xref: /linux/drivers/gpu/drm/i915/display/i9xx_wm.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "i9xx_wm.h"
9 #include "intel_atomic.h"
10 #include "intel_display.h"
11 #include "intel_display_trace.h"
12 #include "intel_mchbar_regs.h"
13 #include "intel_wm.h"
14 #include "skl_watermark.h"
15 #include "vlv_sideband.h"
16 
17 /* used in computing the new watermarks state */
18 struct intel_wm_config {
19 	unsigned int num_pipes_active;
20 	bool sprites_enabled;
21 	bool sprites_scaled;
22 };
23 
24 struct cxsr_latency {
25 	bool is_desktop : 1;
26 	bool is_ddr3 : 1;
27 	u16 fsb_freq;
28 	u16 mem_freq;
29 	u16 display_sr;
30 	u16 display_hpll_disable;
31 	u16 cursor_sr;
32 	u16 cursor_hpll_disable;
33 };
34 
35 static const struct cxsr_latency cxsr_latency_table[] = {
36 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
37 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
38 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
39 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
40 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
41 
42 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
43 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
44 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
45 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
46 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
47 
48 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
49 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
50 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
51 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
52 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
53 
54 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
55 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
56 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
57 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
58 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
59 
60 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
61 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
62 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
63 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
64 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
65 
66 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
67 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
68 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
69 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
70 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
71 };
72 
73 static const struct cxsr_latency *intel_get_cxsr_latency(struct drm_i915_private *i915)
74 {
75 	int i;
76 
77 	if (i915->fsb_freq == 0 || i915->mem_freq == 0)
78 		return NULL;
79 
80 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
81 		const struct cxsr_latency *latency = &cxsr_latency_table[i];
82 		bool is_desktop = !IS_MOBILE(i915);
83 
84 		if (is_desktop == latency->is_desktop &&
85 		    i915->is_ddr3 == latency->is_ddr3 &&
86 		    i915->fsb_freq == latency->fsb_freq &&
87 		    i915->mem_freq == latency->mem_freq)
88 			return latency;
89 	}
90 
91 	drm_dbg_kms(&i915->drm, "Unknown FSB/MEM found, disable CxSR\n");
92 
93 	return NULL;
94 }
95 
96 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
97 {
98 	u32 val;
99 
100 	vlv_punit_get(dev_priv);
101 
102 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
103 	if (enable)
104 		val &= ~FORCE_DDR_HIGH_FREQ;
105 	else
106 		val |= FORCE_DDR_HIGH_FREQ;
107 	val &= ~FORCE_DDR_LOW_FREQ;
108 	val |= FORCE_DDR_FREQ_REQ_ACK;
109 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
110 
111 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
112 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
113 		drm_err(&dev_priv->drm,
114 			"timed out waiting for Punit DDR DVFS request\n");
115 
116 	vlv_punit_put(dev_priv);
117 }
118 
119 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
120 {
121 	u32 val;
122 
123 	vlv_punit_get(dev_priv);
124 
125 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
126 	if (enable)
127 		val |= DSP_MAXFIFO_PM5_ENABLE;
128 	else
129 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
130 	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
131 
132 	vlv_punit_put(dev_priv);
133 }
134 
135 #define FW_WM(value, plane) \
136 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
137 
138 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
139 {
140 	bool was_enabled;
141 	u32 val;
142 
143 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
144 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
145 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
146 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
147 	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
148 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
149 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
150 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
151 	} else if (IS_PINEVIEW(dev_priv)) {
152 		val = intel_uncore_read(&dev_priv->uncore, DSPFW3);
153 		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
154 		if (enable)
155 			val |= PINEVIEW_SELF_REFRESH_EN;
156 		else
157 			val &= ~PINEVIEW_SELF_REFRESH_EN;
158 		intel_uncore_write(&dev_priv->uncore, DSPFW3, val);
159 		intel_uncore_posting_read(&dev_priv->uncore, DSPFW3);
160 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
161 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
162 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
163 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
164 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
165 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
166 	} else if (IS_I915GM(dev_priv)) {
167 		/*
168 		 * FIXME can't find a bit like this for 915G, and
169 		 * yet it does have the related watermark in
170 		 * FW_BLC_SELF. What's going on?
171 		 */
172 		was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
173 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
174 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
175 		intel_uncore_write(&dev_priv->uncore, INSTPM, val);
176 		intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
177 	} else {
178 		return false;
179 	}
180 
181 	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
182 
183 	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
184 		    str_enabled_disabled(enable),
185 		    str_enabled_disabled(was_enabled));
186 
187 	return was_enabled;
188 }
189 
190 /**
191  * intel_set_memory_cxsr - Configure CxSR state
192  * @dev_priv: i915 device
193  * @enable: Allow vs. disallow CxSR
194  *
195  * Allow or disallow the system to enter a special CxSR
196  * (C-state self refresh) state. What typically happens in CxSR mode
197  * is that several display FIFOs may get combined into a single larger
198  * FIFO for a particular plane (so called max FIFO mode) to allow the
199  * system to defer memory fetches longer, and the memory will enter
200  * self refresh.
201  *
202  * Note that enabling CxSR does not guarantee that the system enter
203  * this special mode, nor does it guarantee that the system stays
204  * in that mode once entered. So this just allows/disallows the system
205  * to autonomously utilize the CxSR mode. Other factors such as core
206  * C-states will affect when/if the system actually enters/exits the
207  * CxSR mode.
208  *
209  * Note that on VLV/CHV this actually only controls the max FIFO mode,
210  * and the system is free to enter/exit memory self refresh at any time
211  * even when the use of CxSR has been disallowed.
212  *
213  * While the system is actually in the CxSR/max FIFO mode, some plane
214  * control registers will not get latched on vblank. Thus in order to
215  * guarantee the system will respond to changes in the plane registers
216  * we must always disallow CxSR prior to making changes to those registers.
217  * Unfortunately the system will re-evaluate the CxSR conditions at
218  * frame start which happens after vblank start (which is when the plane
219  * registers would get latched), so we can't proceed with the plane update
220  * during the same frame where we disallowed CxSR.
221  *
222  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
223  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
224  * the hardware w.r.t. HPLL SR when writing to plane registers.
225  * Disallowing just CxSR is sufficient.
226  */
227 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
228 {
229 	bool ret;
230 
231 	mutex_lock(&dev_priv->display.wm.wm_mutex);
232 	ret = _intel_set_memory_cxsr(dev_priv, enable);
233 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
234 		dev_priv->display.wm.vlv.cxsr = enable;
235 	else if (IS_G4X(dev_priv))
236 		dev_priv->display.wm.g4x.cxsr = enable;
237 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
238 
239 	return ret;
240 }
241 
242 /*
243  * Latency for FIFO fetches is dependent on several factors:
244  *   - memory configuration (speed, channels)
245  *   - chipset
246  *   - current MCH state
247  * It can be fairly high in some situations, so here we assume a fairly
248  * pessimal value.  It's a tradeoff between extra memory fetches (if we
249  * set this value too high, the FIFO will fetch frequently to stay full)
250  * and power consumption (set it too low to save power and we might see
251  * FIFO underruns and display "flicker").
252  *
253  * A value of 5us seems to be a good balance; safe for very low end
254  * platforms but not overly aggressive on lower latency configs.
255  */
256 static const int pessimal_latency_ns = 5000;
257 
258 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
259 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
260 
261 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
262 {
263 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
264 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
265 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
266 	enum pipe pipe = crtc->pipe;
267 	int sprite0_start, sprite1_start;
268 	u32 dsparb, dsparb2, dsparb3;
269 
270 	switch (pipe) {
271 	case PIPE_A:
272 		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
273 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
274 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
275 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
276 		break;
277 	case PIPE_B:
278 		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
279 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
280 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
281 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
282 		break;
283 	case PIPE_C:
284 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
285 		dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
286 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
287 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
288 		break;
289 	default:
290 		MISSING_CASE(pipe);
291 		return;
292 	}
293 
294 	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
295 	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
296 	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
297 	fifo_state->plane[PLANE_CURSOR] = 63;
298 }
299 
300 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
301 			      enum i9xx_plane_id i9xx_plane)
302 {
303 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
304 	int size;
305 
306 	size = dsparb & 0x7f;
307 	if (i9xx_plane == PLANE_B)
308 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
309 
310 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
311 		    dsparb, plane_name(i9xx_plane), size);
312 
313 	return size;
314 }
315 
316 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
317 			      enum i9xx_plane_id i9xx_plane)
318 {
319 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
320 	int size;
321 
322 	size = dsparb & 0x1ff;
323 	if (i9xx_plane == PLANE_B)
324 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
325 	size >>= 1; /* Convert to cachelines */
326 
327 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
328 		    dsparb, plane_name(i9xx_plane), size);
329 
330 	return size;
331 }
332 
333 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
334 			      enum i9xx_plane_id i9xx_plane)
335 {
336 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
337 	int size;
338 
339 	size = dsparb & 0x7f;
340 	size >>= 2; /* Convert to cachelines */
341 
342 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
343 		    dsparb, plane_name(i9xx_plane), size);
344 
345 	return size;
346 }
347 
348 /* Pineview has different values for various configs */
349 static const struct intel_watermark_params pnv_display_wm = {
350 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
351 	.max_wm = PINEVIEW_MAX_WM,
352 	.default_wm = PINEVIEW_DFT_WM,
353 	.guard_size = PINEVIEW_GUARD_WM,
354 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
355 };
356 
357 static const struct intel_watermark_params pnv_display_hplloff_wm = {
358 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
359 	.max_wm = PINEVIEW_MAX_WM,
360 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
361 	.guard_size = PINEVIEW_GUARD_WM,
362 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
363 };
364 
365 static const struct intel_watermark_params pnv_cursor_wm = {
366 	.fifo_size = PINEVIEW_CURSOR_FIFO,
367 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
368 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
369 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
370 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
371 };
372 
373 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
374 	.fifo_size = PINEVIEW_CURSOR_FIFO,
375 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
376 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
377 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
378 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
379 };
380 
381 static const struct intel_watermark_params i965_cursor_wm_info = {
382 	.fifo_size = I965_CURSOR_FIFO,
383 	.max_wm = I965_CURSOR_MAX_WM,
384 	.default_wm = I965_CURSOR_DFT_WM,
385 	.guard_size = 2,
386 	.cacheline_size = I915_FIFO_LINE_SIZE,
387 };
388 
389 static const struct intel_watermark_params i945_wm_info = {
390 	.fifo_size = I945_FIFO_SIZE,
391 	.max_wm = I915_MAX_WM,
392 	.default_wm = 1,
393 	.guard_size = 2,
394 	.cacheline_size = I915_FIFO_LINE_SIZE,
395 };
396 
397 static const struct intel_watermark_params i915_wm_info = {
398 	.fifo_size = I915_FIFO_SIZE,
399 	.max_wm = I915_MAX_WM,
400 	.default_wm = 1,
401 	.guard_size = 2,
402 	.cacheline_size = I915_FIFO_LINE_SIZE,
403 };
404 
405 static const struct intel_watermark_params i830_a_wm_info = {
406 	.fifo_size = I855GM_FIFO_SIZE,
407 	.max_wm = I915_MAX_WM,
408 	.default_wm = 1,
409 	.guard_size = 2,
410 	.cacheline_size = I830_FIFO_LINE_SIZE,
411 };
412 
413 static const struct intel_watermark_params i830_bc_wm_info = {
414 	.fifo_size = I855GM_FIFO_SIZE,
415 	.max_wm = I915_MAX_WM / 2,
416 	.default_wm = 1,
417 	.guard_size = 2,
418 	.cacheline_size = I830_FIFO_LINE_SIZE,
419 };
420 
421 static const struct intel_watermark_params i845_wm_info = {
422 	.fifo_size = I830_FIFO_SIZE,
423 	.max_wm = I915_MAX_WM,
424 	.default_wm = 1,
425 	.guard_size = 2,
426 	.cacheline_size = I830_FIFO_LINE_SIZE,
427 };
428 
429 /**
430  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
431  * @pixel_rate: Pipe pixel rate in kHz
432  * @cpp: Plane bytes per pixel
433  * @latency: Memory wakeup latency in 0.1us units
434  *
435  * Compute the watermark using the method 1 or "small buffer"
436  * formula. The caller may additonally add extra cachelines
437  * to account for TLB misses and clock crossings.
438  *
439  * This method is concerned with the short term drain rate
440  * of the FIFO, ie. it does not account for blanking periods
441  * which would effectively reduce the average drain rate across
442  * a longer period. The name "small" refers to the fact the
443  * FIFO is relatively small compared to the amount of data
444  * fetched.
445  *
446  * The FIFO level vs. time graph might look something like:
447  *
448  *   |\   |\
449  *   | \  | \
450  * __---__---__ (- plane active, _ blanking)
451  * -> time
452  *
453  * or perhaps like this:
454  *
455  *   |\|\  |\|\
456  * __----__----__ (- plane active, _ blanking)
457  * -> time
458  *
459  * Returns:
460  * The watermark in bytes
461  */
462 static unsigned int intel_wm_method1(unsigned int pixel_rate,
463 				     unsigned int cpp,
464 				     unsigned int latency)
465 {
466 	u64 ret;
467 
468 	ret = mul_u32_u32(pixel_rate, cpp * latency);
469 	ret = DIV_ROUND_UP_ULL(ret, 10000);
470 
471 	return ret;
472 }
473 
474 /**
475  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
476  * @pixel_rate: Pipe pixel rate in kHz
477  * @htotal: Pipe horizontal total
478  * @width: Plane width in pixels
479  * @cpp: Plane bytes per pixel
480  * @latency: Memory wakeup latency in 0.1us units
481  *
482  * Compute the watermark using the method 2 or "large buffer"
483  * formula. The caller may additonally add extra cachelines
484  * to account for TLB misses and clock crossings.
485  *
486  * This method is concerned with the long term drain rate
487  * of the FIFO, ie. it does account for blanking periods
488  * which effectively reduce the average drain rate across
489  * a longer period. The name "large" refers to the fact the
490  * FIFO is relatively large compared to the amount of data
491  * fetched.
492  *
493  * The FIFO level vs. time graph might look something like:
494  *
495  *    |\___       |\___
496  *    |    \___   |    \___
497  *    |        \  |        \
498  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
499  * -> time
500  *
501  * Returns:
502  * The watermark in bytes
503  */
504 static unsigned int intel_wm_method2(unsigned int pixel_rate,
505 				     unsigned int htotal,
506 				     unsigned int width,
507 				     unsigned int cpp,
508 				     unsigned int latency)
509 {
510 	unsigned int ret;
511 
512 	/*
513 	 * FIXME remove once all users are computing
514 	 * watermarks in the correct place.
515 	 */
516 	if (WARN_ON_ONCE(htotal == 0))
517 		htotal = 1;
518 
519 	ret = (latency * pixel_rate) / (htotal * 10000);
520 	ret = (ret + 1) * width * cpp;
521 
522 	return ret;
523 }
524 
525 /**
526  * intel_calculate_wm - calculate watermark level
527  * @i915: the device
528  * @pixel_rate: pixel clock
529  * @wm: chip FIFO params
530  * @fifo_size: size of the FIFO buffer
531  * @cpp: bytes per pixel
532  * @latency_ns: memory latency for the platform
533  *
534  * Calculate the watermark level (the level at which the display plane will
535  * start fetching from memory again).  Each chip has a different display
536  * FIFO size and allocation, so the caller needs to figure that out and pass
537  * in the correct intel_watermark_params structure.
538  *
539  * As the pixel clock runs, the FIFO will be drained at a rate that depends
540  * on the pixel size.  When it reaches the watermark level, it'll start
541  * fetching FIFO line sized based chunks from memory until the FIFO fills
542  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
543  * will occur, and a display engine hang could result.
544  */
545 static unsigned int intel_calculate_wm(struct drm_i915_private *i915,
546 				       int pixel_rate,
547 				       const struct intel_watermark_params *wm,
548 				       int fifo_size, int cpp,
549 				       unsigned int latency_ns)
550 {
551 	int entries, wm_size;
552 
553 	/*
554 	 * Note: we need to make sure we don't overflow for various clock &
555 	 * latency values.
556 	 * clocks go from a few thousand to several hundred thousand.
