xref: /linux/drivers/gpu/drm/i2c/tda998x_drv.c (revision 9e4d52a00a0217857fa40dc998971a375f861a61)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Texas Instruments
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #include <linux/component.h>
8 #include <linux/gpio/consumer.h>
9 #include <linux/hdmi.h>
10 #include <linux/module.h>
11 #include <linux/platform_data/tda9950.h>
12 #include <linux/irq.h>
13 #include <sound/asoundef.h>
14 #include <sound/hdmi-codec.h>
15 
16 #include <drm/drm_atomic_helper.h>
17 #include <drm/drm_bridge.h>
18 #include <drm/drm_edid.h>
19 #include <drm/drm_of.h>
20 #include <drm/drm_print.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_simple_kms_helper.h>
23 #include <drm/i2c/tda998x.h>
24 
25 #include <media/cec-notifier.h>
26 
27 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
28 
29 enum {
30 	AUDIO_ROUTE_I2S,
31 	AUDIO_ROUTE_SPDIF,
32 	AUDIO_ROUTE_NUM
33 };
34 
35 struct tda998x_audio_route {
36 	u8 ena_aclk;
37 	u8 mux_ap;
38 	u8 aip_clksel;
39 };
40 
41 struct tda998x_audio_settings {
42 	const struct tda998x_audio_route *route;
43 	struct hdmi_audio_infoframe cea;
44 	unsigned int sample_rate;
45 	u8 status[5];
46 	u8 ena_ap;
47 	u8 i2s_format;
48 	u8 cts_n;
49 };
50 
51 struct tda998x_priv {
52 	struct i2c_client *cec;
53 	struct i2c_client *hdmi;
54 	struct mutex mutex;
55 	u16 rev;
56 	u8 cec_addr;
57 	u8 current_page;
58 	bool is_on;
59 	bool supports_infoframes;
60 	bool sink_has_audio;
61 	enum hdmi_quantization_range rgb_quant_range;
62 	u8 vip_cntrl_0;
63 	u8 vip_cntrl_1;
64 	u8 vip_cntrl_2;
65 	unsigned long tmds_clock;
66 	struct tda998x_audio_settings audio;
67 
68 	struct platform_device *audio_pdev;
69 	struct mutex audio_mutex;
70 
71 	struct mutex edid_mutex;
72 	wait_queue_head_t wq_edid;
73 	volatile int wq_edid_wait;
74 
75 	struct work_struct detect_work;
76 	struct timer_list edid_delay_timer;
77 	wait_queue_head_t edid_delay_waitq;
78 	bool edid_delay_active;
79 
80 	struct drm_encoder encoder;
81 	struct drm_bridge bridge;
82 	struct drm_connector connector;
83 
84 	u8 audio_port_enable[AUDIO_ROUTE_NUM];
85 	struct tda9950_glue cec_glue;
86 	struct gpio_desc *calib;
87 	struct cec_notifier *cec_notify;
88 };
89 
90 #define conn_to_tda998x_priv(x) \
91 	container_of(x, struct tda998x_priv, connector)
92 #define enc_to_tda998x_priv(x) \
93 	container_of(x, struct tda998x_priv, encoder)
94 #define bridge_to_tda998x_priv(x) \
95 	container_of(x, struct tda998x_priv, bridge)
96 
97 /* The TDA9988 series of devices use a paged register scheme.. to simplify
98  * things we encode the page # in upper bits of the register #.  To read/
99  * write a given register, we need to make sure CURPAGE register is set
100  * appropriately.  Which implies reads/writes are not atomic.  Fun!
101  */
102 
103 #define REG(page, addr) (((page) << 8) | (addr))
104 #define REG2ADDR(reg)   ((reg) & 0xff)
105 #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
106 
107 #define REG_CURPAGE               0xff                /* write */
108 
109 
110 /* Page 00h: General Control */
111 #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
112 #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
113 # define MAIN_CNTRL0_SR           (1 << 0)
114 # define MAIN_CNTRL0_DECS         (1 << 1)
115 # define MAIN_CNTRL0_DEHS         (1 << 2)
116 # define MAIN_CNTRL0_CECS         (1 << 3)
117 # define MAIN_CNTRL0_CEHS         (1 << 4)
118 # define MAIN_CNTRL0_SCALER       (1 << 7)
119 #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
120 #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
121 # define SOFTRESET_AUDIO          (1 << 0)
122 # define SOFTRESET_I2C_MASTER     (1 << 1)
123 #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
124 #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
125 #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
126 # define I2C_MASTER_DIS_MM        (1 << 0)
127 # define I2C_MASTER_DIS_FILT      (1 << 1)
128 # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
129 #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
130 # define FEAT_POWERDOWN_PREFILT   BIT(0)
131 # define FEAT_POWERDOWN_CSC       BIT(1)
132 # define FEAT_POWERDOWN_SPDIF     (1 << 3)
133 #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
134 #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
135 #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
136 # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
137 #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
138 #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
139 #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
140 #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
141 #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
142 #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
143 # define VIP_CNTRL_0_MIRR_A       (1 << 7)
144 # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
145 # define VIP_CNTRL_0_MIRR_B       (1 << 3)
146 # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
147 #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
148 # define VIP_CNTRL_1_MIRR_C       (1 << 7)
149 # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
150 # define VIP_CNTRL_1_MIRR_D       (1 << 3)
151 # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
152 #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
153 # define VIP_CNTRL_2_MIRR_E       (1 << 7)
154 # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
155 # define VIP_CNTRL_2_MIRR_F       (1 << 3)
156 # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
157 #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
158 # define VIP_CNTRL_3_X_TGL        (1 << 0)
159 # define VIP_CNTRL_3_H_TGL        (1 << 1)
160 # define VIP_CNTRL_3_V_TGL        (1 << 2)
161 # define VIP_CNTRL_3_EMB          (1 << 3)
162 # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
163 # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
164 # define VIP_CNTRL_3_DE_INT       (1 << 6)
165 # define VIP_CNTRL_3_EDGE         (1 << 7)
166 #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
167 # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
168 # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
169 # define VIP_CNTRL_4_CCIR656      (1 << 4)
170 # define VIP_CNTRL_4_656_ALT      (1 << 5)
171 # define VIP_CNTRL_4_TST_656      (1 << 6)
172 # define VIP_CNTRL_4_TST_PAT      (1 << 7)
173 #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
174 # define VIP_CNTRL_5_CKCASE       (1 << 0)
175 # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
176 #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
177 # define MUX_AP_SELECT_I2S	  0x64
178 # define MUX_AP_SELECT_SPDIF	  0x40
179 #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
180 #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
181 # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
182 # define MAT_CONTRL_MAT_BP        (1 << 2)
183 #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
184 #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
185 #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
186 #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
187 #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
188 #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
189 #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
190 #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
191 #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
192 #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
193 #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
194 #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
195 #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
196 #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
197 #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
198 #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
199 #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
200 #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
201 #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
202 #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
203 #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
204 #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
205 #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
206 #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
207 #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
208 #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
209 #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
210 #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
211 #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
212 #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
213 #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
214 #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
215 #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
216 #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
217 #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
218 #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
219 #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
220 #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
221 #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
222 #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
223 #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
224 #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
225 # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
226 # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
227 # define TBG_CNTRL_0_DE_EXT       (1 << 2)
228 # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
229 # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
230 # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
231 # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
232 #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
233 # define TBG_CNTRL_1_H_TGL        (1 << 0)
234 # define TBG_CNTRL_1_V_TGL        (1 << 1)
235 # define TBG_CNTRL_1_TGL_EN       (1 << 2)
236 # define TBG_CNTRL_1_X_EXT        (1 << 3)
