1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <linux/firmware.h> 29 30 #include <drm/display/drm_dp_helper.h> 31 #include <drm/display/drm_dsc_helper.h> 32 #include <drm/drm_edid.h> 33 #include <drm/drm_fixed.h> 34 35 #include "i915_drv.h" 36 #include "i915_reg.h" 37 #include "intel_display.h" 38 #include "intel_display_types.h" 39 #include "intel_gmbus.h" 40 #include "intel_uncore.h" 41 42 #define _INTEL_BIOS_PRIVATE 43 #include "intel_vbt_defs.h" 44 45 /** 46 * DOC: Video BIOS Table (VBT) 47 * 48 * The Video BIOS Table, or VBT, provides platform and board specific 49 * configuration information to the driver that is not discoverable or available 50 * through other means. The configuration is mostly related to display 51 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 52 * the PCI ROM. 53 * 54 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 55 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 56 * contain the actual configuration information. The VBT Header, and thus the 57 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 58 * BDB Header. The data blocks are concatenated after the BDB Header. The data 59 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 60 * data. (Block 53, the MIPI Sequence Block is an exception.) 61 * 62 * The driver parses the VBT during load. The relevant information is stored in 63 * driver private data for ease of use, and the actual VBT is not read after 64 * that. 65 */ 66 67 /* Wrapper for VBT child device config */ 68 struct intel_bios_encoder_data { 69 struct intel_display *display; 70 71 struct child_device_config child; 72 struct dsc_compression_parameters_entry *dsc; 73 struct list_head node; 74 }; 75 76 #define TARGET_ADDR1 0x70 77 #define TARGET_ADDR2 0x72 78 79 /* Get BDB block size given a pointer to Block ID. */ 80 static u32 _get_blocksize(const u8 *block_base) 81 { 82 /* The MIPI Sequence Block v3+ has a separate size field. */ 83 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 84 return *((const u32 *)(block_base + 4)); 85 else 86 return *((const u16 *)(block_base + 1)); 87 } 88 89 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 90 static u32 get_blocksize(const void *block_data) 91 { 92 return _get_blocksize(block_data - 3); 93 } 94 95 static const void * 96 find_raw_section(const void *_bdb, enum bdb_block_id section_id) 97 { 98 const struct bdb_header *bdb = _bdb; 99 const u8 *base = _bdb; 100 int index = 0; 101 u32 total, current_size; 102 enum bdb_block_id current_id; 103 104 /* skip to first section */ 105 index += bdb->header_size; 106 total = bdb->bdb_size; 107 108 /* walk the sections looking for section_id */ 109 while (index + 3 < total) { 110 current_id = *(base + index); 111 current_size = _get_blocksize(base + index); 112 index += 3; 113 114 if (index + current_size > total) 115 return NULL; 116 117 if (current_id == section_id) 118 return base + index; 119 120 index += current_size; 121 } 122 123 return NULL; 124 } 125 126 /* 127 * Offset from the start of BDB to the start of the 128 * block data (just past the block header). 129 */ 130 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) 131 { 132 const void *block; 133 134 block = find_raw_section(bdb, section_id); 135 if (!block) 136 return 0; 137 138 return block - bdb; 139 } 140 141 struct bdb_block_entry { 142 struct list_head node; 143 enum bdb_block_id section_id; 144 u8 data[]; 145 }; 146 147 static const void * 148 bdb_find_section(struct intel_display *display, 149 enum bdb_block_id section_id) 150 { 151 struct bdb_block_entry *entry; 152 153 list_for_each_entry(entry, &display->vbt.bdb_blocks, node) { 154 if (entry->section_id == section_id) 155 return entry->data + 3; 156 } 157 158 return NULL; 159 } 160 161 static const struct { 162 enum bdb_block_id section_id; 163 size_t min_size; 164 } bdb_blocks[] = { 165 { .section_id = BDB_GENERAL_FEATURES, 166 .min_size = sizeof(struct bdb_general_features), }, 167 { .section_id = BDB_GENERAL_DEFINITIONS, 168 .min_size = sizeof(struct bdb_general_definitions), }, 169 { .section_id = BDB_PSR, 170 .min_size = sizeof(struct bdb_psr), }, 171 { .section_id = BDB_DRIVER_FEATURES, 172 .min_size = sizeof(struct bdb_driver_features), }, 173 { .section_id = BDB_SDVO_LVDS_OPTIONS, 174 .min_size = sizeof(struct bdb_sdvo_lvds_options), }, 175 { .section_id = BDB_SDVO_LVDS_DTD, 176 .min_size = sizeof(struct bdb_sdvo_lvds_dtd), }, 177 { .section_id = BDB_EDP, 178 .min_size = sizeof(struct bdb_edp), }, 179 { .section_id = BDB_LFP_OPTIONS, 180 .min_size = sizeof(struct bdb_lfp_options), }, 181 /* 182 * BDB_LFP_DATA depends on BDB_LFP_DATA_PTRS, 183 * so keep the two ordered. 184 */ 185 { .section_id = BDB_LFP_DATA_PTRS, 186 .min_size = sizeof(struct bdb_lfp_data_ptrs), }, 187 { .section_id = BDB_LFP_DATA, 188 .min_size = 0, /* special case */ }, 189 { .section_id = BDB_LFP_BACKLIGHT, 190 .min_size = sizeof(struct bdb_lfp_backlight), }, 191 { .section_id = BDB_LFP_POWER, 192 .min_size = sizeof(struct bdb_lfp_power), }, 193 { .section_id = BDB_MIPI_CONFIG, 194 .min_size = sizeof(struct bdb_mipi_config), }, 195 { .section_id = BDB_MIPI_SEQUENCE, 196 .min_size = sizeof(struct bdb_mipi_sequence) }, 197 { .section_id = BDB_COMPRESSION_PARAMETERS, 198 .min_size = sizeof(struct bdb_compression_parameters), }, 199 { .section_id = BDB_GENERIC_DTD, 200 .min_size = sizeof(struct bdb_generic_dtd), }, 201 }; 202 203 static size_t lfp_data_min_size(struct intel_display *display) 204 { 205 const struct bdb_lfp_data_ptrs *ptrs; 206 size_t size; 207 208 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 209 if (!ptrs) 210 return 0; 211 212 size = sizeof(struct bdb_lfp_data); 213 if (ptrs->panel_name.table_size) 214 size = max(size, ptrs->panel_name.offset + 215 sizeof(struct bdb_lfp_data_tail)); 216 217 return size; 218 } 219 220 static bool validate_lfp_data_ptrs(const void *bdb, 221 const struct bdb_lfp_data_ptrs *ptrs) 222 { 223 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; 224 int data_block_size, lfp_data_size; 225 const void *data_block; 226 int i; 227 228 data_block = find_raw_section(bdb, BDB_LFP_DATA); 229 if (!data_block) 230 return false; 231 232 data_block_size = get_blocksize(data_block); 233 if (data_block_size == 0) 234 return false; 235 236 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ 237 if (ptrs->num_entries != 3) 238 return false; 239 240 fp_timing_size = ptrs->ptr[0].fp_timing.table_size; 241 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; 242 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; 243 panel_name_size = ptrs->panel_name.table_size; 244 245 /* fp_timing has variable size */ 246 if (fp_timing_size < 32 || 247 dvo_timing_size != sizeof(struct bdb_edid_dtd) || 248 panel_pnp_id_size != sizeof(struct bdb_edid_pnp_id)) 249 return false; 250 251 /* panel_name is not present in old VBTs */ 252 if (panel_name_size != 0 && 253 panel_name_size != sizeof(struct bdb_edid_product_name)) 254 return false; 255 256 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; 257 if (16 * lfp_data_size > data_block_size) 258 return false; 259 260 /* make sure the table entries have uniform size */ 261 for (i = 1; i < 16; i++) { 262 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || 263 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || 264 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) 265 return false; 266 267 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || 268 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || 269 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) 270 return false; 271 } 272 273 /* 274 * Except for vlv/chv machines all real VBTs seem to have 6 275 * unaccounted bytes in the fp_timing table. And it doesn't 276 * appear to be a really intentional hole as the fp_timing 277 * 0xffff terminator is always within those 6 missing bytes. 278 */ 279 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size) 280 fp_timing_size += 6; 281 282 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size) 283 return false; 284 285 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset || 286 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || 287 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) 288 return false; 289 290 /* make sure the tables fit inside the data block */ 291 for (i = 0; i < 16; i++) { 292 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || 293 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || 294 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) 295 return false; 296 } 297 298 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) 299 return false; 300 301 /* make sure fp_timing terminators are present at expected locations */ 302 for (i = 0; i < 16; i++) { 303 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset + 304 fp_timing_size - 2; 305 306 if (*t != 0xffff) 307 return false; 308 } 309 310 return true; 311 } 312 313 /* make the data table offsets relative to the data block */ 314 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) 315 { 316 struct bdb_lfp_data_ptrs *ptrs = ptrs_block; 317 u32 offset; 318 int i; 319 320 offset = raw_block_offset(bdb, BDB_LFP_DATA); 321 322 for (i = 0; i < 16; i++) { 323 if (ptrs->ptr[i].fp_timing.offset < offset || 324 ptrs->ptr[i].dvo_timing.offset < offset || 325 ptrs->ptr[i].panel_pnp_id.offset < offset) 326 return false; 327 328 ptrs->ptr[i].fp_timing.offset -= offset; 329 ptrs->ptr[i].dvo_timing.offset -= offset; 330 ptrs->ptr[i].panel_pnp_id.offset -= offset; 331 } 332 333 if (ptrs->panel_name.table_size) { 334 if (ptrs->panel_name.offset < offset) 335 return false; 336 337 ptrs->panel_name.offset -= offset; 338 } 339 340 return validate_lfp_data_ptrs(bdb, ptrs); 341 } 342 343 static int make_lfp_data_ptr(struct lfp_data_ptr_table *table, 344 int table_size, int total_size) 345 { 346 if (total_size < table_size) 347 return total_size; 348 349 table->table_size = table_size; 350 table->offset = total_size - table_size; 351 352 return total_size - table_size; 353 } 354 355 static void next_lfp_data_ptr(struct lfp_data_ptr_table *next, 356 const struct lfp_data_ptr_table *prev, 357 int size) 358 { 359 next->table_size = prev->table_size; 360 next->offset = prev->offset + size; 361 } 362 363 static void *generate_lfp_data_ptrs(struct intel_display *display, 364 const void *bdb) 365 { 366 int i, size, table_size, block_size, offset, fp_timing_size; 367 struct bdb_lfp_data_ptrs *ptrs; 368 const void *block; 369 void *ptrs_block; 370 371 /* 372 * The hardcoded fp_timing_size is only valid for 373 * modernish VBTs. All older VBTs definitely should 374 * include block 41 and thus we don't need to 375 * generate one. 376 */ 377 if (display->vbt.version < 155) 378 return NULL; 379 380 fp_timing_size = 38; 381 382 block = find_raw_section(bdb, BDB_LFP_DATA); 383 if (!block) 384 return NULL; 385 386 drm_dbg_kms(display->drm, "Generating LFP data table pointers\n"); 387 388 block_size = get_blocksize(block); 389 390 size = fp_timing_size + sizeof(struct bdb_edid_dtd) + 391 sizeof(struct bdb_edid_pnp_id); 392 if (size * 16 > block_size) 393 return NULL; 394 395 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); 396 if (!ptrs_block) 397 return NULL; 398 399 *(u8 *)(ptrs_block + 0) = BDB_LFP_DATA_PTRS; 400 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); 401 ptrs = ptrs_block + 3; 402 403 table_size = sizeof(struct bdb_edid_pnp_id); 404 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); 405 406 table_size = sizeof(struct bdb_edid_dtd); 407 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); 408 409 table_size = fp_timing_size; 410 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); 411 412 if (ptrs->ptr[0].fp_timing.table_size) 413 ptrs->num_entries++; 414 if (ptrs->ptr[0].dvo_timing.table_size) 415 ptrs->num_entries++; 416 if (ptrs->ptr[0].panel_pnp_id.table_size) 417 ptrs->num_entries++; 418 419 if (size != 0 || ptrs->num_entries != 3) { 420 kfree(ptrs_block); 421 return NULL; 422 } 423 424 size = fp_timing_size + sizeof(struct bdb_edid_dtd) + 425 sizeof(struct bdb_edid_pnp_id); 426 for (i = 1; i < 16; i++) { 427 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); 428 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); 429 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); 430 } 431 432 table_size = sizeof(struct bdb_edid_product_name); 433 434 if (16 * (size + table_size) <= block_size) { 435 ptrs->panel_name.table_size = table_size; 436 ptrs->panel_name.offset = size * 16; 437 } 438 439 offset = block - bdb; 440 441 for (i = 0; i < 16; i++) { 442 ptrs->ptr[i].fp_timing.offset += offset; 443 ptrs->ptr[i].dvo_timing.offset += offset; 444 ptrs->ptr[i].panel_pnp_id.offset += offset; 445 } 446 447 if (ptrs->panel_name.table_size) 448 ptrs->panel_name.offset += offset; 449 450 return ptrs_block; 451 } 452 453 static void 454 init_bdb_block(struct intel_display *display, 455 const void *bdb, enum bdb_block_id section_id, 456 size_t min_size) 457 { 458 struct bdb_block_entry *entry; 459 void *temp_block = NULL; 460 const void *block; 461 size_t block_size; 462 463 block = find_raw_section(bdb, section_id); 464 465 /* Modern VBTs lack the LFP data table pointers block, make one up */ 466 if (!block && section_id == BDB_LFP_DATA_PTRS) { 467 temp_block = generate_lfp_data_ptrs(display, bdb); 468 if (temp_block) 469 block = temp_block + 3; 470 } 471 if (!block) 472 return; 473 474 drm_WARN(display->drm, min_size == 0, 475 "Block %d min_size is zero\n", section_id); 476 477 block_size = get_blocksize(block); 478 479 /* 480 * Version number and new block size are considered 481 * part of the header for MIPI sequenece block v3+. 