 	dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1322 }
1323 
1324 static void
1325 parse_mipi_sequence(struct drm_i915_private *dev_priv,
1326 		    const struct bdb_header *bdb)
1327 {
1328 	int panel_type = dev_priv->vbt.panel_type;
1329 	const struct bdb_mipi_sequence *sequence;
1330 	const u8 *seq_data;
1331 	u32 seq_size;
1332 	u8 *data;
1333 	int index = 0;
1334 
1335 	/* Only our generic panel driver uses the sequence block. */
1336 	if (dev_priv->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1337 		return;
1338 
1339 	sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
1340 	if (!sequence) {
1341 		drm_dbg_kms(&dev_priv->drm,
1342 			    "No MIPI Sequence found, parsing complete\n");
1343 		return;
1344 	}
1345 
1346 	/* Fail gracefully for forward incompatible sequence block. */
1347 	if (sequence->version >= 4) {
1348 		drm_err(&dev_priv->drm,
1349 			"Unable to parse MIPI Sequence Block v%u\n",
1350 			sequence->version);
1351 		return;
1352 	}
1353 
1354 	drm_dbg(&dev_priv->drm, "Found MIPI sequence block v%u\n",
1355 		sequence->version);
1356 
1357 	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1358 	if (!seq_data)
1359 		return;
1360 
1361 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1362 	if (!data)
1363 		return;
1364 
1365 	/* Parse the sequences, store pointers to each sequence. */
1366 	for (;;) {
1367 		u8 seq_id = *(data + index);
1368 		if (seq_id == MIPI_SEQ_END)
1369 			break;
1370 
1371 		if (seq_id >= MIPI_SEQ_MAX) {
1372 			drm_err(&dev_priv->drm, "Unknown sequence %u\n",
1373 				seq_id);
1374 			goto err;
1375 		}
1376 
1377 		/* Log about presence of sequences we won't run. */
1378 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1379 			drm_dbg_kms(&dev_priv->drm,
1380 				    "Unsupported sequence %u\n", seq_id);
1381 
1382 		dev_priv->vbt.dsi.sequence[seq_id] = data + index;
1383 
1384 		if (sequence->version >= 3)
1385 			index = goto_next_sequence_v3(data, index, seq_size);
1386 		else
1387 			index = goto_next_sequence(data, index, seq_size);
1388 		if (!index) {
1389 			drm_err(&dev_priv->drm, "Invalid sequence %u\n",
1390 				seq_id);
1391 			goto err;
1392 		}
1393 	}
1394 
1395 	dev_priv->vbt.dsi.data = data;
1396 	dev_priv->vbt.dsi.size = seq_size;
1397 	dev_priv->vbt.dsi.seq_version = sequence->version;
1398 
1399 	fixup_mipi_sequences(dev_priv);
1400 
1401 	drm_dbg(&dev_priv->drm, "MIPI related VBT parsing complete\n");
1402 	return;
1403 
1404 err:
1405 	kfree(data);
1406 	memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence));
1407 }
1408 
1409 static void
1410 parse_compression_parameters(struct drm_i915_private *i915,
1411 			     const struct bdb_header *bdb)
1412 {
1413 	const struct bdb_compression_parameters *params;
1414 	struct display_device_data *devdata;
1415 	const struct child_device_config *child;
1416 	u16 block_size;
1417 	int index;
1418 
1419 	if (bdb->version < 198)
1420 		return;
1421 
1422 	params = find_section(bdb, BDB_COMPRESSION_PARAMETERS);
1423 	if (params) {
1424 		/* Sanity checks */
1425 		if (params->entry_size != sizeof(params->data[0])) {
1426 			drm_dbg_kms(&i915->drm,
1427 				    "VBT: unsupported compression param entry size\n");
1428 			return;
1429 		}
1430 
1431 		block_size = get_blocksize(params);
1432 		if (block_size < sizeof(*params)) {
1433 			drm_dbg_kms(&i915->drm,
1434 				    "VBT: expected 16 compression param entries\n");
1435 			return;
1436 		}
1437 	}
1438 
1439 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
1440 		child = &devdata->child;
1441 
1442 		if (!child->compression_enable)
1443 			continue;
1444 
1445 		if (!params) {
1446 			drm_dbg_kms(&i915->drm,
1447 				    "VBT: compression params not available\n");
1448 			continue;
1449 		}
1450 
1451 		if (child->compression_method_cps) {
1452 			drm_dbg_kms(&i915->drm,
1453 				    "VBT: CPS compression not supported\n");
1454 			continue;
1455 		}
1456 
1457 		index = child->compression_structure_index;
1458 
1459 		devdata->dsc = kmemdup(&params->data[index],
1460 				       sizeof(*devdata->dsc), GFP_KERNEL);
1461 	}
1462 }
1463 
1464 static u8 translate_iboost(u8 val)
1465 {
1466 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1467 
1468 	if (val >= ARRAY_SIZE(mapping)) {
1469 		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1470 		return 0;
1471 	}
1472 	return mapping[val];
1473 }
1474 
1475 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
1476 {
1477 	const struct ddi_vbt_port_info *info;
1478 	enum port port;
1479 
1480 	for_each_port(port) {
1481 		info = &i915->vbt.ddi_port_info[port];
1482 
1483 		if (info->child && ddc_pin == info->alternate_ddc_pin)
1484 			return port;
1485 	}
1486 
1487 	return PORT_NONE;
1488 }
1489 
1490 static void sanitize_ddc_pin(struct drm_i915_private *dev_priv,
1491 			     enum port port)
1492 {
1493 	struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1494 	enum port p;
1495 
1496 	if (!info->alternate_ddc_pin)
1497 		return;
1498 
1499 	p = get_port_by_ddc_pin(dev_priv, info->alternate_ddc_pin);
1500 	if (p != PORT_NONE) {
1501 		drm_dbg_kms(&dev_priv->drm,
1502 			    "port %c trying to use the same DDC pin (0x%x) as port %c, "
1503 			    "disabling port %c DVI/HDMI support\n",
1504 			    port_name(port), info->alternate_ddc_pin,
1505 			    port_name(p), port_name(p));
1506 
1507 		/*
1508 		 * If we have multiple ports supposedly sharing the
1509 		 * pin, then dvi/hdmi couldn't exist on the shared
1510 		 * port. Otherwise they share the same ddc bin and
1511 		 * system couldn't communicate with them separately.
