xref: /linux/drivers/gpu/drm/i2c/tda998x_drv.c (revision f4738f56d1dc62aaba69b33702a5ab098f1b8c63)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Texas Instruments
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #include <linux/component.h>
8 #include <linux/gpio/consumer.h>
9 #include <linux/hdmi.h>
10 #include <linux/i2c.h>
11 #include <linux/module.h>
12 #include <linux/platform_data/tda9950.h>
13 #include <linux/irq.h>
14 #include <sound/asoundef.h>
15 #include <sound/hdmi-codec.h>
16 
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_bridge.h>
19 #include <drm/drm_edid.h>
20 #include <drm/drm_of.h>
21 #include <drm/drm_print.h>
22 #include <drm/drm_probe_helper.h>
23 #include <drm/drm_simple_kms_helper.h>
24 #include <drm/i2c/tda998x.h>
25 
26 #include <media/cec-notifier.h>
27 
28 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
29 
30 enum {
31 	AUDIO_ROUTE_I2S,
32 	AUDIO_ROUTE_SPDIF,
33 	AUDIO_ROUTE_NUM
34 };
35 
36 struct tda998x_audio_route {
37 	u8 ena_aclk;
38 	u8 mux_ap;
39 	u8 aip_clksel;
40 };
41 
42 struct tda998x_audio_settings {
43 	const struct tda998x_audio_route *route;
44 	struct hdmi_audio_infoframe cea;
45 	unsigned int sample_rate;
46 	u8 status[5];
47 	u8 ena_ap;
48 	u8 i2s_format;
49 	u8 cts_n;
50 };
51 
52 struct tda998x_priv {
53 	struct i2c_client *cec;
54 	struct i2c_client *hdmi;
55 	struct mutex mutex;
56 	u16 rev;
57 	u8 cec_addr;
58 	u8 current_page;
59 	bool is_on;
60 	bool supports_infoframes;
61 	bool sink_has_audio;
62 	enum hdmi_quantization_range rgb_quant_range;
63 	u8 vip_cntrl_0;
64 	u8 vip_cntrl_1;
65 	u8 vip_cntrl_2;
66 	unsigned long tmds_clock;
67 	struct tda998x_audio_settings audio;
68 
69 	struct platform_device *audio_pdev;
70 	struct mutex audio_mutex;
71 
72 	struct mutex edid_mutex;
73 	wait_queue_head_t wq_edid;
74 	volatile int wq_edid_wait;
75 
76 	struct work_struct detect_work;
77 	struct timer_list edid_delay_timer;
78 	wait_queue_head_t edid_delay_waitq;
79 	bool edid_delay_active;
80 
81 	struct drm_encoder encoder;
82 	struct drm_bridge bridge;
83 	struct drm_connector connector;
84 
85 	u8 audio_port_enable[AUDIO_ROUTE_NUM];
86 	struct tda9950_glue cec_glue;
87 	struct gpio_desc *calib;
88 	struct cec_notifier *cec_notify;
89 };
90 
91 #define conn_to_tda998x_priv(x) \
92 	container_of(x, struct tda998x_priv, connector)
93 #define enc_to_tda998x_priv(x) \
94 	container_of(x, struct tda998x_priv, encoder)
95 #define bridge_to_tda998x_priv(x) \
96 	container_of(x, struct tda998x_priv, bridge)
97 
98 /* The TDA9988 series of devices use a paged register scheme.. to simplify
99  * things we encode the page # in upper bits of the register #.  To read/
100  * write a given register, we need to make sure CURPAGE register is set
101  * appropriately.  Which implies reads/writes are not atomic.  Fun!
102  */
103 
104 #define REG(page, addr) (((page) << 8) | (addr))
105 #define REG2ADDR(reg)   ((reg) & 0xff)
106 #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
107 
108 #define REG_CURPAGE               0xff                /* write */
109 
110 
111 /* Page 00h: General Control */
112 #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
113 #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
114 # define MAIN_CNTRL0_SR           (1 << 0)
115 # define MAIN_CNTRL0_DECS         (1 << 1)
116 # define MAIN_CNTRL0_DEHS         (1 << 2)
117 # define MAIN_CNTRL0_CECS         (1 << 3)
118 # define MAIN_CNTRL0_CEHS         (1 << 4)
119 # define MAIN_CNTRL0_SCALER       (1 << 7)
120 #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
121 #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
122 # define SOFTRESET_AUDIO          (1 << 0)
123 # define SOFTRESET_I2C_MASTER     (1 << 1)
124 #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
125 #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
126 #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
127 # define I2C_MASTER_DIS_MM        (1 << 0)
128 # define I2C_MASTER_DIS_FILT      (1 << 1)
129 # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
130 #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
131 # define FEAT_POWERDOWN_PREFILT   BIT(0)
132 # define FEAT_POWERDOWN_CSC       BIT(1)
133 # define FEAT_POWERDOWN_SPDIF     (1 << 3)
134 #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
135 #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
136 #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
137 # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
138 #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
139 #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
140 #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
141 #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
142 #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
143 #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
144 # define VIP_CNTRL_0_MIRR_A       (1 << 7)
145 # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
146 # define VIP_CNTRL_0_MIRR_B       (1 << 3)
147 # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
148 #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
149 # define VIP_CNTRL_1_MIRR_C       (1 << 7)
150 # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
151 # define VIP_CNTRL_1_MIRR_D       (1 << 3)
152 # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
153 #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
154 # define VIP_CNTRL_2_MIRR_E       (1 << 7)
155 # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
156 # define VIP_CNTRL_2_MIRR_F       (1 << 3)
157 # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
158 #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
159 # define VIP_CNTRL_3_X_TGL        (1 << 0)
160 # define VIP_CNTRL_3_H_TGL        (1 << 1)
161 # define VIP_CNTRL_3_V_TGL        (1 << 2)
162 # define VIP_CNTRL_3_EMB          (1 << 3)
163 # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
164 # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
165 # define VIP_CNTRL_3_DE_INT       (1 << 6)
166 # define VIP_CNTRL_3_EDGE         (1 << 7)
167 #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
168 # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
169 # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
170 # define VIP_CNTRL_4_CCIR656      (1 << 4)
171 # define VIP_CNTRL_4_656_ALT      (1 << 5)
172 # define VIP_CNTRL_4_TST_656      (1 << 6)
173 # define VIP_CNTRL_4_TST_PAT      (1 << 7)
174 #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
175 # define VIP_CNTRL_5_CKCASE       (1 << 0)
176 # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
177 #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
178 # define MUX_AP_SELECT_I2S	  0x64
179 # define MUX_AP_SELECT_SPDIF	  0x40
180 #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
181 #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
182 # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
183 # define MAT_CONTRL_MAT_BP        (1 << 2)
184 #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
185 #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
186 #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
187 #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
188 #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
189 #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
190 #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
191 #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
192 #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
193 #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
194 #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
195 #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
196 #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
197 #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
198 #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
199 #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
200 #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
201 #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
202 #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
203 #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
204 #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
205 #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
206 #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
207 #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
208 #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
209 #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
210 #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
211 #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
212 #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
213 #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
214 #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
215 #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
216 #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
217 #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
218 #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
219 #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
220 #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
221 #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
222 #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
223 #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
224 #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
225 #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
226 # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
227 # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
228 # define TBG_CNTRL_0_DE_EXT       (1 << 2)
229 # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
230 # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
231 # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
232 # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
233 #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
234 # define TBG_CNTRL_1_H_TGL        (1 << 0)
235 # define TBG_CNTRL_1_V_TGL        (1 << 1)
236 # define TBG_CNTRL_1_TGL_EN       (1 << 2)
237 # define TBG_CNTRL_1_X_EXT        (1 << 3)