482 */ 483 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3) 484 block_size += 5; 485 486 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), 487 GFP_KERNEL); 488 if (!entry) { 489 kfree(temp_block); 490 return; 491 } 492 493 entry->section_id = section_id; 494 memcpy(entry->data, block - 3, block_size + 3); 495 496 kfree(temp_block); 497 498 drm_dbg_kms(display->drm, 499 "Found BDB block %d (size %zu, min size %zu)\n", 500 section_id, block_size, min_size); 501 502 if (section_id == BDB_LFP_DATA_PTRS && 503 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { 504 drm_err(display->drm, 505 "VBT has malformed LFP data table pointers\n"); 506 kfree(entry); 507 return; 508 } 509 510 list_add_tail(&entry->node, &display->vbt.bdb_blocks); 511 } 512 513 static void init_bdb_blocks(struct intel_display *display, 514 const void *bdb) 515 { 516 int i; 517 518 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { 519 enum bdb_block_id section_id = bdb_blocks[i].section_id; 520 size_t min_size = bdb_blocks[i].min_size; 521 522 if (section_id == BDB_LFP_DATA) 523 min_size = lfp_data_min_size(display); 524 525 init_bdb_block(display, bdb, section_id, min_size); 526 } 527 } 528 529 static void 530 fill_detail_timing_data(struct intel_display *display, 531 struct drm_display_mode *panel_fixed_mode, 532 const struct bdb_edid_dtd *dvo_timing) 533 { 534 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 535 dvo_timing->hactive_lo; 536 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 537 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 538 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 539 ((dvo_timing->hsync_pulse_width_hi << 8) | 540 dvo_timing->hsync_pulse_width_lo); 541 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 542 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 543 544 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 545 dvo_timing->vactive_lo; 546 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 547 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 548 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 549 ((dvo_timing->vsync_pulse_width_hi << 4) | 550 dvo_timing->vsync_pulse_width_lo); 551 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 552 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 553 panel_fixed_mode->clock = dvo_timing->clock * 10; 554 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 555 556 if (dvo_timing->hsync_positive) 557 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 558 else 559 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 560 561 if (dvo_timing->vsync_positive) 562 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 563 else 564 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 565 566 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 567 dvo_timing->himage_lo; 568 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 569 dvo_timing->vimage_lo; 570 571 /* Some VBTs have bogus h/vsync_end values */ 572 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) { 573 drm_dbg_kms(display->drm, "reducing hsync_end %d->%d\n", 574 panel_fixed_mode->hsync_end, panel_fixed_mode->htotal); 575 panel_fixed_mode->hsync_end = panel_fixed_mode->htotal; 576 } 577 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) { 578 drm_dbg_kms(display->drm, "reducing vsync_end %d->%d\n", 579 panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal); 580 panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal; 581 } 582 583 drm_mode_set_name(panel_fixed_mode); 584 } 585 586 static const struct bdb_edid_dtd * 587 get_lfp_dvo_timing(const struct bdb_lfp_data *data, 588 const struct bdb_lfp_data_ptrs *ptrs, 589 int index) 590 { 591 return (const void *)data + ptrs->ptr[index].dvo_timing.offset; 592 } 593 594 static const struct fp_timing * 595 get_lfp_fp_timing(const struct bdb_lfp_data *data, 596 const struct bdb_lfp_data_ptrs *ptrs, 597 int index) 598 { 599 return (const void *)data + ptrs->ptr[index].fp_timing.offset; 600 } 601 602 static const struct drm_edid_product_id * 603 get_lfp_pnp_id(const struct bdb_lfp_data *data, 604 const struct bdb_lfp_data_ptrs *ptrs, 605 int index) 606 { 607 /* These two are supposed to have the same layout in memory. */ 608 BUILD_BUG_ON(sizeof(struct bdb_edid_pnp_id) != sizeof(struct drm_edid_product_id)); 609 610 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; 611 } 612 613 static const struct bdb_lfp_data_tail * 614 get_lfp_data_tail(const struct bdb_lfp_data *data, 615 const struct bdb_lfp_data_ptrs *ptrs) 616 { 617 if (ptrs->panel_name.table_size) 618 return (const void *)data + ptrs->panel_name.offset; 619 else 620 return NULL; 621 } 622 623 static int opregion_get_panel_type(struct intel_display *display, 624 const struct intel_bios_encoder_data *devdata, 625 const struct drm_edid *drm_edid, bool use_fallback) 626 { 627 return intel_opregion_get_panel_type(display); 628 } 629 630 static int vbt_get_panel_type(struct intel_display *display, 631 const struct intel_bios_encoder_data *devdata, 632 const struct drm_edid *drm_edid, bool use_fallback) 633 { 634 const struct bdb_lfp_options *lfp_options; 635 636 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS); 637 if (!lfp_options) 638 return -1; 639 640 if (lfp_options->panel_type > 0xf && 641 lfp_options->panel_type != 0xff) { 642 drm_dbg_kms(display->drm, "Invalid VBT panel type 0x%x\n", 643 lfp_options->panel_type); 644 return -1; 645 } 646 647 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) 648 return lfp_options->panel_type2; 649 650 drm_WARN_ON(display->drm, 651 devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); 652 653 return lfp_options->panel_type; 654 } 655 656 static int pnpid_get_panel_type(struct intel_display *display, 657 const struct intel_bios_encoder_data *devdata, 658 const struct drm_edid *drm_edid, bool use_fallback) 659 { 660 const struct bdb_lfp_data *data; 661 const struct bdb_lfp_data_ptrs *ptrs; 662 struct drm_edid_product_id product_id, product_id_nodate; 663 struct drm_printer p; 664 int i, best = -1; 665 666 if (!drm_edid) 667 return -1; 668 669 drm_edid_get_product_id(drm_edid, &product_id); 670 671 product_id_nodate = product_id; 672 product_id_nodate.week_of_manufacture = 0; 673 product_id_nodate.year_of_manufacture = 0; 674 675 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "EDID"); 676 drm_edid_print_product_id(&p, &product_id, true); 677 678 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 679 if (!ptrs) 680 return -1; 681 682 data = bdb_find_section(display, BDB_LFP_DATA); 683 if (!data) 684 return -1; 685 686 for (i = 0; i < 16; i++) { 687 const struct drm_edid_product_id *vbt_id = 688 get_lfp_pnp_id(data, ptrs, i); 689 690 /* full match? */ 691 if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id))) 692 return i; 693 694 /* 695 * Accept a match w/o date if no full match is found, 696 * and the VBT entry does not specify a date. 697 */ 698 if (best < 0 && 699 !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id))) 700 best = i; 701 } 702 703 return best; 704 } 705 706 static int fallback_get_panel_type(struct intel_display *display, 707 const struct intel_bios_encoder_data *devdata, 708 const struct drm_edid *drm_edid, bool use_fallback) 709 { 710 return use_fallback ? 0 : -1; 711 } 712 713 enum panel_type { 714 PANEL_TYPE_OPREGION, 715 PANEL_TYPE_VBT, 716 PANEL_TYPE_PNPID, 717 PANEL_TYPE_FALLBACK, 718 }; 719 720 static int get_panel_type(struct intel_display *display, 721 const struct intel_bios_encoder_data *devdata, 722 const struct drm_edid *drm_edid, bool use_fallback) 723 { 724 struct { 725 const char *name; 726 int (*get_panel_type)(struct intel_display *display, 727 const struct intel_bios_encoder_data *devdata, 728 const struct drm_edid *drm_edid, bool use_fallback); 729 int panel_type; 730 } panel_types[] = { 731 [PANEL_TYPE_OPREGION] = { 732 .name = "OpRegion", 733 .get_panel_type = opregion_get_panel_type, 734 }, 735 [PANEL_TYPE_VBT] = { 736 .name = "VBT", 737 .get_panel_type = vbt_get_panel_type, 738 }, 739 [PANEL_TYPE_PNPID] = { 740 .name = "PNPID", 741 .get_panel_type = pnpid_get_panel_type, 742 }, 743 [PANEL_TYPE_FALLBACK] = { 744 .name = "fallback", 745 .get_panel_type = fallback_get_panel_type, 746 }, 747 }; 748 int i; 749 750 for (i = 0; i < ARRAY_SIZE(panel_types); i++) { 751 panel_types[i].panel_type = panel_types[i].get_panel_type(display, devdata, 752 drm_edid, use_fallback); 753 754 drm_WARN_ON(display->drm, panel_types[i].panel_type > 0xf && 755 panel_types[i].panel_type != 0xff); 756 757 if (panel_types[i].panel_type >= 0) 758 drm_dbg_kms(display->drm, "Panel type (%s): %d\n", 759 panel_types[i].name, panel_types[i].panel_type); 760 } 761 762 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) 763 i = PANEL_TYPE_OPREGION; 764 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && 765 panel_types[PANEL_TYPE_PNPID].panel_type >= 0) 766 i = PANEL_TYPE_PNPID; 767 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && 768 panel_types[PANEL_TYPE_VBT].panel_type >= 0) 769 i = PANEL_TYPE_VBT; 770 else 771 i = PANEL_TYPE_FALLBACK; 772 773 drm_dbg_kms(display->drm, "Selected panel type (%s): %d\n", 774 panel_types[i].name, panel_types[i].panel_type); 775 776 return panel_types[i].panel_type; 777 } 778 779 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) 780 { 781 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); 782 } 783 784 static bool panel_bool(unsigned int value, int panel_type) 785 { 786 return panel_bits(value, panel_type, 1); 787 } 788 789 /* Parse general panel options */ 790 static void 791 parse_panel_options(struct intel_display *display, 792 struct intel_panel *panel) 793 { 794 const struct bdb_lfp_options *lfp_options; 795 int panel_type = panel->vbt.panel_type; 796 int drrs_mode; 797 798 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS); 799 if (!lfp_options) 800 return; 801 802 panel->vbt.lvds_dither = lfp_options->pixel_dither; 803 804 /* 805 * Empirical evidence indicates the block size can be 806 * either 4,14,16,24+ bytes. For older VBTs no clear 807 * relationship between the block size vs. BDB version. 808 */ 809 if (get_blocksize(lfp_options) < 16) 810 return; 811 812 drrs_mode = panel_bits(lfp_options->dps_panel_type_bits, 813 panel_type, 2); 814 /* 815 * VBT has static DRRS = 0 and seamless DRRS = 2. 816 * The below piece of code is required to adjust vbt.drrs_type 817 * to match the enum drrs_support_type. 818 */ 819 switch (drrs_mode) { 820 case 0: 821 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 822 drm_dbg_kms(display->drm, "DRRS supported mode is static\n"); 823 break; 824 case 2: 825 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; 826 drm_dbg_kms(display->drm, 827 "DRRS supported mode is seamless\n"); 828 break; 829 default: 830 panel->vbt.drrs_type = DRRS_TYPE_NONE; 831 drm_dbg_kms(display->drm, 832 "DRRS not supported (VBT input)\n"); 833 break; 834 } 835 } 836 837 static void 838 parse_lfp_panel_dtd(struct intel_display *display, 839 struct intel_panel *panel, 840 const struct bdb_lfp_data *lfp_data, 841 const struct bdb_lfp_data_ptrs *lfp_data_ptrs) 842 { 843 const struct bdb_edid_dtd *panel_dvo_timing; 844 const struct fp_timing *fp_timing; 845 struct drm_display_mode *panel_fixed_mode; 846 int panel_type = panel->vbt.panel_type; 847 848 panel_dvo_timing = get_lfp_dvo_timing(lfp_data, 849 lfp_data_ptrs, 850 panel_type); 851 852 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 853 if (!panel_fixed_mode) 854 return; 855 856 fill_detail_timing_data(display, panel_fixed_mode, panel_dvo_timing); 857 858 panel->vbt.lfp_vbt_mode = panel_fixed_mode; 859 860 drm_dbg_kms(display->drm, 861 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", 862 DRM_MODE_ARG(panel_fixed_mode)); 863 864 fp_timing = get_lfp_fp_timing(lfp_data, 865 lfp_data_ptrs, 866 panel_type); 867 868 /* check the resolution, just to be sure */ 869 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 870 fp_timing->y_res == panel_fixed_mode->vdisplay) { 871 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 872 drm_dbg_kms(display->drm, 873 "VBT initial LVDS value %x\n", 874 panel->vbt.bios_lvds_val); 875 } 876 } 877 878 static void 879 parse_lfp_data(struct intel_display *display, 880 struct intel_panel *panel) 881 { 882 const struct bdb_lfp_data *data; 883 const struct bdb_lfp_data_tail *tail; 884 const struct bdb_lfp_data_ptrs *ptrs; 885 const struct drm_edid_product_id *pnp_id; 886 struct drm_printer p; 887 int panel_type = panel->vbt.panel_type; 888 889 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 890 if (!ptrs) 891 return; 892 893 data = bdb_find_section(display, BDB_LFP_DATA); 894 if (!data) 895 return; 896 897 if (!panel->vbt.lfp_vbt_mode) 898 parse_lfp_panel_dtd(display, panel, data, ptrs); 899 900 pnp_id = get_lfp_pnp_id(data, ptrs, panel_type); 901 902 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "Panel"); 903 drm_edid_print_product_id(&p, pnp_id, false); 904 905 tail = get_lfp_data_tail(data, ptrs); 906 if (!tail) 907 return; 908 909 drm_dbg_kms(display->drm, "Panel name: %.*s\n", 910 (int)sizeof(tail->panel_name[0].name), 911 tail->panel_name[panel_type].name); 912 913 if (display->vbt.version >= 188) { 914 panel->vbt.seamless_drrs_min_refresh_rate = 915 tail->seamless_drrs_min_refresh_rate[panel_type]; 916 drm_dbg_kms(display->drm, 917 "Seamless DRRS min refresh rate: %d Hz\n", 918 panel->vbt.seamless_drrs_min_refresh_rate); 919 } 920 } 921 922 static void 923 parse_generic_dtd(struct intel_display *display, 924 struct intel_panel *panel) 925 { 926 const struct bdb_generic_dtd *generic_dtd; 927 const struct generic_dtd_entry *dtd; 928 struct drm_display_mode *panel_fixed_mode; 929 int num_dtd; 930 931 /* 932 * Older VBTs provided DTD information for internal displays through 933 * the "LFP panel tables" block (42). As of VBT revision 229 the 934 * DTD information should be provided via a newer "generic DTD" 935 * block (58). Just to be safe, we'll try the new generic DTD block 936 * first on VBT >= 229, but still fall back to trying the old LFP 937 * block if that fails. 938 */ 939 if (display->vbt.version < 229) 940 return; 941 942 generic_dtd = bdb_find_section(display, BDB_GENERIC_DTD); 943 if (!generic_dtd) 944 return; 945 946 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 947 drm_err(display->drm, "GDTD size %u is too small.