1512 		 *
1513 		 * Give inverse child device order the priority,
1514 		 * last one wins. Yes, there are real machines
1515 		 * (eg. Asrock B250M-HDV) where VBT has both
1516 		 * port A and port E with the same AUX ch and
1517 		 * we must pick port E :(
1518 		 */
1519 		info = &dev_priv->vbt.ddi_port_info[p];
1520 
1521 		info->supports_dvi = false;
1522 		info->supports_hdmi = false;
1523 		info->alternate_ddc_pin = 0;
1524 	}
1525 }
1526 
1527 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
1528 {
1529 	const struct ddi_vbt_port_info *info;
1530 	enum port port;
1531 
1532 	for_each_port(port) {
1533 		info = &i915->vbt.ddi_port_info[port];
1534 
1535 		if (info->child && aux_ch == info->alternate_aux_channel)
1536 			return port;
1537 	}
1538 
1539 	return PORT_NONE;
1540 }
1541 
1542 static void sanitize_aux_ch(struct drm_i915_private *dev_priv,
1543 			    enum port port)
1544 {
1545 	struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1546 	enum port p;
1547 
1548 	if (!info->alternate_aux_channel)
1549 		return;
1550 
1551 	p = get_port_by_aux_ch(dev_priv, info->alternate_aux_channel);
1552 	if (p != PORT_NONE) {
1553 		drm_dbg_kms(&dev_priv->drm,
1554 			    "port %c trying to use the same AUX CH (0x%x) as port %c, "
1555 			    "disabling port %c DP support\n",
1556 			    port_name(port), info->alternate_aux_channel,
1557 			    port_name(p), port_name(p));
1558 
1559 		/*
1560 		 * If we have multiple ports supposedlt sharing the
1561 		 * aux channel, then DP couldn't exist on the shared
1562 		 * port. Otherwise they share the same aux channel
1563 		 * and system couldn't communicate with them separately.
1564 		 *
1565 		 * Give inverse child device order the priority,
1566 		 * last one wins. Yes, there are real machines
1567 		 * (eg. Asrock B250M-HDV) where VBT has both
1568 		 * port A and port E with the same AUX ch and
1569 		 * we must pick port E :(
1570 		 */
1571 		info = &dev_priv->vbt.ddi_port_info[p];
1572 
1573 		info->supports_dp = false;
1574 		info->alternate_aux_channel = 0;
1575 	}
1576 }
1577 
1578 static const u8 cnp_ddc_pin_map[] = {
1579 	[0] = 0, /* N/A */
1580 	[DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1581 	[DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1582 	[DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1583 	[DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1584 };
1585 
1586 static const u8 icp_ddc_pin_map[] = {
1587 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1588 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1589 	[TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
1590 	[ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1591 	[ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1592 	[ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1593 	[ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1594 	[TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
1595 	[TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
1596 };
1597 
1598 static u8 map_ddc_pin(struct drm_i915_private *dev_priv, u8 vbt_pin)
1599 {
1600 	const u8 *ddc_pin_map;
1601 	int n_entries;
1602 
1603 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) {
1604 		ddc_pin_map = icp_ddc_pin_map;
1605 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
1606 	} else if (HAS_PCH_CNP(dev_priv)) {
1607 		ddc_pin_map = cnp_ddc_pin_map;
1608 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
1609 	} else {
1610 		/* Assuming direct map */
1611 		return vbt_pin;
1612 	}
1613 
1614 	if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
1615 		return ddc_pin_map[vbt_pin];
1616 
1617 	drm_dbg_kms(&dev_priv->drm,
1618 		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
1619 		    vbt_pin);
1620 	return 0;
1621 }
1622 
1623 static enum port dvo_port_to_port(u8 dvo_port)
1624 {
1625 	/*
1626 	 * Each DDI port can have more than one value on the "DVO Port" field,
1627 	 * so look for all the possible values for each port.
