1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <linux/firmware.h> 29 30 #include <drm/display/drm_dp_helper.h> 31 #include <drm/display/drm_dsc_helper.h> 32 #include <drm/drm_edid.h> 33 34 #include "i915_drv.h" 35 #include "i915_reg.h" 36 #include "intel_display.h" 37 #include "intel_display_types.h" 38 #include "intel_gmbus.h" 39 40 #define _INTEL_BIOS_PRIVATE 41 #include "intel_vbt_defs.h" 42 43 /** 44 * DOC: Video BIOS Table (VBT) 45 * 46 * The Video BIOS Table, or VBT, provides platform and board specific 47 * configuration information to the driver that is not discoverable or available 48 * through other means. The configuration is mostly related to display 49 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 50 * the PCI ROM. 51 * 52 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 53 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 54 * contain the actual configuration information. The VBT Header, and thus the 55 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 56 * BDB Header. The data blocks are concatenated after the BDB Header. The data 57 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 58 * data. (Block 53, the MIPI Sequence Block is an exception.) 59 * 60 * The driver parses the VBT during load. The relevant information is stored in 61 * driver private data for ease of use, and the actual VBT is not read after 62 * that. 63 */ 64 65 /* Wrapper for VBT child device config */ 66 struct intel_bios_encoder_data { 67 struct drm_i915_private *i915; 68 69 struct child_device_config child; 70 struct dsc_compression_parameters_entry *dsc; 71 struct list_head node; 72 }; 73 74 #define SLAVE_ADDR1 0x70 75 #define SLAVE_ADDR2 0x72 76 77 /* Get BDB block size given a pointer to Block ID. */ 78 static u32 _get_blocksize(const u8 *block_base) 79 { 80 /* The MIPI Sequence Block v3+ has a separate size field. */ 81 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 82 return *((const u32 *)(block_base + 4)); 83 else 84 return *((const u16 *)(block_base + 1)); 85 } 86 87 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 88 static u32 get_blocksize(const void *block_data) 89 { 90 return _get_blocksize(block_data - 3); 91 } 92 93 static const void * 94 find_raw_section(const void *_bdb, enum bdb_block_id section_id) 95 { 96 const struct bdb_header *bdb = _bdb; 97 const u8 *base = _bdb; 98 int index = 0; 99 u32 total, current_size; 100 enum bdb_block_id current_id; 101 102 /* skip to first section */ 103 index += bdb->header_size; 104 total = bdb->bdb_size; 105 106 /* walk the sections looking for section_id */ 107 while (index + 3 < total) { 108 current_id = *(base + index); 109 current_size = _get_blocksize(base + index); 110 index += 3; 111 112 if (index + current_size > total) 113 return NULL; 114 115 if (current_id == section_id) 116 return base + index; 117 118 index += current_size; 119 } 120 121 return NULL; 122 } 123 124 /* 125 * Offset from the start of BDB to the start of the 126 * block data (just past the block header). 127 */ 128 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) 129 { 130 const void *block; 131 132 block = find_raw_section(bdb, section_id); 133 if (!block) 134 return 0; 135 136 return block - bdb; 137 } 138 139 struct bdb_block_entry { 140 struct list_head node; 141 enum bdb_block_id section_id; 142 u8 data[]; 143 }; 144 145 static const void * 146 bdb_find_section(struct drm_i915_private *i915, 147 enum bdb_block_id section_id) 148 { 149 struct bdb_block_entry *entry; 150 151 list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) { 152 if (entry->section_id == section_id) 153 return entry->data + 3; 154 } 155 156 return NULL; 157 } 158 159 static const struct { 160 enum bdb_block_id section_id; 161 size_t min_size; 162 } bdb_blocks[] = { 163 { .section_id = BDB_GENERAL_FEATURES, 164 .min_size = sizeof(struct bdb_general_features), }, 165 { .section_id = BDB_GENERAL_DEFINITIONS, 166 .min_size = sizeof(struct bdb_general_definitions), }, 167 { .section_id = BDB_PSR, 168 .min_size = sizeof(struct bdb_psr), }, 169 { .section_id = BDB_DRIVER_FEATURES, 170 .min_size = sizeof(struct bdb_driver_features), }, 171 { .section_id = BDB_SDVO_LVDS_OPTIONS, 172 .min_size = sizeof(struct bdb_sdvo_lvds_options), }, 173 { .section_id = BDB_SDVO_PANEL_DTDS, 174 .min_size = sizeof(struct bdb_sdvo_panel_dtds), }, 175 { .section_id = BDB_EDP, 176 .min_size = sizeof(struct bdb_edp), }, 177 { .section_id = BDB_LVDS_OPTIONS, 178 .min_size = sizeof(struct bdb_lvds_options), }, 179 /* 180 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS, 181 * so keep the two ordered. 182 */ 183 { .section_id = BDB_LVDS_LFP_DATA_PTRS, 184 .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), }, 185 { .section_id = BDB_LVDS_LFP_DATA, 186 .min_size = 0, /* special case */ }, 187 { .section_id = BDB_LVDS_BACKLIGHT, 188 .min_size = sizeof(struct bdb_lfp_backlight_data), }, 189 { .section_id = BDB_LFP_POWER, 190 .min_size = sizeof(struct bdb_lfp_power), }, 191 { .section_id = BDB_MIPI_CONFIG, 192 .min_size = sizeof(struct bdb_mipi_config), }, 193 { .section_id = BDB_MIPI_SEQUENCE, 194 .min_size = sizeof(struct bdb_mipi_sequence) }, 195 { .section_id = BDB_COMPRESSION_PARAMETERS, 196 .min_size = sizeof(struct bdb_compression_parameters), }, 197 { .section_id = BDB_GENERIC_DTD, 198 .min_size = sizeof(struct bdb_generic_dtd), }, 199 }; 200 201 static size_t lfp_data_min_size(struct drm_i915_private *i915) 202 { 203 const struct bdb_lvds_lfp_data_ptrs *ptrs; 204 size_t size; 205 206 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 207 if (!ptrs) 208 return 0; 209 210 size = sizeof(struct bdb_lvds_lfp_data); 211 if (ptrs->panel_name.table_size) 212 size = max(size, ptrs->panel_name.offset + 213 sizeof(struct bdb_lvds_lfp_data_tail)); 214 215 return size; 216 } 217 218 static bool validate_lfp_data_ptrs(const void *bdb, 219 const struct bdb_lvds_lfp_data_ptrs *ptrs) 220 { 221 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; 222 int data_block_size, lfp_data_size; 223 const void *data_block; 224 int i; 225 226 data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 227 if (!data_block) 228 return false; 229 230 data_block_size = get_blocksize(data_block); 231 if (data_block_size == 0) 232 return false; 233 234 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ 235 if (ptrs->lvds_entries != 3) 236 return false; 237 238 fp_timing_size = ptrs->ptr[0].fp_timing.table_size; 239 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; 240 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; 241 panel_name_size = ptrs->panel_name.table_size; 242 243 /* fp_timing has variable size */ 244 if (fp_timing_size < 32 || 245 dvo_timing_size != sizeof(struct lvds_dvo_timing) || 246 panel_pnp_id_size != sizeof(struct lvds_pnp_id)) 247 return false; 248 249 /* panel_name is not present in old VBTs */ 250 if (panel_name_size != 0 && 251 panel_name_size != sizeof(struct lvds_lfp_panel_name)) 252 return false; 253 254 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; 255 if (16 * lfp_data_size > data_block_size) 256 return false; 257 258 /* make sure the table entries have uniform size */ 259 for (i = 1; i < 16; i++) { 260 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || 261 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || 262 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) 263 return false; 264 265 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || 266 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || 267 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) 268 return false; 269 } 270 271 /* 272 * Except for vlv/chv machines all real VBTs seem to have 6 273 * unaccounted bytes in the fp_timing table. And it doesn't 274 * appear to be a really intentional hole as the fp_timing 275 * 0xffff terminator is always within those 6 missing bytes. 276 */ 277 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size) 278 fp_timing_size += 6; 279 280 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size) 281 return false; 282 283 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset || 284 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || 285 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) 286 return false; 287 288 /* make sure the tables fit inside the data block */ 289 for (i = 0; i < 16; i++) { 290 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || 291 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || 292 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) 293 return false; 294 } 295 296 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) 297 return false; 298 299 /* make sure fp_timing terminators are present at expected locations */ 300 for (i = 0; i < 16; i++) { 301 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset + 302 fp_timing_size - 2; 303 304 if (*t != 0xffff) 305 return false; 306 } 307 308 return true; 309 } 310 311 /* make the data table offsets relative to the data block */ 312 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) 313 { 314 struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block; 315 u32 offset; 316 int i; 317 318 offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA); 319 320 for (i = 0; i < 16; i++) { 321 if (ptrs->ptr[i].fp_timing.offset < offset || 322 ptrs->ptr[i].dvo_timing.offset < offset || 323 ptrs->ptr[i].panel_pnp_id.offset < offset) 324 return false; 325 326 ptrs->ptr[i].fp_timing.offset -= offset; 327 ptrs->ptr[i].dvo_timing.offset -= offset; 328 ptrs->ptr[i].panel_pnp_id.offset -= offset; 329 } 330 331 if (ptrs->panel_name.table_size) { 332 if (ptrs->panel_name.offset < offset) 333 return false; 334 335 ptrs->panel_name.offset -= offset; 336 } 337 338 return validate_lfp_data_ptrs(bdb, ptrs); 339 } 340 341 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table, 342 int table_size, int total_size) 343 { 344 if (total_size < table_size) 345 return total_size; 346 347 table->table_size = table_size; 348 table->offset = total_size - table_size; 349 350 return total_size - table_size; 351 } 352 353 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next, 354 const struct lvds_lfp_data_ptr_table *prev, 355 int size) 356 { 357 next->table_size = prev->table_size; 358 next->offset = prev->offset + size; 359 } 360 361 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915, 362 const void *bdb) 363 { 364 int i, size, table_size, block_size, offset, fp_timing_size; 365 struct bdb_lvds_lfp_data_ptrs *ptrs; 366 const void *block; 367 void *ptrs_block; 368 369 /* 370 * The hardcoded fp_timing_size is only valid for 371 * modernish VBTs. All older VBTs definitely should 372 * include block 41 and thus we don't need to 373 * generate one. 374 */ 375 if (i915->display.vbt.version < 155) 376 return NULL; 377 378 fp_timing_size = 38; 379 380 block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 381 if (!block) 382 return NULL; 383 384 drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n"); 385 386 block_size = get_blocksize(block); 387 388 size = fp_timing_size + sizeof(struct lvds_dvo_timing) + 389 sizeof(struct lvds_pnp_id); 390 if (size * 16 > block_size) 391 return NULL; 392 393 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); 394 if (!ptrs_block) 395 return NULL; 396 397 *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS; 398 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); 399 ptrs = ptrs_block + 3; 400 401 table_size = sizeof(struct lvds_pnp_id); 402 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); 403 404 table_size = sizeof(struct lvds_dvo_timing); 405 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); 406 407 table_size = fp_timing_size; 408 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); 409 410 if (ptrs->ptr[0].fp_timing.table_size) 411 ptrs->lvds_entries++; 412 if (ptrs->ptr[0].dvo_timing.table_size) 413 ptrs->lvds_entries++; 414 if (ptrs->ptr[0].panel_pnp_id.table_size) 415 ptrs->lvds_entries++; 416 417 if (size != 0 || ptrs->lvds_entries != 3) { 418 kfree(ptrs_block); 419 return NULL; 420 } 421 422 size = fp_timing_size + sizeof(struct lvds_dvo_timing) + 423 sizeof(struct lvds_pnp_id); 424 for (i = 1; i < 16; i++) { 425 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); 426 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); 427 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); 428 } 429 430 table_size = sizeof(struct lvds_lfp_panel_name); 431 432 if (16 * (size + table_size) <= block_size) { 433 ptrs->panel_name.table_size = table_size; 434 ptrs->panel_name.offset = size * 16; 435 } 436 437 offset = block - bdb; 438 439 for (i = 0; i < 16; i++) { 440 ptrs->ptr[i].fp_timing.offset += offset; 441 ptrs->ptr[i].dvo_timing.offset += offset; 442 ptrs->ptr[i].panel_pnp_id.offset += offset; 443 } 444 445 if (ptrs->panel_name.table_size) 446 ptrs->panel_name.offset += offset; 447 448 return ptrs_block; 449 } 450 451 static void 452 init_bdb_block(struct drm_i915_private *i915, 453 const void *bdb, enum bdb_block_id section_id, 454 size_t min_size) 455 { 456 struct bdb_block_entry *entry; 457 void *temp_block = NULL; 458 const void *block; 459 size_t block_size; 460 461 block = find_raw_section(bdb, section_id); 462 463 /* Modern VBTs lack the LFP data table pointers block, make one up */ 464 if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) { 465 temp_block = generate_lfp_data_ptrs(i915, bdb); 466 if (temp_block) 467 block = temp_block + 3; 468 } 469 if (!block) 470 return; 471 472 drm_WARN(&i915->drm, min_size == 0, 473 "Block %d min_size is zero\n", section_id); 474 475 block_size = get_blocksize(block); 476 477 /* 478 * Version number and new block size are considered 479 * part of the header for MIPI sequenece block v3+. 