1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "i915_reg.h" 8 #include "i9xx_wm.h" 9 #include "i9xx_wm_regs.h" 10 #include "intel_atomic.h" 11 #include "intel_bo.h" 12 #include "intel_de.h" 13 #include "intel_display.h" 14 #include "intel_display_regs.h" 15 #include "intel_display_trace.h" 16 #include "intel_fb.h" 17 #include "intel_mchbar_regs.h" 18 #include "intel_wm.h" 19 #include "skl_watermark.h" 20 #include "vlv_sideband.h" 21 22 struct intel_watermark_params { 23 u16 fifo_size; 24 u16 max_wm; 25 u8 default_wm; 26 u8 guard_size; 27 u8 cacheline_size; 28 }; 29 30 /* used in computing the new watermarks state */ 31 struct intel_wm_config { 32 unsigned int num_pipes_active; 33 bool sprites_enabled; 34 bool sprites_scaled; 35 }; 36 37 struct cxsr_latency { 38 bool is_desktop : 1; 39 bool is_ddr3 : 1; 40 u16 fsb_freq; 41 u16 mem_freq; 42 u16 display_sr; 43 u16 display_hpll_disable; 44 u16 cursor_sr; 45 u16 cursor_hpll_disable; 46 }; 47 48 static const struct cxsr_latency cxsr_latency_table[] = { 49 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ 50 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ 51 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ 52 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */ 53 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */ 54 55 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ 56 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ 57 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ 58 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */ 59 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */ 60 61 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ 62 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ 63 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ 64 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */ 65 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */ 66 67 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ 68 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ 69 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ 70 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */ 71 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */ 72 73 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ 74 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ 75 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ 76 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */ 77 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */ 78 79 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ 80 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ 81 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ 82 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */ 83 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */ 84 }; 85 86 static const struct cxsr_latency *pnv_get_cxsr_latency(struct intel_display *display) 87 { 88 struct drm_i915_private *i915 = to_i915(display->drm); 89 int i; 90 91 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { 92 const struct cxsr_latency *latency = &cxsr_latency_table[i]; 93 bool is_desktop = !display->platform.mobile; 94 95 if (is_desktop == latency->is_desktop && 96 i915->is_ddr3 == latency->is_ddr3 && 97 DIV_ROUND_CLOSEST(i915->fsb_freq, 1000) == latency->fsb_freq && 98 DIV_ROUND_CLOSEST(i915->mem_freq, 1000) == latency->mem_freq) 99 return latency; 100 } 101 102 drm_dbg_kms(display->drm, 103 "Could not find CxSR latency for DDR%s, FSB %u kHz, MEM %u kHz\n", 104 i915->is_ddr3 ? "3" : "2", i915->fsb_freq, i915->mem_freq); 105 106 return NULL; 107 } 108 109 static void chv_set_memory_dvfs(struct intel_display *display, bool enable) 110 { 111 u32 val; 112 113 vlv_punit_get(display->drm); 114 115 val = vlv_punit_read(display->drm, PUNIT_REG_DDR_SETUP2); 116 if (enable) 117 val &= ~FORCE_DDR_HIGH_FREQ; 118 else 119 val |= FORCE_DDR_HIGH_FREQ; 120 val &= ~FORCE_DDR_LOW_FREQ; 121 val |= FORCE_DDR_FREQ_REQ_ACK; 122 vlv_punit_write(display->drm, PUNIT_REG_DDR_SETUP2, val); 123 124 if (wait_for((vlv_punit_read(display->drm, PUNIT_REG_DDR_SETUP2) & 125 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) 126 drm_err(display->drm, 127 "timed out waiting for Punit DDR DVFS request\n"); 128 129 vlv_punit_put(display->drm); 130 } 131 132 static void chv_set_memory_pm5(struct intel_display *display, bool enable) 133 { 134 u32 val; 135 136 vlv_punit_get(display->drm); 137 138 val = vlv_punit_read(display->drm, PUNIT_REG_DSPSSPM); 139 if (enable) 140 val |= DSP_MAXFIFO_PM5_ENABLE; 141 else 142 val &= ~DSP_MAXFIFO_PM5_ENABLE; 143 vlv_punit_write(display->drm, PUNIT_REG_DSPSSPM, val); 144 145 vlv_punit_put(display->drm); 146 } 147 148 #define FW_WM(value, plane) \ 149 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK) 150 151 static bool _intel_set_memory_cxsr(struct intel_display *display, bool enable) 152 { 153 bool was_enabled; 154 u32 val; 155 156 if (display->platform.valleyview || display->platform.cherryview) { 157 was_enabled = intel_de_read(display, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; 158 intel_de_write(display, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0); 159 intel_de_posting_read(display, FW_BLC_SELF_VLV); 160 } else if (display->platform.g4x || display->platform.i965gm) { 161 was_enabled = intel_de_read(display, FW_BLC_SELF) & FW_BLC_SELF_EN; 162 intel_de_write(display, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0); 163 intel_de_posting_read(display, FW_BLC_SELF); 164 } else if (display->platform.pineview) { 165 val = intel_de_read(display, DSPFW3(display)); 166 was_enabled = val & PINEVIEW_SELF_REFRESH_EN; 167 if (enable) 168 val |= PINEVIEW_SELF_REFRESH_EN; 169 else 170 val &= ~PINEVIEW_SELF_REFRESH_EN; 171 intel_de_write(display, DSPFW3(display), val); 172 intel_de_posting_read(display, DSPFW3(display)); 173 } else if (display->platform.i945g || display->platform.i945gm) { 174 was_enabled = intel_de_read(display, FW_BLC_SELF) & FW_BLC_SELF_EN; 175 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) : 176 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN); 177 intel_de_write(display, FW_BLC_SELF, val); 178 intel_de_posting_read(display, FW_BLC_SELF); 179 } else if (display->platform.i915gm) { 180 /* 181 * FIXME can't find a bit like this for 915G, and 182 * yet it does have the related watermark in 183 * FW_BLC_SELF. What's going on? 184 */ 185 was_enabled = intel_de_read(display, INSTPM) & INSTPM_SELF_EN; 186 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) : 187 _MASKED_BIT_DISABLE(INSTPM_SELF_EN); 188 intel_de_write(display, INSTPM, val); 189 intel_de_posting_read(display, INSTPM); 190 } else { 191 return false; 192 } 193 194 trace_intel_memory_cxsr(display, was_enabled, enable); 195 196 drm_dbg_kms(display->drm, "memory self-refresh is %s (was %s)\n", 197 str_enabled_disabled(enable), 198 str_enabled_disabled(was_enabled)); 199 200 return was_enabled; 201 } 202 203 /** 204 * intel_set_memory_cxsr - Configure CxSR state 205 * @display: display device 206 * @enable: Allow vs. disallow CxSR 207 * 208 * Allow or disallow the system to enter a special CxSR 209 * (C-state self refresh) state. What typically happens in CxSR mode 210 * is that several display FIFOs may get combined into a single larger 211 * FIFO for a particular plane (so called max FIFO mode) to allow the 212 * system to defer memory fetches longer, and the memory will enter 213 * self refresh. 214 * 215 * Note that enabling CxSR does not guarantee that the system enter 216 * this special mode, nor does it guarantee that the system stays 217 * in that mode once entered. So this just allows/disallows the system 218 * to autonomously utilize the CxSR mode. Other factors such as core 219 * C-states will affect when/if the system actually enters/exits the 220 * CxSR mode. 221 * 222 * Note that on VLV/CHV this actually only controls the max FIFO mode, 223 * and the system is free to enter/exit memory self refresh at any time 224 * even when the use of CxSR has been disallowed. 225 * 226 * While the system is actually in the CxSR/max FIFO mode, some plane 227 * control registers will not get latched on vblank. Thus in order to 228 * guarantee the system will respond to changes in the plane registers 229 * we must always disallow CxSR prior to making changes to those registers. 230 * Unfortunately the system will re-evaluate the CxSR conditions at 231 * frame start which happens after vblank start (which is when the plane 232 * registers would get latched), so we can't proceed with the plane update 233 * during the same frame where we disallowed CxSR. 234 * 235 * Certain platforms also have a deeper HPLL SR mode. Fortunately the 236 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold 237 * the hardware w.r.t. HPLL SR when writing to plane registers. 238 * Disallowing just CxSR is sufficient. 239 */ 240 bool intel_set_memory_cxsr(struct intel_display *display, bool enable) 241 { 242 bool ret; 243 244 mutex_lock(&display->wm.wm_mutex); 245 ret = _intel_set_memory_cxsr(display, enable); 246 if (display->platform.valleyview || display->platform.cherryview) 247 display->wm.vlv.cxsr = enable; 248 else if (display->platform.g4x) 249 display->wm.g4x.cxsr = enable; 250 mutex_unlock(&display->wm.wm_mutex); 251 252 return ret; 253 } 254 255 /* 256 * Latency for FIFO fetches is dependent on several factors: 257 * - memory configuration (speed, channels) 258 * - chipset 259 * - current MCH state 260 * It can be fairly high in some situations, so here we assume a fairly 261 * pessimal value. It's a tradeoff between extra memory fetches (if we 262 * set this value too high, the FIFO will fetch frequently to stay full) 263 * and power consumption (set it too low to save power and we might see 264 * FIFO underruns and display "flicker"). 265 * 266 * A value of 5us seems to be a good balance; safe for very low end 267 * platforms but not overly aggressive on lower latency configs. 268 */ 269 static const int pessimal_latency_ns = 5000; 270 271 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \ 272 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8)) 273 274 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state) 275 { 276 struct intel_display *display = to_intel_display(crtc_state); 277 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 278 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; 279 enum pipe pipe = crtc->pipe; 280 int sprite0_start, sprite1_start; 281 u32 dsparb, dsparb2, dsparb3; 282 283 switch (pipe) { 284 case PIPE_A: 285 dsparb = intel_de_read(display, DSPARB(display)); 286 dsparb2 = intel_de_read(display, DSPARB2); 287 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0); 288 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4); 289 break; 290 case PIPE_B: 291 dsparb = intel_de_read(display, DSPARB(display)); 292 dsparb2 = intel_de_read(display, DSPARB2); 293 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8); 294 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12); 295 break; 296 case PIPE_C: 297 dsparb2 = intel_de_read(display, DSPARB2); 298 dsparb3 = intel_de_read(display, DSPARB3); 299 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16); 300 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20); 301 break; 302 default: 303 MISSING_CASE(pipe); 304 return; 305 } 306 307 fifo_state->plane[PLANE_PRIMARY] = sprite0_start; 308 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start; 309 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start; 310 fifo_state->plane[PLANE_CURSOR] = 63; 311 } 312 313 static int i9xx_get_fifo_size(struct intel_display *display, 314 enum i9xx_plane_id i9xx_plane) 315 { 316 u32 dsparb = intel_de_read(display, DSPARB(display)); 317 int size; 318 319 size = dsparb & 0x7f; 320 if (i9xx_plane == PLANE_B) 321 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; 322 323 drm_dbg_kms(display->drm, "FIFO size - (0x%08x) %c: %d\n", 324 dsparb, plane_name(i9xx_plane), size); 325 326 return size; 327 } 328 329 static int i830_get_fifo_size(struct intel_display *display, 330 enum i9xx_plane_id i9xx_plane) 331 { 332 u32 dsparb = intel_de_read(display, DSPARB(display)); 333 int size; 334 335 size = dsparb & 0x1ff; 336 if (i9xx_plane == PLANE_B) 337 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; 338 size >>= 1; /* Convert to cachelines */ 339 340 drm_dbg_kms(display->drm, "FIFO size - (0x%08x) %c: %d\n", 341 dsparb, plane_name(i9xx_plane), size); 342 343 return size; 344 } 345 346 static int i845_get_fifo_size(struct intel_display *display, 347 enum i9xx_plane_id i9xx_plane) 348 { 349 u32 dsparb = intel_de_read(display, DSPARB(display)); 350 int size; 351 352 size = dsparb & 0x7f; 353 size >>= 2; /* Convert to cachelines */ 354 355 drm_dbg_kms(display->drm, "FIFO size - (0x%08x) %c: %d\n", 356 dsparb, plane_name(i9xx_plane), size); 357 358 return size; 359 } 360 361 /* Pineview has different values for various configs */ 362 static const struct intel_watermark_params pnv_display_wm = { 363 .fifo_size = PINEVIEW_DISPLAY_FIFO, 364 .max_wm = PINEVIEW_MAX_WM, 365 .default_wm = PINEVIEW_DFT_WM, 366 .guard_size = PINEVIEW_GUARD_WM, 367 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, 368 }; 369 370 static const struct intel_watermark_params pnv_display_hplloff_wm = { 371 .fifo_size = PINEVIEW_DISPLAY_FIFO, 372 .max_wm = PINEVIEW_MAX_WM, 373 .default_wm = PINEVIEW_DFT_HPLLOFF_WM, 374 .guard_size = PINEVIEW_GUARD_WM, 375 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, 376 }; 377 378 static const struct intel_watermark_params pnv_cursor_wm = { 379 .fifo_size = PINEVIEW_CURSOR_FIFO, 380 .max_wm = PINEVIEW_CURSOR_MAX_WM, 381 .default_wm = PINEVIEW_CURSOR_DFT_WM, 382 .guard_size = PINEVIEW_CURSOR_GUARD_WM, 383 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, 384 }; 385 386 static const struct intel_watermark_params pnv_cursor_hplloff_wm = { 387 .fifo_size = PINEVIEW_CURSOR_FIFO, 388 .max_wm = PINEVIEW_CURSOR_MAX_WM, 389 .default_wm = PINEVIEW_CURSOR_DFT_WM, 390 .guard_size = PINEVIEW_CURSOR_GUARD_WM, 391 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, 392 }; 393 394 static const struct intel_watermark_params i965_cursor_wm_info = { 395 .fifo_size = I965_CURSOR_FIFO, 396 .max_wm = I965_CURSOR_MAX_WM, 397 .default_wm = I965_CURSOR_DFT_WM, 398 .guard_size = 2, 399 .cacheline_size = I915_FIFO_LINE_SIZE, 400 }; 401 402 static const struct intel_watermark_params i945_wm_info = { 403 .fifo_size = I945_FIFO_SIZE, 404 .max_wm = I915_MAX_WM, 405 .default_wm = 1, 406 .guard_size = 2, 407 .cacheline_size = I915_FIFO_LINE_SIZE, 408 }; 409 410 static const struct intel_watermark_params i915_wm_info = { 411 .fifo_size = I915_FIFO_SIZE, 412 .max_wm = I915_MAX_WM, 413 .default_wm = 1, 414 .guard_size = 2, 415 .cacheline_size = I915_FIFO_LINE_SIZE, 416 }; 417 418 static const struct intel_watermark_params i830_a_wm_info = { 419 .fifo_size = I855GM_FIFO_SIZE, 420 .max_wm = I915_MAX_WM, 421 .default_wm = 1, 422 .guard_size = 2, 423 .cacheline_size = I830_FIFO_LINE_SIZE, 424 }; 425 426 static const struct intel_watermark_params i830_bc_wm_info = { 427 .fifo_size = I855GM_FIFO_SIZE, 428 .max_wm = I915_MAX_WM / 2, 429 .default_wm = 1, 430 .guard_size = 2, 431 .cacheline_size = I830_FIFO_LINE_SIZE, 432 }; 433 434 static const struct intel_watermark_params i845_wm_info = { 435 .fifo_size = I830_FIFO_SIZE, 436 .max_wm = I915_MAX_WM, 437 .default_wm = 1, 438 .guard_size = 2, 439 .cacheline_size = I830_FIFO_LINE_SIZE, 440 }; 441 442 /** 443 * intel_wm_method1 - Method 1 / "small buffer" watermark formula 444 * @pixel_rate: Pipe pixel rate in kHz 445 * @cpp: Plane bytes per pixel 446 * @latency: Memory wakeup latency in 0.1us units 447 * 448 * Compute the watermark using the method 1 or "small buffer" 449 * formula. The caller may additionally add extra cachelines 450 * to account for TLB misses and clock crossings. 451 * 452 * This method is concerned with the short term drain rate 453 * of the FIFO, ie. it does not account for blanking periods 454 * which would effectively reduce the average drain rate across 455 * a longer period. The name "small" refers to the fact the 456 * FIFO is relatively small compared to the amount of data 457 * fetched. 458 * 459 * The FIFO level vs. time graph might look something like: 460 * 461 * |\ |\ 462 * | \ | \ 463 * __---__---__ (- plane active, _ blanking) 464 * -> time 465 * 466 * or perhaps like this: 467 * 468 * |\|\ |\|\ 469 * __----__----__ (- plane active, _ blanking) 470 * -> time 471 * 472 * Returns: 473 * The watermark in bytes 474 */ 475 static unsigned int intel_wm_method1(unsigned int pixel_rate, 476 unsigned int cpp, 477 unsigned int latency) 478 { 479 u64 ret; 480 481 ret = mul_u32_u32(pixel_rate, cpp * latency); 482 ret = DIV_ROUND_UP_ULL(ret, 10000); 483 484 return ret; 485 } 486 487 /** 488 * intel_wm_method2 - Method 2 / "large buffer" watermark formula 489 * @pixel_rate: Pipe pixel rate in kHz 490 * @htotal: Pipe horizontal total 491 * @width: Plane width in pixels 492 * @cpp: Plane bytes per pixel 493 * @latency: Memory wakeup latency in 0.1us units 494 * 495 * Compute the watermark using the method 2 or "large buffer" 496 * formula. The caller may additionally add extra cachelines 497 * to account for TLB misses and clock crossings. 