xref: /linux/drivers/gpu/drm/i915/display/i9xx_wm.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "i9xx_wm.h"
9 #include "intel_atomic.h"
10 #include "intel_bo.h"
11 #include "intel_display.h"
12 #include "intel_display_trace.h"
13 #include "intel_fb.h"
14 #include "intel_mchbar_regs.h"
15 #include "intel_wm.h"
16 #include "skl_watermark.h"
17 #include "vlv_sideband.h"
18 
19 struct intel_watermark_params {
20 	u16 fifo_size;
21 	u16 max_wm;
22 	u8 default_wm;
23 	u8 guard_size;
24 	u8 cacheline_size;
25 };
26 
27 /* used in computing the new watermarks state */
28 struct intel_wm_config {
29 	unsigned int num_pipes_active;
30 	bool sprites_enabled;
31 	bool sprites_scaled;
32 };
33 
34 struct cxsr_latency {
35 	bool is_desktop : 1;
36 	bool is_ddr3 : 1;
37 	u16 fsb_freq;
38 	u16 mem_freq;
39 	u16 display_sr;
40 	u16 display_hpll_disable;
41 	u16 cursor_sr;
42 	u16 cursor_hpll_disable;
43 };
44 
45 static const struct cxsr_latency cxsr_latency_table[] = {
46 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
47 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
48 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
49 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
50 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
51 
52 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
53 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
54 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
55 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
56 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
57 
58 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
59 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
60 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
61 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
62 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
63 
64 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
65 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
66 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
67 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
68 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
69 
70 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
71 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
72 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
73 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
74 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
75 
76 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
77 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
78 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
79 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
80 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
81 };
82 
83 static const struct cxsr_latency *pnv_get_cxsr_latency(struct drm_i915_private *i915)
84 {
85 	int i;
86 
87 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
88 		const struct cxsr_latency *latency = &cxsr_latency_table[i];
89 		bool is_desktop = !IS_MOBILE(i915);
90 
91 		if (is_desktop == latency->is_desktop &&
92 		    i915->is_ddr3 == latency->is_ddr3 &&
93 		    DIV_ROUND_CLOSEST(i915->fsb_freq, 1000) == latency->fsb_freq &&
94 		    DIV_ROUND_CLOSEST(i915->mem_freq, 1000) == latency->mem_freq)
95 			return latency;
96 	}
97 
98 	drm_dbg_kms(&i915->drm,
99 		    "Could not find CxSR latency for DDR%s, FSB %u kHz, MEM %u kHz\n",
100 		    i915->is_ddr3 ? "3" : "2", i915->fsb_freq, i915->mem_freq);
101 
102 	return NULL;
103 }
104 
105 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
106 {
107 	u32 val;
108 
109 	vlv_punit_get(dev_priv);
110 
111 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
112 	if (enable)
113 		val &= ~FORCE_DDR_HIGH_FREQ;
114 	else
115 		val |= FORCE_DDR_HIGH_FREQ;
116 	val &= ~FORCE_DDR_LOW_FREQ;
117 	val |= FORCE_DDR_FREQ_REQ_ACK;
118 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
119 
120 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
121 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
122 		drm_err(&dev_priv->drm,
123 			"timed out waiting for Punit DDR DVFS request\n");
124 
125 	vlv_punit_put(dev_priv);
126 }
127 
128 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
129 {
130 	u32 val;
131 
132 	vlv_punit_get(dev_priv);
133 
134 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
135 	if (enable)
136 		val |= DSP_MAXFIFO_PM5_ENABLE;
137 	else
138 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
139 	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
140 
141 	vlv_punit_put(dev_priv);
142 }
143 
144 #define FW_WM(value, plane) \
145 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
146 
147 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
148 {
149 	struct intel_display *display = &dev_priv->display;
150 	bool was_enabled;
151 	u32 val;
152 
153 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
154 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
155 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
156 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
157 	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
158 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
159 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
160 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
161 	} else if (IS_PINEVIEW(dev_priv)) {
162 		val = intel_uncore_read(&dev_priv->uncore, DSPFW3(dev_priv));
163 		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
164 		if (enable)
165 			val |= PINEVIEW_SELF_REFRESH_EN;
166 		else
167 			val &= ~PINEVIEW_SELF_REFRESH_EN;
168 		intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv), val);
169 		intel_uncore_posting_read(&dev_priv->uncore, DSPFW3(dev_priv));
170 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
171 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
172 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
173 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
174 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
175 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
176 	} else if (IS_I915GM(dev_priv)) {
177 		/*
178 		 * FIXME can't find a bit like this for 915G, and
179 		 * yet it does have the related watermark in
180 		 * FW_BLC_SELF. What's going on?
181 		 */
182 		was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
183 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
184 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
185 		intel_uncore_write(&dev_priv->uncore, INSTPM, val);
186 		intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
187 	} else {
188 		return false;
189 	}
190 
191 	trace_intel_memory_cxsr(display, was_enabled, enable);
192 
193 	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
194 		    str_enabled_disabled(enable),
195 		    str_enabled_disabled(was_enabled));
196 
197 	return was_enabled;
198 }
199 
200 /**
201  * intel_set_memory_cxsr - Configure CxSR state
202  * @dev_priv: i915 device
203  * @enable: Allow vs. disallow CxSR
204  *
205  * Allow or disallow the system to enter a special CxSR
206  * (C-state self refresh) state. What typically happens in CxSR mode
207  * is that several display FIFOs may get combined into a single larger
208  * FIFO for a particular plane (so called max FIFO mode) to allow the
209  * system to defer memory fetches longer, and the memory will enter
210  * self refresh.
211  *
212  * Note that enabling CxSR does not guarantee that the system enter
213  * this special mode, nor does it guarantee that the system stays
214  * in that mode once entered. So this just allows/disallows the system
215  * to autonomously utilize the CxSR mode. Other factors such as core
216  * C-states will affect when/if the system actually enters/exits the
217  * CxSR mode.
218  *
219  * Note that on VLV/CHV this actually only controls the max FIFO mode,
220  * and the system is free to enter/exit memory self refresh at any time
221  * even when the use of CxSR has been disallowed.
222  *
223  * While the system is actually in the CxSR/max FIFO mode, some plane
224  * control registers will not get latched on vblank. Thus in order to
225  * guarantee the system will respond to changes in the plane registers
226  * we must always disallow CxSR prior to making changes to those registers.
227  * Unfortunately the system will re-evaluate the CxSR conditions at
228  * frame start which happens after vblank start (which is when the plane
229  * registers would get latched), so we can't proceed with the plane update
230  * during the same frame where we disallowed CxSR.
231  *
232  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
233  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
234  * the hardware w.r.t. HPLL SR when writing to plane registers.
235  * Disallowing just CxSR is sufficient.
236  */
237 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
238 {
239 	bool ret;
240 
241 	mutex_lock(&dev_priv->display.wm.wm_mutex);
242 	ret = _intel_set_memory_cxsr(dev_priv, enable);
243 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
244 		dev_priv->display.wm.vlv.cxsr = enable;
245 	else if (IS_G4X(dev_priv))
246 		dev_priv->display.wm.g4x.cxsr = enable;
247 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
248 
249 	return ret;
250 }
251 
252 /*
253  * Latency for FIFO fetches is dependent on several factors:
254  *   - memory configuration (speed, channels)
255  *   - chipset
256  *   - current MCH state
257  * It can be fairly high in some situations, so here we assume a fairly
258  * pessimal value.  It's a tradeoff between extra memory fetches (if we
259  * set this value too high, the FIFO will fetch frequently to stay full)
260  * and power consumption (set it too low to save power and we might see
261  * FIFO underruns and display "flicker").
262  *
263  * A value of 5us seems to be a good balance; safe for very low end
264  * platforms but not overly aggressive on lower latency configs.
265  */
266 static const int pessimal_latency_ns = 5000;
267 
268 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
269 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
270 
271 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
272 {
273 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
274 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
275 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
276 	enum pipe pipe = crtc->pipe;
277 	int sprite0_start, sprite1_start;
278 	u32 dsparb, dsparb2, dsparb3;
279 
280 	switch (pipe) {
281 	case PIPE_A:
282 		dsparb = intel_uncore_read(&dev_priv->uncore,
283 					   DSPARB(dev_priv));
284 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
285 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
286 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
287 		break;
288 	case PIPE_B:
289 		dsparb = intel_uncore_read(&dev_priv->uncore,
290 					   DSPARB(dev_priv));
291 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
292 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
293 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
294 		break;
295 	case PIPE_C:
296 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
297 		dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
298 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
299 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
300 		break;
301 	default:
302 		MISSING_CASE(pipe);
303 		return;
304 	}
305 
306 	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
307 	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
308 	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
309 	fifo_state->plane[PLANE_CURSOR] = 63;
310 }
311 
312 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
313 			      enum i9xx_plane_id i9xx_plane)
314 {
315 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB(dev_priv));
316 	int size;
317 
318 	size = dsparb & 0x7f;
319 	if (i9xx_plane == PLANE_B)
320 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
321 
322 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
323 		    dsparb, plane_name(i9xx_plane), size);
324 
325 	return size;
326 }
327 
328 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
329 			      enum i9xx_plane_id i9xx_plane)
330 {
331 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB(dev_priv));
332 	int size;
333 
334 	size = dsparb & 0x1ff;
335 	if (i9xx_plane == PLANE_B)
336 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
337 	size >>= 1; /* Convert to cachelines */
338 
339 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
340 		    dsparb, plane_name(i9xx_plane), size);
341 
342 	return size;
343 }
344 
345 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
346 			      enum i9xx_plane_id i9xx_plane)
347 {
348 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB(dev_priv));
349 	int size;
350 
351 	size = dsparb & 0x7f;
352 	size >>= 2; /* Convert to cachelines */
353 
354 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
355 		    dsparb, plane_name(i9xx_plane), size);
356 
357 	return size;
358 }
359 
360 /* Pineview has different values for various configs */
361 static const struct intel_watermark_params pnv_display_wm = {
362 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
363 	.max_wm = PINEVIEW_MAX_WM,
364 	.default_wm = PINEVIEW_DFT_WM,
365 	.guard_size = PINEVIEW_GUARD_WM,
366 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
367 };
368 
369 static const struct intel_watermark_params pnv_display_hplloff_wm = {
370 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
371 	.max_wm = PINEVIEW_MAX_WM,
372 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
373 	.guard_size = PINEVIEW_GUARD_WM,
374 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
375 };
376 
377 static const struct intel_watermark_params pnv_cursor_wm = {
378 	.fifo_size = PINEVIEW_CURSOR_FIFO,
379 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
380 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
381 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
382 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
383 };
384 
385 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
386 	.fifo_size = PINEVIEW_CURSOR_FIFO,
387 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
388 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
389 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
390 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
391 };
392 
393 static const struct intel_watermark_params i965_cursor_wm_info = {
394 	.fifo_size = I965_CURSOR_FIFO,
395 	.max_wm = I965_CURSOR_MAX_WM,
396 	.default_wm = I965_CURSOR_DFT_WM,
397 	.guard_size = 2,
398 	.cacheline_size = I915_FIFO_LINE_SIZE,
399 };
400 
401 static const struct intel_watermark_params i945_wm_info = {
402 	.fifo_size = I945_FIFO_SIZE,
403 	.max_wm = I915_MAX_WM,
404 	.default_wm = 1,
405 	.guard_size = 2,
406 	.cacheline_size = I915_FIFO_LINE_SIZE,
407 };
408 
409 static const struct intel_watermark_params i915_wm_info = {
410 	.fifo_size = I915_FIFO_SIZE,
411 	.max_wm = I915_MAX_WM,
412 	.default_wm = 1,
413 	.guard_size = 2,
414 	.cacheline_size = I915_FIFO_LINE_SIZE,
415 };
416 
417 static const struct intel_watermark_params i830_a_wm_info = {
418 	.fifo_size = I855GM_FIFO_SIZE,
419 	.max_wm = I915_MAX_WM,
420 	.default_wm = 1,
421 	.guard_size = 2,
422 	.cacheline_size = I830_FIFO_LINE_SIZE,
423 };
424 
425 static const struct intel_watermark_params i830_bc_wm_info = {
426 	.fifo_size = I855GM_FIFO_SIZE,
427 	.max_wm = I915_MAX_WM / 2,
428 	.default_wm = 1,
429 	.guard_size = 2,
430 	.cacheline_size = I830_FIFO_LINE_SIZE,
431 };
432 
433 static const struct intel_watermark_params i845_wm_info = {
434 	.fifo_size = I830_FIFO_SIZE,
435 	.max_wm = I915_MAX_WM,
436 	.default_wm = 1,
437 	.guard_size = 2,
438 	.cacheline_size = I830_FIFO_LINE_SIZE,
439 };
440 
441 /**
442  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
443  * @pixel_rate: Pipe pixel rate in kHz
444  * @cpp: Plane bytes per pixel
445  * @latency: Memory wakeup latency in 0.1us units
446  *
447  * Compute the watermark using the method 1 or "small buffer"
448  * formula. The caller may additonally add extra cachelines
449  * to account for TLB misses and clock crossings.
450  *
451  * This method is concerned with the short term drain rate
452  * of the FIFO, ie. it does not account for blanking periods
453  * which would effectively reduce the average drain rate across
454  * a longer period. The name "small" refers to the fact the
455  * FIFO is relatively small compared to the amount of data
456  * fetched.
457  *
458  * The FIFO level vs. time graph might look something like:
459  *
460  *   |\   |\
461  *   | \  | \
462  * __---__---__ (- plane active, _ blanking)
463  * -> time
464  *
465  * or perhaps like this:
466  *
467  *   |\|\  |\|\
468  * __----__----__ (- plane active, _ blanking)
469  * -> time
470  *
471  * Returns:
472  * The watermark in bytes
473  */
474 static unsigned int intel_wm_method1(unsigned int pixel_rate,
475 				     unsigned int cpp,
476 				     unsigned int latency)
477 {
478 	u64 ret;
479 
480 	ret = mul_u32_u32(pixel_rate, cpp * latency);
481 	ret = DIV_ROUND_UP_ULL(ret, 10000);
482 
483 	return ret;
484 }
485 
486 /**
487  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
488  * @pixel_rate: Pipe pixel rate in kHz
489  * @htotal: Pipe horizontal total
490  * @width: Plane width in pixels
491  * @cpp: Plane bytes per pixel
492  * @latency: Memory wakeup latency in 0.1us units
493  *
494  * Compute the watermark using the method 2 or "large buffer"
495  * formula. The caller may additonally add extra cachelines
496  * to account for TLB misses and clock crossings.
497  *
498  * This method is concerned with the long term drain rate
499  * of the FIFO, ie. it does account for blanking periods
500  * which effectively reduce the average drain rate across
501  * a longer period. The name "large" refers to the fact the
502  * FIFO is relatively large compared to the amount of data
503  * fetched.
504  *
505  * The FIFO level vs. time graph might look something like:
506  *
507  *    |\___       |\___
508  *    |    \___   |    \___
509  *    |        \  |        \
510  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
511  * -> time
512  *
513  * Returns:
514  * The watermark in bytes
515  */
516 static unsigned int intel_wm_method2(unsigned int pixel_rate,
517 				     unsigned int htotal,
518 				     unsigned int width,
519 				     unsigned int cpp,
520 				     unsigned int latency)
521 {
522 	unsigned int ret;
523 
524 	/*
525 	 * FIXME remove once all users are computing
526 	 * watermarks in the correct place.
527 	 */
528 	if (WARN_ON_ONCE(htotal == 0))
529 		htotal = 1;
530 
531 	ret = (latency * pixel_rate) / (htotal * 10000);
532 	ret = (ret + 1) * width * cpp;
533 
534 	return ret;
535 }
536 
537 /**
538  * intel_calculate_wm - calculate watermark level
539  * @i915: the device
540  * @pixel_rate: pixel clock
541  * @wm: chip FIFO params
542  * @fifo_size: size of the FIFO buffer
543  * @cpp: bytes per pixel
544  * @latency_ns: memory latency for the platform
545  *
546  * Calculate the watermark level (the level at which the display plane will
547  * start fetching from memory again).  Each chip has a different display
548  * FIFO size and allocation, so the caller needs to figure that out and pass
549  * in the correct intel_watermark_params structure.
550  *
551  * As the pixel clock runs, the FIFO will be drained at a rate that depends
552  * on the pixel size.  When it reaches the watermark level, it'll start
553  * fetching FIFO line sized based chunks from memory until the FIFO fills
554  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
555  * will occur, and a display engine hang could result.
556  */
557 static unsigned int intel_calculate_wm(struct drm_i915_private *i915,
558 				       int pixel_rate,
559 				       const struct intel_watermark_params *wm,
560 				       int fifo_size, int cpp,
561 				       unsigned int latency_ns)
562 {
563 	int entries, wm_size;
564 
565 	/*
566 	 * Note: we need to make sure we don't overflow for various clock &
567 	 * latency values.
568 	 * clocks go from a few thousand to several hundred thousand.
