1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "i915_reg.h" 8 #include "i9xx_wm.h" 9 #include "intel_atomic.h" 10 #include "intel_display.h" 11 #include "intel_display_trace.h" 12 #include "intel_mchbar_regs.h" 13 #include "intel_wm.h" 14 #include "skl_watermark.h" 15 #include "vlv_sideband.h" 16 17 /* used in computing the new watermarks state */ 18 struct intel_wm_config { 19 unsigned int num_pipes_active; 20 bool sprites_enabled; 21 bool sprites_scaled; 22 }; 23 24 struct cxsr_latency { 25 bool is_desktop : 1; 26 bool is_ddr3 : 1; 27 u16 fsb_freq; 28 u16 mem_freq; 29 u16 display_sr; 30 u16 display_hpll_disable; 31 u16 cursor_sr; 32 u16 cursor_hpll_disable; 33 }; 34 35 static const struct cxsr_latency cxsr_latency_table[] = { 36 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ 37 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ 38 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ 39 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */ 40 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */ 41 42 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ 43 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ 44 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ 45 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */ 46 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */ 47 48 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ 49 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ 50 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ 51 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */ 52 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */ 53 54 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ 55 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ 56 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ 57 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */ 58 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */ 59 60 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ 61 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ 62 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ 63 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */ 64 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */ 65 66 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ 67 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ 68 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ 69 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */ 70 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */ 71 }; 72 73 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop, 74 bool is_ddr3, 75 int fsb, 76 int mem) 77 { 78 const struct cxsr_latency *latency; 79 int i; 80 81 if (fsb == 0 || mem == 0) 82 return NULL; 83 84 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { 85 latency = &cxsr_latency_table[i]; 86 if (is_desktop == latency->is_desktop && 87 is_ddr3 == latency->is_ddr3 && 88 fsb == latency->fsb_freq && mem == latency->mem_freq) 89 return latency; 90 } 91 92 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); 93 94 return NULL; 95 } 96 97 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable) 98 { 99 u32 val; 100 101 vlv_punit_get(dev_priv); 102 103 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); 104 if (enable) 105 val &= ~FORCE_DDR_HIGH_FREQ; 106 else 107 val |= FORCE_DDR_HIGH_FREQ; 108 val &= ~FORCE_DDR_LOW_FREQ; 109 val |= FORCE_DDR_FREQ_REQ_ACK; 110 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); 111 112 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & 113 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) 114 drm_err(&dev_priv->drm, 115 "timed out waiting for Punit DDR DVFS request\n"); 116 117 vlv_punit_put(dev_priv); 118 } 119 120 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable) 121 { 122 u32 val; 123 124 vlv_punit_get(dev_priv); 125 126 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 127 if (enable) 128 val |= DSP_MAXFIFO_PM5_ENABLE; 129 else 130 val &= ~DSP_MAXFIFO_PM5_ENABLE; 131 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); 132 133 vlv_punit_put(dev_priv); 134 } 135 136 #define FW_WM(value, plane) \ 137 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK) 138 139 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) 140 { 141 bool was_enabled; 142 u32 val; 143 144 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 145 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; 146 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0); 147 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV); 148 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) { 149 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN; 150 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0); 151 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF); 152 } else if (IS_PINEVIEW(dev_priv)) { 153 val = intel_uncore_read(&dev_priv->uncore, DSPFW3); 154 was_enabled = val & PINEVIEW_SELF_REFRESH_EN; 155 if (enable) 156 val |= PINEVIEW_SELF_REFRESH_EN; 157 else 158 val &= ~PINEVIEW_SELF_REFRESH_EN; 159 intel_uncore_write(&dev_priv->uncore, DSPFW3, val); 160 intel_uncore_posting_read(&dev_priv->uncore, DSPFW3); 161 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) { 162 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN; 163 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) : 164 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN); 165 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val); 166 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF); 167 } else if (IS_I915GM(dev_priv)) { 168 /* 169 * FIXME can't find a bit like this for 915G, and 170 * yet it does have the related watermark in 171 * FW_BLC_SELF. What's going on? 172 */ 173 was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN; 174 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) : 175 _MASKED_BIT_DISABLE(INSTPM_SELF_EN); 176 intel_uncore_write(&dev_priv->uncore, INSTPM, val); 177 intel_uncore_posting_read(&dev_priv->uncore, INSTPM); 178 } else { 179 return false; 180 } 181 182 trace_intel_memory_cxsr(dev_priv, was_enabled, enable); 183 184 drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n", 185 str_enabled_disabled(enable), 186 str_enabled_disabled(was_enabled)); 187 188 return was_enabled; 189 } 190 191 /** 192 * intel_set_memory_cxsr - Configure CxSR state 193 * @dev_priv: i915 device 194 * @enable: Allow vs. disallow CxSR 195 * 196 * Allow or disallow the system to enter a special CxSR 197 * (C-state self refresh) state. What typically happens in CxSR mode 198 * is that several display FIFOs may get combined into a single larger 199 * FIFO for a particular plane (so called max FIFO mode) to allow the 200 * system to defer memory fetches longer, and the memory will enter 201 * self refresh. 202 * 203 * Note that enabling CxSR does not guarantee that the system enter 204 * this special mode, nor does it guarantee that the system stays 205 * in that mode once entered. So this just allows/disallows the system 206 * to autonomously utilize the CxSR mode. Other factors such as core 207 * C-states will affect when/if the system actually enters/exits the 208 * CxSR mode. 209 * 210 * Note that on VLV/CHV this actually only controls the max FIFO mode, 211 * and the system is free to enter/exit memory self refresh at any time 212 * even when the use of CxSR has been disallowed. 213 * 214 * While the system is actually in the CxSR/max FIFO mode, some plane 215 * control registers will not get latched on vblank. Thus in order to 216 * guarantee the system will respond to changes in the plane registers 217 * we must always disallow CxSR prior to making changes to those registers. 218 * Unfortunately the system will re-evaluate the CxSR conditions at 219 * frame start which happens after vblank start (which is when the plane 220 * registers would get latched), so we can't proceed with the plane update 221 * during the same frame where we disallowed CxSR. 222 * 223 * Certain platforms also have a deeper HPLL SR mode. Fortunately the 224 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold 225 * the hardware w.r.t. HPLL SR when writing to plane registers. 226 * Disallowing just CxSR is sufficient. 227 */ 228 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) 229 { 230 bool ret; 231 232 mutex_lock(&dev_priv->display.wm.wm_mutex); 233 ret = _intel_set_memory_cxsr(dev_priv, enable); 234 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 235 dev_priv->display.wm.vlv.cxsr = enable; 236 else if (IS_G4X(dev_priv)) 237 dev_priv->display.wm.g4x.cxsr = enable; 238 mutex_unlock(&dev_priv->display.wm.wm_mutex); 239 240 return ret; 241 } 242 243 /* 244 * Latency for FIFO fetches is dependent on several factors: 245 * - memory configuration (speed, channels) 246 * - chipset 247 * - current MCH state 248 * It can be fairly high in some situations, so here we assume a fairly 249 * pessimal value. It's a tradeoff between extra memory fetches (if we 250 * set this value too high, the FIFO will fetch frequently to stay full) 251 * and power consumption (set it too low to save power and we might see 252 * FIFO underruns and display "flicker"). 253 * 254 * A value of 5us seems to be a good balance; safe for very low end 255 * platforms but not overly aggressive on lower latency configs. 256 */ 257 static const int pessimal_latency_ns = 5000; 258 259 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \ 260 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8)) 261 262 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state) 263 { 264 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 265 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 266 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; 267 enum pipe pipe = crtc->pipe; 268 int sprite0_start, sprite1_start; 269 u32 dsparb, dsparb2, dsparb3; 270 271 switch (pipe) { 272 case PIPE_A: 273 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); 274 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2); 275 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0); 276 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4); 277 break; 278 case PIPE_B: 279 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); 280 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2); 281 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8); 282 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12); 283 break; 284 case PIPE_C: 285 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2); 286 dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3); 287 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16); 288 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20); 289 break; 290 default: 291 MISSING_CASE(pipe); 292 return; 293 } 294 295 fifo_state->plane[PLANE_PRIMARY] = sprite0_start; 296 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start; 297 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start; 298 fifo_state->plane[PLANE_CURSOR] = 63; 299 } 300 301 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, 302 enum i9xx_plane_id i9xx_plane) 303 { 304 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); 305 int size; 306 307 size = dsparb & 0x7f; 308 if (i9xx_plane == PLANE_B) 309 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; 310 311 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", 312 dsparb, plane_name(i9xx_plane), size); 313 314 return size; 315 } 316 317 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, 318 enum i9xx_plane_id i9xx_plane) 319 { 320 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); 321 int size; 322 323 size = dsparb & 0x1ff; 324 if (i9xx_plane == PLANE_B) 325 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; 326 size >>= 1; /* Convert to cachelines */ 327 328 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", 329 dsparb, plane_name(i9xx_plane), size); 330 331 return size; 332 } 333 334 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, 335 enum i9xx_plane_id i9xx_plane) 336 { 337 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); 338 int size; 339 340 size = dsparb & 0x7f; 341 size >>= 2; /* Convert to cachelines */ 342 343 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", 344 dsparb, plane_name(i9xx_plane), size); 345 346 return size; 347 } 348 349 /* Pineview has different values for various configs */ 350 static const struct intel_watermark_params pnv_display_wm = { 351 .fifo_size = PINEVIEW_DISPLAY_FIFO, 352 .max_wm = PINEVIEW_MAX_WM, 353 .default_wm = PINEVIEW_DFT_WM, 354 .guard_size = PINEVIEW_GUARD_WM, 355 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, 356 }; 357 358 static const struct intel_watermark_params pnv_display_hplloff_wm = { 359 .fifo_size = PINEVIEW_DISPLAY_FIFO, 360 .max_wm = PINEVIEW_MAX_WM, 361 .default_wm = PINEVIEW_DFT_HPLLOFF_WM, 362 .guard_size = PINEVIEW_GUARD_WM, 363 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, 364 }; 365 366 static const struct intel_watermark_params pnv_cursor_wm = { 367 .fifo_size = PINEVIEW_CURSOR_FIFO, 368 .max_wm = PINEVIEW_CURSOR_MAX_WM, 369 .default_wm = PINEVIEW_CURSOR_DFT_WM, 370 .guard_size = PINEVIEW_CURSOR_GUARD_WM, 371 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, 372 }; 373 374 static const struct intel_watermark_params pnv_cursor_hplloff_wm = { 375 .fifo_size = PINEVIEW_CURSOR_FIFO, 376 .max_wm = PINEVIEW_CURSOR_MAX_WM, 377 .default_wm = PINEVIEW_CURSOR_DFT_WM, 378 .guard_size = PINEVIEW_CURSOR_GUARD_WM, 379 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, 380 }; 381 382 static const struct intel_watermark_params i965_cursor_wm_info = { 383 .fifo_size = I965_CURSOR_FIFO, 384 .max_wm = I965_CURSOR_MAX_WM, 385 .default_wm = I965_CURSOR_DFT_WM, 386 .guard_size = 2, 387 .cacheline_size = I915_FIFO_LINE_SIZE, 388 }; 389 390 static const struct intel_watermark_params i945_wm_info = { 391 .fifo_size = I945_FIFO_SIZE, 392 .max_wm = I915_MAX_WM, 393 .default_wm = 1, 394 .guard_size = 2, 395 .cacheline_size = I915_FIFO_LINE_SIZE, 396 }; 397 398 static const struct intel_watermark_params i915_wm_info = { 399 .fifo_size = I915_FIFO_SIZE, 400 .max_wm = I915_MAX_WM, 401 .default_wm = 1, 402 .guard_size = 2, 403 .cacheline_size = I915_FIFO_LINE_SIZE, 404 }; 405 406 static const struct intel_watermark_params i830_a_wm_info = { 407 .fifo_size = I855GM_FIFO_SIZE, 408 .max_wm = I915_MAX_WM, 409 .default_wm = 1, 410 .guard_size = 2, 411 .cacheline_size = I830_FIFO_LINE_SIZE, 412 }; 413 414 static const struct intel_watermark_params i830_bc_wm_info = { 415 .fifo_size = I855GM_FIFO_SIZE, 416 .max_wm = I915_MAX_WM / 2, 417 .default_wm = 1, 418 .guard_size = 2, 419 .cacheline_size = I830_FIFO_LINE_SIZE, 420 }; 421 422 static const struct intel_watermark_params i845_wm_info = { 423 .fifo_size = I830_FIFO_SIZE, 424 .max_wm = I915_MAX_WM, 425 .default_wm = 1, 426 .guard_size = 2, 427 .cacheline_size = I830_FIFO_LINE_SIZE, 428 }; 429 430 /** 431 * intel_wm_method1 - Method 1 / "small buffer" watermark formula 432 * @pixel_rate: Pipe pixel rate in kHz 433 * @cpp: Plane bytes per pixel 434 * @latency: Memory wakeup latency in 0.1us units 435 * 436 * Compute the watermark using the method 1 or "small buffer" 437 * formula. The caller may additonally add extra cachelines 438 * to account for TLB misses and clock crossings. 439 * 440 * This method is concerned with the short term drain rate 441 * of the FIFO, ie. it does not account for blanking periods 442 * which would effectively reduce the average drain rate across 443 * a longer period. The name "small" refers to the fact the 444 * FIFO is relatively small compared to the amount of data 445 * fetched. 446 * 447 * The FIFO level vs. time graph might look something like: 448 * 449 * |\ |\ 450 * | \ | \ 451 * __---__---__ (- plane active, _ blanking) 452 * -> time 453 * 454 * or perhaps like this: 455 * 456 * |\|\ |\|\ 457 * __----__----__ (- plane active, _ blanking) 458 * -> time 459 * 460 * Returns: 461 * The watermark in bytes 462 */ 463 static unsigned int intel_wm_method1(unsigned int pixel_rate, 464 unsigned int cpp, 465 unsigned int latency) 466 { 467 u64 ret; 468 469 ret = mul_u32_u32(pixel_rate, cpp * latency); 470 ret = DIV_ROUND_UP_ULL(ret, 10000); 471 472 return ret; 473 } 474 475 /** 476 * intel_wm_method2 - Method 2 / "large buffer" watermark formula 477 * @pixel_rate: Pipe pixel rate in kHz 478 * @htotal: Pipe horizontal total 479 * @width: Plane width in pixels 480 * @cpp: Plane bytes per pixel 481 * @latency: Memory wakeup latency in 0.1us units 482 * 483 * Compute the watermark using the method 2 or "large buffer" 484 * formula. The caller may additonally add extra cachelines 485 * to account for TLB misses and clock crossings. 