1628 	 */
1629 	static const int dvo_ports[][3] = {
1630 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1},
1631 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1},
1632 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1},
1633 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1},
1634 		[PORT_E] = { DVO_PORT_CRT, DVO_PORT_HDMIE, DVO_PORT_DPE},
1635 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1},
1636 		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1},
1637 	};
1638 	enum port port;
1639 	int i;
1640 
1641 	for (port = PORT_A; port < ARRAY_SIZE(dvo_ports); port++) {
1642 		for (i = 0; i < ARRAY_SIZE(dvo_ports[port]); i++) {
1643 			if (dvo_ports[port][i] == -1)
1644 				break;
1645 
1646 			if (dvo_port == dvo_ports[port][i])
1647 				return port;
1648 		}
1649 	}
1650 
1651 	return PORT_NONE;
1652 }
1653 
1654 static void parse_ddi_port(struct drm_i915_private *dev_priv,
1655 			   struct display_device_data *devdata,
1656 			   u8 bdb_version)
1657 {
1658 	const struct child_device_config *child = &devdata->child;
1659 	struct ddi_vbt_port_info *info;
1660 	bool is_dvi, is_hdmi, is_dp, is_edp, is_crt;
1661 	enum port port;
1662 
1663 	port = dvo_port_to_port(child->dvo_port);
1664 	if (port == PORT_NONE)
1665 		return;
1666 
1667 	info = &dev_priv->vbt.ddi_port_info[port];
1668 
1669 	if (info->child) {
1670 		drm_dbg_kms(&dev_priv->drm,
1671 			    "More than one child device for port %c in VBT, using the first.\n",
1672 			    port_name(port));
1673 		return;
1674 	}
1675 
1676 	is_dvi = child->device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1677 	is_dp = child->device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1678 	is_crt = child->device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1679 	is_hdmi = is_dvi && (child->device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1680 	is_edp = is_dp && (child->device_type & DEVICE_TYPE_INTERNAL_CONNECTOR);
1681 
1682 	if (port == PORT_A && is_dvi && INTEL_GEN(dev_priv) < 12) {
1683 		drm_dbg_kms(&dev_priv->drm,
1684 			    "VBT claims port A supports DVI%s, ignoring\n",
1685 			    is_hdmi ? "/HDMI" : "");
1686 		is_dvi = false;
1687 		is_hdmi = false;
1688 	}
1689 
1690 	info->supports_dvi = is_dvi;
1691 	info->supports_hdmi = is_hdmi;
1692 	info->supports_dp = is_dp;
1693 	info->supports_edp = is_edp;
1694 
1695 	if (bdb_version >= 195)
1696 		info->supports_typec_usb = child->dp_usb_type_c;
1697 
1698 	if (bdb_version >= 209)
1699 		info->supports_tbt = child->tbt;
1700 
1701 	drm_dbg_kms(&dev_priv->drm,
1702 		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
1703 		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
1704 		    HAS_LSPCON(dev_priv) && child->lspcon,
1705 		    info->supports_typec_usb, info->supports_tbt,
1706 		    devdata->dsc != NULL);
1707 
1708 	if (is_dvi) {
1709 		u8 ddc_pin;
1710 
1711 		ddc_pin = map_ddc_pin(dev_priv, child->ddc_pin);
1712 		if (intel_gmbus_is_valid_pin(dev_priv, ddc_pin)) {
1713 			info->alternate_ddc_pin = ddc_pin;
1714 			sanitize_ddc_pin(dev_priv, port);
1715 		} else {
1716 			drm_dbg_kms(&dev_priv->drm,
1717 				    "Port %c has invalid DDC pin %d, "
1718 				    "sticking to defaults\n",
1719 				    port_name(port), ddc_pin);
1720 		}
1721 	}
1722 
1723 	if (is_dp) {
1724 		info->alternate_aux_channel = child->aux_channel;
1725 
1726 		sanitize_aux_ch(dev_priv, port);
1727 	}
1728 
1729 	if (bdb_version >= 158) {
1730 		/* The VBT HDMI level shift values match the table we have. */
1731 		u8 hdmi_level_shift = child->hdmi_level_shifter_value;
1732 		drm_dbg_kms(&dev_priv->drm,
1733 			    "VBT HDMI level shift for port %c: %d\n",
1734 			    port_name(port),
1735 			    hdmi_level_shift);
1736 		info->hdmi_level_shift = hdmi_level_shift;
1737 		info->hdmi_level_shift_set = true;
1738 	}
1739 
1740 	if (bdb_version >= 204) {
1741 		int max_tmds_clock;
1742 
1743 		switch (child->hdmi_max_data_rate) {
1744 		default:
1745 			MISSING_CASE(child->hdmi_max_data_rate);
1746 			/* fall through */
1747 		case HDMI_MAX_DATA_RATE_PLATFORM:
1748 			max_tmds_clock = 0;
1749 			break;
1750 		case HDMI_MAX_DATA_RATE_297:
1751 			max_tmds_clock = 297000;
1752 			break;
1753 		case HDMI_MAX_DATA_RATE_165:
1754 			max_tmds_clock = 165000;
1755 			break;
1756 		}
1757 
1758 		if (max_tmds_clock)
1759 			drm_dbg_kms(&dev_priv->drm,
1760 				    "VBT HDMI max TMDS clock for port %c: %d kHz\n",
1761 				    port_name(port), max_tmds_clock);
1762 		info->max_tmds_clock = max_tmds_clock;
1763 	}
1764 
1765 	/* Parse the I_boost config for SKL and above */
1766 	if (bdb_version >= 196 && child->iboost) {
1767 		info->dp_boost_level = translate_iboost(child->dp_iboost_level);
1768 		drm_dbg_kms(&dev_priv->drm,
1769 			    "VBT (e)DP boost level for port %c: %d\n",
1770 			    port_name(port), info->dp_boost_level);
1771 		info->hdmi_boost_level = translate_iboost(child->hdmi_iboost_level);
1772 		drm_dbg_kms(&dev_priv->drm,
1773 			    "VBT HDMI boost level for port %c: %d\n",
1774 			    port_name(port), info->hdmi_boost_level);
1775 	}
1776 
1777 	/* DP max link rate for CNL+ */
1778 	if (bdb_version >= 216) {
1779 		switch (child->dp_max_link_rate) {
1780 		default:
1781 		case VBT_DP_MAX_LINK_RATE_HBR3:
1782 			info->dp_max_link_rate = 810000;
1783 			break;
1784 		case VBT_DP_MAX_LINK_RATE_HBR2:
1785 			info->dp_max_link_rate = 540000;
1786 			break;
1787 		case VBT_DP_MAX_LINK_RATE_HBR:
1788 			info->dp_max_link_rate = 270000;
1789 			break;
1790 		case VBT_DP_MAX_LINK_RATE_LBR:
1791 			info->dp_max_link_rate = 162000;
1792 			break;
1793 		}
1794 		drm_dbg_kms(&dev_priv->drm,
1795 			    "VBT DP max link rate for port %c: %d\n",
1796 			    port_name(port), info->dp_max_link_rate);
1797 	}
1798 
1799 	info->child = child;
1800 }
1801 
1802 static void parse_ddi_ports(struct drm_i915_private *dev_priv, u8 bdb_version)