237 # define TBG_CNTRL_1_H_EXT        (1 << 4)
238 # define TBG_CNTRL_1_V_EXT        (1 << 5)
239 # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
240 #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
241 #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
242 # define HVF_CNTRL_0_SM           (1 << 7)
243 # define HVF_CNTRL_0_RWB          (1 << 6)
244 # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
245 # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
246 #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
247 # define HVF_CNTRL_1_FOR          (1 << 0)
248 # define HVF_CNTRL_1_YUVBLK       (1 << 1)
249 # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
250 # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
251 # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
252 #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
253 # define RPT_CNTRL_REPEAT(x)      ((x) & 15)
254 #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
255 # define I2S_FORMAT_PHILIPS       (0 << 0)
256 # define I2S_FORMAT_LEFT_J        (2 << 0)
257 # define I2S_FORMAT_RIGHT_J       (3 << 0)
258 #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
259 # define AIP_CLKSEL_AIP_SPDIF	  (0 << 3)
260 # define AIP_CLKSEL_AIP_I2S	  (1 << 3)
261 # define AIP_CLKSEL_FS_ACLK	  (0 << 0)
262 # define AIP_CLKSEL_FS_MCLK	  (1 << 0)
263 # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
264 
265 /* Page 02h: PLL settings */
266 #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
267 # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
268 # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
269 # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
270 #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
271 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
272 # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
273 #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
274 # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
275 # define PLL_SERIAL_3_SRL_DE      (1 << 2)
276 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
277 #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
278 #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
279 #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
280 #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
281 #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
282 #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
283 #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
284 #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
285 #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
286 # define AUDIO_DIV_SERCLK_1       0
287 # define AUDIO_DIV_SERCLK_2       1
288 # define AUDIO_DIV_SERCLK_4       2
289 # define AUDIO_DIV_SERCLK_8       3
290 # define AUDIO_DIV_SERCLK_16      4
291 # define AUDIO_DIV_SERCLK_32      5
292 #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
293 # define SEL_CLK_SEL_CLK1         (1 << 0)
294 # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
295 # define SEL_CLK_ENA_SC_CLK       (1 << 3)
296 #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
297 
298 
299 /* Page 09h: EDID Control */
300 #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
301 /* next 127 successive registers are the EDID block */
302 #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
303 #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
304 #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
305 #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
306 #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
307 
308 
309 /* Page 10h: information frames and packets */
310 #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
311 #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
312 #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
313 #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
314 #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
315 
316 
317 /* Page 11h: audio settings and content info packets */
318 #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
319 # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
320 # define AIP_CNTRL_0_SWAP         (1 << 1)
321 # define AIP_CNTRL_0_LAYOUT       (1 << 2)
322 # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
323 # define AIP_CNTRL_0_RST_CTS      (1 << 6)
324 #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
325 # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
326 # define CA_I2S_HBR_CHSTAT        (1 << 6)
327 #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
328 #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
329 #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
330 #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
331 #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
332 #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
333 #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
334 #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
335 # define CTS_N_K(x)               (((x) & 7) << 0)
336 # define CTS_N_M(x)               (((x) & 3) << 4)
337 #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
338 # define ENC_CNTRL_RST_ENC        (1 << 0)
339 # define ENC_CNTRL_RST_SEL        (1 << 1)
340 # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
341 #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
342 # define DIP_FLAGS_ACR            (1 << 0)
343 # define DIP_FLAGS_GC             (1 << 1)
344 #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
345 # define DIP_IF_FLAGS_IF1         (1 << 1)
346 # define DIP_IF_FLAGS_IF2         (1 << 2)
347 # define DIP_IF_FLAGS_IF3         (1 << 3)
348 # define DIP_IF_FLAGS_IF4         (1 << 4)
349 # define DIP_IF_FLAGS_IF5         (1 << 5)
350 #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
351 
352 
353 /* Page 12h: HDCP and OTP */
354 #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
355 #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
356 # define TX4_PD_RAM               (1 << 1)
357 #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
358 # define TX33_HDMI                (1 << 1)
359 
360 
361 /* Page 13h: Gamut related metadata packets */
362 
363 
364 
365 /* CEC registers: (not paged)
366  */
367 #define REG_CEC_INTSTATUS	  0xee		      /* read */
368 # define CEC_INTSTATUS_CEC	  (1 << 0)
369 # define CEC_INTSTATUS_HDMI	  (1 << 1)
370 #define REG_CEC_CAL_XOSC_CTRL1    0xf2
371 # define CEC_CAL_XOSC_CTRL1_ENA_CAL	BIT(0)
372 #define REG_CEC_DES_FREQ2         0xf5
373 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
374 #define REG_CEC_CLK               0xf6
375 # define CEC_CLK_FRO              0x11
376 #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
377 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
378 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
379 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
380 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
381 #define REG_CEC_RXSHPDINTENA	  0xfc		      /* read/write */
382 #define REG_CEC_RXSHPDINT	  0xfd		      /* read */
383 # define CEC_RXSHPDINT_RXSENS     BIT(0)
384 # define CEC_RXSHPDINT_HPD        BIT(1)
385 #define REG_CEC_RXSHPDLEV         0xfe                /* read */
386 # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
387 # define CEC_RXSHPDLEV_HPD        (1 << 1)
388 
389 #define REG_CEC_ENAMODS           0xff                /* read/write */
390 # define CEC_ENAMODS_EN_CEC_CLK   (1 << 7)
391 # define CEC_ENAMODS_DIS_FRO      (1 << 6)
392 # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
393 # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
394 # define CEC_ENAMODS_EN_HDMI      (1 << 1)
395 # define CEC_ENAMODS_EN_CEC       (1 << 0)
396 
397 
398 /* Device versions: */
399 #define TDA9989N2                 0x0101
400 #define TDA19989                  0x0201
401 #define TDA19989N2                0x0202
402 #define TDA19988                  0x0301
403 
404 static void
405 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
406 {
407 	u8 buf[] = {addr, val};
408 	struct i2c_msg msg = {
409 		.addr = priv->cec_addr,
410 		.len = 2,
411 		.buf = buf,
412 	};
413 	int ret;
414 
415 	ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
416 	if (ret < 0)
417 		dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
418 			ret, addr);
419 }
420 
421 static u8
422 cec_read(struct tda998x_priv *priv, u8 addr)
423 {
424 	u8 val;
425 	struct i2c_msg msg[2] = {
426 		{
427 			.addr = priv->cec_addr,
428 			.len = 1,
429 			.buf = &addr,
430 		}, {
431 			.addr = priv->cec_addr,
432 			.flags = I2C_M_RD,
433 			.len = 1,
434 			.buf = &val,
435 		},
436 	};
437 	int ret;
438 
439 	ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
440 	if (ret < 0) {
441 		dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
442 			ret, addr);
443 		val = 0;
444 	}
445 
446 	return val;
447 }
448 
449 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
450 {
451 	int val = cec_read(priv, REG_CEC_ENAMODS);
452 
453 	if (val < 0)
454 		return;
455 
456 	if (enable)
457 		val |= mods;
458 	else
459 		val &= ~mods;
460 
461 	cec_write(priv, REG_CEC_ENAMODS, val);
462 }
463 
464 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
465 {
466 	if (enable) {
467 		u8 val;
468 
469 		cec_write(priv, 0xf3, 0xc0);
470 		cec_write(priv, 0xf4, 0xd4);
471 
472 		/* Enable automatic calibration mode */
473 		val = cec_read(priv, REG_CEC_DES_FREQ2);
474 		val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
475 		cec_write(priv, REG_CEC_DES_FREQ2, val);
476 
477 		/* Enable free running oscillator */
478 		cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
479 		cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
480 
481 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
482 			  CEC_CAL_XOSC_CTRL1_ENA_CAL);
483 	} else {
484 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
485 	}
486 }
487 
488 /*
489  * Calibration for the internal oscillator: we need to set calibration mode,
490  * and then pulse the IRQ line low for a 10ms ± 1% period.