569 	 * latency is usually a few thousand
570 	 */
571 	entries = intel_wm_method1(pixel_rate, cpp,
572 				   latency_ns / 100);
573 	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
574 		wm->guard_size;
575 	drm_dbg_kms(&i915->drm, "FIFO entries required for mode: %d\n", entries);
576 
577 	wm_size = fifo_size - entries;
578 	drm_dbg_kms(&i915->drm, "FIFO watermark level: %d\n", wm_size);
579 
580 	/* Don't promote wm_size to unsigned... */
581 	if (wm_size > wm->max_wm)
582 		wm_size = wm->max_wm;
583 	if (wm_size <= 0)
584 		wm_size = wm->default_wm;
585 
586 	/*
587 	 * Bspec seems to indicate that the value shouldn't be lower than
588 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
589 	 * Lets go for 8 which is the burst size since certain platforms
590 	 * already use a hardcoded 8 (which is what the spec says should be
591 	 * done).
592 	 */
593 	if (wm_size <= 8)
594 		wm_size = 8;
595 
596 	return wm_size;
597 }
598 
599 static bool is_disabling(int old, int new, int threshold)
600 {
601 	return old >= threshold && new < threshold;
602 }
603 
604 static bool is_enabling(int old, int new, int threshold)
605 {
606 	return old < threshold && new >= threshold;
607 }
608 
609 static bool intel_crtc_active(struct intel_crtc *crtc)
610 {
611 	/* Be paranoid as we can arrive here with only partial
612 	 * state retrieved from the hardware during setup.
613 	 *
614 	 * We can ditch the adjusted_mode.crtc_clock check as soon
615 	 * as Haswell has gained clock readout/fastboot support.
616 	 *
617 	 * We can ditch the crtc->primary->state->fb check as soon as we can
618 	 * properly reconstruct framebuffers.
619 	 *
620 	 * FIXME: The intel_crtc->active here should be switched to
621 	 * crtc->state->active once we have proper CRTC states wired up
622 	 * for atomic.
623 	 */
624 	return crtc->active && crtc->base.primary->state->fb &&
625 		crtc->config->hw.adjusted_mode.crtc_clock;
626 }
627 
628 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
629 {
630 	struct intel_crtc *crtc, *enabled = NULL;
631 
632 	for_each_intel_crtc(&dev_priv->drm, crtc) {
633 		if (intel_crtc_active(crtc)) {
634 			if (enabled)
635 				return NULL;
636 			enabled = crtc;
637 		}
638 	}
639 
640 	return enabled;
641 }
642 
643 static void pnv_update_wm(struct drm_i915_private *dev_priv)
644 {
645 	struct intel_crtc *crtc;
646 	const struct cxsr_latency *latency;
647 	u32 reg;
648 	unsigned int wm;
649 
650 	latency = pnv_get_cxsr_latency(dev_priv);
651 	if (!latency) {
652 		drm_dbg_kms(&dev_priv->drm, "Unknown FSB/MEM, disabling CxSR\n");
653 		intel_set_memory_cxsr(dev_priv, false);
654 		return;
655 	}
656 
657 	crtc = single_enabled_crtc(dev_priv);
658 	if (crtc) {
659 		const struct drm_framebuffer *fb =
660 			crtc->base.primary->state->fb;
661 		int pixel_rate = crtc->config->pixel_rate;
662 		int cpp = fb->format->cpp[0];
663 
664 		/* Display SR */
665 		wm = intel_calculate_wm(dev_priv, pixel_rate,
666 					&pnv_display_wm,
667 					pnv_display_wm.fifo_size,
668 					cpp, latency->display_sr);
669 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW1(dev_priv));
670 		reg &= ~DSPFW_SR_MASK;
671 		reg |= FW_WM(wm, SR);
672 		intel_uncore_write(&dev_priv->uncore, DSPFW1(dev_priv), reg);
673 		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
674 
675 		/* cursor SR */
676 		wm = intel_calculate_wm(dev_priv, pixel_rate,
677 					&pnv_cursor_wm,
678 					pnv_display_wm.fifo_size,
679 					4, latency->cursor_sr);
680 		intel_uncore_rmw(&dev_priv->uncore, DSPFW3(dev_priv),
681 				 DSPFW_CURSOR_SR_MASK,
682 				 FW_WM(wm, CURSOR_SR));
683 
684 		/* Display HPLL off SR */
685 		wm = intel_calculate_wm(dev_priv, pixel_rate,
686 					&pnv_display_hplloff_wm,
687 					pnv_display_hplloff_wm.fifo_size,
688 					cpp, latency->display_hpll_disable);
689 		intel_uncore_rmw(&dev_priv->uncore, DSPFW3(dev_priv),
690 				 DSPFW_HPLL_SR_MASK, FW_WM(wm, HPLL_SR));
691 
692 		/* cursor HPLL off SR */
693 		wm = intel_calculate_wm(dev_priv, pixel_rate,
694 					&pnv_cursor_hplloff_wm,
695 					pnv_display_hplloff_wm.fifo_size,
696 					4, latency->cursor_hpll_disable);
697 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3(dev_priv));
698 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
699 		reg |= FW_WM(wm, HPLL_CURSOR);
700 		intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv), reg);
701 		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
702 
703 		intel_set_memory_cxsr(dev_priv, true);
704 	} else {
705 		intel_set_memory_cxsr(dev_priv, false);
706 	}
707 }
708 
709 static bool i9xx_wm_need_update(const struct intel_plane_state *old_plane_state,
710 				const struct intel_plane_state *new_plane_state)
711 {
712 	/* Update watermarks on tiling or size changes. */
713 	if (old_plane_state->uapi.visible != new_plane_state->uapi.visible)
714 		return true;
715 
716 	if (!old_plane_state->hw.fb || !new_plane_state->hw.fb)
717 		return false;
718 
719 	if (old_plane_state->hw.fb->modifier != new_plane_state->hw.fb->modifier ||
720 	    old_plane_state->hw.rotation != new_plane_state->hw.rotation ||
721 	    drm_rect_width(&old_plane_state->uapi.src) != drm_rect_width(&new_plane_state->uapi.src) ||
722 	    drm_rect_height(&old_plane_state->uapi.src) != drm_rect_height(&new_plane_state->uapi.src) ||
723 	    drm_rect_width(&old_plane_state->uapi.dst) != drm_rect_width(&new_plane_state->uapi.dst) ||
724 	    drm_rect_height(&old_plane_state->uapi.dst) != drm_rect_height(&new_plane_state->uapi.dst))
725 		return true;
726 
727 	return false;
728 }
729 
730 static void i9xx_wm_compute(struct intel_crtc_state *new_crtc_state,
731 			    const struct intel_plane_state *old_plane_state,
732 			    const struct intel_plane_state *new_plane_state)
733 {
734 	bool turn_off, turn_on, visible, was_visible, mode_changed;
735 
736 	mode_changed = intel_crtc_needs_modeset(new_crtc_state);
737 	was_visible = old_plane_state->uapi.visible;
738 	visible = new_plane_state->uapi.visible;
739 
740 	if (!was_visible && !visible)
741 		return;
742 
743 	turn_off = was_visible && (!visible || mode_changed);
744 	turn_on = visible && (!was_visible || mode_changed);
745 
746 	/* FIXME nuke when all wm code is atomic */
747 	if (turn_on) {
748 		new_crtc_state->update_wm_pre = true;
749 	} else if (turn_off) {
750 		new_crtc_state->update_wm_post = true;
751 	} else if (i9xx_wm_need_update(old_plane_state, new_plane_state)) {
752 		/* FIXME bollocks */
753 		new_crtc_state->update_wm_pre = true;
754 		new_crtc_state->update_wm_post = true;
755 	}
756 }
757 
758 static int i9xx_compute_watermarks(struct intel_atomic_state *state,
759 				   struct intel_crtc *crtc)
760 {
761 	struct intel_crtc_state *new_crtc_state =
762 		intel_atomic_get_new_crtc_state(state, crtc);
763 	const struct intel_plane_state *old_plane_state;
764 	const struct intel_plane_state *new_plane_state;
765 	struct intel_plane *plane;
766 	int i;
767 
768 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
769 					     new_plane_state, i) {
770 		if (plane->pipe != crtc->pipe)
771 			continue;
772 
773 		i9xx_wm_compute(new_crtc_state, old_plane_state, new_plane_state);
774 	}
775 
776 	return 0;
777 }
778 
779 /*
780  * Documentation says:
781  * "If the line size is small, the TLB fetches can get in the way of the
782  *  data fetches, causing some lag in the pixel data return which is not
783  *  accounted for in the above formulas. The following adjustment only
784  *  needs to be applied if eight whole lines fit in the buffer at once.
785  *  The WM is adjusted upwards by the difference between the FIFO size
786  *  and the size of 8 whole lines. This adjustment is always performed
787  *  in the actual pixel depth regardless of whether FBC is enabled or not."
788  */
789 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
790 {
791 	int tlb_miss = fifo_size * 64 - width * cpp * 8;
792 
793 	return max(0, tlb_miss);
794 }
795 
796 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
797 				const struct g4x_wm_values *wm)
798 {
799 	struct intel_display *display = &dev_priv->display;
800 	enum pipe pipe;
801 
802 	for_each_pipe(dev_priv, pipe)
803 		trace_g4x_wm(intel_crtc_for_pipe(display, pipe), wm);
804 
805 	intel_uncore_write(&dev_priv->uncore, DSPFW1(dev_priv),
806 			   FW_WM(wm->sr.plane, SR) |
807 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
808 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
809 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
810 	intel_uncore_write(&dev_priv->uncore, DSPFW2(dev_priv),
811 			   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
812 			   FW_WM(wm->sr.fbc, FBC_SR) |
813 			   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
814 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
815 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
816 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
817 	intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv),
818 			   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
819 			   FW_WM(wm->sr.cursor, CURSOR_SR) |
820 			   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
821 			   FW_WM(wm->hpll.plane, HPLL_SR));
822 
823 	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1(dev_priv));
824 }
825 
826 #define FW_WM_VLV(value, plane) \
827 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
828 
829 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
830 				const struct vlv_wm_values *wm)
831 {
832 	struct intel_display *display = &dev_priv->display;
833 	enum pipe pipe;
834 
835 	for_each_pipe(dev_priv, pipe) {
836 		trace_vlv_wm(intel_crtc_for_pipe(display, pipe), wm);
837 
838 		intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
839 				   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
840 				   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
841 				   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
842 				   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
843 	}
844 
845 	/*
846 	 * Zero the (unused) WM1 watermarks, and also clear all the
847 	 * high order bits so that there are no out of bounds values
848 	 * present in the registers during the reprogramming.
849 	 */
850 	intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
851 	intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
852 	intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
853 	intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
854 	intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
855 
856 	intel_uncore_write(&dev_priv->uncore, DSPFW1(dev_priv),
857 			   FW_WM(wm->sr.plane, SR) |
858 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
859 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
860 			   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
861 	intel_uncore_write(&dev_priv->uncore, DSPFW2(dev_priv),
862 			   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
863 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
864 			   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
865 	intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv),
866 			   FW_WM(wm->sr.cursor, CURSOR_SR));
867 
868 	if (IS_CHERRYVIEW(dev_priv)) {
869 		intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
870 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
871 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
872 		intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
873 				   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
874 				   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
875 		intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
876 				   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
877 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
878 		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
879 				   FW_WM(wm->sr.plane >> 9, SR_HI) |
880 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
881 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
882 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
883 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
884 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
885 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
886 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
887 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
888 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
889 	} else {
890 		intel_uncore_write(&dev_priv->uncore, DSPFW7,
891 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
892 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
893 		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
894 				   FW_WM(wm->sr.plane >> 9, SR_HI) |
895 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
896 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
897 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
898 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
899 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
900 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
901 	}
902 
903 	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1(dev_priv));
904 }
905 
906 #undef FW_WM_VLV
907 
908 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
909 {
910 	/* all latencies in usec */
911 	dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
912 	dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
913 	dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
914 
915 	dev_priv->display.wm.num_levels = G4X_WM_LEVEL_HPLL + 1;
916 }
917 
918 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
919 {
920 	/*
921 	 * DSPCNTR[13] supposedly controls whether the
922 	 * primary plane can use the FIFO space otherwise
923 	 * reserved for the sprite plane. It's not 100% clear
924 	 * what the actual FIFO size is, but it looks like we
925 	 * can happily set both primary and sprite watermarks
926 	 * up to 127 cachelines. So that would seem to mean
927 	 * that either DSPCNTR[13] doesn't do anything, or that
928 	 * the total FIFO is >= 256 cachelines in size. Either
929 	 * way, we don't seem to have to worry about this
930 	 * repartitioning as the maximum watermark value the
931 	 * register can hold for each plane is lower than the
932 	 * minimum FIFO size.
933 	 */
934 	switch (plane_id) {
935 	case PLANE_CURSOR:
936 		return 63;
937 	case PLANE_PRIMARY:
938 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
939 	case PLANE_SPRITE0:
940 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
941 	default:
942 		MISSING_CASE(plane_id);
943 		return 0;
944 	}
945 }
946 
947 static int g4x_fbc_fifo_size(int level)
948 {
949 	switch (level) {
950 	case G4X_WM_LEVEL_SR:
951 		return 7;
952 	case G4X_WM_LEVEL_HPLL:
953 		return 15;
954 	default:
955 		MISSING_CASE(level);
956 		return 0;
957 	}
958 }
959 
960 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
961 			  const struct intel_plane_state *plane_state,
962 			  int level)
963 {
964 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
965 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
966 	const struct drm_display_mode *pipe_mode =
967 		&crtc_state->hw.pipe_mode;
968 	unsigned int latency = dev_priv->display.wm.pri_latency[level] * 10;
969 	unsigned int pixel_rate, htotal, cpp, width, wm;
970 
971 	if (latency == 0)
972 		return USHRT_MAX;
973 
974 	if (!intel_wm_plane_visible(crtc_state, plane_state))
975 		return 0;
976 
977 	cpp = plane_state->hw.fb->format->cpp[0];
978 
979 	/*
980 	 * WaUse32BppForSRWM:ctg,elk
981 	 *
982 	 * The spec fails to list this restriction for the
983 	 * HPLL watermark, which seems a little strange.
984 	 * Let's use 32bpp for the HPLL watermark as well.
985 	 */
986 	if (plane->id == PLANE_PRIMARY &&
987 	    level != G4X_WM_LEVEL_NORMAL)
988 		cpp = max(cpp, 4u);
989 
990 	pixel_rate = crtc_state->pixel_rate;
991 	htotal = pipe_mode->crtc_htotal;
992 	width = drm_rect_width(&plane_state->uapi.src) >> 16;
993 
994 	if (plane->id == PLANE_CURSOR) {
995 		wm = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
996 	} else if (plane->id == PLANE_PRIMARY &&
997 		   level == G4X_WM_LEVEL_NORMAL) {
998 		wm = intel_wm_method1(pixel_rate, cpp, latency);
999 	} else {
1000 		unsigned int small, large;
1001 
1002 		small = intel_wm_method1(pixel_rate, cpp, latency);
1003 		large = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
1004 
1005 		wm = min(small, large);
1006 	}
1007 
1008 	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1009 			      width, cpp);
1010 
1011 	wm = DIV_ROUND_UP(wm, 64) + 2;
1012 
1013 	return min_t(unsigned int, wm, USHRT_MAX);
1014 }
1015 
1016 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1017 				 int level, enum plane_id plane_id, u16 value)
1018 {
1019 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1020 	bool dirty = false;
1021 
1022 	for (; level < dev_priv->display.wm.num_levels; level++) {
1023 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1024 
1025 		dirty |= raw->plane[plane_id] != value;
1026 		raw->plane[plane_id] = value;
1027 	}
1028 
1029 	return dirty;
1030 }
1031 
1032 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1033 			       int level, u16 value)
1034 {
1035 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1036 	bool dirty = false;
1037 
1038 	/* NORMAL level doesn't have an FBC watermark */
1039 	level = max(level, G4X_WM_LEVEL_SR);
1040 
1041 	for (; level < dev_priv->display.wm.num_levels; level++) {
1042 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1043 
1044 		dirty |= raw->fbc != value;
1045 		raw->fbc = value;
1046 	}
1047 
1048 	return dirty;
1049 }
1050 
1051 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1052 			      const struct intel_plane_state *plane_state,
1053 			      u32 pri_val);
1054 
1055 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1056 				     const struct intel_plane_state *plane_state)
1057 {
1058 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1059 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1060 	enum plane_id plane_id = plane->id;
1061 	bool dirty = false;
1062 	int level;
1063 
1064 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1065 		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1066 		if (plane_id == PLANE_PRIMARY)
1067 			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1068 		goto out;
1069 	}
1070 
1071 	for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
1072 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1073 		int wm, max_wm;
1074 
1075 		wm = g4x_compute_wm(crtc_state, plane_state, level);
1076 		max_wm = g4x_plane_fifo_size(plane_id, level);
1077 
1078 		if (wm > max_wm)
1079 			break;
1080 
1081 		dirty |= raw->plane[plane_id] != wm;
1082 		raw->plane[plane_id] = wm;
1083 
1084 		if (plane_id != PLANE_PRIMARY ||
1085 		    level == G4X_WM_LEVEL_NORMAL)
1086 			continue;
1087 
1088 		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1089 					raw->plane[plane_id]);
1090 		max_wm = g4x_fbc_fifo_size(level);
1091 
1092 		/*
1093 		 * FBC wm is not mandatory as we
1094 		 * can always just disable its use.