557 	 * latency is usually a few thousand
558 	 */
559 	entries = intel_wm_method1(pixel_rate, cpp,
560 				   latency_ns / 100);
561 	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
562 		wm->guard_size;
563 	drm_dbg_kms(&i915->drm, "FIFO entries required for mode: %d\n", entries);
564 
565 	wm_size = fifo_size - entries;
566 	drm_dbg_kms(&i915->drm, "FIFO watermark level: %d\n", wm_size);
567 
568 	/* Don't promote wm_size to unsigned... */
569 	if (wm_size > wm->max_wm)
570 		wm_size = wm->max_wm;
571 	if (wm_size <= 0)
572 		wm_size = wm->default_wm;
573 
574 	/*
575 	 * Bspec seems to indicate that the value shouldn't be lower than
576 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
577 	 * Lets go for 8 which is the burst size since certain platforms
578 	 * already use a hardcoded 8 (which is what the spec says should be
579 	 * done).
580 	 */
581 	if (wm_size <= 8)
582 		wm_size = 8;
583 
584 	return wm_size;
585 }
586 
587 static bool is_disabling(int old, int new, int threshold)
588 {
589 	return old >= threshold && new < threshold;
590 }
591 
592 static bool is_enabling(int old, int new, int threshold)
593 {
594 	return old < threshold && new >= threshold;
595 }
596 
597 static bool intel_crtc_active(struct intel_crtc *crtc)
598 {
599 	/* Be paranoid as we can arrive here with only partial
600 	 * state retrieved from the hardware during setup.
601 	 *
602 	 * We can ditch the adjusted_mode.crtc_clock check as soon
603 	 * as Haswell has gained clock readout/fastboot support.
604 	 *
605 	 * We can ditch the crtc->primary->state->fb check as soon as we can
606 	 * properly reconstruct framebuffers.
607 	 *
608 	 * FIXME: The intel_crtc->active here should be switched to
609 	 * crtc->state->active once we have proper CRTC states wired up
610 	 * for atomic.
611 	 */
612 	return crtc->active && crtc->base.primary->state->fb &&
613 		crtc->config->hw.adjusted_mode.crtc_clock;
614 }
615 
616 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
617 {
618 	struct intel_crtc *crtc, *enabled = NULL;
619 
620 	for_each_intel_crtc(&dev_priv->drm, crtc) {
621 		if (intel_crtc_active(crtc)) {
622 			if (enabled)
623 				return NULL;
624 			enabled = crtc;
625 		}
626 	}
627 
628 	return enabled;
629 }
630 
631 static void pnv_update_wm(struct drm_i915_private *dev_priv)
632 {
633 	struct intel_crtc *crtc;
634 	const struct cxsr_latency *latency;
635 	u32 reg;
636 	unsigned int wm;
637 
638 	latency = intel_get_cxsr_latency(dev_priv);
639 	if (!latency) {
640 		drm_dbg_kms(&dev_priv->drm,
641 			    "Unknown FSB/MEM found, disable CxSR\n");
642 		intel_set_memory_cxsr(dev_priv, false);
643 		return;
644 	}
645 
646 	crtc = single_enabled_crtc(dev_priv);
647 	if (crtc) {
648 		const struct drm_framebuffer *fb =
649 			crtc->base.primary->state->fb;
650 		int pixel_rate = crtc->config->pixel_rate;
651 		int cpp = fb->format->cpp[0];
652 
653 		/* Display SR */
654 		wm = intel_calculate_wm(dev_priv, pixel_rate,
655 					&pnv_display_wm,
656 					pnv_display_wm.fifo_size,
657 					cpp, latency->display_sr);
658 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW1);
659 		reg &= ~DSPFW_SR_MASK;
660 		reg |= FW_WM(wm, SR);
661 		intel_uncore_write(&dev_priv->uncore, DSPFW1, reg);
662 		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
663 
664 		/* cursor SR */
665 		wm = intel_calculate_wm(dev_priv, pixel_rate,
666 					&pnv_cursor_wm,
667 					pnv_display_wm.fifo_size,
668 					4, latency->cursor_sr);
669 		intel_uncore_rmw(&dev_priv->uncore, DSPFW3, DSPFW_CURSOR_SR_MASK,
670 				 FW_WM(wm, CURSOR_SR));
671 
672 		/* Display HPLL off SR */
673 		wm = intel_calculate_wm(dev_priv, pixel_rate,
674 					&pnv_display_hplloff_wm,
675 					pnv_display_hplloff_wm.fifo_size,
676 					cpp, latency->display_hpll_disable);
677 		intel_uncore_rmw(&dev_priv->uncore, DSPFW3, DSPFW_HPLL_SR_MASK, FW_WM(wm, HPLL_SR));
678 
679 		/* cursor HPLL off SR */
680 		wm = intel_calculate_wm(dev_priv, pixel_rate,
681 					&pnv_cursor_hplloff_wm,
682 					pnv_display_hplloff_wm.fifo_size,
683 					4, latency->cursor_hpll_disable);
684 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
685 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
686 		reg |= FW_WM(wm, HPLL_CURSOR);
687 		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
688 		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
689 
690 		intel_set_memory_cxsr(dev_priv, true);
691 	} else {
692 		intel_set_memory_cxsr(dev_priv, false);
693 	}
694 }
695 
696 /*
697  * Documentation says:
698  * "If the line size is small, the TLB fetches can get in the way of the
699  *  data fetches, causing some lag in the pixel data return which is not
700  *  accounted for in the above formulas. The following adjustment only
701  *  needs to be applied if eight whole lines fit in the buffer at once.
702  *  The WM is adjusted upwards by the difference between the FIFO size
703  *  and the size of 8 whole lines. This adjustment is always performed
704  *  in the actual pixel depth regardless of whether FBC is enabled or not."
705  */
706 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
707 {
708 	int tlb_miss = fifo_size * 64 - width * cpp * 8;
709 
710 	return max(0, tlb_miss);
711 }
712 
713 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
714 				const struct g4x_wm_values *wm)
715 {
716 	enum pipe pipe;
717 
718 	for_each_pipe(dev_priv, pipe)
719 		trace_g4x_wm(intel_crtc_for_pipe(dev_priv, pipe), wm);
720 
721 	intel_uncore_write(&dev_priv->uncore, DSPFW1,
722 			   FW_WM(wm->sr.plane, SR) |
723 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
724 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
725 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
726 	intel_uncore_write(&dev_priv->uncore, DSPFW2,
727 			   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
728 			   FW_WM(wm->sr.fbc, FBC_SR) |
729 			   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
730 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
731 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
732 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
733 	intel_uncore_write(&dev_priv->uncore, DSPFW3,
734 			   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
735 			   FW_WM(wm->sr.cursor, CURSOR_SR) |
736 			   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
737 			   FW_WM(wm->hpll.plane, HPLL_SR));
738 
739 	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
740 }
741 
742 #define FW_WM_VLV(value, plane) \
743 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
744 
745 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
746 				const struct vlv_wm_values *wm)
747 {
748 	enum pipe pipe;
749 
750 	for_each_pipe(dev_priv, pipe) {
751 		trace_vlv_wm(intel_crtc_for_pipe(dev_priv, pipe), wm);
752 
753 		intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
754 				   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
755 				   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
756 				   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
757 				   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
758 	}
759 
760 	/*
761 	 * Zero the (unused) WM1 watermarks, and also clear all the
762 	 * high order bits so that there are no out of bounds values
763 	 * present in the registers during the reprogramming.
764 	 */
765 	intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
766 	intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
767 	intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
768 	intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
769 	intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
770 
771 	intel_uncore_write(&dev_priv->uncore, DSPFW1,
772 			   FW_WM(wm->sr.plane, SR) |
773 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
774 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
775 			   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
776 	intel_uncore_write(&dev_priv->uncore, DSPFW2,
777 			   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
778 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
779 			   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
780 	intel_uncore_write(&dev_priv->uncore, DSPFW3,
781 			   FW_WM(wm->sr.cursor, CURSOR_SR));
782 
783 	if (IS_CHERRYVIEW(dev_priv)) {
784 		intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
785 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
786 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
787 		intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
788 				   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
789 				   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
790 		intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
791 				   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
792 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
793 		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
794 				   FW_WM(wm->sr.plane >> 9, SR_HI) |
795 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
796 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
797 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
798 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
799 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
800 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
801 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
802 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
803 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
804 	} else {
805 		intel_uncore_write(&dev_priv->uncore, DSPFW7,
806 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
807 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
808 		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
809 				   FW_WM(wm->sr.plane >> 9, SR_HI) |
810 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
811 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
812 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
813 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
814 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
815 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
816 	}
817 
818 	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
819 }
820 
821 #undef FW_WM_VLV
822 
823 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
824 {
825 	/* all latencies in usec */
826 	dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
827 	dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
828 	dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
829 
830 	dev_priv->display.wm.num_levels = G4X_WM_LEVEL_HPLL + 1;
831 }
832 
833 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
834 {
835 	/*
836 	 * DSPCNTR[13] supposedly controls whether the
837 	 * primary plane can use the FIFO space otherwise
838 	 * reserved for the sprite plane. It's not 100% clear
839 	 * what the actual FIFO size is, but it looks like we
840 	 * can happily set both primary and sprite watermarks
841 	 * up to 127 cachelines. So that would seem to mean
842 	 * that either DSPCNTR[13] doesn't do anything, or that
843 	 * the total FIFO is >= 256 cachelines in size. Either
844 	 * way, we don't seem to have to worry about this
845 	 * repartitioning as the maximum watermark value the
846 	 * register can hold for each plane is lower than the
847 	 * minimum FIFO size.
848 	 */
849 	switch (plane_id) {
850 	case PLANE_CURSOR:
851 		return 63;
852 	case PLANE_PRIMARY:
853 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
854 	case PLANE_SPRITE0:
855 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
856 	default:
857 		MISSING_CASE(plane_id);
858 		return 0;
859 	}
860 }
861 
862 static int g4x_fbc_fifo_size(int level)
863 {
864 	switch (level) {
865 	case G4X_WM_LEVEL_SR:
866 		return 7;
867 	case G4X_WM_LEVEL_HPLL:
868 		return 15;
869 	default:
870 		MISSING_CASE(level);
871 		return 0;
872 	}
873 }
874 
875 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
876 			  const struct intel_plane_state *plane_state,
877 			  int level)
878 {
879 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
880 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
881 	const struct drm_display_mode *pipe_mode =
882 		&crtc_state->hw.pipe_mode;
883 	unsigned int latency = dev_priv->display.wm.pri_latency[level] * 10;
884 	unsigned int pixel_rate, htotal, cpp, width, wm;
885 
886 	if (latency == 0)
887 		return USHRT_MAX;
888 
889 	if (!intel_wm_plane_visible(crtc_state, plane_state))
890 		return 0;
891 
892 	cpp = plane_state->hw.fb->format->cpp[0];
893 
894 	/*
895 	 * WaUse32BppForSRWM:ctg,elk
896 	 *
897 	 * The spec fails to list this restriction for the
898 	 * HPLL watermark, which seems a little strange.
899 	 * Let's use 32bpp for the HPLL watermark as well.
900 	 */
901 	if (plane->id == PLANE_PRIMARY &&
902 	    level != G4X_WM_LEVEL_NORMAL)
903 		cpp = max(cpp, 4u);
904 
905 	pixel_rate = crtc_state->pixel_rate;
906 	htotal = pipe_mode->crtc_htotal;
907 	width = drm_rect_width(&plane_state->uapi.src) >> 16;
908 
909 	if (plane->id == PLANE_CURSOR) {
910 		wm = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
911 	} else if (plane->id == PLANE_PRIMARY &&
912 		   level == G4X_WM_LEVEL_NORMAL) {
913 		wm = intel_wm_method1(pixel_rate, cpp, latency);
914 	} else {
915 		unsigned int small, large;
916 
917 		small = intel_wm_method1(pixel_rate, cpp, latency);
918 		large = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
919 
920 		wm = min(small, large);
921 	}
922 
923 	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
924 			      width, cpp);
925 
926 	wm = DIV_ROUND_UP(wm, 64) + 2;
927 
928 	return min_t(unsigned int, wm, USHRT_MAX);
929 }
930 
931 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
932 				 int level, enum plane_id plane_id, u16 value)
933 {
934 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
935 	bool dirty = false;
936 
937 	for (; level < dev_priv->display.wm.num_levels; level++) {
938 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
939 
940 		dirty |= raw->plane[plane_id] != value;
941 		raw->plane[plane_id] = value;
942 	}
943 
944 	return dirty;
945 }
946 
947 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
948 			       int level, u16 value)
949 {
950 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
951 	bool dirty = false;
952 
953 	/* NORMAL level doesn't have an FBC watermark */
954 	level = max(level, G4X_WM_LEVEL_SR);
955 
956 	for (; level < dev_priv->display.wm.num_levels; level++) {
957 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
958 
959 		dirty |= raw->fbc != value;
960 		raw->fbc = value;
961 	}
962 
963 	return dirty;
964 }
965 
966 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
967 			      const struct intel_plane_state *plane_state,
968 			      u32 pri_val);
969 
970 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
971 				     const struct intel_plane_state *plane_state)
972 {
973 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
974 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
975 	enum plane_id plane_id = plane->id;
976 	bool dirty = false;
977 	int level;
978 
979 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
980 		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
981 		if (plane_id == PLANE_PRIMARY)
982 			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
983 		goto out;
984 	}
985 
986 	for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
987 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
988 		int wm, max_wm;
989 
990 		wm = g4x_compute_wm(crtc_state, plane_state, level);
991 		max_wm = g4x_plane_fifo_size(plane_id, level);
992 
993 		if (wm > max_wm)
994 			break;
995 
996 		dirty |= raw->plane[plane_id] != wm;
997 		raw->plane[plane_id] = wm;
998 
999 		if (plane_id != PLANE_PRIMARY ||
1000 		    level == G4X_WM_LEVEL_NORMAL)
1001 			continue;
1002 
1003 		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1004 					raw->plane[plane_id]);
1005 		max_wm = g4x_fbc_fifo_size(level);
1006 
1007 		/*
1008 		 * FBC wm is not mandatory as we
1009 		 * can always just disable its use.
1010 		 */
1011 		if (wm > max_wm)
1012 			wm = USHRT_MAX;
1013 
1014 		dirty |= raw->fbc != wm;
1015 		raw->fbc = wm;
1016 	}
1017 
1018 	/* mark watermarks as invalid */
1019 	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1020 
1021 	if (plane_id == PLANE_PRIMARY)
1022 		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1023 
1024  out:
1025 	if (dirty) {
1026 		drm_dbg_kms(&dev_priv->drm,
1027 			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1028 			    plane->base.name,
1029 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1030 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1031 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1032 
1033 		if (plane_id == PLANE_PRIMARY)
1034 			drm_dbg_kms(&dev_priv->drm,
1035 				    "FBC watermarks: SR=%d, HPLL=%d\n",
1036 				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1037 				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1038 	}
1039 
1040 	return dirty;
1041 }
1042 
1043 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1044 				      enum plane_id plane_id, int level)
1045 {
1046 	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1047 
1048 	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1049 }
1050 
1051 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1052 				     int level)
1053 {
1054 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1055 
1056 	if (level >= dev_priv->display.wm.num_levels)
1057 		return false;
1058 
1059 	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1060 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1061 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1062 }
1063 
1064 /* mark all levels starting from 'level' as invalid */
1065 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1066 			       struct g4x_wm_state *wm_state, int level)
1067 {
1068 	if (level <= G4X_WM_LEVEL_NORMAL) {
1069 		enum plane_id plane_id;
1070 
1071 		for_each_plane_id_on_crtc(crtc, plane_id)
1072 			wm_state->wm.plane[plane_id] = USHRT_MAX;
1073 	}
1074 
1075 	if (level <= G4X_WM_LEVEL_SR) {
1076 		wm_state->cxsr = false;
1077 		wm_state->sr.cursor = USHRT_MAX;
1078 		wm_state->sr.plane = USHRT_MAX;
1079 		wm_state->sr.fbc = USHRT_MAX;
1080 	}
1081 
1082 	if (level <= G4X_WM_LEVEL_HPLL) {
1083 		wm_state->hpll_en = false;
1084 		wm_state->hpll.cursor = USHRT_MAX;
1085 		wm_state->hpll.plane = USHRT_MAX;
1086 		wm_state->hpll.fbc = USHRT_MAX;
1087 	}
1088 }
1089 
1090 static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1091 			       int level)
1092 {
1093 	if (level < G4X_WM_LEVEL_SR)
1094 		return false;
1095 
1096 	if (level >= G4X_WM_LEVEL_SR &&
1097 	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1098 		return false;
1099 
1100 	if (level >= G4X_WM_LEVEL_HPLL &&
1101 	    wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1102 		return false;
1103 
1104 	return true;
1105 }
1106 
1107 static int _g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1108 {
1109 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1110 	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1111 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1112 	const struct g4x_pipe_wm *raw;
1113 	enum plane_id plane_id;
1114 	int level;
1115 
1116 	level = G4X_WM_LEVEL_NORMAL;
1117 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1118 		goto out;
1119 
1120 	raw = &crtc_state->wm.g4x.raw[level];
1121 	for_each_plane_id_on_crtc(crtc, plane_id)
1122 		wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1123 
1124 	level = G4X_WM_LEVEL_SR;
1125 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1126 		goto out;
1127 
1128 	raw = &crtc_state->wm.g4x.raw[level];
1129 	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1130 	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1131 	wm_state->sr.fbc = raw->fbc;
1132 
1133 	wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY);
1134 
1135 	level = G4X_WM_LEVEL_HPLL;
1136 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1137 		goto out;
1138 
1139 	raw = &crtc_state->wm.g4x.raw[level];
1140 	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1141 	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1142 	wm_state->hpll.fbc = raw->fbc;
1143 
1144 	wm_state->hpll_en = wm_state->cxsr;
1145 
1146 	level++;
1147 
1148  out:
1149 	if (level == G4X_WM_LEVEL_NORMAL)
1150 		return -EINVAL;
1151 
1152 	/* invalidate the higher levels */
1153 	g4x_invalidate_wms(crtc, wm_state, level);
1154 
1155 	/*
1156 	 * Determine if the FBC watermark(s) can be used. IF
1157 	 * this isn't the case we prefer to disable the FBC
1158 	 * watermark(s) rather than disable the SR/HPLL
1159 	 * level(s) entirely. 'level-1' is the highest valid
1160 	 * level here.