486 * 487 * This method is concerned with the long term drain rate 488 * of the FIFO, ie. it does account for blanking periods 489 * which effectively reduce the average drain rate across 490 * a longer period. The name "large" refers to the fact the 491 * FIFO is relatively large compared to the amount of data 492 * fetched. 493 * 494 * The FIFO level vs. time graph might look something like: 495 * 496 * |\___ |\___ 497 * | \___ | \___ 498 * | \ | \ 499 * __ --__--__--__--__--__--__ (- plane active, _ blanking) 500 * -> time 501 * 502 * Returns: 503 * The watermark in bytes 504 */ 505 static unsigned int intel_wm_method2(unsigned int pixel_rate, 506 unsigned int htotal, 507 unsigned int width, 508 unsigned int cpp, 509 unsigned int latency) 510 { 511 unsigned int ret; 512 513 /* 514 * FIXME remove once all users are computing 515 * watermarks in the correct place. 516 */ 517 if (WARN_ON_ONCE(htotal == 0)) 518 htotal = 1; 519 520 ret = (latency * pixel_rate) / (htotal * 10000); 521 ret = (ret + 1) * width * cpp; 522 523 return ret; 524 } 525 526 /** 527 * intel_calculate_wm - calculate watermark level 528 * @pixel_rate: pixel clock 529 * @wm: chip FIFO params 530 * @fifo_size: size of the FIFO buffer 531 * @cpp: bytes per pixel 532 * @latency_ns: memory latency for the platform 533 * 534 * Calculate the watermark level (the level at which the display plane will 535 * start fetching from memory again). Each chip has a different display 536 * FIFO size and allocation, so the caller needs to figure that out and pass 537 * in the correct intel_watermark_params structure. 538 * 539 * As the pixel clock runs, the FIFO will be drained at a rate that depends 540 * on the pixel size. When it reaches the watermark level, it'll start 541 * fetching FIFO line sized based chunks from memory until the FIFO fills 542 * past the watermark point. If the FIFO drains completely, a FIFO underrun 543 * will occur, and a display engine hang could result. 544 */ 545 static unsigned int intel_calculate_wm(int pixel_rate, 546 const struct intel_watermark_params *wm, 547 int fifo_size, int cpp, 548 unsigned int latency_ns) 549 { 550 int entries, wm_size; 551 552 /* 553 * Note: we need to make sure we don't overflow for various clock & 554 * latency values. 555 * clocks go from a few thousand to several hundred thousand. 556 * latency is usually a few thousand 557 */ 558 entries = intel_wm_method1(pixel_rate, cpp, 559 latency_ns / 100); 560 entries = DIV_ROUND_UP(entries, wm->cacheline_size) + 561 wm->guard_size; 562 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries); 563 564 wm_size = fifo_size - entries; 565 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size); 566 567 /* Don't promote wm_size to unsigned... */ 568 if (wm_size > wm->max_wm) 569 wm_size = wm->max_wm; 570 if (wm_size <= 0) 571 wm_size = wm->default_wm; 572 573 /* 574 * Bspec seems to indicate that the value shouldn't be lower than 575 * 'burst size + 1'. Certainly 830 is quite unhappy with low values. 576 * Lets go for 8 which is the burst size since certain platforms 577 * already use a hardcoded 8 (which is what the spec says should be 578 * done). 579 */ 580 if (wm_size <= 8) 581 wm_size = 8; 582 583 return wm_size; 584 } 585 586 static bool is_disabling(int old, int new, int threshold) 587 { 588 return old >= threshold && new < threshold; 589 } 590 591 static bool is_enabling(int old, int new, int threshold) 592 { 593 return old < threshold && new >= threshold; 594 } 595 596 static bool intel_crtc_active(struct intel_crtc *crtc) 597 { 598 /* Be paranoid as we can arrive here with only partial 599 * state retrieved from the hardware during setup. 600 * 601 * We can ditch the adjusted_mode.crtc_clock check as soon 602 * as Haswell has gained clock readout/fastboot support. 603 * 604 * We can ditch the crtc->primary->state->fb check as soon as we can 605 * properly reconstruct framebuffers. 606 * 607 * FIXME: The intel_crtc->active here should be switched to 608 * crtc->state->active once we have proper CRTC states wired up 609 * for atomic. 610 */ 611 return crtc->active && crtc->base.primary->state->fb && 612 crtc->config->hw.adjusted_mode.crtc_clock; 613 } 614 615 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv) 616 { 617 struct intel_crtc *crtc, *enabled = NULL; 618 619 for_each_intel_crtc(&dev_priv->drm, crtc) { 620 if (intel_crtc_active(crtc)) { 621 if (enabled) 622 return NULL; 623 enabled = crtc; 624 } 625 } 626 627 return enabled; 628 } 629 630 static void pnv_update_wm(struct drm_i915_private *dev_priv) 631 { 632 struct intel_crtc *crtc; 633 const struct cxsr_latency *latency; 634 u32 reg; 635 unsigned int wm; 636 637 latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv), 638 dev_priv->is_ddr3, 639 dev_priv->fsb_freq, 640 dev_priv->mem_freq); 641 if (!latency) { 642 drm_dbg_kms(&dev_priv->drm, 643 "Unknown FSB/MEM found, disable CxSR\n"); 644 intel_set_memory_cxsr(dev_priv, false); 645 return; 646 } 647 648 crtc = single_enabled_crtc(dev_priv); 649 if (crtc) { 650 const struct drm_framebuffer *fb = 651 crtc->base.primary->state->fb; 652 int pixel_rate = crtc->config->pixel_rate; 653 int cpp = fb->format->cpp[0]; 654 655 /* Display SR */ 656 wm = intel_calculate_wm(pixel_rate, &pnv_display_wm, 657 pnv_display_wm.fifo_size, 658 cpp, latency->display_sr); 659 reg = intel_uncore_read(&dev_priv->uncore, DSPFW1); 660 reg &= ~DSPFW_SR_MASK; 661 reg |= FW_WM(wm, SR); 662 intel_uncore_write(&dev_priv->uncore, DSPFW1, reg); 663 drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg); 664 665 /* cursor SR */ 666 wm = intel_calculate_wm(pixel_rate, &pnv_cursor_wm, 667 pnv_display_wm.fifo_size, 668 4, latency->cursor_sr); 669 intel_uncore_rmw(&dev_priv->uncore, DSPFW3, DSPFW_CURSOR_SR_MASK, 670 FW_WM(wm, CURSOR_SR)); 671 672 /* Display HPLL off SR */ 673 wm = intel_calculate_wm(pixel_rate, &pnv_display_hplloff_wm, 674 pnv_display_hplloff_wm.fifo_size, 675 cpp, latency->display_hpll_disable); 676 intel_uncore_rmw(&dev_priv->uncore, DSPFW3, DSPFW_HPLL_SR_MASK, FW_WM(wm, HPLL_SR)); 677 678 /* cursor HPLL off SR */ 679 wm = intel_calculate_wm(pixel_rate, &pnv_cursor_hplloff_wm, 680 pnv_display_hplloff_wm.fifo_size, 681 4, latency->cursor_hpll_disable); 682 reg = intel_uncore_read(&dev_priv->uncore, DSPFW3); 683 reg &= ~DSPFW_HPLL_CURSOR_MASK; 684 reg |= FW_WM(wm, HPLL_CURSOR); 685 intel_uncore_write(&dev_priv->uncore, DSPFW3, reg); 686 drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg); 687 688 intel_set_memory_cxsr(dev_priv, true); 689 } else { 690 intel_set_memory_cxsr(dev_priv, false); 691 } 692 } 693 694 /* 695 * Documentation says: 696 * "If the line size is small, the TLB fetches can get in the way of the 697 * data fetches, causing some lag in the pixel data return which is not 698 * accounted for in the above formulas. The following adjustment only 699 * needs to be applied if eight whole lines fit in the buffer at once. 700 * The WM is adjusted upwards by the difference between the FIFO size 701 * and the size of 8 whole lines. This adjustment is always performed 702 * in the actual pixel depth regardless of whether FBC is enabled or not." 703 */ 704 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp) 705 { 706 int tlb_miss = fifo_size * 64 - width * cpp * 8; 707 708 return max(0, tlb_miss); 709 } 710 711 static void g4x_write_wm_values(struct drm_i915_private *dev_priv, 712 const struct g4x_wm_values *wm) 713 { 714 enum pipe pipe; 715 716 for_each_pipe(dev_priv, pipe) 717 trace_g4x_wm(intel_crtc_for_pipe(dev_priv, pipe), wm); 718 719 intel_uncore_write(&dev_priv->uncore, DSPFW1, 720 FW_WM(wm->sr.plane, SR) | 721 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | 722 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | 723 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); 724 intel_uncore_write(&dev_priv->uncore, DSPFW2, 725 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) | 726 FW_WM(wm->sr.fbc, FBC_SR) | 727 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) | 728 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) | 729 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | 730 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); 731 intel_uncore_write(&dev_priv->uncore, DSPFW3, 732 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) | 733 FW_WM(wm->sr.cursor, CURSOR_SR) | 734 FW_WM(wm->hpll.cursor, HPLL_CURSOR) | 735 FW_WM(wm->hpll.plane, HPLL_SR)); 736 737 intel_uncore_posting_read(&dev_priv->uncore, DSPFW1); 738 } 739 740 #define FW_WM_VLV(value, plane) \ 741 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV) 742 743 static void vlv_write_wm_values(struct drm_i915_private *dev_priv, 744 const struct vlv_wm_values *wm) 745 { 746 enum pipe pipe; 747 748 for_each_pipe(dev_priv, pipe) { 749 trace_vlv_wm(intel_crtc_for_pipe(dev_priv, pipe), wm); 750 751 intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe), 752 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) | 753 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) | 754 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) | 755 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT)); 756 } 757 758 /* 759 * Zero the (unused) WM1 watermarks, and also clear all the 760 * high order bits so that there are no out of bounds values 761 * present in the registers during the reprogramming. 762 */ 763 intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0); 764 intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0); 765 intel_uncore_write(&dev_priv->uncore, DSPFW4, 0); 766 intel_uncore_write(&dev_priv->uncore, DSPFW5, 0); 767 intel_uncore_write(&dev_priv->uncore, DSPFW6, 0); 768 769 intel_uncore_write(&dev_priv->uncore, DSPFW1, 770 FW_WM(wm->sr.plane, SR) | 771 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | 772 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | 773 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); 774 intel_uncore_write(&dev_priv->uncore, DSPFW2, 775 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) | 776 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | 777 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); 778 intel_uncore_write(&dev_priv->uncore, DSPFW3, 779 FW_WM(wm->sr.cursor, CURSOR_SR)); 780 781 if (IS_CHERRYVIEW(dev_priv)) { 782 intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV, 783 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | 784 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); 785 intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV, 786 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) | 787 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE)); 788 intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV, 789 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) | 790 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC)); 791 intel_uncore_write(&dev_priv->uncore, DSPHOWM, 792 FW_WM(wm->sr.plane >> 9, SR_HI) | 793 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) | 794 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) | 795 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) | 796 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | 797 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | 798 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | 799 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | 800 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | 801 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); 802 } else { 803 intel_uncore_write(&dev_priv->uncore, DSPFW7, 804 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | 805 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); 806 intel_uncore_write(&dev_priv->uncore, DSPHOWM, 807 FW_WM(wm->sr.plane >> 9, SR_HI) | 808 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | 809 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | 810 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | 811 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | 812 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | 813 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); 814 } 815 816 intel_uncore_posting_read(&dev_priv->uncore, DSPFW1); 817 } 818 819 #undef FW_WM_VLV 820 821 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv) 822 { 823 /* all latencies in usec */ 824 dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5; 825 dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_SR] = 12; 826 dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35; 827 828 dev_priv->display.wm.num_levels = G4X_WM_LEVEL_HPLL + 1; 829 } 830 831 static int g4x_plane_fifo_size(enum plane_id plane_id, int level) 832 { 833 /* 834 * DSPCNTR[13] supposedly controls whether the 835 * primary plane can use the FIFO space otherwise 836 * reserved for the sprite plane. It's not 100% clear 837 * what the actual FIFO size is, but it looks like we 838 * can happily set both primary and sprite watermarks 839 * up to 127 cachelines. So that would seem to mean 840 * that either DSPCNTR[13] doesn't do anything, or that 841 * the total FIFO is >= 256 cachelines in size. Either 842 * way, we don't seem to have to worry about this 843 * repartitioning as the maximum watermark value the 844 * register can hold for each plane is lower than the 845 * minimum FIFO size. 846 */ 847 switch (plane_id) { 848 case PLANE_CURSOR: 849 return 63; 850 case PLANE_PRIMARY: 851 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511; 852 case PLANE_SPRITE0: 853 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0; 854 default: 855 MISSING_CASE(plane_id); 856 return 0; 857 } 858 } 859 860 static int g4x_fbc_fifo_size(int level) 861 { 862 switch (level) { 863 case G4X_WM_LEVEL_SR: 864 return 7; 865 case G4X_WM_LEVEL_HPLL: 866 return 15; 867 default: 868 MISSING_CASE(level); 869 return 0; 870 } 871 } 872 873 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state, 874 const struct intel_plane_state *plane_state, 875 int level) 876 { 877 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 878 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 879 const struct drm_display_mode *pipe_mode = 880 &crtc_state->hw.pipe_mode; 881 unsigned int latency = dev_priv->display.wm.pri_latency[level] * 10; 882 unsigned int pixel_rate, htotal, cpp, width, wm; 883 884 if (latency == 0) 885 return USHRT_MAX; 886 887 if (!intel_wm_plane_visible(crtc_state, plane_state)) 888 return 0; 889 890 cpp = plane_state->hw.fb->format->cpp[0]; 891 892 /* 893 * WaUse32BppForSRWM:ctg,elk 894 * 895 * The spec fails to list this restriction for the 896 * HPLL watermark, which seems a little strange. 