480 */ 481 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3) 482 block_size += 5; 483 484 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), 485 GFP_KERNEL); 486 if (!entry) { 487 kfree(temp_block); 488 return; 489 } 490 491 entry->section_id = section_id; 492 memcpy(entry->data, block - 3, block_size + 3); 493 494 kfree(temp_block); 495 496 drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n", 497 section_id, block_size, min_size); 498 499 if (section_id == BDB_LVDS_LFP_DATA_PTRS && 500 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { 501 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n"); 502 kfree(entry); 503 return; 504 } 505 506 list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks); 507 } 508 509 static void init_bdb_blocks(struct drm_i915_private *i915, 510 const void *bdb) 511 { 512 int i; 513 514 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { 515 enum bdb_block_id section_id = bdb_blocks[i].section_id; 516 size_t min_size = bdb_blocks[i].min_size; 517 518 if (section_id == BDB_LVDS_LFP_DATA) 519 min_size = lfp_data_min_size(i915); 520 521 init_bdb_block(i915, bdb, section_id, min_size); 522 } 523 } 524 525 static void 526 fill_detail_timing_data(struct drm_i915_private *i915, 527 struct drm_display_mode *panel_fixed_mode, 528 const struct lvds_dvo_timing *dvo_timing) 529 { 530 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 531 dvo_timing->hactive_lo; 532 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 533 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 534 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 535 ((dvo_timing->hsync_pulse_width_hi << 8) | 536 dvo_timing->hsync_pulse_width_lo); 537 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 538 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 539 540 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 541 dvo_timing->vactive_lo; 542 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 543 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 544 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 545 ((dvo_timing->vsync_pulse_width_hi << 4) | 546 dvo_timing->vsync_pulse_width_lo); 547 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 548 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 549 panel_fixed_mode->clock = dvo_timing->clock * 10; 550 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 551 552 if (dvo_timing->hsync_positive) 553 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 554 else 555 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 556 557 if (dvo_timing->vsync_positive) 558 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 559 else 560 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 561 562 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 563 dvo_timing->himage_lo; 564 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 565 dvo_timing->vimage_lo; 566 567 /* Some VBTs have bogus h/vsync_end values */ 568 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) { 569 drm_dbg_kms(&i915->drm, "reducing hsync_end %d->%d\n", 570 panel_fixed_mode->hsync_end, panel_fixed_mode->htotal); 571 panel_fixed_mode->hsync_end = panel_fixed_mode->htotal; 572 } 573 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) { 574 drm_dbg_kms(&i915->drm, "reducing vsync_end %d->%d\n", 575 panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal); 576 panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal; 577 } 578 579 drm_mode_set_name(panel_fixed_mode); 580 } 581 582 static const struct lvds_dvo_timing * 583 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data, 584 const struct bdb_lvds_lfp_data_ptrs *ptrs, 585 int index) 586 { 587 return (const void *)data + ptrs->ptr[index].dvo_timing.offset; 588 } 589 590 static const struct lvds_fp_timing * 591 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data, 592 const struct bdb_lvds_lfp_data_ptrs *ptrs, 593 int index) 594 { 595 return (const void *)data + ptrs->ptr[index].fp_timing.offset; 596 } 597 598 static const struct drm_edid_product_id * 599 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data, 600 const struct bdb_lvds_lfp_data_ptrs *ptrs, 601 int index) 602 { 603 /* These two are supposed to have the same layout in memory. */ 604 BUILD_BUG_ON(sizeof(struct lvds_pnp_id) != sizeof(struct drm_edid_product_id)); 605 606 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; 607 } 608 609 static const struct bdb_lvds_lfp_data_tail * 610 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data, 611 const struct bdb_lvds_lfp_data_ptrs *ptrs) 612 { 613 if (ptrs->panel_name.table_size) 614 return (const void *)data + ptrs->panel_name.offset; 615 else 616 return NULL; 617 } 618 619 static int opregion_get_panel_type(struct drm_i915_private *i915, 620 const struct intel_bios_encoder_data *devdata, 621 const struct drm_edid *drm_edid, bool use_fallback) 622 { 623 return intel_opregion_get_panel_type(i915); 624 } 625 626 static int vbt_get_panel_type(struct drm_i915_private *i915, 627 const struct intel_bios_encoder_data *devdata, 628 const struct drm_edid *drm_edid, bool use_fallback) 629 { 630 const struct bdb_lvds_options *lvds_options; 631 632 lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS); 633 if (!lvds_options) 634 return -1; 635 636 if (lvds_options->panel_type > 0xf && 637 lvds_options->panel_type != 0xff) { 638 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n", 639 lvds_options->panel_type); 640 return -1; 641 } 642 643 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) 644 return lvds_options->panel_type2; 645 646 drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); 647 648 return lvds_options->panel_type; 649 } 650 651 static int pnpid_get_panel_type(struct drm_i915_private *i915, 652 const struct intel_bios_encoder_data *devdata, 653 const struct drm_edid *drm_edid, bool use_fallback) 654 { 655 const struct bdb_lvds_lfp_data *data; 656 const struct bdb_lvds_lfp_data_ptrs *ptrs; 657 struct drm_edid_product_id product_id, product_id_nodate; 658 struct drm_printer p; 659 int i, best = -1; 660 661 if (!drm_edid) 662 return -1; 663 664 drm_edid_get_product_id(drm_edid, &product_id); 665 666 product_id_nodate = product_id; 667 product_id_nodate.week_of_manufacture = 0; 668 product_id_nodate.year_of_manufacture = 0; 669 670 p = drm_dbg_printer(&i915->drm, DRM_UT_KMS, "EDID"); 671 drm_edid_print_product_id(&p, &product_id, true); 672 673 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 674 if (!ptrs) 675 return -1; 676 677 data = bdb_find_section(i915, BDB_LVDS_LFP_DATA); 678 if (!data) 679 return -1; 680 681 for (i = 0; i < 16; i++) { 682 const struct drm_edid_product_id *vbt_id = 683 get_lvds_pnp_id(data, ptrs, i); 684 685 /* full match? */ 686 if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id))) 687 return i; 688 689 /* 690 * Accept a match w/o date if no full match is found, 691 * and the VBT entry does not specify a date. 692 */ 693 if (best < 0 && 694 !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id))) 695 best = i; 696 } 697 698 return best; 699 } 700 701 static int fallback_get_panel_type(struct drm_i915_private *i915, 702 const struct intel_bios_encoder_data *devdata, 703 const struct drm_edid *drm_edid, bool use_fallback) 704 { 705 return use_fallback ? 0 : -1; 706 } 707 708 enum panel_type { 709 PANEL_TYPE_OPREGION, 710 PANEL_TYPE_VBT, 711 PANEL_TYPE_PNPID, 712 PANEL_TYPE_FALLBACK, 713 }; 714 715 static int get_panel_type(struct drm_i915_private *i915, 716 const struct intel_bios_encoder_data *devdata, 717 const struct drm_edid *drm_edid, bool use_fallback) 718 { 719 struct { 720 const char *name; 721 int (*get_panel_type)(struct drm_i915_private *i915, 722 const struct intel_bios_encoder_data *devdata, 723 const struct drm_edid *drm_edid, bool use_fallback); 724 int panel_type; 725 } panel_types[] = { 726 [PANEL_TYPE_OPREGION] = { 727 .name = "OpRegion", 728 .get_panel_type = opregion_get_panel_type, 729 }, 730 [PANEL_TYPE_VBT] = { 731 .name = "VBT", 732 .get_panel_type = vbt_get_panel_type, 733 }, 734 [PANEL_TYPE_PNPID] = { 735 .name = "PNPID", 736 .get_panel_type = pnpid_get_panel_type, 737 }, 738 [PANEL_TYPE_FALLBACK] = { 739 .name = "fallback", 740 .get_panel_type = fallback_get_panel_type, 741 }, 742 }; 743 int i; 744 745 for (i = 0; i < ARRAY_SIZE(panel_types); i++) { 746 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, 747 drm_edid, use_fallback); 748 749 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf && 750 panel_types[i].panel_type != 0xff); 751 752 if (panel_types[i].panel_type >= 0) 753 drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n", 754 panel_types[i].name, panel_types[i].panel_type); 755 } 756 757 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) 758 i = PANEL_TYPE_OPREGION; 759 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && 760 panel_types[PANEL_TYPE_PNPID].panel_type >= 0) 761 i = PANEL_TYPE_PNPID; 762 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && 763 panel_types[PANEL_TYPE_VBT].panel_type >= 0) 764 i = PANEL_TYPE_VBT; 765 else 766 i = PANEL_TYPE_FALLBACK; 767 768 drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n", 769 panel_types[i].name, panel_types[i].panel_type); 770 771 return panel_types[i].panel_type; 772 } 773 774 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) 775 { 776 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); 777 } 778 779 static bool panel_bool(unsigned int value, int panel_type) 780 { 781 return panel_bits(value, panel_type, 1); 782 } 783 784 /* Parse general panel options */ 785 static void 786 parse_panel_options(struct drm_i915_private *i915, 787 struct intel_panel *panel) 788 { 789 const struct bdb_lvds_options *lvds_options; 790 int panel_type = panel->vbt.panel_type; 791 int drrs_mode; 792 793 lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS); 794 if (!lvds_options) 795 return; 796 797 panel->vbt.lvds_dither = lvds_options->pixel_dither; 798 799 /* 800 * Empirical evidence indicates the block size can be 801 * either 4,14,16,24+ bytes. For older VBTs no clear 802 * relationship between the block size vs. BDB version. 803 */ 804 if (get_blocksize(lvds_options) < 16) 805 return; 806 807 drrs_mode = panel_bits(lvds_options->dps_panel_type_bits, 808 panel_type, 2); 809 /* 810 * VBT has static DRRS = 0 and seamless DRRS = 2. 811 * The below piece of code is required to adjust vbt.drrs_type 812 * to match the enum drrs_support_type. 813 */ 814 switch (drrs_mode) { 815 case 0: 816 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 817 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n"); 818 break; 819 case 2: 820 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; 821 drm_dbg_kms(&i915->drm, 822 "DRRS supported mode is seamless\n"); 823 break; 824 default: 825 panel->vbt.drrs_type = DRRS_TYPE_NONE; 826 drm_dbg_kms(&i915->drm, 827 "DRRS not supported (VBT input)\n"); 828 break; 829 } 830 } 831 832 static void 833 parse_lfp_panel_dtd(struct drm_i915_private *i915, 834 struct intel_panel *panel, 835 const struct bdb_lvds_lfp_data *lvds_lfp_data, 836 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs) 837 { 838 const struct lvds_dvo_timing *panel_dvo_timing; 839 const struct lvds_fp_timing *fp_timing; 840 struct drm_display_mode *panel_fixed_mode; 841 int panel_type = panel->vbt.panel_type; 842 843 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, 844 lvds_lfp_data_ptrs, 845 panel_type); 846 847 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 848 if (!panel_fixed_mode) 849 return; 850 851 fill_detail_timing_data(i915, panel_fixed_mode, panel_dvo_timing); 852 853 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 854 855 drm_dbg_kms(&i915->drm, 856 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", 857 DRM_MODE_ARG(panel_fixed_mode)); 858 859 fp_timing = get_lvds_fp_timing(lvds_lfp_data, 860 lvds_lfp_data_ptrs, 861 panel_type); 862 863 /* check the resolution, just to be sure */ 864 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 865 fp_timing->y_res == panel_fixed_mode->vdisplay) { 866 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 867 drm_dbg_kms(&i915->drm, 868 "VBT initial LVDS value %x\n", 869 panel->vbt.bios_lvds_val); 870 } 871 } 872 873 static void 874 parse_lfp_data(struct drm_i915_private *i915, 875 struct intel_panel *panel) 876 { 877 const struct bdb_lvds_lfp_data *data; 878 const struct bdb_lvds_lfp_data_tail *tail; 879 const struct bdb_lvds_lfp_data_ptrs *ptrs; 880 const struct drm_edid_product_id *pnp_id; 881 struct drm_printer p; 882 int panel_type = panel->vbt.panel_type; 883 884 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 885 if (!ptrs) 886 return; 887 888 data = bdb_find_section(i915, BDB_LVDS_LFP_DATA); 889 if (!data) 890 return; 891 892 if (!panel->vbt.lfp_lvds_vbt_mode) 893 parse_lfp_panel_dtd(i915, panel, data, ptrs); 894 895 pnp_id = get_lvds_pnp_id(data, ptrs, panel_type); 896 897 p = drm_dbg_printer(&i915->drm, DRM_UT_KMS, "Panel"); 898 drm_edid_print_product_id(&p, pnp_id, false); 899 900 tail = get_lfp_data_tail(data, ptrs); 901 if (!tail) 902 return; 903 904 drm_dbg_kms(&i915->drm, "Panel name: %.*s\n", 905 (int)sizeof(tail->panel_name[0].name), 906 tail->panel_name[panel_type].name); 907 908 if (i915->display.vbt.version >= 188) { 909 panel->vbt.seamless_drrs_min_refresh_rate = 910 tail->seamless_drrs_min_refresh_rate[panel_type]; 911 drm_dbg_kms(&i915->drm, 912 "Seamless DRRS min refresh rate: %d Hz\n", 913 panel->vbt.seamless_drrs_min_refresh_rate); 914 } 915 } 916 917 static void 918 parse_generic_dtd(struct drm_i915_private *i915, 919 struct intel_panel *panel) 920 { 921 const struct bdb_generic_dtd *generic_dtd; 922 const struct generic_dtd_entry *dtd; 923 struct drm_display_mode *panel_fixed_mode; 924 int num_dtd; 925 926 /* 927 * Older VBTs provided DTD information for internal displays through 928 * the "LFP panel tables" block (42). As of VBT revision 229 the 929 * DTD information should be provided via a newer "generic DTD" 930 * block (58). Just to be safe, we'll try the new generic DTD block 931 * first on VBT >= 229, but still fall back to trying the old LFP 932 * block if that fails. 933 */ 934 if (i915->display.vbt.version < 229) 935 return; 936 937 generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD); 938 if (!generic_dtd) 939 return; 940 941 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 942 drm_err(&i915->drm, "GDTD size %u is too small.