1161 	 */
1162 	wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1163 
1164 	return 0;
1165 }
1166 
1167 static int g4x_compute_pipe_wm(struct intel_atomic_state *state,
1168 			       struct intel_crtc *crtc)
1169 {
1170 	struct intel_crtc_state *crtc_state =
1171 		intel_atomic_get_new_crtc_state(state, crtc);
1172 	const struct intel_plane_state *old_plane_state;
1173 	const struct intel_plane_state *new_plane_state;
1174 	struct intel_plane *plane;
1175 	unsigned int dirty = 0;
1176 	int i;
1177 
1178 	for_each_oldnew_intel_plane_in_state(state, plane,
1179 					     old_plane_state,
1180 					     new_plane_state, i) {
1181 		if (new_plane_state->hw.crtc != &crtc->base &&
1182 		    old_plane_state->hw.crtc != &crtc->base)
1183 			continue;
1184 
1185 		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1186 			dirty |= BIT(plane->id);
1187 	}
1188 
1189 	if (!dirty)
1190 		return 0;
1191 
1192 	return _g4x_compute_pipe_wm(crtc_state);
1193 }
1194 
1195 static int g4x_compute_intermediate_wm(struct intel_atomic_state *state,
1196 				       struct intel_crtc *crtc)
1197 {
1198 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1199 	struct intel_crtc_state *new_crtc_state =
1200 		intel_atomic_get_new_crtc_state(state, crtc);
1201 	const struct intel_crtc_state *old_crtc_state =
1202 		intel_atomic_get_old_crtc_state(state, crtc);
1203 	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1204 	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1205 	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1206 	enum plane_id plane_id;
1207 
1208 	if (!new_crtc_state->hw.active ||
1209 	    intel_crtc_needs_modeset(new_crtc_state)) {
1210 		*intermediate = *optimal;
1211 
1212 		intermediate->cxsr = false;
1213 		intermediate->hpll_en = false;
1214 		goto out;
1215 	}
1216 
1217 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1218 		!new_crtc_state->disable_cxsr;
1219 	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1220 		!new_crtc_state->disable_cxsr;
1221 	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1222 
1223 	for_each_plane_id_on_crtc(crtc, plane_id) {
1224 		intermediate->wm.plane[plane_id] =
1225 			max(optimal->wm.plane[plane_id],
1226 			    active->wm.plane[plane_id]);
1227 
1228 		drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1229 			    g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1230 	}
1231 
1232 	intermediate->sr.plane = max(optimal->sr.plane,
1233 				     active->sr.plane);
1234 	intermediate->sr.cursor = max(optimal->sr.cursor,
1235 				      active->sr.cursor);
1236 	intermediate->sr.fbc = max(optimal->sr.fbc,
1237 				   active->sr.fbc);
1238 
1239 	intermediate->hpll.plane = max(optimal->hpll.plane,
1240 				       active->hpll.plane);
1241 	intermediate->hpll.cursor = max(optimal->hpll.cursor,
1242 					active->hpll.cursor);
1243 	intermediate->hpll.fbc = max(optimal->hpll.fbc,
1244 				     active->hpll.fbc);
1245 
1246 	drm_WARN_ON(&dev_priv->drm,
1247 		    (intermediate->sr.plane >
1248 		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1249 		     intermediate->sr.cursor >
1250 		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1251 		    intermediate->cxsr);
1252 	drm_WARN_ON(&dev_priv->drm,
1253 		    (intermediate->sr.plane >
1254 		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1255 		     intermediate->sr.cursor >
1256 		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1257 		    intermediate->hpll_en);
1258 
1259 	drm_WARN_ON(&dev_priv->drm,
1260 		    intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1261 		    intermediate->fbc_en && intermediate->cxsr);
1262 	drm_WARN_ON(&dev_priv->drm,
1263 		    intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1264 		    intermediate->fbc_en && intermediate->hpll_en);
1265 
1266 out:
1267 	/*
1268 	 * If our intermediate WM are identical to the final WM, then we can
1269 	 * omit the post-vblank programming; only update if it's different.
1270 	 */
1271 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1272 		new_crtc_state->wm.need_postvbl_update = true;
1273 
1274 	return 0;
1275 }
1276 
1277 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1278 			 struct g4x_wm_values *wm)
1279 {
1280 	struct intel_crtc *crtc;
1281 	int num_active_pipes = 0;
1282 
1283 	wm->cxsr = true;
1284 	wm->hpll_en = true;
1285 	wm->fbc_en = true;
1286 
1287 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1288 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1289 
1290 		if (!crtc->active)
1291 			continue;
1292 
1293 		if (!wm_state->cxsr)
1294 			wm->cxsr = false;
1295 		if (!wm_state->hpll_en)
1296 			wm->hpll_en = false;
1297 		if (!wm_state->fbc_en)
1298 			wm->fbc_en = false;
1299 
1300 		num_active_pipes++;
1301 	}
1302 
1303 	if (num_active_pipes != 1) {
1304 		wm->cxsr = false;
1305 		wm->hpll_en = false;
1306 		wm->fbc_en = false;
1307 	}
1308 
1309 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1310 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1311 		enum pipe pipe = crtc->pipe;
1312 
1313 		wm->pipe[pipe] = wm_state->wm;
1314 		if (crtc->active && wm->cxsr)
1315 			wm->sr = wm_state->sr;
1316 		if (crtc->active && wm->hpll_en)
1317 			wm->hpll = wm_state->hpll;
1318 	}
1319 }
1320 
1321 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1322 {
1323 	struct g4x_wm_values *old_wm = &dev_priv->display.wm.g4x;
1324 	struct g4x_wm_values new_wm = {};
1325 
1326 	g4x_merge_wm(dev_priv, &new_wm);
1327 
1328 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1329 		return;
1330 
1331 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1332 		_intel_set_memory_cxsr(dev_priv, false);
1333 
1334 	g4x_write_wm_values(dev_priv, &new_wm);
1335 
1336 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1337 		_intel_set_memory_cxsr(dev_priv, true);
1338 
1339 	*old_wm = new_wm;
1340 }
1341 
1342 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1343 				   struct intel_crtc *crtc)
1344 {
1345 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1346 	const struct intel_crtc_state *crtc_state =
1347 		intel_atomic_get_new_crtc_state(state, crtc);
1348 
1349 	mutex_lock(&dev_priv->display.wm.wm_mutex);
1350 	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1351 	g4x_program_watermarks(dev_priv);
1352 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
1353 }
1354 
1355 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1356 				    struct intel_crtc *crtc)
1357 {
1358 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1359 	const struct intel_crtc_state *crtc_state =
1360 		intel_atomic_get_new_crtc_state(state, crtc);
1361 
1362 	if (!crtc_state->wm.need_postvbl_update)
1363 		return;
1364 
1365 	mutex_lock(&dev_priv->display.wm.wm_mutex);
1366 	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1367 	g4x_program_watermarks(dev_priv);
1368 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
1369 }
1370 
1371 /* latency must be in 0.1us units. */
1372 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1373 				   unsigned int htotal,
1374 				   unsigned int width,
1375 				   unsigned int cpp,
1376 				   unsigned int latency)
1377 {
1378 	unsigned int ret;
1379 
1380 	ret = intel_wm_method2(pixel_rate, htotal,
1381 			       width, cpp, latency);
1382 	ret = DIV_ROUND_UP(ret, 64);
1383 
1384 	return ret;
1385 }
1386 
1387 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1388 {
1389 	/* all latencies in usec */
1390 	dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1391 
1392 	dev_priv->display.wm.num_levels = VLV_WM_LEVEL_PM2 + 1;
1393 
1394 	if (IS_CHERRYVIEW(dev_priv)) {
1395 		dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1396 		dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1397 
1398 		dev_priv->display.wm.num_levels = VLV_WM_LEVEL_DDR_DVFS + 1;
1399 	}
1400 }
1401 
1402 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1403 				const struct intel_plane_state *plane_state,
1404 				int level)
1405 {
1406 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1407 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1408 	const struct drm_display_mode *pipe_mode =
1409 		&crtc_state->hw.pipe_mode;
1410 	unsigned int pixel_rate, htotal, cpp, width, wm;
1411 
1412 	if (dev_priv->display.wm.pri_latency[level] == 0)
1413 		return USHRT_MAX;
1414 
1415 	if (!intel_wm_plane_visible(crtc_state, plane_state))
1416 		return 0;
1417 
1418 	cpp = plane_state->hw.fb->format->cpp[0];
1419 	pixel_rate = crtc_state->pixel_rate;
1420 	htotal = pipe_mode->crtc_htotal;
1421 	width = drm_rect_width(&plane_state->uapi.src) >> 16;
1422 
1423 	if (plane->id == PLANE_CURSOR) {
1424 		/*
1425 		 * FIXME the formula gives values that are
1426 		 * too big for the cursor FIFO, and hence we
1427 		 * would never be able to use cursors. For
1428 		 * now just hardcode the watermark.
1429 		 */
1430 		wm = 63;
1431 	} else {
1432 		wm = vlv_wm_method2(pixel_rate, htotal, width, cpp,
1433 				    dev_priv->display.wm.pri_latency[level] * 10);
1434 	}
1435 
1436 	return min_t(unsigned int, wm, USHRT_MAX);
1437 }
1438 
1439 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1440 {
1441 	return (active_planes & (BIT(PLANE_SPRITE0) |
1442 				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1443 }
1444 
1445 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1446 {
1447 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1448 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1449 	const struct g4x_pipe_wm *raw =
1450 		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1451 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1452 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1453 	int num_active_planes = hweight8(active_planes);
1454 	const int fifo_size = 511;
1455 	int fifo_extra, fifo_left = fifo_size;
1456 	int sprite0_fifo_extra = 0;
1457 	unsigned int total_rate;
1458 	enum plane_id plane_id;
1459 
1460 	/*
1461 	 * When enabling sprite0 after sprite1 has already been enabled
1462 	 * we tend to get an underrun unless sprite0 already has some
1463 	 * FIFO space allcoated. Hence we always allocate at least one
1464 	 * cacheline for sprite0 whenever sprite1 is enabled.
1465 	 *
1466 	 * All other plane enable sequences appear immune to this problem.
1467 	 */
1468 	if (vlv_need_sprite0_fifo_workaround(active_planes))
1469 		sprite0_fifo_extra = 1;
1470 
1471 	total_rate = raw->plane[PLANE_PRIMARY] +
1472 		raw->plane[PLANE_SPRITE0] +
1473 		raw->plane[PLANE_SPRITE1] +
1474 		sprite0_fifo_extra;
1475 
1476 	if (total_rate > fifo_size)
1477 		return -EINVAL;
1478 
1479 	if (total_rate == 0)
1480 		total_rate = 1;
1481 
1482 	for_each_plane_id_on_crtc(crtc, plane_id) {
1483 		unsigned int rate;
1484 
1485 		if ((active_planes & BIT(plane_id)) == 0) {
1486 			fifo_state->plane[plane_id] = 0;
1487 			continue;
1488 		}
1489 
1490 		rate = raw->plane[plane_id];
1491 		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1492 		fifo_left -= fifo_state->plane[plane_id];
1493 	}
1494 
1495 	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1496 	fifo_left -= sprite0_fifo_extra;
1497 
1498 	fifo_state->plane[PLANE_CURSOR] = 63;
1499 
1500 	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1501 
1502 	/* spread the remainder evenly */
1503 	for_each_plane_id_on_crtc(crtc, plane_id) {
1504 		int plane_extra;
1505 
1506 		if (fifo_left == 0)
1507 			break;
1508 
1509 		if ((active_planes & BIT(plane_id)) == 0)
1510 			continue;
1511 
1512 		plane_extra = min(fifo_extra, fifo_left);
1513 		fifo_state->plane[plane_id] += plane_extra;
1514 		fifo_left -= plane_extra;
1515 	}
1516 
1517 	drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1518 
1519 	/* give it all to the first plane if none are active */
1520 	if (active_planes == 0) {
1521 		drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1522 		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1523 	}
1524 
1525 	return 0;
1526 }
1527 
1528 /* mark all levels starting from 'level' as invalid */
1529 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1530 			       struct vlv_wm_state *wm_state, int level)
1531 {
1532 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1533 
1534 	for (; level < dev_priv->display.wm.num_levels; level++) {
1535 		enum plane_id plane_id;
1536 
1537 		for_each_plane_id_on_crtc(crtc, plane_id)
1538 			wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1539 
1540 		wm_state->sr[level].cursor = USHRT_MAX;
1541 		wm_state->sr[level].plane = USHRT_MAX;
1542 	}
1543 }
1544 
1545 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1546 {
1547 	if (wm > fifo_size)
1548 		return USHRT_MAX;
1549 	else
1550 		return fifo_size - wm;
1551 }
1552 
1553 /*
1554  * Starting from 'level' set all higher
1555  * levels to 'value' in the "raw" watermarks.
1556  */
1557 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1558 				 int level, enum plane_id plane_id, u16 value)
1559 {
1560 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1561 	bool dirty = false;
1562 
1563 	for (; level < dev_priv->display.wm.num_levels; level++) {
1564 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1565 
1566 		dirty |= raw->plane[plane_id] != value;
1567 		raw->plane[plane_id] = value;
1568 	}
1569 
1570 	return dirty;
1571 }
1572 
1573 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1574 				     const struct intel_plane_state *plane_state)
1575 {
1576 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1577 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1578 	enum plane_id plane_id = plane->id;
1579 	int level;
1580 	bool dirty = false;
1581 
1582 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1583 		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1584 		goto out;
1585 	}
1586 
1587 	for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
1588 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1589 		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1590 		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1591 
1592 		if (wm > max_wm)
1593 			break;
1594 
1595 		dirty |= raw->plane[plane_id] != wm;
1596 		raw->plane[plane_id] = wm;
1597 	}
1598 
1599 	/* mark all higher levels as invalid */
1600 	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1601 
1602 out:
1603 	if (dirty)
1604 		drm_dbg_kms(&dev_priv->drm,
1605 			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1606 			    plane->base.name,
1607 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1608 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1609 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1610 
1611 	return dirty;
1612 }
1613 
1614 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1615 				      enum plane_id plane_id, int level)
1616 {
1617 	const struct g4x_pipe_wm *raw =
1618 		&crtc_state->wm.vlv.raw[level];
1619 	const struct vlv_fifo_state *fifo_state =
1620 		&crtc_state->wm.vlv.fifo_state;
1621 
1622 	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1623 }
1624 
1625 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1626 {
1627 	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1628 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1629 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1630 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1631 }
1632 
1633 static int _vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1634 {
1635 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1636 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1637 	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1638 	const struct vlv_fifo_state *fifo_state =
1639 		&crtc_state->wm.vlv.fifo_state;
1640 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1641 	int num_active_planes = hweight8(active_planes);
1642 	enum plane_id plane_id;
1643 	int level;
1644 
1645 	/* initially allow all levels */
1646 	wm_state->num_levels = dev_priv->display.wm.num_levels;
1647 	/*
1648 	 * Note that enabling cxsr with no primary/sprite planes
1649 	 * enabled can wedge the pipe. Hence we only allow cxsr
1650 	 * with exactly one enabled primary/sprite plane.