\n", 948 generic_dtd->gdtd_size); 949 return; 950 } else if (generic_dtd->gdtd_size != 951 sizeof(struct generic_dtd_entry)) { 952 drm_err(display->drm, "Unexpected GDTD size %u\n", 953 generic_dtd->gdtd_size); 954 /* DTD has unknown fields, but keep going */ 955 } 956 957 num_dtd = (get_blocksize(generic_dtd) - 958 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 959 if (panel->vbt.panel_type >= num_dtd) { 960 drm_err(display->drm, 961 "Panel type %d not found in table of %d DTD's\n", 962 panel->vbt.panel_type, num_dtd); 963 return; 964 } 965 966 dtd = &generic_dtd->dtd[panel->vbt.panel_type]; 967 968 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 969 if (!panel_fixed_mode) 970 return; 971 972 panel_fixed_mode->hdisplay = dtd->hactive; 973 panel_fixed_mode->hsync_start = 974 panel_fixed_mode->hdisplay + dtd->hfront_porch; 975 panel_fixed_mode->hsync_end = 976 panel_fixed_mode->hsync_start + dtd->hsync; 977 panel_fixed_mode->htotal = 978 panel_fixed_mode->hdisplay + dtd->hblank; 979 980 panel_fixed_mode->vdisplay = dtd->vactive; 981 panel_fixed_mode->vsync_start = 982 panel_fixed_mode->vdisplay + dtd->vfront_porch; 983 panel_fixed_mode->vsync_end = 984 panel_fixed_mode->vsync_start + dtd->vsync; 985 panel_fixed_mode->vtotal = 986 panel_fixed_mode->vdisplay + dtd->vblank; 987 988 panel_fixed_mode->clock = dtd->pixel_clock; 989 panel_fixed_mode->width_mm = dtd->width_mm; 990 panel_fixed_mode->height_mm = dtd->height_mm; 991 992 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 993 drm_mode_set_name(panel_fixed_mode); 994 995 if (dtd->hsync_positive_polarity) 996 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 997 else 998 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 999 1000 if (dtd->vsync_positive_polarity) 1001 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 1002 else 1003 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 1004 1005 drm_dbg_kms(display->drm, 1006 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", 1007 DRM_MODE_ARG(panel_fixed_mode)); 1008 1009 panel->vbt.lfp_vbt_mode = panel_fixed_mode; 1010 } 1011 1012 static void 1013 parse_lfp_backlight(struct intel_display *display, 1014 struct intel_panel *panel) 1015 { 1016 const struct bdb_lfp_backlight *backlight_data; 1017 const struct lfp_backlight_data_entry *entry; 1018 int panel_type = panel->vbt.panel_type; 1019 u16 level; 1020 1021 backlight_data = bdb_find_section(display, BDB_LFP_BACKLIGHT); 1022 if (!backlight_data) 1023 return; 1024 1025 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 1026 drm_dbg_kms(display->drm, 1027 "Unsupported backlight data entry size %u\n", 1028 backlight_data->entry_size); 1029 return; 1030 } 1031 1032 entry = &backlight_data->data[panel_type]; 1033 1034 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 1035 if (!panel->vbt.backlight.present) { 1036 drm_dbg_kms(display->drm, 1037 "PWM backlight not present in VBT (type %u)\n", 1038 entry->type); 1039 return; 1040 } 1041 1042 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 1043 panel->vbt.backlight.controller = 0; 1044 if (display->vbt.version >= 191) { 1045 const struct lfp_backlight_control_method *method; 1046 1047 method = &backlight_data->backlight_control[panel_type]; 1048 panel->vbt.backlight.type = method->type; 1049 panel->vbt.backlight.controller = method->controller; 1050 } 1051 1052 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 1053 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; 1054 1055 if (display->vbt.version >= 234) { 1056 u16 min_level; 1057 bool scale; 1058 1059 level = backlight_data->brightness_level[panel_type].level; 1060 min_level = backlight_data->brightness_min_level[panel_type].level; 1061 1062 if (display->vbt.version >= 236) 1063 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 1064 else 1065 scale = level > 255; 1066 1067 if (scale) 1068 min_level = min_level / 255; 1069 1070 if (min_level > 255) { 1071 drm_warn(display->drm, "Brightness min level > 255\n"); 1072 level = 255; 1073 } 1074 panel->vbt.backlight.min_brightness = min_level; 1075 1076 panel->vbt.backlight.brightness_precision_bits = 1077 backlight_data->brightness_precision_bits[panel_type]; 1078 } else { 1079 level = backlight_data->level[panel_type]; 1080 panel->vbt.backlight.min_brightness = entry->min_brightness; 1081 } 1082 1083 if (display->vbt.version >= 239) 1084 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 1085 DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100); 1086 else 1087 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30; 1088 1089 drm_dbg_kms(display->drm, 1090 "VBT backlight PWM modulation frequency %u Hz, " 1091 "active %s, min brightness %u, level %u, controller %u\n", 1092 panel->vbt.backlight.pwm_freq_hz, 1093 panel->vbt.backlight.active_low_pwm ? "low" : "high", 1094 panel->vbt.backlight.min_brightness, 1095 level, 1096 panel->vbt.backlight.controller); 1097 } 1098 1099 static void 1100 parse_sdvo_lvds_data(struct intel_display *display, 1101 struct intel_panel *panel) 1102 { 1103 const struct bdb_sdvo_lvds_dtd *dtd; 1104 struct drm_display_mode *panel_fixed_mode; 1105 int index; 1106 1107 index = display->params.vbt_sdvo_panel_type; 1108 if (index == -2) { 1109 drm_dbg_kms(display->drm, 1110 "Ignore SDVO LVDS mode from BIOS VBT tables.\n"); 1111 return; 1112 } 1113 1114 if (index == -1) { 1115 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 1116 1117 sdvo_lvds_options = bdb_find_section(display, BDB_SDVO_LVDS_OPTIONS); 1118 if (!sdvo_lvds_options) 1119 return; 1120 1121 index = sdvo_lvds_options->panel_type; 1122 } 1123 1124 dtd = bdb_find_section(display, BDB_SDVO_LVDS_DTD); 1125 if (!dtd) 1126 return; 1127 1128 /* 1129 * This should not happen, as long as the panel_type 1130 * enumeration doesn't grow over 4 items. But if it does, it 1131 * could lead to hard-to-detect bugs, so better double-check 1132 * it here to be sure. 1133 */ 1134 if (index >= ARRAY_SIZE(dtd->dtd)) { 1135 drm_err(display->drm, 1136 "index %d is larger than dtd->dtd[4] array\n", 1137 index); 1138 return; 1139 } 1140 1141 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 1142 if (!panel_fixed_mode) 1143 return; 1144 1145 fill_detail_timing_data(display, panel_fixed_mode, &dtd->dtd[index]); 1146 1147 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 1148 1149 drm_dbg_kms(display->drm, 1150 "Found SDVO LVDS mode in BIOS VBT tables: " DRM_MODE_FMT "\n", 1151 DRM_MODE_ARG(panel_fixed_mode)); 1152 } 1153 1154 static int intel_bios_ssc_frequency(struct intel_display *display, 1155 bool alternate) 1156 { 1157 switch (DISPLAY_VER(display)) { 1158 case 2: 1159 return alternate ? 66667 : 48000; 1160 case 3: 1161 case 4: 1162 return alternate ? 100000 : 96000; 1163 default: 1164 return alternate ? 100000 : 120000; 1165 } 1166 } 1167 1168 static void 1169 parse_general_features(struct intel_display *display) 1170 { 1171 struct drm_i915_private *i915 = to_i915(display->drm); 1172 const struct bdb_general_features *general; 1173 1174 general = bdb_find_section(display, BDB_GENERAL_FEATURES); 1175 if (!general) 1176 return; 1177 1178 display->vbt.int_tv_support = general->int_tv_support; 1179 /* int_crt_support can't be trusted on earlier platforms */ 1180 if (display->vbt.version >= 155 && 1181 (HAS_DDI(display) || IS_VALLEYVIEW(i915))) 1182 display->vbt.int_crt_support = general->int_crt_support; 1183 display->vbt.lvds_use_ssc = general->enable_ssc; 1184 display->vbt.lvds_ssc_freq = 1185 intel_bios_ssc_frequency(display, general->ssc_freq); 1186 display->vbt.display_clock_mode = general->display_clock_mode; 1187 display->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 1188 if (display->vbt.version >= 181) { 1189 display->vbt.orientation = general->rotate_180 ? 1190 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 1191 DRM_MODE_PANEL_ORIENTATION_NORMAL; 1192 } else { 1193 display->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1194 } 1195 1196 if (display->vbt.version >= 249 && general->afc_startup_config) { 1197 display->vbt.override_afc_startup = true; 1198 display->vbt.override_afc_startup_val = general->afc_startup_config == 1 ? 0 : 7; 1199 } 1200 1201 drm_dbg_kms(display->drm, 1202 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 1203 display->vbt.int_tv_support, 1204 display->vbt.int_crt_support, 1205 display->vbt.lvds_use_ssc, 1206 display->vbt.lvds_ssc_freq, 1207 display->vbt.display_clock_mode, 1208 display->vbt.fdi_rx_polarity_inverted); 1209 } 1210 1211 static const struct child_device_config * 1212 child_device_ptr(const struct bdb_general_definitions *defs, int i) 1213 { 1214 return (const void *) &defs->devices[i * defs->child_dev_size]; 1215 } 1216 1217 static void 1218 parse_sdvo_device_mapping(struct intel_display *display) 1219 { 1220 const struct intel_bios_encoder_data *devdata; 1221 int count = 0; 1222 1223 /* 1224 * Only parse SDVO mappings on gens that could have SDVO. This isn't 1225 * accurate and doesn't have to be, as long as it's not too strict. 1226 */ 1227 if (!IS_DISPLAY_VER(display, 3, 7)) { 1228 drm_dbg_kms(display->drm, "Skipping SDVO device mapping\n"); 1229 return; 1230 } 1231 1232 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 1233 const struct child_device_config *child = &devdata->child; 1234 struct sdvo_device_mapping *mapping; 1235 1236 if (child->target_addr != TARGET_ADDR1 && 1237 child->target_addr != TARGET_ADDR2) { 1238 /* 1239 * If the target address is neither 0x70 nor 0x72, 1240 * it is not a SDVO device. Skip it. 1241 */ 1242 continue; 1243 } 1244 if (child->dvo_port != DEVICE_PORT_DVOB && 1245 child->dvo_port != DEVICE_PORT_DVOC) { 1246 /* skip the incorrect SDVO port */ 1247 drm_dbg_kms(display->drm, 1248 "Incorrect SDVO port. Skip it\n"); 1249 continue; 1250 } 1251 drm_dbg_kms(display->drm, 1252 "the SDVO device with target addr %2x is found on" 1253 " %s port\n", 1254 child->target_addr, 1255 (child->dvo_port == DEVICE_PORT_DVOB) ? 1256 "SDVOB" : "SDVOC"); 1257 mapping = &display->vbt.sdvo_mappings[child->dvo_port - 1]; 1258 if (!mapping->initialized) { 1259 mapping->dvo_port = child->dvo_port; 1260 mapping->target_addr = child->target_addr; 1261 mapping->dvo_wiring = child->dvo_wiring; 1262 mapping->ddc_pin = child->ddc_pin; 1263 mapping->i2c_pin = child->i2c_pin; 1264 mapping->initialized = 1; 1265 drm_dbg_kms(display->drm, 1266 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 1267 mapping->dvo_port, mapping->target_addr, 1268 mapping->dvo_wiring, mapping->ddc_pin, 1269 mapping->i2c_pin); 1270 } else { 1271 drm_dbg_kms(display->drm, 1272 "Maybe one SDVO port is shared by " 1273 "two SDVO device.\n"); 1274 } 1275 if (child->target2_addr) { 1276 /* Maybe this is a SDVO device with multiple inputs */ 1277 /* And the mapping info is not added */ 1278 drm_dbg_kms(display->drm, 1279 "there exists the target2_addr. Maybe this" 1280 " is a SDVO device with multiple inputs.\n"); 1281 } 1282 count++; 1283 } 1284 1285 if (!count) { 1286 /* No SDVO device info is found */ 1287 drm_dbg_kms(display->drm, 1288 "No SDVO device info is found in VBT\n"); 1289 } 1290 } 1291 1292 static void 1293 parse_driver_features(struct intel_display *display) 1294 { 1295 const struct bdb_driver_features *driver; 1296 1297 driver = bdb_find_section(display, BDB_DRIVER_FEATURES); 1298 if (!driver) 1299 return; 1300 1301 if (DISPLAY_VER(display) >= 5) { 1302 /* 1303 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 1304 * to mean "eDP". The VBT spec doesn't agree with that 1305 * interpretation, but real world VBTs seem to. 1306 */ 1307 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 1308 display->vbt.int_lvds_support = 0; 1309 } else { 1310 /* 1311 * FIXME it's not clear which BDB version has the LVDS config 1312 * bits defined. Revision history in the VBT spec says: 1313 * "0.92 | Add two definitions for VBT value of LVDS Active 1314 * Config (00b and 11b values defined) | 06/13/2005" 1315 * but does not the specify the BDB version. 1316 * 1317 * So far version 134 (on i945gm) is the oldest VBT observed 1318 * in the wild with the bits correctly populated. Version 1319 * 108 (on i85x) does not have the bits correctly populated. 1320 */ 1321 if (display->vbt.version >= 134 && 1322 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 1323 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 1324 display->vbt.int_lvds_support = 0; 1325 } 1326 } 1327 1328 static void 1329 parse_panel_driver_features(struct intel_display *display, 1330 struct intel_panel *panel) 1331 { 1332 const struct bdb_driver_features *driver; 1333 1334 driver = bdb_find_section(display, BDB_DRIVER_FEATURES); 1335 if (!driver) 1336 return; 1337 1338 if (display->vbt.version < 228) { 1339 drm_dbg_kms(display->drm, "DRRS State Enabled:%d\n", 1340 driver->drrs_enabled); 1341 /* 1342 * If DRRS is not supported, drrs_type has to be set to 0. 1343 * This is because, VBT is configured in such a way that 1344 * static DRRS is 0 and DRRS not supported is represented by 1345 * driver->drrs_enabled=false 1346 */ 1347 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1348 /* 1349 * FIXME Should DMRRS perhaps be treated as seamless 1350 * but without the automatic downclocking? 1351 */ 1352 if (driver->dmrrs_enabled) 1353 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1354 else 1355 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1356 } 1357 1358 panel->vbt.psr.enable = driver->psr_enabled; 1359 } 1360 } 1361 1362 static void 1363 parse_power_conservation_features(struct intel_display *display, 1364 struct intel_panel *panel) 1365 { 1366 const struct bdb_lfp_power *power; 1367 u8 panel_type = panel->vbt.panel_type; 1368 1369 panel->vbt.vrr = true; /* matches Windows behaviour */ 1370 1371 if (display->vbt.version < 228) 1372 return; 1373 1374 power = bdb_find_section(display, BDB_LFP_POWER); 1375 if (!power) 1376 return; 1377 1378 panel->vbt.psr.enable = panel_bool(power->psr, panel_type); 1379 1380 /* 1381 * If DRRS is not supported, drrs_type has to be set to 0. 1382 * This is because, VBT is configured in such a way that 1383 * static DRRS is 0 and DRRS not supported is represented by 1384 * power->drrs & BIT(panel_type)=false 1385 */ 1386 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1387 /* 1388 * FIXME Should DMRRS perhaps be treated as seamless 1389 * but without the automatic downclocking? 