498 * 499 * This method is concerned with the long term drain rate 500 * of the FIFO, ie. it does account for blanking periods 501 * which effectively reduce the average drain rate across 502 * a longer period. The name "large" refers to the fact the 503 * FIFO is relatively large compared to the amount of data 504 * fetched. 505 * 506 * The FIFO level vs. time graph might look something like: 507 * 508 * |\___ |\___ 509 * | \___ | \___ 510 * | \ | \ 511 * __ --__--__--__--__--__--__ (- plane active, _ blanking) 512 * -> time 513 * 514 * Returns: 515 * The watermark in bytes 516 */ 517 static unsigned int intel_wm_method2(unsigned int pixel_rate, 518 unsigned int htotal, 519 unsigned int width, 520 unsigned int cpp, 521 unsigned int latency) 522 { 523 unsigned int ret; 524 525 /* 526 * FIXME remove once all users are computing 527 * watermarks in the correct place. 528 */ 529 if (WARN_ON_ONCE(htotal == 0)) 530 htotal = 1; 531 532 ret = (latency * pixel_rate) / (htotal * 10000); 533 ret = (ret + 1) * width * cpp; 534 535 return ret; 536 } 537 538 /** 539 * intel_calculate_wm - calculate watermark level 540 * @display: display device 541 * @pixel_rate: pixel clock 542 * @wm: chip FIFO params 543 * @fifo_size: size of the FIFO buffer 544 * @cpp: bytes per pixel 545 * @latency_ns: memory latency for the platform 546 * 547 * Calculate the watermark level (the level at which the display plane will 548 * start fetching from memory again). Each chip has a different display 549 * FIFO size and allocation, so the caller needs to figure that out and pass 550 * in the correct intel_watermark_params structure. 551 * 552 * As the pixel clock runs, the FIFO will be drained at a rate that depends 553 * on the pixel size. When it reaches the watermark level, it'll start 554 * fetching FIFO line sized based chunks from memory until the FIFO fills 555 * past the watermark point. If the FIFO drains completely, a FIFO underrun 556 * will occur, and a display engine hang could result. 557 */ 558 static unsigned int intel_calculate_wm(struct intel_display *display, 559 int pixel_rate, 560 const struct intel_watermark_params *wm, 561 int fifo_size, int cpp, 562 unsigned int latency_ns) 563 { 564 int entries, wm_size; 565 566 /* 567 * Note: we need to make sure we don't overflow for various clock & 568 * latency values. 569 * clocks go from a few thousand to several hundred thousand. 570 * latency is usually a few thousand 571 */ 572 entries = intel_wm_method1(pixel_rate, cpp, 573 latency_ns / 100); 574 entries = DIV_ROUND_UP(entries, wm->cacheline_size) + 575 wm->guard_size; 576 drm_dbg_kms(display->drm, "FIFO entries required for mode: %d\n", entries); 577 578 wm_size = fifo_size - entries; 579 drm_dbg_kms(display->drm, "FIFO watermark level: %d\n", wm_size); 580 581 /* Don't promote wm_size to unsigned... */ 582 if (wm_size > wm->max_wm) 583 wm_size = wm->max_wm; 584 if (wm_size <= 0) 585 wm_size = wm->default_wm; 586 587 /* 588 * Bspec seems to indicate that the value shouldn't be lower than 589 * 'burst size + 1'. Certainly 830 is quite unhappy with low values. 590 * Lets go for 8 which is the burst size since certain platforms 591 * already use a hardcoded 8 (which is what the spec says should be 592 * done). 593 */ 594 if (wm_size <= 8) 595 wm_size = 8; 596 597 return wm_size; 598 } 599 600 static bool is_disabling(int old, int new, int threshold) 601 { 602 return old >= threshold && new < threshold; 603 } 604 605 static bool is_enabling(int old, int new, int threshold) 606 { 607 return old < threshold && new >= threshold; 608 } 609 610 static bool intel_crtc_active(struct intel_crtc *crtc) 611 { 612 /* Be paranoid as we can arrive here with only partial 613 * state retrieved from the hardware during setup. 614 * 615 * We can ditch the adjusted_mode.crtc_clock check as soon 616 * as Haswell has gained clock readout/fastboot support. 617 * 618 * We can ditch the crtc->primary->state->fb check as soon as we can 619 * properly reconstruct framebuffers. 620 * 621 * FIXME: The intel_crtc->active here should be switched to 622 * crtc->state->active once we have proper CRTC states wired up 623 * for atomic. 624 */ 625 return crtc->active && crtc->base.primary->state->fb && 626 crtc->config->hw.adjusted_mode.crtc_clock; 627 } 628 629 static struct intel_crtc *single_enabled_crtc(struct intel_display *display) 630 { 631 struct intel_crtc *crtc, *enabled = NULL; 632 633 for_each_intel_crtc(display->drm, crtc) { 634 if (intel_crtc_active(crtc)) { 635 if (enabled) 636 return NULL; 637 enabled = crtc; 638 } 639 } 640 641 return enabled; 642 } 643 644 static void pnv_update_wm(struct intel_display *display) 645 { 646 struct intel_crtc *crtc; 647 const struct cxsr_latency *latency; 648 u32 reg; 649 unsigned int wm; 650 651 latency = pnv_get_cxsr_latency(display); 652 if (!latency) { 653 drm_dbg_kms(display->drm, "Unknown FSB/MEM, disabling CxSR\n"); 654 intel_set_memory_cxsr(display, false); 655 return; 656 } 657 658 crtc = single_enabled_crtc(display); 659 if (crtc) { 660 const struct drm_framebuffer *fb = 661 crtc->base.primary->state->fb; 662 int pixel_rate = crtc->config->pixel_rate; 663 int cpp = fb->format->cpp[0]; 664 665 /* Display SR */ 666 wm = intel_calculate_wm(display, pixel_rate, 667 &pnv_display_wm, 668 pnv_display_wm.fifo_size, 669 cpp, latency->display_sr); 670 reg = intel_de_read(display, DSPFW1(display)); 671 reg &= ~DSPFW_SR_MASK; 672 reg |= FW_WM(wm, SR); 673 intel_de_write(display, DSPFW1(display), reg); 674 drm_dbg_kms(display->drm, "DSPFW1 register is %x\n", reg); 675 676 /* cursor SR */ 677 wm = intel_calculate_wm(display, pixel_rate, 678 &pnv_cursor_wm, 679 pnv_display_wm.fifo_size, 680 4, latency->cursor_sr); 681 intel_de_rmw(display, DSPFW3(display), 682 DSPFW_CURSOR_SR_MASK, FW_WM(wm, CURSOR_SR)); 683 684 /* Display HPLL off SR */ 685 wm = intel_calculate_wm(display, pixel_rate, 686 &pnv_display_hplloff_wm, 687 pnv_display_hplloff_wm.fifo_size, 688 cpp, latency->display_hpll_disable); 689 intel_de_rmw(display, DSPFW3(display), 690 DSPFW_HPLL_SR_MASK, FW_WM(wm, HPLL_SR)); 691 692 /* cursor HPLL off SR */ 693 wm = intel_calculate_wm(display, pixel_rate, 694 &pnv_cursor_hplloff_wm, 695 pnv_display_hplloff_wm.fifo_size, 696 4, latency->cursor_hpll_disable); 697 reg = intel_de_read(display, DSPFW3(display)); 698 reg &= ~DSPFW_HPLL_CURSOR_MASK; 699 reg |= FW_WM(wm, HPLL_CURSOR); 700 intel_de_write(display, DSPFW3(display), reg); 701 drm_dbg_kms(display->drm, "DSPFW3 register is %x\n", reg); 702 703 intel_set_memory_cxsr(display, true); 704 } else { 705 intel_set_memory_cxsr(display, false); 706 } 707 } 708 709 static bool i9xx_wm_need_update(const struct intel_plane_state *old_plane_state, 710 const struct intel_plane_state *new_plane_state) 711 { 712 /* Update watermarks on tiling or size changes. */ 713 if (old_plane_state->uapi.visible != new_plane_state->uapi.visible) 714 return true; 715 716 if (!old_plane_state->hw.fb || !new_plane_state->hw.fb) 717 return false; 718 719 if (old_plane_state->hw.fb->modifier != new_plane_state->hw.fb->modifier || 720 old_plane_state->hw.rotation != new_plane_state->hw.rotation || 721 drm_rect_width(&old_plane_state->uapi.src) != drm_rect_width(&new_plane_state->uapi.src) || 722 drm_rect_height(&old_plane_state->uapi.src) != drm_rect_height(&new_plane_state->uapi.src) || 723 drm_rect_width(&old_plane_state->uapi.dst) != drm_rect_width(&new_plane_state->uapi.dst) || 724 drm_rect_height(&old_plane_state->uapi.dst) != drm_rect_height(&new_plane_state->uapi.dst)) 725 return true; 726 727 return false; 728 } 729 730 static void i9xx_wm_compute(struct intel_crtc_state *new_crtc_state, 731 const struct intel_plane_state *old_plane_state, 732 const struct intel_plane_state *new_plane_state) 733 { 734 bool turn_off, turn_on, visible, was_visible, mode_changed; 735 736 mode_changed = intel_crtc_needs_modeset(new_crtc_state); 737 was_visible = old_plane_state->uapi.visible; 738 visible = new_plane_state->uapi.visible; 739 740 if (!was_visible && !visible) 741 return; 742 743 turn_off = was_visible && (!visible || mode_changed); 744 turn_on = visible && (!was_visible || mode_changed); 745 746 /* FIXME nuke when all wm code is atomic */ 747 if (turn_on) { 748 new_crtc_state->update_wm_pre = true; 749 } else if (turn_off) { 750 new_crtc_state->update_wm_post = true; 751 } else if (i9xx_wm_need_update(old_plane_state, new_plane_state)) { 752 /* FIXME bollocks */ 753 new_crtc_state->update_wm_pre = true; 754 new_crtc_state->update_wm_post = true; 755 } 756 } 757 758 static int i9xx_compute_watermarks(struct intel_atomic_state *state, 759 struct intel_crtc *crtc) 760 { 761 struct intel_crtc_state *new_crtc_state = 762 intel_atomic_get_new_crtc_state(state, crtc); 763 const struct intel_plane_state *old_plane_state; 764 const struct intel_plane_state *new_plane_state; 765 struct intel_plane *plane; 766 int i; 767 768 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 769 new_plane_state, i) { 770 if (plane->pipe != crtc->pipe) 771 continue; 772 773 i9xx_wm_compute(new_crtc_state, old_plane_state, new_plane_state); 774 } 775 776 return 0; 777 } 778 779 /* 780 * Documentation says: 781 * "If the line size is small, the TLB fetches can get in the way of the 782 * data fetches, causing some lag in the pixel data return which is not 783 * accounted for in the above formulas. The following adjustment only 784 * needs to be applied if eight whole lines fit in the buffer at once. 785 * The WM is adjusted upwards by the difference between the FIFO size 786 * and the size of 8 whole lines. This adjustment is always performed 787 * in the actual pixel depth regardless of whether FBC is enabled or not." 788 */ 789 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp) 790 { 791 int tlb_miss = fifo_size * 64 - width * cpp * 8; 792 793 return max(0, tlb_miss); 794 } 795 796 static void g4x_write_wm_values(struct intel_display *display, 797 const struct g4x_wm_values *wm) 798 { 799 enum pipe pipe; 800 801 for_each_pipe(display, pipe) 802 trace_g4x_wm(intel_crtc_for_pipe(display, pipe), wm); 803 804 intel_de_write(display, DSPFW1(display), 805 FW_WM(wm->sr.plane, SR) | 806 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | 807 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | 808 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); 809 intel_de_write(display, DSPFW2(display), 810 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) | 811 FW_WM(wm->sr.fbc, FBC_SR) | 812 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) | 813 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) | 814 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | 815 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); 816 intel_de_write(display, DSPFW3(display), 817 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) | 818 FW_WM(wm->sr.cursor, CURSOR_SR) | 819 FW_WM(wm->hpll.cursor, HPLL_CURSOR) | 820 FW_WM(wm->hpll.plane, HPLL_SR)); 821 822 intel_de_posting_read(display, DSPFW1(display)); 823 } 824 825 #define FW_WM_VLV(value, plane) \ 826 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV) 827 828 static void vlv_write_wm_values(struct intel_display *display, 829 const struct vlv_wm_values *wm) 830 { 831 enum pipe pipe; 832 833 for_each_pipe(display, pipe) { 834 trace_vlv_wm(intel_crtc_for_pipe(display, pipe), wm); 835 836 intel_de_write(display, VLV_DDL(pipe), 837 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) | 838 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) | 839 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) | 840 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT)); 841 } 842 843 /* 844 * Zero the (unused) WM1 watermarks, and also clear all the 845 * high order bits so that there are no out of bounds values 846 * present in the registers during the reprogramming. 847 */ 848 intel_de_write(display, DSPHOWM, 0); 849 intel_de_write(display, DSPHOWM1, 0); 850 intel_de_write(display, DSPFW4, 0); 851 intel_de_write(display, DSPFW5, 0); 852 intel_de_write(display, DSPFW6, 0); 853 854 intel_de_write(display, DSPFW1(display), 855 FW_WM(wm->sr.plane, SR) | 856 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | 857 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | 858 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); 859 intel_de_write(display, DSPFW2(display), 860 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) | 861 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | 862 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); 863 intel_de_write(display, DSPFW3(display), 864 FW_WM(wm->sr.cursor, CURSOR_SR)); 865 866 if (display->platform.cherryview) { 867 intel_de_write(display, DSPFW7_CHV, 868 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | 869 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); 870 intel_de_write(display, DSPFW8_CHV, 871 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) | 872 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE)); 873 intel_de_write(display, DSPFW9_CHV, 874 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) | 875 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC)); 876 intel_de_write(display, DSPHOWM, 877 FW_WM(wm->sr.plane >> 9, SR_HI) | 878 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) | 879 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) | 880 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) | 881 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | 882 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | 883 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | 884 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | 885 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | 886 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); 887 } else { 888 intel_de_write(display, DSPFW7, 889 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | 890 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); 891 intel_de_write(display, DSPHOWM, 892 FW_WM(wm->sr.plane >> 9, SR_HI) | 893 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | 894 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | 895 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | 896 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | 897 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | 898 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); 899 } 900 901 intel_de_posting_read(display, DSPFW1(display)); 902 } 903 904 #undef FW_WM_VLV 905 906 static void g4x_setup_wm_latency(struct intel_display *display) 907 { 908 /* all latencies in usec */ 909 display->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5; 910 display->wm.pri_latency[G4X_WM_LEVEL_SR] = 12; 911 display->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35; 912 913 display->wm.num_levels = G4X_WM_LEVEL_HPLL + 1; 914 } 915 916 static int g4x_plane_fifo_size(enum plane_id plane_id, int level) 917 { 918 /* 919 * DSPCNTR[13] supposedly controls whether the 920 * primary plane can use the FIFO space otherwise 921 * reserved for the sprite plane. It's not 100% clear 922 * what the actual FIFO size is, but it looks like we 923 * can happily set both primary and sprite watermarks 924 * up to 127 cachelines. So that would seem to mean 925 * that either DSPCNTR[13] doesn't do anything, or that 926 * the total FIFO is >= 256 cachelines in size. Either 927 * way, we don't seem to have to worry about this 928 * repartitioning as the maximum watermark value the 929 * register can hold for each plane is lower than the 930 * minimum FIFO size. 931 */ 932 switch (plane_id) { 933 case PLANE_CURSOR: 934 return 63; 935 case PLANE_PRIMARY: 936 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511; 937 case PLANE_SPRITE0: 938 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0; 939 default: 940 MISSING_CASE(plane_id); 941 return 0; 942 } 943 } 944 945 static int g4x_fbc_fifo_size(int level) 946 { 947 switch (level) { 948 case G4X_WM_LEVEL_SR: 949 return 7; 950 case G4X_WM_LEVEL_HPLL: 951 return 15; 952 default: 953 MISSING_CASE(level); 954 return 0; 955 } 956 } 957 958 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state, 959 const struct intel_plane_state *plane_state, 960 int level) 961 { 962 struct intel_display *display = to_intel_display(plane_state); 963 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 964 const struct drm_display_mode *pipe_mode = 965 &crtc_state->hw.pipe_mode; 966 unsigned int latency = display->wm.pri_latency[level] * 10; 967 unsigned int pixel_rate, htotal, cpp, width, wm; 968 969 if (latency == 0) 970 return USHRT_MAX; 971 972 if (!intel_wm_plane_visible(crtc_state, plane_state)) 973 return 0; 974 975 cpp = plane_state->hw.fb->format->cpp[0]; 976 977 /* 978 * WaUse32BppForSRWM:ctg,elk 979 * 980 * The spec fails to list this restriction for the 981 * HPLL watermark, which seems a little strange. 