238 # define TBG_CNTRL_1_H_EXT        (1 << 4)
239 # define TBG_CNTRL_1_V_EXT        (1 << 5)
240 # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
241 #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
242 #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
243 # define HVF_CNTRL_0_SM           (1 << 7)
244 # define HVF_CNTRL_0_RWB          (1 << 6)
245 # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
246 # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
247 #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
248 # define HVF_CNTRL_1_FOR          (1 << 0)
249 # define HVF_CNTRL_1_YUVBLK       (1 << 1)
250 # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
251 # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
252 # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
253 #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
254 # define RPT_CNTRL_REPEAT(x)      ((x) & 15)
255 #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
256 # define I2S_FORMAT_PHILIPS       (0 << 0)
257 # define I2S_FORMAT_LEFT_J        (2 << 0)
258 # define I2S_FORMAT_RIGHT_J       (3 << 0)
259 #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
260 # define AIP_CLKSEL_AIP_SPDIF	  (0 << 3)
261 # define AIP_CLKSEL_AIP_I2S	  (1 << 3)
262 # define AIP_CLKSEL_FS_ACLK	  (0 << 0)
263 # define AIP_CLKSEL_FS_MCLK	  (1 << 0)
264 # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
265 
266 /* Page 02h: PLL settings */
267 #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
268 # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
269 # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
270 # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
271 #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
272 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
273 # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
274 #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
275 # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
276 # define PLL_SERIAL_3_SRL_DE      (1 << 2)
277 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
278 #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
279 #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
280 #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
281 #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
282 #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
283 #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
284 #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
285 #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
286 #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
287 # define AUDIO_DIV_SERCLK_1       0
288 # define AUDIO_DIV_SERCLK_2       1
289 # define AUDIO_DIV_SERCLK_4       2
290 # define AUDIO_DIV_SERCLK_8       3
291 # define AUDIO_DIV_SERCLK_16      4
292 # define AUDIO_DIV_SERCLK_32      5
293 #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
294 # define SEL_CLK_SEL_CLK1         (1 << 0)
295 # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
296 # define SEL_CLK_ENA_SC_CLK       (1 << 3)
297 #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
298 
299 
300 /* Page 09h: EDID Control */
301 #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
302 /* next 127 successive registers are the EDID block */
303 #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
304 #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
305 #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
306 #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
307 #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
308 
309 
310 /* Page 10h: information frames and packets */
311 #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
312 #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
313 #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
314 #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
315 #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
316 
317 
318 /* Page 11h: audio settings and content info packets */
319 #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
320 # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
321 # define AIP_CNTRL_0_SWAP         (1 << 1)
322 # define AIP_CNTRL_0_LAYOUT       (1 << 2)
323 # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
324 # define AIP_CNTRL_0_RST_CTS      (1 << 6)
325 #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
326 # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
327 # define CA_I2S_HBR_CHSTAT        (1 << 6)
328 #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
329 #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
330 #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
331 #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
332 #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
333 #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
334 #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
335 #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
336 # define CTS_N_K(x)               (((x) & 7) << 0)
337 # define CTS_N_M(x)               (((x) & 3) << 4)
338 #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
339 # define ENC_CNTRL_RST_ENC        (1 << 0)
340 # define ENC_CNTRL_RST_SEL        (1 << 1)
341 # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
342 #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
343 # define DIP_FLAGS_ACR            (1 << 0)
344 # define DIP_FLAGS_GC             (1 << 1)
345 #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
346 # define DIP_IF_FLAGS_IF1         (1 << 1)
347 # define DIP_IF_FLAGS_IF2         (1 << 2)
348 # define DIP_IF_FLAGS_IF3         (1 << 3)
349 # define DIP_IF_FLAGS_IF4         (1 << 4)
350 # define DIP_IF_FLAGS_IF5         (1 << 5)
351 #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
352 
353 
354 /* Page 12h: HDCP and OTP */
355 #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
356 #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
357 # define TX4_PD_RAM               (1 << 1)
358 #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
359 # define TX33_HDMI                (1 << 1)
360 
361 
362 /* Page 13h: Gamut related metadata packets */
363 
364 
365 
366 /* CEC registers: (not paged)
367  */
368 #define REG_CEC_INTSTATUS	  0xee		      /* read */
369 # define CEC_INTSTATUS_CEC	  (1 << 0)
370 # define CEC_INTSTATUS_HDMI	  (1 << 1)
371 #define REG_CEC_CAL_XOSC_CTRL1    0xf2
372 # define CEC_CAL_XOSC_CTRL1_ENA_CAL	BIT(0)
373 #define REG_CEC_DES_FREQ2         0xf5
374 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
375 #define REG_CEC_CLK               0xf6
376 # define CEC_CLK_FRO              0x11
377 #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
378 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
379 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
380 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
381 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
382 #define REG_CEC_RXSHPDINTENA	  0xfc		      /* read/write */
383 #define REG_CEC_RXSHPDINT	  0xfd		      /* read */
384 # define CEC_RXSHPDINT_RXSENS     BIT(0)
385 # define CEC_RXSHPDINT_HPD        BIT(1)
386 #define REG_CEC_RXSHPDLEV         0xfe                /* read */
387 # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
388 # define CEC_RXSHPDLEV_HPD        (1 << 1)
389 
390 #define REG_CEC_ENAMODS           0xff                /* read/write */
391 # define CEC_ENAMODS_EN_CEC_CLK   (1 << 7)
392 # define CEC_ENAMODS_DIS_FRO      (1 << 6)
393 # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
394 # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
395 # define CEC_ENAMODS_EN_HDMI      (1 << 1)
396 # define CEC_ENAMODS_EN_CEC       (1 << 0)
397 
398 
399 /* Device versions: */
400 #define TDA9989N2                 0x0101
401 #define TDA19989                  0x0201
402 #define TDA19989N2                0x0202
403 #define TDA19988                  0x0301
404 
405 static void
406 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
407 {
408 	u8 buf[] = {addr, val};
409 	struct i2c_msg msg = {
410 		.addr = priv->cec_addr,
411 		.len = 2,
412 		.buf = buf,
413 	};
414 	int ret;
415 
416 	ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
417 	if (ret < 0)
418 		dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
419 			ret, addr);
420 }
421 
422 static u8
423 cec_read(struct tda998x_priv *priv, u8 addr)
424 {
425 	u8 val;
426 	struct i2c_msg msg[2] = {
427 		{
428 			.addr = priv->cec_addr,
429 			.len = 1,
430 			.buf = &addr,
431 		}, {
432 			.addr = priv->cec_addr,
433 			.flags = I2C_M_RD,
434 			.len = 1,
435 			.buf = &val,
436 		},
437 	};
438 	int ret;
439 
440 	ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
441 	if (ret < 0) {
442 		dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
443 			ret, addr);
444 		val = 0;
445 	}
446 
447 	return val;
448 }
449 
450 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
451 {
452 	int val = cec_read(priv, REG_CEC_ENAMODS);
453 
454 	if (val < 0)
455 		return;
456 
457 	if (enable)
458 		val |= mods;
459 	else
460 		val &= ~mods;
461 
462 	cec_write(priv, REG_CEC_ENAMODS, val);
463 }
464 
465 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
466 {
467 	if (enable) {
468 		u8 val;
469 
470 		cec_write(priv, 0xf3, 0xc0);
471 		cec_write(priv, 0xf4, 0xd4);
472 
473 		/* Enable automatic calibration mode */
474 		val = cec_read(priv, REG_CEC_DES_FREQ2);
475 		val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
476 		cec_write(priv, REG_CEC_DES_FREQ2, val);
477 
478 		/* Enable free running oscillator */
479 		cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
480 		cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
481 
482 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
483 			  CEC_CAL_XOSC_CTRL1_ENA_CAL);
484 	} else {
485 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
486 	}
487 }
488 
489 /*
490  * Calibration for the internal oscillator: we need to set calibration mode,
491  * and then pulse the IRQ line low for a 10ms ± 1% period.