\n", 943 generic_dtd->gdtd_size); 944 return; 945 } else if (generic_dtd->gdtd_size != 946 sizeof(struct generic_dtd_entry)) { 947 drm_err(&i915->drm, "Unexpected GDTD size %u\n", 948 generic_dtd->gdtd_size); 949 /* DTD has unknown fields, but keep going */ 950 } 951 952 num_dtd = (get_blocksize(generic_dtd) - 953 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 954 if (panel->vbt.panel_type >= num_dtd) { 955 drm_err(&i915->drm, 956 "Panel type %d not found in table of %d DTD's\n", 957 panel->vbt.panel_type, num_dtd); 958 return; 959 } 960 961 dtd = &generic_dtd->dtd[panel->vbt.panel_type]; 962 963 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 964 if (!panel_fixed_mode) 965 return; 966 967 panel_fixed_mode->hdisplay = dtd->hactive; 968 panel_fixed_mode->hsync_start = 969 panel_fixed_mode->hdisplay + dtd->hfront_porch; 970 panel_fixed_mode->hsync_end = 971 panel_fixed_mode->hsync_start + dtd->hsync; 972 panel_fixed_mode->htotal = 973 panel_fixed_mode->hdisplay + dtd->hblank; 974 975 panel_fixed_mode->vdisplay = dtd->vactive; 976 panel_fixed_mode->vsync_start = 977 panel_fixed_mode->vdisplay + dtd->vfront_porch; 978 panel_fixed_mode->vsync_end = 979 panel_fixed_mode->vsync_start + dtd->vsync; 980 panel_fixed_mode->vtotal = 981 panel_fixed_mode->vdisplay + dtd->vblank; 982 983 panel_fixed_mode->clock = dtd->pixel_clock; 984 panel_fixed_mode->width_mm = dtd->width_mm; 985 panel_fixed_mode->height_mm = dtd->height_mm; 986 987 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 988 drm_mode_set_name(panel_fixed_mode); 989 990 if (dtd->hsync_positive_polarity) 991 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 992 else 993 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 994 995 if (dtd->vsync_positive_polarity) 996 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 997 else 998 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 999 1000 drm_dbg_kms(&i915->drm, 1001 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", 1002 DRM_MODE_ARG(panel_fixed_mode)); 1003 1004 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 1005 } 1006 1007 static void 1008 parse_lfp_backlight(struct drm_i915_private *i915, 1009 struct intel_panel *panel) 1010 { 1011 const struct bdb_lfp_backlight_data *backlight_data; 1012 const struct lfp_backlight_data_entry *entry; 1013 int panel_type = panel->vbt.panel_type; 1014 u16 level; 1015 1016 backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT); 1017 if (!backlight_data) 1018 return; 1019 1020 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 1021 drm_dbg_kms(&i915->drm, 1022 "Unsupported backlight data entry size %u\n", 1023 backlight_data->entry_size); 1024 return; 1025 } 1026 1027 entry = &backlight_data->data[panel_type]; 1028 1029 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 1030 if (!panel->vbt.backlight.present) { 1031 drm_dbg_kms(&i915->drm, 1032 "PWM backlight not present in VBT (type %u)\n", 1033 entry->type); 1034 return; 1035 } 1036 1037 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 1038 panel->vbt.backlight.controller = 0; 1039 if (i915->display.vbt.version >= 191) { 1040 const struct lfp_backlight_control_method *method; 1041 1042 method = &backlight_data->backlight_control[panel_type]; 1043 panel->vbt.backlight.type = method->type; 1044 panel->vbt.backlight.controller = method->controller; 1045 } 1046 1047 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 1048 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; 1049 1050 if (i915->display.vbt.version >= 234) { 1051 u16 min_level; 1052 bool scale; 1053 1054 level = backlight_data->brightness_level[panel_type].level; 1055 min_level = backlight_data->brightness_min_level[panel_type].level; 1056 1057 if (i915->display.vbt.version >= 236) 1058 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 1059 else 1060 scale = level > 255; 1061 1062 if (scale) 1063 min_level = min_level / 255; 1064 1065 if (min_level > 255) { 1066 drm_warn(&i915->drm, "Brightness min level > 255\n"); 1067 level = 255; 1068 } 1069 panel->vbt.backlight.min_brightness = min_level; 1070 1071 panel->vbt.backlight.brightness_precision_bits = 1072 backlight_data->brightness_precision_bits[panel_type]; 1073 } else { 1074 level = backlight_data->level[panel_type]; 1075 panel->vbt.backlight.min_brightness = entry->min_brightness; 1076 } 1077 1078 if (i915->display.vbt.version >= 239) 1079 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 1080 DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100); 1081 else 1082 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30; 1083 1084 drm_dbg_kms(&i915->drm, 1085 "VBT backlight PWM modulation frequency %u Hz, " 1086 "active %s, min brightness %u, level %u, controller %u\n", 1087 panel->vbt.backlight.pwm_freq_hz, 1088 panel->vbt.backlight.active_low_pwm ? "low" : "high", 1089 panel->vbt.backlight.min_brightness, 1090 level, 1091 panel->vbt.backlight.controller); 1092 } 1093 1094 /* Try to find sdvo panel data */ 1095 static void 1096 parse_sdvo_panel_data(struct drm_i915_private *i915, 1097 struct intel_panel *panel) 1098 { 1099 const struct bdb_sdvo_panel_dtds *dtds; 1100 struct drm_display_mode *panel_fixed_mode; 1101 int index; 1102 1103 index = i915->display.params.vbt_sdvo_panel_type; 1104 if (index == -2) { 1105 drm_dbg_kms(&i915->drm, 1106 "Ignore SDVO panel mode from BIOS VBT tables.\n"); 1107 return; 1108 } 1109 1110 if (index == -1) { 1111 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 1112 1113 sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS); 1114 if (!sdvo_lvds_options) 1115 return; 1116 1117 index = sdvo_lvds_options->panel_type; 1118 } 1119 1120 dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS); 1121 if (!dtds) 1122 return; 1123 1124 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 1125 if (!panel_fixed_mode) 1126 return; 1127 1128 fill_detail_timing_data(i915, panel_fixed_mode, &dtds->dtds[index]); 1129 1130 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 1131 1132 drm_dbg_kms(&i915->drm, 1133 "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n", 1134 DRM_MODE_ARG(panel_fixed_mode)); 1135 } 1136 1137 static int intel_bios_ssc_frequency(struct drm_i915_private *i915, 1138 bool alternate) 1139 { 1140 switch (DISPLAY_VER(i915)) { 1141 case 2: 1142 return alternate ? 66667 : 48000; 1143 case 3: 1144 case 4: 1145 return alternate ? 100000 : 96000; 1146 default: 1147 return alternate ? 100000 : 120000; 1148 } 1149 } 1150 1151 static void 1152 parse_general_features(struct drm_i915_private *i915) 1153 { 1154 const struct bdb_general_features *general; 1155 1156 general = bdb_find_section(i915, BDB_GENERAL_FEATURES); 1157 if (!general) 1158 return; 1159 1160 i915->display.vbt.int_tv_support = general->int_tv_support; 1161 /* int_crt_support can't be trusted on earlier platforms */ 1162 if (i915->display.vbt.version >= 155 && 1163 (HAS_DDI(i915) || IS_VALLEYVIEW(i915))) 1164 i915->display.vbt.int_crt_support = general->int_crt_support; 1165 i915->display.vbt.lvds_use_ssc = general->enable_ssc; 1166 i915->display.vbt.lvds_ssc_freq = 1167 intel_bios_ssc_frequency(i915, general->ssc_freq); 1168 i915->display.vbt.display_clock_mode = general->display_clock_mode; 1169 i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 1170 if (i915->display.vbt.version >= 181) { 1171 i915->display.vbt.orientation = general->rotate_180 ? 1172 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 1173 DRM_MODE_PANEL_ORIENTATION_NORMAL; 1174 } else { 1175 i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1176 } 1177 1178 if (i915->display.vbt.version >= 249 && general->afc_startup_config) { 1179 i915->display.vbt.override_afc_startup = true; 1180 i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7; 1181 } 1182 1183 drm_dbg_kms(&i915->drm, 1184 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 1185 i915->display.vbt.int_tv_support, 1186 i915->display.vbt.int_crt_support, 1187 i915->display.vbt.lvds_use_ssc, 1188 i915->display.vbt.lvds_ssc_freq, 1189 i915->display.vbt.display_clock_mode, 1190 i915->display.vbt.fdi_rx_polarity_inverted); 1191 } 1192 1193 static const struct child_device_config * 1194 child_device_ptr(const struct bdb_general_definitions *defs, int i) 1195 { 1196 return (const void *) &defs->devices[i * defs->child_dev_size]; 1197 } 1198 1199 static void 1200 parse_sdvo_device_mapping(struct drm_i915_private *i915) 1201 { 1202 const struct intel_bios_encoder_data *devdata; 1203 int count = 0; 1204 1205 /* 1206 * Only parse SDVO mappings on gens that could have SDVO. This isn't 1207 * accurate and doesn't have to be, as long as it's not too strict. 1208 */ 1209 if (!IS_DISPLAY_VER(i915, 3, 7)) { 1210 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n"); 1211 return; 1212 } 1213 1214 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 1215 const struct child_device_config *child = &devdata->child; 1216 struct sdvo_device_mapping *mapping; 1217 1218 if (child->slave_addr != SLAVE_ADDR1 && 1219 child->slave_addr != SLAVE_ADDR2) { 1220 /* 1221 * If the slave address is neither 0x70 nor 0x72, 1222 * it is not a SDVO device. Skip it. 1223 */ 1224 continue; 1225 } 1226 if (child->dvo_port != DEVICE_PORT_DVOB && 1227 child->dvo_port != DEVICE_PORT_DVOC) { 1228 /* skip the incorrect SDVO port */ 1229 drm_dbg_kms(&i915->drm, 1230 "Incorrect SDVO port. Skip it\n"); 1231 continue; 1232 } 1233 drm_dbg_kms(&i915->drm, 1234 "the SDVO device with slave addr %2x is found on" 1235 " %s port\n", 1236 child->slave_addr, 1237 (child->dvo_port == DEVICE_PORT_DVOB) ? 1238 "SDVOB" : "SDVOC"); 1239 mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1]; 1240 if (!mapping->initialized) { 1241 mapping->dvo_port = child->dvo_port; 1242 mapping->slave_addr = child->slave_addr; 1243 mapping->dvo_wiring = child->dvo_wiring; 1244 mapping->ddc_pin = child->ddc_pin; 1245 mapping->i2c_pin = child->i2c_pin; 1246 mapping->initialized = 1; 1247 drm_dbg_kms(&i915->drm, 1248 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 1249 mapping->dvo_port, mapping->slave_addr, 1250 mapping->dvo_wiring, mapping->ddc_pin, 1251 mapping->i2c_pin); 1252 } else { 1253 drm_dbg_kms(&i915->drm, 1254 "Maybe one SDVO port is shared by " 1255 "two SDVO device.\n"); 1256 } 1257 if (child->slave2_addr) { 1258 /* Maybe this is a SDVO device with multiple inputs */ 1259 /* And the mapping info is not added */ 1260 drm_dbg_kms(&i915->drm, 1261 "there exists the slave2_addr. Maybe this" 1262 " is a SDVO device with multiple inputs.\n"); 1263 } 1264 count++; 1265 } 1266 1267 if (!count) { 1268 /* No SDVO device info is found */ 1269 drm_dbg_kms(&i915->drm, 1270 "No SDVO device info is found in VBT\n"); 1271 } 1272 } 1273 1274 static void 1275 parse_driver_features(struct drm_i915_private *i915) 1276 { 1277 const struct bdb_driver_features *driver; 1278 1279 driver = bdb_find_section(i915, BDB_DRIVER_FEATURES); 1280 if (!driver) 1281 return; 1282 1283 if (DISPLAY_VER(i915) >= 5) { 1284 /* 1285 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 1286 * to mean "eDP". The VBT spec doesn't agree with that 1287 * interpretation, but real world VBTs seem to. 1288 */ 1289 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 1290 i915->display.vbt.int_lvds_support = 0; 1291 } else { 1292 /* 1293 * FIXME it's not clear which BDB version has the LVDS config 1294 * bits defined. Revision history in the VBT spec says: 1295 * "0.92 | Add two definitions for VBT value of LVDS Active 1296 * Config (00b and 11b values defined) | 06/13/2005" 1297 * but does not the specify the BDB version. 1298 * 1299 * So far version 134 (on i945gm) is the oldest VBT observed 1300 * in the wild with the bits correctly populated. Version 1301 * 108 (on i85x) does not have the bits correctly populated. 1302 */ 1303 if (i915->display.vbt.version >= 134 && 1304 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 1305 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 1306 i915->display.vbt.int_lvds_support = 0; 1307 } 1308 } 1309 1310 static void 1311 parse_panel_driver_features(struct drm_i915_private *i915, 1312 struct intel_panel *panel) 1313 { 1314 const struct bdb_driver_features *driver; 1315 1316 driver = bdb_find_section(i915, BDB_DRIVER_FEATURES); 1317 if (!driver) 1318 return; 1319 1320 if (i915->display.vbt.version < 228) { 1321 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n", 1322 driver->drrs_enabled); 1323 /* 1324 * If DRRS is not supported, drrs_type has to be set to 0. 1325 * This is because, VBT is configured in such a way that 1326 * static DRRS is 0 and DRRS not supported is represented by 1327 * driver->drrs_enabled=false 1328 */ 1329 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1330 /* 1331 * FIXME Should DMRRS perhaps be treated as seamless 1332 * but without the automatic downclocking? 1333 */ 1334 if (driver->dmrrs_enabled) 1335 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1336 else 1337 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1338 } 1339 1340 panel->vbt.psr.enable = driver->psr_enabled; 1341 } 1342 } 1343 1344 static void 1345 parse_power_conservation_features(struct drm_i915_private *i915, 1346 struct intel_panel *panel) 1347 { 1348 const struct bdb_lfp_power *power; 1349 u8 panel_type = panel->vbt.panel_type; 1350 1351 panel->vbt.vrr = true; /* matches Windows behaviour */ 1352 1353 if (i915->display.vbt.version < 228) 1354 return; 1355 1356 power = bdb_find_section(i915, BDB_LFP_POWER); 1357 if (!power) 1358 return; 1359 1360 panel->vbt.psr.enable = panel_bool(power->psr, panel_type); 1361 1362 /* 1363 * If DRRS is not supported, drrs_type has to be set to 0. 1364 * This is because, VBT is configured in such a way that 1365 * static DRRS is 0 and DRRS not supported is represented by 1366 * power->drrs & BIT(panel_type)=false 1367 */ 1368 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1369 /* 1370 * FIXME Should DMRRS perhaps be treated as seamless 1371 * but without the automatic downclocking? 