982 * Let's use 32bpp for the HPLL watermark as well. 983 */ 984 if (plane->id == PLANE_PRIMARY && 985 level != G4X_WM_LEVEL_NORMAL) 986 cpp = max(cpp, 4u); 987 988 pixel_rate = crtc_state->pixel_rate; 989 htotal = pipe_mode->crtc_htotal; 990 width = drm_rect_width(&plane_state->uapi.src) >> 16; 991 992 if (plane->id == PLANE_CURSOR) { 993 wm = intel_wm_method2(pixel_rate, htotal, width, cpp, latency); 994 } else if (plane->id == PLANE_PRIMARY && 995 level == G4X_WM_LEVEL_NORMAL) { 996 wm = intel_wm_method1(pixel_rate, cpp, latency); 997 } else { 998 unsigned int small, large; 999 1000 small = intel_wm_method1(pixel_rate, cpp, latency); 1001 large = intel_wm_method2(pixel_rate, htotal, width, cpp, latency); 1002 1003 wm = min(small, large); 1004 } 1005 1006 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level), 1007 width, cpp); 1008 1009 wm = DIV_ROUND_UP(wm, 64) + 2; 1010 1011 return min_t(unsigned int, wm, USHRT_MAX); 1012 } 1013 1014 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state, 1015 int level, enum plane_id plane_id, u16 value) 1016 { 1017 struct intel_display *display = to_intel_display(crtc_state); 1018 bool dirty = false; 1019 1020 for (; level < display->wm.num_levels; level++) { 1021 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; 1022 1023 dirty |= raw->plane[plane_id] != value; 1024 raw->plane[plane_id] = value; 1025 } 1026 1027 return dirty; 1028 } 1029 1030 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state, 1031 int level, u16 value) 1032 { 1033 struct intel_display *display = to_intel_display(crtc_state); 1034 bool dirty = false; 1035 1036 /* NORMAL level doesn't have an FBC watermark */ 1037 level = max(level, G4X_WM_LEVEL_SR); 1038 1039 for (; level < display->wm.num_levels; level++) { 1040 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; 1041 1042 dirty |= raw->fbc != value; 1043 raw->fbc = value; 1044 } 1045 1046 return dirty; 1047 } 1048 1049 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state, 1050 const struct intel_plane_state *plane_state, 1051 u32 pri_val); 1052 1053 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, 1054 const struct intel_plane_state *plane_state) 1055 { 1056 struct intel_display *display = to_intel_display(crtc_state); 1057 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1058 enum plane_id plane_id = plane->id; 1059 bool dirty = false; 1060 int level; 1061 1062 if (!intel_wm_plane_visible(crtc_state, plane_state)) { 1063 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0); 1064 if (plane_id == PLANE_PRIMARY) 1065 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0); 1066 goto out; 1067 } 1068 1069 for (level = 0; level < display->wm.num_levels; level++) { 1070 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; 1071 int wm, max_wm; 1072 1073 wm = g4x_compute_wm(crtc_state, plane_state, level); 1074 max_wm = g4x_plane_fifo_size(plane_id, level); 1075 1076 if (wm > max_wm) 1077 break; 1078 1079 dirty |= raw->plane[plane_id] != wm; 1080 raw->plane[plane_id] = wm; 1081 1082 if (plane_id != PLANE_PRIMARY || 1083 level == G4X_WM_LEVEL_NORMAL) 1084 continue; 1085 1086 wm = ilk_compute_fbc_wm(crtc_state, plane_state, 1087 raw->plane[plane_id]); 1088 max_wm = g4x_fbc_fifo_size(level); 1089 1090 /* 1091 * FBC wm is not mandatory as we 1092 * can always just disable its use. 1093 */ 1094 if (wm > max_wm) 1095 wm = USHRT_MAX; 1096 1097 dirty |= raw->fbc != wm; 1098 raw->fbc = wm; 1099 } 1100 1101 /* mark watermarks as invalid */ 1102 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); 1103 1104 if (plane_id == PLANE_PRIMARY) 1105 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); 1106 1107 out: 1108 if (dirty) { 1109 drm_dbg_kms(display->drm, 1110 "%s watermarks: normal=%d, SR=%d, HPLL=%d\n", 1111 plane->base.name, 1112 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id], 1113 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id], 1114 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]); 1115 1116 if (plane_id == PLANE_PRIMARY) 1117 drm_dbg_kms(display->drm, 1118 "FBC watermarks: SR=%d, HPLL=%d\n", 1119 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc, 1120 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc); 1121 } 1122 1123 return dirty; 1124 } 1125 1126 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, 1127 enum plane_id plane_id, int level) 1128 { 1129 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; 1130 1131 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level); 1132 } 1133 1134 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, 1135 int level) 1136 { 1137 struct intel_display *display = to_intel_display(crtc_state); 1138 1139 if (level >= display->wm.num_levels) 1140 return false; 1141 1142 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && 1143 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && 1144 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); 1145 } 1146 1147 /* mark all levels starting from 'level' as invalid */ 1148 static void g4x_invalidate_wms(struct intel_crtc *crtc, 1149 struct g4x_wm_state *wm_state, int level) 1150 { 1151 if (level <= G4X_WM_LEVEL_NORMAL) { 1152 enum plane_id plane_id; 1153 1154 for_each_plane_id_on_crtc(crtc, plane_id) 1155 wm_state->wm.plane[plane_id] = USHRT_MAX; 1156 } 1157 1158 if (level <= G4X_WM_LEVEL_SR) { 1159 wm_state->cxsr = false; 1160 wm_state->sr.cursor = USHRT_MAX; 1161 wm_state->sr.plane = USHRT_MAX; 1162 wm_state->sr.fbc = USHRT_MAX; 1163 } 1164 1165 if (level <= G4X_WM_LEVEL_HPLL) { 1166 wm_state->hpll_en = false; 1167 wm_state->hpll.cursor = USHRT_MAX; 1168 wm_state->hpll.plane = USHRT_MAX; 1169 wm_state->hpll.fbc = USHRT_MAX; 1170 } 1171 } 1172 1173 static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state, 1174 int level) 1175 { 1176 if (level < G4X_WM_LEVEL_SR) 1177 return false; 1178 1179 if (level >= G4X_WM_LEVEL_SR && 1180 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR)) 1181 return false; 1182 1183 if (level >= G4X_WM_LEVEL_HPLL && 1184 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL)) 1185 return false; 1186 1187 return true; 1188 } 1189 1190 static int _g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state) 1191 { 1192 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1193 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; 1194 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); 1195 const struct g4x_pipe_wm *raw; 1196 enum plane_id plane_id; 1197 int level; 1198 1199 level = G4X_WM_LEVEL_NORMAL; 1200 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) 1201 goto out; 1202 1203 raw = &crtc_state->wm.g4x.raw[level]; 1204 for_each_plane_id_on_crtc(crtc, plane_id) 1205 wm_state->wm.plane[plane_id] = raw->plane[plane_id]; 1206 1207 level = G4X_WM_LEVEL_SR; 1208 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) 1209 goto out; 1210 1211 raw = &crtc_state->wm.g4x.raw[level]; 1212 wm_state->sr.plane = raw->plane[PLANE_PRIMARY]; 1213 wm_state->sr.cursor = raw->plane[PLANE_CURSOR]; 1214 wm_state->sr.fbc = raw->fbc; 1215 1216 wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY); 1217 1218 level = G4X_WM_LEVEL_HPLL; 1219 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) 1220 goto out; 1221 1222 raw = &crtc_state->wm.g4x.raw[level]; 1223 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY]; 1224 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR]; 1225 wm_state->hpll.fbc = raw->fbc; 1226 1227 wm_state->hpll_en = wm_state->cxsr; 1228 1229 level++; 1230 1231 out: 1232 if (level == G4X_WM_LEVEL_NORMAL) 1233 return -EINVAL; 1234 1235 /* invalidate the higher levels */ 1236 g4x_invalidate_wms(crtc, wm_state, level); 1237 1238 /* 1239 * Determine if the FBC watermark(s) can be used. IF 1240 * this isn't the case we prefer to disable the FBC 1241 * watermark(s) rather than disable the SR/HPLL 1242 * level(s) entirely. 'level-1' is the highest valid 1243 * level here. 1244 */ 1245 wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1); 1246 1247 return 0; 1248 } 1249 1250 static int g4x_compute_pipe_wm(struct intel_atomic_state *state, 1251 struct intel_crtc *crtc) 1252 { 1253 struct intel_crtc_state *crtc_state = 1254 intel_atomic_get_new_crtc_state(state, crtc); 1255 const struct intel_plane_state *old_plane_state; 1256 const struct intel_plane_state *new_plane_state; 1257 struct intel_plane *plane; 1258 unsigned int dirty = 0; 1259 int i; 1260 1261 for_each_oldnew_intel_plane_in_state(state, plane, 1262 old_plane_state, 1263 new_plane_state, i) { 1264 if (new_plane_state->hw.crtc != &crtc->base && 1265 old_plane_state->hw.crtc != &crtc->base) 1266 continue; 1267 1268 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state)) 1269 dirty |= BIT(plane->id); 1270 } 1271 1272 if (!dirty) 1273 return 0; 1274 1275 return _g4x_compute_pipe_wm(crtc_state); 1276 } 1277 1278 static int g4x_compute_intermediate_wm(struct intel_atomic_state *state, 1279 struct intel_crtc *crtc) 1280 { 1281 struct intel_display *display = to_intel_display(state); 1282 struct intel_crtc_state *new_crtc_state = 1283 intel_atomic_get_new_crtc_state(state, crtc); 1284 const struct intel_crtc_state *old_crtc_state = 1285 intel_atomic_get_old_crtc_state(state, crtc); 1286 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate; 1287 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal; 1288 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal; 1289 enum plane_id plane_id; 1290 1291 if (!new_crtc_state->hw.active || 1292 intel_crtc_needs_modeset(new_crtc_state)) { 1293 *intermediate = *optimal; 1294 1295 intermediate->cxsr = false; 1296 intermediate->hpll_en = false; 1297 goto out; 1298 } 1299 1300 intermediate->cxsr = optimal->cxsr && active->cxsr && 1301 !new_crtc_state->disable_cxsr; 1302 intermediate->hpll_en = optimal->hpll_en && active->hpll_en && 1303 !new_crtc_state->disable_cxsr; 1304 intermediate->fbc_en = optimal->fbc_en && active->fbc_en; 1305 1306 for_each_plane_id_on_crtc(crtc, plane_id) { 1307 intermediate->wm.plane[plane_id] = 1308 max(optimal->wm.plane[plane_id], 1309 active->wm.plane[plane_id]); 1310 1311 drm_WARN_ON(display->drm, intermediate->wm.plane[plane_id] > 1312 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL)); 1313 } 1314 1315 intermediate->sr.plane = max(optimal->sr.plane, 1316 active->sr.plane); 1317 intermediate->sr.cursor = max(optimal->sr.cursor, 1318 active->sr.cursor); 1319 intermediate->sr.fbc = max(optimal->sr.fbc, 1320 active->sr.fbc); 1321 1322 intermediate->hpll.plane = max(optimal->hpll.plane, 1323 active->hpll.plane); 1324 intermediate->hpll.cursor = max(optimal->hpll.cursor, 1325 active->hpll.cursor); 1326 intermediate->hpll.fbc = max(optimal->hpll.fbc, 1327 active->hpll.fbc); 1328 1329 drm_WARN_ON(display->drm, 1330 (intermediate->sr.plane > 1331 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) || 1332 intermediate->sr.cursor > 1333 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) && 1334 intermediate->cxsr); 1335 drm_WARN_ON(display->drm, 1336 (intermediate->sr.plane > 1337 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) || 1338 intermediate->sr.cursor > 1339 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) && 1340 intermediate->hpll_en); 1341 1342 drm_WARN_ON(display->drm, 1343 intermediate->sr.fbc > g4x_fbc_fifo_size(1) && 1344 intermediate->fbc_en && intermediate->cxsr); 1345 drm_WARN_ON(display->drm, 1346 intermediate->hpll.fbc > g4x_fbc_fifo_size(2) && 1347 intermediate->fbc_en && intermediate->hpll_en); 1348 1349 out: 1350 /* 1351 * If our intermediate WM are identical to the final WM, then we can 1352 * omit the post-vblank programming; only update if it's different. 1353 */ 1354 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) 1355 new_crtc_state->wm.need_postvbl_update = true; 1356 1357 return 0; 1358 } 1359 1360 static int g4x_compute_watermarks(struct intel_atomic_state *state, 1361 struct intel_crtc *crtc) 1362 { 1363 int ret; 1364 1365 ret = g4x_compute_pipe_wm(state, crtc); 1366 if (ret) 1367 return ret; 1368 1369 ret = g4x_compute_intermediate_wm(state, crtc); 1370 if (ret) 1371 return ret; 1372 1373 return 0; 1374 } 1375 1376 static void g4x_merge_wm(struct intel_display *display, 1377 struct g4x_wm_values *wm) 1378 { 1379 struct intel_crtc *crtc; 1380 int num_active_pipes = 0; 1381 1382 wm->cxsr = true; 1383 wm->hpll_en = true; 1384 wm->fbc_en = true; 1385 1386 for_each_intel_crtc(display->drm, crtc) { 1387 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; 1388 1389 if (!crtc->active) 1390 continue; 1391 1392 if (!wm_state->cxsr) 1393 wm->cxsr = false; 1394 if (!wm_state->hpll_en) 1395 wm->hpll_en = false; 1396 if (!wm_state->fbc_en) 1397 wm->fbc_en = false; 1398 1399 num_active_pipes++; 1400 } 1401 1402 if (num_active_pipes != 1) { 1403 wm->cxsr = false; 1404 wm->hpll_en = false; 1405 wm->fbc_en = false; 1406 } 1407 1408 for_each_intel_crtc(display->drm, crtc) { 1409 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; 1410 enum pipe pipe = crtc->pipe; 1411 1412 wm->pipe[pipe] = wm_state->wm; 1413 if (crtc->active && wm->cxsr) 1414 wm->sr = wm_state->sr; 1415 if (crtc->active && wm->hpll_en) 1416 wm->hpll = wm_state->hpll; 1417 } 1418 } 1419 1420 static void g4x_program_watermarks(struct intel_display *display) 1421 { 1422 struct g4x_wm_values *old_wm = &display->wm.g4x; 1423 struct g4x_wm_values new_wm = {}; 1424 1425 g4x_merge_wm(display, &new_wm); 1426 1427 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) 1428 return; 1429 1430 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) 1431 _intel_set_memory_cxsr(display, false); 1432 1433 g4x_write_wm_values(display, &new_wm); 1434 1435 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) 1436 _intel_set_memory_cxsr(display, true); 1437 1438 *old_wm = new_wm; 1439 } 1440 1441 static void g4x_initial_watermarks(struct intel_atomic_state *state, 1442 struct intel_crtc *crtc) 1443 { 1444 struct intel_display *display = to_intel_display(crtc); 1445 const struct intel_crtc_state *crtc_state = 1446 intel_atomic_get_new_crtc_state(state, crtc); 1447 1448 mutex_lock(&display->wm.wm_mutex); 1449 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate; 1450 g4x_program_watermarks(display); 1451 mutex_unlock(&display->wm.wm_mutex); 1452 } 1453 1454 static void g4x_optimize_watermarks(struct intel_atomic_state *state, 1455 struct intel_crtc *crtc) 1456 { 1457 struct intel_display *display = to_intel_display(crtc); 1458 const struct intel_crtc_state *crtc_state = 1459 intel_atomic_get_new_crtc_state(state, crtc); 1460 1461 if (!crtc_state->wm.need_postvbl_update) 1462 return; 1463 1464 mutex_lock(&display->wm.wm_mutex); 1465 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; 1466 g4x_program_watermarks(display); 1467 mutex_unlock(&display->wm.wm_mutex); 1468 } 1469 1470 /* latency must be in 0.1us units. */ 1471 static unsigned int vlv_wm_method2(unsigned int pixel_rate, 1472 unsigned int htotal, 1473 unsigned int width, 1474 unsigned int cpp, 1475 unsigned int latency) 1476 { 1477 unsigned int ret; 1478 1479 ret = intel_wm_method2(pixel_rate, htotal, 1480 width, cpp, latency); 1481 ret = DIV_ROUND_UP(ret, 64); 1482 1483 return ret; 1484 } 1485 1486 static void vlv_setup_wm_latency(struct intel_display *display) 1487 { 1488 /* all latencies in usec */ 1489 display->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3; 1490 1491 display->wm.num_levels = VLV_WM_LEVEL_PM2 + 1; 1492 1493 if (display->platform.cherryview) { 1494 display->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12; 1495 display->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33; 1496 1497 display->wm.num_levels = VLV_WM_LEVEL_DDR_DVFS + 1; 1498 } 1499 } 1500 1501 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state, 1502 const struct intel_plane_state *plane_state, 1503 int level) 1504 { 1505 struct intel_display *display = to_intel_display(plane_state); 1506 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1507 const struct drm_display_mode *pipe_mode = 1508 &crtc_state->hw.pipe_mode; 1509 unsigned int pixel_rate, htotal, cpp, width, wm; 1510 1511 if (display->wm.pri_latency[level] == 0) 1512 return USHRT_MAX; 1513 1514 if (!intel_wm_plane_visible(crtc_state, plane_state)) 1515 return 0; 1516 1517 cpp = plane_state->hw.fb->format->cpp[0]; 1518 pixel_rate = crtc_state->pixel_rate; 1519 htotal = pipe_mode->crtc_htotal; 1520 width = drm_rect_width(&plane_state->uapi.src) >> 16; 1521 1522 if (plane->id == PLANE_CURSOR) { 1523 /* 1524 * FIXME the formula gives values that are 1525 * too big for the cursor FIFO, and hence we 1526 * would never be able to use cursors. For 1527 * now just hardcode the watermark. 