491  */
492 static void tda998x_cec_calibration(struct tda998x_priv *priv)
493 {
494 	struct gpio_desc *calib = priv->calib;
495 
496 	mutex_lock(&priv->edid_mutex);
497 	if (priv->hdmi->irq > 0)
498 		disable_irq(priv->hdmi->irq);
499 	gpiod_direction_output(calib, 1);
500 	tda998x_cec_set_calibration(priv, true);
501 
502 	local_irq_disable();
503 	gpiod_set_value(calib, 0);
504 	mdelay(10);
505 	gpiod_set_value(calib, 1);
506 	local_irq_enable();
507 
508 	tda998x_cec_set_calibration(priv, false);
509 	gpiod_direction_input(calib);
510 	if (priv->hdmi->irq > 0)
511 		enable_irq(priv->hdmi->irq);
512 	mutex_unlock(&priv->edid_mutex);
513 }
514 
515 static int tda998x_cec_hook_init(void *data)
516 {
517 	struct tda998x_priv *priv = data;
518 	struct gpio_desc *calib;
519 
520 	calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
521 	if (IS_ERR(calib)) {
522 		dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
523 			 PTR_ERR(calib));
524 		return PTR_ERR(calib);
525 	}
526 
527 	priv->calib = calib;
528 
529 	return 0;
530 }
531 
532 static void tda998x_cec_hook_exit(void *data)
533 {
534 	struct tda998x_priv *priv = data;
535 
536 	gpiod_put(priv->calib);
537 	priv->calib = NULL;
538 }
539 
540 static int tda998x_cec_hook_open(void *data)
541 {
542 	struct tda998x_priv *priv = data;
543 
544 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
545 	tda998x_cec_calibration(priv);
546 
547 	return 0;
548 }
549 
550 static void tda998x_cec_hook_release(void *data)
551 {
552 	struct tda998x_priv *priv = data;
553 
554 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
555 }
556 
557 static int
558 set_page(struct tda998x_priv *priv, u16 reg)
559 {
560 	if (REG2PAGE(reg) != priv->current_page) {
561 		struct i2c_client *client = priv->hdmi;
562 		u8 buf[] = {
563 				REG_CURPAGE, REG2PAGE(reg)
564 		};
565 		int ret = i2c_master_send(client, buf, sizeof(buf));
566 		if (ret < 0) {
567 			dev_err(&client->dev, "%s %04x err %d\n", __func__,
568 					reg, ret);
569 			return ret;
570 		}
571 
572 		priv->current_page = REG2PAGE(reg);
573 	}
574 	return 0;
575 }
576 
577 static int
578 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
579 {
580 	struct i2c_client *client = priv->hdmi;
581 	u8 addr = REG2ADDR(reg);
582 	int ret;
583 
584 	mutex_lock(&priv->mutex);
585 	ret = set_page(priv, reg);
586 	if (ret < 0)
587 		goto out;
588 
589 	ret = i2c_master_send(client, &addr, sizeof(addr));
590 	if (ret < 0)
591 		goto fail;
592 
593 	ret = i2c_master_recv(client, buf, cnt);
594 	if (ret < 0)
595 		goto fail;
596 
597 	goto out;
598 
599 fail:
600 	dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
601 out:
602 	mutex_unlock(&priv->mutex);
603 	return ret;
604 }
605 
606 #define MAX_WRITE_RANGE_BUF 32
607 
608 static void
609 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
610 {
611 	struct i2c_client *client = priv->hdmi;
612 	/* This is the maximum size of the buffer passed in */
613 	u8 buf[MAX_WRITE_RANGE_BUF + 1];
614 	int ret;
615 
616 	if (cnt > MAX_WRITE_RANGE_BUF) {
617 		dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
618 				MAX_WRITE_RANGE_BUF);
619 		return;
620 	}
621 
622 	buf[0] = REG2ADDR(reg);
623 	memcpy(&buf[1], p, cnt);
624 
625 	mutex_lock(&priv->mutex);
626 	ret = set_page(priv, reg);
627 	if (ret < 0)
628 		goto out;
629 
630 	ret = i2c_master_send(client, buf, cnt + 1);
631 	if (ret < 0)
632 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
633 out:
634 	mutex_unlock(&priv->mutex);
635 }
636 
637 static int
638 reg_read(struct tda998x_priv *priv, u16 reg)
639 {
640 	u8 val = 0;
641 	int ret;
642 
643 	ret = reg_read_range(priv, reg, &val, sizeof(val));
644 	if (ret < 0)
645 		return ret;
646 	return val;
647 }
648 
649 static void
650 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
651 {
652 	struct i2c_client *client = priv->hdmi;
653 	u8 buf[] = {REG2ADDR(reg), val};
654 	int ret;
655 
656 	mutex_lock(&priv->mutex);
657 	ret = set_page(priv, reg);
658 	if (ret < 0)
659 		goto out;
660 
661 	ret = i2c_master_send(client, buf, sizeof(buf));
662 	if (ret < 0)
663 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
664 out:
665 	mutex_unlock(&priv->mutex);
666 }
667 
668 static void
669 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
670 {
671 	struct i2c_client *client = priv->hdmi;
672 	u8 buf[] = {REG2ADDR(reg), val >> 8, val};
673 	int ret;
674 
675 	mutex_lock(&priv->mutex);
676 	ret = set_page(priv, reg);
677 	if (ret < 0)
678 		goto out;
679 
680 	ret = i2c_master_send(client, buf, sizeof(buf));
681 	if (ret < 0)
682 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
683 out:
684 	mutex_unlock(&priv->mutex);
685 }
686 
687 static void
688 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
689 {
690 	int old_val;
691 
692 	old_val = reg_read(priv, reg);
693 	if (old_val >= 0)
694 		reg_write(priv, reg, old_val | val);
695 }
696 
697 static void
698 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
699 {
700 	int old_val;
701 
702 	old_val = reg_read(priv, reg);
703 	if (old_val >= 0)
704 		reg_write(priv, reg, old_val & ~val);
705 }
706 
707 static void
708 tda998x_reset(struct tda998x_priv *priv)
709 {
710 	/* reset audio and i2c master: */
711 	reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
712 	msleep(50);
713 	reg_write(priv, REG_SOFTRESET, 0);
714 	msleep(50);
715 
716 	/* reset transmitter: */
717 	reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
718 	reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
719 
720 	/* PLL registers common configuration */
721 	reg_write(priv, REG_PLL_SERIAL_1, 0x00);
722 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
723 	reg_write(priv, REG_PLL_SERIAL_3, 0x00);
724 	reg_write(priv, REG_SERIALIZER,   0x00);
725 	reg_write(priv, REG_BUFFER_OUT,   0x00);
726 	reg_write(priv, REG_PLL_SCG1,     0x00);
727 	reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
728 	reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
729 	reg_write(priv, REG_PLL_SCGN1,    0xfa);
730 	reg_write(priv, REG_PLL_SCGN2,    0x00);
731 	reg_write(priv, REG_PLL_SCGR1,    0x5b);
732 	reg_write(priv, REG_PLL_SCGR2,    0x00);
733 	reg_write(priv, REG_PLL_SCG2,     0x10);
734 
735 	/* Write the default value MUX register */
736 	reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
737 }
738 
739 /*
740  * The TDA998x has a problem when trying to read the EDID close to a
741  * HPD assertion: it needs a delay of 100ms to avoid timing out while
742  * trying to read EDID data.
743  *
744  * However, tda998x_connector_get_modes() may be called at any moment
745  * after tda998x_connector_detect() indicates that we are connected, so
746  * we need to delay probing modes in tda998x_connector_get_modes() after
747  * we have seen a HPD inactive->active transition.  This code implements
748  * that delay.
749  */
750 static void tda998x_edid_delay_done(struct timer_list *t)
751 {
752 	struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
753 
754 	priv->edid_delay_active = false;
755 	wake_up(&priv->edid_delay_waitq);
756 	schedule_work(&priv->detect_work);
757 }
758 
759 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
760 {
761 	priv->edid_delay_active = true;
762 	mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
763 }
764 
765 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
766 {
767 	return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
768 }
769 
770 /*
771  * We need to run the KMS hotplug event helper outside of our threaded
772  * interrupt routine as this can call back into our get_modes method,
773  * which will want to make use of interrupts.
774  */
775 static void tda998x_detect_work(struct work_struct *work)
776 {
777 	struct tda998x_priv *priv =
778 		container_of(work, struct tda998x_priv, detect_work);
779 	struct drm_device *dev = priv->connector.dev;
780 
781 	if (dev)
782 		drm_kms_helper_hotplug_event(dev);
783 }
784 
785 /*
786  * only 2 interrupts may occur: screen plug/unplug and EDID read
787  */
788 static irqreturn_t tda998x_irq_thread(int irq, void *data)
789 {
790 	struct tda998x_priv *priv = data;
791 	u8 sta, cec, lvl, flag0, flag1, flag2;
792 	bool handled = false;
793 
794 	sta = cec_read(priv, REG_CEC_INTSTATUS);
795 	if (sta & CEC_INTSTATUS_HDMI) {
796 		cec = cec_read(priv, REG_CEC_RXSHPDINT);
797 		lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
798 		flag0 = reg_read(priv, REG_INT_FLAGS_0);
799 		flag1 = reg_read(priv, REG_INT_FLAGS_1);
800 		flag2 = reg_read(priv, REG_INT_FLAGS_2);
801 		DRM_DEBUG_DRIVER(
802 			"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
803 			sta, cec, lvl, flag0, flag1, flag2);
804 
805 		if (cec & CEC_RXSHPDINT_HPD) {
806 			if (lvl & CEC_RXSHPDLEV_HPD) {
807 				tda998x_edid_delay_start(priv);
808 			} else {
809 				schedule_work(&priv->detect_work);
810 				cec_notifier_phys_addr_invalidate(
811 						priv->cec_notify);
812 			}
813 
814 			handled = true;
815 		}
816 
817 		if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
818 			priv->wq_edid_wait = 0;
819 			wake_up(&priv->wq_edid);
820 			handled = true;
821 		}
822 	}
823 
824 	return IRQ_RETVAL(handled);
825 }
826 
827 static void
828 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
829 		 union hdmi_infoframe *frame)
830 {
831 	u8 buf[MAX_WRITE_RANGE_BUF];
832 	ssize_t len;
833 
834 	len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
835 	if (len < 0) {
836 		dev_err(&priv->hdmi->dev,
837 			"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
838 			frame->any.type, len);
839 		return;
840 	}
841 
842 	reg_clear(priv, REG_DIP_IF_FLAGS, bit);
843 	reg_write_range(priv, addr, buf, len);
844 	reg_set(priv, REG_DIP_IF_FLAGS, bit);
845 }
846 
847 static void tda998x_write_aif(struct tda998x_priv *priv,
848 			      const struct hdmi_audio_infoframe *cea)
849 {
850 	union hdmi_infoframe frame;
851 
852 	frame.audio = *cea;
853 
854 	tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
855 }
856 
857 static void
858 tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode)
859 {
860 	union hdmi_infoframe frame;
861 
862 	drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
863 						 &priv->connector, mode);
864 	frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
865 	drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode,
866 					   priv->rgb_quant_range);
867 
868 	tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
869 }
870 
871 static void tda998x_write_vsi(struct tda998x_priv *priv,
872 			      const struct drm_display_mode *mode)
873 {
874 	union hdmi_infoframe frame;
875 
876 	if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
877 							&priv->connector,
878 							mode))
879 		reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1);
880 	else
881 		tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame);
882 }
883 
884 /* Audio support */
885 
886 static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = {
887 	[AUDIO_ROUTE_I2S] = {
888 		.ena_aclk = 1,
889 		.mux_ap = MUX_AP_SELECT_I2S,
890 		.aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK,
891 	},
892 	[AUDIO_ROUTE_SPDIF] = {
893 		.ena_aclk = 0,
894 		.mux_ap = MUX_AP_SELECT_SPDIF,
895 		.aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF,
896 	},
897 };
898 
899 /* Configure the TDA998x audio data and clock routing. */
900 static int tda998x_derive_routing(struct tda998x_priv *priv,
901 				  struct tda998x_audio_settings *s,
902 				  unsigned int route)
903 {
904 	s->route = &tda998x_audio_route[route];
905 	s->ena_ap = priv->audio_port_enable[route];
906 	if (s->ena_ap == 0) {
907 		dev_err(&priv->hdmi->dev, "no audio configuration found\n");
908 		return -EINVAL;
909 	}
910 
911 	return 0;
912 }
913 
914 /*
915  * The audio clock divisor register controls a divider producing Audio_Clk_Out
916  * from SERclk by dividing it by 2^n where 0 <= n <= 5.  We don't know what
917  * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock.