1803 {
1804 	struct display_device_data *devdata;
1805 
1806 	if (!HAS_DDI(dev_priv) && !IS_CHERRYVIEW(dev_priv))
1807 		return;
1808 
1809 	if (bdb_version < 155)
1810 		return;
1811 
1812 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node)
1813 		parse_ddi_port(dev_priv, devdata, bdb_version);
1814 }
1815 
1816 static void
1817 parse_general_definitions(struct drm_i915_private *dev_priv,
1818 			  const struct bdb_header *bdb)
1819 {
1820 	const struct bdb_general_definitions *defs;
1821 	struct display_device_data *devdata;
1822 	const struct child_device_config *child;
1823 	int i, child_device_num;
1824 	u8 expected_size;
1825 	u16 block_size;
1826 	int bus_pin;
1827 
1828 	defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
1829 	if (!defs) {
1830 		drm_dbg_kms(&dev_priv->drm,
1831 			    "No general definition block is found, no devices defined.\n");
1832 		return;
1833 	}
1834 
1835 	block_size = get_blocksize(defs);
1836 	if (block_size < sizeof(*defs)) {
1837 		drm_dbg_kms(&dev_priv->drm,
1838 			    "General definitions block too small (%u)\n",
1839 			    block_size);
1840 		return;
1841 	}
1842 
1843 	bus_pin = defs->crt_ddc_gmbus_pin;
1844 	drm_dbg_kms(&dev_priv->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
1845 	if (intel_gmbus_is_valid_pin(dev_priv, bus_pin))
1846 		dev_priv->vbt.crt_ddc_pin = bus_pin;
1847 
1848 	if (bdb->version < 106) {
1849 		expected_size = 22;
1850 	} else if (bdb->version < 111) {
1851 		expected_size = 27;
1852 	} else if (bdb->version < 195) {
1853 		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
1854 	} else if (bdb->version == 195) {
1855 		expected_size = 37;
1856 	} else if (bdb->version <= 215) {
1857 		expected_size = 38;
1858 	} else if (bdb->version <= 229) {
1859 		expected_size = 39;
1860 	} else {
1861 		expected_size = sizeof(*child);
1862 		BUILD_BUG_ON(sizeof(*child) < 39);
1863 		drm_dbg(&dev_priv->drm,
1864 			"Expected child device config size for VBT version %u not known; assuming %u\n",
1865 			bdb->version, expected_size);
1866 	}
1867 
1868 	/* Flag an error for unexpected size, but continue anyway. */
1869 	if (defs->child_dev_size != expected_size)
1870 		drm_err(&dev_priv->drm,
1871 			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
1872 			defs->child_dev_size, expected_size, bdb->version);
1873 
1874 	/* The legacy sized child device config is the minimum we need. */
1875 	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
1876 		drm_dbg_kms(&dev_priv->drm,
1877 			    "Child device config size %u is too small.\n",
1878 			    defs->child_dev_size);
1879 		return;
1880 	}
1881 
1882 	/* get the number of child device */
1883 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
1884 
1885 	for (i = 0; i < child_device_num; i++) {
1886 		child = child_device_ptr(defs, i);
1887 		if (!child->device_type)
1888 			continue;
1889 
1890 		drm_dbg_kms(&dev_priv->drm,
1891 			    "Found VBT child device with type 0x%x\n",
1892 			    child->device_type);
1893 
1894 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
1895 		if (!devdata)
1896 			break;
1897 
1898 		/*
1899 		 * Copy as much as we know (sizeof) and is available
1900 		 * (child_dev_size) of the child device config. Accessing the
1901 		 * data must depend on VBT version.
1902 		 */
1903 		memcpy(&devdata->child, child,
1904 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
1905 
1906 		list_add_tail(&devdata->node, &dev_priv->vbt.display_devices);
1907 	}
1908 
1909 	if (list_empty(&dev_priv->vbt.display_devices))
1910 		drm_dbg_kms(&dev_priv->drm,
1911 			    "no child dev is parsed from VBT\n");
1912 }
1913 
1914 /* Common defaults which may be overridden by VBT. */
1915 static void
1916 init_vbt_defaults(struct drm_i915_private *dev_priv)
1917 {
1918 	dev_priv->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
1919 
1920 	/* Default to having backlight */
1921 	dev_priv->vbt.backlight.present = true;
1922 
1923 	/* LFP panel data */
1924 	dev_priv->vbt.lvds_dither = 1;
1925 
1926 	/* SDVO panel data */
1927 	dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1928 
1929 	/* general features */
1930 	dev_priv->vbt.int_tv_support = 1;
1931 	dev_priv->vbt.int_crt_support = 1;
1932 
1933 	/* driver features */
1934 	dev_priv->vbt.int_lvds_support = 1;
1935 
1936 	/* Default to using SSC */
1937 	dev_priv->vbt.lvds_use_ssc = 1;
1938 	/*
1939 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
1940 	 * clock for LVDS.
1941 	 */
1942 	dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev_priv,
1943 			!HAS_PCH_SPLIT(dev_priv));
1944 	drm_dbg_kms(&dev_priv->drm, "Set default to SSC at %d kHz\n",
1945 		    dev_priv->vbt.lvds_ssc_freq);
1946 }
1947 
1948 /* Defaults to initialize only if there is no VBT. */
1949 static void
1950 init_vbt_missing_defaults(struct drm_i915_private *dev_priv)
1951 {
1952 	enum port port;
1953 
1954 	for_each_port(port) {
1955 		struct ddi_vbt_port_info *info =
1956 			&dev_priv->vbt.ddi_port_info[port];
1957 		enum phy phy = intel_port_to_phy(dev_priv, port);
1958 
1959 		/*
1960 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
1961 		 * to detect it.
1962 		 */
1963 		if (intel_phy_is_tc(dev_priv, phy))
1964 			continue;
1965 
1966 		info->supports_dvi = (port != PORT_A && port != PORT_E);
1967 		info->supports_hdmi = info->supports_dvi;
1968 		info->supports_dp = (port != PORT_E);
1969 		info->supports_edp = (port == PORT_A);
1970 	}
1971 }
1972 
1973 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
1974 {
1975 	const void *_vbt = vbt;
1976 
1977 	return _vbt + vbt->bdb_offset;
1978 }
1979 
1980 /**
1981  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
1982  * @buf:	pointer to a buffer to validate
1983  * @size:	size of the buffer
1984  *
1985  * Returns true on valid VBT.