1372 */ 1373 if (panel_bool(power->dmrrs, panel_type)) 1374 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1375 else 1376 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1377 } 1378 1379 if (i915->display.vbt.version >= 232) 1380 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); 1381 1382 if (i915->display.vbt.version >= 233) 1383 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, 1384 panel_type); 1385 } 1386 1387 static void 1388 parse_edp(struct drm_i915_private *i915, 1389 struct intel_panel *panel) 1390 { 1391 const struct bdb_edp *edp; 1392 const struct edp_power_seq *edp_pps; 1393 const struct edp_fast_link_params *edp_link_params; 1394 int panel_type = panel->vbt.panel_type; 1395 1396 edp = bdb_find_section(i915, BDB_EDP); 1397 if (!edp) 1398 return; 1399 1400 switch (panel_bits(edp->color_depth, panel_type, 2)) { 1401 case EDP_18BPP: 1402 panel->vbt.edp.bpp = 18; 1403 break; 1404 case EDP_24BPP: 1405 panel->vbt.edp.bpp = 24; 1406 break; 1407 case EDP_30BPP: 1408 panel->vbt.edp.bpp = 30; 1409 break; 1410 } 1411 1412 /* Get the eDP sequencing and link info */ 1413 edp_pps = &edp->power_seqs[panel_type]; 1414 edp_link_params = &edp->fast_link_params[panel_type]; 1415 1416 panel->vbt.edp.pps = *edp_pps; 1417 1418 if (i915->display.vbt.version >= 224) { 1419 panel->vbt.edp.rate = 1420 edp->edp_fast_link_training_rate[panel_type] * 20; 1421 } else { 1422 switch (edp_link_params->rate) { 1423 case EDP_RATE_1_62: 1424 panel->vbt.edp.rate = 162000; 1425 break; 1426 case EDP_RATE_2_7: 1427 panel->vbt.edp.rate = 270000; 1428 break; 1429 case EDP_RATE_5_4: 1430 panel->vbt.edp.rate = 540000; 1431 break; 1432 default: 1433 drm_dbg_kms(&i915->drm, 1434 "VBT has unknown eDP link rate value %u\n", 1435 edp_link_params->rate); 1436 break; 1437 } 1438 } 1439 1440 switch (edp_link_params->lanes) { 1441 case EDP_LANE_1: 1442 panel->vbt.edp.lanes = 1; 1443 break; 1444 case EDP_LANE_2: 1445 panel->vbt.edp.lanes = 2; 1446 break; 1447 case EDP_LANE_4: 1448 panel->vbt.edp.lanes = 4; 1449 break; 1450 default: 1451 drm_dbg_kms(&i915->drm, 1452 "VBT has unknown eDP lane count value %u\n", 1453 edp_link_params->lanes); 1454 break; 1455 } 1456 1457 switch (edp_link_params->preemphasis) { 1458 case EDP_PREEMPHASIS_NONE: 1459 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 1460 break; 1461 case EDP_PREEMPHASIS_3_5dB: 1462 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 1463 break; 1464 case EDP_PREEMPHASIS_6dB: 1465 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 1466 break; 1467 case EDP_PREEMPHASIS_9_5dB: 1468 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 1469 break; 1470 default: 1471 drm_dbg_kms(&i915->drm, 1472 "VBT has unknown eDP pre-emphasis value %u\n", 1473 edp_link_params->preemphasis); 1474 break; 1475 } 1476 1477 switch (edp_link_params->vswing) { 1478 case EDP_VSWING_0_4V: 1479 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 1480 break; 1481 case EDP_VSWING_0_6V: 1482 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 1483 break; 1484 case EDP_VSWING_0_8V: 1485 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 1486 break; 1487 case EDP_VSWING_1_2V: 1488 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 1489 break; 1490 default: 1491 drm_dbg_kms(&i915->drm, 1492 "VBT has unknown eDP voltage swing value %u\n", 1493 edp_link_params->vswing); 1494 break; 1495 } 1496 1497 if (i915->display.vbt.version >= 173) { 1498 u8 vswing; 1499 1500 /* Don't read from VBT if module parameter has valid value*/ 1501 if (i915->display.params.edp_vswing) { 1502 panel->vbt.edp.low_vswing = 1503 i915->display.params.edp_vswing == 1; 1504 } else { 1505 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 1506 panel->vbt.edp.low_vswing = vswing == 0; 1507 } 1508 } 1509 1510 panel->vbt.edp.drrs_msa_timing_delay = 1511 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); 1512 1513 if (i915->display.vbt.version >= 244) 1514 panel->vbt.edp.max_link_rate = 1515 edp->edp_max_port_link_rate[panel_type] * 20; 1516 } 1517 1518 static void 1519 parse_psr(struct drm_i915_private *i915, 1520 struct intel_panel *panel) 1521 { 1522 const struct bdb_psr *psr; 1523 const struct psr_table *psr_table; 1524 int panel_type = panel->vbt.panel_type; 1525 1526 psr = bdb_find_section(i915, BDB_PSR); 1527 if (!psr) { 1528 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n"); 1529 return; 1530 } 1531 1532 psr_table = &psr->psr_table[panel_type]; 1533 1534 panel->vbt.psr.full_link = psr_table->full_link; 1535 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 1536 1537 /* Allowed VBT values goes from 0 to 15 */ 1538 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 1539 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 1540 1541 /* 1542 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 1543 * Old decimal value is wake up time in multiples of 100 us. 1544 */ 1545 if (i915->display.vbt.version >= 205 && 1546 (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) { 1547 switch (psr_table->tp1_wakeup_time) { 1548 case 0: 1549 panel->vbt.psr.tp1_wakeup_time_us = 500; 1550 break; 1551 case 1: 1552 panel->vbt.psr.tp1_wakeup_time_us = 100; 1553 break; 1554 case 3: 1555 panel->vbt.psr.tp1_wakeup_time_us = 0; 1556 break; 1557 default: 1558 drm_dbg_kms(&i915->drm, 1559 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1560 psr_table->tp1_wakeup_time); 1561 fallthrough; 1562 case 2: 1563 panel->vbt.psr.tp1_wakeup_time_us = 2500; 1564 break; 1565 } 1566 1567 switch (psr_table->tp2_tp3_wakeup_time) { 1568 case 0: 1569 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; 1570 break; 1571 case 1: 1572 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; 1573 break; 1574 case 3: 1575 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; 1576 break; 1577 default: 1578 drm_dbg_kms(&i915->drm, 1579 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1580 psr_table->tp2_tp3_wakeup_time); 1581 fallthrough; 1582 case 2: 1583 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 1584 break; 1585 } 1586 } else { 1587 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 1588 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 1589 } 1590 1591 if (i915->display.vbt.version >= 226) { 1592 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 1593 1594 wakeup_time = panel_bits(wakeup_time, panel_type, 2); 1595 switch (wakeup_time) { 1596 case 0: 1597 wakeup_time = 500; 1598 break; 1599 case 1: 1600 wakeup_time = 100; 1601 break; 1602 case 3: 1603 wakeup_time = 50; 1604 break; 1605 default: 1606 case 2: 1607 wakeup_time = 2500; 1608 break; 1609 } 1610 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 1611 } else { 1612 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 1613 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; 1614 } 1615 } 1616 1617 static void parse_dsi_backlight_ports(struct drm_i915_private *i915, 1618 struct intel_panel *panel, 1619 enum port port) 1620 { 1621 enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C; 1622 1623 if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) { 1624 panel->vbt.dsi.bl_ports = BIT(port); 1625 if (panel->vbt.dsi.config->cabc_supported) 1626 panel->vbt.dsi.cabc_ports = BIT(port); 1627 1628 return; 1629 } 1630 1631 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { 1632 case DL_DCS_PORT_A: 1633 panel->vbt.dsi.bl_ports = BIT(PORT_A); 1634 break; 1635 case DL_DCS_PORT_C: 1636 panel->vbt.dsi.bl_ports = BIT(port_bc); 1637 break; 1638 default: 1639 case DL_DCS_PORT_A_AND_C: 1640 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); 1641 break; 1642 } 1643 1644 if (!panel->vbt.dsi.config->cabc_supported) 1645 return; 1646 1647 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { 1648 case DL_DCS_PORT_A: 1649 panel->vbt.dsi.cabc_ports = BIT(PORT_A); 1650 break; 1651 case DL_DCS_PORT_C: 1652 panel->vbt.dsi.cabc_ports = BIT(port_bc); 1653 break; 1654 default: 1655 case DL_DCS_PORT_A_AND_C: 1656 panel->vbt.dsi.cabc_ports = 1657 BIT(PORT_A) | BIT(port_bc); 1658 break; 1659 } 1660 } 1661 1662 static void 1663 parse_mipi_config(struct drm_i915_private *i915, 1664 struct intel_panel *panel) 1665 { 1666 const struct bdb_mipi_config *start; 1667 const struct mipi_config *config; 1668 const struct mipi_pps_data *pps; 1669 int panel_type = panel->vbt.panel_type; 1670 enum port port; 1671 1672 /* parse MIPI blocks only if LFP type is MIPI */ 1673 if (!intel_bios_is_dsi_present(i915, &port)) 1674 return; 1675 1676 /* Initialize this to undefined indicating no generic MIPI support */ 1677 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1678 1679 /* Block #40 is already parsed and panel_fixed_mode is 1680 * stored in i915->lfp_lvds_vbt_mode 1681 * resuse this when needed 1682 */ 1683 1684 /* Parse #52 for panel index used from panel_type already 1685 * parsed 1686 */ 1687 start = bdb_find_section(i915, BDB_MIPI_CONFIG); 1688 if (!start) { 1689 drm_dbg_kms(&i915->drm, "No MIPI config BDB found"); 1690 return; 1691 } 1692 1693 drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n", 1694 panel_type); 1695 1696 /* 1697 * get hold of the correct configuration block and pps data as per 1698 * the panel_type as index 1699 */ 1700 config = &start->config[panel_type]; 1701 pps = &start->pps[panel_type]; 1702 1703 /* store as of now full data. Trim when we realise all is not needed */ 1704 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1705 if (!panel->vbt.dsi.config) 1706 return; 1707 1708 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1709 if (!panel->vbt.dsi.pps) { 1710 kfree(panel->vbt.dsi.config); 1711 return; 1712 } 1713 1714 parse_dsi_backlight_ports(i915, panel, port); 1715 1716 /* FIXME is the 90 vs. 270 correct? */ 1717 switch (config->rotation) { 1718 case ENABLE_ROTATION_0: 1719 /* 1720 * Most (all?) VBTs claim 0 degrees despite having 1721 * an upside down panel, thus we do not trust this. 1722 */ 1723 panel->vbt.dsi.orientation = 1724 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1725 break; 1726 case ENABLE_ROTATION_90: 1727 panel->vbt.dsi.orientation = 1728 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1729 break; 1730 case ENABLE_ROTATION_180: 1731 panel->vbt.dsi.orientation = 1732 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1733 break; 1734 case ENABLE_ROTATION_270: 1735 panel->vbt.dsi.orientation = 1736 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1737 break; 1738 } 1739 1740 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1741 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1742 } 1743 1744 /* Find the sequence block and size for the given panel. */ 1745 static const u8 * 1746 find_panel_sequence_block(struct drm_i915_private *i915, 1747 const struct bdb_mipi_sequence *sequence, 1748 u16 panel_id, u32 *seq_size) 1749 { 1750 u32 total = get_blocksize(sequence); 1751 const u8 *data = &sequence->data[0]; 1752 u8 current_id; 1753 u32 current_size; 1754 int header_size = sequence->version >= 3 ? 5 : 3; 1755 int index = 0; 1756 int i; 1757 1758 /* skip new block size */ 1759 if (sequence->version >= 3) 1760 data += 4; 1761 1762 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1763 if (index + header_size > total) { 1764 drm_err(&i915->drm, "Invalid sequence block (header)\n"); 1765 return NULL; 1766 } 1767 1768 current_id = *(data + index); 1769 if (sequence->version >= 3) 1770 current_size = *((const u32 *)(data + index + 1)); 1771 else 1772 current_size = *((const u16 *)(data + index + 1)); 1773 1774 index += header_size; 1775 1776 if (index + current_size > total) { 1777 drm_err(&i915->drm, "Invalid sequence block\n"); 1778 return NULL; 1779 } 1780 1781 if (current_id == panel_id) { 1782 *seq_size = current_size; 1783 return data + index; 1784 } 1785 1786 index += current_size; 1787 } 1788 1789 drm_err(&i915->drm, "Sequence block detected but no valid configuration\n"); 1790 1791 return NULL; 1792 } 1793 1794 static int goto_next_sequence(struct drm_i915_private *i915, 1795 const u8 *data, int index, int total) 1796 { 1797 u16 len; 1798 1799 /* Skip Sequence Byte. */ 1800 for (index = index + 1; index < total; index += len) { 1801 u8 operation_byte = *(data + index); 1802 index++; 1803 1804 switch (operation_byte) { 1805 case MIPI_SEQ_ELEM_END: 1806 return index; 1807 case MIPI_SEQ_ELEM_SEND_PKT: 1808 if (index + 4 > total) 1809 return 0; 1810 1811 len = *((const u16 *)(data + index + 2)) + 4; 1812 break; 1813 case MIPI_SEQ_ELEM_DELAY: 1814 len = 4; 1815 break; 1816 case MIPI_SEQ_ELEM_GPIO: 1817 len = 2; 1818 break; 1819 case MIPI_SEQ_ELEM_I2C: 1820 if (index + 7 > total) 1821 return 0; 1822 len = *(data + index + 6) + 7; 1823 break; 1824 default: 1825 drm_err(&i915->drm, "Unknown operation byte\n"); 1826 return 0; 1827 } 1828 } 1829 1830 return 0; 1831 } 1832 1833 static int goto_next_sequence_v3(struct drm_i915_private *i915, 1834 const u8 *data, int index, int total) 1835 { 1836 int seq_end; 1837 u16 len; 1838 u32 size_of_sequence; 1839 1840 /* 1841 * Could skip sequence based on Size of Sequence alone, but also do some 1842 * checking on the structure. 1843 */ 1844 if (total < 5) { 1845 drm_err(&i915->drm, "Too small sequence size\n"); 1846 return 0; 1847 } 1848 1849 /* Skip Sequence Byte. */ 1850 index++; 1851 1852 /* 1853 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1854 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1855 * byte. 1856 */ 1857 size_of_sequence = *((const u32 *)(data + index)); 1858 index += 4; 1859 1860 seq_end = index + size_of_sequence; 1861 if (seq_end > total) { 1862 drm_err(&i915->drm, "Invalid sequence size\n"); 1863 return 0; 1864 } 1865 1866 for (; index < total; index += len) { 1867 u8 operation_byte = *(data + index); 1868 index++; 1869 1870 if (operation_byte == MIPI_SEQ_ELEM_END) { 1871 if (index != seq_end) { 1872 drm_err(&i915->drm, "Invalid element structure\n"); 1873 return 0; 1874 } 1875 return index; 1876 } 1877 1878 len = *(data + index); 1879 index++; 1880 1881 /* 1882 * FIXME: Would be nice to check elements like for v1/v2 in 1883 * goto_next_sequence() above. 