492  */
493 static void tda998x_cec_calibration(struct tda998x_priv *priv)
494 {
495 	struct gpio_desc *calib = priv->calib;
496 
497 	mutex_lock(&priv->edid_mutex);
498 	if (priv->hdmi->irq > 0)
499 		disable_irq(priv->hdmi->irq);
500 	gpiod_direction_output(calib, 1);
501 	tda998x_cec_set_calibration(priv, true);
502 
503 	local_irq_disable();
504 	gpiod_set_value(calib, 0);
505 	mdelay(10);
506 	gpiod_set_value(calib, 1);
507 	local_irq_enable();
508 
509 	tda998x_cec_set_calibration(priv, false);
510 	gpiod_direction_input(calib);
511 	if (priv->hdmi->irq > 0)
512 		enable_irq(priv->hdmi->irq);
513 	mutex_unlock(&priv->edid_mutex);
514 }
515 
516 static int tda998x_cec_hook_init(void *data)
517 {
518 	struct tda998x_priv *priv = data;
519 	struct gpio_desc *calib;
520 
521 	calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
522 	if (IS_ERR(calib)) {
523 		dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
524 			 PTR_ERR(calib));
525 		return PTR_ERR(calib);
526 	}
527 
528 	priv->calib = calib;
529 
530 	return 0;
531 }
532 
533 static void tda998x_cec_hook_exit(void *data)
534 {
535 	struct tda998x_priv *priv = data;
536 
537 	gpiod_put(priv->calib);
538 	priv->calib = NULL;
539 }
540 
541 static int tda998x_cec_hook_open(void *data)
542 {
543 	struct tda998x_priv *priv = data;
544 
545 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
546 	tda998x_cec_calibration(priv);
547 
548 	return 0;
549 }
550 
551 static void tda998x_cec_hook_release(void *data)
552 {
553 	struct tda998x_priv *priv = data;
554 
555 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
556 }
557 
558 static int
559 set_page(struct tda998x_priv *priv, u16 reg)
560 {
561 	if (REG2PAGE(reg) != priv->current_page) {
562 		struct i2c_client *client = priv->hdmi;
563 		u8 buf[] = {
564 				REG_CURPAGE, REG2PAGE(reg)
565 		};
566 		int ret = i2c_master_send(client, buf, sizeof(buf));
567 		if (ret < 0) {
568 			dev_err(&client->dev, "%s %04x err %d\n", __func__,
569 					reg, ret);
570 			return ret;
571 		}
572 
573 		priv->current_page = REG2PAGE(reg);
574 	}
575 	return 0;
576 }
577 
578 static int
579 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
580 {
581 	struct i2c_client *client = priv->hdmi;
582 	u8 addr = REG2ADDR(reg);
583 	int ret;
584 
585 	mutex_lock(&priv->mutex);
586 	ret = set_page(priv, reg);
587 	if (ret < 0)
588 		goto out;
589 
590 	ret = i2c_master_send(client, &addr, sizeof(addr));
591 	if (ret < 0)
592 		goto fail;
593 
594 	ret = i2c_master_recv(client, buf, cnt);
595 	if (ret < 0)
596 		goto fail;
597 
598 	goto out;
599 
600 fail:
601 	dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
602 out:
603 	mutex_unlock(&priv->mutex);
604 	return ret;
605 }
606 
607 #define MAX_WRITE_RANGE_BUF 32
608 
609 static void
610 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
611 {
612 	struct i2c_client *client = priv->hdmi;
613 	/* This is the maximum size of the buffer passed in */
614 	u8 buf[MAX_WRITE_RANGE_BUF + 1];
615 	int ret;
616 
617 	if (cnt > MAX_WRITE_RANGE_BUF) {
618 		dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
619 				MAX_WRITE_RANGE_BUF);
620 		return;
621 	}
622 
623 	buf[0] = REG2ADDR(reg);
624 	memcpy(&buf[1], p, cnt);
625 
626 	mutex_lock(&priv->mutex);
627 	ret = set_page(priv, reg);
628 	if (ret < 0)
629 		goto out;
630 
631 	ret = i2c_master_send(client, buf, cnt + 1);
632 	if (ret < 0)
633 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
634 out:
635 	mutex_unlock(&priv->mutex);
636 }
637 
638 static int
639 reg_read(struct tda998x_priv *priv, u16 reg)
640 {
641 	u8 val = 0;
642 	int ret;
643 
644 	ret = reg_read_range(priv, reg, &val, sizeof(val));
645 	if (ret < 0)
646 		return ret;
647 	return val;
648 }
649 
650 static void
651 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
652 {
653 	struct i2c_client *client = priv->hdmi;
654 	u8 buf[] = {REG2ADDR(reg), val};
655 	int ret;
656 
657 	mutex_lock(&priv->mutex);
658 	ret = set_page(priv, reg);
659 	if (ret < 0)
660 		goto out;
661 
662 	ret = i2c_master_send(client, buf, sizeof(buf));
663 	if (ret < 0)
664 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
665 out:
666 	mutex_unlock(&priv->mutex);
667 }
668 
669 static void
670 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
671 {
672 	struct i2c_client *client = priv->hdmi;
673 	u8 buf[] = {REG2ADDR(reg), val >> 8, val};
674 	int ret;
675 
676 	mutex_lock(&priv->mutex);
677 	ret = set_page(priv, reg);
678 	if (ret < 0)
679 		goto out;
680 
681 	ret = i2c_master_send(client, buf, sizeof(buf));
682 	if (ret < 0)
683 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
684 out:
685 	mutex_unlock(&priv->mutex);
686 }
687 
688 static void
689 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
690 {
691 	int old_val;
692 
693 	old_val = reg_read(priv, reg);
694 	if (old_val >= 0)
695 		reg_write(priv, reg, old_val | val);
696 }
697 
698 static void
699 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
700 {
701 	int old_val;
702 
703 	old_val = reg_read(priv, reg);
704 	if (old_val >= 0)
705 		reg_write(priv, reg, old_val & ~val);
706 }
707 
708 static void
709 tda998x_reset(struct tda998x_priv *priv)
710 {
711 	/* reset audio and i2c master: */
712 	reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
713 	msleep(50);
714 	reg_write(priv, REG_SOFTRESET, 0);
715 	msleep(50);
716 
717 	/* reset transmitter: */
718 	reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
719 	reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
720 
721 	/* PLL registers common configuration */
722 	reg_write(priv, REG_PLL_SERIAL_1, 0x00);
723 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
724 	reg_write(priv, REG_PLL_SERIAL_3, 0x00);
725 	reg_write(priv, REG_SERIALIZER,   0x00);
726 	reg_write(priv, REG_BUFFER_OUT,   0x00);
727 	reg_write(priv, REG_PLL_SCG1,     0x00);
728 	reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
729 	reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
730 	reg_write(priv, REG_PLL_SCGN1,    0xfa);
731 	reg_write(priv, REG_PLL_SCGN2,    0x00);
732 	reg_write(priv, REG_PLL_SCGR1,    0x5b);
733 	reg_write(priv, REG_PLL_SCGR2,    0x00);
734 	reg_write(priv, REG_PLL_SCG2,     0x10);
735 
736 	/* Write the default value MUX register */
737 	reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
738 }
739 
740 /*
741  * The TDA998x has a problem when trying to read the EDID close to a
742  * HPD assertion: it needs a delay of 100ms to avoid timing out while
743  * trying to read EDID data.
744  *
745  * However, tda998x_connector_get_modes() may be called at any moment
746  * after tda998x_connector_detect() indicates that we are connected, so
747  * we need to delay probing modes in tda998x_connector_get_modes() after
748  * we have seen a HPD inactive->active transition.  This code implements
749  * that delay.
750  */
751 static void tda998x_edid_delay_done(struct timer_list *t)
752 {
753 	struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
754 
755 	priv->edid_delay_active = false;
756 	wake_up(&priv->edid_delay_waitq);
757 	schedule_work(&priv->detect_work);
758 }
759 
760 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
761 {
762 	priv->edid_delay_active = true;
763 	mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
764 }
765 
766 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
767 {
768 	return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
769 }
770 
771 /*
772  * We need to run the KMS hotplug event helper outside of our threaded
773  * interrupt routine as this can call back into our get_modes method,
774  * which will want to make use of interrupts.
775  */
776 static void tda998x_detect_work(struct work_struct *work)
777 {
778 	struct tda998x_priv *priv =
779 		container_of(work, struct tda998x_priv, detect_work);
780 	struct drm_device *dev = priv->connector.dev;
781 
782 	if (dev)
783 		drm_kms_helper_hotplug_event(dev);
784 }
785 
786 /*
787  * only 2 interrupts may occur: screen plug/unplug and EDID read
788  */
789 static irqreturn_t tda998x_irq_thread(int irq, void *data)
790 {
791 	struct tda998x_priv *priv = data;
792 	u8 sta, cec, lvl, flag0, flag1, flag2;
793 	bool handled = false;
794 
795 	sta = cec_read(priv, REG_CEC_INTSTATUS);
796 	if (sta & CEC_INTSTATUS_HDMI) {
797 		cec = cec_read(priv, REG_CEC_RXSHPDINT);
798 		lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
799 		flag0 = reg_read(priv, REG_INT_FLAGS_0);
800 		flag1 = reg_read(priv, REG_INT_FLAGS_1);
801 		flag2 = reg_read(priv, REG_INT_FLAGS_2);
802 		DRM_DEBUG_DRIVER(
803 			"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
804 			sta, cec, lvl, flag0, flag1, flag2);
805 
806 		if (cec & CEC_RXSHPDINT_HPD) {
807 			if (lvl & CEC_RXSHPDLEV_HPD) {
808 				tda998x_edid_delay_start(priv);
809 			} else {
810 				schedule_work(&priv->detect_work);
811 				cec_notifier_phys_addr_invalidate(
812 						priv->cec_notify);
813 			}
814 
815 			handled = true;
816 		}
817 
818 		if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
819 			priv->wq_edid_wait = 0;
820 			wake_up(&priv->wq_edid);
821 			handled = true;
822 		}
823 	}
824 
825 	return IRQ_RETVAL(handled);
826 }
827 
828 static void
829 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
830 		 union hdmi_infoframe *frame)
831 {
832 	u8 buf[MAX_WRITE_RANGE_BUF];
833 	ssize_t len;
834 
835 	len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
836 	if (len < 0) {
837 		dev_err(&priv->hdmi->dev,
838 			"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
839 			frame->any.type, len);
840 		return;
841 	}
842 
843 	reg_clear(priv, REG_DIP_IF_FLAGS, bit);
844 	reg_write_range(priv, addr, buf, len);
845 	reg_set(priv, REG_DIP_IF_FLAGS, bit);
846 }
847 
848 static void tda998x_write_aif(struct tda998x_priv *priv,
849 			      const struct hdmi_audio_infoframe *cea)
850 {
851 	union hdmi_infoframe frame;
852 
853 	frame.audio = *cea;
854 
855 	tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
856 }
857 
858 static void
859 tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode)
860 {
861 	union hdmi_infoframe frame;
862 
863 	drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
864 						 &priv->connector, mode);
865 	frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
866 	drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode,
867 					   priv->rgb_quant_range);
868 
869 	tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
870 }
871 
872 static void tda998x_write_vsi(struct tda998x_priv *priv,
873 			      const struct drm_display_mode *mode)
874 {
875 	union hdmi_infoframe frame;
876 
877 	if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
878 							&priv->connector,
879 							mode))
880 		reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1);
881 	else
882 		tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame);
883 }
884 
885 /* Audio support */
886 
887 static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = {
888 	[AUDIO_ROUTE_I2S] = {
889 		.ena_aclk = 1,
890 		.mux_ap = MUX_AP_SELECT_I2S,
891 		.aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK,
892 	},
893 	[AUDIO_ROUTE_SPDIF] = {
894 		.ena_aclk = 0,
895 		.mux_ap = MUX_AP_SELECT_SPDIF,
896 		.aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF,
897 	},
898 };
899 
900 /* Configure the TDA998x audio data and clock routing. */
901 static int tda998x_derive_routing(struct tda998x_priv *priv,
902 				  struct tda998x_audio_settings *s,
903 				  unsigned int route)
904 {
905 	s->route = &tda998x_audio_route[route];
906 	s->ena_ap = priv->audio_port_enable[route];
907 	if (s->ena_ap == 0) {
908 		dev_err(&priv->hdmi->dev, "no audio configuration found\n");
909 		return -EINVAL;
910 	}
911 
912 	return 0;
913 }
914 
915 /*
916  * The audio clock divisor register controls a divider producing Audio_Clk_Out
917  * from SERclk by dividing it by 2^n where 0 <= n <= 5.  We don't know what
918  * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock.