1528 */ 1529 wm = 63; 1530 } else { 1531 wm = vlv_wm_method2(pixel_rate, htotal, width, cpp, 1532 display->wm.pri_latency[level] * 10); 1533 } 1534 1535 return min_t(unsigned int, wm, USHRT_MAX); 1536 } 1537 1538 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes) 1539 { 1540 return (active_planes & (BIT(PLANE_SPRITE0) | 1541 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1); 1542 } 1543 1544 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state) 1545 { 1546 struct intel_display *display = to_intel_display(crtc_state); 1547 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1548 const struct g4x_pipe_wm *raw = 1549 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2]; 1550 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; 1551 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); 1552 int num_active_planes = hweight8(active_planes); 1553 const int fifo_size = 511; 1554 int fifo_extra, fifo_left = fifo_size; 1555 int sprite0_fifo_extra = 0; 1556 unsigned int total_rate; 1557 enum plane_id plane_id; 1558 1559 /* 1560 * When enabling sprite0 after sprite1 has already been enabled 1561 * we tend to get an underrun unless sprite0 already has some 1562 * FIFO space allocated. Hence we always allocate at least one 1563 * cacheline for sprite0 whenever sprite1 is enabled. 1564 * 1565 * All other plane enable sequences appear immune to this problem. 1566 */ 1567 if (vlv_need_sprite0_fifo_workaround(active_planes)) 1568 sprite0_fifo_extra = 1; 1569 1570 total_rate = raw->plane[PLANE_PRIMARY] + 1571 raw->plane[PLANE_SPRITE0] + 1572 raw->plane[PLANE_SPRITE1] + 1573 sprite0_fifo_extra; 1574 1575 if (total_rate > fifo_size) 1576 return -EINVAL; 1577 1578 if (total_rate == 0) 1579 total_rate = 1; 1580 1581 for_each_plane_id_on_crtc(crtc, plane_id) { 1582 unsigned int rate; 1583 1584 if ((active_planes & BIT(plane_id)) == 0) { 1585 fifo_state->plane[plane_id] = 0; 1586 continue; 1587 } 1588 1589 rate = raw->plane[plane_id]; 1590 fifo_state->plane[plane_id] = fifo_size * rate / total_rate; 1591 fifo_left -= fifo_state->plane[plane_id]; 1592 } 1593 1594 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra; 1595 fifo_left -= sprite0_fifo_extra; 1596 1597 fifo_state->plane[PLANE_CURSOR] = 63; 1598 1599 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1); 1600 1601 /* spread the remainder evenly */ 1602 for_each_plane_id_on_crtc(crtc, plane_id) { 1603 int plane_extra; 1604 1605 if (fifo_left == 0) 1606 break; 1607 1608 if ((active_planes & BIT(plane_id)) == 0) 1609 continue; 1610 1611 plane_extra = min(fifo_extra, fifo_left); 1612 fifo_state->plane[plane_id] += plane_extra; 1613 fifo_left -= plane_extra; 1614 } 1615 1616 drm_WARN_ON(display->drm, active_planes != 0 && fifo_left != 0); 1617 1618 /* give it all to the first plane if none are active */ 1619 if (active_planes == 0) { 1620 drm_WARN_ON(display->drm, fifo_left != fifo_size); 1621 fifo_state->plane[PLANE_PRIMARY] = fifo_left; 1622 } 1623 1624 return 0; 1625 } 1626 1627 /* mark all levels starting from 'level' as invalid */ 1628 static void vlv_invalidate_wms(struct intel_crtc *crtc, 1629 struct vlv_wm_state *wm_state, int level) 1630 { 1631 struct intel_display *display = to_intel_display(crtc); 1632 1633 for (; level < display->wm.num_levels; level++) { 1634 enum plane_id plane_id; 1635 1636 for_each_plane_id_on_crtc(crtc, plane_id) 1637 wm_state->wm[level].plane[plane_id] = USHRT_MAX; 1638 1639 wm_state->sr[level].cursor = USHRT_MAX; 1640 wm_state->sr[level].plane = USHRT_MAX; 1641 } 1642 } 1643 1644 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size) 1645 { 1646 if (wm > fifo_size) 1647 return USHRT_MAX; 1648 else 1649 return fifo_size - wm; 1650 } 1651 1652 /* 1653 * Starting from 'level' set all higher 1654 * levels to 'value' in the "raw" watermarks. 1655 */ 1656 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state, 1657 int level, enum plane_id plane_id, u16 value) 1658 { 1659 struct intel_display *display = to_intel_display(crtc_state); 1660 bool dirty = false; 1661 1662 for (; level < display->wm.num_levels; level++) { 1663 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; 1664 1665 dirty |= raw->plane[plane_id] != value; 1666 raw->plane[plane_id] = value; 1667 } 1668 1669 return dirty; 1670 } 1671 1672 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, 1673 const struct intel_plane_state *plane_state) 1674 { 1675 struct intel_display *display = to_intel_display(crtc_state); 1676 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1677 enum plane_id plane_id = plane->id; 1678 int level; 1679 bool dirty = false; 1680 1681 if (!intel_wm_plane_visible(crtc_state, plane_state)) { 1682 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0); 1683 goto out; 1684 } 1685 1686 for (level = 0; level < display->wm.num_levels; level++) { 1687 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; 1688 int wm = vlv_compute_wm_level(crtc_state, plane_state, level); 1689 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511; 1690 1691 if (wm > max_wm) 1692 break; 1693 1694 dirty |= raw->plane[plane_id] != wm; 1695 raw->plane[plane_id] = wm; 1696 } 1697 1698 /* mark all higher levels as invalid */ 1699 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); 1700 1701 out: 1702 if (dirty) 1703 drm_dbg_kms(display->drm, 1704 "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n", 1705 plane->base.name, 1706 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id], 1707 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id], 1708 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]); 1709 1710 return dirty; 1711 } 1712 1713 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, 1714 enum plane_id plane_id, int level) 1715 { 1716 const struct g4x_pipe_wm *raw = 1717 &crtc_state->wm.vlv.raw[level]; 1718 const struct vlv_fifo_state *fifo_state = 1719 &crtc_state->wm.vlv.fifo_state; 1720 1721 return raw->plane[plane_id] <= fifo_state->plane[plane_id]; 1722 } 1723 1724 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level) 1725 { 1726 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && 1727 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && 1728 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) && 1729 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); 1730 } 1731 1732 static int _vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state) 1733 { 1734 struct intel_display *display = to_intel_display(crtc_state); 1735 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1736 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; 1737 const struct vlv_fifo_state *fifo_state = 1738 &crtc_state->wm.vlv.fifo_state; 1739 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); 1740 int num_active_planes = hweight8(active_planes); 1741 enum plane_id plane_id; 1742 int level; 1743 1744 /* initially allow all levels */ 1745 wm_state->num_levels = display->wm.num_levels; 1746 /* 1747 * Note that enabling cxsr with no primary/sprite planes 1748 * enabled can wedge the pipe. Hence we only allow cxsr 1749 * with exactly one enabled primary/sprite plane. 1750 */ 1751 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1; 1752 1753 for (level = 0; level < wm_state->num_levels; level++) { 1754 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; 1755 const int sr_fifo_size = INTEL_NUM_PIPES(display) * 512 - 1; 1756 1757 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level)) 1758 break; 1759 1760 for_each_plane_id_on_crtc(crtc, plane_id) { 1761 wm_state->wm[level].plane[plane_id] = 1762 vlv_invert_wm_value(raw->plane[plane_id], 1763 fifo_state->plane[plane_id]); 1764 } 1765 1766 wm_state->sr[level].plane = 1767 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY], 1768 raw->plane[PLANE_SPRITE0], 1769 raw->plane[PLANE_SPRITE1]), 1770 sr_fifo_size); 1771 1772 wm_state->sr[level].cursor = 1773 vlv_invert_wm_value(raw->plane[PLANE_CURSOR], 1774 63); 1775 } 1776 1777 if (level == 0) 1778 return -EINVAL; 1779 1780 /* limit to only levels we can actually handle */ 1781 wm_state->num_levels = level; 1782 1783 /* invalidate the higher levels */ 1784 vlv_invalidate_wms(crtc, wm_state, level); 1785 1786 return 0; 1787 } 1788 1789 static int vlv_compute_pipe_wm(struct intel_atomic_state *state, 1790 struct intel_crtc *crtc) 1791 { 1792 struct intel_crtc_state *crtc_state = 1793 intel_atomic_get_new_crtc_state(state, crtc); 1794 const struct intel_plane_state *old_plane_state; 1795 const struct intel_plane_state *new_plane_state; 1796 struct intel_plane *plane; 1797 unsigned int dirty = 0; 1798 int i; 1799 1800 for_each_oldnew_intel_plane_in_state(state, plane, 1801 old_plane_state, 1802 new_plane_state, i) { 1803 if (new_plane_state->hw.crtc != &crtc->base && 1804 old_plane_state->hw.crtc != &crtc->base) 1805 continue; 1806 1807 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state)) 1808 dirty |= BIT(plane->id); 1809 } 1810 1811 /* 1812 * DSPARB registers may have been reset due to the 1813 * power well being turned off. Make sure we restore 1814 * them to a consistent state even if no primary/sprite 1815 * planes are initially active. We also force a FIFO 1816 * recomputation so that we are sure to sanitize the 1817 * FIFO setting we took over from the BIOS even if there 1818 * are no active planes on the crtc. 1819 */ 1820 if (intel_crtc_needs_modeset(crtc_state)) 1821 dirty = ~0; 1822 1823 if (!dirty) 1824 return 0; 1825 1826 /* cursor changes don't warrant a FIFO recompute */ 1827 if (dirty & ~BIT(PLANE_CURSOR)) { 1828 const struct intel_crtc_state *old_crtc_state = 1829 intel_atomic_get_old_crtc_state(state, crtc); 1830 const struct vlv_fifo_state *old_fifo_state = 1831 &old_crtc_state->wm.vlv.fifo_state; 1832 const struct vlv_fifo_state *new_fifo_state = 1833 &crtc_state->wm.vlv.fifo_state; 1834 int ret; 1835 1836 ret = vlv_compute_fifo(crtc_state); 1837 if (ret) 1838 return ret; 1839 1840 if (intel_crtc_needs_modeset(crtc_state) || 1841 memcmp(old_fifo_state, new_fifo_state, 1842 sizeof(*new_fifo_state)) != 0) 1843 crtc_state->fifo_changed = true; 1844 } 1845 1846 return _vlv_compute_pipe_wm(crtc_state); 1847 } 1848 1849 #define VLV_FIFO(plane, value) \ 1850 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV) 1851 1852 static void vlv_atomic_update_fifo(struct intel_atomic_state *state, 1853 struct intel_crtc *crtc) 1854 { 1855 struct intel_display *display = to_intel_display(crtc); 1856 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1857 struct intel_uncore *uncore = &dev_priv->uncore; 1858 const struct intel_crtc_state *crtc_state = 1859 intel_atomic_get_new_crtc_state(state, crtc); 1860 const struct vlv_fifo_state *fifo_state = 1861 &crtc_state->wm.vlv.fifo_state; 1862 int sprite0_start, sprite1_start, fifo_size; 1863 u32 dsparb, dsparb2, dsparb3; 1864 1865 if (!crtc_state->fifo_changed) 1866 return; 1867 1868 sprite0_start = fifo_state->plane[PLANE_PRIMARY]; 1869 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start; 1870 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start; 1871 1872 drm_WARN_ON(display->drm, fifo_state->plane[PLANE_CURSOR] != 63); 1873 drm_WARN_ON(display->drm, fifo_size != 511); 1874 1875 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size); 1876 1877 /* 1878 * uncore.lock serves a double purpose here. It allows us to 1879 * use the less expensive I915_{READ,WRITE}_FW() functions, and 1880 * it protects the DSPARB registers from getting clobbered by 1881 * parallel updates from multiple pipes. 1882 * 1883 * intel_pipe_update_start() has already disabled interrupts 1884 * for us, so a plain spin_lock() is sufficient here. 1885 */ 1886 spin_lock(&uncore->lock); 1887 1888 switch (crtc->pipe) { 1889 case PIPE_A: 1890 dsparb = intel_de_read_fw(display, DSPARB(display)); 1891 dsparb2 = intel_de_read_fw(display, DSPARB2); 1892 1893 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) | 1894 VLV_FIFO(SPRITEB, 0xff)); 1895 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) | 1896 VLV_FIFO(SPRITEB, sprite1_start)); 1897 1898 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) | 1899 VLV_FIFO(SPRITEB_HI, 0x1)); 1900 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) | 1901 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8)); 1902 1903 intel_de_write_fw(display, DSPARB(display), dsparb); 1904 intel_de_write_fw(display, DSPARB2, dsparb2); 1905 break; 1906 case PIPE_B: 1907 dsparb = intel_de_read_fw(display, DSPARB(display)); 1908 dsparb2 = intel_de_read_fw(display, DSPARB2); 1909 1910 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) | 1911 VLV_FIFO(SPRITED, 0xff)); 1912 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) | 1913 VLV_FIFO(SPRITED, sprite1_start)); 1914 1915 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) | 1916 VLV_FIFO(SPRITED_HI, 0xff)); 1917 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) | 1918 VLV_FIFO(SPRITED_HI, sprite1_start >> 8)); 1919 1920 intel_de_write_fw(display, DSPARB(display), dsparb); 1921 intel_de_write_fw(display, DSPARB2, dsparb2); 1922 break; 1923 case PIPE_C: 1924 dsparb3 = intel_de_read_fw(display, DSPARB3); 1925 dsparb2 = intel_de_read_fw(display, DSPARB2); 1926 1927 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) | 1928 VLV_FIFO(SPRITEF, 0xff)); 1929 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) | 1930 VLV_FIFO(SPRITEF, sprite1_start)); 1931 1932 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) | 1933 VLV_FIFO(SPRITEF_HI, 0xff)); 1934 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) | 1935 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8)); 1936 1937 intel_de_write_fw(display, DSPARB3, dsparb3); 1938 intel_de_write_fw(display, DSPARB2, dsparb2); 1939 break; 1940 default: 1941 break; 1942 } 1943 1944 intel_de_read_fw(display, DSPARB(display)); 1945 1946 spin_unlock(&uncore->lock); 1947 } 1948 1949 #undef VLV_FIFO 1950 1951 static int vlv_compute_intermediate_wm(struct intel_atomic_state *state, 1952 struct intel_crtc *crtc) 1953 { 1954 struct intel_crtc_state *new_crtc_state = 1955 intel_atomic_get_new_crtc_state(state, crtc); 1956 const struct intel_crtc_state *old_crtc_state = 1957 intel_atomic_get_old_crtc_state(state, crtc); 1958 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate; 1959 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal; 1960 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal; 1961 int level; 1962 1963 if (!new_crtc_state->hw.active || 1964 intel_crtc_needs_modeset(new_crtc_state)) { 1965 *intermediate = *optimal; 1966 1967 intermediate->cxsr = false; 1968 goto out; 1969 } 1970 1971 intermediate->num_levels = min(optimal->num_levels, active->num_levels); 1972 intermediate->cxsr = optimal->cxsr && active->cxsr && 1973 !new_crtc_state->disable_cxsr; 1974 1975 for (level = 0; level < intermediate->num_levels; level++) { 1976 enum plane_id plane_id; 1977 1978 for_each_plane_id_on_crtc(crtc, plane_id) { 1979 intermediate->wm[level].plane[plane_id] = 1980 min(optimal->wm[level].plane[plane_id], 1981 active->wm[level].plane[plane_id]); 1982 } 1983 1984 intermediate->sr[level].plane = min(optimal->sr[level].plane, 1985 active->sr[level].plane); 1986 intermediate->sr[level].cursor = min(optimal->sr[level].cursor, 1987 active->sr[level].cursor); 1988 } 1989 1990 vlv_invalidate_wms(crtc, intermediate, level); 1991 1992 out: 1993 /* 1994 * If our intermediate WM are identical to the final WM, then we can 1995 * omit the post-vblank programming; only update if it's different. 