1884 */ 1885 switch (operation_byte) { 1886 case MIPI_SEQ_ELEM_SEND_PKT: 1887 case MIPI_SEQ_ELEM_DELAY: 1888 case MIPI_SEQ_ELEM_GPIO: 1889 case MIPI_SEQ_ELEM_I2C: 1890 case MIPI_SEQ_ELEM_SPI: 1891 case MIPI_SEQ_ELEM_PMIC: 1892 break; 1893 default: 1894 drm_err(&i915->drm, "Unknown operation byte %u\n", 1895 operation_byte); 1896 break; 1897 } 1898 } 1899 1900 return 0; 1901 } 1902 1903 /* 1904 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1905 * skip all delay + gpio operands and stop at the first DSI packet op. 1906 */ 1907 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915, 1908 struct intel_panel *panel) 1909 { 1910 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1911 int index, len; 1912 1913 if (drm_WARN_ON(&i915->drm, 1914 !data || panel->vbt.dsi.seq_version != 1)) 1915 return 0; 1916 1917 /* index = 1 to skip sequence byte */ 1918 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1919 switch (data[index]) { 1920 case MIPI_SEQ_ELEM_SEND_PKT: 1921 return index == 1 ? 0 : index; 1922 case MIPI_SEQ_ELEM_DELAY: 1923 len = 5; /* 1 byte for operand + uint32 */ 1924 break; 1925 case MIPI_SEQ_ELEM_GPIO: 1926 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1927 break; 1928 default: 1929 return 0; 1930 } 1931 } 1932 1933 return 0; 1934 } 1935 1936 /* 1937 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence. 1938 * The deassert must be done before calling intel_dsi_device_ready, so for 1939 * these devices we split the init OTP sequence into a deassert sequence and 1940 * the actual init OTP part. 1941 */ 1942 static void vlv_fixup_mipi_sequences(struct drm_i915_private *i915, 1943 struct intel_panel *panel) 1944 { 1945 u8 *init_otp; 1946 int len; 1947 1948 /* Limit this to v1 vid-mode sequences */ 1949 if (panel->vbt.dsi.config->is_cmd_mode || 1950 panel->vbt.dsi.seq_version != 1) 1951 return; 1952 1953 /* Only do this if there are otp and assert seqs and no deassert seq */ 1954 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1955 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1956 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1957 return; 1958 1959 /* The deassert-sequence ends at the first DSI packet */ 1960 len = get_init_otp_deassert_fragment_len(i915, panel); 1961 if (!len) 1962 return; 1963 1964 drm_dbg_kms(&i915->drm, 1965 "Using init OTP fragment to deassert reset\n"); 1966 1967 /* Copy the fragment, update seq byte and terminate it */ 1968 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1969 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1970 if (!panel->vbt.dsi.deassert_seq) 1971 return; 1972 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 1973 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 1974 /* Use the copy for deassert */ 1975 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 1976 panel->vbt.dsi.deassert_seq; 1977 /* Replace the last byte of the fragment with init OTP seq byte */ 1978 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 1979 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 1980 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 1981 } 1982 1983 /* 1984 * Some machines (eg. Lenovo 82TQ) appear to have broken 1985 * VBT sequences: 1986 * - INIT_OTP is not present at all 1987 * - what should be in INIT_OTP is in DISPLAY_ON 1988 * - what should be in DISPLAY_ON is in BACKLIGHT_ON 1989 * (along with the actual backlight stuff) 1990 * 1991 * To make those work we simply swap DISPLAY_ON and INIT_OTP. 1992 * 1993 * TODO: Do we need to limit this to specific machines, 1994 * or examine the contents of the sequences to 1995 * avoid false positives? 1996 */ 1997 static void icl_fixup_mipi_sequences(struct drm_i915_private *i915, 1998 struct intel_panel *panel) 1999 { 2000 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] && 2001 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) { 2002 drm_dbg_kms(&i915->drm, "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n"); 2003 2004 swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP], 2005 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]); 2006 } 2007 } 2008 2009 static void fixup_mipi_sequences(struct drm_i915_private *i915, 2010 struct intel_panel *panel) 2011 { 2012 if (DISPLAY_VER(i915) >= 11) 2013 icl_fixup_mipi_sequences(i915, panel); 2014 else if (IS_VALLEYVIEW(i915)) 2015 vlv_fixup_mipi_sequences(i915, panel); 2016 } 2017 2018 static void 2019 parse_mipi_sequence(struct drm_i915_private *i915, 2020 struct intel_panel *panel) 2021 { 2022 int panel_type = panel->vbt.panel_type; 2023 const struct bdb_mipi_sequence *sequence; 2024 const u8 *seq_data; 2025 u32 seq_size; 2026 u8 *data; 2027 int index = 0; 2028 2029 /* Only our generic panel driver uses the sequence block. */ 2030 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 2031 return; 2032 2033 sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE); 2034 if (!sequence) { 2035 drm_dbg_kms(&i915->drm, 2036 "No MIPI Sequence found, parsing complete\n"); 2037 return; 2038 } 2039 2040 /* Fail gracefully for forward incompatible sequence block. */ 2041 if (sequence->version >= 4) { 2042 drm_err(&i915->drm, 2043 "Unable to parse MIPI Sequence Block v%u\n", 2044 sequence->version); 2045 return; 2046 } 2047 2048 drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n", 2049 sequence->version); 2050 2051 seq_data = find_panel_sequence_block(i915, sequence, panel_type, &seq_size); 2052 if (!seq_data) 2053 return; 2054 2055 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 2056 if (!data) 2057 return; 2058 2059 /* Parse the sequences, store pointers to each sequence. */ 2060 for (;;) { 2061 u8 seq_id = *(data + index); 2062 if (seq_id == MIPI_SEQ_END) 2063 break; 2064 2065 if (seq_id >= MIPI_SEQ_MAX) { 2066 drm_err(&i915->drm, "Unknown sequence %u\n", 2067 seq_id); 2068 goto err; 2069 } 2070 2071 /* Log about presence of sequences we won't run. */ 2072 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 2073 drm_dbg_kms(&i915->drm, 2074 "Unsupported sequence %u\n", seq_id); 2075 2076 panel->vbt.dsi.sequence[seq_id] = data + index; 2077 2078 if (sequence->version >= 3) 2079 index = goto_next_sequence_v3(i915, data, index, seq_size); 2080 else 2081 index = goto_next_sequence(i915, data, index, seq_size); 2082 if (!index) { 2083 drm_err(&i915->drm, "Invalid sequence %u\n", 2084 seq_id); 2085 goto err; 2086 } 2087 } 2088 2089 panel->vbt.dsi.data = data; 2090 panel->vbt.dsi.size = seq_size; 2091 panel->vbt.dsi.seq_version = sequence->version; 2092 2093 fixup_mipi_sequences(i915, panel); 2094 2095 drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n"); 2096 return; 2097 2098 err: 2099 kfree(data); 2100 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); 2101 } 2102 2103 static void 2104 parse_compression_parameters(struct drm_i915_private *i915) 2105 { 2106 const struct bdb_compression_parameters *params; 2107 struct intel_bios_encoder_data *devdata; 2108 u16 block_size; 2109 int index; 2110 2111 if (i915->display.vbt.version < 198) 2112 return; 2113 2114 params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS); 2115 if (params) { 2116 /* Sanity checks */ 2117 if (params->entry_size != sizeof(params->data[0])) { 2118 drm_dbg_kms(&i915->drm, 2119 "VBT: unsupported compression param entry size\n"); 2120 return; 2121 } 2122 2123 block_size = get_blocksize(params); 2124 if (block_size < sizeof(*params)) { 2125 drm_dbg_kms(&i915->drm, 2126 "VBT: expected 16 compression param entries\n"); 2127 return; 2128 } 2129 } 2130 2131 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 2132 const struct child_device_config *child = &devdata->child; 2133 2134 if (!child->compression_enable) 2135 continue; 2136 2137 if (!params) { 2138 drm_dbg_kms(&i915->drm, 2139 "VBT: compression params not available\n"); 2140 continue; 2141 } 2142 2143 if (child->compression_method_cps) { 2144 drm_dbg_kms(&i915->drm, 2145 "VBT: CPS compression not supported\n"); 2146 continue; 2147 } 2148 2149 index = child->compression_structure_index; 2150 2151 devdata->dsc = kmemdup(¶ms->data[index], 2152 sizeof(*devdata->dsc), GFP_KERNEL); 2153 } 2154 } 2155 2156 static u8 translate_iboost(struct drm_i915_private *i915, u8 val) 2157 { 2158 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 2159 2160 if (val >= ARRAY_SIZE(mapping)) { 2161 drm_dbg_kms(&i915->drm, 2162 "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 2163 return 0; 2164 } 2165 return mapping[val]; 2166 } 2167 2168 static const u8 cnp_ddc_pin_map[] = { 2169 [0] = 0, /* N/A */ 2170 [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B, 2171 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C, 2172 [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */ 2173 [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */ 2174 }; 2175 2176 static const u8 icp_ddc_pin_map[] = { 2177 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2178 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2179 [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C, 2180 [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1, 2181 [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2, 2182 [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3, 2183 [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4, 2184 [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5, 2185 [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6, 2186 }; 2187 2188 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 2189 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2190 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2191 [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D, 2192 [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E, 2193 }; 2194 2195 static const u8 adls_ddc_pin_map[] = { 2196 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2197 [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1, 2198 [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2, 2199 [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3, 2200 [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4, 2201 }; 2202 2203 static const u8 gen9bc_tgp_ddc_pin_map[] = { 2204 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B, 2205 [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C, 2206 [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D, 2207 }; 2208 2209 static const u8 adlp_ddc_pin_map[] = { 2210 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2211 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2212 [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1, 2213 [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2, 2214 [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3, 2215 [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4, 2216 }; 2217 2218 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin) 2219 { 2220 const u8 *ddc_pin_map; 2221 int i, n_entries; 2222 2223 if (IS_DGFX(i915)) 2224 return vbt_pin; 2225 2226 if (INTEL_PCH_TYPE(i915) >= PCH_MTL || IS_ALDERLAKE_P(i915)) { 2227 ddc_pin_map = adlp_ddc_pin_map; 2228 n_entries = ARRAY_SIZE(adlp_ddc_pin_map); 2229 } else if (IS_ALDERLAKE_S(i915)) { 2230 ddc_pin_map = adls_ddc_pin_map; 2231 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 2232 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) { 2233 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 2234 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 2235 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) { 2236 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 2237 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 2238 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) { 2239 ddc_pin_map = icp_ddc_pin_map; 2240 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 2241 } else if (HAS_PCH_CNP(i915)) { 2242 ddc_pin_map = cnp_ddc_pin_map; 2243 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 2244 } else { 2245 /* Assuming direct map */ 2246 return vbt_pin; 2247 } 2248 2249 for (i = 0; i < n_entries; i++) { 2250 if (ddc_pin_map[i] == vbt_pin) 2251 return i; 2252 } 2253 2254 drm_dbg_kms(&i915->drm, 2255 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 2256 vbt_pin); 2257 return 0; 2258 } 2259 2260 static u8 dvo_port_type(u8 dvo_port) 2261 { 2262 switch (dvo_port) { 2263 case DVO_PORT_HDMIA: 2264 case DVO_PORT_HDMIB: 2265 case DVO_PORT_HDMIC: 2266 case DVO_PORT_HDMID: 2267 case DVO_PORT_HDMIE: 2268 case DVO_PORT_HDMIF: 2269 case DVO_PORT_HDMIG: 2270 case DVO_PORT_HDMIH: 2271 case DVO_PORT_HDMII: 2272 return DVO_PORT_HDMIA; 2273 case DVO_PORT_DPA: 2274 case DVO_PORT_DPB: 2275 case DVO_PORT_DPC: 2276 case DVO_PORT_DPD: 2277 case DVO_PORT_DPE: 2278 case DVO_PORT_DPF: 2279 case DVO_PORT_DPG: 2280 case DVO_PORT_DPH: 2281 case DVO_PORT_DPI: 2282 return DVO_PORT_DPA; 2283 case DVO_PORT_MIPIA: 2284 case DVO_PORT_MIPIB: 2285 case DVO_PORT_MIPIC: 2286 case DVO_PORT_MIPID: 2287 return DVO_PORT_MIPIA; 2288 default: 2289 return dvo_port; 2290 } 2291 } 2292 2293 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 2294 const int port_mapping[][3], u8 dvo_port) 2295 { 2296 enum port port; 2297 int i; 2298 2299 for (port = PORT_A; port < n_ports; port++) { 2300 for (i = 0; i < n_dvo; i++) { 2301 if (port_mapping[port][i] == -1) 2302 break; 2303 2304 if (dvo_port == port_mapping[port][i]) 2305 return port; 2306 } 2307 } 2308 2309 return PORT_NONE; 2310 } 2311 2312 static enum port dvo_port_to_port(struct drm_i915_private *i915, 2313 u8 dvo_port) 2314 { 2315 /* 2316 * Each DDI port can have more than one value on the "DVO Port" field, 2317 * so look for all the possible values for each port. 2318 */ 2319 static const int port_mapping[][3] = { 2320 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2321 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2322 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2323 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2324 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 2325 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2326 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2327 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2328 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2329 }; 2330 /* 2331 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 2332 * map to DDI A,B,TC1,TC2 respectively. 2333 */ 2334 static const int rkl_port_mapping[][3] = { 2335 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2336 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2337 [PORT_C] = { -1 }, 2338 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2339 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2340 }; 2341 /* 2342 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 2343 * PORT_F and PORT_G, we need to map that to correct VBT sections. 