1651 	 */
1652 	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1653 
1654 	for (level = 0; level < wm_state->num_levels; level++) {
1655 		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1656 		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1657 
1658 		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1659 			break;
1660 
1661 		for_each_plane_id_on_crtc(crtc, plane_id) {
1662 			wm_state->wm[level].plane[plane_id] =
1663 				vlv_invert_wm_value(raw->plane[plane_id],
1664 						    fifo_state->plane[plane_id]);
1665 		}
1666 
1667 		wm_state->sr[level].plane =
1668 			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1669 						 raw->plane[PLANE_SPRITE0],
1670 						 raw->plane[PLANE_SPRITE1]),
1671 					    sr_fifo_size);
1672 
1673 		wm_state->sr[level].cursor =
1674 			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1675 					    63);
1676 	}
1677 
1678 	if (level == 0)
1679 		return -EINVAL;
1680 
1681 	/* limit to only levels we can actually handle */
1682 	wm_state->num_levels = level;
1683 
1684 	/* invalidate the higher levels */
1685 	vlv_invalidate_wms(crtc, wm_state, level);
1686 
1687 	return 0;
1688 }
1689 
1690 static int vlv_compute_pipe_wm(struct intel_atomic_state *state,
1691 			       struct intel_crtc *crtc)
1692 {
1693 	struct intel_crtc_state *crtc_state =
1694 		intel_atomic_get_new_crtc_state(state, crtc);
1695 	const struct intel_plane_state *old_plane_state;
1696 	const struct intel_plane_state *new_plane_state;
1697 	struct intel_plane *plane;
1698 	unsigned int dirty = 0;
1699 	int i;
1700 
1701 	for_each_oldnew_intel_plane_in_state(state, plane,
1702 					     old_plane_state,
1703 					     new_plane_state, i) {
1704 		if (new_plane_state->hw.crtc != &crtc->base &&
1705 		    old_plane_state->hw.crtc != &crtc->base)
1706 			continue;
1707 
1708 		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1709 			dirty |= BIT(plane->id);
1710 	}
1711 
1712 	/*
1713 	 * DSPARB registers may have been reset due to the
1714 	 * power well being turned off. Make sure we restore
1715 	 * them to a consistent state even if no primary/sprite
1716 	 * planes are initially active. We also force a FIFO
1717 	 * recomputation so that we are sure to sanitize the
1718 	 * FIFO setting we took over from the BIOS even if there
1719 	 * are no active planes on the crtc.
1720 	 */
1721 	if (intel_crtc_needs_modeset(crtc_state))
1722 		dirty = ~0;
1723 
1724 	if (!dirty)
1725 		return 0;
1726 
1727 	/* cursor changes don't warrant a FIFO recompute */
1728 	if (dirty & ~BIT(PLANE_CURSOR)) {
1729 		const struct intel_crtc_state *old_crtc_state =
1730 			intel_atomic_get_old_crtc_state(state, crtc);
1731 		const struct vlv_fifo_state *old_fifo_state =
1732 			&old_crtc_state->wm.vlv.fifo_state;
1733 		const struct vlv_fifo_state *new_fifo_state =
1734 			&crtc_state->wm.vlv.fifo_state;
1735 		int ret;
1736 
1737 		ret = vlv_compute_fifo(crtc_state);
1738 		if (ret)
1739 			return ret;
1740 
1741 		if (intel_crtc_needs_modeset(crtc_state) ||
1742 		    memcmp(old_fifo_state, new_fifo_state,
1743 			   sizeof(*new_fifo_state)) != 0)
1744 			crtc_state->fifo_changed = true;
1745 	}
1746 
1747 	return _vlv_compute_pipe_wm(crtc_state);
1748 }
1749 
1750 #define VLV_FIFO(plane, value) \
1751 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1752 
1753 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1754 				   struct intel_crtc *crtc)
1755 {
1756 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1757 	struct intel_uncore *uncore = &dev_priv->uncore;
1758 	const struct intel_crtc_state *crtc_state =
1759 		intel_atomic_get_new_crtc_state(state, crtc);
1760 	const struct vlv_fifo_state *fifo_state =
1761 		&crtc_state->wm.vlv.fifo_state;
1762 	int sprite0_start, sprite1_start, fifo_size;
1763 	u32 dsparb, dsparb2, dsparb3;
1764 
1765 	if (!crtc_state->fifo_changed)
1766 		return;
1767 
1768 	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1769 	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1770 	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1771 
1772 	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
1773 	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1774 
1775 	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1776 
1777 	/*
1778 	 * uncore.lock serves a double purpose here. It allows us to
1779 	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1780 	 * it protects the DSPARB registers from getting clobbered by
1781 	 * parallel updates from multiple pipes.
1782 	 *
1783 	 * intel_pipe_update_start() has already disabled interrupts
1784 	 * for us, so a plain spin_lock() is sufficient here.
1785 	 */
1786 	spin_lock(&uncore->lock);
1787 
1788 	switch (crtc->pipe) {
1789 	case PIPE_A:
1790 		dsparb = intel_uncore_read_fw(uncore, DSPARB);
1791 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1792 
1793 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1794 			    VLV_FIFO(SPRITEB, 0xff));
1795 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1796 			   VLV_FIFO(SPRITEB, sprite1_start));
1797 
1798 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1799 			     VLV_FIFO(SPRITEB_HI, 0x1));
1800 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1801 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1802 
1803 		intel_uncore_write_fw(uncore, DSPARB, dsparb);
1804 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1805 		break;
1806 	case PIPE_B:
1807 		dsparb = intel_uncore_read_fw(uncore, DSPARB);
1808 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1809 
1810 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1811 			    VLV_FIFO(SPRITED, 0xff));
1812 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1813 			   VLV_FIFO(SPRITED, sprite1_start));
1814 
1815 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1816 			     VLV_FIFO(SPRITED_HI, 0xff));
1817 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1818 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1819 
1820 		intel_uncore_write_fw(uncore, DSPARB, dsparb);
1821 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1822 		break;
1823 	case PIPE_C:
1824 		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
1825 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1826 
1827 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1828 			     VLV_FIFO(SPRITEF, 0xff));
1829 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1830 			    VLV_FIFO(SPRITEF, sprite1_start));
1831 
1832 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1833 			     VLV_FIFO(SPRITEF_HI, 0xff));
1834 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1835 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1836 
1837 		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
1838 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1839 		break;
1840 	default:
1841 		break;
1842 	}
1843 
1844 	intel_uncore_posting_read_fw(uncore, DSPARB);
1845 
1846 	spin_unlock(&uncore->lock);
1847 }
1848 
1849 #undef VLV_FIFO
1850 
1851 static int vlv_compute_intermediate_wm(struct intel_atomic_state *state,
1852 				       struct intel_crtc *crtc)
1853 {
1854 	struct intel_crtc_state *new_crtc_state =
1855 		intel_atomic_get_new_crtc_state(state, crtc);
1856 	const struct intel_crtc_state *old_crtc_state =
1857 		intel_atomic_get_old_crtc_state(state, crtc);
1858 	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
1859 	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
1860 	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
1861 	int level;
1862 
1863 	if (!new_crtc_state->hw.active ||
1864 	    intel_crtc_needs_modeset(new_crtc_state)) {
1865 		*intermediate = *optimal;
1866 
1867 		intermediate->cxsr = false;
1868 		goto out;
1869 	}
1870 
1871 	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
1872 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1873 		!new_crtc_state->disable_cxsr;
1874 
1875 	for (level = 0; level < intermediate->num_levels; level++) {
1876 		enum plane_id plane_id;
1877 
1878 		for_each_plane_id_on_crtc(crtc, plane_id) {
1879 			intermediate->wm[level].plane[plane_id] =
1880 				min(optimal->wm[level].plane[plane_id],
1881 				    active->wm[level].plane[plane_id]);
1882 		}
1883 
1884 		intermediate->sr[level].plane = min(optimal->sr[level].plane,
1885 						    active->sr[level].plane);
1886 		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
1887 						     active->sr[level].cursor);
1888 	}
1889 
1890 	vlv_invalidate_wms(crtc, intermediate, level);
1891 
1892 out:
1893 	/*
1894 	 * If our intermediate WM are identical to the final WM, then we can
1895 	 * omit the post-vblank programming; only update if it's different.
1896 	 */
1897 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1898 		new_crtc_state->wm.need_postvbl_update = true;
1899 
1900 	return 0;
1901 }
1902 
1903 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1904 			 struct vlv_wm_values *wm)
1905 {
1906 	struct intel_crtc *crtc;
1907 	int num_active_pipes = 0;
1908 
1909 	wm->level = dev_priv->display.wm.num_levels - 1;
1910 	wm->cxsr = true;
1911 
1912 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1913 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1914 
1915 		if (!crtc->active)
1916 			continue;
1917 
1918 		if (!wm_state->cxsr)
1919 			wm->cxsr = false;
1920 
1921 		num_active_pipes++;
1922 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1923 	}
1924 
1925 	if (num_active_pipes != 1)
1926 		wm->cxsr = false;
1927 
1928 	if (num_active_pipes > 1)
1929 		wm->level = VLV_WM_LEVEL_PM2;
1930 
1931 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1932 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1933 		enum pipe pipe = crtc->pipe;
1934 
1935 		wm->pipe[pipe] = wm_state->wm[wm->level];
1936 		if (crtc->active && wm->cxsr)
1937 			wm->sr = wm_state->sr[wm->level];
1938 
1939 		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
1940 		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
1941 		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
1942 		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1943 	}
1944 }
1945 
1946 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
1947 {
1948 	struct vlv_wm_values *old_wm = &dev_priv->display.wm.vlv;
1949 	struct vlv_wm_values new_wm = {};
1950 
1951 	vlv_merge_wm(dev_priv, &new_wm);
1952 
1953 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1954 		return;
1955 
1956 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1957 		chv_set_memory_dvfs(dev_priv, false);
1958 
1959 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1960 		chv_set_memory_pm5(dev_priv, false);
1961 
1962 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1963 		_intel_set_memory_cxsr(dev_priv, false);
1964 
1965 	vlv_write_wm_values(dev_priv, &new_wm);
1966 
1967 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1968 		_intel_set_memory_cxsr(dev_priv, true);
1969 
1970 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1971 		chv_set_memory_pm5(dev_priv, true);
1972 
1973 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1974 		chv_set_memory_dvfs(dev_priv, true);
1975 
1976 	*old_wm = new_wm;
1977 }
1978 
1979 static void vlv_initial_watermarks(struct intel_atomic_state *state,
1980 				   struct intel_crtc *crtc)
1981 {
1982 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1983 	const struct intel_crtc_state *crtc_state =
1984 		intel_atomic_get_new_crtc_state(state, crtc);
1985 
1986 	mutex_lock(&dev_priv->display.wm.wm_mutex);
1987 	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
1988 	vlv_program_watermarks(dev_priv);
1989 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
1990 }
1991 
1992 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
1993 				    struct intel_crtc *crtc)
1994 {
1995 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1996 	const struct intel_crtc_state *crtc_state =
1997 		intel_atomic_get_new_crtc_state(state, crtc);
1998 
1999 	if (!crtc_state->wm.need_postvbl_update)
2000 		return;
2001 
2002 	mutex_lock(&dev_priv->display.wm.wm_mutex);
2003 	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2004 	vlv_program_watermarks(dev_priv);
2005 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
2006 }
2007 
2008 static void i965_update_wm(struct drm_i915_private *dev_priv)
2009 {
2010 	struct intel_crtc *crtc;
2011 	int srwm = 1;
2012 	int cursor_sr = 16;
2013 	bool cxsr_enabled;
2014 
2015 	/* Calc sr entries for one plane configs */
2016 	crtc = single_enabled_crtc(dev_priv);
2017 	if (crtc) {
2018 		/* self-refresh has much higher latency */
2019 		static const int sr_latency_ns = 12000;
2020 		const struct drm_display_mode *pipe_mode =
2021 			&crtc->config->hw.pipe_mode;
2022 		const struct drm_framebuffer *fb =
2023 			crtc->base.primary->state->fb;
2024 		int pixel_rate = crtc->config->pixel_rate;
2025 		int htotal = pipe_mode->crtc_htotal;
2026 		int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2027 		int cpp = fb->format->cpp[0];
2028 		int entries;
2029 
2030 		entries = intel_wm_method2(pixel_rate, htotal,
2031 					   width, cpp, sr_latency_ns / 100);
2032 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2033 		srwm = I965_FIFO_SIZE - entries;
2034 		if (srwm < 0)
2035 			srwm = 1;
2036 		srwm &= 0x1ff;
2037 		drm_dbg_kms(&dev_priv->drm,
2038 			    "self-refresh entries: %d, wm: %d\n",
2039 			    entries, srwm);
2040 
2041 		entries = intel_wm_method2(pixel_rate, htotal,
2042 					   crtc->base.cursor->state->crtc_w, 4,
2043 					   sr_latency_ns / 100);
2044 		entries = DIV_ROUND_UP(entries,
2045 				       i965_cursor_wm_info.cacheline_size) +
2046 			i965_cursor_wm_info.guard_size;
2047 
2048 		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2049 		if (cursor_sr > i965_cursor_wm_info.max_wm)
2050 			cursor_sr = i965_cursor_wm_info.max_wm;
2051 
2052 		drm_dbg_kms(&dev_priv->drm,
2053 			    "self-refresh watermark: display plane %d "
2054 			    "cursor %d\n", srwm, cursor_sr);
2055 
2056 		cxsr_enabled = true;
2057 	} else {
2058 		cxsr_enabled = false;
2059 		/* Turn off self refresh if both pipes are enabled */
2060 		intel_set_memory_cxsr(dev_priv, false);
2061 	}
2062 
2063 	drm_dbg_kms(&dev_priv->drm,
2064 		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2065 		    srwm);
2066 
2067 	/* 965 has limitations... */
2068 	intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) |
2069 		   FW_WM(8, CURSORB) |
2070 		   FW_WM(8, PLANEB) |
2071 		   FW_WM(8, PLANEA));
2072 	intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) |
2073 		   FW_WM(8, PLANEC_OLD));
2074 	/* update cursor SR watermark */
2075 	intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2076 
2077 	if (cxsr_enabled)
2078 		intel_set_memory_cxsr(dev_priv, true);
2079 }
2080 
2081 #undef FW_WM
2082 
2083 static struct intel_crtc *intel_crtc_for_plane(struct drm_i915_private *i915,
2084 					       enum i9xx_plane_id i9xx_plane)
2085 {
2086 	struct intel_plane *plane;
2087 
2088 	for_each_intel_plane(&i915->drm, plane) {
2089 		if (plane->id == PLANE_PRIMARY &&
2090 		    plane->i9xx_plane == i9xx_plane)
2091 			return intel_crtc_for_pipe(i915, plane->pipe);
2092 	}
2093 
2094 	return NULL;
2095 }
2096 
2097 static void i9xx_update_wm(struct drm_i915_private *dev_priv)
2098 {
2099 	const struct intel_watermark_params *wm_info;
2100 	u32 fwater_lo;
2101 	u32 fwater_hi;
2102 	int cwm, srwm = 1;
2103 	int fifo_size;
2104 	int planea_wm, planeb_wm;
2105 	struct intel_crtc *crtc;
2106 
2107 	if (IS_I945GM(dev_priv))
2108 		wm_info = &i945_wm_info;
2109 	else if (DISPLAY_VER(dev_priv) != 2)
2110 		wm_info = &i915_wm_info;
2111 	else
2112 		wm_info = &i830_a_wm_info;
2113 
2114 	if (DISPLAY_VER(dev_priv) == 2)
2115 		fifo_size = i830_get_fifo_size(dev_priv, PLANE_A);
2116 	else
2117 		fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_A);
2118 	crtc = intel_crtc_for_plane(dev_priv, PLANE_A);
2119 	if (intel_crtc_active(crtc)) {
2120 		const struct drm_framebuffer *fb =
2121 			crtc->base.primary->state->fb;
2122 		int cpp;
2123 
2124 		if (DISPLAY_VER(dev_priv) == 2)
2125 			cpp = 4;
2126 		else
2127 			cpp = fb->format->cpp[0];
2128 
2129 		planea_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate,
2130 					       wm_info, fifo_size, cpp,
2131 					       pessimal_latency_ns);
2132 	} else {
2133 		planea_wm = fifo_size - wm_info->guard_size;
2134 		if (planea_wm > (long)wm_info->max_wm)
2135 			planea_wm = wm_info->max_wm;
2136 	}
2137 
2138 	if (DISPLAY_VER(dev_priv) == 2)
2139 		wm_info = &i830_bc_wm_info;
2140 
2141 	if (DISPLAY_VER(dev_priv) == 2)
2142 		fifo_size = i830_get_fifo_size(dev_priv, PLANE_B);
2143 	else
2144 		fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_B);
2145 	crtc = intel_crtc_for_plane(dev_priv, PLANE_B);
2146 	if (intel_crtc_active(crtc)) {
2147 		const struct drm_framebuffer *fb =
2148 			crtc->base.primary->state->fb;
2149 		int cpp;
2150 
2151 		if (DISPLAY_VER(dev_priv) == 2)
2152 			cpp = 4;
2153 		else
2154 			cpp = fb->format->cpp[0];
2155 
2156 		planeb_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate,
2157 					       wm_info, fifo_size, cpp,
2158 					       pessimal_latency_ns);
2159 	} else {
2160 		planeb_wm = fifo_size - wm_info->guard_size;
2161 		if (planeb_wm > (long)wm_info->max_wm)
2162 			planeb_wm = wm_info->max_wm;
2163 	}
2164 
2165 	drm_dbg_kms(&dev_priv->drm,
2166 		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2167 
2168 	crtc = single_enabled_crtc(dev_priv);
2169 	if (IS_I915GM(dev_priv) && crtc) {
2170 		struct drm_i915_gem_object *obj;
2171 
2172 		obj = intel_fb_obj(crtc->base.primary->state->fb);
2173 
2174 		/* self-refresh seems busted with untiled */
2175 		if (!i915_gem_object_is_tiled(obj))
2176 			crtc = NULL;
2177 	}
2178 
2179 	/*
2180 	 * Overlay gets an aggressive default since video jitter is bad.