897 * Let's use 32bpp for the HPLL watermark as well. 898 */ 899 if (plane->id == PLANE_PRIMARY && 900 level != G4X_WM_LEVEL_NORMAL) 901 cpp = max(cpp, 4u); 902 903 pixel_rate = crtc_state->pixel_rate; 904 htotal = pipe_mode->crtc_htotal; 905 width = drm_rect_width(&plane_state->uapi.src) >> 16; 906 907 if (plane->id == PLANE_CURSOR) { 908 wm = intel_wm_method2(pixel_rate, htotal, width, cpp, latency); 909 } else if (plane->id == PLANE_PRIMARY && 910 level == G4X_WM_LEVEL_NORMAL) { 911 wm = intel_wm_method1(pixel_rate, cpp, latency); 912 } else { 913 unsigned int small, large; 914 915 small = intel_wm_method1(pixel_rate, cpp, latency); 916 large = intel_wm_method2(pixel_rate, htotal, width, cpp, latency); 917 918 wm = min(small, large); 919 } 920 921 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level), 922 width, cpp); 923 924 wm = DIV_ROUND_UP(wm, 64) + 2; 925 926 return min_t(unsigned int, wm, USHRT_MAX); 927 } 928 929 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state, 930 int level, enum plane_id plane_id, u16 value) 931 { 932 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 933 bool dirty = false; 934 935 for (; level < dev_priv->display.wm.num_levels; level++) { 936 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; 937 938 dirty |= raw->plane[plane_id] != value; 939 raw->plane[plane_id] = value; 940 } 941 942 return dirty; 943 } 944 945 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state, 946 int level, u16 value) 947 { 948 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 949 bool dirty = false; 950 951 /* NORMAL level doesn't have an FBC watermark */ 952 level = max(level, G4X_WM_LEVEL_SR); 953 954 for (; level < dev_priv->display.wm.num_levels; level++) { 955 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; 956 957 dirty |= raw->fbc != value; 958 raw->fbc = value; 959 } 960 961 return dirty; 962 } 963 964 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state, 965 const struct intel_plane_state *plane_state, 966 u32 pri_val); 967 968 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, 969 const struct intel_plane_state *plane_state) 970 { 971 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 972 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 973 enum plane_id plane_id = plane->id; 974 bool dirty = false; 975 int level; 976 977 if (!intel_wm_plane_visible(crtc_state, plane_state)) { 978 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0); 979 if (plane_id == PLANE_PRIMARY) 980 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0); 981 goto out; 982 } 983 984 for (level = 0; level < dev_priv->display.wm.num_levels; level++) { 985 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; 986 int wm, max_wm; 987 988 wm = g4x_compute_wm(crtc_state, plane_state, level); 989 max_wm = g4x_plane_fifo_size(plane_id, level); 990 991 if (wm > max_wm) 992 break; 993 994 dirty |= raw->plane[plane_id] != wm; 995 raw->plane[plane_id] = wm; 996 997 if (plane_id != PLANE_PRIMARY || 998 level == G4X_WM_LEVEL_NORMAL) 999 continue; 1000 1001 wm = ilk_compute_fbc_wm(crtc_state, plane_state, 1002 raw->plane[plane_id]); 1003 max_wm = g4x_fbc_fifo_size(level); 1004 1005 /* 1006 * FBC wm is not mandatory as we 1007 * can always just disable its use. 1008 */ 1009 if (wm > max_wm) 1010 wm = USHRT_MAX; 1011 1012 dirty |= raw->fbc != wm; 1013 raw->fbc = wm; 1014 } 1015 1016 /* mark watermarks as invalid */ 1017 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); 1018 1019 if (plane_id == PLANE_PRIMARY) 1020 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); 1021 1022 out: 1023 if (dirty) { 1024 drm_dbg_kms(&dev_priv->drm, 1025 "%s watermarks: normal=%d, SR=%d, HPLL=%d\n", 1026 plane->base.name, 1027 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id], 1028 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id], 1029 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]); 1030 1031 if (plane_id == PLANE_PRIMARY) 1032 drm_dbg_kms(&dev_priv->drm, 1033 "FBC watermarks: SR=%d, HPLL=%d\n", 1034 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc, 1035 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc); 1036 } 1037 1038 return dirty; 1039 } 1040 1041 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, 1042 enum plane_id plane_id, int level) 1043 { 1044 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; 1045 1046 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level); 1047 } 1048 1049 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, 1050 int level) 1051 { 1052 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1053 1054 if (level >= dev_priv->display.wm.num_levels) 1055 return false; 1056 1057 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && 1058 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && 1059 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); 1060 } 1061 1062 /* mark all levels starting from 'level' as invalid */ 1063 static void g4x_invalidate_wms(struct intel_crtc *crtc, 1064 struct g4x_wm_state *wm_state, int level) 1065 { 1066 if (level <= G4X_WM_LEVEL_NORMAL) { 1067 enum plane_id plane_id; 1068 1069 for_each_plane_id_on_crtc(crtc, plane_id) 1070 wm_state->wm.plane[plane_id] = USHRT_MAX; 1071 } 1072 1073 if (level <= G4X_WM_LEVEL_SR) { 1074 wm_state->cxsr = false; 1075 wm_state->sr.cursor = USHRT_MAX; 1076 wm_state->sr.plane = USHRT_MAX; 1077 wm_state->sr.fbc = USHRT_MAX; 1078 } 1079 1080 if (level <= G4X_WM_LEVEL_HPLL) { 1081 wm_state->hpll_en = false; 1082 wm_state->hpll.cursor = USHRT_MAX; 1083 wm_state->hpll.plane = USHRT_MAX; 1084 wm_state->hpll.fbc = USHRT_MAX; 1085 } 1086 } 1087 1088 static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state, 1089 int level) 1090 { 1091 if (level < G4X_WM_LEVEL_SR) 1092 return false; 1093 1094 if (level >= G4X_WM_LEVEL_SR && 1095 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR)) 1096 return false; 1097 1098 if (level >= G4X_WM_LEVEL_HPLL && 1099 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL)) 1100 return false; 1101 1102 return true; 1103 } 1104 1105 static int _g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state) 1106 { 1107 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1108 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; 1109 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); 1110 const struct g4x_pipe_wm *raw; 1111 enum plane_id plane_id; 1112 int level; 1113 1114 level = G4X_WM_LEVEL_NORMAL; 1115 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) 1116 goto out; 1117 1118 raw = &crtc_state->wm.g4x.raw[level]; 1119 for_each_plane_id_on_crtc(crtc, plane_id) 1120 wm_state->wm.plane[plane_id] = raw->plane[plane_id]; 1121 1122 level = G4X_WM_LEVEL_SR; 1123 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) 1124 goto out; 1125 1126 raw = &crtc_state->wm.g4x.raw[level]; 1127 wm_state->sr.plane = raw->plane[PLANE_PRIMARY]; 1128 wm_state->sr.cursor = raw->plane[PLANE_CURSOR]; 1129 wm_state->sr.fbc = raw->fbc; 1130 1131 wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY); 1132 1133 level = G4X_WM_LEVEL_HPLL; 1134 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) 1135 goto out; 1136 1137 raw = &crtc_state->wm.g4x.raw[level]; 1138 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY]; 1139 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR]; 1140 wm_state->hpll.fbc = raw->fbc; 1141 1142 wm_state->hpll_en = wm_state->cxsr; 1143 1144 level++; 1145 1146 out: 1147 if (level == G4X_WM_LEVEL_NORMAL) 1148 return -EINVAL; 1149 1150 /* invalidate the higher levels */ 1151 g4x_invalidate_wms(crtc, wm_state, level); 1152 1153 /* 1154 * Determine if the FBC watermark(s) can be used. IF 1155 * this isn't the case we prefer to disable the FBC 1156 * watermark(s) rather than disable the SR/HPLL 1157 * level(s) entirely. 'level-1' is the highest valid 1158 * level here. 1159 */ 1160 wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1); 1161 1162 return 0; 1163 } 1164 1165 static int g4x_compute_pipe_wm(struct intel_atomic_state *state, 1166 struct intel_crtc *crtc) 1167 { 1168 struct intel_crtc_state *crtc_state = 1169 intel_atomic_get_new_crtc_state(state, crtc); 1170 const struct intel_plane_state *old_plane_state; 1171 const struct intel_plane_state *new_plane_state; 1172 struct intel_plane *plane; 1173 unsigned int dirty = 0; 1174 int i; 1175 1176 for_each_oldnew_intel_plane_in_state(state, plane, 1177 old_plane_state, 1178 new_plane_state, i) { 1179 if (new_plane_state->hw.crtc != &crtc->base && 1180 old_plane_state->hw.crtc != &crtc->base) 1181 continue; 1182 1183 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state)) 1184 dirty |= BIT(plane->id); 1185 } 1186 1187 if (!dirty) 1188 return 0; 1189 1190 return _g4x_compute_pipe_wm(crtc_state); 1191 } 1192 1193 static int g4x_compute_intermediate_wm(struct intel_atomic_state *state, 1194 struct intel_crtc *crtc) 1195 { 1196 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1197 struct intel_crtc_state *new_crtc_state = 1198 intel_atomic_get_new_crtc_state(state, crtc); 1199 const struct intel_crtc_state *old_crtc_state = 1200 intel_atomic_get_old_crtc_state(state, crtc); 1201 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate; 1202 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal; 1203 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal; 1204 enum plane_id plane_id; 1205 1206 if (!new_crtc_state->hw.active || 1207 intel_crtc_needs_modeset(new_crtc_state)) { 1208 *intermediate = *optimal; 1209 1210 intermediate->cxsr = false; 1211 intermediate->hpll_en = false; 1212 goto out; 1213 } 1214 1215 intermediate->cxsr = optimal->cxsr && active->cxsr && 1216 !new_crtc_state->disable_cxsr; 1217 intermediate->hpll_en = optimal->hpll_en && active->hpll_en && 1218 !new_crtc_state->disable_cxsr; 1219 intermediate->fbc_en = optimal->fbc_en && active->fbc_en; 1220 1221 for_each_plane_id_on_crtc(crtc, plane_id) { 1222 intermediate->wm.plane[plane_id] = 1223 max(optimal->wm.plane[plane_id], 1224 active->wm.plane[plane_id]); 1225 1226 drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] > 1227 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL)); 1228 } 1229 1230 intermediate->sr.plane = max(optimal->sr.plane, 1231 active->sr.plane); 1232 intermediate->sr.cursor = max(optimal->sr.cursor, 1233 active->sr.cursor); 1234 intermediate->sr.fbc = max(optimal->sr.fbc, 1235 active->sr.fbc); 1236 1237 intermediate->hpll.plane = max(optimal->hpll.plane, 1238 active->hpll.plane); 1239 intermediate->hpll.cursor = max(optimal->hpll.cursor, 1240 active->hpll.cursor); 1241 intermediate->hpll.fbc = max(optimal->hpll.fbc, 1242 active->hpll.fbc); 1243 1244 drm_WARN_ON(&dev_priv->drm, 1245 (intermediate->sr.plane > 1246 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) || 1247 intermediate->sr.cursor > 1248 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) && 1249 intermediate->cxsr); 1250 drm_WARN_ON(&dev_priv->drm, 1251 (intermediate->sr.plane > 1252 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) || 1253 intermediate->sr.cursor > 1254 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) && 1255 intermediate->hpll_en); 1256 1257 drm_WARN_ON(&dev_priv->drm, 1258 intermediate->sr.fbc > g4x_fbc_fifo_size(1) && 1259 intermediate->fbc_en && intermediate->cxsr); 1260 drm_WARN_ON(&dev_priv->drm, 1261 intermediate->hpll.fbc > g4x_fbc_fifo_size(2) && 1262 intermediate->fbc_en && intermediate->hpll_en); 1263 1264 out: 1265 /* 1266 * If our intermediate WM are identical to the final WM, then we can 1267 * omit the post-vblank programming; only update if it's different. 1268 */ 1269 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) 1270 new_crtc_state->wm.need_postvbl_update = true; 1271 1272 return 0; 1273 } 1274 1275 static void g4x_merge_wm(struct drm_i915_private *dev_priv, 1276 struct g4x_wm_values *wm) 1277 { 1278 struct intel_crtc *crtc; 1279 int num_active_pipes = 0; 1280 1281 wm->cxsr = true; 1282 wm->hpll_en = true; 1283 wm->fbc_en = true; 1284 1285 for_each_intel_crtc(&dev_priv->drm, crtc) { 1286 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; 1287 1288 if (!crtc->active) 1289 continue; 1290 1291 if (!wm_state->cxsr) 1292 wm->cxsr = false; 1293 if (!wm_state->hpll_en) 1294 wm->hpll_en = false; 1295 if (!wm_state->fbc_en) 1296 wm->fbc_en = false; 1297 1298 num_active_pipes++; 1299 } 1300 1301 if (num_active_pipes != 1) { 1302 wm->cxsr = false; 1303 wm->hpll_en = false; 1304 wm->fbc_en = false; 1305 } 1306 1307 for_each_intel_crtc(&dev_priv->drm, crtc) { 1308 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; 1309 enum pipe pipe = crtc->pipe; 1310 1311 wm->pipe[pipe] = wm_state->wm; 1312 if (crtc->active && wm->cxsr) 1313 wm->sr = wm_state->sr; 1314 if (crtc->active && wm->hpll_en) 1315 wm->hpll = wm_state->hpll; 1316 } 1317 } 1318 1319 static void g4x_program_watermarks(struct drm_i915_private *dev_priv) 1320 { 1321 struct g4x_wm_values *old_wm = &dev_priv->display.wm.g4x; 1322 struct g4x_wm_values new_wm = {}; 1323 1324 g4x_merge_wm(dev_priv, &new_wm); 1325 1326 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) 1327 return; 1328 1329 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) 1330 _intel_set_memory_cxsr(dev_priv, false); 1331 1332 g4x_write_wm_values(dev_priv, &new_wm); 1333 1334 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) 1335 _intel_set_memory_cxsr(dev_priv, true); 1336 1337 *old_wm = new_wm; 1338 } 1339 1340 static void g4x_initial_watermarks(struct intel_atomic_state *state, 1341 struct intel_crtc *crtc) 1342 { 1343 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1344 const struct intel_crtc_state *crtc_state = 1345 intel_atomic_get_new_crtc_state(state, crtc); 1346 1347 mutex_lock(&dev_priv->display.wm.wm_mutex); 1348 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate; 1349 g4x_program_watermarks(dev_priv); 1350 mutex_unlock(&dev_priv->display.wm.wm_mutex); 1351 } 1352 1353 static void g4x_optimize_watermarks(struct intel_atomic_state *state, 1354 struct intel_crtc *crtc) 1355 { 1356 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1357 const struct intel_crtc_state *crtc_state = 1358 intel_atomic_get_new_crtc_state(state, crtc); 1359 1360 if (!crtc_state->wm.need_postvbl_update) 1361 return; 1362 1363 mutex_lock(&dev_priv->display.wm.wm_mutex); 1364 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; 1365 g4x_program_watermarks(dev_priv); 1366 mutex_unlock(&dev_priv->display.wm.wm_mutex); 1367 } 1368 1369 /* latency must be in 0.1us units. */ 1370 static unsigned int vlv_wm_method2(unsigned int pixel_rate, 1371 unsigned int htotal, 1372 unsigned int width, 1373 unsigned int cpp, 1374 unsigned int latency) 1375 { 1376 unsigned int ret; 1377 1378 ret = intel_wm_method2(pixel_rate, htotal, 1379 width, cpp, latency); 1380 ret = DIV_ROUND_UP(ret, 64); 1381 1382 return ret; 1383 } 1384 1385 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv) 1386 { 1387 /* all latencies in usec */ 1388 dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM2] = 3; 1389 1390 dev_priv->display.wm.num_levels = VLV_WM_LEVEL_PM2 + 1; 1391 1392 if (IS_CHERRYVIEW(dev_priv)) { 1393 dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM5] = 12; 1394 dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33; 1395 1396 dev_priv->display.wm.num_levels = VLV_WM_LEVEL_DDR_DVFS + 1; 1397 } 1398 } 1399 1400 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state, 1401 const struct intel_plane_state *plane_state, 1402 int level) 1403 { 1404 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1405 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1406 const struct drm_display_mode *pipe_mode = 1407 &crtc_state->hw.pipe_mode; 1408 unsigned int pixel_rate, htotal, cpp, width, wm; 1409 1410 if (dev_priv->display.wm.pri_latency[level] == 0) 1411 return USHRT_MAX; 1412 1413 if (!intel_wm_plane_visible(crtc_state, plane_state)) 1414 return 0; 1415 1416 cpp = plane_state->hw.fb->format->cpp[0]; 1417 pixel_rate = crtc_state->pixel_rate; 1418 htotal = pipe_mode->crtc_htotal; 1419 width = drm_rect_width(&plane_state->uapi.src) >> 16; 1420 1421 if (plane->id == PLANE_CURSOR) { 1422 /* 1423 * FIXME the formula gives values that are 1424 * too big for the cursor FIFO, and hence we 1425 * would never be able to use cursors. For 1426 * now just hardcode the watermark. 1427 */ 1428 wm = 63; 1429 } else { 1430 wm = vlv_wm_method2(pixel_rate, htotal, width, cpp, 1431 dev_priv->display.wm.pri_latency[level] * 10); 1432 } 1433 1434 return min_t(unsigned int, wm, USHRT_MAX); 1435 } 1436 1437 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes) 1438 { 1439 return (active_planes & (BIT(PLANE_SPRITE0) | 1440 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1); 1441 } 1442 1443 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state) 1444 { 1445 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1446 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1447 const struct g4x_pipe_wm *raw = 1448 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2]; 1449 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; 1450 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); 1451 int num_active_planes = hweight8(active_planes); 1452 const int fifo_size = 511; 1453 int fifo_extra, fifo_left = fifo_size; 1454 int sprite0_fifo_extra = 0; 1455 unsigned int total_rate; 1456 enum plane_id plane_id; 1457 1458 /* 1459 * When enabling sprite0 after sprite1 has already been enabled 1460 * we tend to get an underrun unless sprite0 already has some 1461 * FIFO space allcoated. Hence we always allocate at least one 1462 * cacheline for sprite0 whenever sprite1 is enabled. 1463 * 1464 * All other plane enable sequences appear immune to this problem. 