xref: /linux/drivers/gpu/drm/i915/display/intel_bios.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/firmware.h>
29 
30 #include <drm/display/drm_dp_helper.h>
31 #include <drm/display/drm_dsc_helper.h>
32 #include <drm/drm_edid.h>
33 
34 #include "i915_drv.h"
35 #include "i915_reg.h"
36 #include "intel_display.h"
37 #include "intel_display_types.h"
38 #include "intel_gmbus.h"
39 
40 #define _INTEL_BIOS_PRIVATE
41 #include "intel_vbt_defs.h"
42 
43 /**
44  * DOC: Video BIOS Table (VBT)
45  *
46  * The Video BIOS Table, or VBT, provides platform and board specific
47  * configuration information to the driver that is not discoverable or available
48  * through other means. The configuration is mostly related to display
49  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
50  * the PCI ROM.
51  *
52  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
53  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
54  * contain the actual configuration information. The VBT Header, and thus the
55  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
56  * BDB Header. The data blocks are concatenated after the BDB Header. The data
57  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
58  * data. (Block 53, the MIPI Sequence Block is an exception.)
59  *
60  * The driver parses the VBT during load. The relevant information is stored in
61  * driver private data for ease of use, and the actual VBT is not read after
62  * that.
63  */
64 
65 /* Wrapper for VBT child device config */
66 struct intel_bios_encoder_data {
67 	struct drm_i915_private *i915;
68 
69 	struct child_device_config child;
70 	struct dsc_compression_parameters_entry *dsc;
71 	struct list_head node;
72 };
73 
74 #define	SLAVE_ADDR1	0x70
75 #define	SLAVE_ADDR2	0x72
76 
77 /* Get BDB block size given a pointer to Block ID. */
78 static u32 _get_blocksize(const u8 *block_base)
79 {
80 	/* The MIPI Sequence Block v3+ has a separate size field. */
81 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
82 		return *((const u32 *)(block_base + 4));
83 	else
84 		return *((const u16 *)(block_base + 1));
85 }
86 
87 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
88 static u32 get_blocksize(const void *block_data)
89 {
90 	return _get_blocksize(block_data - 3);
91 }
92 
93 static const void *
94 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
95 {
96 	const struct bdb_header *bdb = _bdb;
97 	const u8 *base = _bdb;
98 	int index = 0;
99 	u32 total, current_size;
100 	enum bdb_block_id current_id;
101 
102 	/* skip to first section */
103 	index += bdb->header_size;
104 	total = bdb->bdb_size;
105 
106 	/* walk the sections looking for section_id */
107 	while (index + 3 < total) {
108 		current_id = *(base + index);
109 		current_size = _get_blocksize(base + index);
110 		index += 3;
111 
112 		if (index + current_size > total)
113 			return NULL;
114 
115 		if (current_id == section_id)
116 			return base + index;
117 
118 		index += current_size;
119 	}
120 
121 	return NULL;
122 }
123 
124 /*
125  * Offset from the start of BDB to the start of the
126  * block data (just past the block header).
127  */
128 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
129 {
130 	const void *block;
131 
132 	block = find_raw_section(bdb, section_id);
133 	if (!block)
134 		return 0;
135 
136 	return block - bdb;
137 }
138 
139 struct bdb_block_entry {
140 	struct list_head node;
141 	enum bdb_block_id section_id;
142 	u8 data[];
143 };
144 
145 static const void *
146 bdb_find_section(struct drm_i915_private *i915,
147 		 enum bdb_block_id section_id)
148 {
149 	struct bdb_block_entry *entry;
150 
151 	list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
152 		if (entry->section_id == section_id)
153 			return entry->data + 3;
154 	}
155 
156 	return NULL;
157 }
158 
159 static const struct {
160 	enum bdb_block_id section_id;
161 	size_t min_size;
162 } bdb_blocks[] = {
163 	{ .section_id = BDB_GENERAL_FEATURES,
164 	  .min_size = sizeof(struct bdb_general_features), },
165 	{ .section_id = BDB_GENERAL_DEFINITIONS,
166 	  .min_size = sizeof(struct bdb_general_definitions), },
167 	{ .section_id = BDB_PSR,
168 	  .min_size = sizeof(struct bdb_psr), },
169 	{ .section_id = BDB_DRIVER_FEATURES,
170 	  .min_size = sizeof(struct bdb_driver_features), },
171 	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
172 	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
173 	{ .section_id = BDB_SDVO_PANEL_DTDS,
174 	  .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
175 	{ .section_id = BDB_EDP,
176 	  .min_size = sizeof(struct bdb_edp), },
177 	{ .section_id = BDB_LVDS_OPTIONS,
178 	  .min_size = sizeof(struct bdb_lvds_options), },
179 	/*
180 	 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
181 	 * so keep the two ordered.
182 	 */
183 	{ .section_id = BDB_LVDS_LFP_DATA_PTRS,
184 	  .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
185 	{ .section_id = BDB_LVDS_LFP_DATA,
186 	  .min_size = 0, /* special case */ },
187 	{ .section_id = BDB_LVDS_BACKLIGHT,
188 	  .min_size = sizeof(struct bdb_lfp_backlight_data), },
189 	{ .section_id = BDB_LFP_POWER,
190 	  .min_size = sizeof(struct bdb_lfp_power), },
191 	{ .section_id = BDB_MIPI_CONFIG,
192 	  .min_size = sizeof(struct bdb_mipi_config), },
193 	{ .section_id = BDB_MIPI_SEQUENCE,
194 	  .min_size = sizeof(struct bdb_mipi_sequence) },
195 	{ .section_id = BDB_COMPRESSION_PARAMETERS,
196 	  .min_size = sizeof(struct bdb_compression_parameters), },
197 	{ .section_id = BDB_GENERIC_DTD,
198 	  .min_size = sizeof(struct bdb_generic_dtd), },
199 };
200 
201 static size_t lfp_data_min_size(struct drm_i915_private *i915)
202 {
203 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
204 	size_t size;
205 
206 	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
207 	if (!ptrs)
208 		return 0;
209 
210 	size = sizeof(struct bdb_lvds_lfp_data);
211 	if (ptrs->panel_name.table_size)
212 		size = max(size, ptrs->panel_name.offset +
213 			   sizeof(struct bdb_lvds_lfp_data_tail));
214 
215 	return size;
216 }
217 
218 static bool validate_lfp_data_ptrs(const void *bdb,
219 				   const struct bdb_lvds_lfp_data_ptrs *ptrs)
220 {
221 	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
222 	int data_block_size, lfp_data_size;
223 	const void *data_block;
224 	int i;
225 
226 	data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
227 	if (!data_block)
228 		return false;
229 
230 	data_block_size = get_blocksize(data_block);
231 	if (data_block_size == 0)
232 		return false;
233 
234 	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
235 	if (ptrs->lvds_entries != 3)
236 		return false;
237 
238 	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
239 	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
240 	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
241 	panel_name_size = ptrs->panel_name.table_size;
242 
243 	/* fp_timing has variable size */
244 	if (fp_timing_size < 32 ||
245 	    dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
246 	    panel_pnp_id_size != sizeof(struct lvds_pnp_id))
247 		return false;
248 
249 	/* panel_name is not present in old VBTs */
250 	if (panel_name_size != 0 &&
251 	    panel_name_size != sizeof(struct lvds_lfp_panel_name))
252 		return false;
253 
254 	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
255 	if (16 * lfp_data_size > data_block_size)
256 		return false;
257 
258 	/* make sure the table entries have uniform size */
259 	for (i = 1; i < 16; i++) {
260 		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
261 		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
262 		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
263 			return false;
264 
265 		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
266 		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
267 		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
268 			return false;
269 	}
270 
271 	/*
272 	 * Except for vlv/chv machines all real VBTs seem to have 6
273 	 * unaccounted bytes in the fp_timing table. And it doesn't
274 	 * appear to be a really intentional hole as the fp_timing
275 	 * 0xffff terminator is always within those 6 missing bytes.
276 	 */
277 	if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
278 		fp_timing_size += 6;
279 
280 	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
281 		return false;
282 
283 	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
284 	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
285 	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
286 		return false;
287 
288 	/* make sure the tables fit inside the data block */
289 	for (i = 0; i < 16; i++) {
290 		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
291 		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
292 		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
293 			return false;
294 	}
295 
296 	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
297 		return false;
298 
299 	/* make sure fp_timing terminators are present at expected locations */
300 	for (i = 0; i < 16; i++) {
301 		const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
302 			fp_timing_size - 2;
303 
304 		if (*t != 0xffff)
305 			return false;
306 	}
307 
308 	return true;
309 }
310 
311 /* make the data table offsets relative to the data block */
312 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
313 {
314 	struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
315 	u32 offset;
316 	int i;
317 
318 	offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
319 
320 	for (i = 0; i < 16; i++) {
321 		if (ptrs->ptr[i].fp_timing.offset < offset ||
322 		    ptrs->ptr[i].dvo_timing.offset < offset ||
323 		    ptrs->ptr[i].panel_pnp_id.offset < offset)
324 			return false;
325 
326 		ptrs->ptr[i].fp_timing.offset -= offset;
327 		ptrs->ptr[i].dvo_timing.offset -= offset;
328 		ptrs->ptr[i].panel_pnp_id.offset -= offset;
329 	}
330 
331 	if (ptrs->panel_name.table_size) {
332 		if (ptrs->panel_name.offset < offset)
333 			return false;
334 
335 		ptrs->panel_name.offset -= offset;
336 	}
337 
338 	return validate_lfp_data_ptrs(bdb, ptrs);
339 }
340 
341 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
342 			     int table_size, int total_size)
343 {
344 	if (total_size < table_size)
345 		return total_size;
346 
347 	table->table_size = table_size;
348 	table->offset = total_size - table_size;
349 
350 	return total_size - table_size;
351 }
352 
353 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
354 			      const struct lvds_lfp_data_ptr_table *prev,
355 			      int size)
356 {
357 	next->table_size = prev->table_size;
358 	next->offset = prev->offset + size;
359 }
360 
361 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
362 				    const void *bdb)
363 {
364 	int i, size, table_size, block_size, offset, fp_timing_size;
365 	struct bdb_lvds_lfp_data_ptrs *ptrs;
366 	const void *block;
367 	void *ptrs_block;
368 
369 	/*
370 	 * The hardcoded fp_timing_size is only valid for
371 	 * modernish VBTs. All older VBTs definitely should
372 	 * include block 41 and thus we don't need to
373 	 * generate one.
374 	 */
375 	if (i915->display.vbt.version < 155)
376 		return NULL;
377 
378 	fp_timing_size = 38;
379 
380 	block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
381 	if (!block)
382 		return NULL;
383 
384 	drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
385 
386 	block_size = get_blocksize(block);
387 
388 	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
389 		sizeof(struct lvds_pnp_id);
390 	if (size * 16 > block_size)
391 		return NULL;
392 
393 	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
394 	if (!ptrs_block)
395 		return NULL;
396 
397 	*(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
398 	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
399 	ptrs = ptrs_block + 3;
400 
401 	table_size = sizeof(struct lvds_pnp_id);
402 	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
403 
404 	table_size = sizeof(struct lvds_dvo_timing);
405 	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
406 
407 	table_size = fp_timing_size;
408 	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
409 
410 	if (ptrs->ptr[0].fp_timing.table_size)
411 		ptrs->lvds_entries++;
412 	if (ptrs->ptr[0].dvo_timing.table_size)
413 		ptrs->lvds_entries++;
414 	if (ptrs->ptr[0].panel_pnp_id.table_size)
415 		ptrs->lvds_entries++;
416 
417 	if (size != 0 || ptrs->lvds_entries != 3) {
418 		kfree(ptrs_block);
419 		return NULL;
420 	}
421 
422 	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
423 		sizeof(struct lvds_pnp_id);
424 	for (i = 1; i < 16; i++) {
425 		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
426 		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
427 		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
428 	}
429 
430 	table_size = sizeof(struct lvds_lfp_panel_name);
431 
432 	if (16 * (size + table_size) <= block_size) {
433 		ptrs->panel_name.table_size = table_size;
434 		ptrs->panel_name.offset = size * 16;
435 	}
436 
437 	offset = block - bdb;
438 
439 	for (i = 0; i < 16; i++) {
440 		ptrs->ptr[i].fp_timing.offset += offset;
441 		ptrs->ptr[i].dvo_timing.offset += offset;
442 		ptrs->ptr[i].panel_pnp_id.offset += offset;
443 	}
444 
445 	if (ptrs->panel_name.table_size)
446 		ptrs->panel_name.offset += offset;
447 
448 	return ptrs_block;
449 }
450 
451 static void
452 init_bdb_block(struct drm_i915_private *i915,
453 	       const void *bdb, enum bdb_block_id section_id,
454 	       size_t min_size)
455 {
456 	struct bdb_block_entry *entry;
457 	void *temp_block = NULL;
458 	const void *block;
459 	size_t block_size;
460 
461 	block = find_raw_section(bdb, section_id);
462 
463 	/* Modern VBTs lack the LFP data table pointers block, make one up */
464 	if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
465 		temp_block = generate_lfp_data_ptrs(i915, bdb);
466 		if (temp_block)
467 			block = temp_block + 3;
468 	}
469 	if (!block)
470 		return;
471 
472 	drm_WARN(&i915->drm, min_size == 0,
473 		 "Block %d min_size is zero\n", section_id);
474 
475 	block_size = get_blocksize(block);
476 
477 	/*
478 	 * Version number and new block size are considered
479 	 * part of the header for MIPI sequenece block v3+.