2181 	 */
2182 	cwm = 2;
2183 
2184 	/* Play safe and disable self-refresh before adjusting watermarks. */
2185 	intel_set_memory_cxsr(dev_priv, false);
2186 
2187 	/* Calc sr entries for one plane configs */
2188 	if (HAS_FW_BLC(dev_priv) && crtc) {
2189 		/* self-refresh has much higher latency */
2190 		static const int sr_latency_ns = 6000;
2191 		const struct drm_display_mode *pipe_mode =
2192 			&crtc->config->hw.pipe_mode;
2193 		const struct drm_framebuffer *fb =
2194 			crtc->base.primary->state->fb;
2195 		int pixel_rate = crtc->config->pixel_rate;
2196 		int htotal = pipe_mode->crtc_htotal;
2197 		int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2198 		int cpp;
2199 		int entries;
2200 
2201 		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2202 			cpp = 4;
2203 		else
2204 			cpp = fb->format->cpp[0];
2205 
2206 		entries = intel_wm_method2(pixel_rate, htotal, width, cpp,
2207 					   sr_latency_ns / 100);
2208 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2209 		drm_dbg_kms(&dev_priv->drm,
2210 			    "self-refresh entries: %d\n", entries);
2211 		srwm = wm_info->fifo_size - entries;
2212 		if (srwm < 0)
2213 			srwm = 1;
2214 
2215 		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2216 			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2217 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2218 		else
2219 			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2220 	}
2221 
2222 	drm_dbg_kms(&dev_priv->drm,
2223 		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2224 		     planea_wm, planeb_wm, cwm, srwm);
2225 
2226 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2227 	fwater_hi = (cwm & 0x1f);
2228 
2229 	/* Set request length to 8 cachelines per fetch */
2230 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2231 	fwater_hi = fwater_hi | (1 << 8);
2232 
2233 	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2234 	intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2235 
2236 	if (crtc)
2237 		intel_set_memory_cxsr(dev_priv, true);
2238 }
2239 
2240 static void i845_update_wm(struct drm_i915_private *dev_priv)
2241 {
2242 	struct intel_crtc *crtc;
2243 	u32 fwater_lo;
2244 	int planea_wm;
2245 
2246 	crtc = single_enabled_crtc(dev_priv);
2247 	if (crtc == NULL)
2248 		return;
2249 
2250 	planea_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate,
2251 				       &i845_wm_info,
2252 				       i845_get_fifo_size(dev_priv, PLANE_A),
2253 				       4, pessimal_latency_ns);
2254 	fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2255 	fwater_lo |= (3<<8) | planea_wm;
2256 
2257 	drm_dbg_kms(&dev_priv->drm,
2258 		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2259 
2260 	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2261 }
2262 
2263 /* latency must be in 0.1us units. */
2264 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2265 				   unsigned int cpp,
2266 				   unsigned int latency)
2267 {
2268 	unsigned int ret;
2269 
2270 	ret = intel_wm_method1(pixel_rate, cpp, latency);
2271 	ret = DIV_ROUND_UP(ret, 64) + 2;
2272 
2273 	return ret;
2274 }
2275 
2276 /* latency must be in 0.1us units. */
2277 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2278 				   unsigned int htotal,
2279 				   unsigned int width,
2280 				   unsigned int cpp,
2281 				   unsigned int latency)
2282 {
2283 	unsigned int ret;
2284 
2285 	ret = intel_wm_method2(pixel_rate, htotal,
2286 			       width, cpp, latency);
2287 	ret = DIV_ROUND_UP(ret, 64) + 2;
2288 
2289 	return ret;
2290 }
2291 
2292 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2293 {
2294 	/*
2295 	 * Neither of these should be possible since this function shouldn't be
2296 	 * called if the CRTC is off or the plane is invisible.  But let's be
2297 	 * extra paranoid to avoid a potential divide-by-zero if we screw up
2298 	 * elsewhere in the driver.
2299 	 */
2300 	if (WARN_ON(!cpp))
2301 		return 0;
2302 	if (WARN_ON(!horiz_pixels))
2303 		return 0;
2304 
2305 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2306 }
2307 
2308 struct ilk_wm_maximums {
2309 	u16 pri;
2310 	u16 spr;
2311 	u16 cur;
2312 	u16 fbc;
2313 };
2314 
2315 /*
2316  * For both WM_PIPE and WM_LP.
2317  * mem_value must be in 0.1us units.
2318  */
2319 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2320 			      const struct intel_plane_state *plane_state,
2321 			      u32 mem_value, bool is_lp)
2322 {
2323 	u32 method1, method2;
2324 	int cpp;
2325 
2326 	if (mem_value == 0)
2327 		return U32_MAX;
2328 
2329 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2330 		return 0;
2331 
2332 	cpp = plane_state->hw.fb->format->cpp[0];
2333 
2334 	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2335 
2336 	if (!is_lp)
2337 		return method1;
2338 
2339 	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2340 				 crtc_state->hw.pipe_mode.crtc_htotal,
2341 				 drm_rect_width(&plane_state->uapi.src) >> 16,
2342 				 cpp, mem_value);
2343 
2344 	return min(method1, method2);
2345 }
2346 
2347 /*
2348  * For both WM_PIPE and WM_LP.
2349  * mem_value must be in 0.1us units.
2350  */
2351 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2352 			      const struct intel_plane_state *plane_state,
2353 			      u32 mem_value)
2354 {
2355 	u32 method1, method2;
2356 	int cpp;
2357 
2358 	if (mem_value == 0)
2359 		return U32_MAX;
2360 
2361 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2362 		return 0;
2363 
2364 	cpp = plane_state->hw.fb->format->cpp[0];
2365 
2366 	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2367 	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2368 				 crtc_state->hw.pipe_mode.crtc_htotal,
2369 				 drm_rect_width(&plane_state->uapi.src) >> 16,
2370 				 cpp, mem_value);
2371 	return min(method1, method2);
2372 }
2373 
2374 /*
2375  * For both WM_PIPE and WM_LP.
2376  * mem_value must be in 0.1us units.
2377  */
2378 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2379 			      const struct intel_plane_state *plane_state,
2380 			      u32 mem_value)
2381 {
2382 	int cpp;
2383 
2384 	if (mem_value == 0)
2385 		return U32_MAX;
2386 
2387 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2388 		return 0;
2389 
2390 	cpp = plane_state->hw.fb->format->cpp[0];
2391 
2392 	return ilk_wm_method2(crtc_state->pixel_rate,
2393 			      crtc_state->hw.pipe_mode.crtc_htotal,
2394 			      drm_rect_width(&plane_state->uapi.src) >> 16,
2395 			      cpp, mem_value);
2396 }
2397 
2398 /* Only for WM_LP. */
2399 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2400 			      const struct intel_plane_state *plane_state,
2401 			      u32 pri_val)
2402 {
2403 	int cpp;
2404 
2405 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2406 		return 0;
2407 
2408 	cpp = plane_state->hw.fb->format->cpp[0];
2409 
2410 	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.src) >> 16,
2411 			  cpp);
2412 }
2413 
2414 static unsigned int
2415 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2416 {
2417 	if (DISPLAY_VER(dev_priv) >= 8)
2418 		return 3072;
2419 	else if (DISPLAY_VER(dev_priv) >= 7)
2420 		return 768;
2421 	else
2422 		return 512;
2423 }
2424 
2425 static unsigned int
2426 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2427 		     int level, bool is_sprite)
2428 {
2429 	if (DISPLAY_VER(dev_priv) >= 8)
2430 		/* BDW primary/sprite plane watermarks */
2431 		return level == 0 ? 255 : 2047;
2432 	else if (DISPLAY_VER(dev_priv) >= 7)
2433 		/* IVB/HSW primary/sprite plane watermarks */
2434 		return level == 0 ? 127 : 1023;
2435 	else if (!is_sprite)
2436 		/* ILK/SNB primary plane watermarks */
2437 		return level == 0 ? 127 : 511;
2438 	else
2439 		/* ILK/SNB sprite plane watermarks */
2440 		return level == 0 ? 63 : 255;
2441 }
2442 
2443 static unsigned int
2444 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2445 {
2446 	if (DISPLAY_VER(dev_priv) >= 7)
2447 		return level == 0 ? 63 : 255;
2448 	else
2449 		return level == 0 ? 31 : 63;
2450 }
2451 
2452 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2453 {
2454 	if (DISPLAY_VER(dev_priv) >= 8)
2455 		return 31;
2456 	else
2457 		return 15;
2458 }
2459 
2460 /* Calculate the maximum primary/sprite plane watermark */
2461 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2462 				     int level,
2463 				     const struct intel_wm_config *config,
2464 				     enum intel_ddb_partitioning ddb_partitioning,
2465 				     bool is_sprite)
2466 {
2467 	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2468 
2469 	/* if sprites aren't enabled, sprites get nothing */
2470 	if (is_sprite && !config->sprites_enabled)
2471 		return 0;
2472 
2473 	/* HSW allows LP1+ watermarks even with multiple pipes */
2474 	if (level == 0 || config->num_pipes_active > 1) {
2475 		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2476 
2477 		/*
2478 		 * For some reason the non self refresh
2479 		 * FIFO size is only half of the self
2480 		 * refresh FIFO size on ILK/SNB.
2481 		 */
2482 		if (DISPLAY_VER(dev_priv) < 7)
2483 			fifo_size /= 2;
2484 	}
2485 
2486 	if (config->sprites_enabled) {
2487 		/* level 0 is always calculated with 1:1 split */
2488 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2489 			if (is_sprite)
2490 				fifo_size *= 5;
2491 			fifo_size /= 6;
2492 		} else {
2493 			fifo_size /= 2;
2494 		}
2495 	}
2496 
2497 	/* clamp to max that the registers can hold */
2498 	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2499 }
2500 
2501 /* Calculate the maximum cursor plane watermark */
2502 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2503 				      int level,
2504 				      const struct intel_wm_config *config)
2505 {
2506 	/* HSW LP1+ watermarks w/ multiple pipes */
2507 	if (level > 0 && config->num_pipes_active > 1)
2508 		return 64;
2509 
2510 	/* otherwise just report max that registers can hold */
2511 	return ilk_cursor_wm_reg_max(dev_priv, level);
2512 }
2513 
2514 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2515 				    int level,
2516 				    const struct intel_wm_config *config,
2517 				    enum intel_ddb_partitioning ddb_partitioning,
2518 				    struct ilk_wm_maximums *max)
2519 {
2520 	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2521 	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2522 	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2523 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2524 }
2525 
2526 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2527 					int level,
2528 					struct ilk_wm_maximums *max)
2529 {
2530 	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2531 	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2532 	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2533 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2534 }
2535 
2536 static bool ilk_validate_wm_level(struct drm_i915_private *i915,
2537 				  int level,
2538 				  const struct ilk_wm_maximums *max,
2539 				  struct intel_wm_level *result)
2540 {
2541 	bool ret;
2542 
2543 	/* already determined to be invalid? */
2544 	if (!result->enable)
2545 		return false;
2546 
2547 	result->enable = result->pri_val <= max->pri &&
2548 			 result->spr_val <= max->spr &&
2549 			 result->cur_val <= max->cur;
2550 
2551 	ret = result->enable;
2552 
2553 	/*
2554 	 * HACK until we can pre-compute everything,
2555 	 * and thus fail gracefully if LP0 watermarks
2556 	 * are exceeded...
2557 	 */
2558 	if (level == 0 && !result->enable) {
2559 		if (result->pri_val > max->pri)
2560 			drm_dbg_kms(&i915->drm,
2561 				    "Primary WM%d too large %u (max %u)\n",
2562 				    level, result->pri_val, max->pri);
2563 		if (result->spr_val > max->spr)
2564 			drm_dbg_kms(&i915->drm,
2565 				    "Sprite WM%d too large %u (max %u)\n",
2566 				    level, result->spr_val, max->spr);
2567 		if (result->cur_val > max->cur)
2568 			drm_dbg_kms(&i915->drm,
2569 				    "Cursor WM%d too large %u (max %u)\n",
2570 				    level, result->cur_val, max->cur);
2571 
2572 		result->pri_val = min_t(u32, result->pri_val, max->pri);
2573 		result->spr_val = min_t(u32, result->spr_val, max->spr);
2574 		result->cur_val = min_t(u32, result->cur_val, max->cur);
2575 		result->enable = true;
2576 	}
2577 
2578 	return ret;
2579 }
2580 
2581 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2582 				 const struct intel_crtc *crtc,
2583 				 int level,
2584 				 struct intel_crtc_state *crtc_state,
2585 				 const struct intel_plane_state *pristate,
2586 				 const struct intel_plane_state *sprstate,
2587 				 const struct intel_plane_state *curstate,
2588 				 struct intel_wm_level *result)
2589 {
2590 	u16 pri_latency = dev_priv->display.wm.pri_latency[level];
2591 	u16 spr_latency = dev_priv->display.wm.spr_latency[level];
2592 	u16 cur_latency = dev_priv->display.wm.cur_latency[level];
2593 
2594 	/* WM1+ latency values stored in 0.5us units */
2595 	if (level > 0) {
2596 		pri_latency *= 5;
2597 		spr_latency *= 5;
2598 		cur_latency *= 5;
2599 	}
2600 
2601 	if (pristate) {
2602 		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2603 						     pri_latency, level);
2604 		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2605 	}
2606 
2607 	if (sprstate)
2608 		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2609 
2610 	if (curstate)
2611 		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2612 
2613 	result->enable = true;
2614 }
2615 
2616 static void hsw_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2617 {
2618 	u64 sskpd;
2619 
2620 	i915->display.wm.num_levels = 5;
2621 
2622 	sskpd = intel_uncore_read64(&i915->uncore, MCH_SSKPD);
2623 
2624 	wm[0] = REG_FIELD_GET64(SSKPD_NEW_WM0_MASK_HSW, sskpd);
2625 	if (wm[0] == 0)
2626 		wm[0] = REG_FIELD_GET64(SSKPD_OLD_WM0_MASK_HSW, sskpd);
2627 	wm[1] = REG_FIELD_GET64(SSKPD_WM1_MASK_HSW, sskpd);
2628 	wm[2] = REG_FIELD_GET64(SSKPD_WM2_MASK_HSW, sskpd);
2629 	wm[3] = REG_FIELD_GET64(SSKPD_WM3_MASK_HSW, sskpd);
2630 	wm[4] = REG_FIELD_GET64(SSKPD_WM4_MASK_HSW, sskpd);
2631 }
2632 
2633 static void snb_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2634 {
2635 	u32 sskpd;
2636 
2637 	i915->display.wm.num_levels = 4;
2638 
2639 	sskpd = intel_uncore_read(&i915->uncore, MCH_SSKPD);
2640 
2641 	wm[0] = REG_FIELD_GET(SSKPD_WM0_MASK_SNB, sskpd);
2642 	wm[1] = REG_FIELD_GET(SSKPD_WM1_MASK_SNB, sskpd);
2643 	wm[2] = REG_FIELD_GET(SSKPD_WM2_MASK_SNB, sskpd);
2644 	wm[3] = REG_FIELD_GET(SSKPD_WM3_MASK_SNB, sskpd);
2645 }
2646 
2647 static void ilk_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2648 {
2649 	u32 mltr;
2650 
2651 	i915->display.wm.num_levels = 3;
2652 
2653 	mltr = intel_uncore_read(&i915->uncore, MLTR_ILK);
2654 
2655 	/* ILK primary LP0 latency is 700 ns */
2656 	wm[0] = 7;
2657 	wm[1] = REG_FIELD_GET(MLTR_WM1_MASK, mltr);
2658 	wm[2] = REG_FIELD_GET(MLTR_WM2_MASK, mltr);
2659 }
2660 
2661 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2662 				       u16 wm[5])
2663 {
2664 	/* ILK sprite LP0 latency is 1300 ns */
2665 	if (DISPLAY_VER(dev_priv) == 5)
2666 		wm[0] = 13;
2667 }
2668 
2669 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2670 				       u16 wm[5])
2671 {
2672 	/* ILK cursor LP0 latency is 1300 ns */
2673 	if (DISPLAY_VER(dev_priv) == 5)
2674 		wm[0] = 13;
2675 }
2676 
2677 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2678 				    u16 wm[5], u16 min)
2679 {
2680 	int level;
2681 
2682 	if (wm[0] >= min)
2683 		return false;
2684 
2685 	wm[0] = max(wm[0], min);
2686 	for (level = 1; level < dev_priv->display.wm.num_levels; level++)
2687 		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2688 
2689 	return true;
2690 }
2691 
2692 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2693 {
2694 	bool changed;
2695 
2696 	/*
2697 	 * The BIOS provided WM memory latency values are often
2698 	 * inadequate for high resolution displays. Adjust them.