918  *
919  * It seems that Audio_Clk_Out must be the smallest value that is greater
920  * than 128*fs, otherwise audio does not function. There is some suggestion
921  * that 126*fs is a better value.
922  */
923 static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs)
924 {
925 	unsigned long min_audio_clk = fs * 128;
926 	unsigned long ser_clk = priv->tmds_clock * 1000;
927 	u8 adiv;
928 
929 	for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--)
930 		if (ser_clk > min_audio_clk << adiv)
931 			break;
932 
933 	dev_dbg(&priv->hdmi->dev,
934 		"ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n",
935 		ser_clk, fs, min_audio_clk, adiv);
936 
937 	return adiv;
938 }
939 
940 /*
941  * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to
942  * generate the CTS value.  It appears that the "measured time stamp" is
943  * the number of TDMS clock cycles within a number of audio input clock
944  * cycles defined by the k and N parameters defined below, in a similar
945  * way to that which is set out in the CTS generation in the HDMI spec.
946  *
947  *  tmdsclk ----> mts -> /m ---> CTS
948  *                 ^
949  *  sclk -> /k -> /N
950  *
951  * CTS = mts / m, where m is 2^M.
952  * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4
953  * /N is a divider based on the HDMI specified N value.
954  *
955  * This produces the following equation:
956  *  CTS = tmds_clock * k * N / (sclk * m)
957  *
958  * When combined with the sink-side equation, and realising that sclk is
959  * bclk_ratio * fs, we end up with:
960  *  k = m * bclk_ratio / 128.
961  *
962  * Note: S/PDIF always uses a bclk_ratio of 64.
963  */
964 static int tda998x_derive_cts_n(struct tda998x_priv *priv,
965 				struct tda998x_audio_settings *settings,
966 				unsigned int ratio)
967 {
968 	switch (ratio) {
969 	case 16:
970 		settings->cts_n = CTS_N_M(3) | CTS_N_K(0);
971 		break;
972 	case 32:
973 		settings->cts_n = CTS_N_M(3) | CTS_N_K(1);
974 		break;
975 	case 48:
976 		settings->cts_n = CTS_N_M(3) | CTS_N_K(2);
977 		break;
978 	case 64:
979 		settings->cts_n = CTS_N_M(3) | CTS_N_K(3);
980 		break;
981 	case 128:
982 		settings->cts_n = CTS_N_M(0) | CTS_N_K(0);
983 		break;
984 	default:
985 		dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n",
986 			ratio);
987 		return -EINVAL;
988 	}
989 	return 0;
990 }
991 
992 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
993 {
994 	if (on) {
995 		reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
996 		reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
997 		reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
998 	} else {
999 		reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1000 	}
1001 }
1002 
1003 static void tda998x_configure_audio(struct tda998x_priv *priv)
1004 {
1005 	const struct tda998x_audio_settings *settings = &priv->audio;
1006 	u8 buf[6], adiv;
1007 	u32 n;
1008 
1009 	/* If audio is not configured, there is nothing to do. */
1010 	if (settings->ena_ap == 0)
1011 		return;
1012 
1013 	adiv = tda998x_get_adiv(priv, settings->sample_rate);
1014 
1015 	/* Enable audio ports */
1016 	reg_write(priv, REG_ENA_AP, settings->ena_ap);
1017 	reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk);
1018 	reg_write(priv, REG_MUX_AP, settings->route->mux_ap);
1019 	reg_write(priv, REG_I2S_FORMAT, settings->i2s_format);
1020 	reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel);
1021 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
1022 					AIP_CNTRL_0_ACR_MAN);	/* auto CTS */
1023 	reg_write(priv, REG_CTS_N, settings->cts_n);
1024 	reg_write(priv, REG_AUDIO_DIV, adiv);
1025 
1026 	/*
1027 	 * This is the approximate value of N, which happens to be
1028 	 * the recommended values for non-coherent clocks.
1029 	 */
1030 	n = 128 * settings->sample_rate / 1000;
1031 
1032 	/* Write the CTS and N values */
1033 	buf[0] = 0x44;
1034 	buf[1] = 0x42;
1035 	buf[2] = 0x01;
1036 	buf[3] = n;
1037 	buf[4] = n >> 8;
1038 	buf[5] = n >> 16;
1039 	reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
1040 
1041 	/* Reset CTS generator */
1042 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1043 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1044 
1045 	/* Write the channel status
1046 	 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
1047 	 * there is a separate register for each I2S wire.