1390 */ 1391 if (panel_bool(power->dmrrs, panel_type)) 1392 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1393 else 1394 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1395 } 1396 1397 if (display->vbt.version >= 232) 1398 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); 1399 1400 if (display->vbt.version >= 233) 1401 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, 1402 panel_type); 1403 } 1404 1405 static void 1406 parse_edp(struct intel_display *display, 1407 struct intel_panel *panel) 1408 { 1409 const struct bdb_edp *edp; 1410 const struct edp_power_seq *edp_pps; 1411 const struct edp_fast_link_params *edp_link_params; 1412 int panel_type = panel->vbt.panel_type; 1413 1414 edp = bdb_find_section(display, BDB_EDP); 1415 if (!edp) 1416 return; 1417 1418 switch (panel_bits(edp->color_depth, panel_type, 2)) { 1419 case EDP_18BPP: 1420 panel->vbt.edp.bpp = 18; 1421 break; 1422 case EDP_24BPP: 1423 panel->vbt.edp.bpp = 24; 1424 break; 1425 case EDP_30BPP: 1426 panel->vbt.edp.bpp = 30; 1427 break; 1428 } 1429 1430 /* Get the eDP sequencing and link info */ 1431 edp_pps = &edp->power_seqs[panel_type]; 1432 edp_link_params = &edp->fast_link_params[panel_type]; 1433 1434 panel->vbt.edp.pps = *edp_pps; 1435 1436 if (display->vbt.version >= 224) { 1437 panel->vbt.edp.rate = 1438 edp->edp_fast_link_training_rate[panel_type] * 20; 1439 } else { 1440 switch (edp_link_params->rate) { 1441 case EDP_RATE_1_62: 1442 panel->vbt.edp.rate = 162000; 1443 break; 1444 case EDP_RATE_2_7: 1445 panel->vbt.edp.rate = 270000; 1446 break; 1447 case EDP_RATE_5_4: 1448 panel->vbt.edp.rate = 540000; 1449 break; 1450 default: 1451 drm_dbg_kms(display->drm, 1452 "VBT has unknown eDP link rate value %u\n", 1453 edp_link_params->rate); 1454 break; 1455 } 1456 } 1457 1458 switch (edp_link_params->lanes) { 1459 case EDP_LANE_1: 1460 panel->vbt.edp.lanes = 1; 1461 break; 1462 case EDP_LANE_2: 1463 panel->vbt.edp.lanes = 2; 1464 break; 1465 case EDP_LANE_4: 1466 panel->vbt.edp.lanes = 4; 1467 break; 1468 default: 1469 drm_dbg_kms(display->drm, 1470 "VBT has unknown eDP lane count value %u\n", 1471 edp_link_params->lanes); 1472 break; 1473 } 1474 1475 switch (edp_link_params->preemphasis) { 1476 case EDP_PREEMPHASIS_NONE: 1477 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 1478 break; 1479 case EDP_PREEMPHASIS_3_5dB: 1480 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 1481 break; 1482 case EDP_PREEMPHASIS_6dB: 1483 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 1484 break; 1485 case EDP_PREEMPHASIS_9_5dB: 1486 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 1487 break; 1488 default: 1489 drm_dbg_kms(display->drm, 1490 "VBT has unknown eDP pre-emphasis value %u\n", 1491 edp_link_params->preemphasis); 1492 break; 1493 } 1494 1495 switch (edp_link_params->vswing) { 1496 case EDP_VSWING_0_4V: 1497 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 1498 break; 1499 case EDP_VSWING_0_6V: 1500 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 1501 break; 1502 case EDP_VSWING_0_8V: 1503 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 1504 break; 1505 case EDP_VSWING_1_2V: 1506 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 1507 break; 1508 default: 1509 drm_dbg_kms(display->drm, 1510 "VBT has unknown eDP voltage swing value %u\n", 1511 edp_link_params->vswing); 1512 break; 1513 } 1514 1515 if (display->vbt.version >= 173) { 1516 u8 vswing; 1517 1518 /* Don't read from VBT if module parameter has valid value*/ 1519 if (display->params.edp_vswing) { 1520 panel->vbt.edp.low_vswing = 1521 display->params.edp_vswing == 1; 1522 } else { 1523 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 1524 panel->vbt.edp.low_vswing = vswing == 0; 1525 } 1526 } 1527 1528 panel->vbt.edp.drrs_msa_timing_delay = 1529 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); 1530 1531 if (display->vbt.version >= 244) 1532 panel->vbt.edp.max_link_rate = 1533 edp->edp_max_port_link_rate[panel_type] * 20; 1534 1535 if (display->vbt.version >= 251) 1536 panel->vbt.edp.dsc_disable = 1537 panel_bool(edp->edp_dsc_disable, panel_type); 1538 } 1539 1540 static void 1541 parse_psr(struct intel_display *display, 1542 struct intel_panel *panel) 1543 { 1544 struct drm_i915_private *i915 = to_i915(display->drm); 1545 const struct bdb_psr *psr; 1546 const struct psr_table *psr_table; 1547 int panel_type = panel->vbt.panel_type; 1548 1549 psr = bdb_find_section(display, BDB_PSR); 1550 if (!psr) { 1551 drm_dbg_kms(display->drm, "No PSR BDB found.\n"); 1552 return; 1553 } 1554 1555 psr_table = &psr->psr_table[panel_type]; 1556 1557 panel->vbt.psr.full_link = psr_table->full_link; 1558 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 1559 1560 /* Allowed VBT values goes from 0 to 15 */ 1561 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 1562 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 1563 1564 /* 1565 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 1566 * Old decimal value is wake up time in multiples of 100 us. 1567 */ 1568 if (display->vbt.version >= 205 && 1569 (DISPLAY_VER(display) >= 9 && !IS_BROXTON(i915))) { 1570 switch (psr_table->tp1_wakeup_time) { 1571 case 0: 1572 panel->vbt.psr.tp1_wakeup_time_us = 500; 1573 break; 1574 case 1: 1575 panel->vbt.psr.tp1_wakeup_time_us = 100; 1576 break; 1577 case 3: 1578 panel->vbt.psr.tp1_wakeup_time_us = 0; 1579 break; 1580 default: 1581 drm_dbg_kms(display->drm, 1582 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1583 psr_table->tp1_wakeup_time); 1584 fallthrough; 1585 case 2: 1586 panel->vbt.psr.tp1_wakeup_time_us = 2500; 1587 break; 1588 } 1589 1590 switch (psr_table->tp2_tp3_wakeup_time) { 1591 case 0: 1592 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; 1593 break; 1594 case 1: 1595 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; 1596 break; 1597 case 3: 1598 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; 1599 break; 1600 default: 1601 drm_dbg_kms(display->drm, 1602 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1603 psr_table->tp2_tp3_wakeup_time); 1604 fallthrough; 1605 case 2: 1606 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 1607 break; 1608 } 1609 } else { 1610 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 1611 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 1612 } 1613 1614 if (display->vbt.version >= 226) { 1615 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 1616 1617 wakeup_time = panel_bits(wakeup_time, panel_type, 2); 1618 switch (wakeup_time) { 1619 case 0: 1620 wakeup_time = 500; 1621 break; 1622 case 1: 1623 wakeup_time = 100; 1624 break; 1625 case 3: 1626 wakeup_time = 50; 1627 break; 1628 default: 1629 case 2: 1630 wakeup_time = 2500; 1631 break; 1632 } 1633 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 1634 } else { 1635 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 1636 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; 1637 } 1638 } 1639 1640 static void parse_dsi_backlight_ports(struct intel_display *display, 1641 struct intel_panel *panel, 1642 enum port port) 1643 { 1644 enum port port_bc = DISPLAY_VER(display) >= 11 ? PORT_B : PORT_C; 1645 1646 if (!panel->vbt.dsi.config->dual_link || display->vbt.version < 197) { 1647 panel->vbt.dsi.bl_ports = BIT(port); 1648 if (panel->vbt.dsi.config->cabc_supported) 1649 panel->vbt.dsi.cabc_ports = BIT(port); 1650 1651 return; 1652 } 1653 1654 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { 1655 case DL_DCS_PORT_A: 1656 panel->vbt.dsi.bl_ports = BIT(PORT_A); 1657 break; 1658 case DL_DCS_PORT_C: 1659 panel->vbt.dsi.bl_ports = BIT(port_bc); 1660 break; 1661 default: 1662 case DL_DCS_PORT_A_AND_C: 1663 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); 1664 break; 1665 } 1666 1667 if (!panel->vbt.dsi.config->cabc_supported) 1668 return; 1669 1670 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { 1671 case DL_DCS_PORT_A: 1672 panel->vbt.dsi.cabc_ports = BIT(PORT_A); 1673 break; 1674 case DL_DCS_PORT_C: 1675 panel->vbt.dsi.cabc_ports = BIT(port_bc); 1676 break; 1677 default: 1678 case DL_DCS_PORT_A_AND_C: 1679 panel->vbt.dsi.cabc_ports = 1680 BIT(PORT_A) | BIT(port_bc); 1681 break; 1682 } 1683 } 1684 1685 static void 1686 parse_mipi_config(struct intel_display *display, 1687 struct intel_panel *panel) 1688 { 1689 const struct bdb_mipi_config *start; 1690 const struct mipi_config *config; 1691 const struct mipi_pps_data *pps; 1692 int panel_type = panel->vbt.panel_type; 1693 enum port port; 1694 1695 /* parse MIPI blocks only if LFP type is MIPI */ 1696 if (!intel_bios_is_dsi_present(display, &port)) 1697 return; 1698 1699 /* Initialize this to undefined indicating no generic MIPI support */ 1700 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1701 1702 start = bdb_find_section(display, BDB_MIPI_CONFIG); 1703 if (!start) { 1704 drm_dbg_kms(display->drm, "No MIPI config BDB found"); 1705 return; 1706 } 1707 1708 drm_dbg(display->drm, "Found MIPI Config block, panel index = %d\n", 1709 panel_type); 1710 1711 /* 1712 * get hold of the correct configuration block and pps data as per 1713 * the panel_type as index 1714 */ 1715 config = &start->config[panel_type]; 1716 pps = &start->pps[panel_type]; 1717 1718 /* store as of now full data. Trim when we realise all is not needed */ 1719 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1720 if (!panel->vbt.dsi.config) 1721 return; 1722 1723 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1724 if (!panel->vbt.dsi.pps) { 1725 kfree(panel->vbt.dsi.config); 1726 return; 1727 } 1728 1729 parse_dsi_backlight_ports(display, panel, port); 1730 1731 /* FIXME is the 90 vs. 270 correct? */ 1732 switch (config->rotation) { 1733 case ENABLE_ROTATION_0: 1734 /* 1735 * Most (all?) VBTs claim 0 degrees despite having 1736 * an upside down panel, thus we do not trust this. 1737 */ 1738 panel->vbt.dsi.orientation = 1739 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1740 break; 1741 case ENABLE_ROTATION_90: 1742 panel->vbt.dsi.orientation = 1743 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1744 break; 1745 case ENABLE_ROTATION_180: 1746 panel->vbt.dsi.orientation = 1747 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1748 break; 1749 case ENABLE_ROTATION_270: 1750 panel->vbt.dsi.orientation = 1751 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1752 break; 1753 } 1754 1755 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1756 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1757 } 1758 1759 /* Find the sequence block and size for the given panel. */ 1760 static const u8 * 1761 find_panel_sequence_block(struct intel_display *display, 1762 const struct bdb_mipi_sequence *sequence, 1763 u16 panel_id, u32 *seq_size) 1764 { 1765 u32 total = get_blocksize(sequence); 1766 const u8 *data = &sequence->data[0]; 1767 u8 current_id; 1768 u32 current_size; 1769 int header_size = sequence->version >= 3 ? 5 : 3; 1770 int index = 0; 1771 int i; 1772 1773 /* skip new block size */ 1774 if (sequence->version >= 3) 1775 data += 4; 1776 1777 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1778 if (index + header_size > total) { 1779 drm_err(display->drm, 1780 "Invalid sequence block (header)\n"); 1781 return NULL; 1782 } 1783 1784 current_id = *(data + index); 1785 if (sequence->version >= 3) 1786 current_size = *((const u32 *)(data + index + 1)); 1787 else 1788 current_size = *((const u16 *)(data + index + 1)); 1789 1790 index += header_size; 1791 1792 if (index + current_size > total) { 1793 drm_err(display->drm, "Invalid sequence block\n"); 1794 return NULL; 1795 } 1796 1797 if (current_id == panel_id) { 1798 *seq_size = current_size; 1799 return data + index; 1800 } 1801 1802 index += current_size; 1803 } 1804 1805 drm_err(display->drm, 1806 "Sequence block detected but no valid configuration\n"); 1807 1808 return NULL; 1809 } 1810 1811 static int goto_next_sequence(struct intel_display *display, 1812 const u8 *data, int index, int total) 1813 { 1814 u16 len; 1815 1816 /* Skip Sequence Byte. */ 1817 for (index = index + 1; index < total; index += len) { 1818 u8 operation_byte = *(data + index); 1819 index++; 1820 1821 switch (operation_byte) { 1822 case MIPI_SEQ_ELEM_END: 1823 return index; 1824 case MIPI_SEQ_ELEM_SEND_PKT: 1825 if (index + 4 > total) 1826 return 0; 1827 1828 len = *((const u16 *)(data + index + 2)) + 4; 1829 break; 1830 case MIPI_SEQ_ELEM_DELAY: 1831 len = 4; 1832 break; 1833 case MIPI_SEQ_ELEM_GPIO: 1834 len = 2; 1835 break; 1836 case MIPI_SEQ_ELEM_I2C: 1837 if (index + 7 > total) 1838 return 0; 1839 len = *(data + index + 6) + 7; 1840 break; 1841 default: 1842 drm_err(display->drm, "Unknown operation byte\n"); 1843 return 0; 1844 } 1845 } 1846 1847 return 0; 1848 } 1849 1850 static int goto_next_sequence_v3(struct intel_display *display, 1851 const u8 *data, int index, int total) 1852 { 1853 int seq_end; 1854 u16 len; 1855 u32 size_of_sequence; 1856 1857 /* 1858 * Could skip sequence based on Size of Sequence alone, but also do some 1859 * checking on the structure. 1860 */ 1861 if (total < 5) { 1862 drm_err(display->drm, "Too small sequence size\n"); 1863 return 0; 1864 } 1865 1866 /* Skip Sequence Byte. */ 1867 index++; 1868 1869 /* 1870 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1871 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1872 * byte. 1873 */ 1874 size_of_sequence = *((const u32 *)(data + index)); 1875 index += 4; 1876 1877 seq_end = index + size_of_sequence; 1878 if (seq_end > total) { 1879 drm_err(display->drm, "Invalid sequence size\n"); 1880 return 0; 1881 } 1882 1883 for (; index < total; index += len) { 1884 u8 operation_byte = *(data + index); 1885 index++; 1886 1887 if (operation_byte == MIPI_SEQ_ELEM_END) { 1888 if (index != seq_end) { 1889 drm_err(display->drm, 1890 "Invalid element structure\n"); 1891 return 0; 1892 } 1893 return index; 1894 } 1895 1896 len = *(data + index); 1897 index++; 1898 1899 /* 1900 * FIXME: Would be nice to check elements like for v1/v2 in 1901 * goto_next_sequence() above. 1902 */ 1903 switch (operation_byte) { 1904 case MIPI_SEQ_ELEM_SEND_PKT: 1905 case MIPI_SEQ_ELEM_DELAY: 1906 case MIPI_SEQ_ELEM_GPIO: 1907 case MIPI_SEQ_ELEM_I2C: 1908 case MIPI_SEQ_ELEM_SPI: 1909 case MIPI_SEQ_ELEM_PMIC: 1910 break; 1911 default: 1912 drm_err(display->drm, "Unknown operation byte %u\n", 1913 operation_byte); 1914 break; 1915 } 1916 } 1917 1918 return 0; 1919 } 1920 1921 /* 1922 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1923 * skip all delay + gpio operands and stop at the first DSI packet op. 1924 */ 1925 static int get_init_otp_deassert_fragment_len(struct intel_display *display, 1926 struct intel_panel *panel) 1927 { 1928 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1929 int index, len; 1930 1931 if (drm_WARN_ON(display->drm, 1932 !data || panel->vbt.dsi.seq_version != 1)) 1933 return 0; 1934 1935 /* index = 1 to skip sequence byte */ 1936 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1937 switch (data[index]) { 1938 case MIPI_SEQ_ELEM_SEND_PKT: 1939 return index == 1 ? 