480 	 */
481 	if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
482 		block_size += 5;
483 
484 	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
485 			GFP_KERNEL);
486 	if (!entry) {
487 		kfree(temp_block);
488 		return;
489 	}
490 
491 	entry->section_id = section_id;
492 	memcpy(entry->data, block - 3, block_size + 3);
493 
494 	kfree(temp_block);
495 
496 	drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
497 		    section_id, block_size, min_size);
498 
499 	if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
500 	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
501 		drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
502 		kfree(entry);
503 		return;
504 	}
505 
506 	list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
507 }
508 
509 static void init_bdb_blocks(struct drm_i915_private *i915,
510 			    const void *bdb)
511 {
512 	int i;
513 
514 	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
515 		enum bdb_block_id section_id = bdb_blocks[i].section_id;
516 		size_t min_size = bdb_blocks[i].min_size;
517 
518 		if (section_id == BDB_LVDS_LFP_DATA)
519 			min_size = lfp_data_min_size(i915);
520 
521 		init_bdb_block(i915, bdb, section_id, min_size);
522 	}
523 }
524 
525 static void
526 fill_detail_timing_data(struct drm_i915_private *i915,
527 			struct drm_display_mode *panel_fixed_mode,
528 			const struct lvds_dvo_timing *dvo_timing)
529 {
530 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
531 		dvo_timing->hactive_lo;
532 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
533 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
534 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
535 		((dvo_timing->hsync_pulse_width_hi << 8) |
536 			dvo_timing->hsync_pulse_width_lo);
537 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
538 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
539 
540 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
541 		dvo_timing->vactive_lo;
542 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
543 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
544 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
545 		((dvo_timing->vsync_pulse_width_hi << 4) |
546 			dvo_timing->vsync_pulse_width_lo);
547 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
548 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
549 	panel_fixed_mode->clock = dvo_timing->clock * 10;
550 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
551 
552 	if (dvo_timing->hsync_positive)
553 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
554 	else
555 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
556 
557 	if (dvo_timing->vsync_positive)
558 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
559 	else
560 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
561 
562 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
563 		dvo_timing->himage_lo;
564 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
565 		dvo_timing->vimage_lo;
566 
567 	/* Some VBTs have bogus h/vsync_end values */
568 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) {
569 		drm_dbg_kms(&i915->drm, "reducing hsync_end %d->%d\n",
570 			    panel_fixed_mode->hsync_end, panel_fixed_mode->htotal);
571 		panel_fixed_mode->hsync_end = panel_fixed_mode->htotal;
572 	}
573 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) {
574 		drm_dbg_kms(&i915->drm, "reducing vsync_end %d->%d\n",
575 			    panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal);
576 		panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal;
577 	}
578 
579 	drm_mode_set_name(panel_fixed_mode);
580 }
581 
582 static const struct lvds_dvo_timing *
583 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
584 		    const struct bdb_lvds_lfp_data_ptrs *ptrs,
585 		    int index)
586 {
587 	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
588 }
589 
590 static const struct lvds_fp_timing *
591 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
592 		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
593 		   int index)
594 {
595 	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
596 }
597 
598 static const struct drm_edid_product_id *
599 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
600 		const struct bdb_lvds_lfp_data_ptrs *ptrs,
601 		int index)
602 {
603 	/* These two are supposed to have the same layout in memory. */
604 	BUILD_BUG_ON(sizeof(struct lvds_pnp_id) != sizeof(struct drm_edid_product_id));
605 
606 	return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
607 }
608 
609 static const struct bdb_lvds_lfp_data_tail *
610 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
611 		  const struct bdb_lvds_lfp_data_ptrs *ptrs)
612 {
613 	if (ptrs->panel_name.table_size)
614 		return (const void *)data + ptrs->panel_name.offset;
615 	else
616 		return NULL;
617 }
618 
619 static int opregion_get_panel_type(struct drm_i915_private *i915,
620 				   const struct intel_bios_encoder_data *devdata,
621 				   const struct drm_edid *drm_edid, bool use_fallback)
622 {
623 	return intel_opregion_get_panel_type(i915);
624 }
625 
626 static int vbt_get_panel_type(struct drm_i915_private *i915,
627 			      const struct intel_bios_encoder_data *devdata,
628 			      const struct drm_edid *drm_edid, bool use_fallback)
629 {
630 	const struct bdb_lvds_options *lvds_options;
631 
632 	lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
633 	if (!lvds_options)
634 		return -1;
635 
636 	if (lvds_options->panel_type > 0xf &&
637 	    lvds_options->panel_type != 0xff) {
638 		drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
639 			    lvds_options->panel_type);
640 		return -1;
641 	}
642 
643 	if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
644 		return lvds_options->panel_type2;
645 
646 	drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
647 
648 	return lvds_options->panel_type;
649 }
650 
651 static int pnpid_get_panel_type(struct drm_i915_private *i915,
652 				const struct intel_bios_encoder_data *devdata,
653 				const struct drm_edid *drm_edid, bool use_fallback)
654 {
655 	const struct bdb_lvds_lfp_data *data;
656 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
657 	struct drm_edid_product_id product_id, product_id_nodate;
658 	struct drm_printer p;
659 	int i, best = -1;
660 
661 	if (!drm_edid)
662 		return -1;
663 
664 	drm_edid_get_product_id(drm_edid, &product_id);
665 
666 	product_id_nodate = product_id;
667 	product_id_nodate.week_of_manufacture = 0;
668 	product_id_nodate.year_of_manufacture = 0;
669 
670 	p = drm_dbg_printer(&i915->drm, DRM_UT_KMS, "EDID");
671 	drm_edid_print_product_id(&p, &product_id, true);
672 
673 	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
674 	if (!ptrs)
675 		return -1;
676 
677 	data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
678 	if (!data)
679 		return -1;
680 
681 	for (i = 0; i < 16; i++) {
682 		const struct drm_edid_product_id *vbt_id =
683 			get_lvds_pnp_id(data, ptrs, i);
684 
685 		/* full match? */
686 		if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id)))
687 			return i;
688 
689 		/*
690 		 * Accept a match w/o date if no full match is found,
691 		 * and the VBT entry does not specify a date.
692 		 */
693 		if (best < 0 &&
694 		    !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id)))
695 			best = i;
696 	}
697 
698 	return best;
699 }
700 
701 static int fallback_get_panel_type(struct drm_i915_private *i915,
702 				   const struct intel_bios_encoder_data *devdata,
703 				   const struct drm_edid *drm_edid, bool use_fallback)
704 {
705 	return use_fallback ? 0 : -1;
706 }
707 
708 enum panel_type {
709 	PANEL_TYPE_OPREGION,
710 	PANEL_TYPE_VBT,
711 	PANEL_TYPE_PNPID,
712 	PANEL_TYPE_FALLBACK,
713 };
714 
715 static int get_panel_type(struct drm_i915_private *i915,
716 			  const struct intel_bios_encoder_data *devdata,
717 			  const struct drm_edid *drm_edid, bool use_fallback)
718 {
719 	struct {
720 		const char *name;
721 		int (*get_panel_type)(struct drm_i915_private *i915,
722 				      const struct intel_bios_encoder_data *devdata,
723 				      const struct drm_edid *drm_edid, bool use_fallback);
724 		int panel_type;
725 	} panel_types[] = {
726 		[PANEL_TYPE_OPREGION] = {
727 			.name = "OpRegion",
728 			.get_panel_type = opregion_get_panel_type,
729 		},
730 		[PANEL_TYPE_VBT] = {
731 			.name = "VBT",
732 			.get_panel_type = vbt_get_panel_type,
733 		},
734 		[PANEL_TYPE_PNPID] = {
735 			.name = "PNPID",
736 			.get_panel_type = pnpid_get_panel_type,
737 		},
738 		[PANEL_TYPE_FALLBACK] = {
739 			.name = "fallback",
740 			.get_panel_type = fallback_get_panel_type,
741 		},
742 	};
743 	int i;
744 
745 	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
746 		panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata,
747 									  drm_edid, use_fallback);
748 
749 		drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
750 			    panel_types[i].panel_type != 0xff);
751 
752 		if (panel_types[i].panel_type >= 0)
753 			drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
754 				    panel_types[i].name, panel_types[i].panel_type);
755 	}
756 
757 	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
758 		i = PANEL_TYPE_OPREGION;
759 	else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
760 		 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
761 		i = PANEL_TYPE_PNPID;
762 	else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
763 		 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
764 		i = PANEL_TYPE_VBT;
765 	else
766 		i = PANEL_TYPE_FALLBACK;
767 
768 	drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
769 		    panel_types[i].name, panel_types[i].panel_type);
770 
771 	return panel_types[i].panel_type;
772 }
773 
774 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
775 {
776 	return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
777 }
778 
779 static bool panel_bool(unsigned int value, int panel_type)
780 {
781 	return panel_bits(value, panel_type, 1);
782 }
783 
784 /* Parse general panel options */
785 static void
786 parse_panel_options(struct drm_i915_private *i915,
787 		    struct intel_panel *panel)
788 {
789 	const struct bdb_lvds_options *lvds_options;
790 	int panel_type = panel->vbt.panel_type;
791 	int drrs_mode;
792 
793 	lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
794 	if (!lvds_options)
795 		return;
796 
797 	panel->vbt.lvds_dither = lvds_options->pixel_dither;
798 
799 	/*
800 	 * Empirical evidence indicates the block size can be
801 	 * either 4,14,16,24+ bytes. For older VBTs no clear
802 	 * relationship between the block size vs. BDB version.
803 	 */
804 	if (get_blocksize(lvds_options) < 16)
805 		return;
806 
807 	drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
808 			       panel_type, 2);
809 	/*
810 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
811 	 * The below piece of code is required to adjust vbt.drrs_type
812 	 * to match the enum drrs_support_type.
813 	 */
814 	switch (drrs_mode) {
815 	case 0:
816 		panel->vbt.drrs_type = DRRS_TYPE_STATIC;
817 		drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
818 		break;
819 	case 2:
820 		panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
821 		drm_dbg_kms(&i915->drm,
822 			    "DRRS supported mode is seamless\n");
823 		break;
824 	default:
825 		panel->vbt.drrs_type = DRRS_TYPE_NONE;
826 		drm_dbg_kms(&i915->drm,
827 			    "DRRS not supported (VBT input)\n");
828 		break;
829 	}
830 }
831 
832 static void
833 parse_lfp_panel_dtd(struct drm_i915_private *i915,
834 		    struct intel_panel *panel,
835 		    const struct bdb_lvds_lfp_data *lvds_lfp_data,
836 		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
837 {
838 	const struct lvds_dvo_timing *panel_dvo_timing;
839 	const struct lvds_fp_timing *fp_timing;
840 	struct drm_display_mode *panel_fixed_mode;
841 	int panel_type = panel->vbt.panel_type;
842 
843 	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
844 					       lvds_lfp_data_ptrs,
845 					       panel_type);
846 
847 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
848 	if (!panel_fixed_mode)
849 		return;
850 
851 	fill_detail_timing_data(i915, panel_fixed_mode, panel_dvo_timing);
852 
853 	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
854 
855 	drm_dbg_kms(&i915->drm,
856 		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
857 		    DRM_MODE_ARG(panel_fixed_mode));
858 
859 	fp_timing = get_lvds_fp_timing(lvds_lfp_data,
860 				       lvds_lfp_data_ptrs,
861 				       panel_type);
862 
863 	/* check the resolution, just to be sure */
864 	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
865 	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
866 		panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
867 		drm_dbg_kms(&i915->drm,
868 			    "VBT initial LVDS value %x\n",
869 			    panel->vbt.bios_lvds_val);
870 	}
871 }
872 
873 static void
874 parse_lfp_data(struct drm_i915_private *i915,
875 	       struct intel_panel *panel)
876 {
877 	const struct bdb_lvds_lfp_data *data;
878 	const struct bdb_lvds_lfp_data_tail *tail;
879 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
880 	const struct drm_edid_product_id *pnp_id;
881 	struct drm_printer p;
882 	int panel_type = panel->vbt.panel_type;
883 
884 	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
885 	if (!ptrs)
886 		return;
887 
888 	data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
889 	if (!data)
890 		return;
891 
892 	if (!panel->vbt.lfp_lvds_vbt_mode)
893 		parse_lfp_panel_dtd(i915, panel, data, ptrs);
894 
895 	pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
896 
897 	p = drm_dbg_printer(&i915->drm, DRM_UT_KMS, "Panel");
898 	drm_edid_print_product_id(&p, pnp_id, false);
899 
900 	tail = get_lfp_data_tail(data, ptrs);
901 	if (!tail)
902 		return;
903 
904 	drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
905 		    (int)sizeof(tail->panel_name[0].name),
906 		    tail->panel_name[panel_type].name);
907 
908 	if (i915->display.vbt.version >= 188) {
909 		panel->vbt.seamless_drrs_min_refresh_rate =
910 			tail->seamless_drrs_min_refresh_rate[panel_type];
911 		drm_dbg_kms(&i915->drm,
912 			    "Seamless DRRS min refresh rate: %d Hz\n",
913 			    panel->vbt.seamless_drrs_min_refresh_rate);
914 	}
915 }
916 
917 static void
918 parse_generic_dtd(struct drm_i915_private *i915,
919 		  struct intel_panel *panel)
920 {
921 	const struct bdb_generic_dtd *generic_dtd;
922 	const struct generic_dtd_entry *dtd;
923 	struct drm_display_mode *panel_fixed_mode;
924 	int num_dtd;
925 
926 	/*
927 	 * Older VBTs provided DTD information for internal displays through
928 	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
929 	 * DTD information should be provided via a newer "generic DTD"
930 	 * block (58).  Just to be safe, we'll try the new generic DTD block
931 	 * first on VBT >= 229, but still fall back to trying the old LFP
932 	 * block if that fails.