1048 	 */
1049 	buf[0] = settings->status[0];
1050 	buf[1] = settings->status[1];
1051 	buf[2] = settings->status[3];
1052 	buf[3] = settings->status[4];
1053 	reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
1054 
1055 	tda998x_audio_mute(priv, true);
1056 	msleep(20);
1057 	tda998x_audio_mute(priv, false);
1058 
1059 	tda998x_write_aif(priv, &settings->cea);
1060 }
1061 
1062 static int tda998x_audio_hw_params(struct device *dev, void *data,
1063 				   struct hdmi_codec_daifmt *daifmt,
1064 				   struct hdmi_codec_params *params)
1065 {
1066 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1067 	unsigned int bclk_ratio;
1068 	bool spdif = daifmt->fmt == HDMI_SPDIF;
1069 	int ret;
1070 	struct tda998x_audio_settings audio = {
1071 		.sample_rate = params->sample_rate,
1072 		.cea = params->cea,
1073 	};
1074 
1075 	memcpy(audio.status, params->iec.status,
1076 	       min(sizeof(audio.status), sizeof(params->iec.status)));
1077 
1078 	switch (daifmt->fmt) {
1079 	case HDMI_I2S:
1080 		audio.i2s_format = I2S_FORMAT_PHILIPS;
1081 		break;
1082 	case HDMI_LEFT_J:
1083 		audio.i2s_format = I2S_FORMAT_LEFT_J;
1084 		break;
1085 	case HDMI_RIGHT_J:
1086 		audio.i2s_format = I2S_FORMAT_RIGHT_J;
1087 		break;
1088 	case HDMI_SPDIF:
1089 		audio.i2s_format = 0;
1090 		break;
1091 	default:
1092 		dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1093 		return -EINVAL;
1094 	}
1095 
1096 	if (!spdif &&
1097 	    (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
1098 	     daifmt->bit_clk_master || daifmt->frame_clk_master)) {
1099 		dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
1100 			daifmt->bit_clk_inv, daifmt->frame_clk_inv,
1101 			daifmt->bit_clk_master,
1102 			daifmt->frame_clk_master);
1103 		return -EINVAL;
1104 	}
1105 
1106 	ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif);
1107 	if (ret < 0)
1108 		return ret;
1109 
1110 	bclk_ratio = spdif ? 64 : params->sample_width * 2;
1111 	ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio);
1112 	if (ret < 0)
1113 		return ret;
1114 
1115 	mutex_lock(&priv->audio_mutex);
1116 	priv->audio = audio;
1117 	if (priv->supports_infoframes && priv->sink_has_audio)
1118 		tda998x_configure_audio(priv);
1119 	mutex_unlock(&priv->audio_mutex);
1120 
1121 	return 0;
1122 }
1123 
1124 static void tda998x_audio_shutdown(struct device *dev, void *data)
1125 {
1126 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1127 
1128 	mutex_lock(&priv->audio_mutex);
1129 
1130 	reg_write(priv, REG_ENA_AP, 0);
1131 	priv->audio.ena_ap = 0;
1132 
1133 	mutex_unlock(&priv->audio_mutex);
1134 }
1135 
1136 static int tda998x_audio_mute_stream(struct device *dev, void *data,
1137 				     bool enable, int direction)
1138 {
1139 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1140 
1141 	mutex_lock(&priv->audio_mutex);
1142 
1143 	tda998x_audio_mute(priv, enable);
1144 
1145 	mutex_unlock(&priv->audio_mutex);
1146 	return 0;
1147 }
1148 
1149 static int tda998x_audio_get_eld(struct device *dev, void *data,
1150 				 uint8_t *buf, size_t len)
1151 {
1152 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1153 
1154 	mutex_lock(&priv->audio_mutex);
1155 	memcpy(buf, priv->connector.eld,
1156 	       min(sizeof(priv->connector.eld), len));
1157 	mutex_unlock(&priv->audio_mutex);
1158 
1159 	return 0;
1160 }
1161 
1162 static const struct hdmi_codec_ops audio_codec_ops = {
1163 	.hw_params = tda998x_audio_hw_params,
1164 	.audio_shutdown = tda998x_audio_shutdown,
1165 	.mute_stream = tda998x_audio_mute_stream,
1166 	.get_eld = tda998x_audio_get_eld,
1167 	.no_capture_mute = 1,
1168 };
1169 
1170 static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1171 				    struct device *dev)
1172 {
1173 	struct hdmi_codec_pdata codec_data = {
1174 		.ops = &audio_codec_ops,
1175 		.max_i2s_channels = 2,
1176 	};
1177 
1178 	if (priv->audio_port_enable[AUDIO_ROUTE_I2S])
1179 		codec_data.i2s = 1;
1180 	if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1181 		codec_data.spdif = 1;
1182 
1183 	priv->audio_pdev = platform_device_register_data(
1184 		dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1185 		&codec_data, sizeof(codec_data));
1186 
1187 	return PTR_ERR_OR_ZERO(priv->audio_pdev);
1188 }
1189 
1190 /* DRM connector functions */
1191 
1192 static enum drm_connector_status
1193 tda998x_connector_detect(struct drm_connector *connector, bool force)
1194 {
1195 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1196 	u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1197 
1198 	return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1199 			connector_status_disconnected;
1200 }
1201 
1202 static void tda998x_connector_destroy(struct drm_connector *connector)
1203 {
1204 	drm_connector_cleanup(connector);
1205 }
1206 
1207 static const struct drm_connector_funcs tda998x_connector_funcs = {
1208 	.reset = drm_atomic_helper_connector_reset,
1209 	.fill_modes = drm_helper_probe_single_connector_modes,
1210 	.detect = tda998x_connector_detect,
1211 	.destroy = tda998x_connector_destroy,
1212 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1213 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1214 };
1215 
1216 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1217 {
1218 	struct tda998x_priv *priv = data;
1219 	u8 offset, segptr;
1220 	int ret, i;
1221 
1222 	offset = (blk & 1) ? 128 : 0;
1223 	segptr = blk / 2;
1224 
1225 	mutex_lock(&priv->edid_mutex);
1226 
1227 	reg_write(priv, REG_DDC_ADDR, 0xa0);
1228 	reg_write(priv, REG_DDC_OFFS, offset);
1229 	reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1230 	reg_write(priv, REG_DDC_SEGM, segptr);
1231 
1232 	/* enable reading EDID: */
1233 	priv->wq_edid_wait = 1;
1234 	reg_write(priv, REG_EDID_CTRL, 0x1);
1235 
1236 	/* flag must be cleared by sw: */
1237 	reg_write(priv, REG_EDID_CTRL, 0x0);
1238 
1239 	/* wait for block read to complete: */
1240 	if (priv->hdmi->irq) {
1241 		i = wait_event_timeout(priv->wq_edid,
1242 					!priv->wq_edid_wait,
1243 					msecs_to_jiffies(100));
1244 		if (i < 0) {
1245 			dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1246 			ret = i;
1247 			goto failed;
1248 		}
1249 	} else {
1250 		for (i = 100; i > 0; i--) {
1251 			msleep(1);
1252 			ret = reg_read(priv, REG_INT_FLAGS_2);
1253 			if (ret < 0)
1254 				goto failed;
1255 			if (ret & INT_FLAGS_2_EDID_BLK_RD)
1256 				break;
1257 		}
1258 	}
1259 
1260 	if (i == 0) {
1261 		dev_err(&priv->hdmi->dev, "read edid timeout\n");
1262 		ret = -ETIMEDOUT;
1263 		goto failed;
1264 	}
1265 
1266 	ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1267 	if (ret != length) {
1268 		dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1269 			blk, ret);
1270 		goto failed;
1271 	}
1272 
1273 	ret = 0;
1274 
1275  failed:
1276 	mutex_unlock(&priv->edid_mutex);
1277 	return ret;
1278 }
1279 
1280 static int tda998x_connector_get_modes(struct drm_connector *connector)
1281 {
1282 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1283 	struct edid *edid;
1284 	int n;
1285 
1286 	/*
1287 	 * If we get killed while waiting for the HPD timeout, return
1288 	 * no modes found: we are not in a restartable path, so we
1289 	 * can't handle signals gracefully.
1290 	 */
1291 	if (tda998x_edid_delay_wait(priv))
1292 		return 0;
1293 
1294 	if (priv->rev == TDA19988)
1295 		reg_clear(priv, REG_TX4, TX4_PD_RAM);
1296 
1297 	edid = drm_do_get_edid(connector, read_edid_block, priv);
1298 
1299 	if (priv->rev == TDA19988)
1300 		reg_set(priv, REG_TX4, TX4_PD_RAM);
1301 
1302 	if (!edid) {
1303 		dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1304 		return 0;
1305 	}
1306 
1307 	drm_connector_update_edid_property(connector, edid);
1308 	cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid);
1309 
1310 	mutex_lock(&priv->audio_mutex);
1311 	n = drm_add_edid_modes(connector, edid);
1312 	priv->sink_has_audio = drm_detect_monitor_audio(edid);
1313 	mutex_unlock(&priv->audio_mutex);
1314 
1315 	kfree(edid);
1316 
1317 	return n;
1318 }
1319 
1320 static struct drm_encoder *
1321 tda998x_connector_best_encoder(struct drm_connector *connector)
1322 {
1323 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1324 
1325 	return priv->bridge.encoder;
1326 }
1327 
1328 static
1329 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1330 	.get_modes = tda998x_connector_get_modes,
1331 	.best_encoder = tda998x_connector_best_encoder,
1332 };
1333 
1334 static int tda998x_connector_init(struct tda998x_priv *priv,
1335 				  struct drm_device *drm)
1336 {
1337 	struct drm_connector *connector = &priv->connector;
1338 	int ret;
1339 
1340 	connector->interlace_allowed = 1;
1341 
1342 	if (priv->hdmi->irq)
1343 		connector->polled = DRM_CONNECTOR_POLL_HPD;
1344 	else
1345 		connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1346 			DRM_CONNECTOR_POLL_DISCONNECT;
1347 
1348 	drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1349 	ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1350 				 DRM_MODE_CONNECTOR_HDMIA);
1351 	if (ret)
1352 		return ret;
1353 
1354 	drm_connector_attach_encoder(&priv->connector,
1355 				     priv->bridge.encoder);
1356 
1357 	return 0;
1358 }
1359 
1360 /* DRM bridge functions */
1361 
1362 static int tda998x_bridge_attach(struct drm_bridge *bridge,
1363 				 enum drm_bridge_attach_flags flags)
1364 {
1365 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1366 
1367 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
1368 		DRM_ERROR("Fix bridge driver to make connector optional!");
1369 		return -EINVAL;
1370 	}
1371 
1372 	return tda998x_connector_init(priv, bridge->dev);
1373 }
1374 
1375 static void tda998x_bridge_detach(struct drm_bridge *bridge)
1376 {
1377 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1378 
1379 	drm_connector_cleanup(&priv->connector);
1380 }
1381 
1382 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1383 				     const struct drm_display_info *info,
1384 				     const struct drm_display_mode *mode)
1385 {
1386 	/* TDA19988 dotclock can go up to 165MHz */
1387 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1388 
1389 	if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1390 		return MODE_CLOCK_HIGH;
1391 	if (mode->htotal >= BIT(13))
1392 		return MODE_BAD_HVALUE;
1393 	if (mode->vtotal >= BIT(11))
1394 		return MODE_BAD_VVALUE;
1395 	return MODE_OK;
1396 }
1397 
1398 static void tda998x_bridge_enable(struct drm_bridge *bridge)
1399 {
1400 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1401 
1402 	if (!priv->is_on) {
1403 		/* enable video ports, audio will be enabled later */
1404 		reg_write(priv, REG_ENA_VP_0, 0xff);
1405 		reg_write(priv, REG_ENA_VP_1, 0xff);
1406 		reg_write(priv, REG_ENA_VP_2, 0xff);
1407 		/* set muxing after enabling ports: */
1408 		reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1409 		reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1410 		reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1411 
1412 		priv->is_on = true;
1413 	}
1414 }
1415 
1416 static void tda998x_bridge_disable(struct drm_bridge *bridge)
1417 {
1418 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1419 
1420 	if (priv->is_on) {
1421 		/* disable video ports */
1422 		reg_write(priv, REG_ENA_VP_0, 0x00);
1423 		reg_write(priv, REG_ENA_VP_1, 0x00);
1424 		reg_write(priv, REG_ENA_VP_2, 0x00);
1425 
1426 		priv->is_on = false;
1427 	}
1428 }
1429 
1430 static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1431 				    const struct drm_display_mode *mode,
1432 				    const struct drm_display_mode *adjusted_mode)
1433 {
1434 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1435 	unsigned long tmds_clock;
1436 	u16 ref_pix, ref_line, n_pix, n_line;
1437 	u16 hs_pix_s, hs_pix_e;
1438 	u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1439 	u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1440 	u16 vwin1_line_s, vwin1_line_e;
1441 	u16 vwin2_line_s, vwin2_line_e;
1442 	u16 de_pix_s, de_pix_e;
1443 	u8 reg, div, rep, sel_clk;
1444 
1445 	/*
1446 	 * Since we are "computer" like, our source invariably produces
1447 	 * full-range RGB.  If the monitor supports full-range, then use
1448 	 * it, otherwise reduce to limited-range.