1986  */
1987 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
1988 {
1989 	const struct vbt_header *vbt = buf;
1990 	const struct bdb_header *bdb;
1991 
1992 	if (!vbt)
1993 		return false;
1994 
1995 	if (sizeof(struct vbt_header) > size) {
1996 		DRM_DEBUG_DRIVER("VBT header incomplete\n");
1997 		return false;
1998 	}
1999 
2000 	if (memcmp(vbt->signature, "$VBT", 4)) {
2001 		DRM_DEBUG_DRIVER("VBT invalid signature\n");
2002 		return false;
2003 	}
2004 
2005 	if (vbt->vbt_size > size) {
2006 		DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2007 		return false;
2008 	}
2009 
2010 	size = vbt->vbt_size;
2011 
2012 	if (range_overflows_t(size_t,
2013 			      vbt->bdb_offset,
2014 			      sizeof(struct bdb_header),
2015 			      size)) {
2016 		DRM_DEBUG_DRIVER("BDB header incomplete\n");
2017 		return false;
2018 	}
2019 
2020 	bdb = get_bdb_header(vbt);
2021 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2022 		DRM_DEBUG_DRIVER("BDB incomplete\n");
2023 		return false;
2024 	}
2025 
2026 	return vbt;
2027 }
2028 
2029 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *dev_priv)
2030 {
2031 	struct pci_dev *pdev = dev_priv->drm.pdev;
2032 	void __iomem *p = NULL, *oprom;
2033 	struct vbt_header *vbt;
2034 	u16 vbt_size;
2035 	size_t i, size;
2036 
2037 	oprom = pci_map_rom(pdev, &size);
2038 	if (!oprom)
2039 		return NULL;
2040 
2041 	/* Scour memory looking for the VBT signature. */
2042 	for (i = 0; i + 4 < size; i += 4) {
2043 		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
2044 			continue;
2045 
2046 		p = oprom + i;
2047 		size -= i;
2048 		break;
2049 	}
2050 
2051 	if (!p)
2052 		goto err_unmap_oprom;
2053 
2054 	if (sizeof(struct vbt_header) > size) {
2055 		drm_dbg(&dev_priv->drm, "VBT header incomplete\n");
2056 		goto err_unmap_oprom;
2057 	}
2058 
2059 	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
2060 	if (vbt_size > size) {
2061 		drm_dbg(&dev_priv->drm,
2062 			"VBT incomplete (vbt_size overflows)\n");
2063 		goto err_unmap_oprom;
2064 	}
2065 
2066 	/* The rest will be validated by intel_bios_is_valid_vbt() */
2067 	vbt = kmalloc(vbt_size, GFP_KERNEL);
2068 	if (!vbt)
2069 		goto err_unmap_oprom;
2070 
2071 	memcpy_fromio(vbt, p, vbt_size);
2072 
2073 	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2074 		goto err_free_vbt;
2075 
2076 	pci_unmap_rom(pdev, oprom);
2077 
2078 	return vbt;
2079 
2080 err_free_vbt:
2081 	kfree(vbt);
2082 err_unmap_oprom:
2083 	pci_unmap_rom(pdev, oprom);
2084 
2085 	return NULL;
2086 }
2087 
2088 /**
2089  * intel_bios_init - find VBT and initialize settings from the BIOS
2090  * @dev_priv: i915 device instance
2091  *
2092  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
2093  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
2094  * initialize some defaults if the VBT is not present at all.
2095  */
2096 void intel_bios_init(struct drm_i915_private *dev_priv)
2097 {
2098 	const struct vbt_header *vbt = dev_priv->opregion.vbt;
2099 	struct vbt_header *oprom_vbt = NULL;
2100 	const struct bdb_header *bdb;
2101 
2102 	INIT_LIST_HEAD(&dev_priv->vbt.display_devices);
2103 
2104 	if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) {
2105 		drm_dbg_kms(&dev_priv->drm,
2106 			    "Skipping VBT init due to disabled display.\n");
2107 		return;
2108 	}
2109 
2110 	init_vbt_defaults(dev_priv);
2111 
2112 	/* If the OpRegion does not have VBT, look in PCI ROM. */
2113 	if (!vbt) {
2114 		oprom_vbt = oprom_get_vbt(dev_priv);
2115 		if (!oprom_vbt)
2116 			goto out;
2117 
2118 		vbt = oprom_vbt;
2119 
2120 		drm_dbg_kms(&dev_priv->drm, "Found valid VBT in PCI ROM\n");
2121 	}
2122 
2123 	bdb = get_bdb_header(vbt);
2124 
2125 	drm_dbg_kms(&dev_priv->drm,
2126 		    "VBT signature \"%.*s\", BDB version %d\n",
2127 		    (int)sizeof(vbt->signature), vbt->signature, bdb->version);
2128 
2129 	/* Grab useful general definitions */
2130 	parse_general_features(dev_priv, bdb);
2131 	parse_general_definitions(dev_priv, bdb);
2132 	parse_panel_options(dev_priv, bdb);
2133 	parse_panel_dtd(dev_priv, bdb);
2134 	parse_lfp_backlight(dev_priv, bdb);
2135 	parse_sdvo_panel_data(dev_priv, bdb);
2136 	parse_driver_features(dev_priv, bdb);
2137 	parse_power_conservation_features(dev_priv, bdb);
2138 	parse_edp(dev_priv, bdb);
2139 	parse_psr(dev_priv, bdb);
2140 	parse_mipi_config(dev_priv, bdb);
2141 	parse_mipi_sequence(dev_priv, bdb);
2142 
2143 	/* Depends on child device list */
2144 	parse_compression_parameters(dev_priv, bdb);
2145 
2146 	/* Further processing on pre-parsed data */
2147 	parse_sdvo_device_mapping(dev_priv, bdb->version);
2148 	parse_ddi_ports(dev_priv, bdb->version);
2149 
2150 out:
2151 	if (!vbt) {
2152 		drm_info(&dev_priv->drm,
2153 			 "Failed to find VBIOS tables (VBT)\n");
2154 		init_vbt_missing_defaults(dev_priv);
2155 	}
2156 
2157 	kfree(oprom_vbt);
2158 }
2159 
2160 /**
2161  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
2162  * @dev_priv: i915 device instance
2163  */
2164 void intel_bios_driver_remove(struct drm_i915_private *dev_priv)
2165 {
2166 	struct display_device_data *devdata, *n;
2167 
2168 	list_for_each_entry_safe(devdata, n, &dev_priv->vbt.display_devices, node) {
2169 		list_del(&devdata->node);
2170 		kfree(devdata->dsc);
2171 		kfree(devdata);
2172 	}
2173 
2174 	kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
2175 	dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
2176 	kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
2177 	dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
2178 	kfree(dev_priv->vbt.dsi.data);
2179 	dev_priv->vbt.dsi.data = NULL;
2180 	kfree(dev_priv->vbt.dsi.pps);
2181 	dev_priv->vbt.dsi.pps = NULL;
2182 	kfree(dev_priv->vbt.dsi.config);
2183 	dev_priv->vbt.dsi.config = NULL;
2184 	kfree(dev_priv->vbt.dsi.deassert_seq);
2185 	dev_priv->vbt.dsi.deassert_seq = NULL;
2186 }
2187 
2188 /**
2189  * intel_bios_is_tv_present - is integrated TV present in VBT
2190  * @dev_priv:	i915 device instance
2191  *
2192  * Return true if TV is present. If no child devices were parsed from VBT,
2193  * assume TV is present.