1095 		 */
1096 		if (wm > max_wm)
1097 			wm = USHRT_MAX;
1098 
1099 		dirty |= raw->fbc != wm;
1100 		raw->fbc = wm;
1101 	}
1102 
1103 	/* mark watermarks as invalid */
1104 	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1105 
1106 	if (plane_id == PLANE_PRIMARY)
1107 		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1108 
1109  out:
1110 	if (dirty) {
1111 		drm_dbg_kms(&dev_priv->drm,
1112 			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1113 			    plane->base.name,
1114 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1115 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1116 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1117 
1118 		if (plane_id == PLANE_PRIMARY)
1119 			drm_dbg_kms(&dev_priv->drm,
1120 				    "FBC watermarks: SR=%d, HPLL=%d\n",
1121 				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1122 				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1123 	}
1124 
1125 	return dirty;
1126 }
1127 
1128 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1129 				      enum plane_id plane_id, int level)
1130 {
1131 	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1132 
1133 	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1134 }
1135 
1136 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1137 				     int level)
1138 {
1139 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1140 
1141 	if (level >= dev_priv->display.wm.num_levels)
1142 		return false;
1143 
1144 	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1145 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1146 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1147 }
1148 
1149 /* mark all levels starting from 'level' as invalid */
1150 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1151 			       struct g4x_wm_state *wm_state, int level)
1152 {
1153 	if (level <= G4X_WM_LEVEL_NORMAL) {
1154 		enum plane_id plane_id;
1155 
1156 		for_each_plane_id_on_crtc(crtc, plane_id)
1157 			wm_state->wm.plane[plane_id] = USHRT_MAX;
1158 	}
1159 
1160 	if (level <= G4X_WM_LEVEL_SR) {
1161 		wm_state->cxsr = false;
1162 		wm_state->sr.cursor = USHRT_MAX;
1163 		wm_state->sr.plane = USHRT_MAX;
1164 		wm_state->sr.fbc = USHRT_MAX;
1165 	}
1166 
1167 	if (level <= G4X_WM_LEVEL_HPLL) {
1168 		wm_state->hpll_en = false;
1169 		wm_state->hpll.cursor = USHRT_MAX;
1170 		wm_state->hpll.plane = USHRT_MAX;
1171 		wm_state->hpll.fbc = USHRT_MAX;
1172 	}
1173 }
1174 
1175 static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1176 			       int level)
1177 {
1178 	if (level < G4X_WM_LEVEL_SR)
1179 		return false;
1180 
1181 	if (level >= G4X_WM_LEVEL_SR &&
1182 	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1183 		return false;
1184 
1185 	if (level >= G4X_WM_LEVEL_HPLL &&
1186 	    wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1187 		return false;
1188 
1189 	return true;
1190 }
1191 
1192 static int _g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1193 {
1194 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1195 	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1196 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1197 	const struct g4x_pipe_wm *raw;
1198 	enum plane_id plane_id;
1199 	int level;
1200 
1201 	level = G4X_WM_LEVEL_NORMAL;
1202 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1203 		goto out;
1204 
1205 	raw = &crtc_state->wm.g4x.raw[level];
1206 	for_each_plane_id_on_crtc(crtc, plane_id)
1207 		wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1208 
1209 	level = G4X_WM_LEVEL_SR;
1210 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1211 		goto out;
1212 
1213 	raw = &crtc_state->wm.g4x.raw[level];
1214 	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1215 	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1216 	wm_state->sr.fbc = raw->fbc;
1217 
1218 	wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY);
1219 
1220 	level = G4X_WM_LEVEL_HPLL;
1221 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1222 		goto out;
1223 
1224 	raw = &crtc_state->wm.g4x.raw[level];
1225 	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1226 	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1227 	wm_state->hpll.fbc = raw->fbc;
1228 
1229 	wm_state->hpll_en = wm_state->cxsr;
1230 
1231 	level++;
1232 
1233  out:
1234 	if (level == G4X_WM_LEVEL_NORMAL)
1235 		return -EINVAL;
1236 
1237 	/* invalidate the higher levels */
1238 	g4x_invalidate_wms(crtc, wm_state, level);
1239 
1240 	/*
1241 	 * Determine if the FBC watermark(s) can be used. IF
1242 	 * this isn't the case we prefer to disable the FBC
1243 	 * watermark(s) rather than disable the SR/HPLL
1244 	 * level(s) entirely. 'level-1' is the highest valid
1245 	 * level here.
1246 	 */
1247 	wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1248 
1249 	return 0;
1250 }
1251 
1252 static int g4x_compute_pipe_wm(struct intel_atomic_state *state,
1253 			       struct intel_crtc *crtc)
1254 {
1255 	struct intel_crtc_state *crtc_state =
1256 		intel_atomic_get_new_crtc_state(state, crtc);
1257 	const struct intel_plane_state *old_plane_state;
1258 	const struct intel_plane_state *new_plane_state;
1259 	struct intel_plane *plane;
1260 	unsigned int dirty = 0;
1261 	int i;
1262 
1263 	for_each_oldnew_intel_plane_in_state(state, plane,
1264 					     old_plane_state,
1265 					     new_plane_state, i) {
1266 		if (new_plane_state->hw.crtc != &crtc->base &&
1267 		    old_plane_state->hw.crtc != &crtc->base)
1268 			continue;
1269 
1270 		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1271 			dirty |= BIT(plane->id);
1272 	}
1273 
1274 	if (!dirty)
1275 		return 0;
1276 
1277 	return _g4x_compute_pipe_wm(crtc_state);
1278 }
1279 
1280 static int g4x_compute_intermediate_wm(struct intel_atomic_state *state,
1281 				       struct intel_crtc *crtc)
1282 {
1283 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1284 	struct intel_crtc_state *new_crtc_state =
1285 		intel_atomic_get_new_crtc_state(state, crtc);
1286 	const struct intel_crtc_state *old_crtc_state =
1287 		intel_atomic_get_old_crtc_state(state, crtc);
1288 	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1289 	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1290 	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1291 	enum plane_id plane_id;
1292 
1293 	if (!new_crtc_state->hw.active ||
1294 	    intel_crtc_needs_modeset(new_crtc_state)) {
1295 		*intermediate = *optimal;
1296 
1297 		intermediate->cxsr = false;
1298 		intermediate->hpll_en = false;
1299 		goto out;
1300 	}
1301 
1302 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1303 		!new_crtc_state->disable_cxsr;
1304 	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1305 		!new_crtc_state->disable_cxsr;
1306 	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1307 
1308 	for_each_plane_id_on_crtc(crtc, plane_id) {
1309 		intermediate->wm.plane[plane_id] =
1310 			max(optimal->wm.plane[plane_id],
1311 			    active->wm.plane[plane_id]);
1312 
1313 		drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1314 			    g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1315 	}
1316 
1317 	intermediate->sr.plane = max(optimal->sr.plane,
1318 				     active->sr.plane);
1319 	intermediate->sr.cursor = max(optimal->sr.cursor,
1320 				      active->sr.cursor);
1321 	intermediate->sr.fbc = max(optimal->sr.fbc,
1322 				   active->sr.fbc);
1323 
1324 	intermediate->hpll.plane = max(optimal->hpll.plane,
1325 				       active->hpll.plane);
1326 	intermediate->hpll.cursor = max(optimal->hpll.cursor,
1327 					active->hpll.cursor);
1328 	intermediate->hpll.fbc = max(optimal->hpll.fbc,
1329 				     active->hpll.fbc);
1330 
1331 	drm_WARN_ON(&dev_priv->drm,
1332 		    (intermediate->sr.plane >
1333 		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1334 		     intermediate->sr.cursor >
1335 		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1336 		    intermediate->cxsr);
1337 	drm_WARN_ON(&dev_priv->drm,
1338 		    (intermediate->sr.plane >
1339 		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1340 		     intermediate->sr.cursor >
1341 		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1342 		    intermediate->hpll_en);
1343 
1344 	drm_WARN_ON(&dev_priv->drm,
1345 		    intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1346 		    intermediate->fbc_en && intermediate->cxsr);
1347 	drm_WARN_ON(&dev_priv->drm,
1348 		    intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1349 		    intermediate->fbc_en && intermediate->hpll_en);
1350 
1351 out:
1352 	/*
1353 	 * If our intermediate WM are identical to the final WM, then we can
1354 	 * omit the post-vblank programming; only update if it's different.
1355 	 */
1356 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1357 		new_crtc_state->wm.need_postvbl_update = true;
1358 
1359 	return 0;
1360 }
1361 
1362 static int g4x_compute_watermarks(struct intel_atomic_state *state,
1363 				  struct intel_crtc *crtc)
1364 {
1365 	int ret;
1366 
1367 	ret = g4x_compute_pipe_wm(state, crtc);
1368 	if (ret)
1369 		return ret;
1370 
1371 	ret = g4x_compute_intermediate_wm(state, crtc);
1372 	if (ret)
1373 		return ret;
1374 
1375 	return 0;
1376 }
1377 
1378 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1379 			 struct g4x_wm_values *wm)
1380 {
1381 	struct intel_crtc *crtc;
1382 	int num_active_pipes = 0;
1383 
1384 	wm->cxsr = true;
1385 	wm->hpll_en = true;
1386 	wm->fbc_en = true;
1387 
1388 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1389 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1390 
1391 		if (!crtc->active)
1392 			continue;
1393 
1394 		if (!wm_state->cxsr)
1395 			wm->cxsr = false;
1396 		if (!wm_state->hpll_en)
1397 			wm->hpll_en = false;
1398 		if (!wm_state->fbc_en)
1399 			wm->fbc_en = false;
1400 
1401 		num_active_pipes++;
1402 	}
1403 
1404 	if (num_active_pipes != 1) {
1405 		wm->cxsr = false;
1406 		wm->hpll_en = false;
1407 		wm->fbc_en = false;
1408 	}
1409 
1410 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1411 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1412 		enum pipe pipe = crtc->pipe;
1413 
1414 		wm->pipe[pipe] = wm_state->wm;
1415 		if (crtc->active && wm->cxsr)
1416 			wm->sr = wm_state->sr;
1417 		if (crtc->active && wm->hpll_en)
1418 			wm->hpll = wm_state->hpll;
1419 	}
1420 }
1421 
1422 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1423 {
1424 	struct g4x_wm_values *old_wm = &dev_priv->display.wm.g4x;
1425 	struct g4x_wm_values new_wm = {};
1426 
1427 	g4x_merge_wm(dev_priv, &new_wm);
1428 
1429 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1430 		return;
1431 
1432 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1433 		_intel_set_memory_cxsr(dev_priv, false);
1434 
1435 	g4x_write_wm_values(dev_priv, &new_wm);
1436 
1437 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1438 		_intel_set_memory_cxsr(dev_priv, true);
1439 
1440 	*old_wm = new_wm;
1441 }
1442 
1443 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1444 				   struct intel_crtc *crtc)
1445 {
1446 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1447 	const struct intel_crtc_state *crtc_state =
1448 		intel_atomic_get_new_crtc_state(state, crtc);
1449 
1450 	mutex_lock(&dev_priv->display.wm.wm_mutex);
1451 	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1452 	g4x_program_watermarks(dev_priv);
1453 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
1454 }
1455 
1456 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1457 				    struct intel_crtc *crtc)
1458 {
1459 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1460 	const struct intel_crtc_state *crtc_state =
1461 		intel_atomic_get_new_crtc_state(state, crtc);
1462 
1463 	if (!crtc_state->wm.need_postvbl_update)
1464 		return;
1465 
1466 	mutex_lock(&dev_priv->display.wm.wm_mutex);
1467 	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1468 	g4x_program_watermarks(dev_priv);
1469 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
1470 }
1471 
1472 /* latency must be in 0.1us units. */
1473 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1474 				   unsigned int htotal,
1475 				   unsigned int width,
1476 				   unsigned int cpp,
1477 				   unsigned int latency)
1478 {
1479 	unsigned int ret;
1480 
1481 	ret = intel_wm_method2(pixel_rate, htotal,
1482 			       width, cpp, latency);
1483 	ret = DIV_ROUND_UP(ret, 64);
1484 
1485 	return ret;
1486 }
1487 
1488 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1489 {
1490 	/* all latencies in usec */
1491 	dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1492 
1493 	dev_priv->display.wm.num_levels = VLV_WM_LEVEL_PM2 + 1;
1494 
1495 	if (IS_CHERRYVIEW(dev_priv)) {
1496 		dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1497 		dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1498 
1499 		dev_priv->display.wm.num_levels = VLV_WM_LEVEL_DDR_DVFS + 1;
1500 	}
1501 }
1502 
1503 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1504 				const struct intel_plane_state *plane_state,
1505 				int level)
1506 {
1507 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1508 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1509 	const struct drm_display_mode *pipe_mode =
1510 		&crtc_state->hw.pipe_mode;
1511 	unsigned int pixel_rate, htotal, cpp, width, wm;
1512 
1513 	if (dev_priv->display.wm.pri_latency[level] == 0)
1514 		return USHRT_MAX;
1515 
1516 	if (!intel_wm_plane_visible(crtc_state, plane_state))
1517 		return 0;
1518 
1519 	cpp = plane_state->hw.fb->format->cpp[0];
1520 	pixel_rate = crtc_state->pixel_rate;
1521 	htotal = pipe_mode->crtc_htotal;
1522 	width = drm_rect_width(&plane_state->uapi.src) >> 16;
1523 
1524 	if (plane->id == PLANE_CURSOR) {
1525 		/*
1526 		 * FIXME the formula gives values that are
1527 		 * too big for the cursor FIFO, and hence we
1528 		 * would never be able to use cursors. For
1529 		 * now just hardcode the watermark.
1530 		 */
1531 		wm = 63;
1532 	} else {
1533 		wm = vlv_wm_method2(pixel_rate, htotal, width, cpp,
1534 				    dev_priv->display.wm.pri_latency[level] * 10);
1535 	}
1536 
1537 	return min_t(unsigned int, wm, USHRT_MAX);
1538 }
1539 
1540 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1541 {
1542 	return (active_planes & (BIT(PLANE_SPRITE0) |
1543 				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1544 }
1545 
1546 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1547 {
1548 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1549 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1550 	const struct g4x_pipe_wm *raw =
1551 		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1552 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1553 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1554 	int num_active_planes = hweight8(active_planes);
1555 	const int fifo_size = 511;
1556 	int fifo_extra, fifo_left = fifo_size;
1557 	int sprite0_fifo_extra = 0;
1558 	unsigned int total_rate;
1559 	enum plane_id plane_id;
1560 
1561 	/*
1562 	 * When enabling sprite0 after sprite1 has already been enabled
1563 	 * we tend to get an underrun unless sprite0 already has some
1564 	 * FIFO space allcoated. Hence we always allocate at least one
1565 	 * cacheline for sprite0 whenever sprite1 is enabled.
1566 	 *
1567 	 * All other plane enable sequences appear immune to this problem.
1568 	 */
1569 	if (vlv_need_sprite0_fifo_workaround(active_planes))
1570 		sprite0_fifo_extra = 1;
1571 
1572 	total_rate = raw->plane[PLANE_PRIMARY] +
1573 		raw->plane[PLANE_SPRITE0] +
1574 		raw->plane[PLANE_SPRITE1] +
1575 		sprite0_fifo_extra;
1576 
1577 	if (total_rate > fifo_size)
1578 		return -EINVAL;
1579 
1580 	if (total_rate == 0)
1581 		total_rate = 1;
1582 
1583 	for_each_plane_id_on_crtc(crtc, plane_id) {
1584 		unsigned int rate;
1585 
1586 		if ((active_planes & BIT(plane_id)) == 0) {
1587 			fifo_state->plane[plane_id] = 0;
1588 			continue;
1589 		}
1590 
1591 		rate = raw->plane[plane_id];
1592 		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1593 		fifo_left -= fifo_state->plane[plane_id];
1594 	}
1595 
1596 	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1597 	fifo_left -= sprite0_fifo_extra;
1598 
1599 	fifo_state->plane[PLANE_CURSOR] = 63;
1600 
1601 	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1602 
1603 	/* spread the remainder evenly */
1604 	for_each_plane_id_on_crtc(crtc, plane_id) {
1605 		int plane_extra;
1606 
1607 		if (fifo_left == 0)
1608 			break;
1609 
1610 		if ((active_planes & BIT(plane_id)) == 0)
1611 			continue;
1612 
1613 		plane_extra = min(fifo_extra, fifo_left);
1614 		fifo_state->plane[plane_id] += plane_extra;
1615 		fifo_left -= plane_extra;
1616 	}
1617 
1618 	drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1619 
1620 	/* give it all to the first plane if none are active */
1621 	if (active_planes == 0) {
1622 		drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1623 		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1624 	}
1625 
1626 	return 0;
1627 }
1628 
1629 /* mark all levels starting from 'level' as invalid */
1630 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1631 			       struct vlv_wm_state *wm_state, int level)
1632 {
1633 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1634 
1635 	for (; level < dev_priv->display.wm.num_levels; level++) {
1636 		enum plane_id plane_id;
1637 
1638 		for_each_plane_id_on_crtc(crtc, plane_id)
1639 			wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1640 
1641 		wm_state->sr[level].cursor = USHRT_MAX;
1642 		wm_state->sr[level].plane = USHRT_MAX;
1643 	}
1644 }
1645 
1646 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1647 {
1648 	if (wm > fifo_size)
1649 		return USHRT_MAX;
1650 	else
1651 		return fifo_size - wm;
1652 }
1653 
1654 /*
1655  * Starting from 'level' set all higher
1656  * levels to 'value' in the "raw" watermarks.