933 	 */
934 	if (i915->display.vbt.version < 229)
935 		return;
936 
937 	generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD);
938 	if (!generic_dtd)
939 		return;
940 
941 	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
942 		drm_err(&i915->drm, "GDTD size %u is too small.\n",
943 			generic_dtd->gdtd_size);
944 		return;
945 	} else if (generic_dtd->gdtd_size !=
946 		   sizeof(struct generic_dtd_entry)) {
947 		drm_err(&i915->drm, "Unexpected GDTD size %u\n",
948 			generic_dtd->gdtd_size);
949 		/* DTD has unknown fields, but keep going */
950 	}
951 
952 	num_dtd = (get_blocksize(generic_dtd) -
953 		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
954 	if (panel->vbt.panel_type >= num_dtd) {
955 		drm_err(&i915->drm,
956 			"Panel type %d not found in table of %d DTD's\n",
957 			panel->vbt.panel_type, num_dtd);
958 		return;
959 	}
960 
961 	dtd = &generic_dtd->dtd[panel->vbt.panel_type];
962 
963 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
964 	if (!panel_fixed_mode)
965 		return;
966 
967 	panel_fixed_mode->hdisplay = dtd->hactive;
968 	panel_fixed_mode->hsync_start =
969 		panel_fixed_mode->hdisplay + dtd->hfront_porch;
970 	panel_fixed_mode->hsync_end =
971 		panel_fixed_mode->hsync_start + dtd->hsync;
972 	panel_fixed_mode->htotal =
973 		panel_fixed_mode->hdisplay + dtd->hblank;
974 
975 	panel_fixed_mode->vdisplay = dtd->vactive;
976 	panel_fixed_mode->vsync_start =
977 		panel_fixed_mode->vdisplay + dtd->vfront_porch;
978 	panel_fixed_mode->vsync_end =
979 		panel_fixed_mode->vsync_start + dtd->vsync;
980 	panel_fixed_mode->vtotal =
981 		panel_fixed_mode->vdisplay + dtd->vblank;
982 
983 	panel_fixed_mode->clock = dtd->pixel_clock;
984 	panel_fixed_mode->width_mm = dtd->width_mm;
985 	panel_fixed_mode->height_mm = dtd->height_mm;
986 
987 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
988 	drm_mode_set_name(panel_fixed_mode);
989 
990 	if (dtd->hsync_positive_polarity)
991 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
992 	else
993 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
994 
995 	if (dtd->vsync_positive_polarity)
996 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
997 	else
998 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
999 
1000 	drm_dbg_kms(&i915->drm,
1001 		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1002 		    DRM_MODE_ARG(panel_fixed_mode));
1003 
1004 	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
1005 }
1006 
1007 static void
1008 parse_lfp_backlight(struct drm_i915_private *i915,
1009 		    struct intel_panel *panel)
1010 {
1011 	const struct bdb_lfp_backlight_data *backlight_data;
1012 	const struct lfp_backlight_data_entry *entry;
1013 	int panel_type = panel->vbt.panel_type;
1014 	u16 level;
1015 
1016 	backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT);
1017 	if (!backlight_data)
1018 		return;
1019 
1020 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1021 		drm_dbg_kms(&i915->drm,
1022 			    "Unsupported backlight data entry size %u\n",
1023 			    backlight_data->entry_size);
1024 		return;
1025 	}
1026 
1027 	entry = &backlight_data->data[panel_type];
1028 
1029 	panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1030 	if (!panel->vbt.backlight.present) {
1031 		drm_dbg_kms(&i915->drm,
1032 			    "PWM backlight not present in VBT (type %u)\n",
1033 			    entry->type);
1034 		return;
1035 	}
1036 
1037 	panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1038 	panel->vbt.backlight.controller = 0;
1039 	if (i915->display.vbt.version >= 191) {
1040 		const struct lfp_backlight_control_method *method;
1041 
1042 		method = &backlight_data->backlight_control[panel_type];
1043 		panel->vbt.backlight.type = method->type;
1044 		panel->vbt.backlight.controller = method->controller;
1045 	}
1046 
1047 	panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1048 	panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1049 
1050 	if (i915->display.vbt.version >= 234) {
1051 		u16 min_level;
1052 		bool scale;
1053 
1054 		level = backlight_data->brightness_level[panel_type].level;
1055 		min_level = backlight_data->brightness_min_level[panel_type].level;
1056 
1057 		if (i915->display.vbt.version >= 236)
1058 			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1059 		else
1060 			scale = level > 255;
1061 
1062 		if (scale)
1063 			min_level = min_level / 255;
1064 
1065 		if (min_level > 255) {
1066 			drm_warn(&i915->drm, "Brightness min level > 255\n");
1067 			level = 255;
1068 		}
1069 		panel->vbt.backlight.min_brightness = min_level;
1070 
1071 		panel->vbt.backlight.brightness_precision_bits =
1072 			backlight_data->brightness_precision_bits[panel_type];
1073 	} else {
1074 		level = backlight_data->level[panel_type];
1075 		panel->vbt.backlight.min_brightness = entry->min_brightness;
1076 	}
1077 
1078 	if (i915->display.vbt.version >= 239)
1079 		panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1080 			DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1081 	else
1082 		panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1083 
1084 	drm_dbg_kms(&i915->drm,
1085 		    "VBT backlight PWM modulation frequency %u Hz, "
1086 		    "active %s, min brightness %u, level %u, controller %u\n",
1087 		    panel->vbt.backlight.pwm_freq_hz,
1088 		    panel->vbt.backlight.active_low_pwm ? "low" : "high",
1089 		    panel->vbt.backlight.min_brightness,
1090 		    level,
1091 		    panel->vbt.backlight.controller);
1092 }
1093 
1094 /* Try to find sdvo panel data */
1095 static void
1096 parse_sdvo_panel_data(struct drm_i915_private *i915,
1097 		      struct intel_panel *panel)
1098 {
1099 	const struct bdb_sdvo_panel_dtds *dtds;
1100 	struct drm_display_mode *panel_fixed_mode;
1101 	int index;
1102 
1103 	index = i915->display.params.vbt_sdvo_panel_type;
1104 	if (index == -2) {
1105 		drm_dbg_kms(&i915->drm,
1106 			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
1107 		return;
1108 	}
1109 
1110 	if (index == -1) {
1111 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1112 
1113 		sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1114 		if (!sdvo_lvds_options)
1115 			return;
1116 
1117 		index = sdvo_lvds_options->panel_type;
1118 	}
1119 
1120 	dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS);
1121 	if (!dtds)
1122 		return;
1123 
1124 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1125 	if (!panel_fixed_mode)
1126 		return;
1127 
1128 	fill_detail_timing_data(i915, panel_fixed_mode, &dtds->dtds[index]);
1129 
1130 	panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1131 
1132 	drm_dbg_kms(&i915->drm,
1133 		    "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1134 		    DRM_MODE_ARG(panel_fixed_mode));
1135 }
1136 
1137 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1138 				    bool alternate)
1139 {
1140 	switch (DISPLAY_VER(i915)) {
1141 	case 2:
1142 		return alternate ? 66667 : 48000;
1143 	case 3:
1144 	case 4:
1145 		return alternate ? 100000 : 96000;
1146 	default:
1147 		return alternate ? 100000 : 120000;
1148 	}
1149 }
1150 
1151 static void
1152 parse_general_features(struct drm_i915_private *i915)
1153 {
1154 	const struct bdb_general_features *general;
1155 
1156 	general = bdb_find_section(i915, BDB_GENERAL_FEATURES);
1157 	if (!general)
1158 		return;
1159 
1160 	i915->display.vbt.int_tv_support = general->int_tv_support;
1161 	/* int_crt_support can't be trusted on earlier platforms */
1162 	if (i915->display.vbt.version >= 155 &&
1163 	    (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1164 		i915->display.vbt.int_crt_support = general->int_crt_support;
1165 	i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1166 	i915->display.vbt.lvds_ssc_freq =
1167 		intel_bios_ssc_frequency(i915, general->ssc_freq);
1168 	i915->display.vbt.display_clock_mode = general->display_clock_mode;
1169 	i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1170 	if (i915->display.vbt.version >= 181) {
1171 		i915->display.vbt.orientation = general->rotate_180 ?
1172 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1173 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1174 	} else {
1175 		i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1176 	}
1177 
1178 	if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1179 		i915->display.vbt.override_afc_startup = true;
1180 		i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1181 	}
1182 
1183 	drm_dbg_kms(&i915->drm,
1184 		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1185 		    i915->display.vbt.int_tv_support,
1186 		    i915->display.vbt.int_crt_support,
1187 		    i915->display.vbt.lvds_use_ssc,
1188 		    i915->display.vbt.lvds_ssc_freq,
1189 		    i915->display.vbt.display_clock_mode,
1190 		    i915->display.vbt.fdi_rx_polarity_inverted);
1191 }
1192 
1193 static const struct child_device_config *
1194 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1195 {
1196 	return (const void *) &defs->devices[i * defs->child_dev_size];
1197 }
1198 
1199 static void
1200 parse_sdvo_device_mapping(struct drm_i915_private *i915)
1201 {
1202 	const struct intel_bios_encoder_data *devdata;
1203 	int count = 0;
1204 
1205 	/*
1206 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1207 	 * accurate and doesn't have to be, as long as it's not too strict.
1208 	 */
1209 	if (!IS_DISPLAY_VER(i915, 3, 7)) {
1210 		drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1211 		return;
1212 	}
1213 
1214 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1215 		const struct child_device_config *child = &devdata->child;
1216 		struct sdvo_device_mapping *mapping;
1217 
1218 		if (child->slave_addr != SLAVE_ADDR1 &&
1219 		    child->slave_addr != SLAVE_ADDR2) {
1220 			/*
1221 			 * If the slave address is neither 0x70 nor 0x72,
1222 			 * it is not a SDVO device. Skip it.
1223 			 */
1224 			continue;
1225 		}
1226 		if (child->dvo_port != DEVICE_PORT_DVOB &&
1227 		    child->dvo_port != DEVICE_PORT_DVOC) {
1228 			/* skip the incorrect SDVO port */
1229 			drm_dbg_kms(&i915->drm,
1230 				    "Incorrect SDVO port. Skip it\n");
1231 			continue;
1232 		}
1233 		drm_dbg_kms(&i915->drm,
1234 			    "the SDVO device with slave addr %2x is found on"
1235 			    " %s port\n",
1236 			    child->slave_addr,
1237 			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1238 			    "SDVOB" : "SDVOC");
1239 		mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1240 		if (!mapping->initialized) {
1241 			mapping->dvo_port = child->dvo_port;
1242 			mapping->slave_addr = child->slave_addr;
1243 			mapping->dvo_wiring = child->dvo_wiring;
1244 			mapping->ddc_pin = child->ddc_pin;
1245 			mapping->i2c_pin = child->i2c_pin;
1246 			mapping->initialized = 1;
1247 			drm_dbg_kms(&i915->drm,
1248 				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1249 				    mapping->dvo_port, mapping->slave_addr,
1250 				    mapping->dvo_wiring, mapping->ddc_pin,
1251 				    mapping->i2c_pin);
1252 		} else {
1253 			drm_dbg_kms(&i915->drm,
1254 				    "Maybe one SDVO port is shared by "
1255 				    "two SDVO device.\n");
1256 		}
1257 		if (child->slave2_addr) {
1258 			/* Maybe this is a SDVO device with multiple inputs */
1259 			/* And the mapping info is not added */
1260 			drm_dbg_kms(&i915->drm,
1261 				    "there exists the slave2_addr. Maybe this"
1262 				    " is a SDVO device with multiple inputs.\n");
1263 		}
1264 		count++;
1265 	}
1266 
1267 	if (!count) {
1268 		/* No SDVO device info is found */
1269 		drm_dbg_kms(&i915->drm,
1270 			    "No SDVO device info is found in VBT\n");
1271 	}
1272 }
1273 
1274 static void
1275 parse_driver_features(struct drm_i915_private *i915)
1276 {
1277 	const struct bdb_driver_features *driver;
1278 
1279 	driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1280 	if (!driver)
1281 		return;
1282 
1283 	if (DISPLAY_VER(i915) >= 5) {
1284 		/*
1285 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1286 		 * to mean "eDP". The VBT spec doesn't agree with that
1287 		 * interpretation, but real world VBTs seem to.
1288 		 */
1289 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1290 			i915->display.vbt.int_lvds_support = 0;
1291 	} else {
1292 		/*
1293 		 * FIXME it's not clear which BDB version has the LVDS config
1294 		 * bits defined. Revision history in the VBT spec says:
1295 		 * "0.92 | Add two definitions for VBT value of LVDS Active
1296 		 *  Config (00b and 11b values defined) | 06/13/2005"
1297 		 * but does not the specify the BDB version.
1298 		 *
1299 		 * So far version 134 (on i945gm) is the oldest VBT observed
1300 		 * in the wild with the bits correctly populated. Version
1301 		 * 108 (on i85x) does not have the bits correctly populated.
1302 		 */
1303 		if (i915->display.vbt.version >= 134 &&
1304 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1305 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1306 			i915->display.vbt.int_lvds_support = 0;
1307 	}
1308 }
1309 
1310 static void
1311 parse_panel_driver_features(struct drm_i915_private *i915,
1312 			    struct intel_panel *panel)
1313 {
1314 	const struct bdb_driver_features *driver;
1315 
1316 	driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1317 	if (!driver)
1318 		return;
1319 
1320 	if (i915->display.vbt.version < 228) {
1321 		drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1322 			    driver->drrs_enabled);
1323 		/*
1324 		 * If DRRS is not supported, drrs_type has to be set to 0.
1325 		 * This is because, VBT is configured in such a way that
1326 		 * static DRRS is 0 and DRRS not supported is represented by
1327 		 * driver->drrs_enabled=false
1328 		 */
1329 		if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1330 			/*
1331 			 * FIXME Should DMRRS perhaps be treated as seamless
1332 			 * but without the automatic downclocking?
1333 			 */
1334 			if (driver->dmrrs_enabled)
1335 				panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1336 			else
1337 				panel->vbt.drrs_type = DRRS_TYPE_NONE;
1338 		}
1339 
1340 		panel->vbt.psr.enable = driver->psr_enabled;
1341 	}
1342 }
1343 
1344 static void
1345 parse_power_conservation_features(struct drm_i915_private *i915,
1346 				  struct intel_panel *panel)
1347 {
1348 	const struct bdb_lfp_power *power;
1349 	u8 panel_type = panel->vbt.panel_type;
1350 
1351 	panel->vbt.vrr = true; /* matches Windows behaviour */
1352 
1353 	if (i915->display.vbt.version < 228)
1354 		return;
1355 
1356 	power = bdb_find_section(i915, BDB_LFP_POWER);
1357 	if (!power)
1358 		return;
1359 
1360 	panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1361 
1362 	/*
1363 	 * If DRRS is not supported, drrs_type has to be set to 0.
1364 	 * This is because, VBT is configured in such a way that
1365 	 * static DRRS is 0 and DRRS not supported is represented by
1366 	 * power->drrs & BIT(panel_type)=false
1367 	 */
1368 	if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1369 		/*
1370 		 * FIXME Should DMRRS perhaps be treated as seamless
1371 		 * but without the automatic downclocking?