2194  */
2195 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv)
2196 {
2197 	const struct display_device_data *devdata;
2198 	const struct child_device_config *child;
2199 
2200 	if (!dev_priv->vbt.int_tv_support)
2201 		return false;
2202 
2203 	if (list_empty(&dev_priv->vbt.display_devices))
2204 		return true;
2205 
2206 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2207 		child = &devdata->child;
2208 
2209 		/*
2210 		 * If the device type is not TV, continue.
2211 		 */
2212 		switch (child->device_type) {
2213 		case DEVICE_TYPE_INT_TV:
2214 		case DEVICE_TYPE_TV:
2215 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
2216 			break;
2217 		default:
2218 			continue;
2219 		}
2220 		/* Only when the addin_offset is non-zero, it is regarded
2221 		 * as present.
2222 		 */
2223 		if (child->addin_offset)
2224 			return true;
2225 	}
2226 
2227 	return false;
2228 }
2229 
2230 /**
2231  * intel_bios_is_lvds_present - is LVDS present in VBT
2232  * @dev_priv:	i915 device instance
2233  * @i2c_pin:	i2c pin for LVDS if present
2234  *
2235  * Return true if LVDS is present. If no child devices were parsed from VBT,
2236  * assume LVDS is present.
2237  */
2238 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin)
2239 {
2240 	const struct display_device_data *devdata;
2241 	const struct child_device_config *child;
2242 
2243 	if (list_empty(&dev_priv->vbt.display_devices))
2244 		return true;
2245 
2246 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2247 		child = &devdata->child;
2248 
2249 		/* If the device type is not LFP, continue.
2250 		 * We have to check both the new identifiers as well as the
2251 		 * old for compatibility with some BIOSes.
2252 		 */
2253 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
2254 		    child->device_type != DEVICE_TYPE_LFP)
2255 			continue;
2256 
2257 		if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin))
2258 			*i2c_pin = child->i2c_pin;
2259 
2260 		/* However, we cannot trust the BIOS writers to populate
2261 		 * the VBT correctly.  Since LVDS requires additional
2262 		 * information from AIM blocks, a non-zero addin offset is
2263 		 * a good indicator that the LVDS is actually present.
2264 		 */
2265 		if (child->addin_offset)
2266 			return true;
2267 
2268 		/* But even then some BIOS writers perform some black magic
2269 		 * and instantiate the device without reference to any
2270 		 * additional data.  Trust that if the VBT was written into
2271 		 * the OpRegion then they have validated the LVDS's existence.
2272 		 */
2273 		if (dev_priv->opregion.vbt)
2274 			return true;
2275 	}
2276 
2277 	return false;
2278 }
2279 
2280 /**
2281  * intel_bios_is_port_present - is the specified digital port present
2282  * @dev_priv:	i915 device instance
2283  * @port:	port to check
2284  *
2285  * Return true if the device in %port is present.
2286  */
2287 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port)
2288 {
2289 	const struct display_device_data *devdata;
2290 	const struct child_device_config *child;
2291 	static const struct {
2292 		u16 dp, hdmi;
2293 	} port_mapping[] = {
2294 		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2295 		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2296 		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2297 		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2298 		[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2299 	};
2300 
2301 	if (HAS_DDI(dev_priv)) {
2302 		const struct ddi_vbt_port_info *port_info =
2303 			&dev_priv->vbt.ddi_port_info[port];
2304 
2305 		return port_info->child;
2306 	}
2307 
2308 	/* FIXME maybe deal with port A as well? */
2309 	if (drm_WARN_ON(&dev_priv->drm,
2310 			port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
2311 		return false;
2312 
2313 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2314 		child = &devdata->child;
2315 
2316 		if ((child->dvo_port == port_mapping[port].dp ||
2317 		     child->dvo_port == port_mapping[port].hdmi) &&
2318 		    (child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
2319 					   DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
2320 			return true;
2321 	}
2322 
2323 	return false;
2324 }
2325 
2326 /**
2327  * intel_bios_is_port_edp - is the device in given port eDP
2328  * @dev_priv:	i915 device instance
2329  * @port:	port to check
2330  *
2331  * Return true if the device in %port is eDP.