1996 */ 1997 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) 1998 new_crtc_state->wm.need_postvbl_update = true; 1999 2000 return 0; 2001 } 2002 2003 static int vlv_compute_watermarks(struct intel_atomic_state *state, 2004 struct intel_crtc *crtc) 2005 { 2006 int ret; 2007 2008 ret = vlv_compute_pipe_wm(state, crtc); 2009 if (ret) 2010 return ret; 2011 2012 ret = vlv_compute_intermediate_wm(state, crtc); 2013 if (ret) 2014 return ret; 2015 2016 return 0; 2017 } 2018 2019 static void vlv_merge_wm(struct intel_display *display, 2020 struct vlv_wm_values *wm) 2021 { 2022 struct intel_crtc *crtc; 2023 int num_active_pipes = 0; 2024 2025 wm->level = display->wm.num_levels - 1; 2026 wm->cxsr = true; 2027 2028 for_each_intel_crtc(display->drm, crtc) { 2029 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; 2030 2031 if (!crtc->active) 2032 continue; 2033 2034 if (!wm_state->cxsr) 2035 wm->cxsr = false; 2036 2037 num_active_pipes++; 2038 wm->level = min_t(int, wm->level, wm_state->num_levels - 1); 2039 } 2040 2041 if (num_active_pipes != 1) 2042 wm->cxsr = false; 2043 2044 if (num_active_pipes > 1) 2045 wm->level = VLV_WM_LEVEL_PM2; 2046 2047 for_each_intel_crtc(display->drm, crtc) { 2048 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; 2049 enum pipe pipe = crtc->pipe; 2050 2051 wm->pipe[pipe] = wm_state->wm[wm->level]; 2052 if (crtc->active && wm->cxsr) 2053 wm->sr = wm_state->sr[wm->level]; 2054 2055 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2; 2056 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2; 2057 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2; 2058 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2; 2059 } 2060 } 2061 2062 static void vlv_program_watermarks(struct intel_display *display) 2063 { 2064 struct vlv_wm_values *old_wm = &display->wm.vlv; 2065 struct vlv_wm_values new_wm = {}; 2066 2067 vlv_merge_wm(display, &new_wm); 2068 2069 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) 2070 return; 2071 2072 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) 2073 chv_set_memory_dvfs(display, false); 2074 2075 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) 2076 chv_set_memory_pm5(display, false); 2077 2078 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) 2079 _intel_set_memory_cxsr(display, false); 2080 2081 vlv_write_wm_values(display, &new_wm); 2082 2083 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) 2084 _intel_set_memory_cxsr(display, true); 2085 2086 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) 2087 chv_set_memory_pm5(display, true); 2088 2089 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) 2090 chv_set_memory_dvfs(display, true); 2091 2092 *old_wm = new_wm; 2093 } 2094 2095 static void vlv_initial_watermarks(struct intel_atomic_state *state, 2096 struct intel_crtc *crtc) 2097 { 2098 struct intel_display *display = to_intel_display(crtc); 2099 const struct intel_crtc_state *crtc_state = 2100 intel_atomic_get_new_crtc_state(state, crtc); 2101 2102 mutex_lock(&display->wm.wm_mutex); 2103 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate; 2104 vlv_program_watermarks(display); 2105 mutex_unlock(&display->wm.wm_mutex); 2106 } 2107 2108 static void vlv_optimize_watermarks(struct intel_atomic_state *state, 2109 struct intel_crtc *crtc) 2110 { 2111 struct intel_display *display = to_intel_display(crtc); 2112 const struct intel_crtc_state *crtc_state = 2113 intel_atomic_get_new_crtc_state(state, crtc); 2114 2115 if (!crtc_state->wm.need_postvbl_update) 2116 return; 2117 2118 mutex_lock(&display->wm.wm_mutex); 2119 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; 2120 vlv_program_watermarks(display); 2121 mutex_unlock(&display->wm.wm_mutex); 2122 } 2123 2124 static void i965_update_wm(struct intel_display *display) 2125 { 2126 struct intel_crtc *crtc; 2127 int srwm = 1; 2128 int cursor_sr = 16; 2129 bool cxsr_enabled; 2130 2131 /* Calc sr entries for one plane configs */ 2132 crtc = single_enabled_crtc(display); 2133 if (crtc) { 2134 /* self-refresh has much higher latency */ 2135 static const int sr_latency_ns = 12000; 2136 const struct drm_display_mode *pipe_mode = 2137 &crtc->config->hw.pipe_mode; 2138 const struct drm_framebuffer *fb = 2139 crtc->base.primary->state->fb; 2140 int pixel_rate = crtc->config->pixel_rate; 2141 int htotal = pipe_mode->crtc_htotal; 2142 int width = drm_rect_width(&crtc->base.primary->state->src) >> 16; 2143 int cpp = fb->format->cpp[0]; 2144 int entries; 2145 2146 entries = intel_wm_method2(pixel_rate, htotal, 2147 width, cpp, sr_latency_ns / 100); 2148 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE); 2149 srwm = I965_FIFO_SIZE - entries; 2150 if (srwm < 0) 2151 srwm = 1; 2152 srwm &= 0x1ff; 2153 drm_dbg_kms(display->drm, 2154 "self-refresh entries: %d, wm: %d\n", 2155 entries, srwm); 2156 2157 entries = intel_wm_method2(pixel_rate, htotal, 2158 crtc->base.cursor->state->crtc_w, 4, 2159 sr_latency_ns / 100); 2160 entries = DIV_ROUND_UP(entries, 2161 i965_cursor_wm_info.cacheline_size) + 2162 i965_cursor_wm_info.guard_size; 2163 2164 cursor_sr = i965_cursor_wm_info.fifo_size - entries; 2165 if (cursor_sr > i965_cursor_wm_info.max_wm) 2166 cursor_sr = i965_cursor_wm_info.max_wm; 2167 2168 drm_dbg_kms(display->drm, 2169 "self-refresh watermark: display plane %d " 2170 "cursor %d\n", srwm, cursor_sr); 2171 2172 cxsr_enabled = true; 2173 } else { 2174 cxsr_enabled = false; 2175 /* Turn off self refresh if both pipes are enabled */ 2176 intel_set_memory_cxsr(display, false); 2177 } 2178 2179 drm_dbg_kms(display->drm, 2180 "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", 2181 srwm); 2182 2183 /* 965 has limitations... */ 2184 intel_de_write(display, DSPFW1(display), 2185 FW_WM(srwm, SR) | 2186 FW_WM(8, CURSORB) | 2187 FW_WM(8, PLANEB) | 2188 FW_WM(8, PLANEA)); 2189 intel_de_write(display, DSPFW2(display), 2190 FW_WM(8, CURSORA) | 2191 FW_WM(8, PLANEC_OLD)); 2192 /* update cursor SR watermark */ 2193 intel_de_write(display, DSPFW3(display), 2194 FW_WM(cursor_sr, CURSOR_SR)); 2195 2196 if (cxsr_enabled) 2197 intel_set_memory_cxsr(display, true); 2198 } 2199 2200 #undef FW_WM 2201 2202 static struct intel_crtc *intel_crtc_for_plane(struct intel_display *display, 2203 enum i9xx_plane_id i9xx_plane) 2204 { 2205 struct intel_plane *plane; 2206 2207 for_each_intel_plane(display->drm, plane) { 2208 if (plane->id == PLANE_PRIMARY && 2209 plane->i9xx_plane == i9xx_plane) 2210 return intel_crtc_for_pipe(display, plane->pipe); 2211 } 2212 2213 return NULL; 2214 } 2215 2216 static void i9xx_update_wm(struct intel_display *display) 2217 { 2218 const struct intel_watermark_params *wm_info; 2219 u32 fwater_lo; 2220 u32 fwater_hi; 2221 int cwm, srwm = 1; 2222 int fifo_size; 2223 int planea_wm, planeb_wm; 2224 struct intel_crtc *crtc; 2225 2226 if (display->platform.i945gm) 2227 wm_info = &i945_wm_info; 2228 else if (DISPLAY_VER(display) != 2) 2229 wm_info = &i915_wm_info; 2230 else 2231 wm_info = &i830_a_wm_info; 2232 2233 if (DISPLAY_VER(display) == 2) 2234 fifo_size = i830_get_fifo_size(display, PLANE_A); 2235 else 2236 fifo_size = i9xx_get_fifo_size(display, PLANE_A); 2237 crtc = intel_crtc_for_plane(display, PLANE_A); 2238 if (intel_crtc_active(crtc)) { 2239 const struct drm_framebuffer *fb = 2240 crtc->base.primary->state->fb; 2241 int cpp; 2242 2243 if (DISPLAY_VER(display) == 2) 2244 cpp = 4; 2245 else 2246 cpp = fb->format->cpp[0]; 2247 2248 planea_wm = intel_calculate_wm(display, crtc->config->pixel_rate, 2249 wm_info, fifo_size, cpp, 2250 pessimal_latency_ns); 2251 } else { 2252 planea_wm = fifo_size - wm_info->guard_size; 2253 if (planea_wm > (long)wm_info->max_wm) 2254 planea_wm = wm_info->max_wm; 2255 } 2256 2257 if (DISPLAY_VER(display) == 2) 2258 wm_info = &i830_bc_wm_info; 2259 2260 if (DISPLAY_VER(display) == 2) 2261 fifo_size = i830_get_fifo_size(display, PLANE_B); 2262 else 2263 fifo_size = i9xx_get_fifo_size(display, PLANE_B); 2264 crtc = intel_crtc_for_plane(display, PLANE_B); 2265 if (intel_crtc_active(crtc)) { 2266 const struct drm_framebuffer *fb = 2267 crtc->base.primary->state->fb; 2268 int cpp; 2269 2270 if (DISPLAY_VER(display) == 2) 2271 cpp = 4; 2272 else 2273 cpp = fb->format->cpp[0]; 2274 2275 planeb_wm = intel_calculate_wm(display, crtc->config->pixel_rate, 2276 wm_info, fifo_size, cpp, 2277 pessimal_latency_ns); 2278 } else { 2279 planeb_wm = fifo_size - wm_info->guard_size; 2280 if (planeb_wm > (long)wm_info->max_wm) 2281 planeb_wm = wm_info->max_wm; 2282 } 2283 2284 drm_dbg_kms(display->drm, 2285 "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); 2286 2287 crtc = single_enabled_crtc(display); 2288 if (display->platform.i915gm && crtc) { 2289 struct drm_gem_object *obj; 2290 2291 obj = intel_fb_bo(crtc->base.primary->state->fb); 2292 2293 /* self-refresh seems busted with untiled */ 2294 if (!intel_bo_is_tiled(obj)) 2295 crtc = NULL; 2296 } 2297 2298 /* 2299 * Overlay gets an aggressive default since video jitter is bad. 2300 */ 2301 cwm = 2; 2302 2303 /* Play safe and disable self-refresh before adjusting watermarks. */ 2304 intel_set_memory_cxsr(display, false); 2305 2306 /* Calc sr entries for one plane configs */ 2307 if (HAS_FW_BLC(display) && crtc) { 2308 /* self-refresh has much higher latency */ 2309 static const int sr_latency_ns = 6000; 2310 const struct drm_display_mode *pipe_mode = 2311 &crtc->config->hw.pipe_mode; 2312 const struct drm_framebuffer *fb = 2313 crtc->base.primary->state->fb; 2314 int pixel_rate = crtc->config->pixel_rate; 2315 int htotal = pipe_mode->crtc_htotal; 2316 int width = drm_rect_width(&crtc->base.primary->state->src) >> 16; 2317 int cpp; 2318 int entries; 2319 2320 if (display->platform.i915gm || display->platform.i945gm) 2321 cpp = 4; 2322 else 2323 cpp = fb->format->cpp[0]; 2324 2325 entries = intel_wm_method2(pixel_rate, htotal, width, cpp, 2326 sr_latency_ns / 100); 2327 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size); 2328 drm_dbg_kms(display->drm, 2329 "self-refresh entries: %d\n", entries); 2330 srwm = wm_info->fifo_size - entries; 2331 if (srwm < 0) 2332 srwm = 1; 2333 2334 if (display->platform.i945g || display->platform.i945gm) 2335 intel_de_write(display, FW_BLC_SELF, 2336 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); 2337 else 2338 intel_de_write(display, FW_BLC_SELF, srwm & 0x3f); 2339 } 2340 2341 drm_dbg_kms(display->drm, 2342 "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", 2343 planea_wm, planeb_wm, cwm, srwm); 2344 2345 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); 2346 fwater_hi = (cwm & 0x1f); 2347 2348 /* Set request length to 8 cachelines per fetch */ 2349 fwater_lo = fwater_lo | (1 << 24) | (1 << 8); 2350 fwater_hi = fwater_hi | (1 << 8); 2351 2352 intel_de_write(display, FW_BLC, fwater_lo); 2353 intel_de_write(display, FW_BLC2, fwater_hi); 2354 2355 if (crtc) 2356 intel_set_memory_cxsr(display, true); 2357 } 2358 2359 static void i845_update_wm(struct intel_display *display) 2360 { 2361 struct intel_crtc *crtc; 2362 u32 fwater_lo; 2363 int planea_wm; 2364 2365 crtc = single_enabled_crtc(display); 2366 if (crtc == NULL) 2367 return; 2368 2369 planea_wm = intel_calculate_wm(display, crtc->config->pixel_rate, 2370 &i845_wm_info, 2371 i845_get_fifo_size(display, PLANE_A), 2372 4, pessimal_latency_ns); 2373 fwater_lo = intel_de_read(display, FW_BLC) & ~0xfff; 2374 fwater_lo |= (3<<8) | planea_wm; 2375 2376 drm_dbg_kms(display->drm, 2377 "Setting FIFO watermarks - A: %d\n", planea_wm); 2378 2379 intel_de_write(display, FW_BLC, fwater_lo); 2380 } 2381 2382 /* latency must be in 0.1us units. */ 2383 static unsigned int ilk_wm_method1(unsigned int pixel_rate, 2384 unsigned int cpp, 2385 unsigned int latency) 2386 { 2387 unsigned int ret; 2388 2389 ret = intel_wm_method1(pixel_rate, cpp, latency); 2390 ret = DIV_ROUND_UP(ret, 64) + 2; 2391 2392 return ret; 2393 } 2394 2395 /* latency must be in 0.1us units. */ 2396 static unsigned int ilk_wm_method2(unsigned int pixel_rate, 2397 unsigned int htotal, 2398 unsigned int width, 2399 unsigned int cpp, 2400 unsigned int latency) 2401 { 2402 unsigned int ret; 2403 2404 ret = intel_wm_method2(pixel_rate, htotal, 2405 width, cpp, latency); 2406 ret = DIV_ROUND_UP(ret, 64) + 2; 2407 2408 return ret; 2409 } 2410 2411 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp) 2412 { 2413 /* 2414 * Neither of these should be possible since this function shouldn't be 2415 * called if the CRTC is off or the plane is invisible. But let's be 2416 * extra paranoid to avoid a potential divide-by-zero if we screw up 2417 * elsewhere in the driver. 2418 */ 2419 if (WARN_ON(!cpp)) 2420 return 0; 2421 if (WARN_ON(!horiz_pixels)) 2422 return 0; 2423 2424 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2; 2425 } 2426 2427 struct ilk_wm_maximums { 2428 u16 pri; 2429 u16 spr; 2430 u16 cur; 2431 u16 fbc; 2432 }; 2433 2434 /* 2435 * For both WM_PIPE and WM_LP. 2436 * mem_value must be in 0.1us units. 2437 */ 2438 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state, 2439 const struct intel_plane_state *plane_state, 2440 u32 mem_value, bool is_lp) 2441 { 2442 u32 method1, method2; 2443 int cpp; 2444 2445 if (mem_value == 0) 2446 return U32_MAX; 2447 2448 if (!intel_wm_plane_visible(crtc_state, plane_state)) 2449 return 0; 2450 2451 cpp = plane_state->hw.fb->format->cpp[0]; 2452 2453 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value); 2454 2455 if (!is_lp) 2456 return method1; 2457 2458 method2 = ilk_wm_method2(crtc_state->pixel_rate, 2459 crtc_state->hw.pipe_mode.crtc_htotal, 2460 drm_rect_width(&plane_state->uapi.src) >> 16, 2461 cpp, mem_value); 2462 2463 return min(method1, method2); 2464 } 2465 2466 /* 2467 * For both WM_PIPE and WM_LP. 2468 * mem_value must be in 0.1us units. 2469 */ 2470 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state, 2471 const struct intel_plane_state *plane_state, 2472 u32 mem_value) 2473 { 2474 u32 method1, method2; 2475 int cpp; 2476 2477 if (mem_value == 0) 2478 return U32_MAX; 2479 2480 if (!intel_wm_plane_visible(crtc_state, plane_state)) 2481 return 0; 2482 2483 cpp = plane_state->hw.fb->format->cpp[0]; 2484 2485 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value); 2486 method2 = ilk_wm_method2(crtc_state->pixel_rate, 2487 crtc_state->hw.pipe_mode.crtc_htotal, 2488 drm_rect_width(&plane_state->uapi.src) >> 16, 2489 cpp, mem_value); 2490 return min(method1, method2); 2491 } 2492 2493 /* 2494 * For both WM_PIPE and WM_LP. 2495 * mem_value must be in 0.1us units. 2496 */ 2497 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state, 2498 const struct intel_plane_state *plane_state, 2499 u32 mem_value) 2500 { 2501 int cpp; 2502 2503 if (mem_value == 0) 2504 return U32_MAX; 2505 2506 if (!intel_wm_plane_visible(crtc_state, plane_state)) 2507 return 0; 2508 2509 cpp = plane_state->hw.fb->format->cpp[0]; 2510 2511 return ilk_wm_method2(crtc_state->pixel_rate, 2512 crtc_state->hw.pipe_mode.crtc_htotal, 2513 drm_rect_width(&plane_state->uapi.src) >> 16, 2514 cpp, mem_value); 2515 } 2516 2517 /* Only for WM_LP. */ 2518 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state, 2519 const struct intel_plane_state *plane_state, 2520 u32 pri_val) 2521 { 2522 int cpp; 2523 2524 if (!intel_wm_plane_visible(crtc_state, plane_state)) 2525 return 0; 2526 2527 cpp = plane_state->hw.fb->format->cpp[0]; 2528 2529 return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.src) >> 16, 2530 cpp); 2531 } 2532 2533 static unsigned int 2534 ilk_display_fifo_size(struct intel_display *display) 2535 { 2536 if (DISPLAY_VER(display) >= 8) 2537 return 3072; 2538 else if (DISPLAY_VER(display) >= 7) 2539 return 768; 2540 else 2541 return 512; 2542 } 2543 2544 static unsigned int 2545 ilk_plane_wm_reg_max(struct intel_display *display, 2546 int level, bool is_sprite) 2547 { 2548 if (DISPLAY_VER(display) >= 8) 2549 /* BDW primary/sprite plane watermarks */ 2550 return level == 0 ? 255 : 2047; 2551 else if (DISPLAY_VER(display) >= 7) 2552 /* IVB/HSW primary/sprite plane watermarks */ 2553 return level == 0 ? 127 : 1023; 2554 else if (!is_sprite) 2555 /* ILK/SNB primary plane watermarks */ 2556 return level == 0 ? 127 : 511; 2557 else 2558 /* ILK/SNB sprite plane watermarks */ 2559 return level == 0 ? 63 : 255; 2560 } 2561 2562 static unsigned int 2563 ilk_cursor_wm_reg_max(struct intel_display *display, int level) 2564 { 2565 if (DISPLAY_VER(display) >= 7) 2566 return level == 0 ? 63 : 255; 2567 else 2568 return level == 0 ? 31 : 63; 2569 } 2570 2571 static unsigned int ilk_fbc_wm_reg_max(struct intel_display *display) 2572 { 2573 if (DISPLAY_VER(display) >= 8) 2574 return 31; 2575 else 2576 return 15; 2577 } 2578 2579 /* Calculate the maximum primary/sprite plane watermark */ 2580 static unsigned int ilk_plane_wm_max(struct intel_display *display, 2581 int level, 2582 const struct intel_wm_config *config, 2583 enum intel_ddb_partitioning ddb_partitioning, 2584 bool is_sprite) 2585 { 2586 unsigned int fifo_size = ilk_display_fifo_size(display); 2587 2588 /* if sprites aren't enabled, sprites get nothing */ 2589 if (is_sprite && !config->sprites_enabled) 2590 return 0; 2591 2592 /* HSW allows LP1+ watermarks even with multiple pipes */ 2593 if (level == 0 || config->num_pipes_active > 1) { 2594 fifo_size /= INTEL_NUM_PIPES(display); 2595 2596 /* 2597 * For some reason the non self refresh 2598 * FIFO size is only half of the self 2599 * refresh FIFO size on ILK/SNB. 2600 */ 2601 if (DISPLAY_VER(display) < 7) 2602 fifo_size /= 2; 2603 } 2604 2605 if (config->sprites_enabled) { 2606 /* level 0 is always calculated with 1:1 split */ 2607 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) { 2608 if (is_sprite) 2609 fifo_size *= 5; 2610 fifo_size /= 6; 2611 } else { 2612 fifo_size /= 2; 2613 } 2614 } 2615 2616 /* clamp to max that the registers can hold */ 2617 return min(fifo_size, ilk_plane_wm_reg_max(display, level, is_sprite)); 2618 } 2619 2620 /* Calculate the maximum cursor plane watermark */ 2621 static unsigned int ilk_cursor_wm_max(struct intel_display *display, 2622 int level, 2623 const struct intel_wm_config *config) 2624 { 2625 /* HSW LP1+ watermarks w/ multiple pipes */ 2626 if (level > 0 && config->num_pipes_active > 1) 2627 return 64; 2628 2629 /* otherwise just report max that registers can hold */ 2630 return ilk_cursor_wm_reg_max(display, level); 2631 } 2632 2633 static void ilk_compute_wm_maximums(struct intel_display *display, 2634 int level, 2635 const struct intel_wm_config *config, 2636 enum intel_ddb_partitioning ddb_partitioning, 2637 struct ilk_wm_maximums *max) 2638 { 2639 max->pri = ilk_plane_wm_max(display, level, config, ddb_partitioning, false); 2640 max->spr = ilk_plane_wm_max(display, level, config, ddb_partitioning, true); 2641 max->cur = ilk_cursor_wm_max(display, level, config); 2642 max->fbc = ilk_fbc_wm_reg_max(display); 2643 } 2644 2645 static void ilk_compute_wm_reg_maximums(struct intel_display *display, 2646 int level, 2647 struct ilk_wm_maximums *max) 2648 { 2649 max->pri = ilk_plane_wm_reg_max(display, level, false); 2650 max->spr = ilk_plane_wm_reg_max(display, level, true); 2651 max->cur = ilk_cursor_wm_reg_max(display, level); 2652 max->fbc = ilk_fbc_wm_reg_max(display); 2653 } 2654 2655 static bool ilk_validate_wm_level(struct intel_display *display, 2656 int level, 2657 const struct ilk_wm_maximums *max, 2658 struct intel_wm_level *result) 2659 { 2660 bool ret; 2661 2662 /* already determined to be invalid? */ 2663 if (!result->enable) 2664 return false; 2665 2666 result->enable = result->pri_val <= max->pri && 2667 result->spr_val <= max->spr && 2668 result->cur_val <= max->cur; 2669 2670 ret = result->enable; 2671 2672 /* 2673 * HACK until we can pre-compute everything, 2674 * and thus fail gracefully if LP0 watermarks 2675 * are exceeded... 