2699 	 */
2700 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.pri_latency, 12);
2701 	changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.spr_latency, 12);
2702 	changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.cur_latency, 12);
2703 
2704 	if (!changed)
2705 		return;
2706 
2707 	drm_dbg_kms(&dev_priv->drm,
2708 		    "WM latency values increased to avoid potential underruns\n");
2709 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2710 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2711 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2712 }
2713 
2714 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
2715 {
2716 	/*
2717 	 * On some SNB machines (Thinkpad X220 Tablet at least)
2718 	 * LP3 usage can cause vblank interrupts to be lost.
2719 	 * The DEIIR bit will go high but it looks like the CPU
2720 	 * never gets interrupted.
2721 	 *
2722 	 * It's not clear whether other interrupt source could
2723 	 * be affected or if this is somehow limited to vblank
2724 	 * interrupts only. To play it safe we disable LP3
2725 	 * watermarks entirely.
2726 	 */
2727 	if (dev_priv->display.wm.pri_latency[3] == 0 &&
2728 	    dev_priv->display.wm.spr_latency[3] == 0 &&
2729 	    dev_priv->display.wm.cur_latency[3] == 0)
2730 		return;
2731 
2732 	dev_priv->display.wm.pri_latency[3] = 0;
2733 	dev_priv->display.wm.spr_latency[3] = 0;
2734 	dev_priv->display.wm.cur_latency[3] = 0;
2735 
2736 	drm_dbg_kms(&dev_priv->drm,
2737 		    "LP3 watermarks disabled due to potential for lost interrupts\n");
2738 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2739 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2740 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2741 }
2742 
2743 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2744 {
2745 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2746 		hsw_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2747 	else if (DISPLAY_VER(dev_priv) >= 6)
2748 		snb_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2749 	else
2750 		ilk_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2751 
2752 	memcpy(dev_priv->display.wm.spr_latency, dev_priv->display.wm.pri_latency,
2753 	       sizeof(dev_priv->display.wm.pri_latency));
2754 	memcpy(dev_priv->display.wm.cur_latency, dev_priv->display.wm.pri_latency,
2755 	       sizeof(dev_priv->display.wm.pri_latency));
2756 
2757 	intel_fixup_spr_wm_latency(dev_priv, dev_priv->display.wm.spr_latency);
2758 	intel_fixup_cur_wm_latency(dev_priv, dev_priv->display.wm.cur_latency);
2759 
2760 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2761 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2762 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2763 
2764 	if (DISPLAY_VER(dev_priv) == 6) {
2765 		snb_wm_latency_quirk(dev_priv);
2766 		snb_wm_lp3_irq_quirk(dev_priv);
2767 	}
2768 }
2769 
2770 static bool ilk_validate_pipe_wm(struct drm_i915_private *dev_priv,
2771 				 struct intel_pipe_wm *pipe_wm)
2772 {
2773 	/* LP0 watermark maximums depend on this pipe alone */
2774 	const struct intel_wm_config config = {
2775 		.num_pipes_active = 1,
2776 		.sprites_enabled = pipe_wm->sprites_enabled,
2777 		.sprites_scaled = pipe_wm->sprites_scaled,
2778 	};
2779 	struct ilk_wm_maximums max;
2780 
2781 	/* LP0 watermarks always use 1/2 DDB partitioning */
2782 	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
2783 
2784 	/* At least LP0 must be valid */
2785 	if (!ilk_validate_wm_level(dev_priv, 0, &max, &pipe_wm->wm[0])) {
2786 		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
2787 		return false;
2788 	}
2789 
2790 	return true;
2791 }
2792 
2793 /* Compute new watermarks for the pipe */
2794 static int ilk_compute_pipe_wm(struct intel_atomic_state *state,
2795 			       struct intel_crtc *crtc)
2796 {
2797 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2798 	struct intel_crtc_state *crtc_state =
2799 		intel_atomic_get_new_crtc_state(state, crtc);
2800 	struct intel_pipe_wm *pipe_wm;
2801 	struct intel_plane *plane;
2802 	const struct intel_plane_state *plane_state;
2803 	const struct intel_plane_state *pristate = NULL;
2804 	const struct intel_plane_state *sprstate = NULL;
2805 	const struct intel_plane_state *curstate = NULL;
2806 	struct ilk_wm_maximums max;
2807 	int level, usable_level;
2808 
2809 	pipe_wm = &crtc_state->wm.ilk.optimal;
2810 
2811 	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
2812 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2813 			pristate = plane_state;
2814 		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2815 			sprstate = plane_state;
2816 		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
2817 			curstate = plane_state;
2818 	}
2819 
2820 	pipe_wm->pipe_enabled = crtc_state->hw.active;
2821 	pipe_wm->sprites_enabled = crtc_state->active_planes & BIT(PLANE_SPRITE0);
2822 	pipe_wm->sprites_scaled = crtc_state->scaled_planes & BIT(PLANE_SPRITE0);
2823 
2824 	usable_level = dev_priv->display.wm.num_levels - 1;
2825 
2826 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2827 	if (DISPLAY_VER(dev_priv) < 7 && pipe_wm->sprites_enabled)
2828 		usable_level = 1;
2829 
2830 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2831 	if (pipe_wm->sprites_scaled)
2832 		usable_level = 0;
2833 
2834 	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2835 	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
2836 			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2837 
2838 	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
2839 		return -EINVAL;
2840 
2841 	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2842 
2843 	for (level = 1; level <= usable_level; level++) {
2844 		struct intel_wm_level *wm = &pipe_wm->wm[level];
2845 
2846 		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
2847 				     pristate, sprstate, curstate, wm);
2848 
2849 		/*
2850 		 * Disable any watermark level that exceeds the
2851 		 * register maximums since such watermarks are
2852 		 * always invalid.
2853 		 */
2854 		if (!ilk_validate_wm_level(dev_priv, level, &max, wm)) {
2855 			memset(wm, 0, sizeof(*wm));
2856 			break;
2857 		}
2858 	}
2859 
2860 	return 0;
2861 }
2862 
2863 /*
2864  * Build a set of 'intermediate' watermark values that satisfy both the old
2865  * state and the new state.  These can be programmed to the hardware
2866  * immediately.
2867  */
2868 static int ilk_compute_intermediate_wm(struct intel_atomic_state *state,
2869 				       struct intel_crtc *crtc)
2870 {
2871 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2872 	struct intel_crtc_state *new_crtc_state =
2873 		intel_atomic_get_new_crtc_state(state, crtc);
2874 	const struct intel_crtc_state *old_crtc_state =
2875 		intel_atomic_get_old_crtc_state(state, crtc);
2876 	struct intel_pipe_wm *a = &new_crtc_state->wm.ilk.intermediate;
2877 	const struct intel_pipe_wm *b = &old_crtc_state->wm.ilk.optimal;
2878 	int level;
2879 
2880 	/*
2881 	 * Start with the final, target watermarks, then combine with the
2882 	 * currently active watermarks to get values that are safe both before
2883 	 * and after the vblank.
2884 	 */
2885 	*a = new_crtc_state->wm.ilk.optimal;
2886 	if (!new_crtc_state->hw.active ||
2887 	    intel_crtc_needs_modeset(new_crtc_state) ||
2888 	    state->skip_intermediate_wm)
2889 		return 0;
2890 
2891 	a->pipe_enabled |= b->pipe_enabled;
2892 	a->sprites_enabled |= b->sprites_enabled;
2893 	a->sprites_scaled |= b->sprites_scaled;
2894 
2895 	for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
2896 		struct intel_wm_level *a_wm = &a->wm[level];
2897 		const struct intel_wm_level *b_wm = &b->wm[level];
2898 
2899 		a_wm->enable &= b_wm->enable;
2900 		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2901 		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2902 		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2903 		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2904 	}
2905 
2906 	/*
2907 	 * We need to make sure that these merged watermark values are
2908 	 * actually a valid configuration themselves.  If they're not,
2909 	 * there's no safe way to transition from the old state to
2910 	 * the new state, so we need to fail the atomic transaction.
2911 	 */
2912 	if (!ilk_validate_pipe_wm(dev_priv, a))
2913 		return -EINVAL;
2914 
2915 	/*
2916 	 * If our intermediate WM are identical to the final WM, then we can
2917 	 * omit the post-vblank programming; only update if it's different.
2918 	 */
2919 	if (memcmp(a, &new_crtc_state->wm.ilk.optimal, sizeof(*a)) != 0)
2920 		new_crtc_state->wm.need_postvbl_update = true;
2921 
2922 	return 0;
2923 }
2924 
2925 /*
2926  * Merge the watermarks from all active pipes for a specific level.
2927  */
2928 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
2929 			       int level,
2930 			       struct intel_wm_level *ret_wm)
2931 {
2932 	const struct intel_crtc *crtc;
2933 
2934 	ret_wm->enable = true;
2935 
2936 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2937 		const struct intel_pipe_wm *active = &crtc->wm.active.ilk;
2938 		const struct intel_wm_level *wm = &active->wm[level];
2939 
2940 		if (!active->pipe_enabled)
2941 			continue;
2942 
2943 		/*
2944 		 * The watermark values may have been used in the past,
2945 		 * so we must maintain them in the registers for some
2946 		 * time even if the level is now disabled.
2947 		 */
2948 		if (!wm->enable)
2949 			ret_wm->enable = false;
2950 
2951 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2952 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2953 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2954 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2955 	}
2956 }
2957 
2958 /*
2959  * Merge all low power watermarks for all active pipes.
2960  */
2961 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
2962 			 const struct intel_wm_config *config,
2963 			 const struct ilk_wm_maximums *max,
2964 			 struct intel_pipe_wm *merged)
2965 {
2966 	int level, num_levels = dev_priv->display.wm.num_levels;
2967 	int last_enabled_level = num_levels - 1;
2968 
2969 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2970 	if ((DISPLAY_VER(dev_priv) < 7 || IS_IVYBRIDGE(dev_priv)) &&
2971 	    config->num_pipes_active > 1)
2972 		last_enabled_level = 0;
2973 
2974 	/* ILK: FBC WM must be disabled always */
2975 	merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6;
2976 
2977 	/* merge each WM1+ level */
2978 	for (level = 1; level < num_levels; level++) {
2979 		struct intel_wm_level *wm = &merged->wm[level];
2980 
2981 		ilk_merge_wm_level(dev_priv, level, wm);
2982 
2983 		if (level > last_enabled_level)
2984 			wm->enable = false;
2985 		else if (!ilk_validate_wm_level(dev_priv, level, max, wm))
2986 			/* make sure all following levels get disabled */
2987 			last_enabled_level = level - 1;
2988 
2989 		/*
2990 		 * The spec says it is preferred to disable
2991 		 * FBC WMs instead of disabling a WM level.
2992 		 */
2993 		if (wm->fbc_val > max->fbc) {
2994 			if (wm->enable)
2995 				merged->fbc_wm_enabled = false;
2996 			wm->fbc_val = 0;
2997 		}
2998 	}
2999 
3000 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3001 	if (DISPLAY_VER(dev_priv) == 5 && HAS_FBC(dev_priv) &&
3002 	    dev_priv->display.params.enable_fbc && !merged->fbc_wm_enabled) {
3003 		for (level = 2; level < num_levels; level++) {
3004 			struct intel_wm_level *wm = &merged->wm[level];
3005 
3006 			wm->enable = false;
3007 		}
3008 	}
3009 }
3010 
3011 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3012 {
3013 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3014 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3015 }
3016 
3017 /* The value we need to program into the WM_LPx latency field */
3018 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3019 				      int level)
3020 {
3021 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3022 		return 2 * level;
3023 	else
3024 		return dev_priv->display.wm.pri_latency[level];
3025 }
3026 
3027 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3028 				   const struct intel_pipe_wm *merged,
3029 				   enum intel_ddb_partitioning partitioning,
3030 				   struct ilk_wm_values *results)
3031 {
3032 	struct intel_crtc *crtc;
3033 	int level, wm_lp;
3034 
3035 	results->enable_fbc_wm = merged->fbc_wm_enabled;
3036 	results->partitioning = partitioning;
3037 
3038 	/* LP1+ register values */
3039 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3040 		const struct intel_wm_level *r;
3041 
3042 		level = ilk_wm_lp_to_level(wm_lp, merged);
3043 
3044 		r = &merged->wm[level];
3045 
3046 		/*
3047 		 * Maintain the watermark values even if the level is
3048 		 * disabled. Doing otherwise could cause underruns.
3049 		 */
3050 		results->wm_lp[wm_lp - 1] =
3051 			WM_LP_LATENCY(ilk_wm_lp_latency(dev_priv, level)) |
3052 			WM_LP_PRIMARY(r->pri_val) |
3053 			WM_LP_CURSOR(r->cur_val);
3054 
3055 		if (r->enable)
3056 			results->wm_lp[wm_lp - 1] |= WM_LP_ENABLE;
3057 
3058 		if (DISPLAY_VER(dev_priv) >= 8)
3059 			results->wm_lp[wm_lp - 1] |= WM_LP_FBC_BDW(r->fbc_val);
3060 		else
3061 			results->wm_lp[wm_lp - 1] |= WM_LP_FBC_ILK(r->fbc_val);
3062 
3063 		results->wm_lp_spr[wm_lp - 1] = WM_LP_SPRITE(r->spr_val);
3064 
3065 		/*
3066 		 * Always set WM_LP_SPRITE_EN when spr_val != 0, even if the
3067 		 * level is disabled. Doing otherwise could cause underruns.
3068 		 */
3069 		if (DISPLAY_VER(dev_priv) < 7 && r->spr_val) {
3070 			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3071 			results->wm_lp_spr[wm_lp - 1] |= WM_LP_SPRITE_ENABLE;
3072 		}
3073 	}
3074 
3075 	/* LP0 register values */
3076 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3077 		enum pipe pipe = crtc->pipe;
3078 		const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk;
3079 		const struct intel_wm_level *r = &pipe_wm->wm[0];
3080 
3081 		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3082 			continue;
3083 
3084 		results->wm_pipe[pipe] =
3085 			WM0_PIPE_PRIMARY(r->pri_val) |
3086 			WM0_PIPE_SPRITE(r->spr_val) |
3087 			WM0_PIPE_CURSOR(r->cur_val);
3088 	}
3089 }
3090 
3091 /*
3092  * Find the result with the highest level enabled. Check for enable_fbc_wm in
3093  * case both are at the same level. Prefer r1 in case they're the same.