1657  */
1658 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1659 				 int level, enum plane_id plane_id, u16 value)
1660 {
1661 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1662 	bool dirty = false;
1663 
1664 	for (; level < dev_priv->display.wm.num_levels; level++) {
1665 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1666 
1667 		dirty |= raw->plane[plane_id] != value;
1668 		raw->plane[plane_id] = value;
1669 	}
1670 
1671 	return dirty;
1672 }
1673 
1674 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1675 				     const struct intel_plane_state *plane_state)
1676 {
1677 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1678 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1679 	enum plane_id plane_id = plane->id;
1680 	int level;
1681 	bool dirty = false;
1682 
1683 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1684 		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1685 		goto out;
1686 	}
1687 
1688 	for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
1689 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1690 		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1691 		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1692 
1693 		if (wm > max_wm)
1694 			break;
1695 
1696 		dirty |= raw->plane[plane_id] != wm;
1697 		raw->plane[plane_id] = wm;
1698 	}
1699 
1700 	/* mark all higher levels as invalid */
1701 	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1702 
1703 out:
1704 	if (dirty)
1705 		drm_dbg_kms(&dev_priv->drm,
1706 			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1707 			    plane->base.name,
1708 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1709 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1710 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1711 
1712 	return dirty;
1713 }
1714 
1715 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1716 				      enum plane_id plane_id, int level)
1717 {
1718 	const struct g4x_pipe_wm *raw =
1719 		&crtc_state->wm.vlv.raw[level];
1720 	const struct vlv_fifo_state *fifo_state =
1721 		&crtc_state->wm.vlv.fifo_state;
1722 
1723 	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1724 }
1725 
1726 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1727 {
1728 	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1729 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1730 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1731 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1732 }
1733 
1734 static int _vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1735 {
1736 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1737 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1738 	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1739 	const struct vlv_fifo_state *fifo_state =
1740 		&crtc_state->wm.vlv.fifo_state;
1741 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1742 	int num_active_planes = hweight8(active_planes);
1743 	enum plane_id plane_id;
1744 	int level;
1745 
1746 	/* initially allow all levels */
1747 	wm_state->num_levels = dev_priv->display.wm.num_levels;
1748 	/*
1749 	 * Note that enabling cxsr with no primary/sprite planes
1750 	 * enabled can wedge the pipe. Hence we only allow cxsr
1751 	 * with exactly one enabled primary/sprite plane.
1752 	 */
1753 	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1754 
1755 	for (level = 0; level < wm_state->num_levels; level++) {
1756 		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1757 		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1758 
1759 		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1760 			break;
1761 
1762 		for_each_plane_id_on_crtc(crtc, plane_id) {
1763 			wm_state->wm[level].plane[plane_id] =
1764 				vlv_invert_wm_value(raw->plane[plane_id],
1765 						    fifo_state->plane[plane_id]);
1766 		}
1767 
1768 		wm_state->sr[level].plane =
1769 			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1770 						 raw->plane[PLANE_SPRITE0],
1771 						 raw->plane[PLANE_SPRITE1]),
1772 					    sr_fifo_size);
1773 
1774 		wm_state->sr[level].cursor =
1775 			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1776 					    63);
1777 	}
1778 
1779 	if (level == 0)
1780 		return -EINVAL;
1781 
1782 	/* limit to only levels we can actually handle */
1783 	wm_state->num_levels = level;
1784 
1785 	/* invalidate the higher levels */
1786 	vlv_invalidate_wms(crtc, wm_state, level);
1787 
1788 	return 0;
1789 }
1790 
1791 static int vlv_compute_pipe_wm(struct intel_atomic_state *state,
1792 			       struct intel_crtc *crtc)
1793 {
1794 	struct intel_crtc_state *crtc_state =
1795 		intel_atomic_get_new_crtc_state(state, crtc);
1796 	const struct intel_plane_state *old_plane_state;
1797 	const struct intel_plane_state *new_plane_state;
1798 	struct intel_plane *plane;
1799 	unsigned int dirty = 0;
1800 	int i;
1801 
1802 	for_each_oldnew_intel_plane_in_state(state, plane,
1803 					     old_plane_state,
1804 					     new_plane_state, i) {
1805 		if (new_plane_state->hw.crtc != &crtc->base &&
1806 		    old_plane_state->hw.crtc != &crtc->base)
1807 			continue;
1808 
1809 		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1810 			dirty |= BIT(plane->id);
1811 	}
1812 
1813 	/*
1814 	 * DSPARB registers may have been reset due to the
1815 	 * power well being turned off. Make sure we restore
1816 	 * them to a consistent state even if no primary/sprite
1817 	 * planes are initially active. We also force a FIFO
1818 	 * recomputation so that we are sure to sanitize the
1819 	 * FIFO setting we took over from the BIOS even if there
1820 	 * are no active planes on the crtc.
1821 	 */
1822 	if (intel_crtc_needs_modeset(crtc_state))
1823 		dirty = ~0;
1824 
1825 	if (!dirty)
1826 		return 0;
1827 
1828 	/* cursor changes don't warrant a FIFO recompute */
1829 	if (dirty & ~BIT(PLANE_CURSOR)) {
1830 		const struct intel_crtc_state *old_crtc_state =
1831 			intel_atomic_get_old_crtc_state(state, crtc);
1832 		const struct vlv_fifo_state *old_fifo_state =
1833 			&old_crtc_state->wm.vlv.fifo_state;
1834 		const struct vlv_fifo_state *new_fifo_state =
1835 			&crtc_state->wm.vlv.fifo_state;
1836 		int ret;
1837 
1838 		ret = vlv_compute_fifo(crtc_state);
1839 		if (ret)
1840 			return ret;
1841 
1842 		if (intel_crtc_needs_modeset(crtc_state) ||
1843 		    memcmp(old_fifo_state, new_fifo_state,
1844 			   sizeof(*new_fifo_state)) != 0)
1845 			crtc_state->fifo_changed = true;
1846 	}
1847 
1848 	return _vlv_compute_pipe_wm(crtc_state);
1849 }
1850 
1851 #define VLV_FIFO(plane, value) \
1852 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1853 
1854 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1855 				   struct intel_crtc *crtc)
1856 {
1857 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1858 	struct intel_uncore *uncore = &dev_priv->uncore;
1859 	const struct intel_crtc_state *crtc_state =
1860 		intel_atomic_get_new_crtc_state(state, crtc);
1861 	const struct vlv_fifo_state *fifo_state =
1862 		&crtc_state->wm.vlv.fifo_state;
1863 	int sprite0_start, sprite1_start, fifo_size;
1864 	u32 dsparb, dsparb2, dsparb3;
1865 
1866 	if (!crtc_state->fifo_changed)
1867 		return;
1868 
1869 	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1870 	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1871 	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1872 
1873 	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
1874 	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1875 
1876 	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1877 
1878 	/*
1879 	 * uncore.lock serves a double purpose here. It allows us to
1880 	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1881 	 * it protects the DSPARB registers from getting clobbered by
1882 	 * parallel updates from multiple pipes.
1883 	 *
1884 	 * intel_pipe_update_start() has already disabled interrupts
1885 	 * for us, so a plain spin_lock() is sufficient here.
1886 	 */
1887 	spin_lock(&uncore->lock);
1888 
1889 	switch (crtc->pipe) {
1890 	case PIPE_A:
1891 		dsparb = intel_uncore_read_fw(uncore, DSPARB(dev_priv));
1892 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1893 
1894 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1895 			    VLV_FIFO(SPRITEB, 0xff));
1896 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1897 			   VLV_FIFO(SPRITEB, sprite1_start));
1898 
1899 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1900 			     VLV_FIFO(SPRITEB_HI, 0x1));
1901 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1902 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1903 
1904 		intel_uncore_write_fw(uncore, DSPARB(dev_priv), dsparb);
1905 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1906 		break;
1907 	case PIPE_B:
1908 		dsparb = intel_uncore_read_fw(uncore, DSPARB(dev_priv));
1909 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1910 
1911 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1912 			    VLV_FIFO(SPRITED, 0xff));
1913 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1914 			   VLV_FIFO(SPRITED, sprite1_start));
1915 
1916 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1917 			     VLV_FIFO(SPRITED_HI, 0xff));
1918 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1919 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1920 
1921 		intel_uncore_write_fw(uncore, DSPARB(dev_priv), dsparb);
1922 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1923 		break;
1924 	case PIPE_C:
1925 		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
1926 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1927 
1928 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1929 			     VLV_FIFO(SPRITEF, 0xff));
1930 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1931 			    VLV_FIFO(SPRITEF, sprite1_start));
1932 
1933 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1934 			     VLV_FIFO(SPRITEF_HI, 0xff));
1935 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1936 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1937 
1938 		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
1939 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1940 		break;
1941 	default:
1942 		break;
1943 	}
1944 
1945 	intel_uncore_posting_read_fw(uncore, DSPARB(dev_priv));
1946 
1947 	spin_unlock(&uncore->lock);
1948 }
1949 
1950 #undef VLV_FIFO
1951 
1952 static int vlv_compute_intermediate_wm(struct intel_atomic_state *state,
1953 				       struct intel_crtc *crtc)
1954 {
1955 	struct intel_crtc_state *new_crtc_state =
1956 		intel_atomic_get_new_crtc_state(state, crtc);
1957 	const struct intel_crtc_state *old_crtc_state =
1958 		intel_atomic_get_old_crtc_state(state, crtc);
1959 	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
1960 	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
1961 	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
1962 	int level;
1963 
1964 	if (!new_crtc_state->hw.active ||
1965 	    intel_crtc_needs_modeset(new_crtc_state)) {
1966 		*intermediate = *optimal;
1967 
1968 		intermediate->cxsr = false;
1969 		goto out;
1970 	}
1971 
1972 	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
1973 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1974 		!new_crtc_state->disable_cxsr;
1975 
1976 	for (level = 0; level < intermediate->num_levels; level++) {
1977 		enum plane_id plane_id;
1978 
1979 		for_each_plane_id_on_crtc(crtc, plane_id) {
1980 			intermediate->wm[level].plane[plane_id] =
1981 				min(optimal->wm[level].plane[plane_id],
1982 				    active->wm[level].plane[plane_id]);
1983 		}
1984 
1985 		intermediate->sr[level].plane = min(optimal->sr[level].plane,
1986 						    active->sr[level].plane);
1987 		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
1988 						     active->sr[level].cursor);
1989 	}
1990 
1991 	vlv_invalidate_wms(crtc, intermediate, level);
1992 
1993 out:
1994 	/*
1995 	 * If our intermediate WM are identical to the final WM, then we can
1996 	 * omit the post-vblank programming; only update if it's different.
1997 	 */
1998 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1999 		new_crtc_state->wm.need_postvbl_update = true;
2000 
2001 	return 0;
2002 }
2003 
2004 static int vlv_compute_watermarks(struct intel_atomic_state *state,
2005 				  struct intel_crtc *crtc)
2006 {
2007 	int ret;
2008 
2009 	ret = vlv_compute_pipe_wm(state, crtc);
2010 	if (ret)
2011 		return ret;
2012 
2013 	ret = vlv_compute_intermediate_wm(state, crtc);
2014 	if (ret)
2015 		return ret;
2016 
2017 	return 0;
2018 }
2019 
2020 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2021 			 struct vlv_wm_values *wm)
2022 {
2023 	struct intel_crtc *crtc;
2024 	int num_active_pipes = 0;
2025 
2026 	wm->level = dev_priv->display.wm.num_levels - 1;
2027 	wm->cxsr = true;
2028 
2029 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2030 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2031 
2032 		if (!crtc->active)
2033 			continue;
2034 
2035 		if (!wm_state->cxsr)
2036 			wm->cxsr = false;
2037 
2038 		num_active_pipes++;
2039 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2040 	}
2041 
2042 	if (num_active_pipes != 1)
2043 		wm->cxsr = false;
2044 
2045 	if (num_active_pipes > 1)
2046 		wm->level = VLV_WM_LEVEL_PM2;
2047 
2048 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2049 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2050 		enum pipe pipe = crtc->pipe;
2051 
2052 		wm->pipe[pipe] = wm_state->wm[wm->level];
2053 		if (crtc->active && wm->cxsr)
2054 			wm->sr = wm_state->sr[wm->level];
2055 
2056 		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2057 		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2058 		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2059 		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2060 	}
2061 }
2062 
2063 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2064 {
2065 	struct vlv_wm_values *old_wm = &dev_priv->display.wm.vlv;
2066 	struct vlv_wm_values new_wm = {};
2067 
2068 	vlv_merge_wm(dev_priv, &new_wm);
2069 
2070 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2071 		return;
2072 
2073 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2074 		chv_set_memory_dvfs(dev_priv, false);
2075 
2076 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2077 		chv_set_memory_pm5(dev_priv, false);
2078 
2079 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2080 		_intel_set_memory_cxsr(dev_priv, false);
2081 
2082 	vlv_write_wm_values(dev_priv, &new_wm);
2083 
2084 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2085 		_intel_set_memory_cxsr(dev_priv, true);
2086 
2087 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2088 		chv_set_memory_pm5(dev_priv, true);
2089 
2090 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2091 		chv_set_memory_dvfs(dev_priv, true);
2092 
2093 	*old_wm = new_wm;
2094 }
2095 
2096 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2097 				   struct intel_crtc *crtc)
2098 {
2099 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2100 	const struct intel_crtc_state *crtc_state =
2101 		intel_atomic_get_new_crtc_state(state, crtc);
2102 
2103 	mutex_lock(&dev_priv->display.wm.wm_mutex);
2104 	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2105 	vlv_program_watermarks(dev_priv);
2106 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
2107 }
2108 
2109 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2110 				    struct intel_crtc *crtc)
2111 {
2112 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2113 	const struct intel_crtc_state *crtc_state =
2114 		intel_atomic_get_new_crtc_state(state, crtc);
2115 
2116 	if (!crtc_state->wm.need_postvbl_update)
2117 		return;
2118 
2119 	mutex_lock(&dev_priv->display.wm.wm_mutex);
2120 	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2121 	vlv_program_watermarks(dev_priv);
2122 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
2123 }
2124 
2125 static void i965_update_wm(struct drm_i915_private *dev_priv)
2126 {
2127 	struct intel_crtc *crtc;
2128 	int srwm = 1;
2129 	int cursor_sr = 16;
2130 	bool cxsr_enabled;
2131 
2132 	/* Calc sr entries for one plane configs */
2133 	crtc = single_enabled_crtc(dev_priv);
2134 	if (crtc) {
2135 		/* self-refresh has much higher latency */
2136 		static const int sr_latency_ns = 12000;
2137 		const struct drm_display_mode *pipe_mode =
2138 			&crtc->config->hw.pipe_mode;
2139 		const struct drm_framebuffer *fb =
2140 			crtc->base.primary->state->fb;
2141 		int pixel_rate = crtc->config->pixel_rate;
2142 		int htotal = pipe_mode->crtc_htotal;
2143 		int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2144 		int cpp = fb->format->cpp[0];
2145 		int entries;
2146 
2147 		entries = intel_wm_method2(pixel_rate, htotal,
2148 					   width, cpp, sr_latency_ns / 100);
2149 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2150 		srwm = I965_FIFO_SIZE - entries;
2151 		if (srwm < 0)
2152 			srwm = 1;
2153 		srwm &= 0x1ff;
2154 		drm_dbg_kms(&dev_priv->drm,
2155 			    "self-refresh entries: %d, wm: %d\n",
2156 			    entries, srwm);
2157 
2158 		entries = intel_wm_method2(pixel_rate, htotal,
2159 					   crtc->base.cursor->state->crtc_w, 4,
2160 					   sr_latency_ns / 100);
2161 		entries = DIV_ROUND_UP(entries,
2162 				       i965_cursor_wm_info.cacheline_size) +
2163 			i965_cursor_wm_info.guard_size;
2164 
2165 		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2166 		if (cursor_sr > i965_cursor_wm_info.max_wm)
2167 			cursor_sr = i965_cursor_wm_info.max_wm;
2168 
2169 		drm_dbg_kms(&dev_priv->drm,
2170 			    "self-refresh watermark: display plane %d "
2171 			    "cursor %d\n", srwm, cursor_sr);
2172 
2173 		cxsr_enabled = true;
2174 	} else {
2175 		cxsr_enabled = false;
2176 		/* Turn off self refresh if both pipes are enabled */
2177 		intel_set_memory_cxsr(dev_priv, false);
2178 	}
2179 
2180 	drm_dbg_kms(&dev_priv->drm,
2181 		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2182 		    srwm);
2183 
2184 	/* 965 has limitations... */
2185 	intel_uncore_write(&dev_priv->uncore, DSPFW1(dev_priv),
2186 			   FW_WM(srwm, SR) |
2187 			   FW_WM(8, CURSORB) |
2188 			   FW_WM(8, PLANEB) |
2189 			   FW_WM(8, PLANEA));
2190 	intel_uncore_write(&dev_priv->uncore, DSPFW2(dev_priv),
2191 			   FW_WM(8, CURSORA) |
2192 			   FW_WM(8, PLANEC_OLD));
2193 	/* update cursor SR watermark */
2194 	intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv),
2195 			   FW_WM(cursor_sr, CURSOR_SR));
2196 
2197 	if (cxsr_enabled)
2198 		intel_set_memory_cxsr(dev_priv, true);
2199 }
2200 
2201 #undef FW_WM
2202 
2203 static struct intel_crtc *intel_crtc_for_plane(struct drm_i915_private *i915,
2204 					       enum i9xx_plane_id i9xx_plane)
2205 {
2206 	struct intel_display *display = &i915->display;
2207 	struct intel_plane *plane;
2208 
2209 	for_each_intel_plane(&i915->drm, plane) {
2210 		if (plane->id == PLANE_PRIMARY &&
2211 		    plane->i9xx_plane == i9xx_plane)
2212 			return intel_crtc_for_pipe(display, plane->pipe);
2213 	}
2214 
2215 	return NULL;
2216 }
2217 
2218 static void i9xx_update_wm(struct drm_i915_private *dev_priv)
2219 {
2220 	const struct intel_watermark_params *wm_info;
2221 	u32 fwater_lo;
2222 	u32 fwater_hi;
2223 	int cwm, srwm = 1;
2224 	int fifo_size;
2225 	int planea_wm, planeb_wm;
2226 	struct intel_crtc *crtc;
2227 
2228 	if (IS_I945GM(dev_priv))
2229 		wm_info = &i945_wm_info;
2230 	else if (DISPLAY_VER(dev_priv) != 2)
2231 		wm_info = &i915_wm_info;
2232 	else
2233 		wm_info = &i830_a_wm_info;
2234 
2235 	if (DISPLAY_VER(dev_priv) == 2)
2236 		fifo_size = i830_get_fifo_size(dev_priv, PLANE_A);
2237 	else
2238 		fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_A);
2239 	crtc = intel_crtc_for_plane(dev_priv, PLANE_A);
2240 	if (intel_crtc_active(crtc)) {
2241 		const struct drm_framebuffer *fb =
2242 			crtc->base.primary->state->fb;
2243 		int cpp;
2244 
2245 		if (DISPLAY_VER(dev_priv) == 2)
2246 			cpp = 4;
2247 		else
2248 			cpp = fb->format->cpp[0];
2249 
2250 		planea_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate,
2251 					       wm_info, fifo_size, cpp,
2252 					       pessimal_latency_ns);
2253 	} else {
2254 		planea_wm = fifo_size - wm_info->guard_size;
2255 		if (planea_wm > (long)wm_info->max_wm)
2256 			planea_wm = wm_info->max_wm;
2257 	}
2258 
2259 	if (DISPLAY_VER(dev_priv) == 2)
2260 		wm_info = &i830_bc_wm_info;
2261 
2262 	if (DISPLAY_VER(dev_priv) == 2)
2263 		fifo_size = i830_get_fifo_size(dev_priv, PLANE_B);
2264 	else
2265 		fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_B);
2266 	crtc = intel_crtc_for_plane(dev_priv, PLANE_B);
2267 	if (intel_crtc_active(crtc)) {
2268 		const struct drm_framebuffer *fb =
2269 			crtc->base.primary->state->fb;
2270 		int cpp;
2271 
2272 		if (DISPLAY_VER(dev_priv) == 2)
2273 			cpp = 4;
2274 		else
2275 			cpp = fb->format->cpp[0];
2276 
2277 		planeb_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate,
2278 					       wm_info, fifo_size, cpp,
2279 					       pessimal_latency_ns);
2280 	} else {
2281 		planeb_wm = fifo_size - wm_info->guard_size;
2282 		if (planeb_wm > (long)wm_info->max_wm)
2283 			planeb_wm = wm_info->max_wm;
2284 	}
2285 
2286 	drm_dbg_kms(&dev_priv->drm,
2287 		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2288 
2289 	crtc = single_enabled_crtc(dev_priv);
2290 	if (IS_I915GM(dev_priv) && crtc) {
2291 		struct drm_gem_object *obj;
2292 
2293 		obj = intel_fb_bo(crtc->base.primary->state->fb);
2294 
2295 		/* self-refresh seems busted with untiled */
2296 		if (!intel_bo_is_tiled(obj))
2297 			crtc = NULL;
2298 	}
2299 
2300 	/*
2301 	 * Overlay gets an aggressive default since video jitter is bad.