919  *
920  * It seems that Audio_Clk_Out must be the smallest value that is greater
921  * than 128*fs, otherwise audio does not function. There is some suggestion
922  * that 126*fs is a better value.
923  */
924 static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs)
925 {
926 	unsigned long min_audio_clk = fs * 128;
927 	unsigned long ser_clk = priv->tmds_clock * 1000;
928 	u8 adiv;
929 
930 	for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--)
931 		if (ser_clk > min_audio_clk << adiv)
932 			break;
933 
934 	dev_dbg(&priv->hdmi->dev,
935 		"ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n",
936 		ser_clk, fs, min_audio_clk, adiv);
937 
938 	return adiv;
939 }
940 
941 /*
942  * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to
943  * generate the CTS value.  It appears that the "measured time stamp" is
944  * the number of TDMS clock cycles within a number of audio input clock
945  * cycles defined by the k and N parameters defined below, in a similar
946  * way to that which is set out in the CTS generation in the HDMI spec.
947  *
948  *  tmdsclk ----> mts -> /m ---> CTS
949  *                 ^
950  *  sclk -> /k -> /N
951  *
952  * CTS = mts / m, where m is 2^M.
953  * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4
954  * /N is a divider based on the HDMI specified N value.
955  *
956  * This produces the following equation:
957  *  CTS = tmds_clock * k * N / (sclk * m)
958  *
959  * When combined with the sink-side equation, and realising that sclk is
960  * bclk_ratio * fs, we end up with:
961  *  k = m * bclk_ratio / 128.
962  *
963  * Note: S/PDIF always uses a bclk_ratio of 64.
964  */
965 static int tda998x_derive_cts_n(struct tda998x_priv *priv,
966 				struct tda998x_audio_settings *settings,
967 				unsigned int ratio)
968 {
969 	switch (ratio) {
970 	case 16:
971 		settings->cts_n = CTS_N_M(3) | CTS_N_K(0);
972 		break;
973 	case 32:
974 		settings->cts_n = CTS_N_M(3) | CTS_N_K(1);
975 		break;
976 	case 48:
977 		settings->cts_n = CTS_N_M(3) | CTS_N_K(2);
978 		break;
979 	case 64:
980 		settings->cts_n = CTS_N_M(3) | CTS_N_K(3);
981 		break;
982 	case 128:
983 		settings->cts_n = CTS_N_M(0) | CTS_N_K(0);
984 		break;
985 	default:
986 		dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n",
987 			ratio);
988 		return -EINVAL;
989 	}
990 	return 0;
991 }
992 
993 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
994 {
995 	if (on) {
996 		reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
997 		reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
998 		reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
999 	} else {
1000 		reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1001 	}
1002 }
1003 
1004 static void tda998x_configure_audio(struct tda998x_priv *priv)
1005 {
1006 	const struct tda998x_audio_settings *settings = &priv->audio;
1007 	u8 buf[6], adiv;
1008 	u32 n;
1009 
1010 	/* If audio is not configured, there is nothing to do. */
1011 	if (settings->ena_ap == 0)
1012 		return;
1013 
1014 	adiv = tda998x_get_adiv(priv, settings->sample_rate);
1015 
1016 	/* Enable audio ports */
1017 	reg_write(priv, REG_ENA_AP, settings->ena_ap);
1018 	reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk);
1019 	reg_write(priv, REG_MUX_AP, settings->route->mux_ap);
1020 	reg_write(priv, REG_I2S_FORMAT, settings->i2s_format);
1021 	reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel);
1022 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
1023 					AIP_CNTRL_0_ACR_MAN);	/* auto CTS */
1024 	reg_write(priv, REG_CTS_N, settings->cts_n);
1025 	reg_write(priv, REG_AUDIO_DIV, adiv);
1026 
1027 	/*
1028 	 * This is the approximate value of N, which happens to be
1029 	 * the recommended values for non-coherent clocks.
1030 	 */
1031 	n = 128 * settings->sample_rate / 1000;
1032 
1033 	/* Write the CTS and N values */
1034 	buf[0] = 0x44;
1035 	buf[1] = 0x42;
1036 	buf[2] = 0x01;
1037 	buf[3] = n;
1038 	buf[4] = n >> 8;
1039 	buf[5] = n >> 16;
1040 	reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
1041 
1042 	/* Reset CTS generator */
1043 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1044 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1045 
1046 	/* Write the channel status
1047 	 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
1048 	 * there is a separate register for each I2S wire.