2344 */ 2345 static const int adls_port_mapping[][3] = { 2346 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2347 [PORT_B] = { -1 }, 2348 [PORT_C] = { -1 }, 2349 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2350 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2351 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2352 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2353 }; 2354 static const int xelpd_port_mapping[][3] = { 2355 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2356 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2357 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2358 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2359 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2360 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2361 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2362 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2363 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2364 }; 2365 2366 if (DISPLAY_VER(i915) >= 13) 2367 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 2368 ARRAY_SIZE(xelpd_port_mapping[0]), 2369 xelpd_port_mapping, 2370 dvo_port); 2371 else if (IS_ALDERLAKE_S(i915)) 2372 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 2373 ARRAY_SIZE(adls_port_mapping[0]), 2374 adls_port_mapping, 2375 dvo_port); 2376 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 2377 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 2378 ARRAY_SIZE(rkl_port_mapping[0]), 2379 rkl_port_mapping, 2380 dvo_port); 2381 else 2382 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 2383 ARRAY_SIZE(port_mapping[0]), 2384 port_mapping, 2385 dvo_port); 2386 } 2387 2388 static enum port 2389 dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port) 2390 { 2391 switch (dvo_port) { 2392 case DVO_PORT_MIPIA: 2393 return PORT_A; 2394 case DVO_PORT_MIPIC: 2395 if (DISPLAY_VER(i915) >= 11) 2396 return PORT_B; 2397 else 2398 return PORT_C; 2399 default: 2400 return PORT_NONE; 2401 } 2402 } 2403 2404 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata) 2405 { 2406 struct drm_i915_private *i915 = devdata->i915; 2407 const struct child_device_config *child = &devdata->child; 2408 enum port port; 2409 2410 port = dvo_port_to_port(i915, child->dvo_port); 2411 if (port == PORT_NONE && DISPLAY_VER(i915) >= 11) 2412 port = dsi_dvo_port_to_port(i915, child->dvo_port); 2413 2414 return port; 2415 } 2416 2417 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 2418 { 2419 switch (vbt_max_link_rate) { 2420 default: 2421 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 2422 return 0; 2423 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 2424 return 2000000; 2425 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 2426 return 1350000; 2427 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 2428 return 1000000; 2429 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 2430 return 810000; 2431 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 2432 return 540000; 2433 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 2434 return 270000; 2435 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 2436 return 162000; 2437 } 2438 } 2439 2440 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 2441 { 2442 switch (vbt_max_link_rate) { 2443 default: 2444 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 2445 return 810000; 2446 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 2447 return 540000; 2448 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 2449 return 270000; 2450 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 2451 return 162000; 2452 } 2453 } 2454 2455 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) 2456 { 2457 if (!devdata || devdata->i915->display.vbt.version < 216) 2458 return 0; 2459 2460 if (devdata->i915->display.vbt.version >= 230) 2461 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); 2462 else 2463 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); 2464 } 2465 2466 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata) 2467 { 2468 if (!devdata || devdata->i915->display.vbt.version < 244) 2469 return 0; 2470 2471 return devdata->child.dp_max_lane_count + 1; 2472 } 2473 2474 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 2475 enum port port) 2476 { 2477 struct drm_i915_private *i915 = devdata->i915; 2478 bool is_hdmi; 2479 2480 if (port != PORT_A || DISPLAY_VER(i915) >= 12) 2481 return; 2482 2483 if (!intel_bios_encoder_supports_dvi(devdata)) 2484 return; 2485 2486 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2487 2488 drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n", 2489 is_hdmi ? "/HDMI" : ""); 2490 2491 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2492 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2493 } 2494 2495 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata, 2496 enum port port) 2497 { 2498 struct drm_i915_private *i915 = devdata->i915; 2499 2500 if (!intel_bios_encoder_supports_dvi(devdata)) 2501 return; 2502 2503 /* 2504 * Some BDW machines (eg. HP Pavilion 15-ab) shipped 2505 * with a HSW VBT where the level shifter value goes 2506 * up to 11, whereas the BDW max is 9. 2507 */ 2508 if (IS_BROADWELL(i915) && devdata->child.hdmi_level_shifter_value > 9) { 2509 drm_dbg_kms(&i915->drm, "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n", 2510 port_name(port), devdata->child.hdmi_level_shifter_value, 9); 2511 2512 devdata->child.hdmi_level_shifter_value = 9; 2513 } 2514 } 2515 2516 static bool 2517 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 2518 { 2519 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 2520 } 2521 2522 bool 2523 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 2524 { 2525 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 2526 } 2527 2528 bool 2529 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 2530 { 2531 return intel_bios_encoder_supports_dvi(devdata) && 2532 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 2533 } 2534 2535 bool 2536 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 2537 { 2538 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2539 } 2540 2541 bool 2542 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 2543 { 2544 return intel_bios_encoder_supports_dp(devdata) && 2545 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 2546 } 2547 2548 bool 2549 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata) 2550 { 2551 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT; 2552 } 2553 2554 bool 2555 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata) 2556 { 2557 return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon; 2558 } 2559 2560 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ 2561 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) 2562 { 2563 if (!devdata || devdata->i915->display.vbt.version < 158 || 2564 DISPLAY_VER(devdata->i915) >= 14) 2565 return -1; 2566 2567 return devdata->child.hdmi_level_shifter_value; 2568 } 2569 2570 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata) 2571 { 2572 if (!devdata || devdata->i915->display.vbt.version < 204) 2573 return 0; 2574 2575 switch (devdata->child.hdmi_max_data_rate) { 2576 default: 2577 MISSING_CASE(devdata->child.hdmi_max_data_rate); 2578 fallthrough; 2579 case HDMI_MAX_DATA_RATE_PLATFORM: 2580 return 0; 2581 case HDMI_MAX_DATA_RATE_594: 2582 return 594000; 2583 case HDMI_MAX_DATA_RATE_340: 2584 return 340000; 2585 case HDMI_MAX_DATA_RATE_300: 2586 return 300000; 2587 case HDMI_MAX_DATA_RATE_297: 2588 return 297000; 2589 case HDMI_MAX_DATA_RATE_165: 2590 return 165000; 2591 } 2592 } 2593 2594 static bool is_port_valid(struct drm_i915_private *i915, enum port port) 2595 { 2596 /* 2597 * On some ICL SKUs port F is not present, but broken VBTs mark 2598 * the port as present. Only try to initialize port F for the 2599 * SKUs that may actually have it. 2600 */ 2601 if (port == PORT_F && IS_ICELAKE(i915)) 2602 return IS_ICL_WITH_PORT_F(i915); 2603 2604 return true; 2605 } 2606 2607 static void print_ddi_port(const struct intel_bios_encoder_data *devdata) 2608 { 2609 struct drm_i915_private *i915 = devdata->i915; 2610 const struct child_device_config *child = &devdata->child; 2611 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt; 2612 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; 2613 enum port port; 2614 2615 port = intel_bios_encoder_port(devdata); 2616 if (port == PORT_NONE) 2617 return; 2618 2619 is_dvi = intel_bios_encoder_supports_dvi(devdata); 2620 is_dp = intel_bios_encoder_supports_dp(devdata); 2621 is_crt = intel_bios_encoder_supports_crt(devdata); 2622 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2623 is_edp = intel_bios_encoder_supports_edp(devdata); 2624 is_dsi = intel_bios_encoder_supports_dsi(devdata); 2625 2626 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 2627 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 2628 2629 drm_dbg_kms(&i915->drm, 2630 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 2631 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi, 2632 intel_bios_encoder_supports_dp_dual_mode(devdata), 2633 intel_bios_encoder_is_lspcon(devdata), 2634 supports_typec_usb, supports_tbt, 2635 devdata->dsc != NULL); 2636 2637 hdmi_level_shift = intel_bios_hdmi_level_shift(devdata); 2638 if (hdmi_level_shift >= 0) { 2639 drm_dbg_kms(&i915->drm, 2640 "Port %c VBT HDMI level shift: %d\n", 2641 port_name(port), hdmi_level_shift); 2642 } 2643 2644 max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata); 2645 if (max_tmds_clock) 2646 drm_dbg_kms(&i915->drm, 2647 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 2648 port_name(port), max_tmds_clock); 2649 2650 /* I_boost config for SKL and above */ 2651 dp_boost_level = intel_bios_dp_boost_level(devdata); 2652 if (dp_boost_level) 2653 drm_dbg_kms(&i915->drm, 2654 "Port %c VBT (e)DP boost level: %d\n", 2655 port_name(port), dp_boost_level); 2656 2657 hdmi_boost_level = intel_bios_hdmi_boost_level(devdata); 2658 if (hdmi_boost_level) 2659 drm_dbg_kms(&i915->drm, 2660 "Port %c VBT HDMI boost level: %d\n", 2661 port_name(port), hdmi_boost_level); 2662 2663 dp_max_link_rate = intel_bios_dp_max_link_rate(devdata); 2664 if (dp_max_link_rate) 2665 drm_dbg_kms(&i915->drm, 2666 "Port %c VBT DP max link rate: %d\n", 2667 port_name(port), dp_max_link_rate); 2668 2669 /* 2670 * FIXME need to implement support for VBT 2671 * vswing/preemph tables should this ever trigger. 2672 */ 2673 drm_WARN(&i915->drm, child->use_vbt_vswing, 2674 "Port %c asks to use VBT vswing/preemph tables\n", 2675 port_name(port)); 2676 } 2677 2678 static void parse_ddi_port(struct intel_bios_encoder_data *devdata) 2679 { 2680 struct drm_i915_private *i915 = devdata->i915; 2681 enum port port; 2682 2683 port = intel_bios_encoder_port(devdata); 2684 if (port == PORT_NONE) 2685 return; 2686 2687 if (!is_port_valid(i915, port)) { 2688 drm_dbg_kms(&i915->drm, 2689 "VBT reports port %c as supported, but that can't be true: skipping\n", 2690 port_name(port)); 2691 return; 2692 } 2693 2694 sanitize_device_type(devdata, port); 2695 sanitize_hdmi_level_shift(devdata, port); 2696 } 2697 2698 static bool has_ddi_port_info(struct drm_i915_private *i915) 2699 { 2700 return DISPLAY_VER(i915) >= 5 || IS_G4X(i915); 2701 } 2702 2703 static void parse_ddi_ports(struct drm_i915_private *i915) 2704 { 2705 struct intel_bios_encoder_data *devdata; 2706 2707 if (!has_ddi_port_info(i915)) 2708 return; 2709 2710 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 2711 parse_ddi_port(devdata); 2712 2713 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 2714 print_ddi_port(devdata); 2715 } 2716 2717 static int child_device_expected_size(u16 version) 2718 { 2719 BUILD_BUG_ON(sizeof(struct child_device_config) < 40); 2720 2721 if (version > 256) 2722 return -ENOENT; 2723 else if (version >= 256) 2724 return 40; 2725 else if (version >= 216) 2726 return 39; 2727 else if (version >= 196) 2728 return 38; 2729 else if (version >= 195) 2730 return 37; 2731 else if (version >= 111) 2732 return LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2733 else if (version >= 106) 2734 return 27; 2735 else 2736 return 22; 2737 } 2738 2739 static bool child_device_size_valid(struct drm_i915_private *i915, int size) 2740 { 2741 int expected_size; 2742 2743 expected_size = child_device_expected_size(i915->display.vbt.version); 2744 if (expected_size < 0) { 2745 expected_size = sizeof(struct child_device_config); 2746 drm_dbg(&i915->drm, 2747 "Expected child device config size for VBT version %u not known; assuming %d\n", 2748 i915->display.vbt.version, expected_size); 2749 } 2750 2751 /* Flag an error for unexpected size, but continue anyway. */ 2752 if (size != expected_size) 2753 drm_err(&i915->drm, 2754 "Unexpected child device config size %d (expected %d for VBT version %u)\n", 2755 size, expected_size, i915->display.vbt.version); 2756 2757 /* The legacy sized child device config is the minimum we need. */ 2758 if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2759 drm_dbg_kms(&i915->drm, 2760 "Child device config size %d is too small.\n", 2761 size); 2762 return false; 2763 } 2764 2765 return true; 2766 } 2767 2768 static void 2769 parse_general_definitions(struct drm_i915_private *i915) 2770 { 2771 const struct bdb_general_definitions *defs; 2772 struct intel_bios_encoder_data *devdata; 2773 const struct child_device_config *child; 2774 int i, child_device_num; 2775 u16 block_size; 2776 int bus_pin; 2777 2778 defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS); 2779 if (!defs) { 2780 drm_dbg_kms(&i915->drm, 2781 "No general definition block is found, no devices defined.