2332  */
2333 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
2334 {
2335 	const struct display_device_data *devdata;
2336 	const struct child_device_config *child;
2337 	static const short port_mapping[] = {
2338 		[PORT_B] = DVO_PORT_DPB,
2339 		[PORT_C] = DVO_PORT_DPC,
2340 		[PORT_D] = DVO_PORT_DPD,
2341 		[PORT_E] = DVO_PORT_DPE,
2342 		[PORT_F] = DVO_PORT_DPF,
2343 	};
2344 
2345 	if (HAS_DDI(dev_priv))
2346 		return dev_priv->vbt.ddi_port_info[port].supports_edp;
2347 
2348 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2349 		child = &devdata->child;
2350 
2351 		if (child->dvo_port == port_mapping[port] &&
2352 		    (child->device_type & DEVICE_TYPE_eDP_BITS) ==
2353 		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
2354 			return true;
2355 	}
2356 
2357 	return false;
2358 }
2359 
2360 static bool child_dev_is_dp_dual_mode(const struct child_device_config *child,
2361 				      enum port port)
2362 {
2363 	static const struct {
2364 		u16 dp, hdmi;
2365 	} port_mapping[] = {
2366 		/*
2367 		 * Buggy VBTs may declare DP ports as having
2368 		 * HDMI type dvo_port :( So let's check both.
2369 		 */
2370 		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2371 		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2372 		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2373 		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2374 		[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2375 	};
2376 
2377 	if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
2378 		return false;
2379 
2380 	if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
2381 	    (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
2382 		return false;
2383 
2384 	if (child->dvo_port == port_mapping[port].dp)
2385 		return true;
2386 
2387 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
2388 	if (child->dvo_port == port_mapping[port].hdmi &&
2389 	    child->aux_channel != 0)
2390 		return true;
2391 
2392 	return false;
2393 }
2394 
2395 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv,
2396 				     enum port port)
2397 {
2398 	const struct display_device_data *devdata;
2399 
2400 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2401 		if (child_dev_is_dp_dual_mode(&devdata->child, port))
2402 			return true;
2403 	}
2404 
2405 	return false;
2406 }
2407 
2408 /**
2409  * intel_bios_is_dsi_present - is DSI present in VBT
2410  * @dev_priv:	i915 device instance
2411  * @port:	port for DSI if present
2412  *
2413  * Return true if DSI is present, and return the port in %port.
2414  */
2415 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv,
2416 			       enum port *port)
2417 {
2418 	const struct display_device_data *devdata;
2419 	const struct child_device_config *child;
2420 	u8 dvo_port;
2421 
2422 	list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2423 		child = &devdata->child;
2424 
2425 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2426 			continue;
2427 
2428 		dvo_port = child->dvo_port;
2429 
2430 		if (dvo_port == DVO_PORT_MIPIA ||
2431 		    (dvo_port == DVO_PORT_MIPIB && INTEL_GEN(dev_priv) >= 11) ||
2432 		    (dvo_port == DVO_PORT_MIPIC && INTEL_GEN(dev_priv) < 11)) {
2433 			if (port)
2434 				*port = dvo_port - DVO_PORT_MIPIA;
2435 			return true;
2436 		} else if (dvo_port == DVO_PORT_MIPIB ||
2437 			   dvo_port == DVO_PORT_MIPIC ||
2438 			   dvo_port == DVO_PORT_MIPID) {
2439 			drm_dbg_kms(&dev_priv->drm,
2440 				    "VBT has unsupported DSI port %c\n",
2441 				    port_name(dvo_port - DVO_PORT_MIPIA));
2442 		}
2443 	}
2444 
2445 	return false;
2446 }
2447 
2448 static void fill_dsc(struct intel_crtc_state *crtc_state,
2449 		     struct dsc_compression_parameters_entry *dsc,
2450 		     int dsc_max_bpc)
2451 {
2452 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2453 	int bpc = 8;
2454 
2455 	vdsc_cfg->dsc_version_major = dsc->version_major;
2456 	vdsc_cfg->dsc_version_minor = dsc->version_minor;
2457 
2458 	if (dsc->support_12bpc && dsc_max_bpc >= 12)
2459 		bpc = 12;
2460 	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
2461 		bpc = 10;
2462 	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
2463 		bpc = 8;
2464 	else
2465 		DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
2466 			      dsc_max_bpc);
2467 
2468 	crtc_state->pipe_bpp = bpc * 3;
2469 
2470 	crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
2471 					     VBT_DSC_MAX_BPP(dsc->max_bpp));
2472 
2473 	/*
2474 	 * FIXME: This is ugly, and slice count should take DSC engine
2475 	 * throughput etc. into account.
2476 	 *
2477 	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
2478 	 */
2479 	if (dsc->slices_per_line & BIT(2)) {
2480 		crtc_state->dsc.slice_count = 4;
2481 	} else if (dsc->slices_per_line & BIT(1)) {
2482 		crtc_state->dsc.slice_count = 2;
2483 	} else {
2484 		/* FIXME */
2485 		if (!(dsc->slices_per_line & BIT(0)))
2486 			DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
2487 
2488 		crtc_state->dsc.slice_count = 1;
2489 	}
2490 
2491 	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
2492 	    crtc_state->dsc.slice_count != 0)
2493 		DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
2494 			      crtc_state->hw.adjusted_mode.crtc_hdisplay,
2495 			      crtc_state->dsc.slice_count);
2496 
2497 	/*
2498 	 * FIXME: Use VBT rc_buffer_block_size and rc_buffer_size for the
2499 	 * implementation specific physical rate buffer size. Currently we use
2500 	 * the required rate buffer model size calculated in
2501 	 * drm_dsc_compute_rc_parameters() according to VESA DSC Annex E.
2502 	 *
2503 	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
2504 	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. The DP DSC
2505 	 * implementation should also use the DPCD (or perhaps VBT for eDP)
2506 	 * provided value for the buffer size.