2676 */ 2677 if (level == 0 && !result->enable) { 2678 if (result->pri_val > max->pri) 2679 drm_dbg_kms(display->drm, 2680 "Primary WM%d too large %u (max %u)\n", 2681 level, result->pri_val, max->pri); 2682 if (result->spr_val > max->spr) 2683 drm_dbg_kms(display->drm, 2684 "Sprite WM%d too large %u (max %u)\n", 2685 level, result->spr_val, max->spr); 2686 if (result->cur_val > max->cur) 2687 drm_dbg_kms(display->drm, 2688 "Cursor WM%d too large %u (max %u)\n", 2689 level, result->cur_val, max->cur); 2690 2691 result->pri_val = min_t(u32, result->pri_val, max->pri); 2692 result->spr_val = min_t(u32, result->spr_val, max->spr); 2693 result->cur_val = min_t(u32, result->cur_val, max->cur); 2694 result->enable = true; 2695 } 2696 2697 return ret; 2698 } 2699 2700 static void ilk_compute_wm_level(struct intel_display *display, 2701 const struct intel_crtc *crtc, 2702 int level, 2703 struct intel_crtc_state *crtc_state, 2704 const struct intel_plane_state *pristate, 2705 const struct intel_plane_state *sprstate, 2706 const struct intel_plane_state *curstate, 2707 struct intel_wm_level *result) 2708 { 2709 u16 pri_latency = display->wm.pri_latency[level]; 2710 u16 spr_latency = display->wm.spr_latency[level]; 2711 u16 cur_latency = display->wm.cur_latency[level]; 2712 2713 /* WM1+ latency values stored in 0.5us units */ 2714 if (level > 0) { 2715 pri_latency *= 5; 2716 spr_latency *= 5; 2717 cur_latency *= 5; 2718 } 2719 2720 if (pristate) { 2721 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate, 2722 pri_latency, level); 2723 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val); 2724 } 2725 2726 if (sprstate) 2727 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency); 2728 2729 if (curstate) 2730 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency); 2731 2732 result->enable = true; 2733 } 2734 2735 static void hsw_read_wm_latency(struct intel_display *display, u16 wm[]) 2736 { 2737 struct drm_i915_private *i915 = to_i915(display->drm); 2738 u64 sskpd; 2739 2740 display->wm.num_levels = 5; 2741 2742 sskpd = intel_uncore_read64(&i915->uncore, MCH_SSKPD); 2743 2744 wm[0] = REG_FIELD_GET64(SSKPD_NEW_WM0_MASK_HSW, sskpd); 2745 if (wm[0] == 0) 2746 wm[0] = REG_FIELD_GET64(SSKPD_OLD_WM0_MASK_HSW, sskpd); 2747 wm[1] = REG_FIELD_GET64(SSKPD_WM1_MASK_HSW, sskpd); 2748 wm[2] = REG_FIELD_GET64(SSKPD_WM2_MASK_HSW, sskpd); 2749 wm[3] = REG_FIELD_GET64(SSKPD_WM3_MASK_HSW, sskpd); 2750 wm[4] = REG_FIELD_GET64(SSKPD_WM4_MASK_HSW, sskpd); 2751 } 2752 2753 static void snb_read_wm_latency(struct intel_display *display, u16 wm[]) 2754 { 2755 struct drm_i915_private *i915 = to_i915(display->drm); 2756 u32 sskpd; 2757 2758 display->wm.num_levels = 4; 2759 2760 sskpd = intel_uncore_read(&i915->uncore, MCH_SSKPD); 2761 2762 wm[0] = REG_FIELD_GET(SSKPD_WM0_MASK_SNB, sskpd); 2763 wm[1] = REG_FIELD_GET(SSKPD_WM1_MASK_SNB, sskpd); 2764 wm[2] = REG_FIELD_GET(SSKPD_WM2_MASK_SNB, sskpd); 2765 wm[3] = REG_FIELD_GET(SSKPD_WM3_MASK_SNB, sskpd); 2766 } 2767 2768 static void ilk_read_wm_latency(struct intel_display *display, u16 wm[]) 2769 { 2770 struct drm_i915_private *i915 = to_i915(display->drm); 2771 u32 mltr; 2772 2773 display->wm.num_levels = 3; 2774 2775 mltr = intel_uncore_read(&i915->uncore, MLTR_ILK); 2776 2777 /* ILK primary LP0 latency is 700 ns */ 2778 wm[0] = 7; 2779 wm[1] = REG_FIELD_GET(MLTR_WM1_MASK, mltr); 2780 wm[2] = REG_FIELD_GET(MLTR_WM2_MASK, mltr); 2781 } 2782 2783 static void intel_fixup_spr_wm_latency(struct intel_display *display, u16 wm[5]) 2784 { 2785 /* ILK sprite LP0 latency is 1300 ns */ 2786 if (DISPLAY_VER(display) == 5) 2787 wm[0] = 13; 2788 } 2789 2790 static void intel_fixup_cur_wm_latency(struct intel_display *display, u16 wm[5]) 2791 { 2792 /* ILK cursor LP0 latency is 1300 ns */ 2793 if (DISPLAY_VER(display) == 5) 2794 wm[0] = 13; 2795 } 2796 2797 static bool ilk_increase_wm_latency(struct intel_display *display, u16 wm[5], u16 min) 2798 { 2799 int level; 2800 2801 if (wm[0] >= min) 2802 return false; 2803 2804 wm[0] = max(wm[0], min); 2805 for (level = 1; level < display->wm.num_levels; level++) 2806 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5)); 2807 2808 return true; 2809 } 2810 2811 static void snb_wm_latency_quirk(struct intel_display *display) 2812 { 2813 bool changed; 2814 2815 /* 2816 * The BIOS provided WM memory latency values are often 2817 * inadequate for high resolution displays. Adjust them. 2818 */ 2819 changed = ilk_increase_wm_latency(display, display->wm.pri_latency, 12); 2820 changed |= ilk_increase_wm_latency(display, display->wm.spr_latency, 12); 2821 changed |= ilk_increase_wm_latency(display, display->wm.cur_latency, 12); 2822 2823 if (!changed) 2824 return; 2825 2826 drm_dbg_kms(display->drm, 2827 "WM latency values increased to avoid potential underruns\n"); 2828 intel_print_wm_latency(display, "Primary", display->wm.pri_latency); 2829 intel_print_wm_latency(display, "Sprite", display->wm.spr_latency); 2830 intel_print_wm_latency(display, "Cursor", display->wm.cur_latency); 2831 } 2832 2833 static void snb_wm_lp3_irq_quirk(struct intel_display *display) 2834 { 2835 /* 2836 * On some SNB machines (Thinkpad X220 Tablet at least) 2837 * LP3 usage can cause vblank interrupts to be lost. 2838 * The DEIIR bit will go high but it looks like the CPU 2839 * never gets interrupted. 2840 * 2841 * It's not clear whether other interrupt source could 2842 * be affected or if this is somehow limited to vblank 2843 * interrupts only. To play it safe we disable LP3 2844 * watermarks entirely. 2845 */ 2846 if (display->wm.pri_latency[3] == 0 && 2847 display->wm.spr_latency[3] == 0 && 2848 display->wm.cur_latency[3] == 0) 2849 return; 2850 2851 display->wm.pri_latency[3] = 0; 2852 display->wm.spr_latency[3] = 0; 2853 display->wm.cur_latency[3] = 0; 2854 2855 drm_dbg_kms(display->drm, 2856 "LP3 watermarks disabled due to potential for lost interrupts\n"); 2857 intel_print_wm_latency(display, "Primary", display->wm.pri_latency); 2858 intel_print_wm_latency(display, "Sprite", display->wm.spr_latency); 2859 intel_print_wm_latency(display, "Cursor", display->wm.cur_latency); 2860 } 2861 2862 static void ilk_setup_wm_latency(struct intel_display *display) 2863 { 2864 if (display->platform.broadwell || display->platform.haswell) 2865 hsw_read_wm_latency(display, display->wm.pri_latency); 2866 else if (DISPLAY_VER(display) >= 6) 2867 snb_read_wm_latency(display, display->wm.pri_latency); 2868 else 2869 ilk_read_wm_latency(display, display->wm.pri_latency); 2870 2871 memcpy(display->wm.spr_latency, display->wm.pri_latency, 2872 sizeof(display->wm.pri_latency)); 2873 memcpy(display->wm.cur_latency, display->wm.pri_latency, 2874 sizeof(display->wm.pri_latency)); 2875 2876 intel_fixup_spr_wm_latency(display, display->wm.spr_latency); 2877 intel_fixup_cur_wm_latency(display, display->wm.cur_latency); 2878 2879 intel_print_wm_latency(display, "Primary", display->wm.pri_latency); 2880 intel_print_wm_latency(display, "Sprite", display->wm.spr_latency); 2881 intel_print_wm_latency(display, "Cursor", display->wm.cur_latency); 2882 2883 if (DISPLAY_VER(display) == 6) { 2884 snb_wm_latency_quirk(display); 2885 snb_wm_lp3_irq_quirk(display); 2886 } 2887 } 2888 2889 static bool ilk_validate_pipe_wm(struct intel_display *display, 2890 struct intel_pipe_wm *pipe_wm) 2891 { 2892 /* LP0 watermark maximums depend on this pipe alone */ 2893 const struct intel_wm_config config = { 2894 .num_pipes_active = 1, 2895 .sprites_enabled = pipe_wm->sprites_enabled, 2896 .sprites_scaled = pipe_wm->sprites_scaled, 2897 }; 2898 struct ilk_wm_maximums max; 2899 2900 /* LP0 watermarks always use 1/2 DDB partitioning */ 2901 ilk_compute_wm_maximums(display, 0, &config, INTEL_DDB_PART_1_2, &max); 2902 2903 /* At least LP0 must be valid */ 2904 if (!ilk_validate_wm_level(display, 0, &max, &pipe_wm->wm[0])) { 2905 drm_dbg_kms(display->drm, "LP0 watermark invalid\n"); 2906 return false; 2907 } 2908 2909 return true; 2910 } 2911 2912 /* Compute new watermarks for the pipe */ 2913 static int ilk_compute_pipe_wm(struct intel_atomic_state *state, 2914 struct intel_crtc *crtc) 2915 { 2916 struct intel_display *display = to_intel_display(state); 2917 struct intel_crtc_state *crtc_state = 2918 intel_atomic_get_new_crtc_state(state, crtc); 2919 struct intel_pipe_wm *pipe_wm; 2920 struct intel_plane *plane; 2921 const struct intel_plane_state *plane_state; 2922 const struct intel_plane_state *pristate = NULL; 2923 const struct intel_plane_state *sprstate = NULL; 2924 const struct intel_plane_state *curstate = NULL; 2925 struct ilk_wm_maximums max; 2926 int level, usable_level; 2927 2928 pipe_wm = &crtc_state->wm.ilk.optimal; 2929 2930 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) { 2931 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY) 2932 pristate = plane_state; 2933 else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY) 2934 sprstate = plane_state; 2935 else if (plane->base.type == DRM_PLANE_TYPE_CURSOR) 2936 curstate = plane_state; 2937 } 2938 2939 pipe_wm->pipe_enabled = crtc_state->hw.active; 2940 pipe_wm->sprites_enabled = crtc_state->active_planes & BIT(PLANE_SPRITE0); 2941 pipe_wm->sprites_scaled = crtc_state->scaled_planes & BIT(PLANE_SPRITE0); 2942 2943 usable_level = display->wm.num_levels - 1; 2944 2945 /* ILK/SNB: LP2+ watermarks only w/o sprites */ 2946 if (DISPLAY_VER(display) < 7 && pipe_wm->sprites_enabled) 2947 usable_level = 1; 2948 2949 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */ 2950 if (pipe_wm->sprites_scaled) 2951 usable_level = 0; 2952 2953 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm)); 2954 ilk_compute_wm_level(display, crtc, 0, crtc_state, 2955 pristate, sprstate, curstate, &pipe_wm->wm[0]); 2956 2957 if (!ilk_validate_pipe_wm(display, pipe_wm)) 2958 return -EINVAL; 2959 2960 ilk_compute_wm_reg_maximums(display, 1, &max); 2961 2962 for (level = 1; level <= usable_level; level++) { 2963 struct intel_wm_level *wm = &pipe_wm->wm[level]; 2964 2965 ilk_compute_wm_level(display, crtc, level, crtc_state, 2966 pristate, sprstate, curstate, wm); 2967 2968 /* 2969 * Disable any watermark level that exceeds the 2970 * register maximums since such watermarks are 2971 * always invalid. 2972 */ 2973 if (!ilk_validate_wm_level(display, level, &max, wm)) { 2974 memset(wm, 0, sizeof(*wm)); 2975 break; 2976 } 2977 } 2978 2979 return 0; 2980 } 2981 2982 /* 2983 * Build a set of 'intermediate' watermark values that satisfy both the old 2984 * state and the new state. These can be programmed to the hardware 2985 * immediately. 2986 */ 2987 static int ilk_compute_intermediate_wm(struct intel_atomic_state *state, 2988 struct intel_crtc *crtc) 2989 { 2990 struct intel_display *display = to_intel_display(crtc); 2991 struct intel_crtc_state *new_crtc_state = 2992 intel_atomic_get_new_crtc_state(state, crtc); 2993 const struct intel_crtc_state *old_crtc_state = 2994 intel_atomic_get_old_crtc_state(state, crtc); 2995 struct intel_pipe_wm *intermediate = &new_crtc_state->wm.ilk.intermediate; 2996 const struct intel_pipe_wm *optimal = &new_crtc_state->wm.ilk.optimal; 2997 const struct intel_pipe_wm *active = &old_crtc_state->wm.ilk.optimal; 2998 int level; 2999 3000 /* 3001 * Start with the final, target watermarks, then combine with the 3002 * currently active watermarks to get values that are safe both before 3003 * and after the vblank. 3004 */ 3005 *intermediate = *optimal; 3006 if (!new_crtc_state->hw.active || 3007 intel_crtc_needs_modeset(new_crtc_state) || 3008 state->skip_intermediate_wm) 3009 return 0; 3010 3011 intermediate->pipe_enabled |= active->pipe_enabled; 3012 intermediate->sprites_enabled |= active->sprites_enabled; 3013 intermediate->sprites_scaled |= active->sprites_scaled; 3014 3015 for (level = 0; level < display->wm.num_levels; level++) { 3016 struct intel_wm_level *intermediate_wm = &intermediate->wm[level]; 3017 const struct intel_wm_level *active_wm = &active->wm[level]; 3018 3019 intermediate_wm->enable &= active_wm->enable; 3020 intermediate_wm->pri_val = max(intermediate_wm->pri_val, 3021 active_wm->pri_val); 3022 intermediate_wm->spr_val = max(intermediate_wm->spr_val, 3023 active_wm->spr_val); 3024 intermediate_wm->cur_val = max(intermediate_wm->cur_val, 3025 active_wm->cur_val); 3026 intermediate_wm->fbc_val = max(intermediate_wm->fbc_val, 3027 active_wm->fbc_val); 3028 } 3029 3030 /* 3031 * We need to make sure that these merged watermark values are 3032 * actually a valid configuration themselves. If they're not, 3033 * there's no safe way to transition from the old state to 3034 * the new state, so we need to fail the atomic transaction. 3035 */ 3036 if (!ilk_validate_pipe_wm(display, intermediate)) 3037 return -EINVAL; 3038 3039 /* 3040 * If our intermediate WM are identical to the final WM, then we can 3041 * omit the post-vblank programming; only update if it's different. 3042 */ 3043 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) 3044 new_crtc_state->wm.need_postvbl_update = true; 3045 3046 return 0; 3047 } 3048 3049 static int ilk_compute_watermarks(struct intel_atomic_state *state, 3050 struct intel_crtc *crtc) 3051 { 3052 int ret; 3053 3054 ret = ilk_compute_pipe_wm(state, crtc); 3055 if (ret) 3056 return ret; 3057 3058 ret = ilk_compute_intermediate_wm(state, crtc); 3059 if (ret) 3060 return ret; 3061 3062 return 0; 3063 } 3064 3065 /* 3066 * Merge the watermarks from all active pipes for a specific level. 3067 */ 3068 static void ilk_merge_wm_level(struct intel_display *display, 3069 int level, 3070 struct intel_wm_level *ret_wm) 3071 { 3072 const struct intel_crtc *crtc; 3073 3074 ret_wm->enable = true; 3075 3076 for_each_intel_crtc(display->drm, crtc) { 3077 const struct intel_pipe_wm *active = &crtc->wm.active.ilk; 3078 const struct intel_wm_level *wm = &active->wm[level]; 3079 3080 if (!active->pipe_enabled) 3081 continue; 3082 3083 /* 3084 * The watermark values may have been used in the past, 3085 * so we must maintain them in the registers for some 3086 * time even if the level is now disabled. 3087 */ 3088 if (!wm->enable) 3089 ret_wm->enable = false; 3090 3091 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val); 3092 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val); 3093 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val); 3094 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val); 3095 } 3096 } 3097 3098 /* 3099 * Merge all low power watermarks for all active pipes. 3100 */ 3101 static void ilk_wm_merge(struct intel_display *display, 3102 const struct intel_wm_config *config, 3103 const struct ilk_wm_maximums *max, 3104 struct intel_pipe_wm *merged) 3105 { 3106 int level, num_levels = display->wm.num_levels; 3107 int last_enabled_level = num_levels - 1; 3108 3109 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */ 3110 if ((DISPLAY_VER(display) < 7 || display->platform.ivybridge) && 3111 config->num_pipes_active > 1) 3112 last_enabled_level = 0; 3113 3114 /* ILK: FBC WM must be disabled always */ 3115 merged->fbc_wm_enabled = DISPLAY_VER(display) >= 6; 3116 3117 /* merge each WM1+ level */ 3118 for (level = 1; level < num_levels; level++) { 3119 struct intel_wm_level *wm = &merged->wm[level]; 3120 3121 ilk_merge_wm_level(display, level, wm); 3122 3123 if (level > last_enabled_level) 3124 wm->enable = false; 3125 else if (!ilk_validate_wm_level(display, level, max, wm)) 3126 /* make sure all following levels get disabled */ 3127 last_enabled_level = level - 1; 3128 3129 /* 3130 * The spec says it is preferred to disable 3131 * FBC WMs instead of disabling a WM level. 