2302 	 */
2303 	cwm = 2;
2304 
2305 	/* Play safe and disable self-refresh before adjusting watermarks. */
2306 	intel_set_memory_cxsr(dev_priv, false);
2307 
2308 	/* Calc sr entries for one plane configs */
2309 	if (HAS_FW_BLC(dev_priv) && crtc) {
2310 		/* self-refresh has much higher latency */
2311 		static const int sr_latency_ns = 6000;
2312 		const struct drm_display_mode *pipe_mode =
2313 			&crtc->config->hw.pipe_mode;
2314 		const struct drm_framebuffer *fb =
2315 			crtc->base.primary->state->fb;
2316 		int pixel_rate = crtc->config->pixel_rate;
2317 		int htotal = pipe_mode->crtc_htotal;
2318 		int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2319 		int cpp;
2320 		int entries;
2321 
2322 		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2323 			cpp = 4;
2324 		else
2325 			cpp = fb->format->cpp[0];
2326 
2327 		entries = intel_wm_method2(pixel_rate, htotal, width, cpp,
2328 					   sr_latency_ns / 100);
2329 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2330 		drm_dbg_kms(&dev_priv->drm,
2331 			    "self-refresh entries: %d\n", entries);
2332 		srwm = wm_info->fifo_size - entries;
2333 		if (srwm < 0)
2334 			srwm = 1;
2335 
2336 		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2337 			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2338 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2339 		else
2340 			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2341 	}
2342 
2343 	drm_dbg_kms(&dev_priv->drm,
2344 		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2345 		     planea_wm, planeb_wm, cwm, srwm);
2346 
2347 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2348 	fwater_hi = (cwm & 0x1f);
2349 
2350 	/* Set request length to 8 cachelines per fetch */
2351 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2352 	fwater_hi = fwater_hi | (1 << 8);
2353 
2354 	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2355 	intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2356 
2357 	if (crtc)
2358 		intel_set_memory_cxsr(dev_priv, true);
2359 }
2360 
2361 static void i845_update_wm(struct drm_i915_private *dev_priv)
2362 {
2363 	struct intel_crtc *crtc;
2364 	u32 fwater_lo;
2365 	int planea_wm;
2366 
2367 	crtc = single_enabled_crtc(dev_priv);
2368 	if (crtc == NULL)
2369 		return;
2370 
2371 	planea_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate,
2372 				       &i845_wm_info,
2373 				       i845_get_fifo_size(dev_priv, PLANE_A),
2374 				       4, pessimal_latency_ns);
2375 	fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2376 	fwater_lo |= (3<<8) | planea_wm;
2377 
2378 	drm_dbg_kms(&dev_priv->drm,
2379 		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2380 
2381 	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2382 }
2383 
2384 /* latency must be in 0.1us units. */
2385 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2386 				   unsigned int cpp,
2387 				   unsigned int latency)
2388 {
2389 	unsigned int ret;
2390 
2391 	ret = intel_wm_method1(pixel_rate, cpp, latency);
2392 	ret = DIV_ROUND_UP(ret, 64) + 2;
2393 
2394 	return ret;
2395 }
2396 
2397 /* latency must be in 0.1us units. */
2398 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2399 				   unsigned int htotal,
2400 				   unsigned int width,
2401 				   unsigned int cpp,
2402 				   unsigned int latency)
2403 {
2404 	unsigned int ret;
2405 
2406 	ret = intel_wm_method2(pixel_rate, htotal,
2407 			       width, cpp, latency);
2408 	ret = DIV_ROUND_UP(ret, 64) + 2;
2409 
2410 	return ret;
2411 }
2412 
2413 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2414 {
2415 	/*
2416 	 * Neither of these should be possible since this function shouldn't be
2417 	 * called if the CRTC is off or the plane is invisible.  But let's be
2418 	 * extra paranoid to avoid a potential divide-by-zero if we screw up
2419 	 * elsewhere in the driver.
2420 	 */
2421 	if (WARN_ON(!cpp))
2422 		return 0;
2423 	if (WARN_ON(!horiz_pixels))
2424 		return 0;
2425 
2426 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2427 }
2428 
2429 struct ilk_wm_maximums {
2430 	u16 pri;
2431 	u16 spr;
2432 	u16 cur;
2433 	u16 fbc;
2434 };
2435 
2436 /*
2437  * For both WM_PIPE and WM_LP.
2438  * mem_value must be in 0.1us units.
2439  */
2440 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2441 			      const struct intel_plane_state *plane_state,
2442 			      u32 mem_value, bool is_lp)
2443 {
2444 	u32 method1, method2;
2445 	int cpp;
2446 
2447 	if (mem_value == 0)
2448 		return U32_MAX;
2449 
2450 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2451 		return 0;
2452 
2453 	cpp = plane_state->hw.fb->format->cpp[0];
2454 
2455 	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2456 
2457 	if (!is_lp)
2458 		return method1;
2459 
2460 	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2461 				 crtc_state->hw.pipe_mode.crtc_htotal,
2462 				 drm_rect_width(&plane_state->uapi.src) >> 16,
2463 				 cpp, mem_value);
2464 
2465 	return min(method1, method2);
2466 }
2467 
2468 /*
2469  * For both WM_PIPE and WM_LP.
2470  * mem_value must be in 0.1us units.
2471  */
2472 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2473 			      const struct intel_plane_state *plane_state,
2474 			      u32 mem_value)
2475 {
2476 	u32 method1, method2;
2477 	int cpp;
2478 
2479 	if (mem_value == 0)
2480 		return U32_MAX;
2481 
2482 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2483 		return 0;
2484 
2485 	cpp = plane_state->hw.fb->format->cpp[0];
2486 
2487 	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2488 	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2489 				 crtc_state->hw.pipe_mode.crtc_htotal,
2490 				 drm_rect_width(&plane_state->uapi.src) >> 16,
2491 				 cpp, mem_value);
2492 	return min(method1, method2);
2493 }
2494 
2495 /*
2496  * For both WM_PIPE and WM_LP.
2497  * mem_value must be in 0.1us units.
2498  */
2499 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2500 			      const struct intel_plane_state *plane_state,
2501 			      u32 mem_value)
2502 {
2503 	int cpp;
2504 
2505 	if (mem_value == 0)
2506 		return U32_MAX;
2507 
2508 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2509 		return 0;
2510 
2511 	cpp = plane_state->hw.fb->format->cpp[0];
2512 
2513 	return ilk_wm_method2(crtc_state->pixel_rate,
2514 			      crtc_state->hw.pipe_mode.crtc_htotal,
2515 			      drm_rect_width(&plane_state->uapi.src) >> 16,
2516 			      cpp, mem_value);
2517 }
2518 
2519 /* Only for WM_LP. */
2520 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2521 			      const struct intel_plane_state *plane_state,
2522 			      u32 pri_val)
2523 {
2524 	int cpp;
2525 
2526 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2527 		return 0;
2528 
2529 	cpp = plane_state->hw.fb->format->cpp[0];
2530 
2531 	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.src) >> 16,
2532 			  cpp);
2533 }
2534 
2535 static unsigned int
2536 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2537 {
2538 	if (DISPLAY_VER(dev_priv) >= 8)
2539 		return 3072;
2540 	else if (DISPLAY_VER(dev_priv) >= 7)
2541 		return 768;
2542 	else
2543 		return 512;
2544 }
2545 
2546 static unsigned int
2547 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2548 		     int level, bool is_sprite)
2549 {
2550 	if (DISPLAY_VER(dev_priv) >= 8)
2551 		/* BDW primary/sprite plane watermarks */
2552 		return level == 0 ? 255 : 2047;
2553 	else if (DISPLAY_VER(dev_priv) >= 7)
2554 		/* IVB/HSW primary/sprite plane watermarks */
2555 		return level == 0 ? 127 : 1023;
2556 	else if (!is_sprite)
2557 		/* ILK/SNB primary plane watermarks */
2558 		return level == 0 ? 127 : 511;
2559 	else
2560 		/* ILK/SNB sprite plane watermarks */
2561 		return level == 0 ? 63 : 255;
2562 }
2563 
2564 static unsigned int
2565 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2566 {
2567 	if (DISPLAY_VER(dev_priv) >= 7)
2568 		return level == 0 ? 63 : 255;
2569 	else
2570 		return level == 0 ? 31 : 63;
2571 }
2572 
2573 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2574 {
2575 	if (DISPLAY_VER(dev_priv) >= 8)
2576 		return 31;
2577 	else
2578 		return 15;
2579 }
2580 
2581 /* Calculate the maximum primary/sprite plane watermark */
2582 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2583 				     int level,
2584 				     const struct intel_wm_config *config,
2585 				     enum intel_ddb_partitioning ddb_partitioning,
2586 				     bool is_sprite)
2587 {
2588 	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2589 
2590 	/* if sprites aren't enabled, sprites get nothing */
2591 	if (is_sprite && !config->sprites_enabled)
2592 		return 0;
2593 
2594 	/* HSW allows LP1+ watermarks even with multiple pipes */
2595 	if (level == 0 || config->num_pipes_active > 1) {
2596 		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2597 
2598 		/*
2599 		 * For some reason the non self refresh
2600 		 * FIFO size is only half of the self
2601 		 * refresh FIFO size on ILK/SNB.
2602 		 */
2603 		if (DISPLAY_VER(dev_priv) < 7)
2604 			fifo_size /= 2;
2605 	}
2606 
2607 	if (config->sprites_enabled) {
2608 		/* level 0 is always calculated with 1:1 split */
2609 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2610 			if (is_sprite)
2611 				fifo_size *= 5;
2612 			fifo_size /= 6;
2613 		} else {
2614 			fifo_size /= 2;
2615 		}
2616 	}
2617 
2618 	/* clamp to max that the registers can hold */
2619 	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2620 }
2621 
2622 /* Calculate the maximum cursor plane watermark */
2623 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2624 				      int level,
2625 				      const struct intel_wm_config *config)
2626 {
2627 	/* HSW LP1+ watermarks w/ multiple pipes */
2628 	if (level > 0 && config->num_pipes_active > 1)
2629 		return 64;
2630 
2631 	/* otherwise just report max that registers can hold */
2632 	return ilk_cursor_wm_reg_max(dev_priv, level);
2633 }
2634 
2635 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2636 				    int level,
2637 				    const struct intel_wm_config *config,
2638 				    enum intel_ddb_partitioning ddb_partitioning,
2639 				    struct ilk_wm_maximums *max)
2640 {
2641 	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2642 	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2643 	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2644 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2645 }
2646 
2647 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2648 					int level,
2649 					struct ilk_wm_maximums *max)
2650 {
2651 	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2652 	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2653 	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2654 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2655 }
2656 
2657 static bool ilk_validate_wm_level(struct drm_i915_private *i915,
2658 				  int level,
2659 				  const struct ilk_wm_maximums *max,
2660 				  struct intel_wm_level *result)
2661 {
2662 	bool ret;
2663 
2664 	/* already determined to be invalid? */
2665 	if (!result->enable)
2666 		return false;
2667 
2668 	result->enable = result->pri_val <= max->pri &&
2669 			 result->spr_val <= max->spr &&
2670 			 result->cur_val <= max->cur;
2671 
2672 	ret = result->enable;
2673 
2674 	/*
2675 	 * HACK until we can pre-compute everything,
2676 	 * and thus fail gracefully if LP0 watermarks
2677 	 * are exceeded...