1449 	 */
1450 	priv->rgb_quant_range =
1451 		priv->connector.display_info.rgb_quant_range_selectable ?
1452 		HDMI_QUANTIZATION_RANGE_FULL :
1453 		drm_default_rgb_quant_range(adjusted_mode);
1454 
1455 	/*
1456 	 * Internally TDA998x is using ITU-R BT.656 style sync but
1457 	 * we get VESA style sync. TDA998x is using a reference pixel
1458 	 * relative to ITU to sync to the input frame and for output
1459 	 * sync generation. Currently, we are using reference detection
1460 	 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1461 	 * which is position of rising VS with coincident rising HS.
1462 	 *
1463 	 * Now there is some issues to take care of:
1464 	 * - HDMI data islands require sync-before-active
1465 	 * - TDA998x register values must be > 0 to be enabled
1466 	 * - REFLINE needs an additional offset of +1
1467 	 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1468 	 *
1469 	 * So we add +1 to all horizontal and vertical register values,
1470 	 * plus an additional +3 for REFPIX as we are using RGB input only.
1471 	 */
1472 	n_pix        = mode->htotal;
1473 	n_line       = mode->vtotal;
1474 
1475 	hs_pix_e     = mode->hsync_end - mode->hdisplay;
1476 	hs_pix_s     = mode->hsync_start - mode->hdisplay;
1477 	de_pix_e     = mode->htotal;
1478 	de_pix_s     = mode->htotal - mode->hdisplay;
1479 	ref_pix      = 3 + hs_pix_s;
1480 
1481 	/*
1482 	 * Attached LCD controllers may generate broken sync. Allow
1483 	 * those to adjust the position of the rising VS edge by adding
1484 	 * HSKEW to ref_pix.
1485 	 */
1486 	if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1487 		ref_pix += adjusted_mode->hskew;
1488 
1489 	if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1490 		ref_line     = 1 + mode->vsync_start - mode->vdisplay;
1491 		vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1492 		vwin1_line_e = vwin1_line_s + mode->vdisplay;
1493 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1494 		vs1_line_s   = mode->vsync_start - mode->vdisplay;
1495 		vs1_line_e   = vs1_line_s +
1496 			       mode->vsync_end - mode->vsync_start;
1497 		vwin2_line_s = vwin2_line_e = 0;
1498 		vs2_pix_s    = vs2_pix_e  = 0;
1499 		vs2_line_s   = vs2_line_e = 0;
1500 	} else {
1501 		ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
1502 		vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1503 		vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1504 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1505 		vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
1506 		vs1_line_e   = vs1_line_s +
1507 			       (mode->vsync_end - mode->vsync_start)/2;
1508 		vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1509 		vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1510 		vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
1511 		vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
1512 		vs2_line_e   = vs2_line_s +
1513 			       (mode->vsync_end - mode->vsync_start)/2;
1514 	}
1515 
1516 	/*
1517 	 * Select pixel repeat depending on the double-clock flag
1518 	 * (which means we have to repeat each pixel once.)
1519 	 */
1520 	rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0;
1521 	sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 |
1522 		  SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0);
1523 
1524 	/* the TMDS clock is scaled up by the pixel repeat */
1525 	tmds_clock = mode->clock * (1 + rep);
1526 
1527 	/*
1528 	 * The divisor is power-of-2. The TDA9983B datasheet gives
1529 	 * this as ranges of Msample/s, which is 10x the TMDS clock:
1530 	 *   0 - 800 to 1500 Msample/s
1531 	 *   1 - 400 to 800 Msample/s
1532 	 *   2 - 200 to 400 Msample/s
1533 	 *   3 - as 2 above
1534 	 */
1535 	for (div = 0; div < 3; div++)
1536 		if (80000 >> div <= tmds_clock)
1537 			break;
1538 
1539 	mutex_lock(&priv->audio_mutex);
1540 
1541 	priv->tmds_clock = tmds_clock;
1542 
1543 	/* mute the audio FIFO: */
1544 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1545 
1546 	/* set HDMI HDCP mode off: */
1547 	reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1548 	reg_clear(priv, REG_TX33, TX33_HDMI);
1549 	reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1550 
1551 	/* no pre-filter or interpolator: */
1552 	reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1553 			HVF_CNTRL_0_INTPOL(0));
1554 	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1555 	reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1556 	reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1557 			VIP_CNTRL_4_BLC(0));
1558 
1559 	reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1560 	reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1561 					  PLL_SERIAL_3_SRL_DE);
1562 	reg_write(priv, REG_SERIALIZER, 0);
1563 	reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1564 
1565 	reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep));
1566 	reg_write(priv, REG_SEL_CLK, sel_clk);
1567 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1568 			PLL_SERIAL_2_SRL_PR(rep));
1569 
1570 	/* set color matrix according to output rgb quant range */
1571 	if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) {
1572 		static u8 tda998x_full_to_limited_range[] = {
1573 			MAT_CONTRL_MAT_SC(2),
1574 			0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1575 			0x03, 0x6f, 0x00, 0x00, 0x00, 0x00,
1576 			0x00, 0x00, 0x03, 0x6f, 0x00, 0x00,
1577 			0x00, 0x00, 0x00, 0x00, 0x03, 0x6f,
1578 			0x00, 0x40, 0x00, 0x40, 0x00, 0x40
1579 		};
1580 		reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1581 		reg_write_range(priv, REG_MAT_CONTRL,
1582 				tda998x_full_to_limited_range,
1583 				sizeof(tda998x_full_to_limited_range));
1584 	} else {
1585 		reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1586 					MAT_CONTRL_MAT_SC(1));
1587 		reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1588 	}
1589 
1590 	/* set BIAS tmds value: */
1591 	reg_write(priv, REG_ANA_GENERAL, 0x09);
1592 
1593 	/*
1594 	 * Sync on rising HSYNC/VSYNC
1595 	 */
1596 	reg = VIP_CNTRL_3_SYNC_HS;
1597 
1598 	/*
1599 	 * TDA19988 requires high-active sync at input stage,
1600 	 * so invert low-active sync provided by master encoder here
1601 	 */
1602 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1603 		reg |= VIP_CNTRL_3_H_TGL;
1604 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1605 		reg |= VIP_CNTRL_3_V_TGL;
1606 	reg_write(priv, REG_VIP_CNTRL_3, reg);
1607 
1608 	reg_write(priv, REG_VIDFORMAT, 0x00);
1609 	reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1610 	reg_write16(priv, REG_REFLINE_MSB, ref_line);
1611 	reg_write16(priv, REG_NPIX_MSB, n_pix);
1612 	reg_write16(priv, REG_NLINE_MSB, n_line);
1613 	reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1614 	reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1615 	reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1616 	reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1617 	reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1618 	reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1619 	reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1620 	reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1621 	reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1622 	reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1623 	reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1624 	reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1625 	reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1626 	reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1627 	reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1628 	reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1629 
1630 	if (priv->rev == TDA19988) {
1631 		/* let incoming pixels fill the active space (if any) */
1632 		reg_write(priv, REG_ENABLE_SPACE, 0x00);
1633 	}
1634 
1635 	/*
1636 	 * Always generate sync polarity relative to input sync and
1637 	 * revert input stage toggled sync at output stage
1638 	 */
1639 	reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1640 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1641 		reg |= TBG_CNTRL_1_H_TGL;
1642 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1643 		reg |= TBG_CNTRL_1_V_TGL;
1644 	reg_write(priv, REG_TBG_CNTRL_1, reg);
1645 
1646 	/* must be last register set: */
1647 	reg_write(priv, REG_TBG_CNTRL_0, 0);
1648 
1649 	/* CEA-861B section 6 says that:
1650 	 * CEA version 1 (CEA-861) has no support for infoframes.