3132 */ 3133 if (wm->fbc_val > max->fbc) { 3134 if (wm->enable) 3135 merged->fbc_wm_enabled = false; 3136 wm->fbc_val = 0; 3137 } 3138 } 3139 3140 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */ 3141 if (DISPLAY_VER(display) == 5 && HAS_FBC(display) && 3142 display->params.enable_fbc && !merged->fbc_wm_enabled) { 3143 for (level = 2; level < num_levels; level++) { 3144 struct intel_wm_level *wm = &merged->wm[level]; 3145 3146 wm->enable = false; 3147 } 3148 } 3149 } 3150 3151 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm) 3152 { 3153 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */ 3154 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable); 3155 } 3156 3157 /* The value we need to program into the WM_LPx latency field */ 3158 static unsigned int ilk_wm_lp_latency(struct intel_display *display, 3159 int level) 3160 { 3161 if (display->platform.haswell || display->platform.broadwell) 3162 return 2 * level; 3163 else 3164 return display->wm.pri_latency[level]; 3165 } 3166 3167 static void ilk_compute_wm_results(struct intel_display *display, 3168 const struct intel_pipe_wm *merged, 3169 enum intel_ddb_partitioning partitioning, 3170 struct ilk_wm_values *results) 3171 { 3172 struct intel_crtc *crtc; 3173 int level, wm_lp; 3174 3175 results->enable_fbc_wm = merged->fbc_wm_enabled; 3176 results->partitioning = partitioning; 3177 3178 /* LP1+ register values */ 3179 for (wm_lp = 1; wm_lp <= 3; wm_lp++) { 3180 const struct intel_wm_level *r; 3181 3182 level = ilk_wm_lp_to_level(wm_lp, merged); 3183 3184 r = &merged->wm[level]; 3185 3186 /* 3187 * Maintain the watermark values even if the level is 3188 * disabled. Doing otherwise could cause underruns. 3189 */ 3190 results->wm_lp[wm_lp - 1] = 3191 WM_LP_LATENCY(ilk_wm_lp_latency(display, level)) | 3192 WM_LP_PRIMARY(r->pri_val) | 3193 WM_LP_CURSOR(r->cur_val); 3194 3195 if (r->enable) 3196 results->wm_lp[wm_lp - 1] |= WM_LP_ENABLE; 3197 3198 if (DISPLAY_VER(display) >= 8) 3199 results->wm_lp[wm_lp - 1] |= WM_LP_FBC_BDW(r->fbc_val); 3200 else 3201 results->wm_lp[wm_lp - 1] |= WM_LP_FBC_ILK(r->fbc_val); 3202 3203 results->wm_lp_spr[wm_lp - 1] = WM_LP_SPRITE(r->spr_val); 3204 3205 /* 3206 * Always set WM_LP_SPRITE_EN when spr_val != 0, even if the 3207 * level is disabled. Doing otherwise could cause underruns. 3208 */ 3209 if (DISPLAY_VER(display) < 7 && r->spr_val) { 3210 drm_WARN_ON(display->drm, wm_lp != 1); 3211 results->wm_lp_spr[wm_lp - 1] |= WM_LP_SPRITE_ENABLE; 3212 } 3213 } 3214 3215 /* LP0 register values */ 3216 for_each_intel_crtc(display->drm, crtc) { 3217 enum pipe pipe = crtc->pipe; 3218 const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk; 3219 const struct intel_wm_level *r = &pipe_wm->wm[0]; 3220 3221 if (drm_WARN_ON(display->drm, !r->enable)) 3222 continue; 3223 3224 results->wm_pipe[pipe] = 3225 WM0_PIPE_PRIMARY(r->pri_val) | 3226 WM0_PIPE_SPRITE(r->spr_val) | 3227 WM0_PIPE_CURSOR(r->cur_val); 3228 } 3229 } 3230 3231 /* 3232 * Find the result with the highest level enabled. Check for enable_fbc_wm in 3233 * case both are at the same level. Prefer r1 in case they're the same. 3234 */ 3235 static struct intel_pipe_wm * 3236 ilk_find_best_result(struct intel_display *display, 3237 struct intel_pipe_wm *r1, 3238 struct intel_pipe_wm *r2) 3239 { 3240 int level, level1 = 0, level2 = 0; 3241 3242 for (level = 1; level < display->wm.num_levels; level++) { 3243 if (r1->wm[level].enable) 3244 level1 = level; 3245 if (r2->wm[level].enable) 3246 level2 = level; 3247 } 3248 3249 if (level1 == level2) { 3250 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled) 3251 return r2; 3252 else 3253 return r1; 3254 } else if (level1 > level2) { 3255 return r1; 3256 } else { 3257 return r2; 3258 } 3259 } 3260 3261 /* dirty bits used to track which watermarks need changes */ 3262 #define WM_DIRTY_PIPE(pipe) (1 << (pipe)) 3263 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp))) 3264 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3)) 3265 #define WM_DIRTY_FBC (1 << 24) 3266 #define WM_DIRTY_DDB (1 << 25) 3267 3268 static unsigned int ilk_compute_wm_dirty(struct intel_display *display, 3269 const struct ilk_wm_values *old, 3270 const struct ilk_wm_values *new) 3271 { 3272 unsigned int dirty = 0; 3273 enum pipe pipe; 3274 int wm_lp; 3275 3276 for_each_pipe(display, pipe) { 3277 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) { 3278 dirty |= WM_DIRTY_PIPE(pipe); 3279 /* Must disable LP1+ watermarks too */ 3280 dirty |= WM_DIRTY_LP_ALL; 3281 } 3282 } 3283 3284 if (old->enable_fbc_wm != new->enable_fbc_wm) { 3285 dirty |= WM_DIRTY_FBC; 3286 /* Must disable LP1+ watermarks too */ 3287 dirty |= WM_DIRTY_LP_ALL; 3288 } 3289 3290 if (old->partitioning != new->partitioning) { 3291 dirty |= WM_DIRTY_DDB; 3292 /* Must disable LP1+ watermarks too */ 3293 dirty |= WM_DIRTY_LP_ALL; 3294 } 3295 3296 /* LP1+ watermarks already deemed dirty, no need to continue */ 3297 if (dirty & WM_DIRTY_LP_ALL) 3298 return dirty; 3299 3300 /* Find the lowest numbered LP1+ watermark in need of an update... */ 3301 for (wm_lp = 1; wm_lp <= 3; wm_lp++) { 3302 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] || 3303 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1]) 3304 break; 3305 } 3306 3307 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */ 3308 for (; wm_lp <= 3; wm_lp++) 3309 dirty |= WM_DIRTY_LP(wm_lp); 3310 3311 return dirty; 3312 } 3313 3314 static bool _ilk_disable_lp_wm(struct intel_display *display, 3315 unsigned int dirty) 3316 { 3317 struct ilk_wm_values *previous = &display->wm.hw; 3318 bool changed = false; 3319 3320 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM_LP_ENABLE) { 3321 previous->wm_lp[2] &= ~WM_LP_ENABLE; 3322 intel_de_write(display, WM3_LP_ILK, previous->wm_lp[2]); 3323 changed = true; 3324 } 3325 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM_LP_ENABLE) { 3326 previous->wm_lp[1] &= ~WM_LP_ENABLE; 3327 intel_de_write(display, WM2_LP_ILK, previous->wm_lp[1]); 3328 changed = true; 3329 } 3330 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM_LP_ENABLE) { 3331 previous->wm_lp[0] &= ~WM_LP_ENABLE; 3332 intel_de_write(display, WM1_LP_ILK, previous->wm_lp[0]); 3333 changed = true; 3334 } 3335 3336 /* 3337 * Don't touch WM_LP_SPRITE_ENABLE here. 3338 * Doing so could cause underruns. 3339 */ 3340 3341 return changed; 3342 } 3343 3344 /* 3345 * The spec says we shouldn't write when we don't need, because every write 3346 * causes WMs to be re-evaluated, expending some power. 3347 */ 3348 static void ilk_write_wm_values(struct intel_display *display, 3349 struct ilk_wm_values *results) 3350 { 3351 struct ilk_wm_values *previous = &display->wm.hw; 3352 unsigned int dirty; 3353 3354 dirty = ilk_compute_wm_dirty(display, previous, results); 3355 if (!dirty) 3356 return; 3357 3358 _ilk_disable_lp_wm(display, dirty); 3359 3360 if (dirty & WM_DIRTY_PIPE(PIPE_A)) 3361 intel_de_write(display, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]); 3362 if (dirty & WM_DIRTY_PIPE(PIPE_B)) 3363 intel_de_write(display, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]); 3364 if (dirty & WM_DIRTY_PIPE(PIPE_C)) 3365 intel_de_write(display, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]); 3366 3367 if (dirty & WM_DIRTY_DDB) { 3368 if (display->platform.haswell || display->platform.broadwell) 3369 intel_de_rmw(display, WM_MISC, WM_MISC_DATA_PARTITION_5_6, 3370 results->partitioning == INTEL_DDB_PART_1_2 ? 0 : 3371 WM_MISC_DATA_PARTITION_5_6); 3372 else 3373 intel_de_rmw(display, DISP_ARB_CTL2, DISP_DATA_PARTITION_5_6, 3374 results->partitioning == INTEL_DDB_PART_1_2 ? 0 : 3375 DISP_DATA_PARTITION_5_6); 3376 } 3377 3378 if (dirty & WM_DIRTY_FBC) 3379 intel_de_rmw(display, DISP_ARB_CTL, DISP_FBC_WM_DIS, 3380 results->enable_fbc_wm ? 0 : DISP_FBC_WM_DIS); 3381 3382 if (dirty & WM_DIRTY_LP(1) && 3383 previous->wm_lp_spr[0] != results->wm_lp_spr[0]) 3384 intel_de_write(display, WM1S_LP_ILK, results->wm_lp_spr[0]); 3385 3386 if (DISPLAY_VER(display) >= 7) { 3387 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1]) 3388 intel_de_write(display, WM2S_LP_IVB, results->wm_lp_spr[1]); 3389 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2]) 3390 intel_de_write(display, WM3S_LP_IVB, results->wm_lp_spr[2]); 3391 } 3392 3393 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0]) 3394 intel_de_write(display, WM1_LP_ILK, results->wm_lp[0]); 3395 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1]) 3396 intel_de_write(display, WM2_LP_ILK, results->wm_lp[1]); 3397 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2]) 3398 intel_de_write(display, WM3_LP_ILK, results->wm_lp[2]); 3399 3400 display->wm.hw = *results; 3401 } 3402 3403 bool ilk_disable_cxsr(struct intel_display *display) 3404 { 3405 return _ilk_disable_lp_wm(display, WM_DIRTY_LP_ALL); 3406 } 3407 3408 static void ilk_compute_wm_config(struct intel_display *display, 3409 struct intel_wm_config *config) 3410 { 3411 struct intel_crtc *crtc; 3412 3413 /* Compute the currently _active_ config */ 3414 for_each_intel_crtc(display->drm, crtc) { 3415 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk; 3416 3417 if (!wm->pipe_enabled) 3418 continue; 3419 3420 config->sprites_enabled |= wm->sprites_enabled; 3421 config->sprites_scaled |= wm->sprites_scaled; 3422 config->num_pipes_active++; 3423 } 3424 } 3425 3426 static void ilk_program_watermarks(struct intel_display *display) 3427 { 3428 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm; 3429 struct ilk_wm_maximums max; 3430 struct intel_wm_config config = {}; 3431 struct ilk_wm_values results = {}; 3432 enum intel_ddb_partitioning partitioning; 3433 3434 ilk_compute_wm_config(display, &config); 3435 3436 ilk_compute_wm_maximums(display, 1, &config, INTEL_DDB_PART_1_2, &max); 3437 ilk_wm_merge(display, &config, &max, &lp_wm_1_2); 3438 3439 /* 5/6 split only in single pipe config on IVB+ */ 3440 if (DISPLAY_VER(display) >= 7 && 3441 config.num_pipes_active == 1 && config.sprites_enabled) { 3442 ilk_compute_wm_maximums(display, 1, &config, INTEL_DDB_PART_5_6, &max); 3443 ilk_wm_merge(display, &config, &max, &lp_wm_5_6); 3444 3445 best_lp_wm = ilk_find_best_result(display, &lp_wm_1_2, &lp_wm_5_6); 3446 } else { 3447 best_lp_wm = &lp_wm_1_2; 3448 } 3449 3450 partitioning = (best_lp_wm == &lp_wm_1_2) ? 3451 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6; 3452 3453 ilk_compute_wm_results(display, best_lp_wm, partitioning, &results); 3454 3455 ilk_write_wm_values(display, &results); 3456 } 3457 3458 static void ilk_initial_watermarks(struct intel_atomic_state *state, 3459 struct intel_crtc *crtc) 3460 { 3461 struct intel_display *display = to_intel_display(crtc); 3462 const struct intel_crtc_state *crtc_state = 3463 intel_atomic_get_new_crtc_state(state, crtc); 3464 3465 mutex_lock(&display->wm.wm_mutex); 3466 crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate; 3467 ilk_program_watermarks(display); 3468 mutex_unlock(&display->wm.wm_mutex); 3469 } 3470 3471 static void ilk_optimize_watermarks(struct intel_atomic_state *state, 3472 struct intel_crtc *crtc) 3473 { 3474 struct intel_display *display = to_intel_display(crtc); 3475 const struct intel_crtc_state *crtc_state = 3476 intel_atomic_get_new_crtc_state(state, crtc); 3477 3478 if (!crtc_state->wm.need_postvbl_update) 3479 return; 3480 3481 mutex_lock(&display->wm.wm_mutex); 3482 crtc->wm.active.ilk = crtc_state->wm.ilk.optimal; 3483 ilk_program_watermarks(display); 3484 mutex_unlock(&display->wm.wm_mutex); 3485 } 3486 3487 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc) 3488 { 3489 struct intel_display *display = to_intel_display(crtc); 3490 struct ilk_wm_values *hw = &display->wm.hw; 3491 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 3492 struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal; 3493 enum pipe pipe = crtc->pipe; 3494 3495 hw->wm_pipe[pipe] = intel_de_read(display, WM0_PIPE_ILK(pipe)); 3496 3497 memset(active, 0, sizeof(*active)); 3498 3499 active->pipe_enabled = crtc->active; 3500 3501 if (active->pipe_enabled) { 3502 u32 tmp = hw->wm_pipe[pipe]; 3503 3504 /* 3505 * For active pipes LP0 watermark is marked as 3506 * enabled, and LP1+ watermaks as disabled since 3507 * we can't really reverse compute them in case 3508 * multiple pipes are active. 3509 */ 3510 active->wm[0].enable = true; 3511 active->wm[0].pri_val = REG_FIELD_GET(WM0_PIPE_PRIMARY_MASK, tmp); 3512 active->wm[0].spr_val = REG_FIELD_GET(WM0_PIPE_SPRITE_MASK, tmp); 3513 active->wm[0].cur_val = REG_FIELD_GET(WM0_PIPE_CURSOR_MASK, tmp); 3514 } else { 3515 int level; 3516 3517 /* 3518 * For inactive pipes, all watermark levels 3519 * should be marked as enabled but zeroed, 3520 * which is what we'd compute them to. 3521 */ 3522 for (level = 0; level < display->wm.num_levels; level++) 3523 active->wm[level].enable = true; 3524 } 3525 3526 crtc->wm.active.ilk = *active; 3527 } 3528 3529 static int ilk_sanitize_watermarks_add_affected(struct drm_atomic_state *state) 3530 { 3531 struct drm_plane *plane; 3532 struct intel_crtc *crtc; 3533 3534 for_each_intel_crtc(state->dev, crtc) { 3535 struct intel_crtc_state *crtc_state; 3536 3537 crtc_state = intel_atomic_get_crtc_state(state, crtc); 3538 if (IS_ERR(crtc_state)) 3539 return PTR_ERR(crtc_state); 3540 3541 if (crtc_state->hw.active) { 3542 /* 3543 * Preserve the inherited flag to avoid 3544 * taking the full modeset path. 3545 */ 3546 crtc_state->inherited = true; 3547 } 3548 } 3549 3550 drm_for_each_plane(plane, state->dev) { 3551 struct drm_plane_state *plane_state; 3552 3553 plane_state = drm_atomic_get_plane_state(state, plane); 3554 if (IS_ERR(plane_state)) 3555 return PTR_ERR(plane_state); 3556 } 3557 3558 return 0; 3559 } 3560 3561 /* 3562 * Calculate what we think the watermarks should be for the state we've read 3563 * out of the hardware and then immediately program those watermarks so that 3564 * we ensure the hardware settings match our internal state. 3565 * 3566 * We can calculate what we think WM's should be by creating a duplicate of the 3567 * current state (which was constructed during hardware readout) and running it 3568 * through the atomic check code to calculate new watermark values in the 3569 * state object. 3570 */ 3571 void ilk_wm_sanitize(struct intel_display *display) 3572 { 3573 struct drm_atomic_state *state; 3574 struct intel_atomic_state *intel_state; 3575 struct intel_crtc *crtc; 3576 struct intel_crtc_state *crtc_state; 3577 struct drm_modeset_acquire_ctx ctx; 3578 int ret; 3579 int i; 3580 3581 /* Only supported on platforms that use atomic watermark design */ 3582 if (!display->funcs.wm->optimize_watermarks) 3583 return; 3584 3585 if (drm_WARN_ON(display->drm, DISPLAY_VER(display) >= 9)) 3586 return; 3587 3588 state = drm_atomic_state_alloc(display->drm); 3589 if (drm_WARN_ON(display->drm, !state)) 3590 return; 3591 3592 intel_state = to_intel_atomic_state(state); 3593 3594 drm_modeset_acquire_init(&ctx, 0); 3595 3596 state->acquire_ctx = &ctx; 3597 to_intel_atomic_state(state)->internal = true; 3598 3599 retry: 3600 /* 3601 * Hardware readout is the only time we don't want to calculate 3602 * intermediate watermarks (since we don't trust the current 3603 * watermarks). 3604 */ 3605 if (!HAS_GMCH(display)) 3606 intel_state->skip_intermediate_wm = true; 3607 3608 ret = ilk_sanitize_watermarks_add_affected(state); 3609 if (ret) 3610 goto fail; 3611 3612 ret = intel_atomic_check(display->drm, state); 3613 if (ret) 3614 goto fail; 3615 3616 /* Write calculated watermark values back */ 3617 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 3618 crtc_state->wm.need_postvbl_update = true; 3619 intel_optimize_watermarks(intel_state, crtc); 3620 3621 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 3622 } 3623 3624 fail: 3625 if (ret == -EDEADLK) { 3626 drm_atomic_state_clear(state); 3627 drm_modeset_backoff(&ctx); 3628 goto retry; 3629 } 3630 3631 /* 3632 * If we fail here, it means that the hardware appears to be 3633 * programmed in a way that shouldn't be possible, given our 3634 * understanding of watermark requirements. This might mean a 3635 * mistake in the hardware readout code or a mistake in the 3636 * watermark calculations for a given platform. Raise a WARN 3637 * so that this is noticeable. 