2678 	 */
2679 	if (level == 0 && !result->enable) {
2680 		if (result->pri_val > max->pri)
2681 			drm_dbg_kms(&i915->drm,
2682 				    "Primary WM%d too large %u (max %u)\n",
2683 				    level, result->pri_val, max->pri);
2684 		if (result->spr_val > max->spr)
2685 			drm_dbg_kms(&i915->drm,
2686 				    "Sprite WM%d too large %u (max %u)\n",
2687 				    level, result->spr_val, max->spr);
2688 		if (result->cur_val > max->cur)
2689 			drm_dbg_kms(&i915->drm,
2690 				    "Cursor WM%d too large %u (max %u)\n",
2691 				    level, result->cur_val, max->cur);
2692 
2693 		result->pri_val = min_t(u32, result->pri_val, max->pri);
2694 		result->spr_val = min_t(u32, result->spr_val, max->spr);
2695 		result->cur_val = min_t(u32, result->cur_val, max->cur);
2696 		result->enable = true;
2697 	}
2698 
2699 	return ret;
2700 }
2701 
2702 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2703 				 const struct intel_crtc *crtc,
2704 				 int level,
2705 				 struct intel_crtc_state *crtc_state,
2706 				 const struct intel_plane_state *pristate,
2707 				 const struct intel_plane_state *sprstate,
2708 				 const struct intel_plane_state *curstate,
2709 				 struct intel_wm_level *result)
2710 {
2711 	u16 pri_latency = dev_priv->display.wm.pri_latency[level];
2712 	u16 spr_latency = dev_priv->display.wm.spr_latency[level];
2713 	u16 cur_latency = dev_priv->display.wm.cur_latency[level];
2714 
2715 	/* WM1+ latency values stored in 0.5us units */
2716 	if (level > 0) {
2717 		pri_latency *= 5;
2718 		spr_latency *= 5;
2719 		cur_latency *= 5;
2720 	}
2721 
2722 	if (pristate) {
2723 		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2724 						     pri_latency, level);
2725 		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2726 	}
2727 
2728 	if (sprstate)
2729 		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2730 
2731 	if (curstate)
2732 		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2733 
2734 	result->enable = true;
2735 }
2736 
2737 static void hsw_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2738 {
2739 	u64 sskpd;
2740 
2741 	i915->display.wm.num_levels = 5;
2742 
2743 	sskpd = intel_uncore_read64(&i915->uncore, MCH_SSKPD);
2744 
2745 	wm[0] = REG_FIELD_GET64(SSKPD_NEW_WM0_MASK_HSW, sskpd);
2746 	if (wm[0] == 0)
2747 		wm[0] = REG_FIELD_GET64(SSKPD_OLD_WM0_MASK_HSW, sskpd);
2748 	wm[1] = REG_FIELD_GET64(SSKPD_WM1_MASK_HSW, sskpd);
2749 	wm[2] = REG_FIELD_GET64(SSKPD_WM2_MASK_HSW, sskpd);
2750 	wm[3] = REG_FIELD_GET64(SSKPD_WM3_MASK_HSW, sskpd);
2751 	wm[4] = REG_FIELD_GET64(SSKPD_WM4_MASK_HSW, sskpd);
2752 }
2753 
2754 static void snb_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2755 {
2756 	u32 sskpd;
2757 
2758 	i915->display.wm.num_levels = 4;
2759 
2760 	sskpd = intel_uncore_read(&i915->uncore, MCH_SSKPD);
2761 
2762 	wm[0] = REG_FIELD_GET(SSKPD_WM0_MASK_SNB, sskpd);
2763 	wm[1] = REG_FIELD_GET(SSKPD_WM1_MASK_SNB, sskpd);
2764 	wm[2] = REG_FIELD_GET(SSKPD_WM2_MASK_SNB, sskpd);
2765 	wm[3] = REG_FIELD_GET(SSKPD_WM3_MASK_SNB, sskpd);
2766 }
2767 
2768 static void ilk_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2769 {
2770 	u32 mltr;
2771 
2772 	i915->display.wm.num_levels = 3;
2773 
2774 	mltr = intel_uncore_read(&i915->uncore, MLTR_ILK);
2775 
2776 	/* ILK primary LP0 latency is 700 ns */
2777 	wm[0] = 7;
2778 	wm[1] = REG_FIELD_GET(MLTR_WM1_MASK, mltr);
2779 	wm[2] = REG_FIELD_GET(MLTR_WM2_MASK, mltr);
2780 }
2781 
2782 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2783 				       u16 wm[5])
2784 {
2785 	/* ILK sprite LP0 latency is 1300 ns */
2786 	if (DISPLAY_VER(dev_priv) == 5)
2787 		wm[0] = 13;
2788 }
2789 
2790 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2791 				       u16 wm[5])
2792 {
2793 	/* ILK cursor LP0 latency is 1300 ns */
2794 	if (DISPLAY_VER(dev_priv) == 5)
2795 		wm[0] = 13;
2796 }
2797 
2798 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2799 				    u16 wm[5], u16 min)
2800 {
2801 	int level;
2802 
2803 	if (wm[0] >= min)
2804 		return false;
2805 
2806 	wm[0] = max(wm[0], min);
2807 	for (level = 1; level < dev_priv->display.wm.num_levels; level++)
2808 		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2809 
2810 	return true;
2811 }
2812 
2813 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2814 {
2815 	bool changed;
2816 
2817 	/*
2818 	 * The BIOS provided WM memory latency values are often
2819 	 * inadequate for high resolution displays. Adjust them.
2820 	 */
2821 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.pri_latency, 12);
2822 	changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.spr_latency, 12);
2823 	changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.cur_latency, 12);
2824 
2825 	if (!changed)
2826 		return;
2827 
2828 	drm_dbg_kms(&dev_priv->drm,
2829 		    "WM latency values increased to avoid potential underruns\n");
2830 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2831 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2832 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2833 }
2834 
2835 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
2836 {
2837 	/*
2838 	 * On some SNB machines (Thinkpad X220 Tablet at least)
2839 	 * LP3 usage can cause vblank interrupts to be lost.
2840 	 * The DEIIR bit will go high but it looks like the CPU
2841 	 * never gets interrupted.
2842 	 *
2843 	 * It's not clear whether other interrupt source could
2844 	 * be affected or if this is somehow limited to vblank
2845 	 * interrupts only. To play it safe we disable LP3
2846 	 * watermarks entirely.
2847 	 */
2848 	if (dev_priv->display.wm.pri_latency[3] == 0 &&
2849 	    dev_priv->display.wm.spr_latency[3] == 0 &&
2850 	    dev_priv->display.wm.cur_latency[3] == 0)
2851 		return;
2852 
2853 	dev_priv->display.wm.pri_latency[3] = 0;
2854 	dev_priv->display.wm.spr_latency[3] = 0;
2855 	dev_priv->display.wm.cur_latency[3] = 0;
2856 
2857 	drm_dbg_kms(&dev_priv->drm,
2858 		    "LP3 watermarks disabled due to potential for lost interrupts\n");
2859 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2860 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2861 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2862 }
2863 
2864 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2865 {
2866 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2867 		hsw_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2868 	else if (DISPLAY_VER(dev_priv) >= 6)
2869 		snb_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2870 	else
2871 		ilk_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2872 
2873 	memcpy(dev_priv->display.wm.spr_latency, dev_priv->display.wm.pri_latency,
2874 	       sizeof(dev_priv->display.wm.pri_latency));
2875 	memcpy(dev_priv->display.wm.cur_latency, dev_priv->display.wm.pri_latency,
2876 	       sizeof(dev_priv->display.wm.pri_latency));
2877 
2878 	intel_fixup_spr_wm_latency(dev_priv, dev_priv->display.wm.spr_latency);
2879 	intel_fixup_cur_wm_latency(dev_priv, dev_priv->display.wm.cur_latency);
2880 
2881 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2882 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2883 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2884 
2885 	if (DISPLAY_VER(dev_priv) == 6) {
2886 		snb_wm_latency_quirk(dev_priv);
2887 		snb_wm_lp3_irq_quirk(dev_priv);
2888 	}
2889 }
2890 
2891 static bool ilk_validate_pipe_wm(struct drm_i915_private *dev_priv,
2892 				 struct intel_pipe_wm *pipe_wm)
2893 {
2894 	/* LP0 watermark maximums depend on this pipe alone */
2895 	const struct intel_wm_config config = {
2896 		.num_pipes_active = 1,
2897 		.sprites_enabled = pipe_wm->sprites_enabled,
2898 		.sprites_scaled = pipe_wm->sprites_scaled,
2899 	};
2900 	struct ilk_wm_maximums max;
2901 
2902 	/* LP0 watermarks always use 1/2 DDB partitioning */
2903 	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
2904 
2905 	/* At least LP0 must be valid */
2906 	if (!ilk_validate_wm_level(dev_priv, 0, &max, &pipe_wm->wm[0])) {
2907 		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
2908 		return false;
2909 	}
2910 
2911 	return true;
2912 }
2913 
2914 /* Compute new watermarks for the pipe */
2915 static int ilk_compute_pipe_wm(struct intel_atomic_state *state,
2916 			       struct intel_crtc *crtc)
2917 {
2918 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2919 	struct intel_crtc_state *crtc_state =
2920 		intel_atomic_get_new_crtc_state(state, crtc);
2921 	struct intel_pipe_wm *pipe_wm;
2922 	struct intel_plane *plane;
2923 	const struct intel_plane_state *plane_state;
2924 	const struct intel_plane_state *pristate = NULL;
2925 	const struct intel_plane_state *sprstate = NULL;
2926 	const struct intel_plane_state *curstate = NULL;
2927 	struct ilk_wm_maximums max;
2928 	int level, usable_level;
2929 
2930 	pipe_wm = &crtc_state->wm.ilk.optimal;
2931 
2932 	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
2933 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2934 			pristate = plane_state;
2935 		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2936 			sprstate = plane_state;
2937 		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
2938 			curstate = plane_state;
2939 	}
2940 
2941 	pipe_wm->pipe_enabled = crtc_state->hw.active;
2942 	pipe_wm->sprites_enabled = crtc_state->active_planes & BIT(PLANE_SPRITE0);
2943 	pipe_wm->sprites_scaled = crtc_state->scaled_planes & BIT(PLANE_SPRITE0);
2944 
2945 	usable_level = dev_priv->display.wm.num_levels - 1;
2946 
2947 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2948 	if (DISPLAY_VER(dev_priv) < 7 && pipe_wm->sprites_enabled)
2949 		usable_level = 1;
2950 
2951 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2952 	if (pipe_wm->sprites_scaled)
2953 		usable_level = 0;
2954 
2955 	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2956 	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
2957 			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2958 
2959 	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
2960 		return -EINVAL;
2961 
2962 	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2963 
2964 	for (level = 1; level <= usable_level; level++) {
2965 		struct intel_wm_level *wm = &pipe_wm->wm[level];
2966 
2967 		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
2968 				     pristate, sprstate, curstate, wm);
2969 
2970 		/*
2971 		 * Disable any watermark level that exceeds the
2972 		 * register maximums since such watermarks are
2973 		 * always invalid.
2974 		 */
2975 		if (!ilk_validate_wm_level(dev_priv, level, &max, wm)) {
2976 			memset(wm, 0, sizeof(*wm));
2977 			break;
2978 		}
2979 	}
2980 
2981 	return 0;
2982 }
2983 
2984 /*
2985  * Build a set of 'intermediate' watermark values that satisfy both the old
2986  * state and the new state.  These can be programmed to the hardware
2987  * immediately.
2988  */
2989 static int ilk_compute_intermediate_wm(struct intel_atomic_state *state,
2990 				       struct intel_crtc *crtc)
2991 {
2992 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2993 	struct intel_crtc_state *new_crtc_state =
2994 		intel_atomic_get_new_crtc_state(state, crtc);
2995 	const struct intel_crtc_state *old_crtc_state =
2996 		intel_atomic_get_old_crtc_state(state, crtc);
2997 	struct intel_pipe_wm *intermediate = &new_crtc_state->wm.ilk.intermediate;
2998 	const struct intel_pipe_wm *optimal = &new_crtc_state->wm.ilk.optimal;
2999 	const struct intel_pipe_wm *active = &old_crtc_state->wm.ilk.optimal;
3000 	int level;
3001 
3002 	/*
3003 	 * Start with the final, target watermarks, then combine with the
3004 	 * currently active watermarks to get values that are safe both before
3005 	 * and after the vblank.
3006 	 */
3007 	*intermediate = *optimal;
3008 	if (!new_crtc_state->hw.active ||
3009 	    intel_crtc_needs_modeset(new_crtc_state) ||
3010 	    state->skip_intermediate_wm)
3011 		return 0;
3012 
3013 	intermediate->pipe_enabled |= active->pipe_enabled;
3014 	intermediate->sprites_enabled |= active->sprites_enabled;
3015 	intermediate->sprites_scaled |= active->sprites_scaled;
3016 
3017 	for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
3018 		struct intel_wm_level *intermediate_wm = &intermediate->wm[level];
3019 		const struct intel_wm_level *active_wm = &active->wm[level];
3020 
3021 		intermediate_wm->enable &= active_wm->enable;
3022 		intermediate_wm->pri_val = max(intermediate_wm->pri_val,
3023 					       active_wm->pri_val);
3024 		intermediate_wm->spr_val = max(intermediate_wm->spr_val,
3025 					       active_wm->spr_val);
3026 		intermediate_wm->cur_val = max(intermediate_wm->cur_val,
3027 					       active_wm->cur_val);
3028 		intermediate_wm->fbc_val = max(intermediate_wm->fbc_val,
3029 					       active_wm->fbc_val);
3030 	}
3031 
3032 	/*
3033 	 * We need to make sure that these merged watermark values are
3034 	 * actually a valid configuration themselves.  If they're not,
3035 	 * there's no safe way to transition from the old state to
3036 	 * the new state, so we need to fail the atomic transaction.
3037 	 */
3038 	if (!ilk_validate_pipe_wm(dev_priv, intermediate))
3039 		return -EINVAL;
3040 
3041 	/*
3042 	 * If our intermediate WM are identical to the final WM, then we can
3043 	 * omit the post-vblank programming; only update if it's different.
3044 	 */
3045 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
3046 		new_crtc_state->wm.need_postvbl_update = true;
3047 
3048 	return 0;
3049 }
3050 
3051 static int ilk_compute_watermarks(struct intel_atomic_state *state,
3052 				  struct intel_crtc *crtc)
3053 {
3054 	int ret;
3055 
3056 	ret = ilk_compute_pipe_wm(state, crtc);
3057 	if (ret)
3058 		return ret;
3059 
3060 	ret = ilk_compute_intermediate_wm(state, crtc);
3061 	if (ret)
3062 		return ret;
3063 
3064 	return 0;
3065 }
3066 
3067 /*
3068  * Merge the watermarks from all active pipes for a specific level.
3069  */
3070 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3071 			       int level,
3072 			       struct intel_wm_level *ret_wm)
3073 {
3074 	const struct intel_crtc *crtc;
3075 
3076 	ret_wm->enable = true;
3077 
3078 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3079 		const struct intel_pipe_wm *active = &crtc->wm.active.ilk;
3080 		const struct intel_wm_level *wm = &active->wm[level];
3081 
3082 		if (!active->pipe_enabled)
3083 			continue;
3084 
3085 		/*
3086 		 * The watermark values may have been used in the past,
3087 		 * so we must maintain them in the registers for some
3088 		 * time even if the level is now disabled.
3089 		 */
3090 		if (!wm->enable)
3091 			ret_wm->enable = false;
3092 
3093 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3094 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3095 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3096 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3097 	}
3098 }
3099 
3100 /*
3101  * Merge all low power watermarks for all active pipes.
3102  */
3103 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3104 			 const struct intel_wm_config *config,
3105 			 const struct ilk_wm_maximums *max,
3106 			 struct intel_pipe_wm *merged)
3107 {
3108 	int level, num_levels = dev_priv->display.wm.num_levels;
3109 	int last_enabled_level = num_levels - 1;
3110 
3111 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3112 	if ((DISPLAY_VER(dev_priv) < 7 || IS_IVYBRIDGE(dev_priv)) &&
3113 	    config->num_pipes_active > 1)
3114 		last_enabled_level = 0;
3115 
3116 	/* ILK: FBC WM must be disabled always */
3117 	merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6;
3118 
3119 	/* merge each WM1+ level */
3120 	for (level = 1; level < num_levels; level++) {
3121 		struct intel_wm_level *wm = &merged->wm[level];
3122 
3123 		ilk_merge_wm_level(dev_priv, level, wm);
3124 
3125 		if (level > last_enabled_level)
3126 			wm->enable = false;
3127 		else if (!ilk_validate_wm_level(dev_priv, level, max, wm))
3128 			/* make sure all following levels get disabled */
3129 			last_enabled_level = level - 1;
3130 
3131 		/*
3132 		 * The spec says it is preferred to disable
3133 		 * FBC WMs instead of disabling a WM level.
3134 		 */
3135 		if (wm->fbc_val > max->fbc) {
3136 			if (wm->enable)
3137 				merged->fbc_wm_enabled = false;
3138 			wm->fbc_val = 0;
3139 		}
3140 	}
3141 
3142 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3143 	if (DISPLAY_VER(dev_priv) == 5 && HAS_FBC(dev_priv) &&
3144 	    dev_priv->display.params.enable_fbc && !merged->fbc_wm_enabled) {
3145 		for (level = 2; level < num_levels; level++) {
3146 			struct intel_wm_level *wm = &merged->wm[level];
3147 
3148 			wm->enable = false;
3149 		}
3150 	}
3151 }
3152 
3153 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3154 {
3155 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3156 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3157 }
3158 
3159 /* The value we need to program into the WM_LPx latency field */
3160 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3161 				      int level)
3162 {
3163 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3164 		return 2 * level;
3165 	else
3166 		return dev_priv->display.wm.pri_latency[level];
3167 }
3168 
3169 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3170 				   const struct intel_pipe_wm *merged,
3171 				   enum intel_ddb_partitioning partitioning,
3172 				   struct ilk_wm_values *results)
3173 {
3174 	struct intel_crtc *crtc;
3175 	int level, wm_lp;
3176 
3177 	results->enable_fbc_wm = merged->fbc_wm_enabled;
3178 	results->partitioning = partitioning;
3179 
3180 	/* LP1+ register values */
3181 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3182 		const struct intel_wm_level *r;
3183 
3184 		level = ilk_wm_lp_to_level(wm_lp, merged);
3185 
3186 		r = &merged->wm[level];
3187 
3188 		/*
3189 		 * Maintain the watermark values even if the level is
3190 		 * disabled. Doing otherwise could cause underruns.