1651 	 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1652 	 * and optional basic audio.
1653 	 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1654 	 * and optional digital audio, with audio infoframes.
1655 	 *
1656 	 * Since we only support generation of version 2 AVI infoframes,
1657 	 * ignore CEA version 2 and below (iow, behave as if we're a
1658 	 * CEA-861 source.)
1659 	 */
1660 	priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1661 
1662 	if (priv->supports_infoframes) {
1663 		/* We need to turn HDMI HDCP stuff on to get audio through */
1664 		reg &= ~TBG_CNTRL_1_DWIN_DIS;
1665 		reg_write(priv, REG_TBG_CNTRL_1, reg);
1666 		reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1667 		reg_set(priv, REG_TX33, TX33_HDMI);
1668 
1669 		tda998x_write_avi(priv, adjusted_mode);
1670 		tda998x_write_vsi(priv, adjusted_mode);
1671 
1672 		if (priv->sink_has_audio)
1673 			tda998x_configure_audio(priv);
1674 	}
1675 
1676 	mutex_unlock(&priv->audio_mutex);
1677 }
1678 
1679 static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1680 	.attach = tda998x_bridge_attach,
1681 	.detach = tda998x_bridge_detach,
1682 	.mode_valid = tda998x_bridge_mode_valid,
1683 	.disable = tda998x_bridge_disable,
1684 	.mode_set = tda998x_bridge_mode_set,
1685 	.enable = tda998x_bridge_enable,
1686 };
1687 
1688 /* I2C driver functions */
1689 
1690 static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1691 				   struct device_node *np)
1692 {
1693 	const u32 *port_data;
1694 	u32 size;
1695 	int i;
1696 
1697 	port_data = of_get_property(np, "audio-ports", &size);
1698 	if (!port_data)
1699 		return 0;
1700 
1701 	size /= sizeof(u32);
1702 	if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) {
1703 		dev_err(&priv->hdmi->dev,
1704 			"Bad number of elements in audio-ports dt-property\n");
1705 		return -EINVAL;
1706 	}
1707 
1708 	size /= 2;
1709 
1710 	for (i = 0; i < size; i++) {
1711 		unsigned int route;
1712 		u8 afmt = be32_to_cpup(&port_data[2*i]);
1713 		u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1714 
1715 		switch (afmt) {
1716 		case AFMT_I2S:
1717 			route = AUDIO_ROUTE_I2S;
1718 			break;
1719 		case AFMT_SPDIF:
1720 			route = AUDIO_ROUTE_SPDIF;
1721 			break;
1722 		default:
1723 			dev_err(&priv->hdmi->dev,
1724 				"Bad audio format %u\n", afmt);
1725 			return -EINVAL;
1726 		}
1727 
1728 		if (!ena_ap) {
1729 			dev_err(&priv->hdmi->dev, "invalid zero port config\n");
1730 			continue;
1731 		}
1732 
1733 		if (priv->audio_port_enable[route]) {
1734 			dev_err(&priv->hdmi->dev,
1735 				"%s format already configured\n",
1736 				route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S");
1737 			return -EINVAL;
1738 		}
1739 
1740 		priv->audio_port_enable[route] = ena_ap;
1741 	}
1742 	return 0;
1743 }
1744 
1745 static int tda998x_set_config(struct tda998x_priv *priv,
1746 			      const struct tda998x_encoder_params *p)
1747 {
1748 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
1749 			    (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
1750 			    VIP_CNTRL_0_SWAP_B(p->swap_b) |
1751 			    (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
1752 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
1753 			    (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
1754 			    VIP_CNTRL_1_SWAP_D(p->swap_d) |
1755 			    (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
1756 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
1757 			    (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
1758 			    VIP_CNTRL_2_SWAP_F(p->swap_f) |
1759 			    (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
1760 
1761 	if (p->audio_params.format != AFMT_UNUSED) {
1762 		unsigned int ratio, route;
1763 		bool spdif = p->audio_params.format == AFMT_SPDIF;
1764 
1765 		route = AUDIO_ROUTE_I2S + spdif;
1766 
1767 		priv->audio.route = &tda998x_audio_route[route];
1768 		priv->audio.cea = p->audio_params.cea;
1769 		priv->audio.sample_rate = p->audio_params.sample_rate;
1770 		memcpy(priv->audio.status, p->audio_params.status,
1771 		       min(sizeof(priv->audio.status),
1772 			   sizeof(p->audio_params.status)));
1773 		priv->audio.ena_ap = p->audio_params.config;
1774 		priv->audio.i2s_format = I2S_FORMAT_PHILIPS;
1775 
1776 		ratio = spdif ? 64 : p->audio_params.sample_width * 2;
1777 		return tda998x_derive_cts_n(priv, &priv->audio, ratio);
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 static void tda998x_destroy(struct device *dev)
1784 {
1785 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1786 
1787 	drm_bridge_remove(&priv->bridge);
1788 
1789 	/* disable all IRQs and free the IRQ handler */
1790 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1791 	reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1792 
1793 	if (priv->audio_pdev)
1794 		platform_device_unregister(priv->audio_pdev);
1795 
1796 	if (priv->hdmi->irq)
1797 		free_irq(priv->hdmi->irq, priv);
1798 
1799 	del_timer_sync(&priv->edid_delay_timer);
1800 	cancel_work_sync(&priv->detect_work);
1801 
1802 	i2c_unregister_device(priv->cec);
1803 
1804 	cec_notifier_conn_unregister(priv->cec_notify);
1805 }
1806 
1807 static int tda998x_create(struct device *dev)
1808 {
1809 	struct i2c_client *client = to_i2c_client(dev);
1810 	struct device_node *np = client->dev.of_node;
1811 	struct i2c_board_info cec_info;
1812 	struct tda998x_priv *priv;
1813 	u32 video;
1814 	int rev_lo, rev_hi, ret;
1815 
1816 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1817 	if (!priv)
1818 		return -ENOMEM;
1819 
1820 	dev_set_drvdata(dev, priv);
1821 
1822 	mutex_init(&priv->mutex);	/* protect the page access */
1823 	mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1824 	mutex_init(&priv->edid_mutex);
1825 	INIT_LIST_HEAD(&priv->bridge.list);
1826 	init_waitqueue_head(&priv->edid_delay_waitq);
1827 	timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1828 	INIT_WORK(&priv->detect_work, tda998x_detect_work);
1829 
1830 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1831 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1832 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1833 
1834 	/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1835 	priv->cec_addr = 0x34 + (client->addr & 0x03);
1836 	priv->current_page = 0xff;
1837 	priv->hdmi = client;
1838 
1839 	/* wake up the device: */
1840 	cec_write(priv, REG_CEC_ENAMODS,
1841 			CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1842 
1843 	tda998x_reset(priv);
1844 
1845 	/* read version: */
1846 	rev_lo = reg_read(priv, REG_VERSION_LSB);
1847 	if (rev_lo < 0) {
1848 		dev_err(dev, "failed to read version: %d\n", rev_lo);
1849 		return rev_lo;
1850 	}
1851 
1852 	rev_hi = reg_read(priv, REG_VERSION_MSB);
1853 	if (rev_hi < 0) {
1854 		dev_err(dev, "failed to read version: %d\n", rev_hi);
1855 		return rev_hi;
1856 	}
1857 
1858 	priv->rev = rev_lo | rev_hi << 8;
1859 
1860 	/* mask off feature bits: */
1861 	priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1862 
1863 	switch (priv->rev) {
1864 	case TDA9989N2:
1865 		dev_info(dev, "found TDA9989 n2");
1866 		break;