3094  */
3095 static struct intel_pipe_wm *
3096 ilk_find_best_result(struct drm_i915_private *dev_priv,
3097 		     struct intel_pipe_wm *r1,
3098 		     struct intel_pipe_wm *r2)
3099 {
3100 	int level, level1 = 0, level2 = 0;
3101 
3102 	for (level = 1; level < dev_priv->display.wm.num_levels; level++) {
3103 		if (r1->wm[level].enable)
3104 			level1 = level;
3105 		if (r2->wm[level].enable)
3106 			level2 = level;
3107 	}
3108 
3109 	if (level1 == level2) {
3110 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3111 			return r2;
3112 		else
3113 			return r1;
3114 	} else if (level1 > level2) {
3115 		return r1;
3116 	} else {
3117 		return r2;
3118 	}
3119 }
3120 
3121 /* dirty bits used to track which watermarks need changes */
3122 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3123 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3124 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3125 #define WM_DIRTY_FBC (1 << 24)
3126 #define WM_DIRTY_DDB (1 << 25)
3127 
3128 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3129 					 const struct ilk_wm_values *old,
3130 					 const struct ilk_wm_values *new)
3131 {
3132 	unsigned int dirty = 0;
3133 	enum pipe pipe;
3134 	int wm_lp;
3135 
3136 	for_each_pipe(dev_priv, pipe) {
3137 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3138 			dirty |= WM_DIRTY_PIPE(pipe);
3139 			/* Must disable LP1+ watermarks too */
3140 			dirty |= WM_DIRTY_LP_ALL;
3141 		}
3142 	}
3143 
3144 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
3145 		dirty |= WM_DIRTY_FBC;
3146 		/* Must disable LP1+ watermarks too */
3147 		dirty |= WM_DIRTY_LP_ALL;
3148 	}
3149 
3150 	if (old->partitioning != new->partitioning) {
3151 		dirty |= WM_DIRTY_DDB;
3152 		/* Must disable LP1+ watermarks too */
3153 		dirty |= WM_DIRTY_LP_ALL;
3154 	}
3155 
3156 	/* LP1+ watermarks already deemed dirty, no need to continue */
3157 	if (dirty & WM_DIRTY_LP_ALL)
3158 		return dirty;
3159 
3160 	/* Find the lowest numbered LP1+ watermark in need of an update... */
3161 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3162 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3163 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3164 			break;
3165 	}
3166 
3167 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3168 	for (; wm_lp <= 3; wm_lp++)
3169 		dirty |= WM_DIRTY_LP(wm_lp);
3170 
3171 	return dirty;
3172 }
3173 
3174 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3175 			       unsigned int dirty)
3176 {
3177 	struct ilk_wm_values *previous = &dev_priv->display.wm.hw;
3178 	bool changed = false;
3179 
3180 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM_LP_ENABLE) {
3181 		previous->wm_lp[2] &= ~WM_LP_ENABLE;
3182 		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3183 		changed = true;
3184 	}
3185 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM_LP_ENABLE) {
3186 		previous->wm_lp[1] &= ~WM_LP_ENABLE;
3187 		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3188 		changed = true;
3189 	}
3190 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM_LP_ENABLE) {
3191 		previous->wm_lp[0] &= ~WM_LP_ENABLE;
3192 		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3193 		changed = true;
3194 	}
3195 
3196 	/*
3197 	 * Don't touch WM_LP_SPRITE_ENABLE here.
3198 	 * Doing so could cause underruns.
3199 	 */
3200 
3201 	return changed;
3202 }
3203 
3204 /*
3205  * The spec says we shouldn't write when we don't need, because every write
3206  * causes WMs to be re-evaluated, expending some power.
3207  */
3208 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3209 				struct ilk_wm_values *results)
3210 {
3211 	struct ilk_wm_values *previous = &dev_priv->display.wm.hw;
3212 	unsigned int dirty;
3213 
3214 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3215 	if (!dirty)
3216 		return;
3217 
3218 	_ilk_disable_lp_wm(dev_priv, dirty);
3219 
3220 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3221 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3222 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3223 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3224 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3225 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3226 
3227 	if (dirty & WM_DIRTY_DDB) {
3228 		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3229 			intel_uncore_rmw(&dev_priv->uncore, WM_MISC, WM_MISC_DATA_PARTITION_5_6,
3230 					 results->partitioning == INTEL_DDB_PART_1_2 ? 0 :
3231 					 WM_MISC_DATA_PARTITION_5_6);
3232 		else
3233 			intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL2, DISP_DATA_PARTITION_5_6,
3234 					 results->partitioning == INTEL_DDB_PART_1_2 ? 0 :
3235 					 DISP_DATA_PARTITION_5_6);
3236 	}
3237 
3238 	if (dirty & WM_DIRTY_FBC)
3239 		intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL, DISP_FBC_WM_DIS,
3240 				 results->enable_fbc_wm ? 0 : DISP_FBC_WM_DIS);
3241 
3242 	if (dirty & WM_DIRTY_LP(1) &&
3243 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3244 		intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3245 
3246 	if (DISPLAY_VER(dev_priv) >= 7) {
3247 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3248 			intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3249 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3250 			intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3251 	}
3252 
3253 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3254 		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3255 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3256 		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3257 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3258 		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3259 
3260 	dev_priv->display.wm.hw = *results;
3261 }
3262 
3263 bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3264 {
3265 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3266 }
3267 
3268 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
3269 				  struct intel_wm_config *config)
3270 {
3271 	struct intel_crtc *crtc;
3272 
3273 	/* Compute the currently _active_ config */
3274 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3275 		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3276 
3277 		if (!wm->pipe_enabled)
3278 			continue;
3279 
3280 		config->sprites_enabled |= wm->sprites_enabled;
3281 		config->sprites_scaled |= wm->sprites_scaled;
3282 		config->num_pipes_active++;
3283 	}
3284 }
3285 
3286 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3287 {
3288 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3289 	struct ilk_wm_maximums max;
3290 	struct intel_wm_config config = {};
3291 	struct ilk_wm_values results = {};
3292 	enum intel_ddb_partitioning partitioning;
3293 
3294 	ilk_compute_wm_config(dev_priv, &config);
3295 
3296 	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
3297 	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
3298 
3299 	/* 5/6 split only in single pipe config on IVB+ */
3300 	if (DISPLAY_VER(dev_priv) >= 7 &&
3301 	    config.num_pipes_active == 1 && config.sprites_enabled) {
3302 		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
3303 		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
3304 
3305 		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
3306 	} else {
3307 		best_lp_wm = &lp_wm_1_2;
3308 	}
3309 
3310 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3311 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3312 
3313 	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
3314 
3315 	ilk_write_wm_values(dev_priv, &results);
3316 }
3317 
3318 static void ilk_initial_watermarks(struct intel_atomic_state *state,
3319 				   struct intel_crtc *crtc)
3320 {
3321 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3322 	const struct intel_crtc_state *crtc_state =
3323 		intel_atomic_get_new_crtc_state(state, crtc);
3324 
3325 	mutex_lock(&dev_priv->display.wm.wm_mutex);
3326 	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
3327 	ilk_program_watermarks(dev_priv);
3328 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
3329 }
3330 
3331 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
3332 				    struct intel_crtc *crtc)
3333 {
3334 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3335 	const struct intel_crtc_state *crtc_state =
3336 		intel_atomic_get_new_crtc_state(state, crtc);
3337 
3338 	if (!crtc_state->wm.need_postvbl_update)
3339 		return;
3340 
3341 	mutex_lock(&dev_priv->display.wm.wm_mutex);
3342 	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
3343 	ilk_program_watermarks(dev_priv);
3344 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
3345 }
3346 
3347 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
3348 {
3349 	struct drm_device *dev = crtc->base.dev;
3350 	struct drm_i915_private *dev_priv = to_i915(dev);
3351 	struct ilk_wm_values *hw = &dev_priv->display.wm.hw;
3352 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
3353 	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
3354 	enum pipe pipe = crtc->pipe;
3355 
3356 	hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
3357 
3358 	memset(active, 0, sizeof(*active));
3359 
3360 	active->pipe_enabled = crtc->active;
3361 
3362 	if (active->pipe_enabled) {
3363 		u32 tmp = hw->wm_pipe[pipe];
3364 
3365 		/*
3366 		 * For active pipes LP0 watermark is marked as
3367 		 * enabled, and LP1+ watermaks as disabled since
3368 		 * we can't really reverse compute them in case
3369 		 * multiple pipes are active.
3370 		 */
3371 		active->wm[0].enable = true;
3372 		active->wm[0].pri_val = REG_FIELD_GET(WM0_PIPE_PRIMARY_MASK, tmp);
3373 		active->wm[0].spr_val = REG_FIELD_GET(WM0_PIPE_SPRITE_MASK, tmp);
3374 		active->wm[0].cur_val = REG_FIELD_GET(WM0_PIPE_CURSOR_MASK, tmp);
3375 	} else {
3376 		int level;
3377 
3378 		/*
3379 		 * For inactive pipes, all watermark levels
3380 		 * should be marked as enabled but zeroed,
3381 		 * which is what we'd compute them to.
3382 		 */
3383 		for (level = 0; level < dev_priv->display.wm.num_levels; level++)
3384 			active->wm[level].enable = true;
3385 	}
3386 
3387 	crtc->wm.active.ilk = *active;
3388 }
3389 
3390 static int ilk_sanitize_watermarks_add_affected(struct drm_atomic_state *state)
3391 {
3392 	struct drm_plane *plane;
3393 	struct intel_crtc *crtc;
3394 
3395 	for_each_intel_crtc(state->dev, crtc) {
3396 		struct intel_crtc_state *crtc_state;
3397 
3398 		crtc_state = intel_atomic_get_crtc_state(state, crtc);
3399 		if (IS_ERR(crtc_state))
3400 			return PTR_ERR(crtc_state);
3401 
3402 		if (crtc_state->hw.active) {
3403 			/*
3404 			 * Preserve the inherited flag to avoid
3405 			 * taking the full modeset path.
3406 			 */
3407 			crtc_state->inherited = true;
3408 		}
3409 	}
3410 
3411 	drm_for_each_plane(plane, state->dev) {
3412 		struct drm_plane_state *plane_state;
3413 
3414 		plane_state = drm_atomic_get_plane_state(state, plane);
3415 		if (IS_ERR(plane_state))
3416 			return PTR_ERR(plane_state);
3417 	}
3418 
3419 	return 0;
3420 }
3421 
3422 /*
3423  * Calculate what we think the watermarks should be for the state we've read
3424  * out of the hardware and then immediately program those watermarks so that
3425  * we ensure the hardware settings match our internal state.
3426  *
3427  * We can calculate what we think WM's should be by creating a duplicate of the
3428  * current state (which was constructed during hardware readout) and running it
3429  * through the atomic check code to calculate new watermark values in the
3430  * state object.
3431  */
3432 void ilk_wm_sanitize(struct drm_i915_private *dev_priv)
3433 {
3434 	struct drm_atomic_state *state;
3435 	struct intel_atomic_state *intel_state;
3436 	struct intel_crtc *crtc;
3437 	struct intel_crtc_state *crtc_state;
3438 	struct drm_modeset_acquire_ctx ctx;
3439 	int ret;
3440 	int i;
3441 
3442 	/* Only supported on platforms that use atomic watermark design */
3443 	if (!dev_priv->display.funcs.wm->optimize_watermarks)
3444 		return;
3445 
3446 	if (drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) >= 9))
3447 		return;
3448 
3449 	state = drm_atomic_state_alloc(&dev_priv->drm);
3450 	if (drm_WARN_ON(&dev_priv->drm, !state))
3451 		return;
3452 
3453 	intel_state = to_intel_atomic_state(state);
3454 
3455 	drm_modeset_acquire_init(&ctx, 0);
3456 
3457 	state->acquire_ctx = &ctx;
3458 	to_intel_atomic_state(state)->internal = true;
3459 
3460 retry:
3461 	/*
3462 	 * Hardware readout is the only time we don't want to calculate
3463 	 * intermediate watermarks (since we don't trust the current
3464 	 * watermarks).
3465 	 */
3466 	if (!HAS_GMCH(dev_priv))
3467 		intel_state->skip_intermediate_wm = true;
3468 
3469 	ret = ilk_sanitize_watermarks_add_affected(state);
3470 	if (ret)
3471 		goto fail;
3472 
3473 	ret = intel_atomic_check(&dev_priv->drm, state);
3474 	if (ret)
3475 		goto fail;
3476 
3477 	/* Write calculated watermark values back */
3478 	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
3479 		crtc_state->wm.need_postvbl_update = true;
3480 		intel_optimize_watermarks(intel_state, crtc);
3481 
3482 		to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
3483 	}
3484 
3485 fail:
3486 	if (ret == -EDEADLK) {
3487 		drm_atomic_state_clear(state);
3488 		drm_modeset_backoff(&ctx);
3489 		goto retry;
3490 	}
3491 
3492 	/*
3493 	 * If we fail here, it means that the hardware appears to be
3494 	 * programmed in a way that shouldn't be possible, given our
3495 	 * understanding of watermark requirements.  This might mean a
3496 	 * mistake in the hardware readout code or a mistake in the
3497 	 * watermark calculations for a given platform.  Raise a WARN
3498 	 * so that this is noticeable.
3499 	 *
3500 	 * If this actually happens, we'll have to just leave the
3501 	 * BIOS-programmed watermarks untouched and hope for the best.