1372 		 */
1373 		if (panel_bool(power->dmrrs, panel_type))
1374 			panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1375 		else
1376 			panel->vbt.drrs_type = DRRS_TYPE_NONE;
1377 	}
1378 
1379 	if (i915->display.vbt.version >= 232)
1380 		panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1381 
1382 	if (i915->display.vbt.version >= 233)
1383 		panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1384 					    panel_type);
1385 }
1386 
1387 static void
1388 parse_edp(struct drm_i915_private *i915,
1389 	  struct intel_panel *panel)
1390 {
1391 	const struct bdb_edp *edp;
1392 	const struct edp_power_seq *edp_pps;
1393 	const struct edp_fast_link_params *edp_link_params;
1394 	int panel_type = panel->vbt.panel_type;
1395 
1396 	edp = bdb_find_section(i915, BDB_EDP);
1397 	if (!edp)
1398 		return;
1399 
1400 	switch (panel_bits(edp->color_depth, panel_type, 2)) {
1401 	case EDP_18BPP:
1402 		panel->vbt.edp.bpp = 18;
1403 		break;
1404 	case EDP_24BPP:
1405 		panel->vbt.edp.bpp = 24;
1406 		break;
1407 	case EDP_30BPP:
1408 		panel->vbt.edp.bpp = 30;
1409 		break;
1410 	}
1411 
1412 	/* Get the eDP sequencing and link info */
1413 	edp_pps = &edp->power_seqs[panel_type];
1414 	edp_link_params = &edp->fast_link_params[panel_type];
1415 
1416 	panel->vbt.edp.pps = *edp_pps;
1417 
1418 	if (i915->display.vbt.version >= 224) {
1419 		panel->vbt.edp.rate =
1420 			edp->edp_fast_link_training_rate[panel_type] * 20;
1421 	} else {
1422 		switch (edp_link_params->rate) {
1423 		case EDP_RATE_1_62:
1424 			panel->vbt.edp.rate = 162000;
1425 			break;
1426 		case EDP_RATE_2_7:
1427 			panel->vbt.edp.rate = 270000;
1428 			break;
1429 		case EDP_RATE_5_4:
1430 			panel->vbt.edp.rate = 540000;
1431 			break;
1432 		default:
1433 			drm_dbg_kms(&i915->drm,
1434 				    "VBT has unknown eDP link rate value %u\n",
1435 				    edp_link_params->rate);
1436 			break;
1437 		}
1438 	}
1439 
1440 	switch (edp_link_params->lanes) {
1441 	case EDP_LANE_1:
1442 		panel->vbt.edp.lanes = 1;
1443 		break;
1444 	case EDP_LANE_2:
1445 		panel->vbt.edp.lanes = 2;
1446 		break;
1447 	case EDP_LANE_4:
1448 		panel->vbt.edp.lanes = 4;
1449 		break;
1450 	default:
1451 		drm_dbg_kms(&i915->drm,
1452 			    "VBT has unknown eDP lane count value %u\n",
1453 			    edp_link_params->lanes);
1454 		break;
1455 	}
1456 
1457 	switch (edp_link_params->preemphasis) {
1458 	case EDP_PREEMPHASIS_NONE:
1459 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1460 		break;
1461 	case EDP_PREEMPHASIS_3_5dB:
1462 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1463 		break;
1464 	case EDP_PREEMPHASIS_6dB:
1465 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1466 		break;
1467 	case EDP_PREEMPHASIS_9_5dB:
1468 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1469 		break;
1470 	default:
1471 		drm_dbg_kms(&i915->drm,
1472 			    "VBT has unknown eDP pre-emphasis value %u\n",
1473 			    edp_link_params->preemphasis);
1474 		break;
1475 	}
1476 
1477 	switch (edp_link_params->vswing) {
1478 	case EDP_VSWING_0_4V:
1479 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1480 		break;
1481 	case EDP_VSWING_0_6V:
1482 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1483 		break;
1484 	case EDP_VSWING_0_8V:
1485 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1486 		break;
1487 	case EDP_VSWING_1_2V:
1488 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1489 		break;
1490 	default:
1491 		drm_dbg_kms(&i915->drm,
1492 			    "VBT has unknown eDP voltage swing value %u\n",
1493 			    edp_link_params->vswing);
1494 		break;
1495 	}
1496 
1497 	if (i915->display.vbt.version >= 173) {
1498 		u8 vswing;
1499 
1500 		/* Don't read from VBT if module parameter has valid value*/
1501 		if (i915->display.params.edp_vswing) {
1502 			panel->vbt.edp.low_vswing =
1503 				i915->display.params.edp_vswing == 1;
1504 		} else {
1505 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1506 			panel->vbt.edp.low_vswing = vswing == 0;
1507 		}
1508 	}
1509 
1510 	panel->vbt.edp.drrs_msa_timing_delay =
1511 		panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1512 
1513 	if (i915->display.vbt.version >= 244)
1514 		panel->vbt.edp.max_link_rate =
1515 			edp->edp_max_port_link_rate[panel_type] * 20;
1516 }
1517 
1518 static void
1519 parse_psr(struct drm_i915_private *i915,
1520 	  struct intel_panel *panel)
1521 {
1522 	const struct bdb_psr *psr;
1523 	const struct psr_table *psr_table;
1524 	int panel_type = panel->vbt.panel_type;
1525 
1526 	psr = bdb_find_section(i915, BDB_PSR);
1527 	if (!psr) {
1528 		drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1529 		return;
1530 	}
1531 
1532 	psr_table = &psr->psr_table[panel_type];
1533 
1534 	panel->vbt.psr.full_link = psr_table->full_link;
1535 	panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1536 
1537 	/* Allowed VBT values goes from 0 to 15 */
1538 	panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1539 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1540 
1541 	/*
1542 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1543 	 * Old decimal value is wake up time in multiples of 100 us.
1544 	 */
1545 	if (i915->display.vbt.version >= 205 &&
1546 	    (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1547 		switch (psr_table->tp1_wakeup_time) {
1548 		case 0:
1549 			panel->vbt.psr.tp1_wakeup_time_us = 500;
1550 			break;
1551 		case 1:
1552 			panel->vbt.psr.tp1_wakeup_time_us = 100;
1553 			break;
1554 		case 3:
1555 			panel->vbt.psr.tp1_wakeup_time_us = 0;
1556 			break;
1557 		default:
1558 			drm_dbg_kms(&i915->drm,
1559 				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1560 				    psr_table->tp1_wakeup_time);
1561 			fallthrough;
1562 		case 2:
1563 			panel->vbt.psr.tp1_wakeup_time_us = 2500;
1564 			break;
1565 		}
1566 
1567 		switch (psr_table->tp2_tp3_wakeup_time) {
1568 		case 0:
1569 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1570 			break;
1571 		case 1:
1572 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1573 			break;
1574 		case 3:
1575 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1576 			break;
1577 		default:
1578 			drm_dbg_kms(&i915->drm,
1579 				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1580 				    psr_table->tp2_tp3_wakeup_time);
1581 			fallthrough;
1582 		case 2:
1583 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1584 		break;
1585 		}
1586 	} else {
1587 		panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1588 		panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1589 	}
1590 
1591 	if (i915->display.vbt.version >= 226) {
1592 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1593 
1594 		wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1595 		switch (wakeup_time) {
1596 		case 0:
1597 			wakeup_time = 500;
1598 			break;
1599 		case 1:
1600 			wakeup_time = 100;
1601 			break;
1602 		case 3:
1603 			wakeup_time = 50;
1604 			break;
1605 		default:
1606 		case 2:
1607 			wakeup_time = 2500;
1608 			break;
1609 		}
1610 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1611 	} else {
1612 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1613 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1614 	}
1615 }
1616 
1617 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1618 				      struct intel_panel *panel,
1619 				      enum port port)
1620 {
1621 	enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1622 
1623 	if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1624 		panel->vbt.dsi.bl_ports = BIT(port);
1625 		if (panel->vbt.dsi.config->cabc_supported)
1626 			panel->vbt.dsi.cabc_ports = BIT(port);
1627 
1628 		return;
1629 	}
1630 
1631 	switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1632 	case DL_DCS_PORT_A:
1633 		panel->vbt.dsi.bl_ports = BIT(PORT_A);
1634 		break;
1635 	case DL_DCS_PORT_C:
1636 		panel->vbt.dsi.bl_ports = BIT(port_bc);
1637 		break;
1638 	default:
1639 	case DL_DCS_PORT_A_AND_C:
1640 		panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1641 		break;
1642 	}
1643 
1644 	if (!panel->vbt.dsi.config->cabc_supported)
1645 		return;
1646 
1647 	switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1648 	case DL_DCS_PORT_A:
1649 		panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1650 		break;
1651 	case DL_DCS_PORT_C:
1652 		panel->vbt.dsi.cabc_ports = BIT(port_bc);
1653 		break;
1654 	default:
1655 	case DL_DCS_PORT_A_AND_C:
1656 		panel->vbt.dsi.cabc_ports =
1657 					BIT(PORT_A) | BIT(port_bc);
1658 		break;
1659 	}
1660 }
1661 
1662 static void
1663 parse_mipi_config(struct drm_i915_private *i915,
1664 		  struct intel_panel *panel)
1665 {
1666 	const struct bdb_mipi_config *start;
1667 	const struct mipi_config *config;
1668 	const struct mipi_pps_data *pps;
1669 	int panel_type = panel->vbt.panel_type;
1670 	enum port port;
1671 
1672 	/* parse MIPI blocks only if LFP type is MIPI */
1673 	if (!intel_bios_is_dsi_present(i915, &port))
1674 		return;
1675 
1676 	/* Initialize this to undefined indicating no generic MIPI support */
1677 	panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1678 
1679 	/* Block #40 is already parsed and panel_fixed_mode is
1680 	 * stored in i915->lfp_lvds_vbt_mode
1681 	 * resuse this when needed
1682 	 */
1683 
1684 	/* Parse #52 for panel index used from panel_type already
1685 	 * parsed
1686 	 */
1687 	start = bdb_find_section(i915, BDB_MIPI_CONFIG);
1688 	if (!start) {
1689 		drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1690 		return;
1691 	}
1692 
1693 	drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1694 		panel_type);
1695 
1696 	/*
1697 	 * get hold of the correct configuration block and pps data as per
1698 	 * the panel_type as index
1699 	 */
1700 	config = &start->config[panel_type];
1701 	pps = &start->pps[panel_type];
1702 
1703 	/* store as of now full data. Trim when we realise all is not needed */
1704 	panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1705 	if (!panel->vbt.dsi.config)
1706 		return;
1707 
1708 	panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1709 	if (!panel->vbt.dsi.pps) {
1710 		kfree(panel->vbt.dsi.config);
1711 		return;
1712 	}
1713 
1714 	parse_dsi_backlight_ports(i915, panel, port);
1715 
1716 	/* FIXME is the 90 vs. 270 correct? */
1717 	switch (config->rotation) {
1718 	case ENABLE_ROTATION_0:
1719 		/*
1720 		 * Most (all?) VBTs claim 0 degrees despite having
1721 		 * an upside down panel, thus we do not trust this.
1722 		 */
1723 		panel->vbt.dsi.orientation =
1724 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1725 		break;
1726 	case ENABLE_ROTATION_90:
1727 		panel->vbt.dsi.orientation =
1728 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1729 		break;
1730 	case ENABLE_ROTATION_180:
1731 		panel->vbt.dsi.orientation =
1732 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1733 		break;
1734 	case ENABLE_ROTATION_270:
1735 		panel->vbt.dsi.orientation =
1736 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1737 		break;
1738 	}
1739 
1740 	/* We have mandatory mipi config blocks. Initialize as generic panel */
1741 	panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1742 }
1743 
1744 /* Find the sequence block and size for the given panel. */
1745 static const u8 *
1746 find_panel_sequence_block(struct drm_i915_private *i915,
1747 			  const struct bdb_mipi_sequence *sequence,
1748 			  u16 panel_id, u32 *seq_size)
1749 {
1750 	u32 total = get_blocksize(sequence);
1751 	const u8 *data = &sequence->data[0];
1752 	u8 current_id;
1753 	u32 current_size;
1754 	int header_size = sequence->version >= 3 ? 5 : 3;
1755 	int index = 0;
1756 	int i;
1757 
1758 	/* skip new block size */
1759 	if (sequence->version >= 3)
1760 		data += 4;
1761 
1762 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1763 		if (index + header_size > total) {
1764 			drm_err(&i915->drm, "Invalid sequence block (header)\n");
1765 			return NULL;
1766 		}
1767 
1768 		current_id = *(data + index);
1769 		if (sequence->version >= 3)
1770 			current_size = *((const u32 *)(data + index + 1));
1771 		else
1772 			current_size = *((const u16 *)(data + index + 1));
1773 
1774 		index += header_size;
1775 
1776 		if (index + current_size > total) {
1777 			drm_err(&i915->drm, "Invalid sequence block\n");
1778 			return NULL;
1779 		}
1780 
1781 		if (current_id == panel_id) {
1782 			*seq_size = current_size;
1783 			return data + index;
1784 		}
1785 
1786 		index += current_size;
1787 	}
1788 
1789 	drm_err(&i915->drm, "Sequence block detected but no valid configuration\n");
1790 
1791 	return NULL;
1792 }
1793 
1794 static int goto_next_sequence(struct drm_i915_private *i915,
1795 			      const u8 *data, int index, int total)
1796 {
1797 	u16 len;
1798 
1799 	/* Skip Sequence Byte. */
1800 	for (index = index + 1; index < total; index += len) {
1801 		u8 operation_byte = *(data + index);
1802 		index++;
1803 
1804 		switch (operation_byte) {
1805 		case MIPI_SEQ_ELEM_END:
1806 			return index;
1807 		case MIPI_SEQ_ELEM_SEND_PKT:
1808 			if (index + 4 > total)
1809 				return 0;
1810 
1811 			len = *((const u16 *)(data + index + 2)) + 4;
1812 			break;
1813 		case MIPI_SEQ_ELEM_DELAY:
1814 			len = 4;
1815 			break;
1816 		case MIPI_SEQ_ELEM_GPIO:
1817 			len = 2;
1818 			break;
1819 		case MIPI_SEQ_ELEM_I2C:
1820 			if (index + 7 > total)
1821 				return 0;
1822 			len = *(data + index + 6) + 7;
1823 			break;
1824 		default:
1825 			drm_err(&i915->drm, "Unknown operation byte\n");
1826 			return 0;
1827 		}
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static int goto_next_sequence_v3(struct drm_i915_private *i915,
1834 				 const u8 *data, int index, int total)
1835 {
1836 	int seq_end;
1837 	u16 len;
1838 	u32 size_of_sequence;
1839 
1840 	/*
1841 	 * Could skip sequence based on Size of Sequence alone, but also do some
1842 	 * checking on the structure.
1843 	 */
1844 	if (total < 5) {
1845 		drm_err(&i915->drm, "Too small sequence size\n");
1846 		return 0;
1847 	}
1848 
1849 	/* Skip Sequence Byte. */
1850 	index++;
1851 
1852 	/*
1853 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1854 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1855 	 * byte.
1856 	 */
1857 	size_of_sequence = *((const u32 *)(data + index));
1858 	index += 4;
1859 
1860 	seq_end = index + size_of_sequence;
1861 	if (seq_end > total) {
1862 		drm_err(&i915->drm, "Invalid sequence size\n");
1863 		return 0;
1864 	}
1865 
1866 	for (; index < total; index += len) {
1867 		u8 operation_byte = *(data + index);
1868 		index++;
1869 
1870 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1871 			if (index != seq_end) {
1872 				drm_err(&i915->drm, "Invalid element structure\n");
1873 				return 0;
1874 			}
1875 			return index;
1876 		}
1877 
1878 		len = *(data + index);
1879 		index++;
1880 
1881 		/*
1882 		 * FIXME: Would be nice to check elements like for v1/v2 in
1883 		 * goto_next_sequence() above.