0 : index; 1940 case MIPI_SEQ_ELEM_DELAY: 1941 len = 5; /* 1 byte for operand + uint32 */ 1942 break; 1943 case MIPI_SEQ_ELEM_GPIO: 1944 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1945 break; 1946 default: 1947 return 0; 1948 } 1949 } 1950 1951 return 0; 1952 } 1953 1954 /* 1955 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence. 1956 * The deassert must be done before calling intel_dsi_device_ready, so for 1957 * these devices we split the init OTP sequence into a deassert sequence and 1958 * the actual init OTP part. 1959 */ 1960 static void vlv_fixup_mipi_sequences(struct intel_display *display, 1961 struct intel_panel *panel) 1962 { 1963 u8 *init_otp; 1964 int len; 1965 1966 /* Limit this to v1 vid-mode sequences */ 1967 if (panel->vbt.dsi.config->is_cmd_mode || 1968 panel->vbt.dsi.seq_version != 1) 1969 return; 1970 1971 /* Only do this if there are otp and assert seqs and no deassert seq */ 1972 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1973 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1974 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1975 return; 1976 1977 /* The deassert-sequence ends at the first DSI packet */ 1978 len = get_init_otp_deassert_fragment_len(display, panel); 1979 if (!len) 1980 return; 1981 1982 drm_dbg_kms(display->drm, 1983 "Using init OTP fragment to deassert reset\n"); 1984 1985 /* Copy the fragment, update seq byte and terminate it */ 1986 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1987 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1988 if (!panel->vbt.dsi.deassert_seq) 1989 return; 1990 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 1991 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 1992 /* Use the copy for deassert */ 1993 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 1994 panel->vbt.dsi.deassert_seq; 1995 /* Replace the last byte of the fragment with init OTP seq byte */ 1996 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 1997 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 1998 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 1999 } 2000 2001 /* 2002 * Some machines (eg. Lenovo 82TQ) appear to have broken 2003 * VBT sequences: 2004 * - INIT_OTP is not present at all 2005 * - what should be in INIT_OTP is in DISPLAY_ON 2006 * - what should be in DISPLAY_ON is in BACKLIGHT_ON 2007 * (along with the actual backlight stuff) 2008 * 2009 * To make those work we simply swap DISPLAY_ON and INIT_OTP. 2010 * 2011 * TODO: Do we need to limit this to specific machines, 2012 * or examine the contents of the sequences to 2013 * avoid false positives? 2014 */ 2015 static void icl_fixup_mipi_sequences(struct intel_display *display, 2016 struct intel_panel *panel) 2017 { 2018 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] && 2019 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) { 2020 drm_dbg_kms(display->drm, 2021 "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n"); 2022 2023 swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP], 2024 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]); 2025 } 2026 } 2027 2028 static void fixup_mipi_sequences(struct intel_display *display, 2029 struct intel_panel *panel) 2030 { 2031 struct drm_i915_private *i915 = to_i915(display->drm); 2032 2033 if (DISPLAY_VER(display) >= 11) 2034 icl_fixup_mipi_sequences(display, panel); 2035 else if (IS_VALLEYVIEW(i915)) 2036 vlv_fixup_mipi_sequences(display, panel); 2037 } 2038 2039 static void 2040 parse_mipi_sequence(struct intel_display *display, 2041 struct intel_panel *panel) 2042 { 2043 int panel_type = panel->vbt.panel_type; 2044 const struct bdb_mipi_sequence *sequence; 2045 const u8 *seq_data; 2046 u32 seq_size; 2047 u8 *data; 2048 int index = 0; 2049 2050 /* Only our generic panel driver uses the sequence block. */ 2051 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 2052 return; 2053 2054 sequence = bdb_find_section(display, BDB_MIPI_SEQUENCE); 2055 if (!sequence) { 2056 drm_dbg_kms(display->drm, 2057 "No MIPI Sequence found, parsing complete\n"); 2058 return; 2059 } 2060 2061 /* Fail gracefully for forward incompatible sequence block. */ 2062 if (sequence->version >= 4) { 2063 drm_err(display->drm, 2064 "Unable to parse MIPI Sequence Block v%u\n", 2065 sequence->version); 2066 return; 2067 } 2068 2069 drm_dbg(display->drm, "Found MIPI sequence block v%u\n", 2070 sequence->version); 2071 2072 seq_data = find_panel_sequence_block(display, sequence, panel_type, &seq_size); 2073 if (!seq_data) 2074 return; 2075 2076 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 2077 if (!data) 2078 return; 2079 2080 /* Parse the sequences, store pointers to each sequence. */ 2081 for (;;) { 2082 u8 seq_id = *(data + index); 2083 if (seq_id == MIPI_SEQ_END) 2084 break; 2085 2086 if (seq_id >= MIPI_SEQ_MAX) { 2087 drm_err(display->drm, "Unknown sequence %u\n", 2088 seq_id); 2089 goto err; 2090 } 2091 2092 /* Log about presence of sequences we won't run. */ 2093 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 2094 drm_dbg_kms(display->drm, 2095 "Unsupported sequence %u\n", seq_id); 2096 2097 panel->vbt.dsi.sequence[seq_id] = data + index; 2098 2099 if (sequence->version >= 3) 2100 index = goto_next_sequence_v3(display, data, index, seq_size); 2101 else 2102 index = goto_next_sequence(display, data, index, seq_size); 2103 if (!index) { 2104 drm_err(display->drm, "Invalid sequence %u\n", 2105 seq_id); 2106 goto err; 2107 } 2108 } 2109 2110 panel->vbt.dsi.data = data; 2111 panel->vbt.dsi.size = seq_size; 2112 panel->vbt.dsi.seq_version = sequence->version; 2113 2114 fixup_mipi_sequences(display, panel); 2115 2116 drm_dbg(display->drm, "MIPI related VBT parsing complete\n"); 2117 return; 2118 2119 err: 2120 kfree(data); 2121 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); 2122 } 2123 2124 static void 2125 parse_compression_parameters(struct intel_display *display) 2126 { 2127 const struct bdb_compression_parameters *params; 2128 struct intel_bios_encoder_data *devdata; 2129 u16 block_size; 2130 int index; 2131 2132 if (display->vbt.version < 198) 2133 return; 2134 2135 params = bdb_find_section(display, BDB_COMPRESSION_PARAMETERS); 2136 if (params) { 2137 /* Sanity checks */ 2138 if (params->entry_size != sizeof(params->data[0])) { 2139 drm_dbg_kms(display->drm, 2140 "VBT: unsupported compression param entry size\n"); 2141 return; 2142 } 2143 2144 block_size = get_blocksize(params); 2145 if (block_size < sizeof(*params)) { 2146 drm_dbg_kms(display->drm, 2147 "VBT: expected 16 compression param entries\n"); 2148 return; 2149 } 2150 } 2151 2152 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 2153 const struct child_device_config *child = &devdata->child; 2154 2155 if (!child->compression_enable) 2156 continue; 2157 2158 if (!params) { 2159 drm_dbg_kms(display->drm, 2160 "VBT: compression params not available\n"); 2161 continue; 2162 } 2163 2164 if (child->compression_method_cps) { 2165 drm_dbg_kms(display->drm, 2166 "VBT: CPS compression not supported\n"); 2167 continue; 2168 } 2169 2170 index = child->compression_structure_index; 2171 2172 devdata->dsc = kmemdup(¶ms->data[index], 2173 sizeof(*devdata->dsc), GFP_KERNEL); 2174 } 2175 } 2176 2177 static u8 translate_iboost(struct intel_display *display, u8 val) 2178 { 2179 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 2180 2181 if (val >= ARRAY_SIZE(mapping)) { 2182 drm_dbg_kms(display->drm, 2183 "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 2184 return 0; 2185 } 2186 return mapping[val]; 2187 } 2188 2189 static const u8 cnp_ddc_pin_map[] = { 2190 [0] = 0, /* N/A */ 2191 [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B, 2192 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C, 2193 [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */ 2194 [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */ 2195 }; 2196 2197 static const u8 icp_ddc_pin_map[] = { 2198 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2199 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2200 [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C, 2201 [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1, 2202 [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2, 2203 [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3, 2204 [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4, 2205 [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5, 2206 [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6, 2207 }; 2208 2209 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 2210 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2211 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2212 [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D, 2213 [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E, 2214 }; 2215 2216 static const u8 adls_ddc_pin_map[] = { 2217 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2218 [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1, 2219 [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2, 2220 [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3, 2221 [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4, 2222 }; 2223 2224 static const u8 gen9bc_tgp_ddc_pin_map[] = { 2225 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B, 2226 [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C, 2227 [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D, 2228 }; 2229 2230 static const u8 adlp_ddc_pin_map[] = { 2231 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2232 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2233 [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1, 2234 [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2, 2235 [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3, 2236 [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4, 2237 }; 2238 2239 static u8 map_ddc_pin(struct intel_display *display, u8 vbt_pin) 2240 { 2241 struct drm_i915_private *i915 = to_i915(display->drm); 2242 const u8 *ddc_pin_map; 2243 int i, n_entries; 2244 2245 if (INTEL_PCH_TYPE(i915) >= PCH_MTL || IS_ALDERLAKE_P(i915)) { 2246 ddc_pin_map = adlp_ddc_pin_map; 2247 n_entries = ARRAY_SIZE(adlp_ddc_pin_map); 2248 } else if (IS_ALDERLAKE_S(i915)) { 2249 ddc_pin_map = adls_ddc_pin_map; 2250 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 2251 } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) { 2252 return vbt_pin; 2253 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) { 2254 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 2255 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 2256 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(display) == 9) { 2257 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 2258 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 2259 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) { 2260 ddc_pin_map = icp_ddc_pin_map; 2261 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 2262 } else if (HAS_PCH_CNP(i915)) { 2263 ddc_pin_map = cnp_ddc_pin_map; 2264 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 2265 } else { 2266 /* Assuming direct map */ 2267 return vbt_pin; 2268 } 2269 2270 for (i = 0; i < n_entries; i++) { 2271 if (ddc_pin_map[i] == vbt_pin) 2272 return i; 2273 } 2274 2275 drm_dbg_kms(display->drm, 2276 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 2277 vbt_pin); 2278 return 0; 2279 } 2280 2281 static u8 dvo_port_type(u8 dvo_port) 2282 { 2283 switch (dvo_port) { 2284 case DVO_PORT_HDMIA: 2285 case DVO_PORT_HDMIB: 2286 case DVO_PORT_HDMIC: 2287 case DVO_PORT_HDMID: 2288 case DVO_PORT_HDMIE: 2289 case DVO_PORT_HDMIF: 2290 case DVO_PORT_HDMIG: 2291 case DVO_PORT_HDMIH: 2292 case DVO_PORT_HDMII: 2293 return DVO_PORT_HDMIA; 2294 case DVO_PORT_DPA: 2295 case DVO_PORT_DPB: 2296 case DVO_PORT_DPC: 2297 case DVO_PORT_DPD: 2298 case DVO_PORT_DPE: 2299 case DVO_PORT_DPF: 2300 case DVO_PORT_DPG: 2301 case DVO_PORT_DPH: 2302 case DVO_PORT_DPI: 2303 return DVO_PORT_DPA; 2304 case DVO_PORT_MIPIA: 2305 case DVO_PORT_MIPIB: 2306 case DVO_PORT_MIPIC: 2307 case DVO_PORT_MIPID: 2308 return DVO_PORT_MIPIA; 2309 default: 2310 return dvo_port; 2311 } 2312 } 2313 2314 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 2315 const int port_mapping[][3], u8 dvo_port) 2316 { 2317 enum port port; 2318 int i; 2319 2320 for (port = PORT_A; port < n_ports; port++) { 2321 for (i = 0; i < n_dvo; i++) { 2322 if (port_mapping[port][i] == -1) 2323 break; 2324 2325 if (dvo_port == port_mapping[port][i]) 2326 return port; 2327 } 2328 } 2329 2330 return PORT_NONE; 2331 } 2332 2333 static enum port dvo_port_to_port(struct intel_display *display, 2334 u8 dvo_port) 2335 { 2336 struct drm_i915_private *i915 = to_i915(display->drm); 2337 /* 2338 * Each DDI port can have more than one value on the "DVO Port" field, 2339 * so look for all the possible values for each port. 2340 */ 2341 static const int port_mapping[][3] = { 2342 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2343 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2344 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2345 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2346 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 2347 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2348 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2349 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2350 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2351 }; 2352 /* 2353 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 2354 * map to DDI A,B,TC1,TC2 respectively. 2355 */ 2356 static const int rkl_port_mapping[][3] = { 2357 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2358 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2359 [PORT_C] = { -1 }, 2360 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2361 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2362 }; 2363 /* 2364 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 2365 * PORT_F and PORT_G, we need to map that to correct VBT sections. 