1049 	 */
1050 	buf[0] = settings->status[0];
1051 	buf[1] = settings->status[1];
1052 	buf[2] = settings->status[3];
1053 	buf[3] = settings->status[4];
1054 	reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
1055 
1056 	tda998x_audio_mute(priv, true);
1057 	msleep(20);
1058 	tda998x_audio_mute(priv, false);
1059 
1060 	tda998x_write_aif(priv, &settings->cea);
1061 }
1062 
1063 static int tda998x_audio_hw_params(struct device *dev, void *data,
1064 				   struct hdmi_codec_daifmt *daifmt,
1065 				   struct hdmi_codec_params *params)
1066 {
1067 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1068 	unsigned int bclk_ratio;
1069 	bool spdif = daifmt->fmt == HDMI_SPDIF;
1070 	int ret;
1071 	struct tda998x_audio_settings audio = {
1072 		.sample_rate = params->sample_rate,
1073 		.cea = params->cea,
1074 	};
1075 
1076 	memcpy(audio.status, params->iec.status,
1077 	       min(sizeof(audio.status), sizeof(params->iec.status)));
1078 
1079 	switch (daifmt->fmt) {
1080 	case HDMI_I2S:
1081 		audio.i2s_format = I2S_FORMAT_PHILIPS;
1082 		break;
1083 	case HDMI_LEFT_J:
1084 		audio.i2s_format = I2S_FORMAT_LEFT_J;
1085 		break;
1086 	case HDMI_RIGHT_J:
1087 		audio.i2s_format = I2S_FORMAT_RIGHT_J;
1088 		break;
1089 	case HDMI_SPDIF:
1090 		audio.i2s_format = 0;
1091 		break;
1092 	default:
1093 		dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1094 		return -EINVAL;
1095 	}
1096 
1097 	if (!spdif &&
1098 	    (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
1099 	     daifmt->bit_clk_provider || daifmt->frame_clk_provider)) {
1100 		dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
1101 			daifmt->bit_clk_inv, daifmt->frame_clk_inv,
1102 			daifmt->bit_clk_provider,
1103 			daifmt->frame_clk_provider);
1104 		return -EINVAL;
1105 	}
1106 
1107 	ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif);
1108 	if (ret < 0)
1109 		return ret;
1110 
1111 	bclk_ratio = spdif ? 64 : params->sample_width * 2;
1112 	ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio);
1113 	if (ret < 0)
1114 		return ret;
1115 
1116 	mutex_lock(&priv->audio_mutex);
1117 	priv->audio = audio;
1118 	if (priv->supports_infoframes && priv->sink_has_audio)
1119 		tda998x_configure_audio(priv);
1120 	mutex_unlock(&priv->audio_mutex);
1121 
1122 	return 0;
1123 }
1124 
1125 static void tda998x_audio_shutdown(struct device *dev, void *data)
1126 {
1127 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1128 
1129 	mutex_lock(&priv->audio_mutex);
1130 
1131 	reg_write(priv, REG_ENA_AP, 0);
1132 	priv->audio.ena_ap = 0;
1133 
1134 	mutex_unlock(&priv->audio_mutex);
1135 }
1136 
1137 static int tda998x_audio_mute_stream(struct device *dev, void *data,
1138 				     bool enable, int direction)
1139 {
1140 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1141 
1142 	mutex_lock(&priv->audio_mutex);
1143 
1144 	tda998x_audio_mute(priv, enable);
1145 
1146 	mutex_unlock(&priv->audio_mutex);
1147 	return 0;
1148 }
1149 
1150 static int tda998x_audio_get_eld(struct device *dev, void *data,
1151 				 uint8_t *buf, size_t len)
1152 {
1153 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1154 
1155 	mutex_lock(&priv->audio_mutex);
1156 	memcpy(buf, priv->connector.eld,
1157 	       min(sizeof(priv->connector.eld), len));
1158 	mutex_unlock(&priv->audio_mutex);
1159 
1160 	return 0;
1161 }
1162 
1163 static const struct hdmi_codec_ops audio_codec_ops = {
1164 	.hw_params = tda998x_audio_hw_params,
1165 	.audio_shutdown = tda998x_audio_shutdown,
1166 	.mute_stream = tda998x_audio_mute_stream,
1167 	.get_eld = tda998x_audio_get_eld,
1168 	.no_capture_mute = 1,
1169 };
1170 
1171 static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1172 				    struct device *dev)
1173 {
1174 	struct hdmi_codec_pdata codec_data = {
1175 		.ops = &audio_codec_ops,
1176 		.max_i2s_channels = 2,
1177 		.no_i2s_capture = 1,
1178 		.no_spdif_capture = 1,
1179 	};
1180 
1181 	if (priv->audio_port_enable[AUDIO_ROUTE_I2S])
1182 		codec_data.i2s = 1;
1183 	if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1184 		codec_data.spdif = 1;
1185 
1186 	priv->audio_pdev = platform_device_register_data(
1187 		dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1188 		&codec_data, sizeof(codec_data));
1189 
1190 	return PTR_ERR_OR_ZERO(priv->audio_pdev);
1191 }
1192 
1193 /* DRM connector functions */
1194 
1195 static enum drm_connector_status
1196 tda998x_connector_detect(struct drm_connector *connector, bool force)
1197 {
1198 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1199 	u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1200 
1201 	return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1202 			connector_status_disconnected;
1203 }
1204 
1205 static void tda998x_connector_destroy(struct drm_connector *connector)
1206 {
1207 	drm_connector_cleanup(connector);
1208 }
1209 
1210 static const struct drm_connector_funcs tda998x_connector_funcs = {
1211 	.reset = drm_atomic_helper_connector_reset,
1212 	.fill_modes = drm_helper_probe_single_connector_modes,
1213 	.detect = tda998x_connector_detect,
1214 	.destroy = tda998x_connector_destroy,
1215 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1216 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1217 };
1218 
1219 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1220 {
1221 	struct tda998x_priv *priv = data;
1222 	u8 offset, segptr;
1223 	int ret, i;
1224 
1225 	offset = (blk & 1) ? 128 : 0;
1226 	segptr = blk / 2;
1227 
1228 	mutex_lock(&priv->edid_mutex);
1229 
1230 	reg_write(priv, REG_DDC_ADDR, 0xa0);
1231 	reg_write(priv, REG_DDC_OFFS, offset);
1232 	reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1233 	reg_write(priv, REG_DDC_SEGM, segptr);
1234 
1235 	/* enable reading EDID: */
1236 	priv->wq_edid_wait = 1;
1237 	reg_write(priv, REG_EDID_CTRL, 0x1);
1238 
1239 	/* flag must be cleared by sw: */
1240 	reg_write(priv, REG_EDID_CTRL, 0x0);
1241 
1242 	/* wait for block read to complete: */
1243 	if (priv->hdmi->irq) {
1244 		i = wait_event_timeout(priv->wq_edid,
1245 					!priv->wq_edid_wait,
1246 					msecs_to_jiffies(100));
1247 		if (i < 0) {
1248 			dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1249 			ret = i;
1250 			goto failed;
1251 		}
1252 	} else {
1253 		for (i = 100; i > 0; i--) {
1254 			msleep(1);
1255 			ret = reg_read(priv, REG_INT_FLAGS_2);
1256 			if (ret < 0)
1257 				goto failed;
1258 			if (ret & INT_FLAGS_2_EDID_BLK_RD)
1259 				break;
1260 		}
1261 	}
1262 
1263 	if (i == 0) {
1264 		dev_err(&priv->hdmi->dev, "read edid timeout\n");
1265 		ret = -ETIMEDOUT;
1266 		goto failed;
1267 	}
1268 
1269 	ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1270 	if (ret != length) {
1271 		dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1272 			blk, ret);
1273 		goto failed;
1274 	}
1275 
1276 	ret = 0;
1277 
1278  failed:
1279 	mutex_unlock(&priv->edid_mutex);
1280 	return ret;
1281 }
1282 
1283 static int tda998x_connector_get_modes(struct drm_connector *connector)
1284 {
1285 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1286 	struct edid *edid;
1287 	int n;
1288 
1289 	/*
1290 	 * If we get killed while waiting for the HPD timeout, return
1291 	 * no modes found: we are not in a restartable path, so we
1292 	 * can't handle signals gracefully.