3191 		 */
3192 		results->wm_lp[wm_lp - 1] =
3193 			WM_LP_LATENCY(ilk_wm_lp_latency(dev_priv, level)) |
3194 			WM_LP_PRIMARY(r->pri_val) |
3195 			WM_LP_CURSOR(r->cur_val);
3196 
3197 		if (r->enable)
3198 			results->wm_lp[wm_lp - 1] |= WM_LP_ENABLE;
3199 
3200 		if (DISPLAY_VER(dev_priv) >= 8)
3201 			results->wm_lp[wm_lp - 1] |= WM_LP_FBC_BDW(r->fbc_val);
3202 		else
3203 			results->wm_lp[wm_lp - 1] |= WM_LP_FBC_ILK(r->fbc_val);
3204 
3205 		results->wm_lp_spr[wm_lp - 1] = WM_LP_SPRITE(r->spr_val);
3206 
3207 		/*
3208 		 * Always set WM_LP_SPRITE_EN when spr_val != 0, even if the
3209 		 * level is disabled. Doing otherwise could cause underruns.
3210 		 */
3211 		if (DISPLAY_VER(dev_priv) < 7 && r->spr_val) {
3212 			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3213 			results->wm_lp_spr[wm_lp - 1] |= WM_LP_SPRITE_ENABLE;
3214 		}
3215 	}
3216 
3217 	/* LP0 register values */
3218 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3219 		enum pipe pipe = crtc->pipe;
3220 		const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk;
3221 		const struct intel_wm_level *r = &pipe_wm->wm[0];
3222 
3223 		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3224 			continue;
3225 
3226 		results->wm_pipe[pipe] =
3227 			WM0_PIPE_PRIMARY(r->pri_val) |
3228 			WM0_PIPE_SPRITE(r->spr_val) |
3229 			WM0_PIPE_CURSOR(r->cur_val);
3230 	}
3231 }
3232 
3233 /*
3234  * Find the result with the highest level enabled. Check for enable_fbc_wm in
3235  * case both are at the same level. Prefer r1 in case they're the same.
3236  */
3237 static struct intel_pipe_wm *
3238 ilk_find_best_result(struct drm_i915_private *dev_priv,
3239 		     struct intel_pipe_wm *r1,
3240 		     struct intel_pipe_wm *r2)
3241 {
3242 	int level, level1 = 0, level2 = 0;
3243 
3244 	for (level = 1; level < dev_priv->display.wm.num_levels; level++) {
3245 		if (r1->wm[level].enable)
3246 			level1 = level;
3247 		if (r2->wm[level].enable)
3248 			level2 = level;
3249 	}
3250 
3251 	if (level1 == level2) {
3252 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3253 			return r2;
3254 		else
3255 			return r1;
3256 	} else if (level1 > level2) {
3257 		return r1;
3258 	} else {
3259 		return r2;
3260 	}
3261 }
3262 
3263 /* dirty bits used to track which watermarks need changes */
3264 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3265 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3266 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3267 #define WM_DIRTY_FBC (1 << 24)
3268 #define WM_DIRTY_DDB (1 << 25)
3269 
3270 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3271 					 const struct ilk_wm_values *old,
3272 					 const struct ilk_wm_values *new)
3273 {
3274 	unsigned int dirty = 0;
3275 	enum pipe pipe;
3276 	int wm_lp;
3277 
3278 	for_each_pipe(dev_priv, pipe) {
3279 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3280 			dirty |= WM_DIRTY_PIPE(pipe);
3281 			/* Must disable LP1+ watermarks too */
3282 			dirty |= WM_DIRTY_LP_ALL;
3283 		}
3284 	}
3285 
3286 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
3287 		dirty |= WM_DIRTY_FBC;
3288 		/* Must disable LP1+ watermarks too */
3289 		dirty |= WM_DIRTY_LP_ALL;
3290 	}
3291 
3292 	if (old->partitioning != new->partitioning) {
3293 		dirty |= WM_DIRTY_DDB;
3294 		/* Must disable LP1+ watermarks too */
3295 		dirty |= WM_DIRTY_LP_ALL;
3296 	}
3297 
3298 	/* LP1+ watermarks already deemed dirty, no need to continue */
3299 	if (dirty & WM_DIRTY_LP_ALL)
3300 		return dirty;
3301 
3302 	/* Find the lowest numbered LP1+ watermark in need of an update... */
3303 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3304 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3305 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3306 			break;
3307 	}
3308 
3309 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3310 	for (; wm_lp <= 3; wm_lp++)
3311 		dirty |= WM_DIRTY_LP(wm_lp);
3312 
3313 	return dirty;
3314 }
3315 
3316 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3317 			       unsigned int dirty)
3318 {
3319 	struct ilk_wm_values *previous = &dev_priv->display.wm.hw;
3320 	bool changed = false;
3321 
3322 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM_LP_ENABLE) {
3323 		previous->wm_lp[2] &= ~WM_LP_ENABLE;
3324 		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3325 		changed = true;
3326 	}
3327 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM_LP_ENABLE) {
3328 		previous->wm_lp[1] &= ~WM_LP_ENABLE;
3329 		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3330 		changed = true;
3331 	}
3332 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM_LP_ENABLE) {
3333 		previous->wm_lp[0] &= ~WM_LP_ENABLE;
3334 		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3335 		changed = true;
3336 	}
3337 
3338 	/*
3339 	 * Don't touch WM_LP_SPRITE_ENABLE here.
3340 	 * Doing so could cause underruns.
3341 	 */
3342 
3343 	return changed;
3344 }
3345 
3346 /*
3347  * The spec says we shouldn't write when we don't need, because every write
3348  * causes WMs to be re-evaluated, expending some power.
3349  */
3350 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3351 				struct ilk_wm_values *results)
3352 {
3353 	struct ilk_wm_values *previous = &dev_priv->display.wm.hw;
3354 	unsigned int dirty;
3355 
3356 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3357 	if (!dirty)
3358 		return;
3359 
3360 	_ilk_disable_lp_wm(dev_priv, dirty);
3361 
3362 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3363 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3364 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3365 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3366 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3367 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3368 
3369 	if (dirty & WM_DIRTY_DDB) {
3370 		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3371 			intel_uncore_rmw(&dev_priv->uncore, WM_MISC, WM_MISC_DATA_PARTITION_5_6,
3372 					 results->partitioning == INTEL_DDB_PART_1_2 ? 0 :
3373 					 WM_MISC_DATA_PARTITION_5_6);
3374 		else
3375 			intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL2, DISP_DATA_PARTITION_5_6,
3376 					 results->partitioning == INTEL_DDB_PART_1_2 ? 0 :
3377 					 DISP_DATA_PARTITION_5_6);
3378 	}
3379 
3380 	if (dirty & WM_DIRTY_FBC)
3381 		intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL, DISP_FBC_WM_DIS,
3382 				 results->enable_fbc_wm ? 0 : DISP_FBC_WM_DIS);
3383 
3384 	if (dirty & WM_DIRTY_LP(1) &&
3385 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3386 		intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3387 
3388 	if (DISPLAY_VER(dev_priv) >= 7) {
3389 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3390 			intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3391 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3392 			intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3393 	}
3394 
3395 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3396 		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3397 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3398 		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3399 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3400 		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3401 
3402 	dev_priv->display.wm.hw = *results;
3403 }
3404 
3405 bool ilk_disable_cxsr(struct drm_i915_private *dev_priv)
3406 {
3407 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3408 }
3409 
3410 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
3411 				  struct intel_wm_config *config)
3412 {
3413 	struct intel_crtc *crtc;
3414 
3415 	/* Compute the currently _active_ config */
3416 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3417 		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3418 
3419 		if (!wm->pipe_enabled)
3420 			continue;
3421 
3422 		config->sprites_enabled |= wm->sprites_enabled;
3423 		config->sprites_scaled |= wm->sprites_scaled;
3424 		config->num_pipes_active++;
3425 	}
3426 }
3427 
3428 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3429 {
3430 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3431 	struct ilk_wm_maximums max;
3432 	struct intel_wm_config config = {};
3433 	struct ilk_wm_values results = {};
3434 	enum intel_ddb_partitioning partitioning;
3435 
3436 	ilk_compute_wm_config(dev_priv, &config);
3437 
3438 	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
3439 	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
3440 
3441 	/* 5/6 split only in single pipe config on IVB+ */
3442 	if (DISPLAY_VER(dev_priv) >= 7 &&
3443 	    config.num_pipes_active == 1 && config.sprites_enabled) {
3444 		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
3445 		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
3446 
3447 		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
3448 	} else {
3449 		best_lp_wm = &lp_wm_1_2;
3450 	}
3451 
3452 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3453 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3454 
3455 	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
3456 
3457 	ilk_write_wm_values(dev_priv, &results);
3458 }
3459 
3460 static void ilk_initial_watermarks(struct intel_atomic_state *state,
3461 				   struct intel_crtc *crtc)
3462 {
3463 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3464 	const struct intel_crtc_state *crtc_state =
3465 		intel_atomic_get_new_crtc_state(state, crtc);
3466 
3467 	mutex_lock(&dev_priv->display.wm.wm_mutex);
3468 	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
3469 	ilk_program_watermarks(dev_priv);
3470 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
3471 }
3472 
3473 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
3474 				    struct intel_crtc *crtc)
3475 {
3476 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3477 	const struct intel_crtc_state *crtc_state =
3478 		intel_atomic_get_new_crtc_state(state, crtc);
3479 
3480 	if (!crtc_state->wm.need_postvbl_update)
3481 		return;
3482 
3483 	mutex_lock(&dev_priv->display.wm.wm_mutex);
3484 	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
3485 	ilk_program_watermarks(dev_priv);
3486 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
3487 }
3488 
3489 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
3490 {
3491 	struct drm_device *dev = crtc->base.dev;
3492 	struct drm_i915_private *dev_priv = to_i915(dev);
3493 	struct ilk_wm_values *hw = &dev_priv->display.wm.hw;
3494 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
3495 	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
3496 	enum pipe pipe = crtc->pipe;
3497 
3498 	hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
3499 
3500 	memset(active, 0, sizeof(*active));
3501 
3502 	active->pipe_enabled = crtc->active;
3503 
3504 	if (active->pipe_enabled) {
3505 		u32 tmp = hw->wm_pipe[pipe];
3506 
3507 		/*
3508 		 * For active pipes LP0 watermark is marked as
3509 		 * enabled, and LP1+ watermaks as disabled since
3510 		 * we can't really reverse compute them in case
3511 		 * multiple pipes are active.
3512 		 */
3513 		active->wm[0].enable = true;
3514 		active->wm[0].pri_val = REG_FIELD_GET(WM0_PIPE_PRIMARY_MASK, tmp);
3515 		active->wm[0].spr_val = REG_FIELD_GET(WM0_PIPE_SPRITE_MASK, tmp);
3516 		active->wm[0].cur_val = REG_FIELD_GET(WM0_PIPE_CURSOR_MASK, tmp);
3517 	} else {
3518 		int level;
3519 
3520 		/*
3521 		 * For inactive pipes, all watermark levels
3522 		 * should be marked as enabled but zeroed,
3523 		 * which is what we'd compute them to.
3524 		 */
3525 		for (level = 0; level < dev_priv->display.wm.num_levels; level++)
3526 			active->wm[level].enable = true;
3527 	}
3528 
3529 	crtc->wm.active.ilk = *active;
3530 }
3531 
3532 static int ilk_sanitize_watermarks_add_affected(struct drm_atomic_state *state)
3533 {
3534 	struct drm_plane *plane;
3535 	struct intel_crtc *crtc;
3536 
3537 	for_each_intel_crtc(state->dev, crtc) {
3538 		struct intel_crtc_state *crtc_state;
3539 
3540 		crtc_state = intel_atomic_get_crtc_state(state, crtc);
3541 		if (IS_ERR(crtc_state))
3542 			return PTR_ERR(crtc_state);
3543 
3544 		if (crtc_state->hw.active) {
3545 			/*
3546 			 * Preserve the inherited flag to avoid
3547 			 * taking the full modeset path.
3548 			 */
3549 			crtc_state->inherited = true;
3550 		}
3551 	}
3552 
3553 	drm_for_each_plane(plane, state->dev) {
3554 		struct drm_plane_state *plane_state;
3555 
3556 		plane_state = drm_atomic_get_plane_state(state, plane);
3557 		if (IS_ERR(plane_state))
3558 			return PTR_ERR(plane_state);
3559 	}
3560 
3561 	return 0;
3562 }
3563 
3564 /*
3565  * Calculate what we think the watermarks should be for the state we've read
3566  * out of the hardware and then immediately program those watermarks so that
3567  * we ensure the hardware settings match our internal state.
3568  *
3569  * We can calculate what we think WM's should be by creating a duplicate of the
3570  * current state (which was constructed during hardware readout) and running it
3571  * through the atomic check code to calculate new watermark values in the
3572  * state object.
3573  */
3574 void ilk_wm_sanitize(struct drm_i915_private *dev_priv)
3575 {
3576 	struct drm_atomic_state *state;
3577 	struct intel_atomic_state *intel_state;
3578 	struct intel_crtc *crtc;
3579 	struct intel_crtc_state *crtc_state;
3580 	struct drm_modeset_acquire_ctx ctx;
3581 	int ret;
3582 	int i;
3583 
3584 	/* Only supported on platforms that use atomic watermark design */
3585 	if (!dev_priv->display.funcs.wm->optimize_watermarks)
3586 		return;
3587 
3588 	if (drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) >= 9))
3589 		return;
3590 
3591 	state = drm_atomic_state_alloc(&dev_priv->drm);
3592 	if (drm_WARN_ON(&dev_priv->drm, !state))
3593 		return;
3594 
3595 	intel_state = to_intel_atomic_state(state);
3596 
3597 	drm_modeset_acquire_init(&ctx, 0);
3598 
3599 	state->acquire_ctx = &ctx;
3600 	to_intel_atomic_state(state)->internal = true;
3601 
3602 retry:
3603 	/*
3604 	 * Hardware readout is the only time we don't want to calculate
3605 	 * intermediate watermarks (since we don't trust the current
3606 	 * watermarks).
3607 	 */
3608 	if (!HAS_GMCH(dev_priv))
3609 		intel_state->skip_intermediate_wm = true;
3610 
3611 	ret = ilk_sanitize_watermarks_add_affected(state);
3612 	if (ret)
3613 		goto fail;
3614 
3615 	ret = intel_atomic_check(&dev_priv->drm, state);
3616 	if (ret)
3617 		goto fail;
3618 
3619 	/* Write calculated watermark values back */
3620 	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
3621 		crtc_state->wm.need_postvbl_update = true;
3622 		intel_optimize_watermarks(intel_state, crtc);
3623 
3624 		to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
3625 	}
3626 
3627 fail:
3628 	if (ret == -EDEADLK) {
3629 		drm_atomic_state_clear(state);
3630 		drm_modeset_backoff(&ctx);
3631 		goto retry;
3632 	}
3633 
3634 	/*
3635 	 * If we fail here, it means that the hardware appears to be
3636 	 * programmed in a way that shouldn't be possible, given our
3637 	 * understanding of watermark requirements.  This might mean a
3638 	 * mistake in the hardware readout code or a mistake in the
3639 	 * watermark calculations for a given platform.  Raise a WARN
3640 	 * so that this is noticeable.
3641 	 *
3642 	 * If this actually happens, we'll have to just leave the
3643 	 * BIOS-programmed watermarks untouched and hope for the best.