\n"); 2782 return; 2783 } 2784 2785 block_size = get_blocksize(defs); 2786 if (block_size < sizeof(*defs)) { 2787 drm_dbg_kms(&i915->drm, 2788 "General definitions block too small (%u)\n", 2789 block_size); 2790 return; 2791 } 2792 2793 bus_pin = defs->crt_ddc_gmbus_pin; 2794 drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2795 if (intel_gmbus_is_valid_pin(i915, bus_pin)) 2796 i915->display.vbt.crt_ddc_pin = bus_pin; 2797 2798 if (!child_device_size_valid(i915, defs->child_dev_size)) 2799 return; 2800 2801 /* get the number of child device */ 2802 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2803 2804 for (i = 0; i < child_device_num; i++) { 2805 child = child_device_ptr(defs, i); 2806 if (!child->device_type) 2807 continue; 2808 2809 drm_dbg_kms(&i915->drm, 2810 "Found VBT child device with type 0x%x\n", 2811 child->device_type); 2812 2813 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2814 if (!devdata) 2815 break; 2816 2817 devdata->i915 = i915; 2818 2819 /* 2820 * Copy as much as we know (sizeof) and is available 2821 * (child_dev_size) of the child device config. Accessing the 2822 * data must depend on VBT version. 2823 */ 2824 memcpy(&devdata->child, child, 2825 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2826 2827 list_add_tail(&devdata->node, &i915->display.vbt.display_devices); 2828 } 2829 2830 if (list_empty(&i915->display.vbt.display_devices)) 2831 drm_dbg_kms(&i915->drm, 2832 "no child dev is parsed from VBT\n"); 2833 } 2834 2835 /* Common defaults which may be overridden by VBT. */ 2836 static void 2837 init_vbt_defaults(struct drm_i915_private *i915) 2838 { 2839 i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2840 2841 /* general features */ 2842 i915->display.vbt.int_tv_support = 1; 2843 i915->display.vbt.int_crt_support = 1; 2844 2845 /* driver features */ 2846 i915->display.vbt.int_lvds_support = 1; 2847 2848 /* Default to using SSC */ 2849 i915->display.vbt.lvds_use_ssc = 1; 2850 /* 2851 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2852 * clock for LVDS. 2853 */ 2854 i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915, 2855 !HAS_PCH_SPLIT(i915)); 2856 drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n", 2857 i915->display.vbt.lvds_ssc_freq); 2858 } 2859 2860 /* Common defaults which may be overridden by VBT. */ 2861 static void 2862 init_vbt_panel_defaults(struct intel_panel *panel) 2863 { 2864 /* Default to having backlight */ 2865 panel->vbt.backlight.present = true; 2866 2867 /* LFP panel data */ 2868 panel->vbt.lvds_dither = true; 2869 } 2870 2871 /* Defaults to initialize only if there is no VBT. */ 2872 static void 2873 init_vbt_missing_defaults(struct drm_i915_private *i915) 2874 { 2875 unsigned int ports = DISPLAY_RUNTIME_INFO(i915)->port_mask; 2876 enum port port; 2877 2878 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915)) 2879 return; 2880 2881 for_each_port_masked(port, ports) { 2882 struct intel_bios_encoder_data *devdata; 2883 struct child_device_config *child; 2884 enum phy phy = intel_port_to_phy(i915, port); 2885 2886 /* 2887 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2888 * to detect it. 2889 */ 2890 if (intel_phy_is_tc(i915, phy)) 2891 continue; 2892 2893 /* Create fake child device config */ 2894 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2895 if (!devdata) 2896 break; 2897 2898 devdata->i915 = i915; 2899 child = &devdata->child; 2900 2901 if (port == PORT_F) 2902 child->dvo_port = DVO_PORT_HDMIF; 2903 else if (port == PORT_E) 2904 child->dvo_port = DVO_PORT_HDMIE; 2905 else 2906 child->dvo_port = DVO_PORT_HDMIA + port; 2907 2908 if (port != PORT_A && port != PORT_E) 2909 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2910 2911 if (port != PORT_E) 2912 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2913 2914 if (port == PORT_A) 2915 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2916 2917 list_add_tail(&devdata->node, &i915->display.vbt.display_devices); 2918 2919 drm_dbg_kms(&i915->drm, 2920 "Generating default VBT child device with type 0x04%x on port %c\n", 2921 child->device_type, port_name(port)); 2922 } 2923 2924 /* Bypass some minimum baseline VBT version checks */ 2925 i915->display.vbt.version = 155; 2926 } 2927 2928 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2929 { 2930 const void *_vbt = vbt; 2931 2932 return _vbt + vbt->bdb_offset; 2933 } 2934 2935 /** 2936 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2937 * @i915: the device 2938 * @buf: pointer to a buffer to validate 2939 * @size: size of the buffer 2940 * 2941 * Returns true on valid VBT. 2942 */ 2943 bool intel_bios_is_valid_vbt(struct drm_i915_private *i915, 2944 const void *buf, size_t size) 2945 { 2946 const struct vbt_header *vbt = buf; 2947 const struct bdb_header *bdb; 2948 2949 if (!vbt) 2950 return false; 2951 2952 if (sizeof(struct vbt_header) > size) { 2953 drm_dbg_kms(&i915->drm, "VBT header incomplete\n"); 2954 return false; 2955 } 2956 2957 if (memcmp(vbt->signature, "$VBT", 4)) { 2958 drm_dbg_kms(&i915->drm, "VBT invalid signature\n"); 2959 return false; 2960 } 2961 2962 if (vbt->vbt_size > size) { 2963 drm_dbg_kms(&i915->drm, "VBT incomplete (vbt_size overflows)\n"); 2964 return false; 2965 } 2966 2967 size = vbt->vbt_size; 2968 2969 if (range_overflows_t(size_t, 2970 vbt->bdb_offset, 2971 sizeof(struct bdb_header), 2972 size)) { 2973 drm_dbg_kms(&i915->drm, "BDB header incomplete\n"); 2974 return false; 2975 } 2976 2977 bdb = get_bdb_header(vbt); 2978 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 2979 drm_dbg_kms(&i915->drm, "BDB incomplete\n"); 2980 return false; 2981 } 2982 2983 return vbt; 2984 } 2985 2986 static struct vbt_header *firmware_get_vbt(struct drm_i915_private *i915, 2987 size_t *size) 2988 { 2989 struct vbt_header *vbt = NULL; 2990 const struct firmware *fw = NULL; 2991 const char *name = i915->display.params.vbt_firmware; 2992 int ret; 2993 2994 if (!name || !*name) 2995 return NULL; 2996 2997 ret = request_firmware(&fw, name, i915->drm.dev); 2998 if (ret) { 2999 drm_err(&i915->drm, 3000 "Requesting VBT firmware \"%s\" failed (%d)\n", 3001 name, ret); 3002 return NULL; 3003 } 3004 3005 if (intel_bios_is_valid_vbt(i915, fw->data, fw->size)) { 3006 vbt = kmemdup(fw->data, fw->size, GFP_KERNEL); 3007 if (vbt) { 3008 drm_dbg_kms(&i915->drm, 3009 "Found valid VBT firmware \"%s\"\n", name); 3010 if (size) 3011 *size = fw->size; 3012 } 3013 } else { 3014 drm_dbg_kms(&i915->drm, "Invalid VBT firmware \"%s\"\n", 3015 name); 3016 } 3017 3018 release_firmware(fw); 3019 3020 return vbt; 3021 } 3022 3023 static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset) 3024 { 3025 intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset); 3026 3027 return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER); 3028 } 3029 3030 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915, 3031 size_t *size) 3032 { 3033 u32 count, data, found, store = 0; 3034 u32 static_region, oprom_offset; 3035 u32 oprom_size = 0x200000; 3036 u16 vbt_size; 3037 u32 *vbt; 3038 3039 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS); 3040 static_region &= OPTIONROM_SPI_REGIONID_MASK; 3041 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region); 3042 3043 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET); 3044 oprom_offset &= OROM_OFFSET_MASK; 3045 3046 for (count = 0; count < oprom_size; count += 4) { 3047 data = intel_spi_read(&i915->uncore, oprom_offset + count); 3048 if (data == *((const u32 *)"$VBT")) { 3049 found = oprom_offset + count; 3050 break; 3051 } 3052 } 3053 3054 if (count >= oprom_size) 3055 goto err_not_found; 3056 3057 /* Get VBT size and allocate space for the VBT */ 3058 vbt_size = intel_spi_read(&i915->uncore, 3059 found + offsetof(struct vbt_header, vbt_size)); 3060 vbt_size &= 0xffff; 3061 3062 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); 3063 if (!vbt) 3064 goto err_not_found; 3065 3066 for (count = 0; count < vbt_size; count += 4) 3067 *(vbt + store++) = intel_spi_read(&i915->uncore, found + count); 3068 3069 if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size)) 3070 goto err_free_vbt; 3071 3072 drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n"); 3073 3074 if (size) 3075 *size = vbt_size; 3076 3077 return (struct vbt_header *)vbt; 3078 3079 err_free_vbt: 3080 kfree(vbt); 3081 err_not_found: 3082 return NULL; 3083 } 3084 3085 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915, 3086 size_t *sizep) 3087 { 3088 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 3089 void __iomem *p = NULL, *oprom; 3090 struct vbt_header *vbt; 3091 u16 vbt_size; 3092 size_t i, size; 3093 3094 oprom = pci_map_rom(pdev, &size); 3095 if (!oprom) 3096 return NULL; 3097 3098 /* Scour memory looking for the VBT signature. */ 3099 for (i = 0; i + 4 < size; i += 4) { 3100 if (ioread32(oprom + i) != *((const u32 *)"$VBT")) 3101 continue; 3102 3103 p = oprom + i; 3104 size -= i; 3105 break; 3106 } 3107 3108 if (!p) 3109 goto err_unmap_oprom; 3110 3111 if (sizeof(struct vbt_header) > size) { 3112 drm_dbg(&i915->drm, "VBT header incomplete\n"); 3113 goto err_unmap_oprom; 3114 } 3115 3116 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size)); 3117 if (vbt_size > size) { 3118 drm_dbg(&i915->drm, 3119 "VBT incomplete (vbt_size overflows)\n"); 3120 goto err_unmap_oprom; 3121 } 3122 3123 /* The rest will be validated by intel_bios_is_valid_vbt() */ 3124 vbt = kmalloc(vbt_size, GFP_KERNEL); 3125 if (!vbt) 3126 goto err_unmap_oprom; 3127 3128 memcpy_fromio(vbt, p, vbt_size); 3129 3130 if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size)) 3131 goto err_free_vbt; 3132 3133 pci_unmap_rom(pdev, oprom); 3134 3135 if (sizep) 3136 *sizep = vbt_size; 3137 3138 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n"); 3139 3140 return vbt; 3141 3142 err_free_vbt: 3143 kfree(vbt); 3144 err_unmap_oprom: 3145 pci_unmap_rom(pdev, oprom); 3146 3147 return NULL; 3148 } 3149 3150 static const struct vbt_header *intel_bios_get_vbt(struct drm_i915_private *i915, 3151 size_t *sizep) 3152 { 3153 const struct vbt_header *vbt = NULL; 3154 intel_wakeref_t wakeref; 3155 3156 vbt = firmware_get_vbt(i915, sizep); 3157 3158 if (!vbt) 3159 vbt = intel_opregion_get_vbt(i915, sizep); 3160 3161 /* 3162 * If the OpRegion does not have VBT, look in SPI flash 3163 * through MMIO or PCI mapping 3164 */ 3165 if (!vbt && IS_DGFX(i915)) 3166 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 3167 vbt = spi_oprom_get_vbt(i915, sizep); 3168 3169 if (!vbt) 3170 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 3171 vbt = oprom_get_vbt(i915, sizep); 3172 3173 return vbt; 3174 } 3175 3176 /** 3177 * intel_bios_init - find VBT and initialize settings from the BIOS 3178 * @i915: i915 device instance 3179 * 3180 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 3181 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 3182 * initialize some defaults if the VBT is not present at all. 3183 */ 3184 void intel_bios_init(struct drm_i915_private *i915) 3185 { 3186 const struct vbt_header *vbt; 3187 const struct bdb_header *bdb; 3188 3189 INIT_LIST_HEAD(&i915->display.vbt.display_devices); 3190 INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks); 3191 3192 if (!HAS_DISPLAY(i915)) { 3193 drm_dbg_kms(&i915->drm, 3194 "Skipping VBT init due to disabled display.\n"); 3195 return; 3196 } 3197 3198 init_vbt_defaults(i915); 3199 3200 vbt = intel_bios_get_vbt(i915, NULL); 3201 3202 if (!vbt) 3203 goto out; 3204 3205 bdb = get_bdb_header(vbt); 3206 i915->display.vbt.version = bdb->version; 3207 3208 drm_dbg_kms(&i915->drm, 3209 "VBT signature \"%.*s\", BDB version %d\n", 3210 (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version); 3211 3212 init_bdb_blocks(i915, bdb); 3213 3214 /* Grab useful general definitions */ 3215 parse_general_features(i915); 3216 parse_general_definitions(i915); 3217 parse_driver_features(i915); 3218 3219 /* Depends on child device list */ 3220 parse_compression_parameters(i915); 3221 3222 out: 3223 if (!vbt) { 3224 drm_info(&i915->drm, 3225 "Failed to find VBIOS tables (VBT)\n"); 3226 init_vbt_missing_defaults(i915); 3227 } 3228 3229 /* Further processing on pre-parsed or generated child device data */ 3230 parse_sdvo_device_mapping(i915); 3231 parse_ddi_ports(i915); 3232 3233 kfree(vbt); 3234 } 3235 3236 static void intel_bios_init_panel(struct drm_i915_private *i915, 3237 struct intel_panel *panel, 3238 const struct intel_bios_encoder_data *devdata, 3239 const struct drm_edid *drm_edid, 3240 bool use_fallback) 3241 { 3242 /* already have it? */ 3243 if (panel->vbt.panel_type >= 0) { 3244 drm_WARN_ON(&i915->drm, !use_fallback); 3245 return; 3246 } 3247 3248 panel->vbt.panel_type = get_panel_type(i915, devdata, 3249 drm_edid, use_fallback); 3250 if (panel->vbt.panel_type < 0) { 3251 drm_WARN_ON(&i915->drm, use_fallback); 3252 return; 3253 } 3254 3255 init_vbt_panel_defaults(panel); 3256 3257 parse_panel_options(i915, panel); 3258 parse_generic_dtd(i915, panel); 3259 parse_lfp_data(i915, panel); 3260 parse_lfp_backlight(i915, panel); 3261 parse_sdvo_panel_data(i915, panel); 3262 parse_panel_driver_features(i915, panel); 3263 parse_power_conservation_features(i915, panel); 3264 parse_edp(i915, panel); 3265 parse_psr(i915, panel); 3266 parse_mipi_config(i915, panel); 3267 parse_mipi_sequence(i915, panel); 3268 } 3269 3270 void intel_bios_init_panel_early(struct drm_i915_private *i915, 3271 struct intel_panel *panel, 3272 const struct intel_bios_encoder_data *devdata) 3273 { 3274 intel_bios_init_panel(i915, panel, devdata, NULL, false); 3275 } 3276 3277 void intel_bios_init_panel_late(struct drm_i915_private *i915, 3278 struct intel_panel *panel, 3279 const struct intel_bios_encoder_data *devdata, 3280 const struct drm_edid *drm_edid) 3281 { 3282 intel_bios_init_panel(i915, panel, devdata, drm_edid, true); 3283 } 3284 3285 /** 3286 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 3287 * @i915: i915 device instance 3288 */ 3289 void intel_bios_driver_remove(struct drm_i915_private *i915) 3290 { 3291 struct intel_bios_encoder_data *devdata, *nd; 3292 struct bdb_block_entry *entry, *ne; 3293 3294 list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) { 3295 list_del(&devdata->node); 3296 kfree(devdata->dsc); 3297 kfree(devdata); 3298 } 3299 3300 list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) { 3301 list_del(&entry->node); 3302 kfree(entry); 3303 } 3304 } 3305 3306 void intel_bios_fini_panel(struct intel_panel *panel) 3307 { 3308 kfree(panel->vbt.sdvo_lvds_vbt_mode); 3309 panel->vbt.sdvo_lvds_vbt_mode = NULL; 3310 kfree(panel->vbt.lfp_lvds_vbt_mode); 3311 panel->vbt.lfp_lvds_vbt_mode = NULL; 3312 kfree(panel->vbt.dsi.data); 3313 panel->vbt.dsi.data = NULL; 3314 kfree(panel->vbt.dsi.pps); 3315 panel->vbt.dsi.pps = NULL; 3316 kfree(panel->vbt.dsi.config); 3317 panel->vbt.dsi.config = NULL; 3318 kfree(panel->vbt.dsi.deassert_seq); 3319 panel->vbt.dsi.deassert_seq = NULL; 3320 } 3321 3322 /** 3323 * intel_bios_is_tv_present - is integrated TV present in VBT 3324 * @i915: i915 device instance 3325 * 3326 * Return true if TV is present. If no child devices were parsed from VBT, 3327 * assume TV is present. 