1465 */ 1466 if (vlv_need_sprite0_fifo_workaround(active_planes)) 1467 sprite0_fifo_extra = 1; 1468 1469 total_rate = raw->plane[PLANE_PRIMARY] + 1470 raw->plane[PLANE_SPRITE0] + 1471 raw->plane[PLANE_SPRITE1] + 1472 sprite0_fifo_extra; 1473 1474 if (total_rate > fifo_size) 1475 return -EINVAL; 1476 1477 if (total_rate == 0) 1478 total_rate = 1; 1479 1480 for_each_plane_id_on_crtc(crtc, plane_id) { 1481 unsigned int rate; 1482 1483 if ((active_planes & BIT(plane_id)) == 0) { 1484 fifo_state->plane[plane_id] = 0; 1485 continue; 1486 } 1487 1488 rate = raw->plane[plane_id]; 1489 fifo_state->plane[plane_id] = fifo_size * rate / total_rate; 1490 fifo_left -= fifo_state->plane[plane_id]; 1491 } 1492 1493 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra; 1494 fifo_left -= sprite0_fifo_extra; 1495 1496 fifo_state->plane[PLANE_CURSOR] = 63; 1497 1498 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1); 1499 1500 /* spread the remainder evenly */ 1501 for_each_plane_id_on_crtc(crtc, plane_id) { 1502 int plane_extra; 1503 1504 if (fifo_left == 0) 1505 break; 1506 1507 if ((active_planes & BIT(plane_id)) == 0) 1508 continue; 1509 1510 plane_extra = min(fifo_extra, fifo_left); 1511 fifo_state->plane[plane_id] += plane_extra; 1512 fifo_left -= plane_extra; 1513 } 1514 1515 drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0); 1516 1517 /* give it all to the first plane if none are active */ 1518 if (active_planes == 0) { 1519 drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size); 1520 fifo_state->plane[PLANE_PRIMARY] = fifo_left; 1521 } 1522 1523 return 0; 1524 } 1525 1526 /* mark all levels starting from 'level' as invalid */ 1527 static void vlv_invalidate_wms(struct intel_crtc *crtc, 1528 struct vlv_wm_state *wm_state, int level) 1529 { 1530 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1531 1532 for (; level < dev_priv->display.wm.num_levels; level++) { 1533 enum plane_id plane_id; 1534 1535 for_each_plane_id_on_crtc(crtc, plane_id) 1536 wm_state->wm[level].plane[plane_id] = USHRT_MAX; 1537 1538 wm_state->sr[level].cursor = USHRT_MAX; 1539 wm_state->sr[level].plane = USHRT_MAX; 1540 } 1541 } 1542 1543 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size) 1544 { 1545 if (wm > fifo_size) 1546 return USHRT_MAX; 1547 else 1548 return fifo_size - wm; 1549 } 1550 1551 /* 1552 * Starting from 'level' set all higher 1553 * levels to 'value' in the "raw" watermarks. 1554 */ 1555 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state, 1556 int level, enum plane_id plane_id, u16 value) 1557 { 1558 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1559 bool dirty = false; 1560 1561 for (; level < dev_priv->display.wm.num_levels; level++) { 1562 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; 1563 1564 dirty |= raw->plane[plane_id] != value; 1565 raw->plane[plane_id] = value; 1566 } 1567 1568 return dirty; 1569 } 1570 1571 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, 1572 const struct intel_plane_state *plane_state) 1573 { 1574 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1575 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1576 enum plane_id plane_id = plane->id; 1577 int level; 1578 bool dirty = false; 1579 1580 if (!intel_wm_plane_visible(crtc_state, plane_state)) { 1581 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0); 1582 goto out; 1583 } 1584 1585 for (level = 0; level < dev_priv->display.wm.num_levels; level++) { 1586 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; 1587 int wm = vlv_compute_wm_level(crtc_state, plane_state, level); 1588 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511; 1589 1590 if (wm > max_wm) 1591 break; 1592 1593 dirty |= raw->plane[plane_id] != wm; 1594 raw->plane[plane_id] = wm; 1595 } 1596 1597 /* mark all higher levels as invalid */ 1598 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); 1599 1600 out: 1601 if (dirty) 1602 drm_dbg_kms(&dev_priv->drm, 1603 "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n", 1604 plane->base.name, 1605 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id], 1606 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id], 1607 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]); 1608 1609 return dirty; 1610 } 1611 1612 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, 1613 enum plane_id plane_id, int level) 1614 { 1615 const struct g4x_pipe_wm *raw = 1616 &crtc_state->wm.vlv.raw[level]; 1617 const struct vlv_fifo_state *fifo_state = 1618 &crtc_state->wm.vlv.fifo_state; 1619 1620 return raw->plane[plane_id] <= fifo_state->plane[plane_id]; 1621 } 1622 1623 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level) 1624 { 1625 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && 1626 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && 1627 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) && 1628 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); 1629 } 1630 1631 static int _vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state) 1632 { 1633 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1634 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1635 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; 1636 const struct vlv_fifo_state *fifo_state = 1637 &crtc_state->wm.vlv.fifo_state; 1638 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); 1639 int num_active_planes = hweight8(active_planes); 1640 enum plane_id plane_id; 1641 int level; 1642 1643 /* initially allow all levels */ 1644 wm_state->num_levels = dev_priv->display.wm.num_levels; 1645 /* 1646 * Note that enabling cxsr with no primary/sprite planes 1647 * enabled can wedge the pipe. Hence we only allow cxsr 1648 * with exactly one enabled primary/sprite plane. 1649 */ 1650 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1; 1651 1652 for (level = 0; level < wm_state->num_levels; level++) { 1653 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; 1654 const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1; 1655 1656 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level)) 1657 break; 1658 1659 for_each_plane_id_on_crtc(crtc, plane_id) { 1660 wm_state->wm[level].plane[plane_id] = 1661 vlv_invert_wm_value(raw->plane[plane_id], 1662 fifo_state->plane[plane_id]); 1663 } 1664 1665 wm_state->sr[level].plane = 1666 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY], 1667 raw->plane[PLANE_SPRITE0], 1668 raw->plane[PLANE_SPRITE1]), 1669 sr_fifo_size); 1670 1671 wm_state->sr[level].cursor = 1672 vlv_invert_wm_value(raw->plane[PLANE_CURSOR], 1673 63); 1674 } 1675 1676 if (level == 0) 1677 return -EINVAL; 1678 1679 /* limit to only levels we can actually handle */ 1680 wm_state->num_levels = level; 1681 1682 /* invalidate the higher levels */ 1683 vlv_invalidate_wms(crtc, wm_state, level); 1684 1685 return 0; 1686 } 1687 1688 static int vlv_compute_pipe_wm(struct intel_atomic_state *state, 1689 struct intel_crtc *crtc) 1690 { 1691 struct intel_crtc_state *crtc_state = 1692 intel_atomic_get_new_crtc_state(state, crtc); 1693 const struct intel_plane_state *old_plane_state; 1694 const struct intel_plane_state *new_plane_state; 1695 struct intel_plane *plane; 1696 unsigned int dirty = 0; 1697 int i; 1698 1699 for_each_oldnew_intel_plane_in_state(state, plane, 1700 old_plane_state, 1701 new_plane_state, i) { 1702 if (new_plane_state->hw.crtc != &crtc->base && 1703 old_plane_state->hw.crtc != &crtc->base) 1704 continue; 1705 1706 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state)) 1707 dirty |= BIT(plane->id); 1708 } 1709 1710 /* 1711 * DSPARB registers may have been reset due to the 1712 * power well being turned off. Make sure we restore 1713 * them to a consistent state even if no primary/sprite 1714 * planes are initially active. We also force a FIFO 1715 * recomputation so that we are sure to sanitize the 1716 * FIFO setting we took over from the BIOS even if there 1717 * are no active planes on the crtc. 1718 */ 1719 if (intel_crtc_needs_modeset(crtc_state)) 1720 dirty = ~0; 1721 1722 if (!dirty) 1723 return 0; 1724 1725 /* cursor changes don't warrant a FIFO recompute */ 1726 if (dirty & ~BIT(PLANE_CURSOR)) { 1727 const struct intel_crtc_state *old_crtc_state = 1728 intel_atomic_get_old_crtc_state(state, crtc); 1729 const struct vlv_fifo_state *old_fifo_state = 1730 &old_crtc_state->wm.vlv.fifo_state; 1731 const struct vlv_fifo_state *new_fifo_state = 1732 &crtc_state->wm.vlv.fifo_state; 1733 int ret; 1734 1735 ret = vlv_compute_fifo(crtc_state); 1736 if (ret) 1737 return ret; 1738 1739 if (intel_crtc_needs_modeset(crtc_state) || 1740 memcmp(old_fifo_state, new_fifo_state, 1741 sizeof(*new_fifo_state)) != 0) 1742 crtc_state->fifo_changed = true; 1743 } 1744 1745 return _vlv_compute_pipe_wm(crtc_state); 1746 } 1747 1748 #define VLV_FIFO(plane, value) \ 1749 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV) 1750 1751 static void vlv_atomic_update_fifo(struct intel_atomic_state *state, 1752 struct intel_crtc *crtc) 1753 { 1754 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1755 struct intel_uncore *uncore = &dev_priv->uncore; 1756 const struct intel_crtc_state *crtc_state = 1757 intel_atomic_get_new_crtc_state(state, crtc); 1758 const struct vlv_fifo_state *fifo_state = 1759 &crtc_state->wm.vlv.fifo_state; 1760 int sprite0_start, sprite1_start, fifo_size; 1761 u32 dsparb, dsparb2, dsparb3; 1762 1763 if (!crtc_state->fifo_changed) 1764 return; 1765 1766 sprite0_start = fifo_state->plane[PLANE_PRIMARY]; 1767 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start; 1768 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start; 1769 1770 drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63); 1771 drm_WARN_ON(&dev_priv->drm, fifo_size != 511); 1772 1773 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size); 1774 1775 /* 1776 * uncore.lock serves a double purpose here. It allows us to 1777 * use the less expensive I915_{READ,WRITE}_FW() functions, and 1778 * it protects the DSPARB registers from getting clobbered by 1779 * parallel updates from multiple pipes. 1780 * 1781 * intel_pipe_update_start() has already disabled interrupts 1782 * for us, so a plain spin_lock() is sufficient here. 1783 */ 1784 spin_lock(&uncore->lock); 1785 1786 switch (crtc->pipe) { 1787 case PIPE_A: 1788 dsparb = intel_uncore_read_fw(uncore, DSPARB); 1789 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); 1790 1791 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) | 1792 VLV_FIFO(SPRITEB, 0xff)); 1793 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) | 1794 VLV_FIFO(SPRITEB, sprite1_start)); 1795 1796 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) | 1797 VLV_FIFO(SPRITEB_HI, 0x1)); 1798 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) | 1799 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8)); 1800 1801 intel_uncore_write_fw(uncore, DSPARB, dsparb); 1802 intel_uncore_write_fw(uncore, DSPARB2, dsparb2); 1803 break; 1804 case PIPE_B: 1805 dsparb = intel_uncore_read_fw(uncore, DSPARB); 1806 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); 1807 1808 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) | 1809 VLV_FIFO(SPRITED, 0xff)); 1810 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) | 1811 VLV_FIFO(SPRITED, sprite1_start)); 1812 1813 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) | 1814 VLV_FIFO(SPRITED_HI, 0xff)); 1815 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) | 1816 VLV_FIFO(SPRITED_HI, sprite1_start >> 8)); 1817 1818 intel_uncore_write_fw(uncore, DSPARB, dsparb); 1819 intel_uncore_write_fw(uncore, DSPARB2, dsparb2); 1820 break; 1821 case PIPE_C: 1822 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3); 1823 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); 1824 1825 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) | 1826 VLV_FIFO(SPRITEF, 0xff)); 1827 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) | 1828 VLV_FIFO(SPRITEF, sprite1_start)); 1829 1830 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) | 1831 VLV_FIFO(SPRITEF_HI, 0xff)); 1832 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) | 1833 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8)); 1834 1835 intel_uncore_write_fw(uncore, DSPARB3, dsparb3); 1836 intel_uncore_write_fw(uncore, DSPARB2, dsparb2); 1837 break; 1838 default: 1839 break; 1840 } 1841 1842 intel_uncore_posting_read_fw(uncore, DSPARB); 1843 1844 spin_unlock(&uncore->lock); 1845 } 1846 1847 #undef VLV_FIFO 1848 1849 static int vlv_compute_intermediate_wm(struct intel_atomic_state *state, 1850 struct intel_crtc *crtc) 1851 { 1852 struct intel_crtc_state *new_crtc_state = 1853 intel_atomic_get_new_crtc_state(state, crtc); 1854 const struct intel_crtc_state *old_crtc_state = 1855 intel_atomic_get_old_crtc_state(state, crtc); 1856 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate; 1857 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal; 1858 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal; 1859 int level; 1860 1861 if (!new_crtc_state->hw.active || 1862 intel_crtc_needs_modeset(new_crtc_state)) { 1863 *intermediate = *optimal; 1864 1865 intermediate->cxsr = false; 1866 goto out; 1867 } 1868 1869 intermediate->num_levels = min(optimal->num_levels, active->num_levels); 1870 intermediate->cxsr = optimal->cxsr && active->cxsr && 1871 !new_crtc_state->disable_cxsr; 1872 1873 for (level = 0; level < intermediate->num_levels; level++) { 1874 enum plane_id plane_id; 1875 1876 for_each_plane_id_on_crtc(crtc, plane_id) { 1877 intermediate->wm[level].plane[plane_id] = 1878 min(optimal->wm[level].plane[plane_id], 1879 active->wm[level].plane[plane_id]); 1880 } 1881 1882 intermediate->sr[level].plane = min(optimal->sr[level].plane, 1883 active->sr[level].plane); 1884 intermediate->sr[level].cursor = min(optimal->sr[level].cursor, 1885 active->sr[level].cursor); 1886 } 1887 1888 vlv_invalidate_wms(crtc, intermediate, level); 1889 1890 out: 1891 /* 1892 * If our intermediate WM are identical to the final WM, then we can 1893 * omit the post-vblank programming; only update if it's different. 1894 */ 1895 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) 1896 new_crtc_state->wm.need_postvbl_update = true; 1897 1898 return 0; 1899 } 1900 1901 static void vlv_merge_wm(struct drm_i915_private *dev_priv, 1902 struct vlv_wm_values *wm) 1903 { 1904 struct intel_crtc *crtc; 1905 int num_active_pipes = 0; 1906 1907 wm->level = dev_priv->display.wm.num_levels - 1; 1908 wm->cxsr = true; 1909 1910 for_each_intel_crtc(&dev_priv->drm, crtc) { 1911 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; 1912 1913 if (!crtc->active) 1914 continue; 1915 1916 if (!wm_state->cxsr) 1917 wm->cxsr = false; 1918 1919 num_active_pipes++; 1920 wm->level = min_t(int, wm->level, wm_state->num_levels - 1); 1921 } 1922 1923 if (num_active_pipes != 1) 1924 wm->cxsr = false; 1925 1926 if (num_active_pipes > 1) 1927 wm->level = VLV_WM_LEVEL_PM2; 1928 1929 for_each_intel_crtc(&dev_priv->drm, crtc) { 1930 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; 1931 enum pipe pipe = crtc->pipe; 1932 1933 wm->pipe[pipe] = wm_state->wm[wm->level]; 1934 if (crtc->active && wm->cxsr) 1935 wm->sr = wm_state->sr[wm->level]; 1936 1937 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2; 1938 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2; 1939 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2; 1940 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2; 1941 } 1942 } 1943 1944 static void vlv_program_watermarks(struct drm_i915_private *dev_priv) 1945 { 1946 struct vlv_wm_values *old_wm = &dev_priv->display.wm.vlv; 1947 struct vlv_wm_values new_wm = {}; 1948 1949 vlv_merge_wm(dev_priv, &new_wm); 1950 1951 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) 1952 return; 1953 1954 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) 1955 chv_set_memory_dvfs(dev_priv, false); 1956 1957 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) 1958 chv_set_memory_pm5(dev_priv, false); 1959 1960 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) 1961 _intel_set_memory_cxsr(dev_priv, false); 1962 1963 vlv_write_wm_values(dev_priv, &new_wm); 1964 1965 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) 1966 _intel_set_memory_cxsr(dev_priv, true); 1967 1968 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) 1969 chv_set_memory_pm5(dev_priv, true); 1970 1971 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) 1972 chv_set_memory_dvfs(dev_priv, true); 1973 1974 *old_wm = new_wm; 1975 } 1976 1977 static void vlv_initial_watermarks(struct intel_atomic_state *state, 1978 struct intel_crtc *crtc) 1979 { 1980 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1981 const struct intel_crtc_state *crtc_state = 1982 intel_atomic_get_new_crtc_state(state, crtc); 1983 1984 mutex_lock(&dev_priv->display.wm.wm_mutex); 1985 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate; 1986 vlv_program_watermarks(dev_priv); 1987 mutex_unlock(&dev_priv->display.wm.wm_mutex); 1988 } 1989 1990 static void vlv_optimize_watermarks(struct intel_atomic_state *state, 1991 struct intel_crtc *crtc) 1992 { 1993 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1994 const struct intel_crtc_state *crtc_state = 1995 intel_atomic_get_new_crtc_state(state, crtc); 1996 1997 if (!crtc_state->wm.need_postvbl_update) 1998 return; 1999 2000 mutex_lock(&dev_priv->display.wm.wm_mutex); 2001 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; 2002 vlv_program_watermarks(dev_priv); 2003 mutex_unlock(&dev_priv->display.wm.wm_mutex); 2004 } 2005 2006 static void i965_update_wm(struct drm_i915_private *dev_priv) 2007 { 2008 struct intel_crtc *crtc; 2009 int srwm = 1; 2010 int cursor_sr = 16; 2011 bool cxsr_enabled; 2012 2013 /* Calc sr entries for one plane configs */ 2014 crtc = single_enabled_crtc(dev_priv); 2015 if (crtc) { 2016 /* self-refresh has much higher latency */ 2017 static const int sr_latency_ns = 12000; 2018 const struct drm_display_mode *pipe_mode = 2019 &crtc->config->hw.pipe_mode; 2020 const struct drm_framebuffer *fb = 2021 crtc->base.primary->state->fb; 2022 int pixel_rate = crtc->config->pixel_rate; 2023 int htotal = pipe_mode->crtc_htotal; 2024 int width = drm_rect_width(&crtc->base.primary->state->src) >> 16; 2025 int cpp = fb->format->cpp[0]; 2026 int entries; 2027 2028 entries = intel_wm_method2(pixel_rate, htotal, 2029 width, cpp, sr_latency_ns / 100); 2030 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE); 2031 srwm = I965_FIFO_SIZE - entries; 2032 if (srwm < 0) 2033 srwm = 1; 2034 srwm &= 0x1ff; 2035 drm_dbg_kms(&dev_priv->drm, 2036 "self-refresh entries: %d, wm: %d\n", 2037 entries, srwm); 2038 2039 entries = intel_wm_method2(pixel_rate, htotal, 2040 crtc->base.cursor->state->crtc_w, 4, 2041 sr_latency_ns / 100); 2042 entries = DIV_ROUND_UP(entries, 2043 i965_cursor_wm_info.cacheline_size) + 2044 i965_cursor_wm_info.guard_size; 2045 2046 cursor_sr = i965_cursor_wm_info.fifo_size - entries; 2047 if (cursor_sr > i965_cursor_wm_info.max_wm) 2048 cursor_sr = i965_cursor_wm_info.max_wm; 2049 2050 drm_dbg_kms(&dev_priv->drm, 2051 "self-refresh watermark: display plane %d " 2052 "cursor %d\n", srwm, cursor_sr); 2053 2054 cxsr_enabled = true; 2055 } else { 2056 cxsr_enabled = false; 2057 /* Turn off self refresh if both pipes are enabled */ 2058 intel_set_memory_cxsr(dev_priv, false); 2059 } 2060 2061 drm_dbg_kms(&dev_priv->drm, 2062 "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", 2063 srwm); 2064 2065 /* 965 has limitations... */ 2066 intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) | 2067 FW_WM(8, CURSORB) | 2068 FW_WM(8, PLANEB) | 2069 FW_WM(8, PLANEA)); 2070 intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) | 2071 FW_WM(8, PLANEC_OLD)); 2072 /* update cursor SR watermark */ 2073 intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR)); 2074 2075 if (cxsr_enabled) 2076 intel_set_memory_cxsr(dev_priv, true); 2077 } 2078 2079 #undef FW_WM 2080 2081 static struct intel_crtc *intel_crtc_for_plane(struct drm_i915_private *i915, 2082 enum i9xx_plane_id i9xx_plane) 2083 { 2084 struct intel_plane *plane; 2085 2086 for_each_intel_plane(&i915->drm, plane) { 2087 if (plane->id == PLANE_PRIMARY && 2088 plane->i9xx_plane == i9xx_plane) 2089 return intel_crtc_for_pipe(i915, plane->pipe); 2090 } 2091 2092 return NULL; 2093 } 2094 2095 static void i9xx_update_wm(struct drm_i915_private *dev_priv) 2096 { 2097 const struct intel_watermark_params *wm_info; 2098 u32 fwater_lo; 2099 u32 fwater_hi; 2100 int cwm, srwm = 1; 2101 int fifo_size; 2102 int planea_wm, planeb_wm; 2103 struct intel_crtc *crtc; 2104 2105 if (IS_I945GM(dev_priv)) 2106 wm_info = &i945_wm_info; 2107 else if (DISPLAY_VER(dev_priv) != 2) 2108 wm_info = &i915_wm_info; 2109 else 2110 wm_info = &i830_a_wm_info; 2111 2112 if (DISPLAY_VER(dev_priv) == 2) 2113 fifo_size = i830_get_fifo_size(dev_priv, PLANE_A); 2114 else 2115 fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_A); 2116 crtc = intel_crtc_for_plane(dev_priv, PLANE_A); 2117 if (intel_crtc_active(crtc)) { 2118 const struct drm_framebuffer *fb = 2119 crtc->base.primary->state->fb; 2120 int cpp; 2121 2122 if (DISPLAY_VER(dev_priv) == 2) 2123 cpp = 4; 2124 else 2125 cpp = fb->format->cpp[0]; 2126 2127 planea_wm = intel_calculate_wm(crtc->config->pixel_rate, 2128 wm_info, fifo_size, cpp, 2129 pessimal_latency_ns); 2130 } else { 2131 planea_wm = fifo_size - wm_info->guard_size; 2132 if (planea_wm > (long)wm_info->max_wm) 2133 planea_wm = wm_info->max_wm; 2134 } 2135 2136 if (DISPLAY_VER(dev_priv) == 2) 2137 wm_info = &i830_bc_wm_info; 2138 2139 if (DISPLAY_VER(dev_priv) == 2) 2140 fifo_size = i830_get_fifo_size(dev_priv, PLANE_B); 2141 else 2142 fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_B); 2143 crtc = intel_crtc_for_plane(dev_priv, PLANE_B); 2144 if (intel_crtc_active(crtc)) { 2145 const struct drm_framebuffer *fb = 2146 crtc->base.primary->state->fb; 2147 int cpp; 2148 2149 if (DISPLAY_VER(dev_priv) == 2) 2150 cpp = 4; 2151 else 2152 cpp = fb->format->cpp[0]; 2153 2154 planeb_wm = intel_calculate_wm(crtc->config->pixel_rate, 2155 wm_info, fifo_size, cpp, 2156 pessimal_latency_ns); 2157 } else { 2158 planeb_wm = fifo_size - wm_info->guard_size; 2159 if (planeb_wm > (long)wm_info->max_wm) 2160 planeb_wm = wm_info->max_wm; 2161 } 2162 2163 drm_dbg_kms(&dev_priv->drm, 2164 "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); 2165 2166 crtc = single_enabled_crtc(dev_priv); 2167 if (IS_I915GM(dev_priv) && crtc) { 2168 struct drm_i915_gem_object *obj; 2169 2170 obj = intel_fb_obj(crtc->base.primary->state->fb); 2171 2172 /* self-refresh seems busted with untiled */ 2173 if (!i915_gem_object_is_tiled(obj)) 2174 crtc = NULL; 2175 } 2176 2177 /* 2178 * Overlay gets an aggressive default since video jitter is bad. 2179 */ 2180 cwm = 2; 2181 2182 /* Play safe and disable self-refresh before adjusting watermarks. */ 2183 intel_set_memory_cxsr(dev_priv, false); 2184 2185 /* Calc sr entries for one plane configs */ 2186 if (HAS_FW_BLC(dev_priv) && crtc) { 2187 /* self-refresh has much higher latency */ 2188 static const int sr_latency_ns = 6000; 2189 const struct drm_display_mode *pipe_mode = 2190 &crtc->config->hw.pipe_mode; 2191 const struct drm_framebuffer *fb = 2192 crtc->base.primary->state->fb; 2193 int pixel_rate = crtc->config->pixel_rate; 2194 int htotal = pipe_mode->crtc_htotal; 2195 int width = drm_rect_width(&crtc->base.primary->state->src) >> 16; 2196 int cpp; 2197 int entries; 2198 2199 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv)) 2200 cpp = 4; 2201 else 2202 cpp = fb->format->cpp[0]; 2203 2204 entries = intel_wm_method2(pixel_rate, htotal, width, cpp, 2205 sr_latency_ns / 100); 2206 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size); 2207 drm_dbg_kms(&dev_priv->drm, 2208 "self-refresh entries: %d\n", entries); 2209 srwm = wm_info->fifo_size - entries; 2210 if (srwm < 0) 2211 srwm = 1; 2212 2213 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) 2214 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, 2215 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); 2216 else 2217 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f); 2218 } 2219 2220 drm_dbg_kms(&dev_priv->drm, 2221 "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", 2222 planea_wm, planeb_wm, cwm, srwm); 2223 2224 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); 2225 fwater_hi = (cwm & 0x1f); 2226 2227 /* Set request length to 8 cachelines per fetch */ 2228 fwater_lo = fwater_lo | (1 << 24) | (1 << 8); 2229 fwater_hi = fwater_hi | (1 << 8); 2230 2231 intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo); 2232 intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi); 2233 2234 if (crtc) 2235 intel_set_memory_cxsr(dev_priv, true); 2236 } 2237 2238 static void i845_update_wm(struct drm_i915_private *dev_priv) 2239 { 2240 struct intel_crtc *crtc; 2241 u32 fwater_lo; 2242 int planea_wm; 2243 2244 crtc = single_enabled_crtc(dev_priv); 2245 if (crtc == NULL) 2246 return; 2247 2248 planea_wm = intel_calculate_wm(crtc->config->pixel_rate, 2249 &i845_wm_info, 2250 i845_get_fifo_size(dev_priv, PLANE_A), 2251 4, pessimal_latency_ns); 2252 fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff; 2253 fwater_lo |= (3<<8) | planea_wm; 2254 2255 drm_dbg_kms(&dev_priv->drm, 2256 "Setting FIFO watermarks - A: %d\n", planea_wm); 2257 2258 intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo); 2259 } 2260 2261 /* latency must be in 0.1us units. */ 2262 static unsigned int ilk_wm_method1(unsigned int pixel_rate, 2263 unsigned int cpp, 2264 unsigned int latency) 2265 { 2266 unsigned int ret; 2267 2268 ret = intel_wm_method1(pixel_rate, cpp, latency); 2269 ret = DIV_ROUND_UP(ret, 64) + 2; 2270 2271 return ret; 2272 } 2273 2274 /* latency must be in 0.1us units. */ 2275 static unsigned int ilk_wm_method2(unsigned int pixel_rate, 2276 unsigned int htotal, 2277 unsigned int width, 2278 unsigned int cpp, 2279 unsigned int latency) 2280 { 2281 unsigned int ret; 2282 2283 ret = intel_wm_method2(pixel_rate, htotal, 2284 width, cpp, latency); 2285 ret = DIV_ROUND_UP(ret, 64) + 2; 2286 2287 return ret; 2288 } 2289 2290 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp) 2291 { 2292 /* 2293 * Neither of these should be possible since this function shouldn't be 2294 * called if the CRTC is off or the plane is invisible. But let's be 2295 * extra paranoid to avoid a potential divide-by-zero if we screw up 2296 * elsewhere in the driver. 2297 */ 2298 if (WARN_ON(!cpp)) 2299 return 0; 2300 if (WARN_ON(!horiz_pixels)) 2301 return 0; 2302 2303 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2; 2304 } 2305 2306 struct ilk_wm_maximums { 2307 u16 pri; 2308 u16 spr; 2309 u16 cur; 2310 u16 fbc; 2311 }; 2312 2313 /* 2314 * For both WM_PIPE and WM_LP. 2315 * mem_value must be in 0.1us units. 2316 */ 2317 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state, 2318 const struct intel_plane_state *plane_state, 2319 u32 mem_value, bool is_lp) 2320 { 2321 u32 method1, method2; 2322 int cpp; 2323 2324 if (mem_value == 0) 2325 return U32_MAX; 2326 2327 if (!intel_wm_plane_visible(crtc_state, plane_state)) 2328 return 0; 2329 2330 cpp = plane_state->hw.fb->format->cpp[0]; 2331 2332 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value); 2333 2334 if (!is_lp) 2335 return method1; 2336 2337 method2 = ilk_wm_method2(crtc_state->pixel_rate, 2338 crtc_state->hw.pipe_mode.crtc_htotal, 2339 drm_rect_width(&plane_state->uapi.src) >> 16, 2340 cpp, mem_value); 2341 2342 return min(method1, method2); 2343 } 2344 2345 /* 2346 * For both WM_PIPE and WM_LP. 2347 * mem_value must be in 0.1us units. 2348 */ 2349 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state, 2350 const struct intel_plane_state *plane_state, 2351 u32 mem_value) 2352 { 2353 u32 method1, method2; 2354 int cpp; 2355 2356 if (mem_value == 0) 2357 return U32_MAX; 2358 2359 if (!intel_wm_plane_visible(crtc_state, plane_state)) 2360 return 0; 2361 2362 cpp = plane_state->hw.fb->format->cpp[0]; 2363 2364 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value); 2365 method2 = ilk_wm_method2(crtc_state->pixel_rate, 2366 crtc_state->hw.pipe_mode.crtc_htotal, 2367 drm_rect_width(&plane_state->uapi.src) >> 16, 2368 cpp, mem_value); 2369 return min(method1, method2); 2370 } 2371 2372 /* 2373 * For both WM_PIPE and WM_LP. 2374 * mem_value must be in 0.1us units. 2375 */ 2376 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state, 2377 const struct intel_plane_state *plane_state, 2378 u32 mem_value) 2379 { 2380 int cpp; 2381 2382 if (mem_value == 0) 2383 return U32_MAX; 2384 2385 if (!intel_wm_plane_visible(crtc_state, plane_state)) 2386 return 0; 2387 2388 cpp = plane_state->hw.fb->format->cpp[0]; 2389 2390 return ilk_wm_method2(crtc_state->pixel_rate, 2391 crtc_state->hw.pipe_mode.crtc_htotal, 2392 drm_rect_width(&plane_state->uapi.src) >> 16, 2393 cpp, mem_value); 2394 } 2395 2396 /* Only for WM_LP. */ 2397 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state, 2398 const struct intel_plane_state *plane_state, 2399 u32 pri_val) 2400 { 2401 int cpp; 2402 2403 if (!intel_wm_plane_visible(crtc_state, plane_state)) 2404 return 0; 2405 2406 cpp = plane_state->hw.fb->format->cpp[0]; 2407 2408 return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.src) >> 16, 2409 cpp); 2410 } 2411 2412 static unsigned int 2413 ilk_display_fifo_size(const struct drm_i915_private *dev_priv) 2414 { 2415 if (DISPLAY_VER(dev_priv) >= 8) 2416 return 3072; 2417 else if (DISPLAY_VER(dev_priv) >= 7) 2418 return 768; 2419 else 2420 return 512; 2421 } 2422 2423 static unsigned int 2424 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv, 2425 int level, bool is_sprite) 2426 { 2427 if (DISPLAY_VER(dev_priv) >= 8) 2428 /* BDW primary/sprite plane watermarks */ 2429 return level == 0 ? 255 : 2047; 2430 else if (DISPLAY_VER(dev_priv) >= 7) 2431 /* IVB/HSW primary/sprite plane watermarks */ 2432 return level == 0 ? 127 : 1023; 2433 else if (!is_sprite) 2434 /* ILK/SNB primary plane watermarks */ 2435 return level == 0 ? 127 : 511; 2436 else 2437 /* ILK/SNB sprite plane watermarks */ 2438 return level == 0 ? 63 : 255; 2439 } 2440 2441 static unsigned int 2442 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level) 2443 { 2444 if (DISPLAY_VER(dev_priv) >= 7) 2445 return level == 0 ? 63 : 255; 2446 else 2447 return level == 0 ? 31 : 63; 2448 } 2449 2450 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv) 2451 { 2452 if (DISPLAY_VER(dev_priv) >= 8) 2453 return 31; 2454 else 2455 return 15; 2456 } 2457 2458 /* Calculate the maximum primary/sprite plane watermark */ 2459 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv, 2460 int level, 2461 const struct intel_wm_config *config, 2462 enum intel_ddb_partitioning ddb_partitioning, 2463 bool is_sprite) 2464 { 2465 unsigned int fifo_size = ilk_display_fifo_size(dev_priv); 2466 2467 /* if sprites aren't enabled, sprites get nothing */ 2468 if (is_sprite && !config->sprites_enabled) 2469 return 0; 2470 2471 /* HSW allows LP1+ watermarks even with multiple pipes */ 2472 if (level == 0 || config->num_pipes_active > 1) { 2473 fifo_size /= INTEL_NUM_PIPES(dev_priv); 2474 2475 /* 2476 * For some reason the non self refresh 2477 * FIFO size is only half of the self 2478 * refresh FIFO size on ILK/SNB. 2479 */ 2480 if (DISPLAY_VER(dev_priv) < 7) 2481 fifo_size /= 2; 2482 } 2483 2484 if (config->sprites_enabled) { 2485 /* level 0 is always calculated with 1:1 split */ 2486 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) { 2487 if (is_sprite) 2488 fifo_size *= 5; 2489 fifo_size /= 6; 2490 } else { 2491 fifo_size /= 2; 2492 } 2493 } 2494 2495 /* clamp to max that the registers can hold */ 2496 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite)); 2497 } 2498 2499 /* Calculate the maximum cursor plane watermark */ 2500 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv, 2501 int level, 2502 const struct intel_wm_config *config) 2503 { 2504 /* HSW LP1+ watermarks w/ multiple pipes */ 2505 if (level > 0 && config->num_pipes_active > 1) 2506 return 64; 2507 2508 /* otherwise just report max that registers can hold */ 2509 return ilk_cursor_wm_reg_max(dev_priv, level); 2510 } 2511 2512 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv, 2513 int level, 2514 const struct intel_wm_config *config, 2515 enum intel_ddb_partitioning ddb_partitioning, 2516 struct ilk_wm_maximums *max) 2517 { 2518 max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false); 2519 max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true); 2520 max->cur = ilk_cursor_wm_max(dev_priv, level, config); 2521 max->fbc = ilk_fbc_wm_reg_max(dev_priv); 2522 } 2523 2524 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv, 2525 int level, 2526 struct ilk_wm_maximums *max) 2527 { 2528 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false); 2529 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true); 2530 max->cur = ilk_cursor_wm_reg_max(dev_priv, level); 2531 max->fbc = ilk_fbc_wm_reg_max(dev_priv); 2532 } 2533 2534 static bool ilk_validate_wm_level(int level, 2535 const struct ilk_wm_maximums *max, 2536 struct intel_wm_level *result) 2537 { 2538 bool ret; 2539 2540 /* already determined to be invalid? */ 2541 if (!result->enable) 2542 return false; 2543 2544 result->enable = result->pri_val <= max->pri && 2545 result->spr_val <= max->spr && 2546 result->cur_val <= max->cur; 2547 2548 ret = result->enable; 2549 2550 /* 2551 * HACK until we can pre-compute everything, 2552 * and thus fail gracefully if LP0 watermarks 2553 * are exceeded... 