2366 */ 2367 static const int adls_port_mapping[][3] = { 2368 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2369 [PORT_B] = { -1 }, 2370 [PORT_C] = { -1 }, 2371 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2372 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2373 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2374 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2375 }; 2376 static const int xelpd_port_mapping[][3] = { 2377 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2378 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2379 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2380 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2381 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2382 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2383 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2384 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2385 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2386 }; 2387 2388 if (DISPLAY_VER(display) >= 13) 2389 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 2390 ARRAY_SIZE(xelpd_port_mapping[0]), 2391 xelpd_port_mapping, 2392 dvo_port); 2393 else if (IS_ALDERLAKE_S(i915)) 2394 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 2395 ARRAY_SIZE(adls_port_mapping[0]), 2396 adls_port_mapping, 2397 dvo_port); 2398 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 2399 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 2400 ARRAY_SIZE(rkl_port_mapping[0]), 2401 rkl_port_mapping, 2402 dvo_port); 2403 else 2404 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 2405 ARRAY_SIZE(port_mapping[0]), 2406 port_mapping, 2407 dvo_port); 2408 } 2409 2410 static enum port 2411 dsi_dvo_port_to_port(struct intel_display *display, u8 dvo_port) 2412 { 2413 switch (dvo_port) { 2414 case DVO_PORT_MIPIA: 2415 return PORT_A; 2416 case DVO_PORT_MIPIC: 2417 if (DISPLAY_VER(display) >= 11) 2418 return PORT_B; 2419 else 2420 return PORT_C; 2421 default: 2422 return PORT_NONE; 2423 } 2424 } 2425 2426 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata) 2427 { 2428 struct intel_display *display = devdata->display; 2429 const struct child_device_config *child = &devdata->child; 2430 enum port port; 2431 2432 port = dvo_port_to_port(display, child->dvo_port); 2433 if (port == PORT_NONE && DISPLAY_VER(display) >= 11) 2434 port = dsi_dvo_port_to_port(display, child->dvo_port); 2435 2436 return port; 2437 } 2438 2439 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 2440 { 2441 switch (vbt_max_link_rate) { 2442 default: 2443 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 2444 return 0; 2445 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 2446 return 2000000; 2447 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 2448 return 1350000; 2449 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 2450 return 1000000; 2451 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 2452 return 810000; 2453 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 2454 return 540000; 2455 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 2456 return 270000; 2457 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 2458 return 162000; 2459 } 2460 } 2461 2462 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 2463 { 2464 switch (vbt_max_link_rate) { 2465 default: 2466 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 2467 return 810000; 2468 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 2469 return 540000; 2470 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 2471 return 270000; 2472 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 2473 return 162000; 2474 } 2475 } 2476 2477 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) 2478 { 2479 if (!devdata || devdata->display->vbt.version < 216) 2480 return 0; 2481 2482 if (devdata->display->vbt.version >= 230) 2483 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); 2484 else 2485 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); 2486 } 2487 2488 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata) 2489 { 2490 if (!devdata || devdata->display->vbt.version < 244) 2491 return 0; 2492 2493 return devdata->child.dp_max_lane_count + 1; 2494 } 2495 2496 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 2497 enum port port) 2498 { 2499 struct intel_display *display = devdata->display; 2500 bool is_hdmi; 2501 2502 if (port != PORT_A || DISPLAY_VER(display) >= 12) 2503 return; 2504 2505 if (!intel_bios_encoder_supports_dvi(devdata)) 2506 return; 2507 2508 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2509 2510 drm_dbg_kms(display->drm, "VBT claims port A supports DVI%s, ignoring\n", 2511 is_hdmi ? "/HDMI" : ""); 2512 2513 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2514 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2515 } 2516 2517 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata, 2518 enum port port) 2519 { 2520 struct intel_display *display = devdata->display; 2521 struct drm_i915_private *i915 = to_i915(display->drm); 2522 2523 if (!intel_bios_encoder_supports_dvi(devdata)) 2524 return; 2525 2526 /* 2527 * Some BDW machines (eg. HP Pavilion 15-ab) shipped 2528 * with a HSW VBT where the level shifter value goes 2529 * up to 11, whereas the BDW max is 9. 2530 */ 2531 if (IS_BROADWELL(i915) && devdata->child.hdmi_level_shifter_value > 9) { 2532 drm_dbg_kms(display->drm, 2533 "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n", 2534 port_name(port), devdata->child.hdmi_level_shifter_value, 9); 2535 2536 devdata->child.hdmi_level_shifter_value = 9; 2537 } 2538 } 2539 2540 static bool 2541 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 2542 { 2543 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 2544 } 2545 2546 bool 2547 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 2548 { 2549 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 2550 } 2551 2552 bool 2553 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 2554 { 2555 return intel_bios_encoder_supports_dvi(devdata) && 2556 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 2557 } 2558 2559 bool 2560 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 2561 { 2562 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2563 } 2564 2565 bool 2566 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 2567 { 2568 return intel_bios_encoder_supports_dp(devdata) && 2569 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 2570 } 2571 2572 bool 2573 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata) 2574 { 2575 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT; 2576 } 2577 2578 bool 2579 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata) 2580 { 2581 return devdata && HAS_LSPCON(devdata->display) && devdata->child.lspcon; 2582 } 2583 2584 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ 2585 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) 2586 { 2587 if (!devdata || devdata->display->vbt.version < 158 || 2588 DISPLAY_VER(devdata->display) >= 14) 2589 return -1; 2590 2591 return devdata->child.hdmi_level_shifter_value; 2592 } 2593 2594 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata) 2595 { 2596 if (!devdata || devdata->display->vbt.version < 204) 2597 return 0; 2598 2599 switch (devdata->child.hdmi_max_data_rate) { 2600 default: 2601 MISSING_CASE(devdata->child.hdmi_max_data_rate); 2602 fallthrough; 2603 case HDMI_MAX_DATA_RATE_PLATFORM: 2604 return 0; 2605 case HDMI_MAX_DATA_RATE_594: 2606 return 594000; 2607 case HDMI_MAX_DATA_RATE_340: 2608 return 340000; 2609 case HDMI_MAX_DATA_RATE_300: 2610 return 300000; 2611 case HDMI_MAX_DATA_RATE_297: 2612 return 297000; 2613 case HDMI_MAX_DATA_RATE_165: 2614 return 165000; 2615 } 2616 } 2617 2618 static bool is_port_valid(struct intel_display *display, enum port port) 2619 { 2620 struct drm_i915_private *i915 = to_i915(display->drm); 2621 /* 2622 * On some ICL SKUs port F is not present, but broken VBTs mark 2623 * the port as present. Only try to initialize port F for the 2624 * SKUs that may actually have it. 2625 */ 2626 if (port == PORT_F && IS_ICELAKE(i915)) 2627 return IS_ICL_WITH_PORT_F(i915); 2628 2629 return true; 2630 } 2631 2632 static void print_ddi_port(const struct intel_bios_encoder_data *devdata) 2633 { 2634 struct intel_display *display = devdata->display; 2635 const struct child_device_config *child = &devdata->child; 2636 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt; 2637 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; 2638 enum port port; 2639 2640 port = intel_bios_encoder_port(devdata); 2641 if (port == PORT_NONE) 2642 return; 2643 2644 is_dvi = intel_bios_encoder_supports_dvi(devdata); 2645 is_dp = intel_bios_encoder_supports_dp(devdata); 2646 is_crt = intel_bios_encoder_supports_crt(devdata); 2647 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2648 is_edp = intel_bios_encoder_supports_edp(devdata); 2649 is_dsi = intel_bios_encoder_supports_dsi(devdata); 2650 2651 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 2652 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 2653 2654 drm_dbg_kms(display->drm, 2655 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 2656 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi, 2657 intel_bios_encoder_supports_dp_dual_mode(devdata), 2658 intel_bios_encoder_is_lspcon(devdata), 2659 supports_typec_usb, supports_tbt, 2660 devdata->dsc != NULL); 2661 2662 hdmi_level_shift = intel_bios_hdmi_level_shift(devdata); 2663 if (hdmi_level_shift >= 0) { 2664 drm_dbg_kms(display->drm, 2665 "Port %c VBT HDMI level shift: %d\n", 2666 port_name(port), hdmi_level_shift); 2667 } 2668 2669 max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata); 2670 if (max_tmds_clock) 2671 drm_dbg_kms(display->drm, 2672 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 2673 port_name(port), max_tmds_clock); 2674 2675 /* I_boost config for SKL and above */ 2676 dp_boost_level = intel_bios_dp_boost_level(devdata); 2677 if (dp_boost_level) 2678 drm_dbg_kms(display->drm, 2679 "Port %c VBT (e)DP boost level: %d\n", 2680 port_name(port), dp_boost_level); 2681 2682 hdmi_boost_level = intel_bios_hdmi_boost_level(devdata); 2683 if (hdmi_boost_level) 2684 drm_dbg_kms(display->drm, 2685 "Port %c VBT HDMI boost level: %d\n", 2686 port_name(port), hdmi_boost_level); 2687 2688 dp_max_link_rate = intel_bios_dp_max_link_rate(devdata); 2689 if (dp_max_link_rate) 2690 drm_dbg_kms(display->drm, 2691 "Port %c VBT DP max link rate: %d\n", 2692 port_name(port), dp_max_link_rate); 2693 2694 /* 2695 * FIXME need to implement support for VBT 2696 * vswing/preemph tables should this ever trigger. 2697 */ 2698 drm_WARN(display->drm, child->use_vbt_vswing, 2699 "Port %c asks to use VBT vswing/preemph tables\n", 2700 port_name(port)); 2701 } 2702 2703 static void parse_ddi_port(struct intel_bios_encoder_data *devdata) 2704 { 2705 struct intel_display *display = devdata->display; 2706 enum port port; 2707 2708 port = intel_bios_encoder_port(devdata); 2709 if (port == PORT_NONE) 2710 return; 2711 2712 if (!is_port_valid(display, port)) { 2713 drm_dbg_kms(display->drm, 2714 "VBT reports port %c as supported, but that can't be true: skipping\n", 2715 port_name(port)); 2716 return; 2717 } 2718 2719 sanitize_device_type(devdata, port); 2720 sanitize_hdmi_level_shift(devdata, port); 2721 } 2722 2723 static bool has_ddi_port_info(struct intel_display *display) 2724 { 2725 struct drm_i915_private *i915 = to_i915(display->drm); 2726 2727 return DISPLAY_VER(display) >= 5 || IS_G4X(i915); 2728 } 2729 2730 static void parse_ddi_ports(struct intel_display *display) 2731 { 2732 struct intel_bios_encoder_data *devdata; 2733 2734 if (!has_ddi_port_info(display)) 2735 return; 2736 2737 list_for_each_entry(devdata, &display->vbt.display_devices, node) 2738 parse_ddi_port(devdata); 2739 2740 list_for_each_entry(devdata, &display->vbt.display_devices, node) 2741 print_ddi_port(devdata); 2742 } 2743 2744 static int child_device_expected_size(u16 version) 2745 { 2746 BUILD_BUG_ON(sizeof(struct child_device_config) < 40); 2747 2748 if (version > 256) 2749 return -ENOENT; 2750 else if (version >= 256) 2751 return 40; 2752 else if (version >= 216) 2753 return 39; 2754 else if (version >= 196) 2755 return 38; 2756 else if (version >= 195) 2757 return 37; 2758 else if (version >= 111) 2759 return LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2760 else if (version >= 106) 2761 return 27; 2762 else 2763 return 22; 2764 } 2765 2766 static bool child_device_size_valid(struct intel_display *display, int size) 2767 { 2768 int expected_size; 2769 2770 expected_size = child_device_expected_size(display->vbt.version); 2771 if (expected_size < 0) { 2772 expected_size = sizeof(struct child_device_config); 2773 drm_dbg(display->drm, 2774 "Expected child device config size for VBT version %u not known; assuming %d\n", 2775 display->vbt.version, expected_size); 2776 } 2777 2778 /* Flag an error for unexpected size, but continue anyway. */ 2779 if (size != expected_size) 2780 drm_err(display->drm, 2781 "Unexpected child device config size %d (expected %d for VBT version %u)\n", 2782 size, expected_size, display->vbt.version); 2783 2784 /* The legacy sized child device config is the minimum we need. */ 2785 if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2786 drm_dbg_kms(display->drm, 2787 "Child device config size %d is too small.\n", 2788 size); 2789 return false; 2790 } 2791 2792 return true; 2793 } 2794 2795 static void 2796 parse_general_definitions(struct intel_display *display) 2797 { 2798 struct drm_i915_private *i915 = to_i915(display->drm); 2799 const struct bdb_general_definitions *defs; 2800 struct intel_bios_encoder_data *devdata; 2801 const struct child_device_config *child; 2802 int i, child_device_num; 2803 u16 block_size; 2804 int bus_pin; 2805 2806 defs = bdb_find_section(display, BDB_GENERAL_DEFINITIONS); 2807 if (!defs) { 2808 drm_dbg_kms(display->drm, 2809 "No general definition block is found, no devices defined.\n"); 2810 return; 2811 } 2812 2813 block_size = get_blocksize(defs); 2814 if (block_size < sizeof(*defs)) { 2815 drm_dbg_kms(display->drm, 2816 "General definitions block too small (%u)\n", 2817 block_size); 2818 return; 2819 } 2820 2821 bus_pin = defs->crt_ddc_gmbus_pin; 2822 drm_dbg_kms(display->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2823 if (intel_gmbus_is_valid_pin(i915, bus_pin)) 2824 display->vbt.crt_ddc_pin = bus_pin; 2825 2826 if (!child_device_size_valid(display, defs->child_dev_size)) 2827 return; 2828 2829 /* get the number of child device */ 2830 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2831 2832 for (i = 0; i < child_device_num; i++) { 2833 child = child_device_ptr(defs, i); 2834 if (!child->device_type) 2835 continue; 2836 2837 drm_dbg_kms(display->drm, 2838 "Found VBT child device with type 0x%x\n", 2839 child->device_type); 2840 2841 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2842 if (!devdata) 2843 break; 2844 2845 devdata->display = display; 2846 2847 /* 2848 * Copy as much as we know (sizeof) and is available 2849 * (child_dev_size) of the child device config. Accessing the 2850 * data must depend on VBT version. 