1867 	case TDA19989:
1868 		dev_info(dev, "found TDA19989");
1869 		break;
1870 	case TDA19989N2:
1871 		dev_info(dev, "found TDA19989 n2");
1872 		break;
1873 	case TDA19988:
1874 		dev_info(dev, "found TDA19988");
1875 		break;
1876 	default:
1877 		dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1878 		return -ENXIO;
1879 	}
1880 
1881 	/* after reset, enable DDC: */
1882 	reg_write(priv, REG_DDC_DISABLE, 0x00);
1883 
1884 	/* set clock on DDC channel: */
1885 	reg_write(priv, REG_TX3, 39);
1886 
1887 	/* if necessary, disable multi-master: */
1888 	if (priv->rev == TDA19989)
1889 		reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1890 
1891 	cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1892 			CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1893 
1894 	/* ensure interrupts are disabled */
1895 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1896 
1897 	/* clear pending interrupts */
1898 	cec_read(priv, REG_CEC_RXSHPDINT);
1899 	reg_read(priv, REG_INT_FLAGS_0);
1900 	reg_read(priv, REG_INT_FLAGS_1);
1901 	reg_read(priv, REG_INT_FLAGS_2);
1902 
1903 	/* initialize the optional IRQ */
1904 	if (client->irq) {
1905 		unsigned long irq_flags;
1906 
1907 		/* init read EDID waitqueue and HDP work */
1908 		init_waitqueue_head(&priv->wq_edid);
1909 
1910 		irq_flags =
1911 			irqd_get_trigger_type(irq_get_irq_data(client->irq));
1912 
1913 		priv->cec_glue.irq_flags = irq_flags;
1914 
1915 		irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1916 		ret = request_threaded_irq(client->irq, NULL,
1917 					   tda998x_irq_thread, irq_flags,
1918 					   "tda998x", priv);
1919 		if (ret) {
1920 			dev_err(dev, "failed to request IRQ#%u: %d\n",
1921 				client->irq, ret);
1922 			goto err_irq;
1923 		}
1924 
1925 		/* enable HPD irq */
1926 		cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1927 	}
1928 
1929 	priv->cec_notify = cec_notifier_conn_register(dev, NULL, NULL);
1930 	if (!priv->cec_notify) {
1931 		ret = -ENOMEM;
1932 		goto fail;
1933 	}
1934 
1935 	priv->cec_glue.parent = dev;
1936 	priv->cec_glue.data = priv;
1937 	priv->cec_glue.init = tda998x_cec_hook_init;
1938 	priv->cec_glue.exit = tda998x_cec_hook_exit;
1939 	priv->cec_glue.open = tda998x_cec_hook_open;
1940 	priv->cec_glue.release = tda998x_cec_hook_release;
1941 
1942 	/*
1943 	 * Some TDA998x are actually two I2C devices merged onto one piece
1944 	 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1945 	 * with a slightly modified TDA9950 CEC device.  The CEC device
1946 	 * is at the TDA9950 address, with the address pins strapped across
1947 	 * to the TDA998x address pins.  Hence, it always has the same
1948 	 * offset.
1949 	 */
1950 	memset(&cec_info, 0, sizeof(cec_info));
1951 	strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1952 	cec_info.addr = priv->cec_addr;
1953 	cec_info.platform_data = &priv->cec_glue;
1954 	cec_info.irq = client->irq;
1955 
1956 	priv->cec = i2c_new_client_device(client->adapter, &cec_info);
1957 	if (IS_ERR(priv->cec)) {
1958 		ret = PTR_ERR(priv->cec);
1959 		goto fail;
1960 	}
1961 
1962 	/* enable EDID read irq: */
1963 	reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1964 
1965 	if (np) {
1966 		/* get the device tree parameters */
1967 		ret = of_property_read_u32(np, "video-ports", &video);
1968 		if (ret == 0) {
1969 			priv->vip_cntrl_0 = video >> 16;
1970 			priv->vip_cntrl_1 = video >> 8;
1971 			priv->vip_cntrl_2 = video;
1972 		}
1973 
1974 		ret = tda998x_get_audio_ports(priv, np);
1975 		if (ret)
1976 			goto fail;
1977 
1978 		if (priv->audio_port_enable[AUDIO_ROUTE_I2S] ||
1979 		    priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1980 			tda998x_audio_codec_init(priv, &client->dev);
1981 	} else if (dev->platform_data) {
1982 		ret = tda998x_set_config(priv, dev->platform_data);
1983 		if (ret)
1984 			goto fail;
1985 	}
1986 
1987 	priv->bridge.funcs = &tda998x_bridge_funcs;
1988 #ifdef CONFIG_OF
1989 	priv->bridge.of_node = dev->of_node;
1990 #endif
1991 
1992 	drm_bridge_add(&priv->bridge);
1993 
1994 	return 0;
1995 
1996 fail:
1997 	tda998x_destroy(dev);
1998 err_irq:
1999 	return ret;
2000 }
2001 
2002 /* DRM encoder functions */
2003 
2004 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
2005 {
2006 	struct tda998x_priv *priv = dev_get_drvdata(dev);
2007 	u32 crtcs = 0;
2008 	int ret;
2009 
2010 	if (dev->of_node)
2011 		crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
2012 
2013 	/* If no CRTCs were found, fall back to our old behaviour */
2014 	if (crtcs == 0) {
2015 		dev_warn(dev, "Falling back to first CRTC\n");
2016 		crtcs = 1 << 0;
2017 	}
2018 
2019 	priv->encoder.possible_crtcs = crtcs;
2020 
2021 	ret = drm_simple_encoder_init(drm, &priv->encoder,
2022 				      DRM_MODE_ENCODER_TMDS);
2023 	if (ret)
2024 		goto err_encoder;
2025 
2026 	ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL, 0);
2027 	if (ret)
2028 		goto err_bridge;
2029 
2030 	return 0;
2031 
2032 err_bridge:
2033 	drm_encoder_cleanup(&priv->encoder);
2034 err_encoder:
2035 	return ret;
2036 }
2037 
2038 static int tda998x_bind(struct device *dev, struct device *master, void *data)
2039 {
2040 	struct drm_device *drm = data;
2041 
2042 	return tda998x_encoder_init(dev, drm);
2043 }
2044 
2045 static void tda998x_unbind(struct device *dev, struct device *master,
2046 			   void *data)
2047 {
2048 	struct tda998x_priv *priv = dev_get_drvdata(dev);
2049 
2050 	drm_encoder_cleanup(&priv->encoder);
2051 }
2052 
2053 static const struct component_ops tda998x_ops = {
2054 	.bind = tda998x_bind,
2055 	.unbind = tda998x_unbind,
2056 };
2057 
2058 static int
2059 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
2060 {
2061 	int ret;
2062 
2063 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
2064 		dev_warn(&client->dev, "adapter does not support I2C\n");
2065 		return -EIO;
2066 	}
2067 
2068 	ret = tda998x_create(&client->dev);
2069 	if (ret)
2070 		return ret;
2071 
2072 	ret = component_add(&client->dev, &tda998x_ops);
2073 	if (ret)
2074 		tda998x_destroy(&client->dev);
2075 	return ret;
2076 }
2077 
2078 static int tda998x_remove(struct i2c_client *client)
2079 {
2080 	component_del(&client->dev, &tda998x_ops);
2081 	tda998x_destroy(&client->dev);
2082 	return 0;
2083 }
2084 
2085 #ifdef CONFIG_OF
2086 static const struct of_device_id tda998x_dt_ids[] = {
2087 	{ .compatible = "nxp,tda998x", },
2088 	{ }
2089 };
2090 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
2091 #endif
2092 
2093 static const struct i2c_device_id tda998x_ids[] = {
2094 	{ "tda998x", 0 },
2095 	{ }
2096 };
2097 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
2098 
2099 static struct i2c_driver tda998x_driver = {
2100 	.probe = tda998x_probe,
2101 	.remove = tda998x_remove,
2102 	.driver = {
2103 		.name = "tda998x",
2104 		.of_match_table = of_match_ptr(tda998x_dt_ids),
2105 	},
2106 	.id_table = tda998x_ids,
2107 };
2108 
2109 module_i2c_driver(tda998x_driver);
2110 
2111 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
2112 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
2113 MODULE_LICENSE("GPL");
2114