2554 */ 2555 if (level == 0 && !result->enable) { 2556 if (result->pri_val > max->pri) 2557 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n", 2558 level, result->pri_val, max->pri); 2559 if (result->spr_val > max->spr) 2560 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n", 2561 level, result->spr_val, max->spr); 2562 if (result->cur_val > max->cur) 2563 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n", 2564 level, result->cur_val, max->cur); 2565 2566 result->pri_val = min_t(u32, result->pri_val, max->pri); 2567 result->spr_val = min_t(u32, result->spr_val, max->spr); 2568 result->cur_val = min_t(u32, result->cur_val, max->cur); 2569 result->enable = true; 2570 } 2571 2572 return ret; 2573 } 2574 2575 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv, 2576 const struct intel_crtc *crtc, 2577 int level, 2578 struct intel_crtc_state *crtc_state, 2579 const struct intel_plane_state *pristate, 2580 const struct intel_plane_state *sprstate, 2581 const struct intel_plane_state *curstate, 2582 struct intel_wm_level *result) 2583 { 2584 u16 pri_latency = dev_priv->display.wm.pri_latency[level]; 2585 u16 spr_latency = dev_priv->display.wm.spr_latency[level]; 2586 u16 cur_latency = dev_priv->display.wm.cur_latency[level]; 2587 2588 /* WM1+ latency values stored in 0.5us units */ 2589 if (level > 0) { 2590 pri_latency *= 5; 2591 spr_latency *= 5; 2592 cur_latency *= 5; 2593 } 2594 2595 if (pristate) { 2596 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate, 2597 pri_latency, level); 2598 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val); 2599 } 2600 2601 if (sprstate) 2602 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency); 2603 2604 if (curstate) 2605 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency); 2606 2607 result->enable = true; 2608 } 2609 2610 static void hsw_read_wm_latency(struct drm_i915_private *i915, u16 wm[]) 2611 { 2612 u64 sskpd; 2613 2614 i915->display.wm.num_levels = 5; 2615 2616 sskpd = intel_uncore_read64(&i915->uncore, MCH_SSKPD); 2617 2618 wm[0] = REG_FIELD_GET64(SSKPD_NEW_WM0_MASK_HSW, sskpd); 2619 if (wm[0] == 0) 2620 wm[0] = REG_FIELD_GET64(SSKPD_OLD_WM0_MASK_HSW, sskpd); 2621 wm[1] = REG_FIELD_GET64(SSKPD_WM1_MASK_HSW, sskpd); 2622 wm[2] = REG_FIELD_GET64(SSKPD_WM2_MASK_HSW, sskpd); 2623 wm[3] = REG_FIELD_GET64(SSKPD_WM3_MASK_HSW, sskpd); 2624 wm[4] = REG_FIELD_GET64(SSKPD_WM4_MASK_HSW, sskpd); 2625 } 2626 2627 static void snb_read_wm_latency(struct drm_i915_private *i915, u16 wm[]) 2628 { 2629 u32 sskpd; 2630 2631 i915->display.wm.num_levels = 4; 2632 2633 sskpd = intel_uncore_read(&i915->uncore, MCH_SSKPD); 2634 2635 wm[0] = REG_FIELD_GET(SSKPD_WM0_MASK_SNB, sskpd); 2636 wm[1] = REG_FIELD_GET(SSKPD_WM1_MASK_SNB, sskpd); 2637 wm[2] = REG_FIELD_GET(SSKPD_WM2_MASK_SNB, sskpd); 2638 wm[3] = REG_FIELD_GET(SSKPD_WM3_MASK_SNB, sskpd); 2639 } 2640 2641 static void ilk_read_wm_latency(struct drm_i915_private *i915, u16 wm[]) 2642 { 2643 u32 mltr; 2644 2645 i915->display.wm.num_levels = 3; 2646 2647 mltr = intel_uncore_read(&i915->uncore, MLTR_ILK); 2648 2649 /* ILK primary LP0 latency is 700 ns */ 2650 wm[0] = 7; 2651 wm[1] = REG_FIELD_GET(MLTR_WM1_MASK, mltr); 2652 wm[2] = REG_FIELD_GET(MLTR_WM2_MASK, mltr); 2653 } 2654 2655 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv, 2656 u16 wm[5]) 2657 { 2658 /* ILK sprite LP0 latency is 1300 ns */ 2659 if (DISPLAY_VER(dev_priv) == 5) 2660 wm[0] = 13; 2661 } 2662 2663 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv, 2664 u16 wm[5]) 2665 { 2666 /* ILK cursor LP0 latency is 1300 ns */ 2667 if (DISPLAY_VER(dev_priv) == 5) 2668 wm[0] = 13; 2669 } 2670 2671 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv, 2672 u16 wm[5], u16 min) 2673 { 2674 int level; 2675 2676 if (wm[0] >= min) 2677 return false; 2678 2679 wm[0] = max(wm[0], min); 2680 for (level = 1; level < dev_priv->display.wm.num_levels; level++) 2681 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5)); 2682 2683 return true; 2684 } 2685 2686 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv) 2687 { 2688 bool changed; 2689 2690 /* 2691 * The BIOS provided WM memory latency values are often 2692 * inadequate for high resolution displays. Adjust them. 2693 */ 2694 changed = ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.pri_latency, 12); 2695 changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.spr_latency, 12); 2696 changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.cur_latency, 12); 2697 2698 if (!changed) 2699 return; 2700 2701 drm_dbg_kms(&dev_priv->drm, 2702 "WM latency values increased to avoid potential underruns\n"); 2703 intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency); 2704 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency); 2705 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency); 2706 } 2707 2708 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv) 2709 { 2710 /* 2711 * On some SNB machines (Thinkpad X220 Tablet at least) 2712 * LP3 usage can cause vblank interrupts to be lost. 2713 * The DEIIR bit will go high but it looks like the CPU 2714 * never gets interrupted. 2715 * 2716 * It's not clear whether other interrupt source could 2717 * be affected or if this is somehow limited to vblank 2718 * interrupts only. To play it safe we disable LP3 2719 * watermarks entirely. 2720 */ 2721 if (dev_priv->display.wm.pri_latency[3] == 0 && 2722 dev_priv->display.wm.spr_latency[3] == 0 && 2723 dev_priv->display.wm.cur_latency[3] == 0) 2724 return; 2725 2726 dev_priv->display.wm.pri_latency[3] = 0; 2727 dev_priv->display.wm.spr_latency[3] = 0; 2728 dev_priv->display.wm.cur_latency[3] = 0; 2729 2730 drm_dbg_kms(&dev_priv->drm, 2731 "LP3 watermarks disabled due to potential for lost interrupts\n"); 2732 intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency); 2733 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency); 2734 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency); 2735 } 2736 2737 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv) 2738 { 2739 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 2740 hsw_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency); 2741 else if (DISPLAY_VER(dev_priv) >= 6) 2742 snb_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency); 2743 else 2744 ilk_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency); 2745 2746 memcpy(dev_priv->display.wm.spr_latency, dev_priv->display.wm.pri_latency, 2747 sizeof(dev_priv->display.wm.pri_latency)); 2748 memcpy(dev_priv->display.wm.cur_latency, dev_priv->display.wm.pri_latency, 2749 sizeof(dev_priv->display.wm.pri_latency)); 2750 2751 intel_fixup_spr_wm_latency(dev_priv, dev_priv->display.wm.spr_latency); 2752 intel_fixup_cur_wm_latency(dev_priv, dev_priv->display.wm.cur_latency); 2753 2754 intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency); 2755 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency); 2756 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency); 2757 2758 if (DISPLAY_VER(dev_priv) == 6) { 2759 snb_wm_latency_quirk(dev_priv); 2760 snb_wm_lp3_irq_quirk(dev_priv); 2761 } 2762 } 2763 2764 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv, 2765 struct intel_pipe_wm *pipe_wm) 2766 { 2767 /* LP0 watermark maximums depend on this pipe alone */ 2768 const struct intel_wm_config config = { 2769 .num_pipes_active = 1, 2770 .sprites_enabled = pipe_wm->sprites_enabled, 2771 .sprites_scaled = pipe_wm->sprites_scaled, 2772 }; 2773 struct ilk_wm_maximums max; 2774 2775 /* LP0 watermarks always use 1/2 DDB partitioning */ 2776 ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max); 2777 2778 /* At least LP0 must be valid */ 2779 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) { 2780 drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n"); 2781 return false; 2782 } 2783 2784 return true; 2785 } 2786 2787 /* Compute new watermarks for the pipe */ 2788 static int ilk_compute_pipe_wm(struct intel_atomic_state *state, 2789 struct intel_crtc *crtc) 2790 { 2791 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2792 struct intel_crtc_state *crtc_state = 2793 intel_atomic_get_new_crtc_state(state, crtc); 2794 struct intel_pipe_wm *pipe_wm; 2795 struct intel_plane *plane; 2796 const struct intel_plane_state *plane_state; 2797 const struct intel_plane_state *pristate = NULL; 2798 const struct intel_plane_state *sprstate = NULL; 2799 const struct intel_plane_state *curstate = NULL; 2800 struct ilk_wm_maximums max; 2801 int level, usable_level; 2802 2803 pipe_wm = &crtc_state->wm.ilk.optimal; 2804 2805 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) { 2806 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY) 2807 pristate = plane_state; 2808 else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY) 2809 sprstate = plane_state; 2810 else if (plane->base.type == DRM_PLANE_TYPE_CURSOR) 2811 curstate = plane_state; 2812 } 2813 2814 pipe_wm->pipe_enabled = crtc_state->hw.active; 2815 pipe_wm->sprites_enabled = crtc_state->active_planes & BIT(PLANE_SPRITE0); 2816 pipe_wm->sprites_scaled = crtc_state->scaled_planes & BIT(PLANE_SPRITE0); 2817 2818 usable_level = dev_priv->display.wm.num_levels - 1; 2819 2820 /* ILK/SNB: LP2+ watermarks only w/o sprites */ 2821 if (DISPLAY_VER(dev_priv) < 7 && pipe_wm->sprites_enabled) 2822 usable_level = 1; 2823 2824 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */ 2825 if (pipe_wm->sprites_scaled) 2826 usable_level = 0; 2827 2828 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm)); 2829 ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state, 2830 pristate, sprstate, curstate, &pipe_wm->wm[0]); 2831 2832 if (!ilk_validate_pipe_wm(dev_priv, pipe_wm)) 2833 return -EINVAL; 2834 2835 ilk_compute_wm_reg_maximums(dev_priv, 1, &max); 2836 2837 for (level = 1; level <= usable_level; level++) { 2838 struct intel_wm_level *wm = &pipe_wm->wm[level]; 2839 2840 ilk_compute_wm_level(dev_priv, crtc, level, crtc_state, 2841 pristate, sprstate, curstate, wm); 2842 2843 /* 2844 * Disable any watermark level that exceeds the 2845 * register maximums since such watermarks are 2846 * always invalid. 2847 */ 2848 if (!ilk_validate_wm_level(level, &max, wm)) { 2849 memset(wm, 0, sizeof(*wm)); 2850 break; 2851 } 2852 } 2853 2854 return 0; 2855 } 2856 2857 /* 2858 * Build a set of 'intermediate' watermark values that satisfy both the old 2859 * state and the new state. These can be programmed to the hardware 2860 * immediately. 2861 */ 2862 static int ilk_compute_intermediate_wm(struct intel_atomic_state *state, 2863 struct intel_crtc *crtc) 2864 { 2865 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2866 struct intel_crtc_state *new_crtc_state = 2867 intel_atomic_get_new_crtc_state(state, crtc); 2868 const struct intel_crtc_state *old_crtc_state = 2869 intel_atomic_get_old_crtc_state(state, crtc); 2870 struct intel_pipe_wm *a = &new_crtc_state->wm.ilk.intermediate; 2871 const struct intel_pipe_wm *b = &old_crtc_state->wm.ilk.optimal; 2872 int level; 2873 2874 /* 2875 * Start with the final, target watermarks, then combine with the 2876 * currently active watermarks to get values that are safe both before 2877 * and after the vblank. 2878 */ 2879 *a = new_crtc_state->wm.ilk.optimal; 2880 if (!new_crtc_state->hw.active || 2881 intel_crtc_needs_modeset(new_crtc_state) || 2882 state->skip_intermediate_wm) 2883 return 0; 2884 2885 a->pipe_enabled |= b->pipe_enabled; 2886 a->sprites_enabled |= b->sprites_enabled; 2887 a->sprites_scaled |= b->sprites_scaled; 2888 2889 for (level = 0; level < dev_priv->display.wm.num_levels; level++) { 2890 struct intel_wm_level *a_wm = &a->wm[level]; 2891 const struct intel_wm_level *b_wm = &b->wm[level]; 2892 2893 a_wm->enable &= b_wm->enable; 2894 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val); 2895 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val); 2896 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val); 2897 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val); 2898 } 2899 2900 /* 2901 * We need to make sure that these merged watermark values are 2902 * actually a valid configuration themselves. If they're not, 2903 * there's no safe way to transition from the old state to 2904 * the new state, so we need to fail the atomic transaction. 2905 */ 2906 if (!ilk_validate_pipe_wm(dev_priv, a)) 2907 return -EINVAL; 2908 2909 /* 2910 * If our intermediate WM are identical to the final WM, then we can 2911 * omit the post-vblank programming; only update if it's different. 2912 */ 2913 if (memcmp(a, &new_crtc_state->wm.ilk.optimal, sizeof(*a)) != 0) 2914 new_crtc_state->wm.need_postvbl_update = true; 2915 2916 return 0; 2917 } 2918 2919 /* 2920 * Merge the watermarks from all active pipes for a specific level. 2921 */ 2922 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv, 2923 int level, 2924 struct intel_wm_level *ret_wm) 2925 { 2926 const struct intel_crtc *crtc; 2927 2928 ret_wm->enable = true; 2929 2930 for_each_intel_crtc(&dev_priv->drm, crtc) { 2931 const struct intel_pipe_wm *active = &crtc->wm.active.ilk; 2932 const struct intel_wm_level *wm = &active->wm[level]; 2933 2934 if (!active->pipe_enabled) 2935 continue; 2936 2937 /* 2938 * The watermark values may have been used in the past, 2939 * so we must maintain them in the registers for some 2940 * time even if the level is now disabled. 2941 */ 2942 if (!wm->enable) 2943 ret_wm->enable = false; 2944 2945 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val); 2946 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val); 2947 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val); 2948 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val); 2949 } 2950 } 2951 2952 /* 2953 * Merge all low power watermarks for all active pipes. 2954 */ 2955 static void ilk_wm_merge(struct drm_i915_private *dev_priv, 2956 const struct intel_wm_config *config, 2957 const struct ilk_wm_maximums *max, 2958 struct intel_pipe_wm *merged) 2959 { 2960 int level, num_levels = dev_priv->display.wm.num_levels; 2961 int last_enabled_level = num_levels - 1; 2962 2963 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */ 2964 if ((DISPLAY_VER(dev_priv) < 7 || IS_IVYBRIDGE(dev_priv)) && 2965 config->num_pipes_active > 1) 2966 last_enabled_level = 0; 2967 2968 /* ILK: FBC WM must be disabled always */ 2969 merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6; 2970 2971 /* merge each WM1+ level */ 2972 for (level = 1; level < num_levels; level++) { 2973 struct intel_wm_level *wm = &merged->wm[level]; 2974 2975 ilk_merge_wm_level(dev_priv, level, wm); 2976 2977 if (level > last_enabled_level) 2978 wm->enable = false; 2979 else if (!ilk_validate_wm_level(level, max, wm)) 2980 /* make sure all following levels get disabled */ 2981 last_enabled_level = level - 1; 2982 2983 /* 2984 * The spec says it is preferred to disable 2985 * FBC WMs instead of disabling a WM level. 2986 */ 2987 if (wm->fbc_val > max->fbc) { 2988 if (wm->enable) 2989 merged->fbc_wm_enabled = false; 2990 wm->fbc_val = 0; 2991 } 2992 } 2993 2994 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */ 2995 if (DISPLAY_VER(dev_priv) == 5 && HAS_FBC(dev_priv) && 2996 dev_priv->display.params.enable_fbc && !merged->fbc_wm_enabled) { 2997 for (level = 2; level < num_levels; level++) { 2998 struct intel_wm_level *wm = &merged->wm[level]; 2999 3000 wm->enable = false; 3001 } 3002 } 3003 } 3004 3005 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm) 3006 { 3007 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */ 3008 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable); 3009 } 3010 3011 /* The value we need to program into the WM_LPx latency field */ 3012 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv, 3013 int level) 3014 { 3015 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 3016 return 2 * level; 3017 else 3018 return dev_priv->display.wm.pri_latency[level]; 3019 } 3020 3021 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv, 3022 const struct intel_pipe_wm *merged, 3023 enum intel_ddb_partitioning partitioning, 3024 struct ilk_wm_values *results) 3025 { 3026 struct intel_crtc *crtc; 3027 int level, wm_lp; 3028 3029 results->enable_fbc_wm = merged->fbc_wm_enabled; 3030 results->partitioning = partitioning; 3031 3032 /* LP1+ register values */ 3033 for (wm_lp = 1; wm_lp <= 3; wm_lp++) { 3034 const struct intel_wm_level *r; 3035 3036 level = ilk_wm_lp_to_level(wm_lp, merged); 3037 3038 r = &merged->wm[level]; 3039 3040 /* 3041 * Maintain the watermark values even if the level is 3042 * disabled. Doing otherwise could cause underruns. 3043 */ 3044 results->wm_lp[wm_lp - 1] = 3045 WM_LP_LATENCY(ilk_wm_lp_latency(dev_priv, level)) | 3046 WM_LP_PRIMARY(r->pri_val) | 3047 WM_LP_CURSOR(r->cur_val); 3048 3049 if (r->enable) 3050 results->wm_lp[wm_lp - 1] |= WM_LP_ENABLE; 3051 3052 if (DISPLAY_VER(dev_priv) >= 8) 3053 results->wm_lp[wm_lp - 1] |= WM_LP_FBC_BDW(r->fbc_val); 3054 else 3055 results->wm_lp[wm_lp - 1] |= WM_LP_FBC_ILK(r->fbc_val); 3056 3057 results->wm_lp_spr[wm_lp - 1] = WM_LP_SPRITE(r->spr_val); 3058 3059 /* 3060 * Always set WM_LP_SPRITE_EN when spr_val != 0, even if the 3061 * level is disabled. Doing otherwise could cause underruns. 