1884 		 */
1885 		switch (operation_byte) {
1886 		case MIPI_SEQ_ELEM_SEND_PKT:
1887 		case MIPI_SEQ_ELEM_DELAY:
1888 		case MIPI_SEQ_ELEM_GPIO:
1889 		case MIPI_SEQ_ELEM_I2C:
1890 		case MIPI_SEQ_ELEM_SPI:
1891 		case MIPI_SEQ_ELEM_PMIC:
1892 			break;
1893 		default:
1894 			drm_err(&i915->drm, "Unknown operation byte %u\n",
1895 				operation_byte);
1896 			break;
1897 		}
1898 	}
1899 
1900 	return 0;
1901 }
1902 
1903 /*
1904  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1905  * skip all delay + gpio operands and stop at the first DSI packet op.
1906  */
1907 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1908 					      struct intel_panel *panel)
1909 {
1910 	const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1911 	int index, len;
1912 
1913 	if (drm_WARN_ON(&i915->drm,
1914 			!data || panel->vbt.dsi.seq_version != 1))
1915 		return 0;
1916 
1917 	/* index = 1 to skip sequence byte */
1918 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1919 		switch (data[index]) {
1920 		case MIPI_SEQ_ELEM_SEND_PKT:
1921 			return index == 1 ? 0 : index;
1922 		case MIPI_SEQ_ELEM_DELAY:
1923 			len = 5; /* 1 byte for operand + uint32 */
1924 			break;
1925 		case MIPI_SEQ_ELEM_GPIO:
1926 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1927 			break;
1928 		default:
1929 			return 0;
1930 		}
1931 	}
1932 
1933 	return 0;
1934 }
1935 
1936 /*
1937  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1938  * The deassert must be done before calling intel_dsi_device_ready, so for
1939  * these devices we split the init OTP sequence into a deassert sequence and
1940  * the actual init OTP part.
1941  */
1942 static void vlv_fixup_mipi_sequences(struct drm_i915_private *i915,
1943 				     struct intel_panel *panel)
1944 {
1945 	u8 *init_otp;
1946 	int len;
1947 
1948 	/* Limit this to v1 vid-mode sequences */
1949 	if (panel->vbt.dsi.config->is_cmd_mode ||
1950 	    panel->vbt.dsi.seq_version != 1)
1951 		return;
1952 
1953 	/* Only do this if there are otp and assert seqs and no deassert seq */
1954 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1955 	    !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1956 	    panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1957 		return;
1958 
1959 	/* The deassert-sequence ends at the first DSI packet */
1960 	len = get_init_otp_deassert_fragment_len(i915, panel);
1961 	if (!len)
1962 		return;
1963 
1964 	drm_dbg_kms(&i915->drm,
1965 		    "Using init OTP fragment to deassert reset\n");
1966 
1967 	/* Copy the fragment, update seq byte and terminate it */
1968 	init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1969 	panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1970 	if (!panel->vbt.dsi.deassert_seq)
1971 		return;
1972 	panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1973 	panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1974 	/* Use the copy for deassert */
1975 	panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1976 		panel->vbt.dsi.deassert_seq;
1977 	/* Replace the last byte of the fragment with init OTP seq byte */
1978 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1979 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1980 	panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1981 }
1982 
1983 /*
1984  * Some machines (eg. Lenovo 82TQ) appear to have broken
1985  * VBT sequences:
1986  * - INIT_OTP is not present at all
1987  * - what should be in INIT_OTP is in DISPLAY_ON
1988  * - what should be in DISPLAY_ON is in BACKLIGHT_ON
1989  *   (along with the actual backlight stuff)
1990  *
1991  * To make those work we simply swap DISPLAY_ON and INIT_OTP.
1992  *
1993  * TODO: Do we need to limit this to specific machines,
1994  *       or examine the contents of the sequences to
1995  *       avoid false positives?
1996  */
1997 static void icl_fixup_mipi_sequences(struct drm_i915_private *i915,
1998 				     struct intel_panel *panel)
1999 {
2000 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] &&
2001 	    panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) {
2002 		drm_dbg_kms(&i915->drm, "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n");
2003 
2004 		swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP],
2005 		     panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]);
2006 	}
2007 }
2008 
2009 static void fixup_mipi_sequences(struct drm_i915_private *i915,
2010 				 struct intel_panel *panel)
2011 {
2012 	if (DISPLAY_VER(i915) >= 11)
2013 		icl_fixup_mipi_sequences(i915, panel);
2014 	else if (IS_VALLEYVIEW(i915))
2015 		vlv_fixup_mipi_sequences(i915, panel);
2016 }
2017 
2018 static void
2019 parse_mipi_sequence(struct drm_i915_private *i915,
2020 		    struct intel_panel *panel)
2021 {
2022 	int panel_type = panel->vbt.panel_type;
2023 	const struct bdb_mipi_sequence *sequence;
2024 	const u8 *seq_data;
2025 	u32 seq_size;
2026 	u8 *data;
2027 	int index = 0;
2028 
2029 	/* Only our generic panel driver uses the sequence block. */
2030 	if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2031 		return;
2032 
2033 	sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE);
2034 	if (!sequence) {
2035 		drm_dbg_kms(&i915->drm,
2036 			    "No MIPI Sequence found, parsing complete\n");
2037 		return;
2038 	}
2039 
2040 	/* Fail gracefully for forward incompatible sequence block. */
2041 	if (sequence->version >= 4) {
2042 		drm_err(&i915->drm,
2043 			"Unable to parse MIPI Sequence Block v%u\n",
2044 			sequence->version);
2045 		return;
2046 	}
2047 
2048 	drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2049 		sequence->version);
2050 
2051 	seq_data = find_panel_sequence_block(i915, sequence, panel_type, &seq_size);
2052 	if (!seq_data)
2053 		return;
2054 
2055 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2056 	if (!data)
2057 		return;
2058 
2059 	/* Parse the sequences, store pointers to each sequence. */
2060 	for (;;) {
2061 		u8 seq_id = *(data + index);
2062 		if (seq_id == MIPI_SEQ_END)
2063 			break;
2064 
2065 		if (seq_id >= MIPI_SEQ_MAX) {
2066 			drm_err(&i915->drm, "Unknown sequence %u\n",
2067 				seq_id);
2068 			goto err;
2069 		}
2070 
2071 		/* Log about presence of sequences we won't run. */
2072 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2073 			drm_dbg_kms(&i915->drm,
2074 				    "Unsupported sequence %u\n", seq_id);
2075 
2076 		panel->vbt.dsi.sequence[seq_id] = data + index;
2077 
2078 		if (sequence->version >= 3)
2079 			index = goto_next_sequence_v3(i915, data, index, seq_size);
2080 		else
2081 			index = goto_next_sequence(i915, data, index, seq_size);
2082 		if (!index) {
2083 			drm_err(&i915->drm, "Invalid sequence %u\n",
2084 				seq_id);
2085 			goto err;
2086 		}
2087 	}
2088 
2089 	panel->vbt.dsi.data = data;
2090 	panel->vbt.dsi.size = seq_size;
2091 	panel->vbt.dsi.seq_version = sequence->version;
2092 
2093 	fixup_mipi_sequences(i915, panel);
2094 
2095 	drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2096 	return;
2097 
2098 err:
2099 	kfree(data);
2100 	memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2101 }
2102 
2103 static void
2104 parse_compression_parameters(struct drm_i915_private *i915)
2105 {
2106 	const struct bdb_compression_parameters *params;
2107 	struct intel_bios_encoder_data *devdata;
2108 	u16 block_size;
2109 	int index;
2110 
2111 	if (i915->display.vbt.version < 198)
2112 		return;
2113 
2114 	params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS);
2115 	if (params) {
2116 		/* Sanity checks */
2117 		if (params->entry_size != sizeof(params->data[0])) {
2118 			drm_dbg_kms(&i915->drm,
2119 				    "VBT: unsupported compression param entry size\n");
2120 			return;
2121 		}
2122 
2123 		block_size = get_blocksize(params);
2124 		if (block_size < sizeof(*params)) {
2125 			drm_dbg_kms(&i915->drm,
2126 				    "VBT: expected 16 compression param entries\n");
2127 			return;
2128 		}
2129 	}
2130 
2131 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2132 		const struct child_device_config *child = &devdata->child;
2133 
2134 		if (!child->compression_enable)
2135 			continue;
2136 
2137 		if (!params) {
2138 			drm_dbg_kms(&i915->drm,
2139 				    "VBT: compression params not available\n");
2140 			continue;
2141 		}
2142 
2143 		if (child->compression_method_cps) {
2144 			drm_dbg_kms(&i915->drm,
2145 				    "VBT: CPS compression not supported\n");
2146 			continue;
2147 		}
2148 
2149 		index = child->compression_structure_index;
2150 
2151 		devdata->dsc = kmemdup(&params->data[index],
2152 				       sizeof(*devdata->dsc), GFP_KERNEL);
2153 	}
2154 }
2155 
2156 static u8 translate_iboost(struct drm_i915_private *i915, u8 val)
2157 {
2158 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2159 
2160 	if (val >= ARRAY_SIZE(mapping)) {
2161 		drm_dbg_kms(&i915->drm,
2162 			    "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2163 		return 0;
2164 	}
2165 	return mapping[val];
2166 }
2167 
2168 static const u8 cnp_ddc_pin_map[] = {
2169 	[0] = 0, /* N/A */
2170 	[GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2171 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2172 	[GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2173 	[GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2174 };
2175 
2176 static const u8 icp_ddc_pin_map[] = {
2177 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2178 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2179 	[GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2180 	[GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2181 	[GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2182 	[GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2183 	[GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2184 	[GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2185 	[GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2186 };
2187 
2188 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2189 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2190 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2191 	[GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2192 	[GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2193 };
2194 
2195 static const u8 adls_ddc_pin_map[] = {
2196 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2197 	[GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2198 	[GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2199 	[GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2200 	[GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2201 };
2202 
2203 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2204 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2205 	[GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2206 	[GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2207 };
2208 
2209 static const u8 adlp_ddc_pin_map[] = {
2210 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2211 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2212 	[GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2213 	[GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2214 	[GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2215 	[GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2216 };
2217 
2218 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2219 {
2220 	const u8 *ddc_pin_map;
2221 	int i, n_entries;
2222 
2223 	if (IS_DGFX(i915))
2224 		return vbt_pin;
2225 
2226 	if (INTEL_PCH_TYPE(i915) >= PCH_MTL || IS_ALDERLAKE_P(i915)) {
2227 		ddc_pin_map = adlp_ddc_pin_map;
2228 		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2229 	} else if (IS_ALDERLAKE_S(i915)) {
2230 		ddc_pin_map = adls_ddc_pin_map;
2231 		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2232 	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2233 		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2234 		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2235 	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2236 		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2237 		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2238 	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2239 		ddc_pin_map = icp_ddc_pin_map;
2240 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2241 	} else if (HAS_PCH_CNP(i915)) {
2242 		ddc_pin_map = cnp_ddc_pin_map;
2243 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2244 	} else {
2245 		/* Assuming direct map */
2246 		return vbt_pin;
2247 	}
2248 
2249 	for (i = 0; i < n_entries; i++) {
2250 		if (ddc_pin_map[i] == vbt_pin)
2251 			return i;
2252 	}
2253 
2254 	drm_dbg_kms(&i915->drm,
2255 		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2256 		    vbt_pin);
2257 	return 0;
2258 }
2259 
2260 static u8 dvo_port_type(u8 dvo_port)
2261 {
2262 	switch (dvo_port) {
2263 	case DVO_PORT_HDMIA:
2264 	case DVO_PORT_HDMIB:
2265 	case DVO_PORT_HDMIC:
2266 	case DVO_PORT_HDMID:
2267 	case DVO_PORT_HDMIE:
2268 	case DVO_PORT_HDMIF:
2269 	case DVO_PORT_HDMIG:
2270 	case DVO_PORT_HDMIH:
2271 	case DVO_PORT_HDMII:
2272 		return DVO_PORT_HDMIA;
2273 	case DVO_PORT_DPA:
2274 	case DVO_PORT_DPB:
2275 	case DVO_PORT_DPC:
2276 	case DVO_PORT_DPD:
2277 	case DVO_PORT_DPE:
2278 	case DVO_PORT_DPF:
2279 	case DVO_PORT_DPG:
2280 	case DVO_PORT_DPH:
2281 	case DVO_PORT_DPI:
2282 		return DVO_PORT_DPA;
2283 	case DVO_PORT_MIPIA:
2284 	case DVO_PORT_MIPIB:
2285 	case DVO_PORT_MIPIC:
2286 	case DVO_PORT_MIPID:
2287 		return DVO_PORT_MIPIA;
2288 	default:
2289 		return dvo_port;
2290 	}
2291 }
2292 
2293 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2294 				    const int port_mapping[][3], u8 dvo_port)
2295 {
2296 	enum port port;
2297 	int i;
2298 
2299 	for (port = PORT_A; port < n_ports; port++) {
2300 		for (i = 0; i < n_dvo; i++) {
2301 			if (port_mapping[port][i] == -1)
2302 				break;
2303 
2304 			if (dvo_port == port_mapping[port][i])
2305 				return port;
2306 		}
2307 	}
2308 
2309 	return PORT_NONE;
2310 }
2311 
2312 static enum port dvo_port_to_port(struct drm_i915_private *i915,
2313 				  u8 dvo_port)
2314 {
2315 	/*
2316 	 * Each DDI port can have more than one value on the "DVO Port" field,
2317 	 * so look for all the possible values for each port.
2318 	 */
2319 	static const int port_mapping[][3] = {
2320 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2321 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2322 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2323 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2324 		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2325 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2326 		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2327 		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2328 		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2329 	};
2330 	/*
2331 	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2332 	 * map to DDI A,B,TC1,TC2 respectively.