3644 	 */
3645 	drm_WARN(&dev_priv->drm, ret,
3646 		 "Could not determine valid watermarks for inherited state\n");
3647 
3648 	drm_atomic_state_put(state);
3649 
3650 	drm_modeset_drop_locks(&ctx);
3651 	drm_modeset_acquire_fini(&ctx);
3652 }
3653 
3654 #define _FW_WM(value, plane) \
3655 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3656 #define _FW_WM_VLV(value, plane) \
3657 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3658 
3659 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
3660 			       struct g4x_wm_values *wm)
3661 {
3662 	u32 tmp;
3663 
3664 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1(dev_priv));
3665 	wm->sr.plane = _FW_WM(tmp, SR);
3666 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
3667 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
3668 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
3669 
3670 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2(dev_priv));
3671 	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
3672 	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
3673 	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
3674 	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
3675 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
3676 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
3677 
3678 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3(dev_priv));
3679 	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
3680 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3681 	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
3682 	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
3683 }
3684 
3685 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3686 			       struct vlv_wm_values *wm)
3687 {
3688 	enum pipe pipe;
3689 	u32 tmp;
3690 
3691 	for_each_pipe(dev_priv, pipe) {
3692 		tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
3693 
3694 		wm->ddl[pipe].plane[PLANE_PRIMARY] =
3695 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3696 		wm->ddl[pipe].plane[PLANE_CURSOR] =
3697 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3698 		wm->ddl[pipe].plane[PLANE_SPRITE0] =
3699 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3700 		wm->ddl[pipe].plane[PLANE_SPRITE1] =
3701 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3702 	}
3703 
3704 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1(dev_priv));
3705 	wm->sr.plane = _FW_WM(tmp, SR);
3706 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
3707 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
3708 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
3709 
3710 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2(dev_priv));
3711 	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
3712 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
3713 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
3714 
3715 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3(dev_priv));
3716 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3717 
3718 	if (IS_CHERRYVIEW(dev_priv)) {
3719 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
3720 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
3721 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
3722 
3723 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
3724 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
3725 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
3726 
3727 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
3728 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
3729 		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
3730 
3731 		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
3732 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3733 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3734 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3735 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
3736 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3737 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3738 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
3739 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3740 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3741 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
3742 	} else {
3743 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
3744 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
3745 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
3746 
3747 		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
3748 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3749 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3750 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3751 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
3752 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3753 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3754 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
3755 	}
3756 }
3757 
3758 #undef _FW_WM
3759 #undef _FW_WM_VLV
3760 
3761 static void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
3762 {
3763 	struct g4x_wm_values *wm = &dev_priv->display.wm.g4x;
3764 	struct intel_crtc *crtc;
3765 
3766 	g4x_read_wm_values(dev_priv, wm);
3767 
3768 	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
3769 
3770 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3771 		struct intel_crtc_state *crtc_state =
3772 			to_intel_crtc_state(crtc->base.state);
3773 		struct g4x_wm_state *active = &crtc->wm.active.g4x;
3774 		struct g4x_pipe_wm *raw;
3775 		enum pipe pipe = crtc->pipe;
3776 		enum plane_id plane_id;
3777 		int level, max_level;
3778 
3779 		active->cxsr = wm->cxsr;
3780 		active->hpll_en = wm->hpll_en;
3781 		active->fbc_en = wm->fbc_en;
3782 
3783 		active->sr = wm->sr;
3784 		active->hpll = wm->hpll;
3785 
3786 		for_each_plane_id_on_crtc(crtc, plane_id) {
3787 			active->wm.plane[plane_id] =
3788 				wm->pipe[pipe].plane[plane_id];
3789 		}
3790 
3791 		if (wm->cxsr && wm->hpll_en)
3792 			max_level = G4X_WM_LEVEL_HPLL;
3793 		else if (wm->cxsr)
3794 			max_level = G4X_WM_LEVEL_SR;
3795 		else
3796 			max_level = G4X_WM_LEVEL_NORMAL;
3797 
3798 		level = G4X_WM_LEVEL_NORMAL;
3799 		raw = &crtc_state->wm.g4x.raw[level];
3800 		for_each_plane_id_on_crtc(crtc, plane_id)
3801 			raw->plane[plane_id] = active->wm.plane[plane_id];
3802 
3803 		level = G4X_WM_LEVEL_SR;
3804 		if (level > max_level)
3805 			goto out;
3806 
3807 		raw = &crtc_state->wm.g4x.raw[level];
3808 		raw->plane[PLANE_PRIMARY] = active->sr.plane;
3809 		raw->plane[PLANE_CURSOR] = active->sr.cursor;
3810 		raw->plane[PLANE_SPRITE0] = 0;
3811 		raw->fbc = active->sr.fbc;
3812 
3813 		level = G4X_WM_LEVEL_HPLL;
3814 		if (level > max_level)
3815 			goto out;
3816 
3817 		raw = &crtc_state->wm.g4x.raw[level];
3818 		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
3819 		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
3820 		raw->plane[PLANE_SPRITE0] = 0;
3821 		raw->fbc = active->hpll.fbc;
3822 
3823 		level++;
3824 	out:
3825 		for_each_plane_id_on_crtc(crtc, plane_id)
3826 			g4x_raw_plane_wm_set(crtc_state, level,
3827 					     plane_id, USHRT_MAX);
3828 		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
3829 
3830 		g4x_invalidate_wms(crtc, active, level);
3831 
3832 		crtc_state->wm.g4x.optimal = *active;
3833 		crtc_state->wm.g4x.intermediate = *active;
3834 
3835 		drm_dbg_kms(&dev_priv->drm,
3836 			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
3837 			    pipe_name(pipe),
3838 			    wm->pipe[pipe].plane[PLANE_PRIMARY],
3839 			    wm->pipe[pipe].plane[PLANE_CURSOR],
3840 			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
3841 	}
3842 
3843 	drm_dbg_kms(&dev_priv->drm,
3844 		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
3845 		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
3846 	drm_dbg_kms(&dev_priv->drm,
3847 		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
3848 		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
3849 	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
3850 		    str_yes_no(wm->cxsr), str_yes_no(wm->hpll_en),
3851 		    str_yes_no(wm->fbc_en));
3852 }
3853 
3854 static void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
3855 {
3856 	struct intel_display *display = &dev_priv->display;
3857 	struct intel_plane *plane;
3858 	struct intel_crtc *crtc;
3859 
3860 	mutex_lock(&dev_priv->display.wm.wm_mutex);
3861 
3862 	for_each_intel_plane(&dev_priv->drm, plane) {
3863 		struct intel_crtc *crtc =
3864 			intel_crtc_for_pipe(display, plane->pipe);
3865 		struct intel_crtc_state *crtc_state =
3866 			to_intel_crtc_state(crtc->base.state);
3867 		struct intel_plane_state *plane_state =
3868 			to_intel_plane_state(plane->base.state);
3869 		enum plane_id plane_id = plane->id;
3870 		int level;
3871 
3872 		if (plane_state->uapi.visible)
3873 			continue;
3874 
3875 		for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
3876 			struct g4x_pipe_wm *raw =
3877 				&crtc_state->wm.g4x.raw[level];
3878 
3879 			raw->plane[plane_id] = 0;
3880 
3881 			if (plane_id == PLANE_PRIMARY)
3882 				raw->fbc = 0;
3883 		}
3884 	}
3885 
3886 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3887 		struct intel_crtc_state *crtc_state =
3888 			to_intel_crtc_state(crtc->base.state);
3889 		int ret;
3890 
3891 		ret = _g4x_compute_pipe_wm(crtc_state);
3892 		drm_WARN_ON(&dev_priv->drm, ret);
3893 
3894 		crtc_state->wm.g4x.intermediate =
3895 			crtc_state->wm.g4x.optimal;
3896 		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
3897 	}
3898 
3899 	g4x_program_watermarks(dev_priv);
3900 
3901 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
3902 }
3903 
3904 static void g4x_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
3905 {
3906 	g4x_wm_get_hw_state(i915);
3907 	g4x_wm_sanitize(i915);
3908 }
3909 
3910 static void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
3911 {
3912 	struct vlv_wm_values *wm = &dev_priv->display.wm.vlv;
3913 	struct intel_crtc *crtc;
3914 	u32 val;
3915 
3916 	vlv_read_wm_values(dev_priv, wm);
3917 
3918 	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3919 	wm->level = VLV_WM_LEVEL_PM2;
3920 
3921 	if (IS_CHERRYVIEW(dev_priv)) {
3922 		vlv_punit_get(dev_priv);
3923 
3924 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
3925 		if (val & DSP_MAXFIFO_PM5_ENABLE)
3926 			wm->level = VLV_WM_LEVEL_PM5;
3927 
3928 		/*
3929 		 * If DDR DVFS is disabled in the BIOS, Punit
3930 		 * will never ack the request. So if that happens
3931 		 * assume we don't have to enable/disable DDR DVFS
3932 		 * dynamically. To test that just set the REQ_ACK
3933 		 * bit to poke the Punit, but don't change the
3934 		 * HIGH/LOW bits so that we don't actually change
3935 		 * the current state.
3936 		 */
3937 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3938 		val |= FORCE_DDR_FREQ_REQ_ACK;
3939 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
3940 
3941 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
3942 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
3943 			drm_dbg_kms(&dev_priv->drm,
3944 				    "Punit not acking DDR DVFS request, "
3945 				    "assuming DDR DVFS is disabled\n");
3946 			dev_priv->display.wm.num_levels = VLV_WM_LEVEL_PM5 + 1;
3947 		} else {
3948 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3949 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
3950 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
3951 		}
3952 
3953 		vlv_punit_put(dev_priv);
3954 	}
3955 
3956 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3957 		struct intel_crtc_state *crtc_state =
3958 			to_intel_crtc_state(crtc->base.state);
3959 		struct vlv_wm_state *active = &crtc->wm.active.vlv;
3960 		const struct vlv_fifo_state *fifo_state =
3961 			&crtc_state->wm.vlv.fifo_state;
3962 		enum pipe pipe = crtc->pipe;
3963 		enum plane_id plane_id;
3964 		int level;
3965 
3966 		vlv_get_fifo_size(crtc_state);
3967 
3968 		active->num_levels = wm->level + 1;
3969 		active->cxsr = wm->cxsr;
3970 
3971 		for (level = 0; level < active->num_levels; level++) {
3972 			struct g4x_pipe_wm *raw =
3973 				&crtc_state->wm.vlv.raw[level];
3974 
3975 			active->sr[level].plane = wm->sr.plane;
3976 			active->sr[level].cursor = wm->sr.cursor;
3977 
3978 			for_each_plane_id_on_crtc(crtc, plane_id) {
3979 				active->wm[level].plane[plane_id] =
3980 					wm->pipe[pipe].plane[plane_id];
3981 
3982 				raw->plane[plane_id] =
3983 					vlv_invert_wm_value(active->wm[level].plane[plane_id],
3984 							    fifo_state->plane[plane_id]);
3985 			}
3986 		}
3987 
3988 		for_each_plane_id_on_crtc(crtc, plane_id)
3989 			vlv_raw_plane_wm_set(crtc_state, level,
3990 					     plane_id, USHRT_MAX);
3991 		vlv_invalidate_wms(crtc, active, level);
3992 
3993 		crtc_state->wm.vlv.optimal = *active;
3994 		crtc_state->wm.vlv.intermediate = *active;
3995 
3996 		drm_dbg_kms(&dev_priv->drm,
3997 			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
3998 			    pipe_name(pipe),
3999 			    wm->pipe[pipe].plane[PLANE_PRIMARY],
4000 			    wm->pipe[pipe].plane[PLANE_CURSOR],
4001 			    wm->pipe[pipe].plane[PLANE_SPRITE0],
4002 			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
4003 	}
4004 
4005 	drm_dbg_kms(&dev_priv->drm,
4006 		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4007 		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4008 }
4009 
4010 static void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
4011 {
4012 	struct intel_display *display = &dev_priv->display;
4013 	struct intel_plane *plane;
4014 	struct intel_crtc *crtc;
4015 
4016 	mutex_lock(&dev_priv->display.wm.wm_mutex);
4017 
4018 	for_each_intel_plane(&dev_priv->drm, plane) {
4019 		struct intel_crtc *crtc =
4020 			intel_crtc_for_pipe(display, plane->pipe);
4021 		struct intel_crtc_state *crtc_state =
4022 			to_intel_crtc_state(crtc->base.state);
4023 		struct intel_plane_state *plane_state =
4024 			to_intel_plane_state(plane->base.state);
4025 		enum plane_id plane_id = plane->id;
4026 		int level;
4027 
4028 		if (plane_state->uapi.visible)
4029 			continue;
4030 
4031 		for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
4032 			struct g4x_pipe_wm *raw =
4033 				&crtc_state->wm.vlv.raw[level];
4034 
4035 			raw->plane[plane_id] = 0;
4036 		}
4037 	}
4038 
4039 	for_each_intel_crtc(&dev_priv->drm, crtc) {
4040 		struct intel_crtc_state *crtc_state =
4041 			to_intel_crtc_state(crtc->base.state);
4042 		int ret;
4043 
4044 		ret = _vlv_compute_pipe_wm(crtc_state);
4045 		drm_WARN_ON(&dev_priv->drm, ret);
4046 
4047 		crtc_state->wm.vlv.intermediate =
4048 			crtc_state->wm.vlv.optimal;
4049 		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
4050 	}
4051 
4052 	vlv_program_watermarks(dev_priv);
4053 
4054 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
4055 }
4056 
4057 static void vlv_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
4058 {
4059 	vlv_wm_get_hw_state(i915);
4060 	vlv_wm_sanitize(i915);
4061 }
4062 
4063 /*
4064  * FIXME should probably kill this and improve
4065  * the real watermark readout/sanitation instead
4066  */
4067 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
4068 {
4069 	intel_uncore_rmw(&dev_priv->uncore, WM3_LP_ILK, WM_LP_ENABLE, 0);
4070 	intel_uncore_rmw(&dev_priv->uncore, WM2_LP_ILK, WM_LP_ENABLE, 0);
4071 	intel_uncore_rmw(&dev_priv->uncore, WM1_LP_ILK, WM_LP_ENABLE, 0);
4072 
4073 	/*
4074 	 * Don't touch WM_LP_SPRITE_ENABLE here.
4075 	 * Doing so could cause underruns.
4076 	 */
4077 }
4078 
4079 static void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
4080 {
4081 	struct ilk_wm_values *hw = &dev_priv->display.wm.hw;
4082 	struct intel_crtc *crtc;
4083 
4084 	ilk_init_lp_watermarks(dev_priv);
4085 
4086 	for_each_intel_crtc(&dev_priv->drm, crtc)
4087 		ilk_pipe_wm_get_hw_state(crtc);
4088 
4089 	hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
4090 	hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
4091 	hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
4092 
4093 	hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
4094 	if (DISPLAY_VER(dev_priv) >= 7) {
4095 		hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
4096 		hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
4097 	}
4098 
4099 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4100 		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) &
4101 				    WM_MISC_DATA_PARTITION_5_6) ?
4102 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4103 	else if (IS_IVYBRIDGE(dev_priv))
4104 		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) &
4105 				    DISP_DATA_PARTITION_5_6) ?
4106 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4107 
4108 	hw->enable_fbc_wm =
4109 		!(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4110 }
4111 
4112 static const struct intel_wm_funcs ilk_wm_funcs = {
4113 	.compute_watermarks = ilk_compute_watermarks,
4114 	.initial_watermarks = ilk_initial_watermarks,
4115 	.optimize_watermarks = ilk_optimize_watermarks,
4116 	.get_hw_state = ilk_wm_get_hw_state,
4117 };
4118 
4119 static const struct intel_wm_funcs vlv_wm_funcs = {
4120 	.compute_watermarks = vlv_compute_watermarks,
4121 	.initial_watermarks = vlv_initial_watermarks,
4122 	.optimize_watermarks = vlv_optimize_watermarks,
4123 	.atomic_update_watermarks = vlv_atomic_update_fifo,
4124 	.get_hw_state = vlv_wm_get_hw_state_and_sanitize,
4125 };
4126 
4127 static const struct intel_wm_funcs g4x_wm_funcs = {
4128 	.compute_watermarks = g4x_compute_watermarks,
4129 	.initial_watermarks = g4x_initial_watermarks,
4130 	.optimize_watermarks = g4x_optimize_watermarks,
4131 	.get_hw_state = g4x_wm_get_hw_state_and_sanitize,
4132 };
4133 
4134 static const struct intel_wm_funcs pnv_wm_funcs = {
4135 	.compute_watermarks = i9xx_compute_watermarks,
4136 	.update_wm = pnv_update_wm,
4137 };
4138 
4139 static const struct intel_wm_funcs i965_wm_funcs = {
4140 	.compute_watermarks = i9xx_compute_watermarks,
4141 	.update_wm = i965_update_wm,
4142 };
4143 
4144 static const struct intel_wm_funcs i9xx_wm_funcs = {
4145 	.compute_watermarks = i9xx_compute_watermarks,
4146 	.update_wm = i9xx_update_wm,
4147 };
4148 
4149 static const struct intel_wm_funcs i845_wm_funcs = {
4150 	.compute_watermarks = i9xx_compute_watermarks,
4151 	.update_wm = i845_update_wm,
4152 };
4153 
4154 static const struct intel_wm_funcs nop_funcs = {
4155 };
4156 
4157 void i9xx_wm_init(struct drm_i915_private *dev_priv)
4158 {
4159 	/* For FIFO watermark updates */
4160 	if (HAS_PCH_SPLIT(dev_priv)) {
4161 		ilk_setup_wm_latency(dev_priv);
4162 		dev_priv->display.funcs.wm = &ilk_wm_funcs;
4163 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4164 		vlv_setup_wm_latency(dev_priv);
4165 		dev_priv->display.funcs.wm = &vlv_wm_funcs;
4166 	} else if (IS_G4X(dev_priv)) {
4167 		g4x_setup_wm_latency(dev_priv);
4168 		dev_priv->display.funcs.wm = &g4x_wm_funcs;
4169 	} else if (IS_PINEVIEW(dev_priv)) {
4170 		if (!pnv_get_cxsr_latency(dev_priv)) {
4171 			drm_info(&dev_priv->drm, "Unknown FSB/MEM, disabling CxSR\n");
4172 			/* Disable CxSR and never update its watermark again */
4173 			intel_set_memory_cxsr(dev_priv, false);
4174 			dev_priv->display.funcs.wm = &nop_funcs;
4175 		} else {
4176 			dev_priv->display.funcs.wm = &pnv_wm_funcs;
4177 		}
4178 	} else if (DISPLAY_VER(dev_priv) == 4) {
4179 		dev_priv->display.funcs.wm = &i965_wm_funcs;
4180 	} else if (DISPLAY_VER(dev_priv) == 3) {
4181 		dev_priv->display.funcs.wm = &i9xx_wm_funcs;
4182 	} else if (DISPLAY_VER(dev_priv) == 2) {
4183 		if (INTEL_NUM_PIPES(dev_priv) == 1)
4184 			dev_priv->display.funcs.wm = &i845_wm_funcs;
4185 		else
4186 			dev_priv->display.funcs.wm = &i9xx_wm_funcs;
4187 	} else {
4188 		drm_err(&dev_priv->drm,
4189 			"unexpected fall-through in %s\n", __func__);
4190 		dev_priv->display.funcs.wm = &nop_funcs;
4191 	}
4192 }
4193