3062 */ 3063 if (DISPLAY_VER(dev_priv) < 7 && r->spr_val) { 3064 drm_WARN_ON(&dev_priv->drm, wm_lp != 1); 3065 results->wm_lp_spr[wm_lp - 1] |= WM_LP_SPRITE_ENABLE; 3066 } 3067 } 3068 3069 /* LP0 register values */ 3070 for_each_intel_crtc(&dev_priv->drm, crtc) { 3071 enum pipe pipe = crtc->pipe; 3072 const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk; 3073 const struct intel_wm_level *r = &pipe_wm->wm[0]; 3074 3075 if (drm_WARN_ON(&dev_priv->drm, !r->enable)) 3076 continue; 3077 3078 results->wm_pipe[pipe] = 3079 WM0_PIPE_PRIMARY(r->pri_val) | 3080 WM0_PIPE_SPRITE(r->spr_val) | 3081 WM0_PIPE_CURSOR(r->cur_val); 3082 } 3083 } 3084 3085 /* 3086 * Find the result with the highest level enabled. Check for enable_fbc_wm in 3087 * case both are at the same level. Prefer r1 in case they're the same. 3088 */ 3089 static struct intel_pipe_wm * 3090 ilk_find_best_result(struct drm_i915_private *dev_priv, 3091 struct intel_pipe_wm *r1, 3092 struct intel_pipe_wm *r2) 3093 { 3094 int level, level1 = 0, level2 = 0; 3095 3096 for (level = 1; level < dev_priv->display.wm.num_levels; level++) { 3097 if (r1->wm[level].enable) 3098 level1 = level; 3099 if (r2->wm[level].enable) 3100 level2 = level; 3101 } 3102 3103 if (level1 == level2) { 3104 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled) 3105 return r2; 3106 else 3107 return r1; 3108 } else if (level1 > level2) { 3109 return r1; 3110 } else { 3111 return r2; 3112 } 3113 } 3114 3115 /* dirty bits used to track which watermarks need changes */ 3116 #define WM_DIRTY_PIPE(pipe) (1 << (pipe)) 3117 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp))) 3118 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3)) 3119 #define WM_DIRTY_FBC (1 << 24) 3120 #define WM_DIRTY_DDB (1 << 25) 3121 3122 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv, 3123 const struct ilk_wm_values *old, 3124 const struct ilk_wm_values *new) 3125 { 3126 unsigned int dirty = 0; 3127 enum pipe pipe; 3128 int wm_lp; 3129 3130 for_each_pipe(dev_priv, pipe) { 3131 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) { 3132 dirty |= WM_DIRTY_PIPE(pipe); 3133 /* Must disable LP1+ watermarks too */ 3134 dirty |= WM_DIRTY_LP_ALL; 3135 } 3136 } 3137 3138 if (old->enable_fbc_wm != new->enable_fbc_wm) { 3139 dirty |= WM_DIRTY_FBC; 3140 /* Must disable LP1+ watermarks too */ 3141 dirty |= WM_DIRTY_LP_ALL; 3142 } 3143 3144 if (old->partitioning != new->partitioning) { 3145 dirty |= WM_DIRTY_DDB; 3146 /* Must disable LP1+ watermarks too */ 3147 dirty |= WM_DIRTY_LP_ALL; 3148 } 3149 3150 /* LP1+ watermarks already deemed dirty, no need to continue */ 3151 if (dirty & WM_DIRTY_LP_ALL) 3152 return dirty; 3153 3154 /* Find the lowest numbered LP1+ watermark in need of an update... */ 3155 for (wm_lp = 1; wm_lp <= 3; wm_lp++) { 3156 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] || 3157 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1]) 3158 break; 3159 } 3160 3161 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */ 3162 for (; wm_lp <= 3; wm_lp++) 3163 dirty |= WM_DIRTY_LP(wm_lp); 3164 3165 return dirty; 3166 } 3167 3168 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv, 3169 unsigned int dirty) 3170 { 3171 struct ilk_wm_values *previous = &dev_priv->display.wm.hw; 3172 bool changed = false; 3173 3174 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM_LP_ENABLE) { 3175 previous->wm_lp[2] &= ~WM_LP_ENABLE; 3176 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]); 3177 changed = true; 3178 } 3179 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM_LP_ENABLE) { 3180 previous->wm_lp[1] &= ~WM_LP_ENABLE; 3181 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]); 3182 changed = true; 3183 } 3184 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM_LP_ENABLE) { 3185 previous->wm_lp[0] &= ~WM_LP_ENABLE; 3186 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]); 3187 changed = true; 3188 } 3189 3190 /* 3191 * Don't touch WM_LP_SPRITE_ENABLE here. 3192 * Doing so could cause underruns. 3193 */ 3194 3195 return changed; 3196 } 3197 3198 /* 3199 * The spec says we shouldn't write when we don't need, because every write 3200 * causes WMs to be re-evaluated, expending some power. 3201 */ 3202 static void ilk_write_wm_values(struct drm_i915_private *dev_priv, 3203 struct ilk_wm_values *results) 3204 { 3205 struct ilk_wm_values *previous = &dev_priv->display.wm.hw; 3206 unsigned int dirty; 3207 3208 dirty = ilk_compute_wm_dirty(dev_priv, previous, results); 3209 if (!dirty) 3210 return; 3211 3212 _ilk_disable_lp_wm(dev_priv, dirty); 3213 3214 if (dirty & WM_DIRTY_PIPE(PIPE_A)) 3215 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]); 3216 if (dirty & WM_DIRTY_PIPE(PIPE_B)) 3217 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]); 3218 if (dirty & WM_DIRTY_PIPE(PIPE_C)) 3219 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]); 3220 3221 if (dirty & WM_DIRTY_DDB) { 3222 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 3223 intel_uncore_rmw(&dev_priv->uncore, WM_MISC, WM_MISC_DATA_PARTITION_5_6, 3224 results->partitioning == INTEL_DDB_PART_1_2 ? 0 : 3225 WM_MISC_DATA_PARTITION_5_6); 3226 else 3227 intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL2, DISP_DATA_PARTITION_5_6, 3228 results->partitioning == INTEL_DDB_PART_1_2 ? 0 : 3229 DISP_DATA_PARTITION_5_6); 3230 } 3231 3232 if (dirty & WM_DIRTY_FBC) 3233 intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL, DISP_FBC_WM_DIS, 3234 results->enable_fbc_wm ? 0 : DISP_FBC_WM_DIS); 3235 3236 if (dirty & WM_DIRTY_LP(1) && 3237 previous->wm_lp_spr[0] != results->wm_lp_spr[0]) 3238 intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]); 3239 3240 if (DISPLAY_VER(dev_priv) >= 7) { 3241 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1]) 3242 intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]); 3243 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2]) 3244 intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]); 3245 } 3246 3247 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0]) 3248 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]); 3249 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1]) 3250 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]); 3251 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2]) 3252 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]); 3253 3254 dev_priv->display.wm.hw = *results; 3255 } 3256 3257 bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv) 3258 { 3259 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL); 3260 } 3261 3262 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv, 3263 struct intel_wm_config *config) 3264 { 3265 struct intel_crtc *crtc; 3266 3267 /* Compute the currently _active_ config */ 3268 for_each_intel_crtc(&dev_priv->drm, crtc) { 3269 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk; 3270 3271 if (!wm->pipe_enabled) 3272 continue; 3273 3274 config->sprites_enabled |= wm->sprites_enabled; 3275 config->sprites_scaled |= wm->sprites_scaled; 3276 config->num_pipes_active++; 3277 } 3278 } 3279 3280 static void ilk_program_watermarks(struct drm_i915_private *dev_priv) 3281 { 3282 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm; 3283 struct ilk_wm_maximums max; 3284 struct intel_wm_config config = {}; 3285 struct ilk_wm_values results = {}; 3286 enum intel_ddb_partitioning partitioning; 3287 3288 ilk_compute_wm_config(dev_priv, &config); 3289 3290 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max); 3291 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2); 3292 3293 /* 5/6 split only in single pipe config on IVB+ */ 3294 if (DISPLAY_VER(dev_priv) >= 7 && 3295 config.num_pipes_active == 1 && config.sprites_enabled) { 3296 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max); 3297 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6); 3298 3299 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6); 3300 } else { 3301 best_lp_wm = &lp_wm_1_2; 3302 } 3303 3304 partitioning = (best_lp_wm == &lp_wm_1_2) ? 3305 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6; 3306 3307 ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results); 3308 3309 ilk_write_wm_values(dev_priv, &results); 3310 } 3311 3312 static void ilk_initial_watermarks(struct intel_atomic_state *state, 3313 struct intel_crtc *crtc) 3314 { 3315 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3316 const struct intel_crtc_state *crtc_state = 3317 intel_atomic_get_new_crtc_state(state, crtc); 3318 3319 mutex_lock(&dev_priv->display.wm.wm_mutex); 3320 crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate; 3321 ilk_program_watermarks(dev_priv); 3322 mutex_unlock(&dev_priv->display.wm.wm_mutex); 3323 } 3324 3325 static void ilk_optimize_watermarks(struct intel_atomic_state *state, 3326 struct intel_crtc *crtc) 3327 { 3328 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3329 const struct intel_crtc_state *crtc_state = 3330 intel_atomic_get_new_crtc_state(state, crtc); 3331 3332 if (!crtc_state->wm.need_postvbl_update) 3333 return; 3334 3335 mutex_lock(&dev_priv->display.wm.wm_mutex); 3336 crtc->wm.active.ilk = crtc_state->wm.ilk.optimal; 3337 ilk_program_watermarks(dev_priv); 3338 mutex_unlock(&dev_priv->display.wm.wm_mutex); 3339 } 3340 3341 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc) 3342 { 3343 struct drm_device *dev = crtc->base.dev; 3344 struct drm_i915_private *dev_priv = to_i915(dev); 3345 struct ilk_wm_values *hw = &dev_priv->display.wm.hw; 3346 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 3347 struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal; 3348 enum pipe pipe = crtc->pipe; 3349 3350 hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe)); 3351 3352 memset(active, 0, sizeof(*active)); 3353 3354 active->pipe_enabled = crtc->active; 3355 3356 if (active->pipe_enabled) { 3357 u32 tmp = hw->wm_pipe[pipe]; 3358 3359 /* 3360 * For active pipes LP0 watermark is marked as 3361 * enabled, and LP1+ watermaks as disabled since 3362 * we can't really reverse compute them in case 3363 * multiple pipes are active. 3364 */ 3365 active->wm[0].enable = true; 3366 active->wm[0].pri_val = REG_FIELD_GET(WM0_PIPE_PRIMARY_MASK, tmp); 3367 active->wm[0].spr_val = REG_FIELD_GET(WM0_PIPE_SPRITE_MASK, tmp); 3368 active->wm[0].cur_val = REG_FIELD_GET(WM0_PIPE_CURSOR_MASK, tmp); 3369 } else { 3370 int level; 3371 3372 /* 3373 * For inactive pipes, all watermark levels 3374 * should be marked as enabled but zeroed, 3375 * which is what we'd compute them to. 3376 */ 3377 for (level = 0; level < dev_priv->display.wm.num_levels; level++) 3378 active->wm[level].enable = true; 3379 } 3380 3381 crtc->wm.active.ilk = *active; 3382 } 3383 3384 static int ilk_sanitize_watermarks_add_affected(struct drm_atomic_state *state) 3385 { 3386 struct drm_plane *plane; 3387 struct intel_crtc *crtc; 3388 3389 for_each_intel_crtc(state->dev, crtc) { 3390 struct intel_crtc_state *crtc_state; 3391 3392 crtc_state = intel_atomic_get_crtc_state(state, crtc); 3393 if (IS_ERR(crtc_state)) 3394 return PTR_ERR(crtc_state); 3395 3396 if (crtc_state->hw.active) { 3397 /* 3398 * Preserve the inherited flag to avoid 3399 * taking the full modeset path. 3400 */ 3401 crtc_state->inherited = true; 3402 } 3403 } 3404 3405 drm_for_each_plane(plane, state->dev) { 3406 struct drm_plane_state *plane_state; 3407 3408 plane_state = drm_atomic_get_plane_state(state, plane); 3409 if (IS_ERR(plane_state)) 3410 return PTR_ERR(plane_state); 3411 } 3412 3413 return 0; 3414 } 3415 3416 /* 3417 * Calculate what we think the watermarks should be for the state we've read 3418 * out of the hardware and then immediately program those watermarks so that 3419 * we ensure the hardware settings match our internal state. 3420 * 3421 * We can calculate what we think WM's should be by creating a duplicate of the 3422 * current state (which was constructed during hardware readout) and running it 3423 * through the atomic check code to calculate new watermark values in the 3424 * state object. 3425 */ 3426 void ilk_wm_sanitize(struct drm_i915_private *dev_priv) 3427 { 3428 struct drm_atomic_state *state; 3429 struct intel_atomic_state *intel_state; 3430 struct intel_crtc *crtc; 3431 struct intel_crtc_state *crtc_state; 3432 struct drm_modeset_acquire_ctx ctx; 3433 int ret; 3434 int i; 3435 3436 /* Only supported on platforms that use atomic watermark design */ 3437 if (!dev_priv->display.funcs.wm->optimize_watermarks) 3438 return; 3439 3440 if (drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) >= 9)) 3441 return; 3442 3443 state = drm_atomic_state_alloc(&dev_priv->drm); 3444 if (drm_WARN_ON(&dev_priv->drm, !state)) 3445 return; 3446 3447 intel_state = to_intel_atomic_state(state); 3448 3449 drm_modeset_acquire_init(&ctx, 0); 3450 3451 state->acquire_ctx = &ctx; 3452 to_intel_atomic_state(state)->internal = true; 3453 3454 retry: 3455 /* 3456 * Hardware readout is the only time we don't want to calculate 3457 * intermediate watermarks (since we don't trust the current 3458 * watermarks). 3459 */ 3460 if (!HAS_GMCH(dev_priv)) 3461 intel_state->skip_intermediate_wm = true; 3462 3463 ret = ilk_sanitize_watermarks_add_affected(state); 3464 if (ret) 3465 goto fail; 3466 3467 ret = intel_atomic_check(&dev_priv->drm, state); 3468 if (ret) 3469 goto fail; 3470 3471 /* Write calculated watermark values back */ 3472 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 3473 crtc_state->wm.need_postvbl_update = true; 3474 intel_optimize_watermarks(intel_state, crtc); 3475 3476 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 3477 } 3478 3479 fail: 3480 if (ret == -EDEADLK) { 3481 drm_atomic_state_clear(state); 3482 drm_modeset_backoff(&ctx); 3483 goto retry; 3484 } 3485 3486 /* 3487 * If we fail here, it means that the hardware appears to be 3488 * programmed in a way that shouldn't be possible, given our 3489 * understanding of watermark requirements. This might mean a 3490 * mistake in the hardware readout code or a mistake in the 3491 * watermark calculations for a given platform. Raise a WARN 3492 * so that this is noticeable. 3493 * 3494 * If this actually happens, we'll have to just leave the 3495 * BIOS-programmed watermarks untouched and hope for the best. 3496 */ 3497 drm_WARN(&dev_priv->drm, ret, 3498 "Could not determine valid watermarks for inherited state\n"); 3499 3500 drm_atomic_state_put(state); 3501 3502 drm_modeset_drop_locks(&ctx); 3503 drm_modeset_acquire_fini(&ctx); 3504 } 3505 3506 #define _FW_WM(value, plane) \ 3507 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT) 3508 #define _FW_WM_VLV(value, plane) \ 3509 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT) 3510 3511 static void g4x_read_wm_values(struct drm_i915_private *dev_priv, 3512 struct g4x_wm_values *wm) 3513 { 3514 u32 tmp; 3515 3516 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1); 3517 wm->sr.plane = _FW_WM(tmp, SR); 3518 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); 3519 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB); 3520 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA); 3521 3522 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2); 3523 wm->fbc_en = tmp & DSPFW_FBC_SR_EN; 3524 wm->sr.fbc = _FW_WM(tmp, FBC_SR); 3525 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR); 3526 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB); 3527 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); 3528 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA); 3529 3530 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3); 3531 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN; 3532 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); 3533 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR); 3534 wm->hpll.plane = _FW_WM(tmp, HPLL_SR); 3535 } 3536 3537 static void vlv_read_wm_values(struct drm_i915_private *dev_priv, 3538 struct vlv_wm_values *wm) 3539 { 3540 enum pipe pipe; 3541 u32 tmp; 3542 3543 for_each_pipe(dev_priv, pipe) { 3544 tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe)); 3545 3546 wm->ddl[pipe].plane[PLANE_PRIMARY] = 3547 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); 3548 wm->ddl[pipe].plane[PLANE_CURSOR] = 3549 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); 3550 wm->ddl[pipe].plane[PLANE_SPRITE0] = 3551 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); 3552 wm->ddl[pipe].plane[PLANE_SPRITE1] = 3553 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); 3554 } 3555 3556 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1); 3557 wm->sr.plane = _FW_WM(tmp, SR); 3558 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); 3559 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB); 3560 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA); 3561 