1293 	 */
1294 	if (tda998x_edid_delay_wait(priv))
1295 		return 0;
1296 
1297 	if (priv->rev == TDA19988)
1298 		reg_clear(priv, REG_TX4, TX4_PD_RAM);
1299 
1300 	edid = drm_do_get_edid(connector, read_edid_block, priv);
1301 
1302 	if (priv->rev == TDA19988)
1303 		reg_set(priv, REG_TX4, TX4_PD_RAM);
1304 
1305 	if (!edid) {
1306 		dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1307 		return 0;
1308 	}
1309 
1310 	drm_connector_update_edid_property(connector, edid);
1311 	cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid);
1312 
1313 	mutex_lock(&priv->audio_mutex);
1314 	n = drm_add_edid_modes(connector, edid);
1315 	priv->sink_has_audio = drm_detect_monitor_audio(edid);
1316 	mutex_unlock(&priv->audio_mutex);
1317 
1318 	kfree(edid);
1319 
1320 	return n;
1321 }
1322 
1323 static struct drm_encoder *
1324 tda998x_connector_best_encoder(struct drm_connector *connector)
1325 {
1326 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1327 
1328 	return priv->bridge.encoder;
1329 }
1330 
1331 static
1332 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1333 	.get_modes = tda998x_connector_get_modes,
1334 	.best_encoder = tda998x_connector_best_encoder,
1335 };
1336 
1337 static int tda998x_connector_init(struct tda998x_priv *priv,
1338 				  struct drm_device *drm)
1339 {
1340 	struct drm_connector *connector = &priv->connector;
1341 	int ret;
1342 
1343 	connector->interlace_allowed = 1;
1344 
1345 	if (priv->hdmi->irq)
1346 		connector->polled = DRM_CONNECTOR_POLL_HPD;
1347 	else
1348 		connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1349 			DRM_CONNECTOR_POLL_DISCONNECT;
1350 
1351 	drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1352 	ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1353 				 DRM_MODE_CONNECTOR_HDMIA);
1354 	if (ret)
1355 		return ret;
1356 
1357 	drm_connector_attach_encoder(&priv->connector,
1358 				     priv->bridge.encoder);
1359 
1360 	return 0;
1361 }
1362 
1363 /* DRM bridge functions */
1364 
1365 static int tda998x_bridge_attach(struct drm_bridge *bridge,
1366 				 enum drm_bridge_attach_flags flags)
1367 {
1368 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1369 
1370 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
1371 		DRM_ERROR("Fix bridge driver to make connector optional!");
1372 		return -EINVAL;
1373 	}
1374 
1375 	return tda998x_connector_init(priv, bridge->dev);
1376 }
1377 
1378 static void tda998x_bridge_detach(struct drm_bridge *bridge)
1379 {
1380 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1381 
1382 	drm_connector_cleanup(&priv->connector);
1383 }
1384 
1385 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1386 				     const struct drm_display_info *info,
1387 				     const struct drm_display_mode *mode)
1388 {
1389 	/* TDA19988 dotclock can go up to 165MHz */
1390 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1391 
1392 	if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1393 		return MODE_CLOCK_HIGH;
1394 	if (mode->htotal >= BIT(13))
1395 		return MODE_BAD_HVALUE;
1396 	if (mode->vtotal >= BIT(11))
1397 		return MODE_BAD_VVALUE;
1398 	return MODE_OK;
1399 }
1400 
1401 static void tda998x_bridge_enable(struct drm_bridge *bridge)
1402 {
1403 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1404 
1405 	if (!priv->is_on) {
1406 		/* enable video ports, audio will be enabled later */
1407 		reg_write(priv, REG_ENA_VP_0, 0xff);
1408 		reg_write(priv, REG_ENA_VP_1, 0xff);
1409 		reg_write(priv, REG_ENA_VP_2, 0xff);
1410 		/* set muxing after enabling ports: */
1411 		reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1412 		reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1413 		reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1414 
1415 		priv->is_on = true;
1416 	}
1417 }
1418 
1419 static void tda998x_bridge_disable(struct drm_bridge *bridge)
1420 {
1421 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1422 
1423 	if (priv->is_on) {
1424 		/* disable video ports */
1425 		reg_write(priv, REG_ENA_VP_0, 0x00);
1426 		reg_write(priv, REG_ENA_VP_1, 0x00);
1427 		reg_write(priv, REG_ENA_VP_2, 0x00);
1428 
1429 		priv->is_on = false;
1430 	}
1431 }
1432 
1433 static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1434 				    const struct drm_display_mode *mode,
1435 				    const struct drm_display_mode *adjusted_mode)
1436 {
1437 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1438 	unsigned long tmds_clock;
1439 	u16 ref_pix, ref_line, n_pix, n_line;
1440 	u16 hs_pix_s, hs_pix_e;
1441 	u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1442 	u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1443 	u16 vwin1_line_s, vwin1_line_e;
1444 	u16 vwin2_line_s, vwin2_line_e;
1445 	u16 de_pix_s, de_pix_e;
1446 	u8 reg, div, rep, sel_clk;
1447 
1448 	/*
1449 	 * Since we are "computer" like, our source invariably produces
1450 	 * full-range RGB.  If the monitor supports full-range, then use
1451 	 * it, otherwise reduce to limited-range.
1452 	 */
1453 	priv->rgb_quant_range =
1454 		priv->connector.display_info.rgb_quant_range_selectable ?
1455 		HDMI_QUANTIZATION_RANGE_FULL :
1456 		drm_default_rgb_quant_range(adjusted_mode);
1457 
1458 	/*
1459 	 * Internally TDA998x is using ITU-R BT.656 style sync but
1460 	 * we get VESA style sync. TDA998x is using a reference pixel
1461 	 * relative to ITU to sync to the input frame and for output
1462 	 * sync generation. Currently, we are using reference detection
1463 	 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1464 	 * which is position of rising VS with coincident rising HS.
1465 	 *
1466 	 * Now there is some issues to take care of:
1467 	 * - HDMI data islands require sync-before-active
1468 	 * - TDA998x register values must be > 0 to be enabled
1469 	 * - REFLINE needs an additional offset of +1
1470 	 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1471 	 *
1472 	 * So we add +1 to all horizontal and vertical register values,
1473 	 * plus an additional +3 for REFPIX as we are using RGB input only.
1474 	 */
1475 	n_pix        = mode->htotal;
1476 	n_line       = mode->vtotal;
1477 
1478 	hs_pix_e     = mode->hsync_end - mode->hdisplay;
1479 	hs_pix_s     = mode->hsync_start - mode->hdisplay;
1480 	de_pix_e     = mode->htotal;
1481 	de_pix_s     = mode->htotal - mode->hdisplay;
1482 	ref_pix      = 3 + hs_pix_s;
1483 
1484 	/*
1485 	 * Attached LCD controllers may generate broken sync. Allow
1486 	 * those to adjust the position of the rising VS edge by adding
1487 	 * HSKEW to ref_pix.
1488 	 */
1489 	if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1490 		ref_pix += adjusted_mode->hskew;
1491 
1492 	if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1493 		ref_line     = 1 + mode->vsync_start - mode->vdisplay;
1494 		vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1495 		vwin1_line_e = vwin1_line_s + mode->vdisplay;
1496 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1497 		vs1_line_s   = mode->vsync_start - mode->vdisplay;
1498 		vs1_line_e   = vs1_line_s +
1499 			       mode->vsync_end - mode->vsync_start;
1500 		vwin2_line_s = vwin2_line_e = 0;
1501 		vs2_pix_s    = vs2_pix_e  = 0;
1502 		vs2_line_s   = vs2_line_e = 0;
1503 	} else {
1504 		ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
1505 		vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1506 		vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1507 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1508 		vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
1509 		vs1_line_e   = vs1_line_s +
1510 			       (mode->vsync_end - mode->vsync_start)/2;
1511 		vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1512 		vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1513 		vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
1514 		vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
1515 		vs2_line_e   = vs2_line_s +
1516 			       (mode->vsync_end - mode->vsync_start)/2;
1517 	}
1518 
1519 	/*
1520 	 * Select pixel repeat depending on the double-clock flag
1521 	 * (which means we have to repeat each pixel once.)
1522 	 */
1523 	rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0;
1524 	sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 |
1525 		  SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0);
1526 
1527 	/* the TMDS clock is scaled up by the pixel repeat */
1528 	tmds_clock = mode->clock * (1 + rep);
1529 
1530 	/*
1531 	 * The divisor is power-of-2. The TDA9983B datasheet gives
1532 	 * this as ranges of Msample/s, which is 10x the TMDS clock:
1533 	 *   0 - 800 to 1500 Msample/s
1534 	 *   1 - 400 to 800 Msample/s
1535 	 *   2 - 200 to 400 Msample/s
1536 	 *   3 - as 2 above
1537 	 */
1538 	for (div = 0; div < 3; div++)
1539 		if (80000 >> div <= tmds_clock)
1540 			break;
1541 
1542 	mutex_lock(&priv->audio_mutex);
1543 
1544 	priv->tmds_clock = tmds_clock;
1545 
1546 	/* mute the audio FIFO: */
1547 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1548 
1549 	/* set HDMI HDCP mode off: */
1550 	reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1551 	reg_clear(priv, REG_TX33, TX33_HDMI);
1552 	reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1553 
1554 	/* no pre-filter or interpolator: */
1555 	reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1556 			HVF_CNTRL_0_INTPOL(0));
1557 	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1558 	reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1559 	reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1560 			VIP_CNTRL_4_BLC(0));
1561 
1562 	reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1563 	reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1564 					  PLL_SERIAL_3_SRL_DE);
1565 	reg_write(priv, REG_SERIALIZER, 0);
1566 	reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1567 
1568 	reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep));
1569 	reg_write(priv, REG_SEL_CLK, sel_clk);
1570 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1571 			PLL_SERIAL_2_SRL_PR(rep));
1572 
1573 	/* set color matrix according to output rgb quant range */
1574 	if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) {
1575 		static u8 tda998x_full_to_limited_range[] = {
1576 			MAT_CONTRL_MAT_SC(2),
1577 			0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1578 			0x03, 0x6f, 0x00, 0x00, 0x00, 0x00,
1579 			0x00, 0x00, 0x03, 0x6f, 0x00, 0x00,
1580 			0x00, 0x00, 0x00, 0x00, 0x03, 0x6f,
1581 			0x00, 0x40, 0x00, 0x40, 0x00, 0x40
1582 		};
1583 		reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1584 		reg_write_range(priv, REG_MAT_CONTRL,
1585 				tda998x_full_to_limited_range,
1586 				sizeof(tda998x_full_to_limited_range));
1587 	} else {
1588 		reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1589 					MAT_CONTRL_MAT_SC(1));
1590 		reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1591 	}
1592 
1593 	/* set BIAS tmds value: */
1594 	reg_write(priv, REG_ANA_GENERAL, 0x09);
1595 
1596 	/*
1597 	 * Sync on rising HSYNC/VSYNC
1598 	 */
1599 	reg = VIP_CNTRL_3_SYNC_HS;
1600 
1601 	/*
1602 	 * TDA19988 requires high-active sync at input stage,
1603 	 * so invert low-active sync provided by master encoder here
1604 	 */
1605 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1606 		reg |= VIP_CNTRL_3_H_TGL;
1607 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1608 		reg |= VIP_CNTRL_3_V_TGL;
1609 	reg_write(priv, REG_VIP_CNTRL_3, reg);
1610 
1611 	reg_write(priv, REG_VIDFORMAT, 0x00);
1612 	reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1613 	reg_write16(priv, REG_REFLINE_MSB, ref_line);
1614 	reg_write16(priv, REG_NPIX_MSB, n_pix);
1615 	reg_write16(priv, REG_NLINE_MSB, n_line);
1616 	reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1617 	reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1618 	reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1619 	reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1620 	reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1621 	reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1622 	reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1623 	reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1624 	reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1625 	reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1626 	reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1627 	reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1628 	reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1629 	reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1630 	reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1631 	reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1632 
1633 	if (priv->rev == TDA19988) {
1634 		/* let incoming pixels fill the active space (if any) */
1635 		reg_write(priv, REG_ENABLE_SPACE, 0x00);
1636 	}
1637 
1638 	/*
1639 	 * Always generate sync polarity relative to input sync and
1640 	 * revert input stage toggled sync at output stage
1641 	 */
1642 	reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1643 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1644 		reg |= TBG_CNTRL_1_H_TGL;
1645 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1646 		reg |= TBG_CNTRL_1_V_TGL;
1647 	reg_write(priv, REG_TBG_CNTRL_1, reg);
1648 
1649 	/* must be last register set: */
1650 	reg_write(priv, REG_TBG_CNTRL_0, 0);
1651 
1652 	/* CEA-861B section 6 says that:
1653 	 * CEA version 1 (CEA-861) has no support for infoframes.