3638 * 3639 * If this actually happens, we'll have to just leave the 3640 * BIOS-programmed watermarks untouched and hope for the best. 3641 */ 3642 drm_WARN(display->drm, ret, 3643 "Could not determine valid watermarks for inherited state\n"); 3644 3645 drm_atomic_state_put(state); 3646 3647 drm_modeset_drop_locks(&ctx); 3648 drm_modeset_acquire_fini(&ctx); 3649 } 3650 3651 #define _FW_WM(value, plane) \ 3652 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT) 3653 #define _FW_WM_VLV(value, plane) \ 3654 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT) 3655 3656 static void g4x_read_wm_values(struct intel_display *display, 3657 struct g4x_wm_values *wm) 3658 { 3659 u32 tmp; 3660 3661 tmp = intel_de_read(display, DSPFW1(display)); 3662 wm->sr.plane = _FW_WM(tmp, SR); 3663 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); 3664 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB); 3665 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA); 3666 3667 tmp = intel_de_read(display, DSPFW2(display)); 3668 wm->fbc_en = tmp & DSPFW_FBC_SR_EN; 3669 wm->sr.fbc = _FW_WM(tmp, FBC_SR); 3670 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR); 3671 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB); 3672 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); 3673 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA); 3674 3675 tmp = intel_de_read(display, DSPFW3(display)); 3676 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN; 3677 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); 3678 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR); 3679 wm->hpll.plane = _FW_WM(tmp, HPLL_SR); 3680 } 3681 3682 static void vlv_read_wm_values(struct intel_display *display, 3683 struct vlv_wm_values *wm) 3684 { 3685 enum pipe pipe; 3686 u32 tmp; 3687 3688 for_each_pipe(display, pipe) { 3689 tmp = intel_de_read(display, VLV_DDL(pipe)); 3690 3691 wm->ddl[pipe].plane[PLANE_PRIMARY] = 3692 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); 3693 wm->ddl[pipe].plane[PLANE_CURSOR] = 3694 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); 3695 wm->ddl[pipe].plane[PLANE_SPRITE0] = 3696 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); 3697 wm->ddl[pipe].plane[PLANE_SPRITE1] = 3698 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); 3699 } 3700 3701 tmp = intel_de_read(display, DSPFW1(display)); 3702 wm->sr.plane = _FW_WM(tmp, SR); 3703 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); 3704 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB); 3705 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA); 3706 3707 tmp = intel_de_read(display, DSPFW2(display)); 3708 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB); 3709 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); 3710 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA); 3711 3712 tmp = intel_de_read(display, DSPFW3(display)); 3713 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); 3714 3715 if (display->platform.cherryview) { 3716 tmp = intel_de_read(display, DSPFW7_CHV); 3717 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); 3718 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); 3719 3720 tmp = intel_de_read(display, DSPFW8_CHV); 3721 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF); 3722 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE); 3723 3724 tmp = intel_de_read(display, DSPFW9_CHV); 3725 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC); 3726 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC); 3727 3728 tmp = intel_de_read(display, DSPHOWM); 3729 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; 3730 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8; 3731 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8; 3732 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8; 3733 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; 3734 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; 3735 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; 3736 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; 3737 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; 3738 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; 3739 } else { 3740 tmp = intel_de_read(display, DSPFW7); 3741 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); 3742 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); 3743 3744 tmp = intel_de_read(display, DSPHOWM); 3745 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; 3746 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; 3747 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; 3748 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; 3749 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; 3750 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; 3751 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; 3752 } 3753 } 3754 3755 #undef _FW_WM 3756 #undef _FW_WM_VLV 3757 3758 static void g4x_wm_get_hw_state(struct intel_display *display) 3759 { 3760 struct g4x_wm_values *wm = &display->wm.g4x; 3761 struct intel_crtc *crtc; 3762 3763 g4x_read_wm_values(display, wm); 3764 3765 wm->cxsr = intel_de_read(display, FW_BLC_SELF) & FW_BLC_SELF_EN; 3766 3767 for_each_intel_crtc(display->drm, crtc) { 3768 struct intel_crtc_state *crtc_state = 3769 to_intel_crtc_state(crtc->base.state); 3770 struct g4x_wm_state *active = &crtc->wm.active.g4x; 3771 struct g4x_pipe_wm *raw; 3772 enum pipe pipe = crtc->pipe; 3773 enum plane_id plane_id; 3774 int level, max_level; 3775 3776 active->cxsr = wm->cxsr; 3777 active->hpll_en = wm->hpll_en; 3778 active->fbc_en = wm->fbc_en; 3779 3780 active->sr = wm->sr; 3781 active->hpll = wm->hpll; 3782 3783 for_each_plane_id_on_crtc(crtc, plane_id) { 3784 active->wm.plane[plane_id] = 3785 wm->pipe[pipe].plane[plane_id]; 3786 } 3787 3788 if (wm->cxsr && wm->hpll_en) 3789 max_level = G4X_WM_LEVEL_HPLL; 3790 else if (wm->cxsr) 3791 max_level = G4X_WM_LEVEL_SR; 3792 else 3793 max_level = G4X_WM_LEVEL_NORMAL; 3794 3795 level = G4X_WM_LEVEL_NORMAL; 3796 raw = &crtc_state->wm.g4x.raw[level]; 3797 for_each_plane_id_on_crtc(crtc, plane_id) 3798 raw->plane[plane_id] = active->wm.plane[plane_id]; 3799 3800 level = G4X_WM_LEVEL_SR; 3801 if (level > max_level) 3802 goto out; 3803 3804 raw = &crtc_state->wm.g4x.raw[level]; 3805 raw->plane[PLANE_PRIMARY] = active->sr.plane; 3806 raw->plane[PLANE_CURSOR] = active->sr.cursor; 3807 raw->plane[PLANE_SPRITE0] = 0; 3808 raw->fbc = active->sr.fbc; 3809 3810 level = G4X_WM_LEVEL_HPLL; 3811 if (level > max_level) 3812 goto out; 3813 3814 raw = &crtc_state->wm.g4x.raw[level]; 3815 raw->plane[PLANE_PRIMARY] = active->hpll.plane; 3816 raw->plane[PLANE_CURSOR] = active->hpll.cursor; 3817 raw->plane[PLANE_SPRITE0] = 0; 3818 raw->fbc = active->hpll.fbc; 3819 3820 level++; 3821 out: 3822 for_each_plane_id_on_crtc(crtc, plane_id) 3823 g4x_raw_plane_wm_set(crtc_state, level, 3824 plane_id, USHRT_MAX); 3825 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); 3826 3827 g4x_invalidate_wms(crtc, active, level); 3828 3829 crtc_state->wm.g4x.optimal = *active; 3830 crtc_state->wm.g4x.intermediate = *active; 3831 3832 drm_dbg_kms(display->drm, 3833 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n", 3834 pipe_name(pipe), 3835 wm->pipe[pipe].plane[PLANE_PRIMARY], 3836 wm->pipe[pipe].plane[PLANE_CURSOR], 3837 wm->pipe[pipe].plane[PLANE_SPRITE0]); 3838 } 3839 3840 drm_dbg_kms(display->drm, 3841 "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n", 3842 wm->sr.plane, wm->sr.cursor, wm->sr.fbc); 3843 drm_dbg_kms(display->drm, 3844 "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n", 3845 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc); 3846 drm_dbg_kms(display->drm, "Initial SR=%s HPLL=%s FBC=%s\n", 3847 str_yes_no(wm->cxsr), str_yes_no(wm->hpll_en), 3848 str_yes_no(wm->fbc_en)); 3849 } 3850 3851 static void g4x_wm_sanitize(struct intel_display *display) 3852 { 3853 struct intel_plane *plane; 3854 struct intel_crtc *crtc; 3855 3856 mutex_lock(&display->wm.wm_mutex); 3857 3858 for_each_intel_plane(display->drm, plane) { 3859 struct intel_crtc *crtc = 3860 intel_crtc_for_pipe(display, plane->pipe); 3861 struct intel_crtc_state *crtc_state = 3862 to_intel_crtc_state(crtc->base.state); 3863 struct intel_plane_state *plane_state = 3864 to_intel_plane_state(plane->base.state); 3865 enum plane_id plane_id = plane->id; 3866 int level; 3867 3868 if (plane_state->uapi.visible) 3869 continue; 3870 3871 for (level = 0; level < display->wm.num_levels; level++) { 3872 struct g4x_pipe_wm *raw = 3873 &crtc_state->wm.g4x.raw[level]; 3874 3875 raw->plane[plane_id] = 0; 3876 3877 if (plane_id == PLANE_PRIMARY) 3878 raw->fbc = 0; 3879 } 3880 } 3881 3882 for_each_intel_crtc(display->drm, crtc) { 3883 struct intel_crtc_state *crtc_state = 3884 to_intel_crtc_state(crtc->base.state); 3885 int ret; 3886 3887 ret = _g4x_compute_pipe_wm(crtc_state); 3888 drm_WARN_ON(display->drm, ret); 3889 3890 crtc_state->wm.g4x.intermediate = 3891 crtc_state->wm.g4x.optimal; 3892 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; 3893 } 3894 3895 g4x_program_watermarks(display); 3896 3897 mutex_unlock(&display->wm.wm_mutex); 3898 } 3899 3900 static void vlv_wm_get_hw_state(struct intel_display *display) 3901 { 3902 struct vlv_wm_values *wm = &display->wm.vlv; 3903 struct intel_crtc *crtc; 3904 u32 val; 3905 3906 vlv_read_wm_values(display, wm); 3907 3908 wm->cxsr = intel_de_read(display, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; 3909 wm->level = VLV_WM_LEVEL_PM2; 3910 3911 if (display->platform.cherryview) { 3912 vlv_punit_get(display->drm); 3913 3914 val = vlv_punit_read(display->drm, PUNIT_REG_DSPSSPM); 3915 if (val & DSP_MAXFIFO_PM5_ENABLE) 3916 wm->level = VLV_WM_LEVEL_PM5; 3917 3918 /* 3919 * If DDR DVFS is disabled in the BIOS, Punit 3920 * will never ack the request. So if that happens 3921 * assume we don't have to enable/disable DDR DVFS 3922 * dynamically. To test that just set the REQ_ACK 3923 * bit to poke the Punit, but don't change the 3924 * HIGH/LOW bits so that we don't actually change 3925 * the current state. 3926 */ 3927 val = vlv_punit_read(display->drm, PUNIT_REG_DDR_SETUP2); 3928 val |= FORCE_DDR_FREQ_REQ_ACK; 3929 vlv_punit_write(display->drm, PUNIT_REG_DDR_SETUP2, val); 3930 3931 if (wait_for((vlv_punit_read(display->drm, PUNIT_REG_DDR_SETUP2) & 3932 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) { 3933 drm_dbg_kms(display->drm, 3934 "Punit not acking DDR DVFS request, " 3935 "assuming DDR DVFS is disabled\n"); 3936 display->wm.num_levels = VLV_WM_LEVEL_PM5 + 1; 3937 } else { 3938 val = vlv_punit_read(display->drm, PUNIT_REG_DDR_SETUP2); 3939 if ((val & FORCE_DDR_HIGH_FREQ) == 0) 3940 wm->level = VLV_WM_LEVEL_DDR_DVFS; 3941 } 3942 3943 vlv_punit_put(display->drm); 3944 } 3945 3946 for_each_intel_crtc(display->drm, crtc) { 3947 struct intel_crtc_state *crtc_state = 3948 to_intel_crtc_state(crtc->base.state); 3949 struct vlv_wm_state *active = &crtc->wm.active.vlv; 3950 const struct vlv_fifo_state *fifo_state = 3951 &crtc_state->wm.vlv.fifo_state; 3952 enum pipe pipe = crtc->pipe; 3953 enum plane_id plane_id; 3954 int level; 3955 3956 vlv_get_fifo_size(crtc_state); 3957 3958 active->num_levels = wm->level + 1; 3959 active->cxsr = wm->cxsr; 3960 3961 for (level = 0; level < active->num_levels; level++) { 3962 struct g4x_pipe_wm *raw = 3963 &crtc_state->wm.vlv.raw[level]; 3964 3965 active->sr[level].plane = wm->sr.plane; 3966 active->sr[level].cursor = wm->sr.cursor; 3967 3968 for_each_plane_id_on_crtc(crtc, plane_id) { 3969 active->wm[level].plane[plane_id] = 3970 wm->pipe[pipe].plane[plane_id]; 3971 3972 raw->plane[plane_id] = 3973 vlv_invert_wm_value(active->wm[level].plane[plane_id], 3974 fifo_state->plane[plane_id]); 3975 } 3976 } 3977 3978 for_each_plane_id_on_crtc(crtc, plane_id) 3979 vlv_raw_plane_wm_set(crtc_state, level, 3980 plane_id, USHRT_MAX); 3981 vlv_invalidate_wms(crtc, active, level); 3982 3983 crtc_state->wm.vlv.optimal = *active; 3984 crtc_state->wm.vlv.intermediate = *active; 3985 3986 drm_dbg_kms(display->drm, 3987 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n", 3988 pipe_name(pipe), 3989 wm->pipe[pipe].plane[PLANE_PRIMARY], 3990 wm->pipe[pipe].plane[PLANE_CURSOR], 3991 wm->pipe[pipe].plane[PLANE_SPRITE0], 3992 wm->pipe[pipe].plane[PLANE_SPRITE1]); 3993 } 3994 3995 drm_dbg_kms(display->drm, 3996 "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n", 3997 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr); 3998 } 3999 4000 static void vlv_wm_sanitize(struct intel_display *display) 4001 { 4002 struct intel_plane *plane; 4003 struct intel_crtc *crtc; 4004 4005 mutex_lock(&display->wm.wm_mutex); 4006 4007 for_each_intel_plane(display->drm, plane) { 4008 struct intel_crtc *crtc = 4009 intel_crtc_for_pipe(display, plane->pipe); 4010 struct intel_crtc_state *crtc_state = 4011 to_intel_crtc_state(crtc->base.state); 4012 struct intel_plane_state *plane_state = 4013 to_intel_plane_state(plane->base.state); 4014 enum plane_id plane_id = plane->id; 4015 int level; 4016 4017 if (plane_state->uapi.visible) 4018 continue; 4019 4020 for (level = 0; level < display->wm.num_levels; level++) { 4021 struct g4x_pipe_wm *raw = 4022 &crtc_state->wm.vlv.raw[level]; 4023 4024 raw->plane[plane_id] = 0; 4025 } 4026 } 4027 4028 for_each_intel_crtc(display->drm, crtc) { 4029 struct intel_crtc_state *crtc_state = 4030 to_intel_crtc_state(crtc->base.state); 4031 int ret; 4032 4033 ret = _vlv_compute_pipe_wm(crtc_state); 4034 drm_WARN_ON(display->drm, ret); 4035 4036 crtc_state->wm.vlv.intermediate = 4037 crtc_state->wm.vlv.optimal; 4038 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; 4039 } 4040 4041 vlv_program_watermarks(display); 4042 4043 mutex_unlock(&display->wm.wm_mutex); 4044 } 4045 4046 /* 4047 * FIXME should probably kill this and improve 4048 * the real watermark readout/sanitation instead 4049 */ 4050 static void ilk_init_lp_watermarks(struct intel_display *display) 4051 { 4052 intel_de_rmw(display, WM3_LP_ILK, WM_LP_ENABLE, 0); 4053 intel_de_rmw(display, WM2_LP_ILK, WM_LP_ENABLE, 0); 4054 intel_de_rmw(display, WM1_LP_ILK, WM_LP_ENABLE, 0); 4055 4056 /* 4057 * Don't touch WM_LP_SPRITE_ENABLE here. 4058 * Doing so could cause underruns. 4059 */ 4060 } 4061 4062 static void ilk_wm_get_hw_state(struct intel_display *display) 4063 { 4064 struct ilk_wm_values *hw = &display->wm.hw; 4065 struct intel_crtc *crtc; 4066 4067 ilk_init_lp_watermarks(display); 4068 4069 for_each_intel_crtc(display->drm, crtc) 4070 ilk_pipe_wm_get_hw_state(crtc); 4071 4072 hw->wm_lp[0] = intel_de_read(display, WM1_LP_ILK); 4073 hw->wm_lp[1] = intel_de_read(display, WM2_LP_ILK); 4074 hw->wm_lp[2] = intel_de_read(display, WM3_LP_ILK); 4075 4076 hw->wm_lp_spr[0] = intel_de_read(display, WM1S_LP_ILK); 4077 if (DISPLAY_VER(display) >= 7) { 4078 hw->wm_lp_spr[1] = intel_de_read(display, WM2S_LP_IVB); 4079 hw->wm_lp_spr[2] = intel_de_read(display, WM3S_LP_IVB); 4080 } 4081 4082 if (display->platform.haswell || display->platform.broadwell) 4083 hw->partitioning = (intel_de_read(display, WM_MISC) & 4084 WM_MISC_DATA_PARTITION_5_6) ? 4085 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; 4086 else if (display->platform.ivybridge) 4087 hw->partitioning = (intel_de_read(display, DISP_ARB_CTL2) & 4088 DISP_DATA_PARTITION_5_6) ? 4089 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; 4090 4091 hw->enable_fbc_wm = 4092 !(intel_de_read(display, DISP_ARB_CTL) & DISP_FBC_WM_DIS); 4093 } 4094 4095 static const struct intel_wm_funcs ilk_wm_funcs = { 4096 .compute_watermarks = ilk_compute_watermarks, 4097 .initial_watermarks = ilk_initial_watermarks, 4098 .optimize_watermarks = ilk_optimize_watermarks, 4099 .get_hw_state = ilk_wm_get_hw_state, 4100 }; 4101 4102 static const struct intel_wm_funcs vlv_wm_funcs = { 4103 .compute_watermarks = vlv_compute_watermarks, 4104 .initial_watermarks = vlv_initial_watermarks, 4105 .optimize_watermarks = vlv_optimize_watermarks, 4106 .atomic_update_watermarks = vlv_atomic_update_fifo, 4107 .get_hw_state = vlv_wm_get_hw_state, 4108 .sanitize = vlv_wm_sanitize, 4109 }; 4110 4111 static const struct intel_wm_funcs g4x_wm_funcs = { 4112 .compute_watermarks = g4x_compute_watermarks, 4113 .initial_watermarks = g4x_initial_watermarks, 4114 .optimize_watermarks = g4x_optimize_watermarks, 4115 .get_hw_state = g4x_wm_get_hw_state, 4116 .sanitize = g4x_wm_sanitize, 4117 }; 4118 4119 static const struct intel_wm_funcs pnv_wm_funcs = { 4120 .compute_watermarks = i9xx_compute_watermarks, 4121 .update_wm = pnv_update_wm, 4122 }; 4123 4124 static const struct intel_wm_funcs i965_wm_funcs = { 4125 .compute_watermarks = i9xx_compute_watermarks, 4126 .update_wm = i965_update_wm, 4127 }; 4128 4129 static const struct intel_wm_funcs i9xx_wm_funcs = { 4130 .compute_watermarks = i9xx_compute_watermarks, 4131 .update_wm = i9xx_update_wm, 4132 }; 4133 4134 static const struct intel_wm_funcs i845_wm_funcs = { 4135 .compute_watermarks = i9xx_compute_watermarks, 4136 .update_wm = i845_update_wm, 4137 }; 4138 4139 static const struct intel_wm_funcs nop_funcs = { 4140 }; 4141 4142 void i9xx_wm_init(struct intel_display *display) 4143 { 4144 /* For FIFO watermark updates */ 4145 if (HAS_PCH_SPLIT(display)) { 4146 ilk_setup_wm_latency(display); 4147 display->funcs.wm = &ilk_wm_funcs; 4148 } else if (display->platform.valleyview || display->platform.cherryview) { 4149 vlv_setup_wm_latency(display); 4150 display->funcs.wm = &vlv_wm_funcs; 4151 } else if (display->platform.g4x) { 4152 g4x_setup_wm_latency(display); 4153 display->funcs.wm = &g4x_wm_funcs; 4154 } else if (display->platform.pineview) { 4155 if (!pnv_get_cxsr_latency(display)) { 4156 drm_info(display->drm, "Unknown FSB/MEM, disabling CxSR\n"); 4157 /* Disable CxSR and never update its watermark again */ 4158 intel_set_memory_cxsr(display, false); 4159 display->funcs.wm = &nop_funcs; 4160 } else { 4161 display->funcs.wm = &pnv_wm_funcs; 4162 } 4163 } else if (DISPLAY_VER(display) == 4) { 4164 display->funcs.wm = &i965_wm_funcs; 4165 } else if (DISPLAY_VER(display) == 3) { 4166 display->funcs.wm = &i9xx_wm_funcs; 4167 } else if (DISPLAY_VER(display) == 2) { 4168 if (INTEL_NUM_PIPES(display) == 1) 4169 display->funcs.wm = &i845_wm_funcs; 4170 else 4171 display->funcs.wm = &i9xx_wm_funcs; 4172 } else { 4173 drm_err(display->drm, 4174 "unexpected fall-through in %s\n", __func__); 4175 display->funcs.wm = &nop_funcs; 4176 } 4177 } 4178