3562 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2); 3563 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB); 3564 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); 3565 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA); 3566 3567 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3); 3568 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); 3569 3570 if (IS_CHERRYVIEW(dev_priv)) { 3571 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV); 3572 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); 3573 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); 3574 3575 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV); 3576 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF); 3577 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE); 3578 3579 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV); 3580 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC); 3581 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC); 3582 3583 tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM); 3584 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; 3585 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8; 3586 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8; 3587 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8; 3588 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; 3589 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; 3590 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; 3591 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; 3592 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; 3593 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; 3594 } else { 3595 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7); 3596 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); 3597 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); 3598 3599 tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM); 3600 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; 3601 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; 3602 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; 3603 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; 3604 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; 3605 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; 3606 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; 3607 } 3608 } 3609 3610 #undef _FW_WM 3611 #undef _FW_WM_VLV 3612 3613 static void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv) 3614 { 3615 struct g4x_wm_values *wm = &dev_priv->display.wm.g4x; 3616 struct intel_crtc *crtc; 3617 3618 g4x_read_wm_values(dev_priv, wm); 3619 3620 wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN; 3621 3622 for_each_intel_crtc(&dev_priv->drm, crtc) { 3623 struct intel_crtc_state *crtc_state = 3624 to_intel_crtc_state(crtc->base.state); 3625 struct g4x_wm_state *active = &crtc->wm.active.g4x; 3626 struct g4x_pipe_wm *raw; 3627 enum pipe pipe = crtc->pipe; 3628 enum plane_id plane_id; 3629 int level, max_level; 3630 3631 active->cxsr = wm->cxsr; 3632 active->hpll_en = wm->hpll_en; 3633 active->fbc_en = wm->fbc_en; 3634 3635 active->sr = wm->sr; 3636 active->hpll = wm->hpll; 3637 3638 for_each_plane_id_on_crtc(crtc, plane_id) { 3639 active->wm.plane[plane_id] = 3640 wm->pipe[pipe].plane[plane_id]; 3641 } 3642 3643 if (wm->cxsr && wm->hpll_en) 3644 max_level = G4X_WM_LEVEL_HPLL; 3645 else if (wm->cxsr) 3646 max_level = G4X_WM_LEVEL_SR; 3647 else 3648 max_level = G4X_WM_LEVEL_NORMAL; 3649 3650 level = G4X_WM_LEVEL_NORMAL; 3651 raw = &crtc_state->wm.g4x.raw[level]; 3652 for_each_plane_id_on_crtc(crtc, plane_id) 3653 raw->plane[plane_id] = active->wm.plane[plane_id]; 3654 3655 level = G4X_WM_LEVEL_SR; 3656 if (level > max_level) 3657 goto out; 3658 3659 raw = &crtc_state->wm.g4x.raw[level]; 3660 raw->plane[PLANE_PRIMARY] = active->sr.plane; 3661 raw->plane[PLANE_CURSOR] = active->sr.cursor; 3662 raw->plane[PLANE_SPRITE0] = 0; 3663 raw->fbc = active->sr.fbc; 3664 3665 level = G4X_WM_LEVEL_HPLL; 3666 if (level > max_level) 3667 goto out; 3668 3669 raw = &crtc_state->wm.g4x.raw[level]; 3670 raw->plane[PLANE_PRIMARY] = active->hpll.plane; 3671 raw->plane[PLANE_CURSOR] = active->hpll.cursor; 3672 raw->plane[PLANE_SPRITE0] = 0; 3673 raw->fbc = active->hpll.fbc; 3674 3675 level++; 3676 out: 3677 for_each_plane_id_on_crtc(crtc, plane_id) 3678 g4x_raw_plane_wm_set(crtc_state, level, 3679 plane_id, USHRT_MAX); 3680 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); 3681 3682 g4x_invalidate_wms(crtc, active, level); 3683 3684 crtc_state->wm.g4x.optimal = *active; 3685 crtc_state->wm.g4x.intermediate = *active; 3686 3687 drm_dbg_kms(&dev_priv->drm, 3688 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n", 3689 pipe_name(pipe), 3690 wm->pipe[pipe].plane[PLANE_PRIMARY], 3691 wm->pipe[pipe].plane[PLANE_CURSOR], 3692 wm->pipe[pipe].plane[PLANE_SPRITE0]); 3693 } 3694 3695 drm_dbg_kms(&dev_priv->drm, 3696 "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n", 3697 wm->sr.plane, wm->sr.cursor, wm->sr.fbc); 3698 drm_dbg_kms(&dev_priv->drm, 3699 "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n", 3700 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc); 3701 drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n", 3702 str_yes_no(wm->cxsr), str_yes_no(wm->hpll_en), 3703 str_yes_no(wm->fbc_en)); 3704 } 3705 3706 static void g4x_wm_sanitize(struct drm_i915_private *dev_priv) 3707 { 3708 struct intel_plane *plane; 3709 struct intel_crtc *crtc; 3710 3711 mutex_lock(&dev_priv->display.wm.wm_mutex); 3712 3713 for_each_intel_plane(&dev_priv->drm, plane) { 3714 struct intel_crtc *crtc = 3715 intel_crtc_for_pipe(dev_priv, plane->pipe); 3716 struct intel_crtc_state *crtc_state = 3717 to_intel_crtc_state(crtc->base.state); 3718 struct intel_plane_state *plane_state = 3719 to_intel_plane_state(plane->base.state); 3720 enum plane_id plane_id = plane->id; 3721 int level; 3722 3723 if (plane_state->uapi.visible) 3724 continue; 3725 3726 for (level = 0; level < dev_priv->display.wm.num_levels; level++) { 3727 struct g4x_pipe_wm *raw = 3728 &crtc_state->wm.g4x.raw[level]; 3729 3730 raw->plane[plane_id] = 0; 3731 3732 if (plane_id == PLANE_PRIMARY) 3733 raw->fbc = 0; 3734 } 3735 } 3736 3737 for_each_intel_crtc(&dev_priv->drm, crtc) { 3738 struct intel_crtc_state *crtc_state = 3739 to_intel_crtc_state(crtc->base.state); 3740 int ret; 3741 3742 ret = _g4x_compute_pipe_wm(crtc_state); 3743 drm_WARN_ON(&dev_priv->drm, ret); 3744 3745 crtc_state->wm.g4x.intermediate = 3746 crtc_state->wm.g4x.optimal; 3747 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; 3748 } 3749 3750 g4x_program_watermarks(dev_priv); 3751 3752 mutex_unlock(&dev_priv->display.wm.wm_mutex); 3753 } 3754 3755 static void g4x_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915) 3756 { 3757 g4x_wm_get_hw_state(i915); 3758 g4x_wm_sanitize(i915); 3759 } 3760 3761 static void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv) 3762 { 3763 struct vlv_wm_values *wm = &dev_priv->display.wm.vlv; 3764 struct intel_crtc *crtc; 3765 u32 val; 3766 3767 vlv_read_wm_values(dev_priv, wm); 3768 3769 wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; 3770 wm->level = VLV_WM_LEVEL_PM2; 3771 3772 if (IS_CHERRYVIEW(dev_priv)) { 3773 vlv_punit_get(dev_priv); 3774 3775 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 3776 if (val & DSP_MAXFIFO_PM5_ENABLE) 3777 wm->level = VLV_WM_LEVEL_PM5; 3778 3779 /* 3780 * If DDR DVFS is disabled in the BIOS, Punit 3781 * will never ack the request. So if that happens 3782 * assume we don't have to enable/disable DDR DVFS 3783 * dynamically. To test that just set the REQ_ACK 3784 * bit to poke the Punit, but don't change the 3785 * HIGH/LOW bits so that we don't actually change 3786 * the current state. 3787 */ 3788 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); 3789 val |= FORCE_DDR_FREQ_REQ_ACK; 3790 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); 3791 3792 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & 3793 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) { 3794 drm_dbg_kms(&dev_priv->drm, 3795 "Punit not acking DDR DVFS request, " 3796 "assuming DDR DVFS is disabled\n"); 3797 dev_priv->display.wm.num_levels = VLV_WM_LEVEL_PM5 + 1; 3798 } else { 3799 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); 3800 if ((val & FORCE_DDR_HIGH_FREQ) == 0) 3801 wm->level = VLV_WM_LEVEL_DDR_DVFS; 3802 } 3803 3804 vlv_punit_put(dev_priv); 3805 } 3806 3807 for_each_intel_crtc(&dev_priv->drm, crtc) { 3808 struct intel_crtc_state *crtc_state = 3809 to_intel_crtc_state(crtc->base.state); 3810 struct vlv_wm_state *active = &crtc->wm.active.vlv; 3811 const struct vlv_fifo_state *fifo_state = 3812 &crtc_state->wm.vlv.fifo_state; 3813 enum pipe pipe = crtc->pipe; 3814 enum plane_id plane_id; 3815 int level; 3816 3817 vlv_get_fifo_size(crtc_state); 3818 3819 active->num_levels = wm->level + 1; 3820 active->cxsr = wm->cxsr; 3821 3822 for (level = 0; level < active->num_levels; level++) { 3823 struct g4x_pipe_wm *raw = 3824 &crtc_state->wm.vlv.raw[level]; 3825 3826 active->sr[level].plane = wm->sr.plane; 3827 active->sr[level].cursor = wm->sr.cursor; 3828 3829 for_each_plane_id_on_crtc(crtc, plane_id) { 3830 active->wm[level].plane[plane_id] = 3831 wm->pipe[pipe].plane[plane_id]; 3832 3833 raw->plane[plane_id] = 3834 vlv_invert_wm_value(active->wm[level].plane[plane_id], 3835 fifo_state->plane[plane_id]); 3836 } 3837 } 3838 3839 for_each_plane_id_on_crtc(crtc, plane_id) 3840 vlv_raw_plane_wm_set(crtc_state, level, 3841 plane_id, USHRT_MAX); 3842 vlv_invalidate_wms(crtc, active, level); 3843 3844 crtc_state->wm.vlv.optimal = *active; 3845 crtc_state->wm.vlv.intermediate = *active; 3846 3847 drm_dbg_kms(&dev_priv->drm, 3848 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n", 3849 pipe_name(pipe), 3850 wm->pipe[pipe].plane[PLANE_PRIMARY], 3851 wm->pipe[pipe].plane[PLANE_CURSOR], 3852 wm->pipe[pipe].plane[PLANE_SPRITE0], 3853 wm->pipe[pipe].plane[PLANE_SPRITE1]); 3854 } 3855 3856 drm_dbg_kms(&dev_priv->drm, 3857 "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n", 3858 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr); 3859 } 3860 3861 static void vlv_wm_sanitize(struct drm_i915_private *dev_priv) 3862 { 3863 struct intel_plane *plane; 3864 struct intel_crtc *crtc; 3865 3866 mutex_lock(&dev_priv->display.wm.wm_mutex); 3867 3868 for_each_intel_plane(&dev_priv->drm, plane) { 3869 struct intel_crtc *crtc = 3870 intel_crtc_for_pipe(dev_priv, plane->pipe); 3871 struct intel_crtc_state *crtc_state = 3872 to_intel_crtc_state(crtc->base.state); 3873 struct intel_plane_state *plane_state = 3874 to_intel_plane_state(plane->base.state); 3875 enum plane_id plane_id = plane->id; 3876 int level; 3877 3878 if (plane_state->uapi.visible) 3879 continue; 3880 3881 for (level = 0; level < dev_priv->display.wm.num_levels; level++) { 3882 struct g4x_pipe_wm *raw = 3883 &crtc_state->wm.vlv.raw[level]; 3884 3885 raw->plane[plane_id] = 0; 3886 } 3887 } 3888 3889 for_each_intel_crtc(&dev_priv->drm, crtc) { 3890 struct intel_crtc_state *crtc_state = 3891 to_intel_crtc_state(crtc->base.state); 3892 int ret; 3893 3894 ret = _vlv_compute_pipe_wm(crtc_state); 3895 drm_WARN_ON(&dev_priv->drm, ret); 3896 3897 crtc_state->wm.vlv.intermediate = 3898 crtc_state->wm.vlv.optimal; 3899 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; 3900 } 3901 3902 vlv_program_watermarks(dev_priv); 3903 3904 mutex_unlock(&dev_priv->display.wm.wm_mutex); 3905 } 3906 3907 static void vlv_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915) 3908 { 3909 vlv_wm_get_hw_state(i915); 3910 vlv_wm_sanitize(i915); 3911 } 3912 3913 /* 3914 * FIXME should probably kill this and improve 3915 * the real watermark readout/sanitation instead 3916 */ 3917 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv) 3918 { 3919 intel_uncore_rmw(&dev_priv->uncore, WM3_LP_ILK, WM_LP_ENABLE, 0); 3920 intel_uncore_rmw(&dev_priv->uncore, WM2_LP_ILK, WM_LP_ENABLE, 0); 3921 intel_uncore_rmw(&dev_priv->uncore, WM1_LP_ILK, WM_LP_ENABLE, 0); 3922 3923 /* 3924 * Don't touch WM_LP_SPRITE_ENABLE here. 3925 * Doing so could cause underruns. 3926 */ 3927 } 3928 3929 static void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv) 3930 { 3931 struct ilk_wm_values *hw = &dev_priv->display.wm.hw; 3932 struct intel_crtc *crtc; 3933 3934 ilk_init_lp_watermarks(dev_priv); 3935 3936 for_each_intel_crtc(&dev_priv->drm, crtc) 3937 ilk_pipe_wm_get_hw_state(crtc); 3938 3939 hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK); 3940 hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK); 3941 hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK); 3942 3943 hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK); 3944 if (DISPLAY_VER(dev_priv) >= 7) { 3945 hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB); 3946 hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB); 3947 } 3948 3949 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 3950 hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & 3951 WM_MISC_DATA_PARTITION_5_6) ? 3952 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; 3953 else if (IS_IVYBRIDGE(dev_priv)) 3954 hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & 3955 DISP_DATA_PARTITION_5_6) ? 3956 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; 3957 3958 hw->enable_fbc_wm = 3959 !(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS); 3960 } 3961 3962 static const struct intel_wm_funcs ilk_wm_funcs = { 3963 .compute_pipe_wm = ilk_compute_pipe_wm, 3964 .compute_intermediate_wm = ilk_compute_intermediate_wm, 3965 .initial_watermarks = ilk_initial_watermarks, 3966 .optimize_watermarks = ilk_optimize_watermarks, 3967 .get_hw_state = ilk_wm_get_hw_state, 3968 }; 3969 3970 static const struct intel_wm_funcs vlv_wm_funcs = { 3971 .compute_pipe_wm = vlv_compute_pipe_wm, 3972 .compute_intermediate_wm = vlv_compute_intermediate_wm, 3973 .initial_watermarks = vlv_initial_watermarks, 3974 .optimize_watermarks = vlv_optimize_watermarks, 3975 .atomic_update_watermarks = vlv_atomic_update_fifo, 3976 .get_hw_state = vlv_wm_get_hw_state_and_sanitize, 3977 }; 3978 3979 static const struct intel_wm_funcs g4x_wm_funcs = { 3980 .compute_pipe_wm = g4x_compute_pipe_wm, 3981 .compute_intermediate_wm = g4x_compute_intermediate_wm, 3982 .initial_watermarks = g4x_initial_watermarks, 3983 .optimize_watermarks = g4x_optimize_watermarks, 3984 .get_hw_state = g4x_wm_get_hw_state_and_sanitize, 3985 }; 3986 3987 static const struct intel_wm_funcs pnv_wm_funcs = { 3988 .update_wm = pnv_update_wm, 3989 }; 3990 3991 static const struct intel_wm_funcs i965_wm_funcs = { 3992 .update_wm = i965_update_wm, 3993 }; 3994 3995 static const struct intel_wm_funcs i9xx_wm_funcs = { 3996 .update_wm = i9xx_update_wm, 3997 }; 3998 3999 static const struct intel_wm_funcs i845_wm_funcs = { 4000 .update_wm = i845_update_wm, 4001 }; 4002 4003 static const struct intel_wm_funcs nop_funcs = { 4004 }; 4005 4006 void i9xx_wm_init(struct drm_i915_private *dev_priv) 4007 { 4008 /* For FIFO watermark updates */ 4009 if (HAS_PCH_SPLIT(dev_priv)) { 4010 ilk_setup_wm_latency(dev_priv); 4011 dev_priv->display.funcs.wm = &ilk_wm_funcs; 4012 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4013 vlv_setup_wm_latency(dev_priv); 4014 dev_priv->display.funcs.wm = &vlv_wm_funcs; 4015 } else if (IS_G4X(dev_priv)) { 4016 g4x_setup_wm_latency(dev_priv); 4017 dev_priv->display.funcs.wm = &g4x_wm_funcs; 4018 } else if (IS_PINEVIEW(dev_priv)) { 4019 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv), 4020 dev_priv->is_ddr3, 4021 dev_priv->fsb_freq, 4022 dev_priv->mem_freq)) { 4023 drm_info(&dev_priv->drm, 4024 "failed to find known CxSR latency " 4025 "(found ddr%s fsb freq %d, mem freq %d), " 4026 "disabling CxSR\n", 4027 (dev_priv->is_ddr3 == 1) ? "3" : "2", 4028 dev_priv->fsb_freq, dev_priv->mem_freq); 4029 /* Disable CxSR and never update its watermark again */ 4030 intel_set_memory_cxsr(dev_priv, false); 4031 dev_priv->display.funcs.wm = &nop_funcs; 4032 } else { 4033 dev_priv->display.funcs.wm = &pnv_wm_funcs; 4034 } 4035 } else if (DISPLAY_VER(dev_priv) == 4) { 4036 dev_priv->display.funcs.wm = &i965_wm_funcs; 4037 } else if (DISPLAY_VER(dev_priv) == 3) { 4038 dev_priv->display.funcs.wm = &i9xx_wm_funcs; 4039 } else if (DISPLAY_VER(dev_priv) == 2) { 4040 if (INTEL_NUM_PIPES(dev_priv) == 1) 4041 dev_priv->display.funcs.wm = &i845_wm_funcs; 4042 else 4043 dev_priv->display.funcs.wm = &i9xx_wm_funcs; 4044 } else { 4045 drm_err(&dev_priv->drm, 4046 "unexpected fall-through in %s\n", __func__); 4047 dev_priv->display.funcs.wm = &nop_funcs; 4048 } 4049 } 4050