1654 	 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1655 	 * and optional basic audio.
1656 	 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1657 	 * and optional digital audio, with audio infoframes.
1658 	 *
1659 	 * Since we only support generation of version 2 AVI infoframes,
1660 	 * ignore CEA version 2 and below (iow, behave as if we're a
1661 	 * CEA-861 source.)
1662 	 */
1663 	priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1664 
1665 	if (priv->supports_infoframes) {
1666 		/* We need to turn HDMI HDCP stuff on to get audio through */
1667 		reg &= ~TBG_CNTRL_1_DWIN_DIS;
1668 		reg_write(priv, REG_TBG_CNTRL_1, reg);
1669 		reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1670 		reg_set(priv, REG_TX33, TX33_HDMI);
1671 
1672 		tda998x_write_avi(priv, adjusted_mode);
1673 		tda998x_write_vsi(priv, adjusted_mode);
1674 
1675 		if (priv->sink_has_audio)
1676 			tda998x_configure_audio(priv);
1677 	}
1678 
1679 	mutex_unlock(&priv->audio_mutex);
1680 }
1681 
1682 static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1683 	.attach = tda998x_bridge_attach,
1684 	.detach = tda998x_bridge_detach,
1685 	.mode_valid = tda998x_bridge_mode_valid,
1686 	.disable = tda998x_bridge_disable,
1687 	.mode_set = tda998x_bridge_mode_set,
1688 	.enable = tda998x_bridge_enable,
1689 };
1690 
1691 /* I2C driver functions */
1692 
1693 static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1694 				   struct device_node *np)
1695 {
1696 	const u32 *port_data;
1697 	u32 size;
1698 	int i;
1699 
1700 	port_data = of_get_property(np, "audio-ports", &size);
1701 	if (!port_data)
1702 		return 0;
1703 
1704 	size /= sizeof(u32);
1705 	if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) {
1706 		dev_err(&priv->hdmi->dev,
1707 			"Bad number of elements in audio-ports dt-property\n");
1708 		return -EINVAL;
1709 	}
1710 
1711 	size /= 2;
1712 
1713 	for (i = 0; i < size; i++) {
1714 		unsigned int route;
1715 		u8 afmt = be32_to_cpup(&port_data[2*i]);
1716 		u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1717 
1718 		switch (afmt) {
1719 		case AFMT_I2S:
1720 			route = AUDIO_ROUTE_I2S;
1721 			break;
1722 		case AFMT_SPDIF:
1723 			route = AUDIO_ROUTE_SPDIF;
1724 			break;
1725 		default:
1726 			dev_err(&priv->hdmi->dev,
1727 				"Bad audio format %u\n", afmt);
1728 			return -EINVAL;
1729 		}
1730 
1731 		if (!ena_ap) {
1732 			dev_err(&priv->hdmi->dev, "invalid zero port config\n");
1733 			continue;
1734 		}
1735 
1736 		if (priv->audio_port_enable[route]) {
1737 			dev_err(&priv->hdmi->dev,
1738 				"%s format already configured\n",
1739 				route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S");
1740 			return -EINVAL;
1741 		}
1742 
1743 		priv->audio_port_enable[route] = ena_ap;
1744 	}
1745 	return 0;
1746 }
1747 
1748 static int tda998x_set_config(struct tda998x_priv *priv,
1749 			      const struct tda998x_encoder_params *p)
1750 {
1751 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
1752 			    (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
1753 			    VIP_CNTRL_0_SWAP_B(p->swap_b) |
1754 			    (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
1755 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
1756 			    (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
1757 			    VIP_CNTRL_1_SWAP_D(p->swap_d) |
1758 			    (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
1759 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
1760 			    (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
1761 			    VIP_CNTRL_2_SWAP_F(p->swap_f) |
1762 			    (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
1763 
1764 	if (p->audio_params.format != AFMT_UNUSED) {
1765 		unsigned int ratio, route;
1766 		bool spdif = p->audio_params.format == AFMT_SPDIF;
1767 
1768 		route = AUDIO_ROUTE_I2S + spdif;
1769 
1770 		priv->audio.route = &tda998x_audio_route[route];
1771 		priv->audio.cea = p->audio_params.cea;
1772 		priv->audio.sample_rate = p->audio_params.sample_rate;
1773 		memcpy(priv->audio.status, p->audio_params.status,
1774 		       min(sizeof(priv->audio.status),
1775 			   sizeof(p->audio_params.status)));
1776 		priv->audio.ena_ap = p->audio_params.config;
1777 		priv->audio.i2s_format = I2S_FORMAT_PHILIPS;
1778 
1779 		ratio = spdif ? 64 : p->audio_params.sample_width * 2;
1780 		return tda998x_derive_cts_n(priv, &priv->audio, ratio);
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 static void tda998x_destroy(struct device *dev)
1787 {
1788 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1789 
1790 	drm_bridge_remove(&priv->bridge);
1791 
1792 	/* disable all IRQs and free the IRQ handler */
1793 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1794 	reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1795 
1796 	if (priv->audio_pdev)
1797 		platform_device_unregister(priv->audio_pdev);
1798 
1799 	if (priv->hdmi->irq)
1800 		free_irq(priv->hdmi->irq, priv);
1801 
1802 	del_timer_sync(&priv->edid_delay_timer);
1803 	cancel_work_sync(&priv->detect_work);
1804 
1805 	i2c_unregister_device(priv->cec);
1806 
1807 	cec_notifier_conn_unregister(priv->cec_notify);
1808 }
1809 
1810 static int tda998x_create(struct device *dev)
1811 {
1812 	struct i2c_client *client = to_i2c_client(dev);
1813 	struct device_node *np = client->dev.of_node;
1814 	struct i2c_board_info cec_info;
1815 	struct tda998x_priv *priv;
1816 	u32 video;
1817 	int rev_lo, rev_hi, ret;
1818 
1819 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1820 	if (!priv)
1821 		return -ENOMEM;
1822 
1823 	dev_set_drvdata(dev, priv);
1824 
1825 	mutex_init(&priv->mutex);	/* protect the page access */
1826 	mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1827 	mutex_init(&priv->edid_mutex);
1828 	INIT_LIST_HEAD(&priv->bridge.list);
1829 	init_waitqueue_head(&priv->edid_delay_waitq);
1830 	timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1831 	INIT_WORK(&priv->detect_work, tda998x_detect_work);
1832 
1833 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1834 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1835 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1836 
1837 	/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1838 	priv->cec_addr = 0x34 + (client->addr & 0x03);
1839 	priv->current_page = 0xff;
1840 	priv->hdmi = client;
1841 
1842 	/* wake up the device: */
1843 	cec_write(priv, REG_CEC_ENAMODS,
1844 			CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1845 
1846 	tda998x_reset(priv);
1847 
1848 	/* read version: */
1849 	rev_lo = reg_read(priv, REG_VERSION_LSB);
1850 	if (rev_lo < 0) {
1851 		dev_err(dev, "failed to read version: %d\n", rev_lo);
1852 		return rev_lo;
1853 	}
1854 
1855 	rev_hi = reg_read(priv, REG_VERSION_MSB);
1856 	if (rev_hi < 0) {
1857 		dev_err(dev, "failed to read version: %d\n", rev_hi);
1858 		return rev_hi;
1859 	}
1860 
1861 	priv->rev = rev_lo | rev_hi << 8;
1862 
1863 	/* mask off feature bits: */
1864 	priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1865 
1866 	switch (priv->rev) {
1867 	case TDA9989N2:
1868 		dev_info(dev, "found TDA9989 n2");