2851 */ 2852 memcpy(&devdata->child, child, 2853 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2854 2855 list_add_tail(&devdata->node, &display->vbt.display_devices); 2856 } 2857 2858 if (list_empty(&display->vbt.display_devices)) 2859 drm_dbg_kms(display->drm, 2860 "no child dev is parsed from VBT\n"); 2861 } 2862 2863 /* Common defaults which may be overridden by VBT. */ 2864 static void 2865 init_vbt_defaults(struct intel_display *display) 2866 { 2867 struct drm_i915_private *i915 = to_i915(display->drm); 2868 2869 display->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2870 2871 /* general features */ 2872 display->vbt.int_tv_support = 1; 2873 display->vbt.int_crt_support = 1; 2874 2875 /* driver features */ 2876 display->vbt.int_lvds_support = 1; 2877 2878 /* Default to using SSC */ 2879 display->vbt.lvds_use_ssc = 1; 2880 /* 2881 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2882 * clock for LVDS. 2883 */ 2884 display->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(display, 2885 !HAS_PCH_SPLIT(i915)); 2886 drm_dbg_kms(display->drm, "Set default to SSC at %d kHz\n", 2887 display->vbt.lvds_ssc_freq); 2888 } 2889 2890 /* Common defaults which may be overridden by VBT. */ 2891 static void 2892 init_vbt_panel_defaults(struct intel_panel *panel) 2893 { 2894 /* Default to having backlight */ 2895 panel->vbt.backlight.present = true; 2896 2897 /* LFP panel data */ 2898 panel->vbt.lvds_dither = true; 2899 } 2900 2901 /* Defaults to initialize only if there is no VBT. */ 2902 static void 2903 init_vbt_missing_defaults(struct intel_display *display) 2904 { 2905 struct drm_i915_private *i915 = to_i915(display->drm); 2906 unsigned int ports = DISPLAY_RUNTIME_INFO(display)->port_mask; 2907 enum port port; 2908 2909 if (!HAS_DDI(display) && !IS_CHERRYVIEW(i915)) 2910 return; 2911 2912 for_each_port_masked(port, ports) { 2913 struct intel_bios_encoder_data *devdata; 2914 struct child_device_config *child; 2915 enum phy phy = intel_port_to_phy(i915, port); 2916 2917 /* 2918 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2919 * to detect it. 2920 */ 2921 if (intel_phy_is_tc(i915, phy)) 2922 continue; 2923 2924 /* Create fake child device config */ 2925 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2926 if (!devdata) 2927 break; 2928 2929 devdata->display = display; 2930 child = &devdata->child; 2931 2932 if (port == PORT_F) 2933 child->dvo_port = DVO_PORT_HDMIF; 2934 else if (port == PORT_E) 2935 child->dvo_port = DVO_PORT_HDMIE; 2936 else 2937 child->dvo_port = DVO_PORT_HDMIA + port; 2938 2939 if (port != PORT_A && port != PORT_E) 2940 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2941 2942 if (port != PORT_E) 2943 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2944 2945 if (port == PORT_A) 2946 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2947 2948 list_add_tail(&devdata->node, &display->vbt.display_devices); 2949 2950 drm_dbg_kms(display->drm, 2951 "Generating default VBT child device with type 0x%04x on port %c\n", 2952 child->device_type, port_name(port)); 2953 } 2954 2955 /* Bypass some minimum baseline VBT version checks */ 2956 display->vbt.version = 155; 2957 } 2958 2959 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2960 { 2961 const void *_vbt = vbt; 2962 2963 return _vbt + vbt->bdb_offset; 2964 } 2965 2966 /** 2967 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2968 * @display: display device 2969 * @buf: pointer to a buffer to validate 2970 * @size: size of the buffer 2971 * 2972 * Returns true on valid VBT. 2973 */ 2974 bool intel_bios_is_valid_vbt(struct intel_display *display, 2975 const void *buf, size_t size) 2976 { 2977 const struct vbt_header *vbt = buf; 2978 const struct bdb_header *bdb; 2979 2980 if (!vbt) 2981 return false; 2982 2983 if (sizeof(struct vbt_header) > size) { 2984 drm_dbg_kms(display->drm, "VBT header incomplete\n"); 2985 return false; 2986 } 2987 2988 if (memcmp(vbt->signature, "$VBT", 4)) { 2989 drm_dbg_kms(display->drm, "VBT invalid signature\n"); 2990 return false; 2991 } 2992 2993 if (vbt->vbt_size > size) { 2994 drm_dbg_kms(display->drm, 2995 "VBT incomplete (vbt_size overflows)\n"); 2996 return false; 2997 } 2998 2999 size = vbt->vbt_size; 3000 3001 if (range_overflows_t(size_t, 3002 vbt->bdb_offset, 3003 sizeof(struct bdb_header), 3004 size)) { 3005 drm_dbg_kms(display->drm, "BDB header incomplete\n"); 3006 return false; 3007 } 3008 3009 bdb = get_bdb_header(vbt); 3010 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 3011 drm_dbg_kms(display->drm, "BDB incomplete\n"); 3012 return false; 3013 } 3014 3015 return vbt; 3016 } 3017 3018 static struct vbt_header *firmware_get_vbt(struct intel_display *display, 3019 size_t *size) 3020 { 3021 struct vbt_header *vbt = NULL; 3022 const struct firmware *fw = NULL; 3023 const char *name = display->params.vbt_firmware; 3024 int ret; 3025 3026 if (!name || !*name) 3027 return NULL; 3028 3029 ret = request_firmware(&fw, name, display->drm->dev); 3030 if (ret) { 3031 drm_err(display->drm, 3032 "Requesting VBT firmware \"%s\" failed (%d)\n", 3033 name, ret); 3034 return NULL; 3035 } 3036 3037 if (intel_bios_is_valid_vbt(display, fw->data, fw->size)) { 3038 vbt = kmemdup(fw->data, fw->size, GFP_KERNEL); 3039 if (vbt) { 3040 drm_dbg_kms(display->drm, 3041 "Found valid VBT firmware \"%s\"\n", name); 3042 if (size) 3043 *size = fw->size; 3044 } 3045 } else { 3046 drm_dbg_kms(display->drm, "Invalid VBT firmware \"%s\"\n", 3047 name); 3048 } 3049 3050 release_firmware(fw); 3051 3052 return vbt; 3053 } 3054 3055 static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset) 3056 { 3057 intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset); 3058 3059 return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER); 3060 } 3061 3062 static struct vbt_header *spi_oprom_get_vbt(struct intel_display *display, 3063 size_t *size) 3064 { 3065 struct drm_i915_private *i915 = to_i915(display->drm); 3066 u32 count, data, found, store = 0; 3067 u32 static_region, oprom_offset; 3068 u32 oprom_size = 0x200000; 3069 u16 vbt_size; 3070 u32 *vbt; 3071 3072 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS); 3073 static_region &= OPTIONROM_SPI_REGIONID_MASK; 3074 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region); 3075 3076 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET); 3077 oprom_offset &= OROM_OFFSET_MASK; 3078 3079 for (count = 0; count < oprom_size; count += 4) { 3080 data = intel_spi_read(&i915->uncore, oprom_offset + count); 3081 if (data == *((const u32 *)"$VBT")) { 3082 found = oprom_offset + count; 3083 break; 3084 } 3085 } 3086 3087 if (count >= oprom_size) 3088 goto err_not_found; 3089 3090 /* Get VBT size and allocate space for the VBT */ 3091 vbt_size = intel_spi_read(&i915->uncore, 3092 found + offsetof(struct vbt_header, vbt_size)); 3093 vbt_size &= 0xffff; 3094 3095 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); 3096 if (!vbt) 3097 goto err_not_found; 3098 3099 for (count = 0; count < vbt_size; count += 4) 3100 *(vbt + store++) = intel_spi_read(&i915->uncore, found + count); 3101 3102 if (!intel_bios_is_valid_vbt(display, vbt, vbt_size)) 3103 goto err_free_vbt; 3104 3105 drm_dbg_kms(display->drm, "Found valid VBT in SPI flash\n"); 3106 3107 if (size) 3108 *size = vbt_size; 3109 3110 return (struct vbt_header *)vbt; 3111 3112 err_free_vbt: 3113 kfree(vbt); 3114 err_not_found: 3115 return NULL; 3116 } 3117 3118 static struct vbt_header *oprom_get_vbt(struct intel_display *display, 3119 size_t *sizep) 3120 { 3121 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 3122 void __iomem *p = NULL, *oprom; 3123 struct vbt_header *vbt; 3124 u16 vbt_size; 3125 size_t i, size; 3126 3127 oprom = pci_map_rom(pdev, &size); 3128 if (!oprom) 3129 return NULL; 3130 3131 /* Scour memory looking for the VBT signature. */ 3132 for (i = 0; i + 4 < size; i += 4) { 3133 if (ioread32(oprom + i) != *((const u32 *)"$VBT")) 3134 continue; 3135 3136 p = oprom + i; 3137 size -= i; 3138 break; 3139 } 3140 3141 if (!p) 3142 goto err_unmap_oprom; 3143 3144 if (sizeof(struct vbt_header) > size) { 3145 drm_dbg(display->drm, "VBT header incomplete\n"); 3146 goto err_unmap_oprom; 3147 } 3148 3149 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size)); 3150 if (vbt_size > size) { 3151 drm_dbg(display->drm, 3152 "VBT incomplete (vbt_size overflows)\n"); 3153 goto err_unmap_oprom; 3154 } 3155 3156 /* The rest will be validated by intel_bios_is_valid_vbt() */ 3157 vbt = kmalloc(vbt_size, GFP_KERNEL); 3158 if (!vbt) 3159 goto err_unmap_oprom; 3160 3161 memcpy_fromio(vbt, p, vbt_size); 3162 3163 if (!intel_bios_is_valid_vbt(display, vbt, vbt_size)) 3164 goto err_free_vbt; 3165 3166 pci_unmap_rom(pdev, oprom); 3167 3168 if (sizep) 3169 *sizep = vbt_size; 3170 3171 drm_dbg_kms(display->drm, "Found valid VBT in PCI ROM\n"); 3172 3173 return vbt; 3174 3175 err_free_vbt: 3176 kfree(vbt); 3177 err_unmap_oprom: 3178 pci_unmap_rom(pdev, oprom); 3179 3180 return NULL; 3181 } 3182 3183 static const struct vbt_header *intel_bios_get_vbt(struct intel_display *display, 3184 size_t *sizep) 3185 { 3186 struct drm_i915_private *i915 = to_i915(display->drm); 3187 const struct vbt_header *vbt = NULL; 3188 intel_wakeref_t wakeref; 3189 3190 vbt = firmware_get_vbt(display, sizep); 3191 3192 if (!vbt) 3193 vbt = intel_opregion_get_vbt(display, sizep); 3194 3195 /* 3196 * If the OpRegion does not have VBT, look in SPI flash 3197 * through MMIO or PCI mapping 3198 */ 3199 if (!vbt && IS_DGFX(i915)) 3200 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 3201 vbt = spi_oprom_get_vbt(display, sizep); 3202 3203 if (!vbt) 3204 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 3205 vbt = oprom_get_vbt(display, sizep); 3206 3207 return vbt; 3208 } 3209 3210 /** 3211 * intel_bios_init - find VBT and initialize settings from the BIOS 3212 * @display: display device instance 3213 * 3214 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 3215 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 3216 * initialize some defaults if the VBT is not present at all. 3217 */ 3218 void intel_bios_init(struct intel_display *display) 3219 { 3220 const struct vbt_header *vbt; 3221 const struct bdb_header *bdb; 3222 3223 INIT_LIST_HEAD(&display->vbt.display_devices); 3224 INIT_LIST_HEAD(&display->vbt.bdb_blocks); 3225 3226 if (!HAS_DISPLAY(display)) { 3227 drm_dbg_kms(display->drm, 3228 "Skipping VBT init due to disabled display.\n"); 3229 return; 3230 } 3231 3232 init_vbt_defaults(display); 3233 3234 vbt = intel_bios_get_vbt(display, NULL); 3235 3236 if (!vbt) 3237 goto out; 3238 3239 bdb = get_bdb_header(vbt); 3240 display->vbt.version = bdb->version; 3241 3242 drm_dbg_kms(display->drm, 3243 "VBT signature \"%.*s\", BDB version %d\n", 3244 (int)sizeof(vbt->signature), vbt->signature, 3245 display->vbt.version); 3246 3247 init_bdb_blocks(display, bdb); 3248 3249 /* Grab useful general definitions */ 3250 parse_general_features(display); 3251 parse_general_definitions(display); 3252 parse_driver_features(display); 3253 3254 /* Depends on child device list */ 3255 parse_compression_parameters(display); 3256 3257 out: 3258 if (!vbt) { 3259 drm_info(display->drm, 3260 "Failed to find VBIOS tables (VBT)\n"); 3261 init_vbt_missing_defaults(display); 3262 } 3263 3264 /* Further processing on pre-parsed or generated child device data */ 3265 parse_sdvo_device_mapping(display); 3266 parse_ddi_ports(display); 3267 3268 kfree(vbt); 3269 } 3270 3271 static void intel_bios_init_panel(struct intel_display *display, 3272 struct intel_panel *panel, 3273 const struct intel_bios_encoder_data *devdata, 3274 const struct drm_edid *drm_edid, 3275 bool use_fallback) 3276 { 3277 /* already have it? */ 3278 if (panel->vbt.panel_type >= 0) { 3279 drm_WARN_ON(display->drm, !use_fallback); 3280 return; 3281 } 3282 3283 panel->vbt.panel_type = get_panel_type(display, devdata, 3284 drm_edid, use_fallback); 3285 if (panel->vbt.panel_type < 0) { 3286 drm_WARN_ON(display->drm, use_fallback); 3287 return; 3288 } 3289 3290 init_vbt_panel_defaults(panel); 3291 3292 parse_panel_options(display, panel); 3293 parse_generic_dtd(display, panel); 3294 parse_lfp_data(display, panel); 3295 parse_lfp_backlight(display, panel); 3296 parse_sdvo_lvds_data(display, panel); 3297 parse_panel_driver_features(display, panel); 3298 parse_power_conservation_features(display, panel); 3299 parse_edp(display, panel); 3300 parse_psr(display, panel); 3301 parse_mipi_config(display, panel); 3302 parse_mipi_sequence(display, panel); 3303 } 3304 3305 void intel_bios_init_panel_early(struct intel_display *display, 3306 struct intel_panel *panel, 3307 const struct intel_bios_encoder_data *devdata) 3308 { 3309 intel_bios_init_panel(display, panel, devdata, NULL, false); 3310 } 3311 3312 void intel_bios_init_panel_late(struct intel_display *display, 3313 struct intel_panel *panel, 3314 const struct intel_bios_encoder_data *devdata, 3315 const struct drm_edid *drm_edid) 3316 { 3317 intel_bios_init_panel(display, panel, devdata, drm_edid, true); 3318 } 3319 3320 /** 3321 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 3322 * @display: display device instance 3323 */ 3324 void intel_bios_driver_remove(struct intel_display *display) 3325 { 3326 struct intel_bios_encoder_data *devdata, *nd; 3327 struct bdb_block_entry *entry, *ne; 3328 3329 list_for_each_entry_safe(devdata, nd, &display->vbt.display_devices, 3330 node) { 3331 list_del(&devdata->node); 3332 kfree(devdata->dsc); 3333 kfree(devdata); 3334 } 3335 3336 list_for_each_entry_safe(entry, ne, &display->vbt.bdb_blocks, node) { 3337 list_del(&entry->node); 3338 kfree(entry); 3339 } 3340 } 3341 3342 void intel_bios_fini_panel(struct intel_panel *panel) 3343 { 3344 kfree(panel->vbt.sdvo_lvds_vbt_mode); 3345 panel->vbt.sdvo_lvds_vbt_mode = NULL; 3346 kfree(panel->vbt.lfp_vbt_mode); 3347 panel->vbt.lfp_vbt_mode = NULL; 3348 kfree(panel->vbt.dsi.data); 3349 panel->vbt.dsi.data = NULL; 3350 kfree(panel->vbt.dsi.pps); 3351 panel->vbt.dsi.pps = NULL; 3352 kfree(panel->vbt.dsi.config); 3353 panel->vbt.dsi.config = NULL; 3354 kfree(panel->vbt.dsi.deassert_seq); 3355 panel->vbt.dsi.deassert_seq = NULL; 3356 } 3357 3358 /** 3359 * intel_bios_is_tv_present - is integrated TV present in VBT 3360 * @display: display device instance 3361 * 3362 * Return true if TV is present. If no child devices were parsed from VBT, 3363 * assume TV is present. 