3328 */ 3329 bool intel_bios_is_tv_present(struct drm_i915_private *i915) 3330 { 3331 const struct intel_bios_encoder_data *devdata; 3332 3333 if (!i915->display.vbt.int_tv_support) 3334 return false; 3335 3336 if (list_empty(&i915->display.vbt.display_devices)) 3337 return true; 3338 3339 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3340 const struct child_device_config *child = &devdata->child; 3341 3342 /* 3343 * If the device type is not TV, continue. 3344 */ 3345 switch (child->device_type) { 3346 case DEVICE_TYPE_INT_TV: 3347 case DEVICE_TYPE_TV: 3348 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 3349 break; 3350 default: 3351 continue; 3352 } 3353 /* Only when the addin_offset is non-zero, it is regarded 3354 * as present. 3355 */ 3356 if (child->addin_offset) 3357 return true; 3358 } 3359 3360 return false; 3361 } 3362 3363 /** 3364 * intel_bios_is_lvds_present - is LVDS present in VBT 3365 * @i915: i915 device instance 3366 * @i2c_pin: i2c pin for LVDS if present 3367 * 3368 * Return true if LVDS is present. If no child devices were parsed from VBT, 3369 * assume LVDS is present. 3370 */ 3371 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin) 3372 { 3373 const struct intel_bios_encoder_data *devdata; 3374 3375 if (list_empty(&i915->display.vbt.display_devices)) 3376 return true; 3377 3378 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3379 const struct child_device_config *child = &devdata->child; 3380 3381 /* If the device type is not LFP, continue. 3382 * We have to check both the new identifiers as well as the 3383 * old for compatibility with some BIOSes. 3384 */ 3385 if (child->device_type != DEVICE_TYPE_INT_LFP && 3386 child->device_type != DEVICE_TYPE_LFP) 3387 continue; 3388 3389 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin)) 3390 *i2c_pin = child->i2c_pin; 3391 3392 /* However, we cannot trust the BIOS writers to populate 3393 * the VBT correctly. Since LVDS requires additional 3394 * information from AIM blocks, a non-zero addin offset is 3395 * a good indicator that the LVDS is actually present. 3396 */ 3397 if (child->addin_offset) 3398 return true; 3399 3400 /* But even then some BIOS writers perform some black magic 3401 * and instantiate the device without reference to any 3402 * additional data. Trust that if the VBT was written into 3403 * the OpRegion then they have validated the LVDS's existence. 3404 */ 3405 return intel_opregion_vbt_present(i915); 3406 } 3407 3408 return false; 3409 } 3410 3411 /** 3412 * intel_bios_is_port_present - is the specified digital port present 3413 * @i915: i915 device instance 3414 * @port: port to check 3415 * 3416 * Return true if the device in %port is present. 3417 */ 3418 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port) 3419 { 3420 const struct intel_bios_encoder_data *devdata; 3421 3422 if (WARN_ON(!has_ddi_port_info(i915))) 3423 return true; 3424 3425 if (!is_port_valid(i915, port)) 3426 return false; 3427 3428 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3429 const struct child_device_config *child = &devdata->child; 3430 3431 if (dvo_port_to_port(i915, child->dvo_port) == port) 3432 return true; 3433 } 3434 3435 return false; 3436 } 3437 3438 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) 3439 { 3440 const struct child_device_config *child = &devdata->child; 3441 3442 if (!devdata) 3443 return false; 3444 3445 if (!intel_bios_encoder_supports_dp(devdata) || 3446 !intel_bios_encoder_supports_hdmi(devdata)) 3447 return false; 3448 3449 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) 3450 return true; 3451 3452 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 3453 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && 3454 child->aux_channel != 0) 3455 return true; 3456 3457 return false; 3458 } 3459 3460 /** 3461 * intel_bios_is_dsi_present - is DSI present in VBT 3462 * @i915: i915 device instance 3463 * @port: port for DSI if present 3464 * 3465 * Return true if DSI is present, and return the port in %port. 3466 */ 3467 bool intel_bios_is_dsi_present(struct drm_i915_private *i915, 3468 enum port *port) 3469 { 3470 const struct intel_bios_encoder_data *devdata; 3471 3472 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3473 const struct child_device_config *child = &devdata->child; 3474 u8 dvo_port = child->dvo_port; 3475 3476 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3477 continue; 3478 3479 if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) { 3480 drm_dbg_kms(&i915->drm, 3481 "VBT has unsupported DSI port %c\n", 3482 port_name(dvo_port - DVO_PORT_MIPIA)); 3483 continue; 3484 } 3485 3486 if (port) 3487 *port = dsi_dvo_port_to_port(i915, dvo_port); 3488 return true; 3489 } 3490 3491 return false; 3492 } 3493 3494 static void fill_dsc(struct intel_crtc_state *crtc_state, 3495 struct dsc_compression_parameters_entry *dsc, 3496 int dsc_max_bpc) 3497 { 3498 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 3499 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 3500 int bpc = 8; 3501 3502 vdsc_cfg->dsc_version_major = dsc->version_major; 3503 vdsc_cfg->dsc_version_minor = dsc->version_minor; 3504 3505 if (dsc->support_12bpc && dsc_max_bpc >= 12) 3506 bpc = 12; 3507 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 3508 bpc = 10; 3509 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 3510 bpc = 8; 3511 else 3512 drm_dbg_kms(&i915->drm, "VBT: Unsupported BPC %d for DCS\n", 3513 dsc_max_bpc); 3514 3515 crtc_state->pipe_bpp = bpc * 3; 3516 3517 crtc_state->dsc.compressed_bpp_x16 = to_bpp_x16(min(crtc_state->pipe_bpp, 3518 VBT_DSC_MAX_BPP(dsc->max_bpp))); 3519 3520 /* 3521 * FIXME: This is ugly, and slice count should take DSC engine 3522 * throughput etc. into account. 3523 * 3524 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 3525 */ 3526 if (dsc->slices_per_line & BIT(2)) { 3527 crtc_state->dsc.slice_count = 4; 3528 } else if (dsc->slices_per_line & BIT(1)) { 3529 crtc_state->dsc.slice_count = 2; 3530 } else { 3531 /* FIXME */ 3532 if (!(dsc->slices_per_line & BIT(0))) 3533 drm_dbg_kms(&i915->drm, "VBT: Unsupported DSC slice count for DSI\n"); 3534 3535 crtc_state->dsc.slice_count = 1; 3536 } 3537 3538 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 3539 crtc_state->dsc.slice_count != 0) 3540 drm_dbg_kms(&i915->drm, "VBT: DSC hdisplay %d not divisible by slice count %d\n", 3541 crtc_state->hw.adjusted_mode.crtc_hdisplay, 3542 crtc_state->dsc.slice_count); 3543 3544 /* 3545 * The VBT rc_buffer_block_size and rc_buffer_size definitions 3546 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 3547 */ 3548 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 3549 dsc->rc_buffer_size); 3550 3551 /* FIXME: DSI spec says bpc + 1 for this one */ 3552 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 3553 3554 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 3555 3556 vdsc_cfg->slice_height = dsc->slice_height; 3557 } 3558 3559 /* FIXME: initially DSI specific */ 3560 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 3561 struct intel_crtc_state *crtc_state, 3562 int dsc_max_bpc) 3563 { 3564 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3565 const struct intel_bios_encoder_data *devdata; 3566 3567 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3568 const struct child_device_config *child = &devdata->child; 3569 3570 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3571 continue; 3572 3573 if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) { 3574 if (!devdata->dsc) 3575 return false; 3576 3577 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 3578 3579 return true; 3580 } 3581 } 3582 3583 return false; 3584 } 3585 3586 static const u8 adlp_aux_ch_map[] = { 3587 [AUX_CH_A] = DP_AUX_A, 3588 [AUX_CH_B] = DP_AUX_B, 3589 [AUX_CH_C] = DP_AUX_C, 3590 [AUX_CH_D_XELPD] = DP_AUX_D, 3591 [AUX_CH_E_XELPD] = DP_AUX_E, 3592 [AUX_CH_USBC1] = DP_AUX_F, 3593 [AUX_CH_USBC2] = DP_AUX_G, 3594 [AUX_CH_USBC3] = DP_AUX_H, 3595 [AUX_CH_USBC4] = DP_AUX_I, 3596 }; 3597 3598 /* 3599 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 3600 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 3601 */ 3602 static const u8 adls_aux_ch_map[] = { 3603 [AUX_CH_A] = DP_AUX_A, 3604 [AUX_CH_USBC1] = DP_AUX_B, 3605 [AUX_CH_USBC2] = DP_AUX_C, 3606 [AUX_CH_USBC3] = DP_AUX_D, 3607 [AUX_CH_USBC4] = DP_AUX_E, 3608 }; 3609 3610 /* 3611 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 3612 * map to DDI A,B,TC1,TC2 respectively. 3613 */ 3614 static const u8 rkl_aux_ch_map[] = { 3615 [AUX_CH_A] = DP_AUX_A, 3616 [AUX_CH_B] = DP_AUX_B, 3617 [AUX_CH_USBC1] = DP_AUX_C, 3618 [AUX_CH_USBC2] = DP_AUX_D, 3619 }; 3620 3621 static const u8 direct_aux_ch_map[] = { 3622 [AUX_CH_A] = DP_AUX_A, 3623 [AUX_CH_B] = DP_AUX_B, 3624 [AUX_CH_C] = DP_AUX_C, 3625 [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */ 3626 [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */ 3627 [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */ 3628 [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */ 3629 [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */ 3630 [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */ 3631 }; 3632 3633 static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel) 3634 { 3635 const u8 *aux_ch_map; 3636 int i, n_entries; 3637 3638 if (DISPLAY_VER(i915) >= 13) { 3639 aux_ch_map = adlp_aux_ch_map; 3640 n_entries = ARRAY_SIZE(adlp_aux_ch_map); 3641 } else if (IS_ALDERLAKE_S(i915)) { 3642 aux_ch_map = adls_aux_ch_map; 3643 n_entries = ARRAY_SIZE(adls_aux_ch_map); 3644 } else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) { 3645 aux_ch_map = rkl_aux_ch_map; 3646 n_entries = ARRAY_SIZE(rkl_aux_ch_map); 3647 } else { 3648 aux_ch_map = direct_aux_ch_map; 3649 n_entries = ARRAY_SIZE(direct_aux_ch_map); 3650 } 3651 3652 for (i = 0; i < n_entries; i++) { 3653 if (aux_ch_map[i] == aux_channel) 3654 return i; 3655 } 3656 3657 drm_dbg_kms(&i915->drm, 3658 "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n", 3659 aux_channel); 3660 3661 return AUX_CH_NONE; 3662 } 3663 3664 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata) 3665 { 3666 if (!devdata || !devdata->child.aux_channel) 3667 return AUX_CH_NONE; 3668 3669 return map_aux_ch(devdata->i915, devdata->child.aux_channel); 3670 } 3671 3672 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata) 3673 { 3674 struct drm_i915_private *i915; 3675 u8 aux_channel; 3676 int count = 0; 3677 3678 if (!devdata || !devdata->child.aux_channel) 3679 return false; 3680 3681 i915 = devdata->i915; 3682 aux_channel = devdata->child.aux_channel; 3683 3684 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3685 if (intel_bios_encoder_supports_dp(devdata) && 3686 aux_channel == devdata->child.aux_channel) 3687 count++; 3688 } 3689 3690 return count > 1; 3691 } 3692 3693 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata) 3694 { 3695 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) 3696 return 0; 3697 3698 return translate_iboost(devdata->i915, devdata->child.dp_iboost_level); 3699 } 3700 3701 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 3702 { 3703 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) 3704 return 0; 3705 3706 return translate_iboost(devdata->i915, devdata->child.hdmi_iboost_level); 3707 } 3708 3709 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata) 3710 { 3711 if (!devdata || !devdata->child.ddc_pin) 3712 return 0; 3713 3714 return map_ddc_pin(devdata->i915, devdata->child.ddc_pin); 3715 } 3716 3717 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 3718 { 3719 return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c; 3720 } 3721 3722 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 3723 { 3724 return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt; 3725 } 3726 3727 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata) 3728 { 3729 return devdata && devdata->child.lane_reversal; 3730 } 3731 3732 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata) 3733 { 3734 return devdata && devdata->child.hpd_invert; 3735 } 3736 3737 const struct intel_bios_encoder_data * 3738 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port) 3739 { 3740 struct intel_bios_encoder_data *devdata; 3741 3742 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3743 if (intel_bios_encoder_port(devdata) == port) 3744 return devdata; 3745 } 3746 3747 return NULL; 3748 } 3749 3750 void intel_bios_for_each_encoder(struct drm_i915_private *i915, 3751 void (*func)(struct drm_i915_private *i915, 3752 const struct intel_bios_encoder_data *devdata)) 3753 { 3754 struct intel_bios_encoder_data *devdata; 3755 3756 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 3757 func(i915, devdata); 3758 } 3759 3760 static int intel_bios_vbt_show(struct seq_file *m, void *unused) 3761 { 3762 struct drm_i915_private *i915 = m->private; 3763 const void *vbt; 3764 size_t vbt_size; 3765 3766 vbt = intel_bios_get_vbt(i915, &vbt_size); 3767 3768 if (vbt) { 3769 seq_write(m, vbt, vbt_size); 3770 kfree(vbt); 3771 } 3772 3773 return 0; 3774 } 3775 3776 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt); 3777 3778 void intel_bios_debugfs_register(struct drm_i915_private *i915) 3779 { 3780 struct drm_minor *minor = i915->drm.primary; 3781 3782 debugfs_create_file("i915_vbt", 0444, minor->debugfs_root, 3783 i915, &intel_bios_vbt_fops); 3784 } 3785