2333 	 */
2334 	static const int rkl_port_mapping[][3] = {
2335 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2336 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2337 		[PORT_C] = { -1 },
2338 		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2339 		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2340 	};
2341 	/*
2342 	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2343 	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2344 	 */
2345 	static const int adls_port_mapping[][3] = {
2346 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2347 		[PORT_B] = { -1 },
2348 		[PORT_C] = { -1 },
2349 		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2350 		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2351 		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2352 		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2353 	};
2354 	static const int xelpd_port_mapping[][3] = {
2355 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2356 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2357 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2358 		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2359 		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2360 		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2361 		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2362 		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2363 		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2364 	};
2365 
2366 	if (DISPLAY_VER(i915) >= 13)
2367 		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2368 					  ARRAY_SIZE(xelpd_port_mapping[0]),
2369 					  xelpd_port_mapping,
2370 					  dvo_port);
2371 	else if (IS_ALDERLAKE_S(i915))
2372 		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2373 					  ARRAY_SIZE(adls_port_mapping[0]),
2374 					  adls_port_mapping,
2375 					  dvo_port);
2376 	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2377 		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2378 					  ARRAY_SIZE(rkl_port_mapping[0]),
2379 					  rkl_port_mapping,
2380 					  dvo_port);
2381 	else
2382 		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2383 					  ARRAY_SIZE(port_mapping[0]),
2384 					  port_mapping,
2385 					  dvo_port);
2386 }
2387 
2388 static enum port
2389 dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port)
2390 {
2391 	switch (dvo_port) {
2392 	case DVO_PORT_MIPIA:
2393 		return PORT_A;
2394 	case DVO_PORT_MIPIC:
2395 		if (DISPLAY_VER(i915) >= 11)
2396 			return PORT_B;
2397 		else
2398 			return PORT_C;
2399 	default:
2400 		return PORT_NONE;
2401 	}
2402 }
2403 
2404 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2405 {
2406 	struct drm_i915_private *i915 = devdata->i915;
2407 	const struct child_device_config *child = &devdata->child;
2408 	enum port port;
2409 
2410 	port = dvo_port_to_port(i915, child->dvo_port);
2411 	if (port == PORT_NONE && DISPLAY_VER(i915) >= 11)
2412 		port = dsi_dvo_port_to_port(i915, child->dvo_port);
2413 
2414 	return port;
2415 }
2416 
2417 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2418 {
2419 	switch (vbt_max_link_rate) {
2420 	default:
2421 	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2422 		return 0;
2423 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2424 		return 2000000;
2425 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2426 		return 1350000;
2427 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2428 		return 1000000;
2429 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2430 		return 810000;
2431 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2432 		return 540000;
2433 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2434 		return 270000;
2435 	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2436 		return 162000;
2437 	}
2438 }
2439 
2440 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2441 {
2442 	switch (vbt_max_link_rate) {
2443 	default:
2444 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2445 		return 810000;
2446 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2447 		return 540000;
2448 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2449 		return 270000;
2450 	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2451 		return 162000;
2452 	}
2453 }
2454 
2455 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2456 {
2457 	if (!devdata || devdata->i915->display.vbt.version < 216)
2458 		return 0;
2459 
2460 	if (devdata->i915->display.vbt.version >= 230)
2461 		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2462 	else
2463 		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2464 }
2465 
2466 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2467 {
2468 	if (!devdata || devdata->i915->display.vbt.version < 244)
2469 		return 0;
2470 
2471 	return devdata->child.dp_max_lane_count + 1;
2472 }
2473 
2474 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2475 				 enum port port)
2476 {
2477 	struct drm_i915_private *i915 = devdata->i915;
2478 	bool is_hdmi;
2479 
2480 	if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2481 		return;
2482 
2483 	if (!intel_bios_encoder_supports_dvi(devdata))
2484 		return;
2485 
2486 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2487 
2488 	drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2489 		    is_hdmi ? "/HDMI" : "");
2490 
2491 	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2492 	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2493 }
2494 
2495 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata,
2496 				      enum port port)
2497 {
2498 	struct drm_i915_private *i915 = devdata->i915;
2499 
2500 	if (!intel_bios_encoder_supports_dvi(devdata))
2501 		return;
2502 
2503 	/*
2504 	 * Some BDW machines (eg. HP Pavilion 15-ab) shipped
2505 	 * with a HSW VBT where the level shifter value goes
2506 	 * up to 11, whereas the BDW max is 9.
2507 	 */
2508 	if (IS_BROADWELL(i915) && devdata->child.hdmi_level_shifter_value > 9) {
2509 		drm_dbg_kms(&i915->drm, "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n",
2510 			    port_name(port), devdata->child.hdmi_level_shifter_value, 9);
2511 
2512 		devdata->child.hdmi_level_shifter_value = 9;
2513 	}
2514 }
2515 
2516 static bool
2517 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2518 {
2519 	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2520 }
2521 
2522 bool
2523 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2524 {
2525 	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2526 }
2527 
2528 bool
2529 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2530 {
2531 	return intel_bios_encoder_supports_dvi(devdata) &&
2532 		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2533 }
2534 
2535 bool
2536 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2537 {
2538 	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2539 }
2540 
2541 bool
2542 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2543 {
2544 	return intel_bios_encoder_supports_dp(devdata) &&
2545 		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2546 }
2547 
2548 bool
2549 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2550 {
2551 	return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2552 }
2553 
2554 bool
2555 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2556 {
2557 	return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon;
2558 }
2559 
2560 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
2561 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2562 {
2563 	if (!devdata || devdata->i915->display.vbt.version < 158 ||
2564 	    DISPLAY_VER(devdata->i915) >= 14)
2565 		return -1;
2566 
2567 	return devdata->child.hdmi_level_shifter_value;
2568 }
2569 
2570 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2571 {
2572 	if (!devdata || devdata->i915->display.vbt.version < 204)
2573 		return 0;
2574 
2575 	switch (devdata->child.hdmi_max_data_rate) {
2576 	default:
2577 		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2578 		fallthrough;
2579 	case HDMI_MAX_DATA_RATE_PLATFORM:
2580 		return 0;
2581 	case HDMI_MAX_DATA_RATE_594:
2582 		return 594000;
2583 	case HDMI_MAX_DATA_RATE_340:
2584 		return 340000;
2585 	case HDMI_MAX_DATA_RATE_300:
2586 		return 300000;
2587 	case HDMI_MAX_DATA_RATE_297:
2588 		return 297000;
2589 	case HDMI_MAX_DATA_RATE_165:
2590 		return 165000;
2591 	}
2592 }
2593 
2594 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2595 {
2596 	/*
2597 	 * On some ICL SKUs port F is not present, but broken VBTs mark
2598 	 * the port as present. Only try to initialize port F for the
2599 	 * SKUs that may actually have it.
2600 	 */
2601 	if (port == PORT_F && IS_ICELAKE(i915))
2602 		return IS_ICL_WITH_PORT_F(i915);
2603 
2604 	return true;
2605 }
2606 
2607 static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2608 {
2609 	struct drm_i915_private *i915 = devdata->i915;
2610 	const struct child_device_config *child = &devdata->child;
2611 	bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2612 	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2613 	enum port port;
2614 
2615 	port = intel_bios_encoder_port(devdata);
2616 	if (port == PORT_NONE)
2617 		return;
2618 
2619 	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2620 	is_dp = intel_bios_encoder_supports_dp(devdata);
2621 	is_crt = intel_bios_encoder_supports_crt(devdata);
2622 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2623 	is_edp = intel_bios_encoder_supports_edp(devdata);
2624 	is_dsi = intel_bios_encoder_supports_dsi(devdata);
2625 
2626 	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2627 	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2628 
2629 	drm_dbg_kms(&i915->drm,
2630 		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2631 		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2632 		    intel_bios_encoder_supports_dp_dual_mode(devdata),
2633 		    intel_bios_encoder_is_lspcon(devdata),
2634 		    supports_typec_usb, supports_tbt,
2635 		    devdata->dsc != NULL);
2636 
2637 	hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2638 	if (hdmi_level_shift >= 0) {
2639 		drm_dbg_kms(&i915->drm,
2640 			    "Port %c VBT HDMI level shift: %d\n",
2641 			    port_name(port), hdmi_level_shift);
2642 	}
2643 
2644 	max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2645 	if (max_tmds_clock)
2646 		drm_dbg_kms(&i915->drm,
2647 			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2648 			    port_name(port), max_tmds_clock);
2649 
2650 	/* I_boost config for SKL and above */
2651 	dp_boost_level = intel_bios_dp_boost_level(devdata);
2652 	if (dp_boost_level)
2653 		drm_dbg_kms(&i915->drm,
2654 			    "Port %c VBT (e)DP boost level: %d\n",
2655 			    port_name(port), dp_boost_level);
2656 
2657 	hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2658 	if (hdmi_boost_level)
2659 		drm_dbg_kms(&i915->drm,
2660 			    "Port %c VBT HDMI boost level: %d\n",
2661 			    port_name(port), hdmi_boost_level);
2662 
2663 	dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2664 	if (dp_max_link_rate)
2665 		drm_dbg_kms(&i915->drm,
2666 			    "Port %c VBT DP max link rate: %d\n",
2667 			    port_name(port), dp_max_link_rate);
2668 
2669 	/*
2670 	 * FIXME need to implement support for VBT
2671 	 * vswing/preemph tables should this ever trigger.
2672 	 */
2673 	drm_WARN(&i915->drm, child->use_vbt_vswing,
2674 		 "Port %c asks to use VBT vswing/preemph tables\n",
2675 		 port_name(port));
2676 }
2677 
2678 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2679 {
2680 	struct drm_i915_private *i915 = devdata->i915;
2681 	enum port port;
2682 
2683 	port = intel_bios_encoder_port(devdata);
2684 	if (port == PORT_NONE)
2685 		return;
2686 
2687 	if (!is_port_valid(i915, port)) {
2688 		drm_dbg_kms(&i915->drm,
2689 			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2690 			    port_name(port));
2691 		return;
2692 	}
2693 
2694 	sanitize_device_type(devdata, port);
2695 	sanitize_hdmi_level_shift(devdata, port);
2696 }
2697 
2698 static bool has_ddi_port_info(struct drm_i915_private *i915)
2699 {
2700 	return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2701 }
2702 
2703 static void parse_ddi_ports(struct drm_i915_private *i915)
2704 {
2705 	struct intel_bios_encoder_data *devdata;
2706 
2707 	if (!has_ddi_port_info(i915))
2708 		return;
2709 
2710 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2711 		parse_ddi_port(devdata);
2712 
2713 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2714 		print_ddi_port(devdata);
2715 }
2716 
2717 static int child_device_expected_size(u16 version)
2718 {
2719 	BUILD_BUG_ON(sizeof(struct child_device_config) < 40);
2720 
2721 	if (version > 256)
2722 		return -ENOENT;
2723 	else if (version >= 256)
2724 		return 40;
2725 	else if (version >= 216)
2726 		return 39;
2727 	else if (version >= 196)
2728 		return 38;
2729 	else if (version >= 195)
2730 		return 37;
2731 	else if (version >= 111)
2732 		return LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2733 	else if (version >= 106)
2734 		return 27;
2735 	else
2736 		return 22;
2737 }
2738 
2739 static bool child_device_size_valid(struct drm_i915_private *i915, int size)
2740 {
2741 	int expected_size;
2742 
2743 	expected_size = child_device_expected_size(i915->display.vbt.version);
2744 	if (expected_size < 0) {
2745 		expected_size = sizeof(struct child_device_config);
2746 		drm_dbg(&i915->drm,
2747 			"Expected child device config size for VBT version %u not known; assuming %d\n",
2748 			i915->display.vbt.version, expected_size);
2749 	}
2750 
2751 	/* Flag an error for unexpected size, but continue anyway. */
2752 	if (size != expected_size)
2753 		drm_err(&i915->drm,
2754 			"Unexpected child device config size %d (expected %d for VBT version %u)\n",
2755 			size, expected_size, i915->display.vbt.version);
2756 
2757 	/* The legacy sized child device config is the minimum we need. */
2758 	if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2759 		drm_dbg_kms(&i915->drm,
2760 			    "Child device config size %d is too small.\n",
2761 			    size);
2762 		return false;
2763 	}
2764 
2765 	return true;
2766 }
2767 
2768 static void
2769 parse_general_definitions(struct drm_i915_private *i915)
2770 {
2771 	const struct bdb_general_definitions *defs;
2772 	struct intel_bios_encoder_data *devdata;
2773 	const struct child_device_config *child;
2774 	int i, child_device_num;
2775 	u16 block_size;
2776 	int bus_pin;
2777 
2778 	defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS);
2779 	if (!defs) {
2780 		drm_dbg_kms(&i915->drm,
2781 			    "No general definition block is found, no devices defined.\n");
2782 		return;
2783 	}
2784 
2785 	block_size = get_blocksize(defs);
2786 	if (block_size < sizeof(*defs)) {
2787 		drm_dbg_kms(&i915->drm,
2788 			    "General definitions block too small (%u)\n",
2789 			    block_size);
2790 		return;
2791 	}
2792 
2793 	bus_pin = defs->crt_ddc_gmbus_pin;
2794 	drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2795 	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2796 		i915->display.vbt.crt_ddc_pin = bus_pin;
2797 
2798 	if (!child_device_size_valid(i915, defs->child_dev_size))
2799 		return;
2800 
2801 	/* get the number of child device */
2802 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2803 
2804 	for (i = 0; i < child_device_num; i++) {
2805 		child = child_device_ptr(defs, i);
2806 		if (!child->device_type)
2807 			continue;
2808 
2809 		drm_dbg_kms(&i915->drm,
2810 			    "Found VBT child device with type 0x%x\n",
2811 			    child->device_type);
2812 
2813 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2814 		if (!devdata)
2815 			break;
2816 
2817 		devdata->i915 = i915;
2818 
2819 		/*
2820 		 * Copy as much as we know (sizeof) and is available
2821 		 * (child_dev_size) of the child device config. Accessing the
2822 		 * data must depend on VBT version.
2823 		 */
2824 		memcpy(&devdata->child, child,
2825 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2826 
2827 		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2828 	}
2829 
2830 	if (list_empty(&i915->display.vbt.display_devices))
2831 		drm_dbg_kms(&i915->drm,
2832 			    "no child dev is parsed from VBT\n");
2833 }
2834 
2835 /* Common defaults which may be overridden by VBT. */
2836 static void
2837 init_vbt_defaults(struct drm_i915_private *i915)
2838 {
2839 	i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2840 
2841 	/* general features */
2842 	i915->display.vbt.int_tv_support = 1;
2843 	i915->display.vbt.int_crt_support = 1;
2844 
2845 	/* driver features */
2846 	i915->display.vbt.int_lvds_support = 1;
2847 
2848 	/* Default to using SSC */
2849 	i915->display.vbt.lvds_use_ssc = 1;
2850 	/*
2851 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2852 	 * clock for LVDS.