2507 	 */
2508 
2509 	/* FIXME: DSI spec says bpc + 1 for this one */
2510 	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
2511 
2512 	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
2513 
2514 	vdsc_cfg->slice_height = dsc->slice_height;
2515 }
2516 
2517 /* FIXME: initially DSI specific */
2518 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
2519 			       struct intel_crtc_state *crtc_state,
2520 			       int dsc_max_bpc)
2521 {
2522 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2523 	const struct display_device_data *devdata;
2524 	const struct child_device_config *child;
2525 
2526 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2527 		child = &devdata->child;
2528 
2529 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2530 			continue;
2531 
2532 		if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
2533 			if (!devdata->dsc)
2534 				return false;
2535 
2536 			if (crtc_state)
2537 				fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
2538 
2539 			return true;
2540 		}
2541 	}
2542 
2543 	return false;
2544 }
2545 
2546 /**
2547  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
2548  * @i915:	i915 device instance
2549  * @port:	port to check
2550  *
2551  * Return true if HPD should be inverted for %port.
2552  */
2553 bool
2554 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
2555 				enum port port)
2556 {
2557 	const struct child_device_config *child =
2558 		i915->vbt.ddi_port_info[port].child;
2559 
2560 	if (drm_WARN_ON_ONCE(&i915->drm, !IS_GEN9_LP(i915)))
2561 		return false;
2562 
2563 	return child && child->hpd_invert;
2564 }
2565 
2566 /**
2567  * intel_bios_is_lspcon_present - if LSPCON is attached on %port
2568  * @i915:	i915 device instance
2569  * @port:	port to check
2570  *
2571  * Return true if LSPCON is present on this port
2572  */
2573 bool
2574 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
2575 			     enum port port)
2576 {
2577 	const struct child_device_config *child =
2578 		i915->vbt.ddi_port_info[port].child;
2579 
2580 	return HAS_LSPCON(i915) && child && child->lspcon;
2581 }
2582 
2583 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv,
2584 				   enum port port)
2585 {
2586 	const struct ddi_vbt_port_info *info =
2587 		&dev_priv->vbt.ddi_port_info[port];
2588 	enum aux_ch aux_ch;
2589 
2590 	if (!info->alternate_aux_channel) {
2591 		aux_ch = (enum aux_ch)port;
2592 
2593 		drm_dbg_kms(&dev_priv->drm,
2594 			    "using AUX %c for port %c (platform default)\n",
2595 			    aux_ch_name(aux_ch), port_name(port));
2596 		return aux_ch;
2597 	}
2598 
2599 	switch (info->alternate_aux_channel) {
2600 	case DP_AUX_A:
2601 		aux_ch = AUX_CH_A;
2602 		break;
2603 	case DP_AUX_B:
2604 		aux_ch = AUX_CH_B;
2605 		break;
2606 	case DP_AUX_C:
2607 		aux_ch = AUX_CH_C;
2608 		break;
2609 	case DP_AUX_D:
2610 		aux_ch = AUX_CH_D;
2611 		break;
2612 	case DP_AUX_E:
2613 		aux_ch = AUX_CH_E;
2614 		break;
2615 	case DP_AUX_F:
2616 		aux_ch = AUX_CH_F;
2617 		break;
2618 	case DP_AUX_G:
2619 		aux_ch = AUX_CH_G;
2620 		break;
2621 	default:
2622 		MISSING_CASE(info->alternate_aux_channel);
2623 		aux_ch = AUX_CH_A;
2624 		break;
2625 	}
2626 
2627 	drm_dbg_kms(&dev_priv->drm, "using AUX %c for port %c (VBT)\n",
2628 		    aux_ch_name(aux_ch), port_name(port));
2629 
2630 	return aux_ch;
2631 }
2632 
2633 int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
2634 {
2635 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2636 
2637 	return i915->vbt.ddi_port_info[encoder->port].max_tmds_clock;
2638 }
2639 
2640 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
2641 {
2642 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2643 	const struct ddi_vbt_port_info *info =
2644 		&i915->vbt.ddi_port_info[encoder->port];
2645 
2646 	return info->hdmi_level_shift_set ? info->hdmi_level_shift : -1;
2647 }
2648 
2649 int intel_bios_dp_boost_level(struct intel_encoder *encoder)
2650 {
2651 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2652 
2653 	return i915->vbt.ddi_port_info[encoder->port].dp_boost_level;
2654 }
2655 
2656 int intel_bios_hdmi_boost_level(struct intel_encoder *encoder)
2657 {
2658 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2659 
2660 	return i915->vbt.ddi_port_info[encoder->port].hdmi_boost_level;
2661 }
2662 
2663 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
2664 {
2665 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2666 
2667 	return i915->vbt.ddi_port_info[encoder->port].dp_max_link_rate;
2668 }
2669 
2670 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
2671 {
2672 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2673 
2674 	return i915->vbt.ddi_port_info[encoder->port].alternate_ddc_pin;
2675 }
2676 
2677 bool intel_bios_port_supports_dvi(struct drm_i915_private *i915, enum port port)
2678 {
2679 	return i915->vbt.ddi_port_info[port].supports_dvi;
2680 }
2681 
2682 bool intel_bios_port_supports_hdmi(struct drm_i915_private *i915, enum port port)
2683 {
2684 	return i915->vbt.ddi_port_info[port].supports_hdmi;
2685 }
2686 
2687 bool intel_bios_port_supports_dp(struct drm_i915_private *i915, enum port port)
2688 {
2689 	return i915->vbt.ddi_port_info[port].supports_dp;
2690 }
2691 
2692 bool intel_bios_port_supports_typec_usb(struct drm_i915_private *i915,
2693 					enum port port)
2694 {
2695 	return i915->vbt.ddi_port_info[port].supports_typec_usb;
2696 }
2697 
2698 bool intel_bios_port_supports_tbt(struct drm_i915_private *i915, enum port port)
2699 {
2700 	return i915->vbt.ddi_port_info[port].supports_tbt;
2701 }
2702