1869 		break;
1870 	case TDA19989:
1871 		dev_info(dev, "found TDA19989");
1872 		break;
1873 	case TDA19989N2:
1874 		dev_info(dev, "found TDA19989 n2");
1875 		break;
1876 	case TDA19988:
1877 		dev_info(dev, "found TDA19988");
1878 		break;
1879 	default:
1880 		dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1881 		return -ENXIO;
1882 	}
1883 
1884 	/* after reset, enable DDC: */
1885 	reg_write(priv, REG_DDC_DISABLE, 0x00);
1886 
1887 	/* set clock on DDC channel: */
1888 	reg_write(priv, REG_TX3, 39);
1889 
1890 	/* if necessary, disable multi-master: */
1891 	if (priv->rev == TDA19989)
1892 		reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1893 
1894 	cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1895 			CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1896 
1897 	/* ensure interrupts are disabled */
1898 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1899 
1900 	/* clear pending interrupts */
1901 	cec_read(priv, REG_CEC_RXSHPDINT);
1902 	reg_read(priv, REG_INT_FLAGS_0);
1903 	reg_read(priv, REG_INT_FLAGS_1);
1904 	reg_read(priv, REG_INT_FLAGS_2);
1905 
1906 	/* initialize the optional IRQ */
1907 	if (client->irq) {
1908 		unsigned long irq_flags;
1909 
1910 		/* init read EDID waitqueue and HDP work */
1911 		init_waitqueue_head(&priv->wq_edid);
1912 
1913 		irq_flags =
1914 			irqd_get_trigger_type(irq_get_irq_data(client->irq));
1915 
1916 		priv->cec_glue.irq_flags = irq_flags;
1917 
1918 		irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1919 		ret = request_threaded_irq(client->irq, NULL,
1920 					   tda998x_irq_thread, irq_flags,
1921 					   "tda998x", priv);
1922 		if (ret) {
1923 			dev_err(dev, "failed to request IRQ#%u: %d\n",
1924 				client->irq, ret);
1925 			goto err_irq;
1926 		}
1927 
1928 		/* enable HPD irq */
1929 		cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1930 	}
1931 
1932 	priv->cec_notify = cec_notifier_conn_register(dev, NULL, NULL);
1933 	if (!priv->cec_notify) {
1934 		ret = -ENOMEM;
1935 		goto fail;
1936 	}
1937 
1938 	priv->cec_glue.parent = dev;
1939 	priv->cec_glue.data = priv;
1940 	priv->cec_glue.init = tda998x_cec_hook_init;
1941 	priv->cec_glue.exit = tda998x_cec_hook_exit;
1942 	priv->cec_glue.open = tda998x_cec_hook_open;
1943 	priv->cec_glue.release = tda998x_cec_hook_release;
1944 
1945 	/*
1946 	 * Some TDA998x are actually two I2C devices merged onto one piece
1947 	 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1948 	 * with a slightly modified TDA9950 CEC device.  The CEC device
1949 	 * is at the TDA9950 address, with the address pins strapped across
1950 	 * to the TDA998x address pins.  Hence, it always has the same
1951 	 * offset.
1952 	 */
1953 	memset(&cec_info, 0, sizeof(cec_info));
1954 	strscpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1955 	cec_info.addr = priv->cec_addr;
1956 	cec_info.platform_data = &priv->cec_glue;
1957 	cec_info.irq = client->irq;
1958 
1959 	priv->cec = i2c_new_client_device(client->adapter, &cec_info);
1960 	if (IS_ERR(priv->cec)) {
1961 		ret = PTR_ERR(priv->cec);
1962 		goto fail;
1963 	}
1964 
1965 	/* enable EDID read irq: */
1966 	reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1967 
1968 	if (np) {
1969 		/* get the device tree parameters */
1970 		ret = of_property_read_u32(np, "video-ports", &video);
1971 		if (ret == 0) {
1972 			priv->vip_cntrl_0 = video >> 16;
1973 			priv->vip_cntrl_1 = video >> 8;
1974 			priv->vip_cntrl_2 = video;
1975 		}
1976 
1977 		ret = tda998x_get_audio_ports(priv, np);
1978 		if (ret)
1979 			goto fail;
1980 
1981 		if (priv->audio_port_enable[AUDIO_ROUTE_I2S] ||
1982 		    priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1983 			tda998x_audio_codec_init(priv, &client->dev);
1984 	} else if (dev->platform_data) {
1985 		ret = tda998x_set_config(priv, dev->platform_data);
1986 		if (ret)
1987 			goto fail;
1988 	}
1989 
1990 	priv->bridge.funcs = &tda998x_bridge_funcs;
1991 #ifdef CONFIG_OF
1992 	priv->bridge.of_node = dev->of_node;
1993 #endif
1994 
1995 	drm_bridge_add(&priv->bridge);
1996 
1997 	return 0;
1998 
1999 fail:
2000 	tda998x_destroy(dev);
2001 err_irq:
2002 	return ret;
2003 }
2004 
2005 /* DRM encoder functions */
2006 
2007 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
2008 {
2009 	struct tda998x_priv *priv = dev_get_drvdata(dev);
2010 	u32 crtcs = 0;
2011 	int ret;
2012 
2013 	if (dev->of_node)
2014 		crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
2015 
2016 	/* If no CRTCs were found, fall back to our old behaviour */
2017 	if (crtcs == 0) {
2018 		dev_warn(dev, "Falling back to first CRTC\n");
2019 		crtcs = 1 << 0;
2020 	}
2021 
2022 	priv->encoder.possible_crtcs = crtcs;
2023 
2024 	ret = drm_simple_encoder_init(drm, &priv->encoder,
2025 				      DRM_MODE_ENCODER_TMDS);
2026 	if (ret)
2027 		goto err_encoder;
2028 
2029 	ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL, 0);
2030 	if (ret)
2031 		goto err_bridge;
2032 
2033 	return 0;
2034 
2035 err_bridge:
2036 	drm_encoder_cleanup(&priv->encoder);
2037 err_encoder:
2038 	return ret;
2039 }
2040 
2041 static int tda998x_bind(struct device *dev, struct device *master, void *data)
2042 {
2043 	struct drm_device *drm = data;
2044 
2045 	return tda998x_encoder_init(dev, drm);
2046 }
2047 
2048 static void tda998x_unbind(struct device *dev, struct device *master,
2049 			   void *data)
2050 {
2051 	struct tda998x_priv *priv = dev_get_drvdata(dev);
2052 
2053 	drm_encoder_cleanup(&priv->encoder);
2054 }
2055 
2056 static const struct component_ops tda998x_ops = {
2057 	.bind = tda998x_bind,
2058 	.unbind = tda998x_unbind,
2059 };
2060 
2061 static int
2062 tda998x_probe(struct i2c_client *client)
2063 {
2064 	int ret;
2065 
2066 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
2067 		dev_warn(&client->dev, "adapter does not support I2C\n");
2068 		return -EIO;
2069 	}
2070 
2071 	ret = tda998x_create(&client->dev);
2072 	if (ret)
2073 		return ret;
2074 
2075 	ret = component_add(&client->dev, &tda998x_ops);
2076 	if (ret)
2077 		tda998x_destroy(&client->dev);
2078 	return ret;
2079 }
2080 
2081 static void tda998x_remove(struct i2c_client *client)
2082 {
2083 	component_del(&client->dev, &tda998x_ops);
2084 	tda998x_destroy(&client->dev);
2085 }
2086 
2087 #ifdef CONFIG_OF
2088 static const struct of_device_id tda998x_dt_ids[] = {
2089 	{ .compatible = "nxp,tda998x", },
2090 	{ }
2091 };
2092 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
2093 #endif
2094 
2095 static const struct i2c_device_id tda998x_ids[] = {
2096 	{ "tda998x", 0 },
2097 	{ }
2098 };
2099 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
2100 
2101 static struct i2c_driver tda998x_driver = {
2102 	.probe = tda998x_probe,
2103 	.remove = tda998x_remove,
2104 	.driver = {
2105 		.name = "tda998x",
2106 		.of_match_table = of_match_ptr(tda998x_dt_ids),
2107 	},
2108 	.id_table = tda998x_ids,
2109 };
2110 
2111 module_i2c_driver(tda998x_driver);
2112 
2113 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
2114 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
2115 MODULE_LICENSE("GPL");
2116