2853 	 */
2854 	i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2855 								   !HAS_PCH_SPLIT(i915));
2856 	drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2857 		    i915->display.vbt.lvds_ssc_freq);
2858 }
2859 
2860 /* Common defaults which may be overridden by VBT. */
2861 static void
2862 init_vbt_panel_defaults(struct intel_panel *panel)
2863 {
2864 	/* Default to having backlight */
2865 	panel->vbt.backlight.present = true;
2866 
2867 	/* LFP panel data */
2868 	panel->vbt.lvds_dither = true;
2869 }
2870 
2871 /* Defaults to initialize only if there is no VBT. */
2872 static void
2873 init_vbt_missing_defaults(struct drm_i915_private *i915)
2874 {
2875 	unsigned int ports = DISPLAY_RUNTIME_INFO(i915)->port_mask;
2876 	enum port port;
2877 
2878 	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2879 		return;
2880 
2881 	for_each_port_masked(port, ports) {
2882 		struct intel_bios_encoder_data *devdata;
2883 		struct child_device_config *child;
2884 		enum phy phy = intel_port_to_phy(i915, port);
2885 
2886 		/*
2887 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2888 		 * to detect it.
2889 		 */
2890 		if (intel_phy_is_tc(i915, phy))
2891 			continue;
2892 
2893 		/* Create fake child device config */
2894 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2895 		if (!devdata)
2896 			break;
2897 
2898 		devdata->i915 = i915;
2899 		child = &devdata->child;
2900 
2901 		if (port == PORT_F)
2902 			child->dvo_port = DVO_PORT_HDMIF;
2903 		else if (port == PORT_E)
2904 			child->dvo_port = DVO_PORT_HDMIE;
2905 		else
2906 			child->dvo_port = DVO_PORT_HDMIA + port;
2907 
2908 		if (port != PORT_A && port != PORT_E)
2909 			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2910 
2911 		if (port != PORT_E)
2912 			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2913 
2914 		if (port == PORT_A)
2915 			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2916 
2917 		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2918 
2919 		drm_dbg_kms(&i915->drm,
2920 			    "Generating default VBT child device with type 0x04%x on port %c\n",
2921 			    child->device_type, port_name(port));
2922 	}
2923 
2924 	/* Bypass some minimum baseline VBT version checks */
2925 	i915->display.vbt.version = 155;
2926 }
2927 
2928 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2929 {
2930 	const void *_vbt = vbt;
2931 
2932 	return _vbt + vbt->bdb_offset;
2933 }
2934 
2935 /**
2936  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2937  * @i915:	the device
2938  * @buf:	pointer to a buffer to validate
2939  * @size:	size of the buffer
2940  *
2941  * Returns true on valid VBT.
2942  */
2943 bool intel_bios_is_valid_vbt(struct drm_i915_private *i915,
2944 			     const void *buf, size_t size)
2945 {
2946 	const struct vbt_header *vbt = buf;
2947 	const struct bdb_header *bdb;
2948 
2949 	if (!vbt)
2950 		return false;
2951 
2952 	if (sizeof(struct vbt_header) > size) {
2953 		drm_dbg_kms(&i915->drm, "VBT header incomplete\n");
2954 		return false;
2955 	}
2956 
2957 	if (memcmp(vbt->signature, "$VBT", 4)) {
2958 		drm_dbg_kms(&i915->drm, "VBT invalid signature\n");
2959 		return false;
2960 	}
2961 
2962 	if (vbt->vbt_size > size) {
2963 		drm_dbg_kms(&i915->drm, "VBT incomplete (vbt_size overflows)\n");
2964 		return false;
2965 	}
2966 
2967 	size = vbt->vbt_size;
2968 
2969 	if (range_overflows_t(size_t,
2970 			      vbt->bdb_offset,
2971 			      sizeof(struct bdb_header),
2972 			      size)) {
2973 		drm_dbg_kms(&i915->drm, "BDB header incomplete\n");
2974 		return false;
2975 	}
2976 
2977 	bdb = get_bdb_header(vbt);
2978 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2979 		drm_dbg_kms(&i915->drm, "BDB incomplete\n");
2980 		return false;
2981 	}
2982 
2983 	return vbt;
2984 }
2985 
2986 static struct vbt_header *firmware_get_vbt(struct drm_i915_private *i915,
2987 					   size_t *size)
2988 {
2989 	struct vbt_header *vbt = NULL;
2990 	const struct firmware *fw = NULL;
2991 	const char *name = i915->display.params.vbt_firmware;
2992 	int ret;
2993 
2994 	if (!name || !*name)
2995 		return NULL;
2996 
2997 	ret = request_firmware(&fw, name, i915->drm.dev);
2998 	if (ret) {
2999 		drm_err(&i915->drm,
3000 			"Requesting VBT firmware \"%s\" failed (%d)\n",
3001 			name, ret);
3002 		return NULL;
3003 	}
3004 
3005 	if (intel_bios_is_valid_vbt(i915, fw->data, fw->size)) {
3006 		vbt = kmemdup(fw->data, fw->size, GFP_KERNEL);
3007 		if (vbt) {
3008 			drm_dbg_kms(&i915->drm,
3009 				    "Found valid VBT firmware \"%s\"\n", name);
3010 			if (size)
3011 				*size = fw->size;
3012 		}
3013 	} else {
3014 		drm_dbg_kms(&i915->drm, "Invalid VBT firmware \"%s\"\n",
3015 			    name);
3016 	}
3017 
3018 	release_firmware(fw);
3019 
3020 	return vbt;
3021 }
3022 
3023 static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset)
3024 {
3025 	intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset);
3026 
3027 	return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER);
3028 }
3029 
3030 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915,
3031 					    size_t *size)
3032 {
3033 	u32 count, data, found, store = 0;
3034 	u32 static_region, oprom_offset;
3035 	u32 oprom_size = 0x200000;
3036 	u16 vbt_size;
3037 	u32 *vbt;
3038 
3039 	static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
3040 	static_region &= OPTIONROM_SPI_REGIONID_MASK;
3041 	intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
3042 
3043 	oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
3044 	oprom_offset &= OROM_OFFSET_MASK;
3045 
3046 	for (count = 0; count < oprom_size; count += 4) {
3047 		data = intel_spi_read(&i915->uncore, oprom_offset + count);
3048 		if (data == *((const u32 *)"$VBT")) {
3049 			found = oprom_offset + count;
3050 			break;
3051 		}
3052 	}
3053 
3054 	if (count >= oprom_size)
3055 		goto err_not_found;
3056 
3057 	/* Get VBT size and allocate space for the VBT */
3058 	vbt_size = intel_spi_read(&i915->uncore,
3059 				  found + offsetof(struct vbt_header, vbt_size));
3060 	vbt_size &= 0xffff;
3061 
3062 	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3063 	if (!vbt)
3064 		goto err_not_found;
3065 
3066 	for (count = 0; count < vbt_size; count += 4)
3067 		*(vbt + store++) = intel_spi_read(&i915->uncore, found + count);
3068 
3069 	if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size))
3070 		goto err_free_vbt;
3071 
3072 	drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
3073 
3074 	if (size)
3075 		*size = vbt_size;
3076 
3077 	return (struct vbt_header *)vbt;
3078 
3079 err_free_vbt:
3080 	kfree(vbt);
3081 err_not_found:
3082 	return NULL;
3083 }
3084 
3085 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915,
3086 					size_t *sizep)
3087 {
3088 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
3089 	void __iomem *p = NULL, *oprom;
3090 	struct vbt_header *vbt;
3091 	u16 vbt_size;
3092 	size_t i, size;
3093 
3094 	oprom = pci_map_rom(pdev, &size);
3095 	if (!oprom)
3096 		return NULL;
3097 
3098 	/* Scour memory looking for the VBT signature. */
3099 	for (i = 0; i + 4 < size; i += 4) {
3100 		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3101 			continue;
3102 
3103 		p = oprom + i;
3104 		size -= i;
3105 		break;
3106 	}
3107 
3108 	if (!p)
3109 		goto err_unmap_oprom;
3110 
3111 	if (sizeof(struct vbt_header) > size) {
3112 		drm_dbg(&i915->drm, "VBT header incomplete\n");
3113 		goto err_unmap_oprom;
3114 	}
3115 
3116 	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3117 	if (vbt_size > size) {
3118 		drm_dbg(&i915->drm,
3119 			"VBT incomplete (vbt_size overflows)\n");
3120 		goto err_unmap_oprom;
3121 	}
3122 
3123 	/* The rest will be validated by intel_bios_is_valid_vbt() */
3124 	vbt = kmalloc(vbt_size, GFP_KERNEL);
3125 	if (!vbt)
3126 		goto err_unmap_oprom;
3127 
3128 	memcpy_fromio(vbt, p, vbt_size);
3129 
3130 	if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size))
3131 		goto err_free_vbt;
3132 
3133 	pci_unmap_rom(pdev, oprom);
3134 
3135 	if (sizep)
3136 		*sizep = vbt_size;
3137 
3138 	drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3139 
3140 	return vbt;
3141 
3142 err_free_vbt:
3143 	kfree(vbt);
3144 err_unmap_oprom:
3145 	pci_unmap_rom(pdev, oprom);
3146 
3147 	return NULL;
3148 }
3149 
3150 static const struct vbt_header *intel_bios_get_vbt(struct drm_i915_private *i915,
3151 						   size_t *sizep)
3152 {
3153 	const struct vbt_header *vbt = NULL;
3154 	intel_wakeref_t wakeref;
3155 
3156 	vbt = firmware_get_vbt(i915, sizep);
3157 
3158 	if (!vbt)
3159 		vbt = intel_opregion_get_vbt(i915, sizep);
3160 
3161 	/*
3162 	 * If the OpRegion does not have VBT, look in SPI flash
3163 	 * through MMIO or PCI mapping
3164 	 */
3165 	if (!vbt && IS_DGFX(i915))
3166 		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
3167 			vbt = spi_oprom_get_vbt(i915, sizep);
3168 
3169 	if (!vbt)
3170 		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
3171 			vbt = oprom_get_vbt(i915, sizep);
3172 
3173 	return vbt;
3174 }
3175 
3176 /**
3177  * intel_bios_init - find VBT and initialize settings from the BIOS
3178  * @i915: i915 device instance
3179  *
3180  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3181  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3182  * initialize some defaults if the VBT is not present at all.
3183  */
3184 void intel_bios_init(struct drm_i915_private *i915)
3185 {
3186 	const struct vbt_header *vbt;
3187 	const struct bdb_header *bdb;
3188 
3189 	INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3190 	INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3191 
3192 	if (!HAS_DISPLAY(i915)) {
3193 		drm_dbg_kms(&i915->drm,
3194 			    "Skipping VBT init due to disabled display.\n");
3195 		return;
3196 	}
3197 
3198 	init_vbt_defaults(i915);
3199 
3200 	vbt = intel_bios_get_vbt(i915, NULL);
3201 
3202 	if (!vbt)
3203 		goto out;
3204 
3205 	bdb = get_bdb_header(vbt);
3206 	i915->display.vbt.version = bdb->version;
3207 
3208 	drm_dbg_kms(&i915->drm,
3209 		    "VBT signature \"%.*s\", BDB version %d\n",
3210 		    (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3211 
3212 	init_bdb_blocks(i915, bdb);
3213 
3214 	/* Grab useful general definitions */
3215 	parse_general_features(i915);
3216 	parse_general_definitions(i915);
3217 	parse_driver_features(i915);
3218 
3219 	/* Depends on child device list */
3220 	parse_compression_parameters(i915);
3221 
3222 out:
3223 	if (!vbt) {
3224 		drm_info(&i915->drm,
3225 			 "Failed to find VBIOS tables (VBT)\n");
3226 		init_vbt_missing_defaults(i915);
3227 	}
3228 
3229 	/* Further processing on pre-parsed or generated child device data */
3230 	parse_sdvo_device_mapping(i915);
3231 	parse_ddi_ports(i915);
3232 
3233 	kfree(vbt);
3234 }
3235 
3236 static void intel_bios_init_panel(struct drm_i915_private *i915,
3237 				  struct intel_panel *panel,
3238 				  const struct intel_bios_encoder_data *devdata,
3239 				  const struct drm_edid *drm_edid,
3240 				  bool use_fallback)
3241 {
3242 	/* already have it? */
3243 	if (panel->vbt.panel_type >= 0) {
3244 		drm_WARN_ON(&i915->drm, !use_fallback);
3245 		return;
3246 	}
3247 
3248 	panel->vbt.panel_type = get_panel_type(i915, devdata,
3249 					       drm_edid, use_fallback);
3250 	if (panel->vbt.panel_type < 0) {
3251 		drm_WARN_ON(&i915->drm, use_fallback);
3252 		return;
3253 	}
3254 
3255 	init_vbt_panel_defaults(panel);
3256 
3257 	parse_panel_options(i915, panel);
3258 	parse_generic_dtd(i915, panel);
3259 	parse_lfp_data(i915, panel);
3260 	parse_lfp_backlight(i915, panel);
3261 	parse_sdvo_panel_data(i915, panel);
3262 	parse_panel_driver_features(i915, panel);
3263 	parse_power_conservation_features(i915, panel);
3264 	parse_edp(i915, panel);
3265 	parse_psr(i915, panel);
3266 	parse_mipi_config(i915, panel);
3267 	parse_mipi_sequence(i915, panel);
3268 }
3269 
3270 void intel_bios_init_panel_early(struct drm_i915_private *i915,
3271 				 struct intel_panel *panel,
3272 				 const struct intel_bios_encoder_data *devdata)
3273 {
3274 	intel_bios_init_panel(i915, panel, devdata, NULL, false);
3275 }
3276 
3277 void intel_bios_init_panel_late(struct drm_i915_private *i915,
3278 				struct intel_panel *panel,
3279 				const struct intel_bios_encoder_data *devdata,
3280 				const struct drm_edid *drm_edid)
3281 {
3282 	intel_bios_init_panel(i915, panel, devdata, drm_edid, true);
3283 }
3284 
3285 /**
3286  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3287  * @i915: i915 device instance
3288  */
3289 void intel_bios_driver_remove(struct drm_i915_private *i915)
3290 {
3291 	struct intel_bios_encoder_data *devdata, *nd;
3292 	struct bdb_block_entry *entry, *ne;
3293 
3294 	list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3295 		list_del(&devdata->node);
3296 		kfree(devdata->dsc);
3297 		kfree(devdata);
3298 	}
3299 
3300 	list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3301 		list_del(&entry->node);
3302 		kfree(entry);
3303 	}
3304 }
3305 
3306 void intel_bios_fini_panel(struct intel_panel *panel)
3307 {
3308 	kfree(panel->vbt.sdvo_lvds_vbt_mode);
3309 	panel->vbt.sdvo_lvds_vbt_mode = NULL;
3310 	kfree(panel->vbt.lfp_lvds_vbt_mode);
3311 	panel->vbt.lfp_lvds_vbt_mode = NULL;
3312 	kfree(panel->vbt.dsi.data);
3313 	panel->vbt.dsi.data = NULL;
3314 	kfree(panel->vbt.dsi.pps);
3315 	panel->vbt.dsi.pps = NULL;
3316 	kfree(panel->vbt.dsi.config);
3317 	panel->vbt.dsi.config = NULL;
3318 	kfree(panel->vbt.dsi.deassert_seq);
3319 	panel->vbt.dsi.deassert_seq = NULL;
3320 }
3321 
3322 /**
3323  * intel_bios_is_tv_present - is integrated TV present in VBT
3324  * @i915: i915 device instance
3325  *
3326  * Return true if TV is present. If no child devices were parsed from VBT,
3327  * assume TV is present.