3502 	 */
3503 	drm_WARN(&dev_priv->drm, ret,
3504 		 "Could not determine valid watermarks for inherited state\n");
3505 
3506 	drm_atomic_state_put(state);
3507 
3508 	drm_modeset_drop_locks(&ctx);
3509 	drm_modeset_acquire_fini(&ctx);
3510 }
3511 
3512 #define _FW_WM(value, plane) \
3513 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3514 #define _FW_WM_VLV(value, plane) \
3515 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3516 
3517 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
3518 			       struct g4x_wm_values *wm)
3519 {
3520 	u32 tmp;
3521 
3522 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
3523 	wm->sr.plane = _FW_WM(tmp, SR);
3524 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
3525 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
3526 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
3527 
3528 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
3529 	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
3530 	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
3531 	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
3532 	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
3533 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
3534 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
3535 
3536 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
3537 	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
3538 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3539 	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
3540 	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
3541 }
3542 
3543 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3544 			       struct vlv_wm_values *wm)
3545 {
3546 	enum pipe pipe;
3547 	u32 tmp;
3548 
3549 	for_each_pipe(dev_priv, pipe) {
3550 		tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
3551 
3552 		wm->ddl[pipe].plane[PLANE_PRIMARY] =
3553 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3554 		wm->ddl[pipe].plane[PLANE_CURSOR] =
3555 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3556 		wm->ddl[pipe].plane[PLANE_SPRITE0] =
3557 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3558 		wm->ddl[pipe].plane[PLANE_SPRITE1] =
3559 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3560 	}
3561 
3562 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
3563 	wm->sr.plane = _FW_WM(tmp, SR);
3564 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
3565 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
3566 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
3567 
3568 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
3569 	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
3570 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
3571 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
3572 
3573 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
3574 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3575 
3576 	if (IS_CHERRYVIEW(dev_priv)) {
3577 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
3578 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
3579 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
3580 
3581 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
3582 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
3583 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
3584 
3585 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
3586 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
3587 		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
3588 
3589 		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
3590 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3591 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3592 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3593 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
3594 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3595 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3596 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
3597 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3598 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3599 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
3600 	} else {
3601 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
3602 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
3603 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
3604 
3605 		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
3606 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3607 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3608 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3609 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
3610 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3611 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3612 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
3613 	}
3614 }
3615 
3616 #undef _FW_WM
3617 #undef _FW_WM_VLV
3618 
3619 static void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
3620 {
3621 	struct g4x_wm_values *wm = &dev_priv->display.wm.g4x;
3622 	struct intel_crtc *crtc;
3623 
3624 	g4x_read_wm_values(dev_priv, wm);
3625 
3626 	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
3627 
3628 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3629 		struct intel_crtc_state *crtc_state =
3630 			to_intel_crtc_state(crtc->base.state);
3631 		struct g4x_wm_state *active = &crtc->wm.active.g4x;
3632 		struct g4x_pipe_wm *raw;
3633 		enum pipe pipe = crtc->pipe;
3634 		enum plane_id plane_id;
3635 		int level, max_level;
3636 
3637 		active->cxsr = wm->cxsr;
3638 		active->hpll_en = wm->hpll_en;
3639 		active->fbc_en = wm->fbc_en;
3640 
3641 		active->sr = wm->sr;
3642 		active->hpll = wm->hpll;
3643 
3644 		for_each_plane_id_on_crtc(crtc, plane_id) {
3645 			active->wm.plane[plane_id] =
3646 				wm->pipe[pipe].plane[plane_id];
3647 		}
3648 
3649 		if (wm->cxsr && wm->hpll_en)
3650 			max_level = G4X_WM_LEVEL_HPLL;
3651 		else if (wm->cxsr)
3652 			max_level = G4X_WM_LEVEL_SR;
3653 		else
3654 			max_level = G4X_WM_LEVEL_NORMAL;
3655 
3656 		level = G4X_WM_LEVEL_NORMAL;
3657 		raw = &crtc_state->wm.g4x.raw[level];
3658 		for_each_plane_id_on_crtc(crtc, plane_id)
3659 			raw->plane[plane_id] = active->wm.plane[plane_id];
3660 
3661 		level = G4X_WM_LEVEL_SR;
3662 		if (level > max_level)
3663 			goto out;
3664 
3665 		raw = &crtc_state->wm.g4x.raw[level];
3666 		raw->plane[PLANE_PRIMARY] = active->sr.plane;
3667 		raw->plane[PLANE_CURSOR] = active->sr.cursor;
3668 		raw->plane[PLANE_SPRITE0] = 0;
3669 		raw->fbc = active->sr.fbc;
3670 
3671 		level = G4X_WM_LEVEL_HPLL;
3672 		if (level > max_level)
3673 			goto out;
3674 
3675 		raw = &crtc_state->wm.g4x.raw[level];
3676 		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
3677 		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
3678 		raw->plane[PLANE_SPRITE0] = 0;
3679 		raw->fbc = active->hpll.fbc;
3680 
3681 		level++;
3682 	out:
3683 		for_each_plane_id_on_crtc(crtc, plane_id)
3684 			g4x_raw_plane_wm_set(crtc_state, level,
3685 					     plane_id, USHRT_MAX);
3686 		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
3687 
3688 		g4x_invalidate_wms(crtc, active, level);
3689 
3690 		crtc_state->wm.g4x.optimal = *active;
3691 		crtc_state->wm.g4x.intermediate = *active;
3692 
3693 		drm_dbg_kms(&dev_priv->drm,
3694 			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
3695 			    pipe_name(pipe),
3696 			    wm->pipe[pipe].plane[PLANE_PRIMARY],
3697 			    wm->pipe[pipe].plane[PLANE_CURSOR],
3698 			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
3699 	}
3700 
3701 	drm_dbg_kms(&dev_priv->drm,
3702 		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
3703 		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
3704 	drm_dbg_kms(&dev_priv->drm,
3705 		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
3706 		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
3707 	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
3708 		    str_yes_no(wm->cxsr), str_yes_no(wm->hpll_en),
3709 		    str_yes_no(wm->fbc_en));
3710 }
3711 
3712 static void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
3713 {
3714 	struct intel_plane *plane;
3715 	struct intel_crtc *crtc;
3716 
3717 	mutex_lock(&dev_priv->display.wm.wm_mutex);
3718 
3719 	for_each_intel_plane(&dev_priv->drm, plane) {
3720 		struct intel_crtc *crtc =
3721 			intel_crtc_for_pipe(dev_priv, plane->pipe);
3722 		struct intel_crtc_state *crtc_state =
3723 			to_intel_crtc_state(crtc->base.state);
3724 		struct intel_plane_state *plane_state =
3725 			to_intel_plane_state(plane->base.state);
3726 		enum plane_id plane_id = plane->id;
3727 		int level;
3728 
3729 		if (plane_state->uapi.visible)
3730 			continue;
3731 
3732 		for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
3733 			struct g4x_pipe_wm *raw =
3734 				&crtc_state->wm.g4x.raw[level];
3735 
3736 			raw->plane[plane_id] = 0;
3737 
3738 			if (plane_id == PLANE_PRIMARY)
3739 				raw->fbc = 0;
3740 		}
3741 	}
3742 
3743 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3744 		struct intel_crtc_state *crtc_state =
3745 			to_intel_crtc_state(crtc->base.state);
3746 		int ret;
3747 
3748 		ret = _g4x_compute_pipe_wm(crtc_state);
3749 		drm_WARN_ON(&dev_priv->drm, ret);
3750 
3751 		crtc_state->wm.g4x.intermediate =
3752 			crtc_state->wm.g4x.optimal;
3753 		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
3754 	}
3755 
3756 	g4x_program_watermarks(dev_priv);
3757 
3758 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
3759 }
3760 
3761 static void g4x_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
3762 {
3763 	g4x_wm_get_hw_state(i915);
3764 	g4x_wm_sanitize(i915);
3765 }
3766 
3767 static void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
3768 {
3769 	struct vlv_wm_values *wm = &dev_priv->display.wm.vlv;
3770 	struct intel_crtc *crtc;
3771 	u32 val;
3772 
3773 	vlv_read_wm_values(dev_priv, wm);
3774 
3775 	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3776 	wm->level = VLV_WM_LEVEL_PM2;
3777 
3778 	if (IS_CHERRYVIEW(dev_priv)) {
3779 		vlv_punit_get(dev_priv);
3780 
3781 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
3782 		if (val & DSP_MAXFIFO_PM5_ENABLE)
3783 			wm->level = VLV_WM_LEVEL_PM5;
3784 
3785 		/*
3786 		 * If DDR DVFS is disabled in the BIOS, Punit
3787 		 * will never ack the request. So if that happens
3788 		 * assume we don't have to enable/disable DDR DVFS
3789 		 * dynamically. To test that just set the REQ_ACK
3790 		 * bit to poke the Punit, but don't change the
3791 		 * HIGH/LOW bits so that we don't actually change
3792 		 * the current state.
3793 		 */
3794 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3795 		val |= FORCE_DDR_FREQ_REQ_ACK;
3796 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
3797 
3798 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
3799 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
3800 			drm_dbg_kms(&dev_priv->drm,
3801 				    "Punit not acking DDR DVFS request, "
3802 				    "assuming DDR DVFS is disabled\n");
3803 			dev_priv->display.wm.num_levels = VLV_WM_LEVEL_PM5 + 1;
3804 		} else {
3805 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3806 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
3807 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
3808 		}
3809 
3810 		vlv_punit_put(dev_priv);
3811 	}
3812 
3813 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3814 		struct intel_crtc_state *crtc_state =
3815 			to_intel_crtc_state(crtc->base.state);
3816 		struct vlv_wm_state *active = &crtc->wm.active.vlv;
3817 		const struct vlv_fifo_state *fifo_state =
3818 			&crtc_state->wm.vlv.fifo_state;
3819 		enum pipe pipe = crtc->pipe;
3820 		enum plane_id plane_id;
3821 		int level;
3822 
3823 		vlv_get_fifo_size(crtc_state);
3824 
3825 		active->num_levels = wm->level + 1;
3826 		active->cxsr = wm->cxsr;
3827 
3828 		for (level = 0; level < active->num_levels; level++) {
3829 			struct g4x_pipe_wm *raw =
3830 				&crtc_state->wm.vlv.raw[level];
3831 
3832 			active->sr[level].plane = wm->sr.plane;
3833 			active->sr[level].cursor = wm->sr.cursor;
3834 
3835 			for_each_plane_id_on_crtc(crtc, plane_id) {
3836 				active->wm[level].plane[plane_id] =
3837 					wm->pipe[pipe].plane[plane_id];
3838 
3839 				raw->plane[plane_id] =
3840 					vlv_invert_wm_value(active->wm[level].plane[plane_id],
3841 							    fifo_state->plane[plane_id]);
3842 			}
3843 		}
3844 
3845 		for_each_plane_id_on_crtc(crtc, plane_id)
3846 			vlv_raw_plane_wm_set(crtc_state, level,
3847 					     plane_id, USHRT_MAX);
3848 		vlv_invalidate_wms(crtc, active, level);
3849 
3850 		crtc_state->wm.vlv.optimal = *active;
3851 		crtc_state->wm.vlv.intermediate = *active;
3852 
3853 		drm_dbg_kms(&dev_priv->drm,
3854 			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
3855 			    pipe_name(pipe),
3856 			    wm->pipe[pipe].plane[PLANE_PRIMARY],
3857 			    wm->pipe[pipe].plane[PLANE_CURSOR],
3858 			    wm->pipe[pipe].plane[PLANE_SPRITE0],
3859 			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
3860 	}
3861 
3862 	drm_dbg_kms(&dev_priv->drm,
3863 		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
3864 		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
3865 }
3866 
3867 static void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
3868 {
3869 	struct intel_plane *plane;
3870 	struct intel_crtc *crtc;
3871 
3872 	mutex_lock(&dev_priv->display.wm.wm_mutex);
3873 
3874 	for_each_intel_plane(&dev_priv->drm, plane) {
3875 		struct intel_crtc *crtc =
3876 			intel_crtc_for_pipe(dev_priv, plane->pipe);
3877 		struct intel_crtc_state *crtc_state =
3878 			to_intel_crtc_state(crtc->base.state);
3879 		struct intel_plane_state *plane_state =
3880 			to_intel_plane_state(plane->base.state);
3881 		enum plane_id plane_id = plane->id;
3882 		int level;
3883 
3884 		if (plane_state->uapi.visible)
3885 			continue;
3886 
3887 		for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
3888 			struct g4x_pipe_wm *raw =
3889 				&crtc_state->wm.vlv.raw[level];
3890 
3891 			raw->plane[plane_id] = 0;
3892 		}
3893 	}
3894 
3895 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3896 		struct intel_crtc_state *crtc_state =
3897 			to_intel_crtc_state(crtc->base.state);
3898 		int ret;
3899 
3900 		ret = _vlv_compute_pipe_wm(crtc_state);
3901 		drm_WARN_ON(&dev_priv->drm, ret);
3902 
3903 		crtc_state->wm.vlv.intermediate =
3904 			crtc_state->wm.vlv.optimal;
3905 		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
3906 	}
3907 
3908 	vlv_program_watermarks(dev_priv);
3909 
3910 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
3911 }
3912 
3913 static void vlv_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
3914 {
3915 	vlv_wm_get_hw_state(i915);
3916 	vlv_wm_sanitize(i915);
3917 }
3918 
3919 /*
3920  * FIXME should probably kill this and improve
3921  * the real watermark readout/sanitation instead
3922  */
3923 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
3924 {
3925 	intel_uncore_rmw(&dev_priv->uncore, WM3_LP_ILK, WM_LP_ENABLE, 0);
3926 	intel_uncore_rmw(&dev_priv->uncore, WM2_LP_ILK, WM_LP_ENABLE, 0);
3927 	intel_uncore_rmw(&dev_priv->uncore, WM1_LP_ILK, WM_LP_ENABLE, 0);
3928 
3929 	/*
3930 	 * Don't touch WM_LP_SPRITE_ENABLE here.
3931 	 * Doing so could cause underruns.
3932 	 */
3933 }
3934 
3935 static void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
3936 {
3937 	struct ilk_wm_values *hw = &dev_priv->display.wm.hw;
3938 	struct intel_crtc *crtc;
3939 
3940 	ilk_init_lp_watermarks(dev_priv);
3941 
3942 	for_each_intel_crtc(&dev_priv->drm, crtc)
3943 		ilk_pipe_wm_get_hw_state(crtc);
3944 
3945 	hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
3946 	hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
3947 	hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
3948 
3949 	hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
3950 	if (DISPLAY_VER(dev_priv) >= 7) {
3951 		hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
3952 		hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
3953 	}
3954 
3955 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3956 		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) &
3957 				    WM_MISC_DATA_PARTITION_5_6) ?
3958 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3959 	else if (IS_IVYBRIDGE(dev_priv))
3960 		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) &
3961 				    DISP_DATA_PARTITION_5_6) ?
3962 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3963 
3964 	hw->enable_fbc_wm =
3965 		!(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3966 }
3967 
3968 static const struct intel_wm_funcs ilk_wm_funcs = {
3969 	.compute_pipe_wm = ilk_compute_pipe_wm,
3970 	.compute_intermediate_wm = ilk_compute_intermediate_wm,
3971 	.initial_watermarks = ilk_initial_watermarks,
3972 	.optimize_watermarks = ilk_optimize_watermarks,
3973 	.get_hw_state = ilk_wm_get_hw_state,
3974 };
3975 
3976 static const struct intel_wm_funcs vlv_wm_funcs = {
3977 	.compute_pipe_wm = vlv_compute_pipe_wm,
3978 	.compute_intermediate_wm = vlv_compute_intermediate_wm,
3979 	.initial_watermarks = vlv_initial_watermarks,
3980 	.optimize_watermarks = vlv_optimize_watermarks,
3981 	.atomic_update_watermarks = vlv_atomic_update_fifo,
3982 	.get_hw_state = vlv_wm_get_hw_state_and_sanitize,
3983 };
3984 
3985 static const struct intel_wm_funcs g4x_wm_funcs = {
3986 	.compute_pipe_wm = g4x_compute_pipe_wm,
3987 	.compute_intermediate_wm = g4x_compute_intermediate_wm,
3988 	.initial_watermarks = g4x_initial_watermarks,
3989 	.optimize_watermarks = g4x_optimize_watermarks,
3990 	.get_hw_state = g4x_wm_get_hw_state_and_sanitize,
3991 };
3992 
3993 static const struct intel_wm_funcs pnv_wm_funcs = {
3994 	.update_wm = pnv_update_wm,
3995 };
3996 
3997 static const struct intel_wm_funcs i965_wm_funcs = {
3998 	.update_wm = i965_update_wm,
3999 };
4000 
4001 static const struct intel_wm_funcs i9xx_wm_funcs = {
4002 	.update_wm = i9xx_update_wm,
4003 };
4004 
4005 static const struct intel_wm_funcs i845_wm_funcs = {
4006 	.update_wm = i845_update_wm,
4007 };
4008 
4009 static const struct intel_wm_funcs nop_funcs = {
4010 };
4011 
4012 void i9xx_wm_init(struct drm_i915_private *dev_priv)
4013 {
4014 	/* For FIFO watermark updates */
4015 	if (HAS_PCH_SPLIT(dev_priv)) {
4016 		ilk_setup_wm_latency(dev_priv);
4017 		dev_priv->display.funcs.wm = &ilk_wm_funcs;
4018 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4019 		vlv_setup_wm_latency(dev_priv);
4020 		dev_priv->display.funcs.wm = &vlv_wm_funcs;
4021 	} else if (IS_G4X(dev_priv)) {
4022 		g4x_setup_wm_latency(dev_priv);
4023 		dev_priv->display.funcs.wm = &g4x_wm_funcs;
4024 	} else if (IS_PINEVIEW(dev_priv)) {
4025 		if (!intel_get_cxsr_latency(dev_priv)) {
4026 			drm_info(&dev_priv->drm,
4027 				 "failed to find known CxSR latency "
4028 				 "(found ddr%s fsb freq %d, mem freq %d), "
4029 				 "disabling CxSR\n",
4030 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4031 				 dev_priv->fsb_freq, dev_priv->mem_freq);
4032 			/* Disable CxSR and never update its watermark again */
4033 			intel_set_memory_cxsr(dev_priv, false);
4034 			dev_priv->display.funcs.wm = &nop_funcs;
4035 		} else {
4036 			dev_priv->display.funcs.wm = &pnv_wm_funcs;
4037 		}
4038 	} else if (DISPLAY_VER(dev_priv) == 4) {
4039 		dev_priv->display.funcs.wm = &i965_wm_funcs;
4040 	} else if (DISPLAY_VER(dev_priv) == 3) {
4041 		dev_priv->display.funcs.wm = &i9xx_wm_funcs;
4042 	} else if (DISPLAY_VER(dev_priv) == 2) {
4043 		if (INTEL_NUM_PIPES(dev_priv) == 1)
4044 			dev_priv->display.funcs.wm = &i845_wm_funcs;
4045 		else
4046 			dev_priv->display.funcs.wm = &i9xx_wm_funcs;
4047 	} else {
4048 		drm_err(&dev_priv->drm,
4049 			"unexpected fall-through in %s\n", __func__);
4050 		dev_priv->display.funcs.wm = &nop_funcs;
4051 	}
4052 }
4053