3364 */ 3365 bool intel_bios_is_tv_present(struct intel_display *display) 3366 { 3367 const struct intel_bios_encoder_data *devdata; 3368 3369 if (!display->vbt.int_tv_support) 3370 return false; 3371 3372 if (list_empty(&display->vbt.display_devices)) 3373 return true; 3374 3375 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3376 const struct child_device_config *child = &devdata->child; 3377 3378 /* 3379 * If the device type is not TV, continue. 3380 */ 3381 switch (child->device_type) { 3382 case DEVICE_TYPE_INT_TV: 3383 case DEVICE_TYPE_TV: 3384 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 3385 break; 3386 default: 3387 continue; 3388 } 3389 /* Only when the addin_offset is non-zero, it is regarded 3390 * as present. 3391 */ 3392 if (child->addin_offset) 3393 return true; 3394 } 3395 3396 return false; 3397 } 3398 3399 /** 3400 * intel_bios_is_lvds_present - is LVDS present in VBT 3401 * @display: display device instance 3402 * @i2c_pin: i2c pin for LVDS if present 3403 * 3404 * Return true if LVDS is present. If no child devices were parsed from VBT, 3405 * assume LVDS is present. 3406 */ 3407 bool intel_bios_is_lvds_present(struct intel_display *display, u8 *i2c_pin) 3408 { 3409 struct drm_i915_private *i915 = to_i915(display->drm); 3410 const struct intel_bios_encoder_data *devdata; 3411 3412 if (list_empty(&display->vbt.display_devices)) 3413 return true; 3414 3415 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3416 const struct child_device_config *child = &devdata->child; 3417 3418 /* If the device type is not LFP, continue. 3419 * We have to check both the new identifiers as well as the 3420 * old for compatibility with some BIOSes. 3421 */ 3422 if (child->device_type != DEVICE_TYPE_INT_LFP && 3423 child->device_type != DEVICE_TYPE_LFP) 3424 continue; 3425 3426 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin)) 3427 *i2c_pin = child->i2c_pin; 3428 3429 /* However, we cannot trust the BIOS writers to populate 3430 * the VBT correctly. Since LVDS requires additional 3431 * information from AIM blocks, a non-zero addin offset is 3432 * a good indicator that the LVDS is actually present. 3433 */ 3434 if (child->addin_offset) 3435 return true; 3436 3437 /* But even then some BIOS writers perform some black magic 3438 * and instantiate the device without reference to any 3439 * additional data. Trust that if the VBT was written into 3440 * the OpRegion then they have validated the LVDS's existence. 3441 */ 3442 return intel_opregion_vbt_present(display); 3443 } 3444 3445 return false; 3446 } 3447 3448 /** 3449 * intel_bios_is_port_present - is the specified digital port present 3450 * @display: display device instance 3451 * @port: port to check 3452 * 3453 * Return true if the device in %port is present. 3454 */ 3455 bool intel_bios_is_port_present(struct intel_display *display, enum port port) 3456 { 3457 const struct intel_bios_encoder_data *devdata; 3458 3459 if (WARN_ON(!has_ddi_port_info(display))) 3460 return true; 3461 3462 if (!is_port_valid(display, port)) 3463 return false; 3464 3465 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3466 const struct child_device_config *child = &devdata->child; 3467 3468 if (dvo_port_to_port(display, child->dvo_port) == port) 3469 return true; 3470 } 3471 3472 return false; 3473 } 3474 3475 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) 3476 { 3477 const struct child_device_config *child = &devdata->child; 3478 3479 if (!devdata) 3480 return false; 3481 3482 if (!intel_bios_encoder_supports_dp(devdata) || 3483 !intel_bios_encoder_supports_hdmi(devdata)) 3484 return false; 3485 3486 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) 3487 return true; 3488 3489 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 3490 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && 3491 child->aux_channel != 0) 3492 return true; 3493 3494 return false; 3495 } 3496 3497 /** 3498 * intel_bios_is_dsi_present - is DSI present in VBT 3499 * @display: display device instance 3500 * @port: port for DSI if present 3501 * 3502 * Return true if DSI is present, and return the port in %port. 3503 */ 3504 bool intel_bios_is_dsi_present(struct intel_display *display, 3505 enum port *port) 3506 { 3507 const struct intel_bios_encoder_data *devdata; 3508 3509 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3510 const struct child_device_config *child = &devdata->child; 3511 u8 dvo_port = child->dvo_port; 3512 3513 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3514 continue; 3515 3516 if (dsi_dvo_port_to_port(display, dvo_port) == PORT_NONE) { 3517 drm_dbg_kms(display->drm, 3518 "VBT has unsupported DSI port %c\n", 3519 port_name(dvo_port - DVO_PORT_MIPIA)); 3520 continue; 3521 } 3522 3523 if (port) 3524 *port = dsi_dvo_port_to_port(display, dvo_port); 3525 return true; 3526 } 3527 3528 return false; 3529 } 3530 3531 static void fill_dsc(struct intel_crtc_state *crtc_state, 3532 struct dsc_compression_parameters_entry *dsc, 3533 int dsc_max_bpc) 3534 { 3535 struct intel_display *display = to_intel_display(crtc_state); 3536 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 3537 int bpc = 8; 3538 3539 vdsc_cfg->dsc_version_major = dsc->version_major; 3540 vdsc_cfg->dsc_version_minor = dsc->version_minor; 3541 3542 if (dsc->support_12bpc && dsc_max_bpc >= 12) 3543 bpc = 12; 3544 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 3545 bpc = 10; 3546 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 3547 bpc = 8; 3548 else 3549 drm_dbg_kms(display->drm, "VBT: Unsupported BPC %d for DCS\n", 3550 dsc_max_bpc); 3551 3552 crtc_state->pipe_bpp = bpc * 3; 3553 3554 crtc_state->dsc.compressed_bpp_x16 = fxp_q4_from_int(min(crtc_state->pipe_bpp, 3555 VBT_DSC_MAX_BPP(dsc->max_bpp))); 3556 3557 /* 3558 * FIXME: This is ugly, and slice count should take DSC engine 3559 * throughput etc. into account. 3560 * 3561 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 3562 */ 3563 if (dsc->slices_per_line & BIT(2)) { 3564 crtc_state->dsc.slice_count = 4; 3565 } else if (dsc->slices_per_line & BIT(1)) { 3566 crtc_state->dsc.slice_count = 2; 3567 } else { 3568 /* FIXME */ 3569 if (!(dsc->slices_per_line & BIT(0))) 3570 drm_dbg_kms(display->drm, 3571 "VBT: Unsupported DSC slice count for DSI\n"); 3572 3573 crtc_state->dsc.slice_count = 1; 3574 } 3575 3576 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 3577 crtc_state->dsc.slice_count != 0) 3578 drm_dbg_kms(display->drm, 3579 "VBT: DSC hdisplay %d not divisible by slice count %d\n", 3580 crtc_state->hw.adjusted_mode.crtc_hdisplay, 3581 crtc_state->dsc.slice_count); 3582 3583 /* 3584 * The VBT rc_buffer_block_size and rc_buffer_size definitions 3585 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 3586 */ 3587 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 3588 dsc->rc_buffer_size); 3589 3590 /* FIXME: DSI spec says bpc + 1 for this one */ 3591 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 3592 3593 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 3594 3595 vdsc_cfg->slice_height = dsc->slice_height; 3596 } 3597 3598 /* FIXME: initially DSI specific */ 3599 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 3600 struct intel_crtc_state *crtc_state, 3601 int dsc_max_bpc) 3602 { 3603 struct intel_display *display = to_intel_display(encoder); 3604 const struct intel_bios_encoder_data *devdata; 3605 3606 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3607 const struct child_device_config *child = &devdata->child; 3608 3609 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3610 continue; 3611 3612 if (dsi_dvo_port_to_port(display, child->dvo_port) == encoder->port) { 3613 if (!devdata->dsc) 3614 return false; 3615 3616 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 3617 3618 return true; 3619 } 3620 } 3621 3622 return false; 3623 } 3624 3625 static const u8 adlp_aux_ch_map[] = { 3626 [AUX_CH_A] = DP_AUX_A, 3627 [AUX_CH_B] = DP_AUX_B, 3628 [AUX_CH_C] = DP_AUX_C, 3629 [AUX_CH_D_XELPD] = DP_AUX_D, 3630 [AUX_CH_E_XELPD] = DP_AUX_E, 3631 [AUX_CH_USBC1] = DP_AUX_F, 3632 [AUX_CH_USBC2] = DP_AUX_G, 3633 [AUX_CH_USBC3] = DP_AUX_H, 3634 [AUX_CH_USBC4] = DP_AUX_I, 3635 }; 3636 3637 /* 3638 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 3639 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 3640 */ 3641 static const u8 adls_aux_ch_map[] = { 3642 [AUX_CH_A] = DP_AUX_A, 3643 [AUX_CH_USBC1] = DP_AUX_B, 3644 [AUX_CH_USBC2] = DP_AUX_C, 3645 [AUX_CH_USBC3] = DP_AUX_D, 3646 [AUX_CH_USBC4] = DP_AUX_E, 3647 }; 3648 3649 /* 3650 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 3651 * map to DDI A,B,TC1,TC2 respectively. 3652 */ 3653 static const u8 rkl_aux_ch_map[] = { 3654 [AUX_CH_A] = DP_AUX_A, 3655 [AUX_CH_B] = DP_AUX_B, 3656 [AUX_CH_USBC1] = DP_AUX_C, 3657 [AUX_CH_USBC2] = DP_AUX_D, 3658 }; 3659 3660 static const u8 direct_aux_ch_map[] = { 3661 [AUX_CH_A] = DP_AUX_A, 3662 [AUX_CH_B] = DP_AUX_B, 3663 [AUX_CH_C] = DP_AUX_C, 3664 [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */ 3665 [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */ 3666 [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */ 3667 [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */ 3668 [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */ 3669 [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */ 3670 }; 3671 3672 static enum aux_ch map_aux_ch(struct intel_display *display, u8 aux_channel) 3673 { 3674 struct drm_i915_private *i915 = to_i915(display->drm); 3675 const u8 *aux_ch_map; 3676 int i, n_entries; 3677 3678 if (DISPLAY_VER(display) >= 13) { 3679 aux_ch_map = adlp_aux_ch_map; 3680 n_entries = ARRAY_SIZE(adlp_aux_ch_map); 3681 } else if (IS_ALDERLAKE_S(i915)) { 3682 aux_ch_map = adls_aux_ch_map; 3683 n_entries = ARRAY_SIZE(adls_aux_ch_map); 3684 } else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) { 3685 aux_ch_map = rkl_aux_ch_map; 3686 n_entries = ARRAY_SIZE(rkl_aux_ch_map); 3687 } else { 3688 aux_ch_map = direct_aux_ch_map; 3689 n_entries = ARRAY_SIZE(direct_aux_ch_map); 3690 } 3691 3692 for (i = 0; i < n_entries; i++) { 3693 if (aux_ch_map[i] == aux_channel) 3694 return i; 3695 } 3696 3697 drm_dbg_kms(display->drm, 3698 "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n", 3699 aux_channel); 3700 3701 return AUX_CH_NONE; 3702 } 3703 3704 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata) 3705 { 3706 if (!devdata || !devdata->child.aux_channel) 3707 return AUX_CH_NONE; 3708 3709 return map_aux_ch(devdata->display, devdata->child.aux_channel); 3710 } 3711 3712 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata) 3713 { 3714 struct intel_display *display; 3715 u8 aux_channel; 3716 int count = 0; 3717 3718 if (!devdata || !devdata->child.aux_channel) 3719 return false; 3720 3721 display = devdata->display; 3722 aux_channel = devdata->child.aux_channel; 3723 3724 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3725 if (intel_bios_encoder_supports_dp(devdata) && 3726 aux_channel == devdata->child.aux_channel) 3727 count++; 3728 } 3729 3730 return count > 1; 3731 } 3732 3733 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata) 3734 { 3735 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost) 3736 return 0; 3737 3738 return translate_iboost(devdata->display, devdata->child.dp_iboost_level); 3739 } 3740 3741 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 3742 { 3743 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost) 3744 return 0; 3745 3746 return translate_iboost(devdata->display, devdata->child.hdmi_iboost_level); 3747 } 3748 3749 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata) 3750 { 3751 if (!devdata || !devdata->child.ddc_pin) 3752 return 0; 3753 3754 return map_ddc_pin(devdata->display, devdata->child.ddc_pin); 3755 } 3756 3757 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 3758 { 3759 return devdata->display->vbt.version >= 195 && devdata->child.dp_usb_type_c; 3760 } 3761 3762 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 3763 { 3764 return devdata->display->vbt.version >= 209 && devdata->child.tbt; 3765 } 3766 3767 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata) 3768 { 3769 return devdata && devdata->child.lane_reversal; 3770 } 3771 3772 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata) 3773 { 3774 return devdata && devdata->child.hpd_invert; 3775 } 3776 3777 const struct intel_bios_encoder_data * 3778 intel_bios_encoder_data_lookup(struct intel_display *display, enum port port) 3779 { 3780 struct intel_bios_encoder_data *devdata; 3781 3782 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3783 if (intel_bios_encoder_port(devdata) == port) 3784 return devdata; 3785 } 3786 3787 return NULL; 3788 } 3789 3790 void intel_bios_for_each_encoder(struct intel_display *display, 3791 void (*func)(struct intel_display *display, 3792 const struct intel_bios_encoder_data *devdata)) 3793 { 3794 struct intel_bios_encoder_data *devdata; 3795 3796 list_for_each_entry(devdata, &display->vbt.display_devices, node) 3797 func(display, devdata); 3798 } 3799 3800 static int intel_bios_vbt_show(struct seq_file *m, void *unused) 3801 { 3802 struct intel_display *display = m->private; 3803 const void *vbt; 3804 size_t vbt_size; 3805 3806 vbt = intel_bios_get_vbt(display, &vbt_size); 3807 3808 if (vbt) { 3809 seq_write(m, vbt, vbt_size); 3810 kfree(vbt); 3811 } 3812 3813 return 0; 3814 } 3815 3816 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt); 3817 3818 void intel_bios_debugfs_register(struct intel_display *display) 3819 { 3820 struct drm_minor *minor = display->drm->primary; 3821 3822 debugfs_create_file("i915_vbt", 0444, minor->debugfs_root, 3823 display, &intel_bios_vbt_fops); 3824 } 3825