3328  */
3329 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3330 {
3331 	const struct intel_bios_encoder_data *devdata;
3332 
3333 	if (!i915->display.vbt.int_tv_support)
3334 		return false;
3335 
3336 	if (list_empty(&i915->display.vbt.display_devices))
3337 		return true;
3338 
3339 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3340 		const struct child_device_config *child = &devdata->child;
3341 
3342 		/*
3343 		 * If the device type is not TV, continue.
3344 		 */
3345 		switch (child->device_type) {
3346 		case DEVICE_TYPE_INT_TV:
3347 		case DEVICE_TYPE_TV:
3348 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3349 			break;
3350 		default:
3351 			continue;
3352 		}
3353 		/* Only when the addin_offset is non-zero, it is regarded
3354 		 * as present.
3355 		 */
3356 		if (child->addin_offset)
3357 			return true;
3358 	}
3359 
3360 	return false;
3361 }
3362 
3363 /**
3364  * intel_bios_is_lvds_present - is LVDS present in VBT
3365  * @i915:	i915 device instance
3366  * @i2c_pin:	i2c pin for LVDS if present
3367  *
3368  * Return true if LVDS is present. If no child devices were parsed from VBT,
3369  * assume LVDS is present.
3370  */
3371 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3372 {
3373 	const struct intel_bios_encoder_data *devdata;
3374 
3375 	if (list_empty(&i915->display.vbt.display_devices))
3376 		return true;
3377 
3378 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3379 		const struct child_device_config *child = &devdata->child;
3380 
3381 		/* If the device type is not LFP, continue.
3382 		 * We have to check both the new identifiers as well as the
3383 		 * old for compatibility with some BIOSes.
3384 		 */
3385 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3386 		    child->device_type != DEVICE_TYPE_LFP)
3387 			continue;
3388 
3389 		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3390 			*i2c_pin = child->i2c_pin;
3391 
3392 		/* However, we cannot trust the BIOS writers to populate
3393 		 * the VBT correctly.  Since LVDS requires additional
3394 		 * information from AIM blocks, a non-zero addin offset is
3395 		 * a good indicator that the LVDS is actually present.
3396 		 */
3397 		if (child->addin_offset)
3398 			return true;
3399 
3400 		/* But even then some BIOS writers perform some black magic
3401 		 * and instantiate the device without reference to any
3402 		 * additional data.  Trust that if the VBT was written into
3403 		 * the OpRegion then they have validated the LVDS's existence.
3404 		 */
3405 		return intel_opregion_vbt_present(i915);
3406 	}
3407 
3408 	return false;
3409 }
3410 
3411 /**
3412  * intel_bios_is_port_present - is the specified digital port present
3413  * @i915:	i915 device instance
3414  * @port:	port to check
3415  *
3416  * Return true if the device in %port is present.
3417  */
3418 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3419 {
3420 	const struct intel_bios_encoder_data *devdata;
3421 
3422 	if (WARN_ON(!has_ddi_port_info(i915)))
3423 		return true;
3424 
3425 	if (!is_port_valid(i915, port))
3426 		return false;
3427 
3428 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3429 		const struct child_device_config *child = &devdata->child;
3430 
3431 		if (dvo_port_to_port(i915, child->dvo_port) == port)
3432 			return true;
3433 	}
3434 
3435 	return false;
3436 }
3437 
3438 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3439 {
3440 	const struct child_device_config *child = &devdata->child;
3441 
3442 	if (!devdata)
3443 		return false;
3444 
3445 	if (!intel_bios_encoder_supports_dp(devdata) ||
3446 	    !intel_bios_encoder_supports_hdmi(devdata))
3447 		return false;
3448 
3449 	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3450 		return true;
3451 
3452 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3453 	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3454 	    child->aux_channel != 0)
3455 		return true;
3456 
3457 	return false;
3458 }
3459 
3460 /**
3461  * intel_bios_is_dsi_present - is DSI present in VBT
3462  * @i915:	i915 device instance
3463  * @port:	port for DSI if present
3464  *
3465  * Return true if DSI is present, and return the port in %port.
3466  */
3467 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3468 			       enum port *port)
3469 {
3470 	const struct intel_bios_encoder_data *devdata;
3471 
3472 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3473 		const struct child_device_config *child = &devdata->child;
3474 		u8 dvo_port = child->dvo_port;
3475 
3476 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3477 			continue;
3478 
3479 		if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) {
3480 			drm_dbg_kms(&i915->drm,
3481 				    "VBT has unsupported DSI port %c\n",
3482 				    port_name(dvo_port - DVO_PORT_MIPIA));
3483 			continue;
3484 		}
3485 
3486 		if (port)
3487 			*port = dsi_dvo_port_to_port(i915, dvo_port);
3488 		return true;
3489 	}
3490 
3491 	return false;
3492 }
3493 
3494 static void fill_dsc(struct intel_crtc_state *crtc_state,
3495 		     struct dsc_compression_parameters_entry *dsc,
3496 		     int dsc_max_bpc)
3497 {
3498 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
3499 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3500 	int bpc = 8;
3501 
3502 	vdsc_cfg->dsc_version_major = dsc->version_major;
3503 	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3504 
3505 	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3506 		bpc = 12;
3507 	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3508 		bpc = 10;
3509 	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3510 		bpc = 8;
3511 	else
3512 		drm_dbg_kms(&i915->drm, "VBT: Unsupported BPC %d for DCS\n",
3513 			    dsc_max_bpc);
3514 
3515 	crtc_state->pipe_bpp = bpc * 3;
3516 
3517 	crtc_state->dsc.compressed_bpp_x16 = to_bpp_x16(min(crtc_state->pipe_bpp,
3518 							    VBT_DSC_MAX_BPP(dsc->max_bpp)));
3519 
3520 	/*
3521 	 * FIXME: This is ugly, and slice count should take DSC engine
3522 	 * throughput etc. into account.
3523 	 *
3524 	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3525 	 */
3526 	if (dsc->slices_per_line & BIT(2)) {
3527 		crtc_state->dsc.slice_count = 4;
3528 	} else if (dsc->slices_per_line & BIT(1)) {
3529 		crtc_state->dsc.slice_count = 2;
3530 	} else {
3531 		/* FIXME */
3532 		if (!(dsc->slices_per_line & BIT(0)))
3533 			drm_dbg_kms(&i915->drm, "VBT: Unsupported DSC slice count for DSI\n");
3534 
3535 		crtc_state->dsc.slice_count = 1;
3536 	}
3537 
3538 	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3539 	    crtc_state->dsc.slice_count != 0)
3540 		drm_dbg_kms(&i915->drm, "VBT: DSC hdisplay %d not divisible by slice count %d\n",
3541 			    crtc_state->hw.adjusted_mode.crtc_hdisplay,
3542 			    crtc_state->dsc.slice_count);
3543 
3544 	/*
3545 	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3546 	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3547 	 */
3548 	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3549 							    dsc->rc_buffer_size);
3550 
3551 	/* FIXME: DSI spec says bpc + 1 for this one */
3552 	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3553 
3554 	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3555 
3556 	vdsc_cfg->slice_height = dsc->slice_height;
3557 }
3558 
3559 /* FIXME: initially DSI specific */
3560 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3561 			       struct intel_crtc_state *crtc_state,
3562 			       int dsc_max_bpc)
3563 {
3564 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3565 	const struct intel_bios_encoder_data *devdata;
3566 
3567 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3568 		const struct child_device_config *child = &devdata->child;
3569 
3570 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3571 			continue;
3572 
3573 		if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) {
3574 			if (!devdata->dsc)
3575 				return false;
3576 
3577 			fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3578 
3579 			return true;
3580 		}
3581 	}
3582 
3583 	return false;
3584 }
3585 
3586 static const u8 adlp_aux_ch_map[] = {
3587 	[AUX_CH_A] = DP_AUX_A,
3588 	[AUX_CH_B] = DP_AUX_B,
3589 	[AUX_CH_C] = DP_AUX_C,
3590 	[AUX_CH_D_XELPD] = DP_AUX_D,
3591 	[AUX_CH_E_XELPD] = DP_AUX_E,
3592 	[AUX_CH_USBC1] = DP_AUX_F,
3593 	[AUX_CH_USBC2] = DP_AUX_G,
3594 	[AUX_CH_USBC3] = DP_AUX_H,
3595 	[AUX_CH_USBC4] = DP_AUX_I,
3596 };
3597 
3598 /*
3599  * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3600  * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3601  */
3602 static const u8 adls_aux_ch_map[] = {
3603 	[AUX_CH_A] = DP_AUX_A,
3604 	[AUX_CH_USBC1] = DP_AUX_B,
3605 	[AUX_CH_USBC2] = DP_AUX_C,
3606 	[AUX_CH_USBC3] = DP_AUX_D,
3607 	[AUX_CH_USBC4] = DP_AUX_E,
3608 };
3609 
3610 /*
3611  * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3612  * map to DDI A,B,TC1,TC2 respectively.
3613  */
3614 static const u8 rkl_aux_ch_map[] = {
3615 	[AUX_CH_A] = DP_AUX_A,
3616 	[AUX_CH_B] = DP_AUX_B,
3617 	[AUX_CH_USBC1] = DP_AUX_C,
3618 	[AUX_CH_USBC2] = DP_AUX_D,
3619 };
3620 
3621 static const u8 direct_aux_ch_map[] = {
3622 	[AUX_CH_A] = DP_AUX_A,
3623 	[AUX_CH_B] = DP_AUX_B,
3624 	[AUX_CH_C] = DP_AUX_C,
3625 	[AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3626 	[AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3627 	[AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3628 	[AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3629 	[AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3630 	[AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3631 };
3632 
3633 static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel)
3634 {
3635 	const u8 *aux_ch_map;
3636 	int i, n_entries;
3637 
3638 	if (DISPLAY_VER(i915) >= 13) {
3639 		aux_ch_map = adlp_aux_ch_map;
3640 		n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3641 	} else if (IS_ALDERLAKE_S(i915)) {
3642 		aux_ch_map = adls_aux_ch_map;
3643 		n_entries = ARRAY_SIZE(adls_aux_ch_map);
3644 	} else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) {
3645 		aux_ch_map = rkl_aux_ch_map;
3646 		n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3647 	} else {
3648 		aux_ch_map = direct_aux_ch_map;
3649 		n_entries = ARRAY_SIZE(direct_aux_ch_map);
3650 	}
3651 
3652 	for (i = 0; i < n_entries; i++) {
3653 		if (aux_ch_map[i] == aux_channel)
3654 			return i;
3655 	}
3656 
3657 	drm_dbg_kms(&i915->drm,
3658 		    "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3659 		    aux_channel);
3660 
3661 	return AUX_CH_NONE;
3662 }
3663 
3664 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3665 {
3666 	if (!devdata || !devdata->child.aux_channel)
3667 		return AUX_CH_NONE;
3668 
3669 	return map_aux_ch(devdata->i915, devdata->child.aux_channel);
3670 }
3671 
3672 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3673 {
3674 	struct drm_i915_private *i915;
3675 	u8 aux_channel;
3676 	int count = 0;
3677 
3678 	if (!devdata || !devdata->child.aux_channel)
3679 		return false;
3680 
3681 	i915 = devdata->i915;
3682 	aux_channel = devdata->child.aux_channel;
3683 
3684 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3685 		if (intel_bios_encoder_supports_dp(devdata) &&
3686 		    aux_channel == devdata->child.aux_channel)
3687 			count++;
3688 	}
3689 
3690 	return count > 1;
3691 }
3692 
3693 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3694 {
3695 	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3696 		return 0;
3697 
3698 	return translate_iboost(devdata->i915, devdata->child.dp_iboost_level);
3699 }
3700 
3701 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3702 {
3703 	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3704 		return 0;
3705 
3706 	return translate_iboost(devdata->i915, devdata->child.hdmi_iboost_level);
3707 }
3708 
3709 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3710 {
3711 	if (!devdata || !devdata->child.ddc_pin)
3712 		return 0;
3713 
3714 	return map_ddc_pin(devdata->i915, devdata->child.ddc_pin);
3715 }
3716 
3717 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3718 {
3719 	return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3720 }
3721 
3722 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3723 {
3724 	return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3725 }
3726 
3727 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3728 {
3729 	return devdata && devdata->child.lane_reversal;
3730 }
3731 
3732 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3733 {
3734 	return devdata && devdata->child.hpd_invert;
3735 }
3736 
3737 const struct intel_bios_encoder_data *
3738 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3739 {
3740 	struct intel_bios_encoder_data *devdata;
3741 
3742 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3743 		if (intel_bios_encoder_port(devdata) == port)
3744 			return devdata;
3745 	}
3746 
3747 	return NULL;
3748 }
3749 
3750 void intel_bios_for_each_encoder(struct drm_i915_private *i915,
3751 				 void (*func)(struct drm_i915_private *i915,
3752 					      const struct intel_bios_encoder_data *devdata))
3753 {
3754 	struct intel_bios_encoder_data *devdata;
3755 
3756 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
3757 		func(i915, devdata);
3758 }
3759 
3760 static int intel_bios_vbt_show(struct seq_file *m, void *unused)
3761 {
3762 	struct drm_i915_private *i915 = m->private;
3763 	const void *vbt;
3764 	size_t vbt_size;
3765 
3766 	vbt = intel_bios_get_vbt(i915, &vbt_size);
3767 
3768 	if (vbt) {
3769 		seq_write(m, vbt, vbt_size);
3770 		kfree(vbt);
3771 	}
3772 
3773 	return 0;
3774 }
3775 
3776 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt);
3777 
3778 void intel_bios_debugfs_register(struct drm_i915_private *i915)
3779 {
3780 	struct drm_minor *minor = i915->drm.primary;
3781 
3782 	debugfs_create_file("i915_vbt", 0444, minor->debugfs_root,
3783 			    i915, &intel_bios_vbt_fops);
3784 }
3785