1 /* 2 * Copyright © 2006-2011 Intel Corporation 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 16 * 17 * Authors: 18 * Eric Anholt <eric@anholt.net> 19 */ 20 21 #include <linux/i2c.h> 22 23 #include <drm/drmP.h> 24 #include <drm/drm_plane_helper.h> 25 #include "framebuffer.h" 26 #include "psb_drv.h" 27 #include "psb_intel_drv.h" 28 #include "psb_intel_reg.h" 29 #include "gma_display.h" 30 #include "power.h" 31 32 #define INTEL_LIMIT_I9XX_SDVO_DAC 0 33 #define INTEL_LIMIT_I9XX_LVDS 1 34 35 static const struct gma_limit_t psb_intel_limits[] = { 36 { /* INTEL_LIMIT_I9XX_SDVO_DAC */ 37 .dot = {.min = 20000, .max = 400000}, 38 .vco = {.min = 1400000, .max = 2800000}, 39 .n = {.min = 1, .max = 6}, 40 .m = {.min = 70, .max = 120}, 41 .m1 = {.min = 8, .max = 18}, 42 .m2 = {.min = 3, .max = 7}, 43 .p = {.min = 5, .max = 80}, 44 .p1 = {.min = 1, .max = 8}, 45 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5}, 46 .find_pll = gma_find_best_pll, 47 }, 48 { /* INTEL_LIMIT_I9XX_LVDS */ 49 .dot = {.min = 20000, .max = 400000}, 50 .vco = {.min = 1400000, .max = 2800000}, 51 .n = {.min = 1, .max = 6}, 52 .m = {.min = 70, .max = 120}, 53 .m1 = {.min = 8, .max = 18}, 54 .m2 = {.min = 3, .max = 7}, 55 .p = {.min = 7, .max = 98}, 56 .p1 = {.min = 1, .max = 8}, 57 /* The single-channel range is 25-112Mhz, and dual-channel 58 * is 80-224Mhz. Prefer single channel as much as possible. 59 */ 60 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7}, 61 .find_pll = gma_find_best_pll, 62 }, 63 }; 64 65 static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc, 66 int refclk) 67 { 68 const struct gma_limit_t *limit; 69 70 if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) 71 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS]; 72 else 73 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC]; 74 return limit; 75 } 76 77 static void psb_intel_clock(int refclk, struct gma_clock_t *clock) 78 { 79 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); 80 clock->p = clock->p1 * clock->p2; 81 clock->vco = refclk * clock->m / (clock->n + 2); 82 clock->dot = clock->vco / clock->p; 83 } 84 85 /** 86 * Return the pipe currently connected to the panel fitter, 87 * or -1 if the panel fitter is not present or not in use 88 */ 89 static int psb_intel_panel_fitter_pipe(struct drm_device *dev) 90 { 91 u32 pfit_control; 92 93 pfit_control = REG_READ(PFIT_CONTROL); 94 95 /* See if the panel fitter is in use */ 96 if ((pfit_control & PFIT_ENABLE) == 0) 97 return -1; 98 /* Must be on PIPE 1 for PSB */ 99 return 1; 100 } 101 102 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc, 103 struct drm_display_mode *mode, 104 struct drm_display_mode *adjusted_mode, 105 int x, int y, 106 struct drm_framebuffer *old_fb) 107 { 108 struct drm_device *dev = crtc->dev; 109 struct drm_psb_private *dev_priv = dev->dev_private; 110 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 111 const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; 112 int pipe = gma_crtc->pipe; 113 const struct psb_offset *map = &dev_priv->regmap[pipe]; 114 int refclk; 115 struct gma_clock_t clock; 116 u32 dpll = 0, fp = 0, dspcntr, pipeconf; 117 bool ok, is_sdvo = false; 118 bool is_lvds = false, is_tv = false; 119 struct drm_mode_config *mode_config = &dev->mode_config; 120 struct drm_connector *connector; 121 const struct gma_limit_t *limit; 122 123 /* No scan out no play */ 124 if (crtc->primary->fb == NULL) { 125 crtc_funcs->mode_set_base(crtc, x, y, old_fb); 126 return 0; 127 } 128 129 list_for_each_entry(connector, &mode_config->connector_list, head) { 130 struct gma_encoder *gma_encoder = gma_attached_encoder(connector); 131 132 if (!connector->encoder 133 || connector->encoder->crtc != crtc) 134 continue; 135 136 switch (gma_encoder->type) { 137 case INTEL_OUTPUT_LVDS: 138 is_lvds = true; 139 break; 140 case INTEL_OUTPUT_SDVO: 141 is_sdvo = true; 142 break; 143 case INTEL_OUTPUT_TVOUT: 144 is_tv = true; 145 break; 146 } 147 } 148 149 refclk = 96000; 150 151 limit = gma_crtc->clock_funcs->limit(crtc, refclk); 152 153 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, 154 &clock); 155 if (!ok) { 156 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d", 157 adjusted_mode->clock, clock.dot); 158 return 0; 159 } 160 161 fp = clock.n << 16 | clock.m1 << 8 | clock.m2; 162 163 dpll = DPLL_VGA_MODE_DIS; 164 if (is_lvds) { 165 dpll |= DPLLB_MODE_LVDS; 166 dpll |= DPLL_DVO_HIGH_SPEED; 167 } else 168 dpll |= DPLLB_MODE_DAC_SERIAL; 169 if (is_sdvo) { 170 int sdvo_pixel_multiply = 171 adjusted_mode->clock / mode->clock; 172 dpll |= DPLL_DVO_HIGH_SPEED; 173 dpll |= 174 (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; 175 } 176 177 /* compute bitmask from p1 value */ 178 dpll |= (1 << (clock.p1 - 1)) << 16; 179 switch (clock.p2) { 180 case 5: 181 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 182 break; 183 case 7: 184 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 185 break; 186 case 10: 187 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 188 break; 189 case 14: 190 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 191 break; 192 } 193 194 if (is_tv) { 195 /* XXX: just matching BIOS for now */ 196 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ 197 dpll |= 3; 198 } 199 dpll |= PLL_REF_INPUT_DREFCLK; 200 201 /* setup pipeconf */ 202 pipeconf = REG_READ(map->conf); 203 204 /* Set up the display plane register */ 205 dspcntr = DISPPLANE_GAMMA_ENABLE; 206 207 if (pipe == 0) 208 dspcntr |= DISPPLANE_SEL_PIPE_A; 209 else 210 dspcntr |= DISPPLANE_SEL_PIPE_B; 211 212 dspcntr |= DISPLAY_PLANE_ENABLE; 213 pipeconf |= PIPEACONF_ENABLE; 214 dpll |= DPLL_VCO_ENABLE; 215 216 217 /* Disable the panel fitter if it was on our pipe */ 218 if (psb_intel_panel_fitter_pipe(dev) == pipe) 219 REG_WRITE(PFIT_CONTROL, 0); 220 221 drm_mode_debug_printmodeline(mode); 222 223 if (dpll & DPLL_VCO_ENABLE) { 224 REG_WRITE(map->fp0, fp); 225 REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE); 226 REG_READ(map->dpll); 227 udelay(150); 228 } 229 230 /* The LVDS pin pair needs to be on before the DPLLs are enabled. 231 * This is an exception to the general rule that mode_set doesn't turn 232 * things on. 233 */ 234 if (is_lvds) { 235 u32 lvds = REG_READ(LVDS); 236 237 lvds &= ~LVDS_PIPEB_SELECT; 238 if (pipe == 1) 239 lvds |= LVDS_PIPEB_SELECT; 240 241 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP; 242 /* Set the B0-B3 data pairs corresponding to 243 * whether we're going to 244 * set the DPLLs for dual-channel mode or not. 245 */ 246 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); 247 if (clock.p2 == 7) 248 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; 249 250 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) 251 * appropriately here, but we need to look more 252 * thoroughly into how panels behave in the two modes. 253 */ 254 255 REG_WRITE(LVDS, lvds); 256 REG_READ(LVDS); 257 } 258 259 REG_WRITE(map->fp0, fp); 260 REG_WRITE(map->dpll, dpll); 261 REG_READ(map->dpll); 262 /* Wait for the clocks to stabilize. */ 263 udelay(150); 264 265 /* write it again -- the BIOS does, after all */ 266 REG_WRITE(map->dpll, dpll); 267 268 REG_READ(map->dpll); 269 /* Wait for the clocks to stabilize. */ 270 udelay(150); 271 272 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) | 273 ((adjusted_mode->crtc_htotal - 1) << 16)); 274 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) | 275 ((adjusted_mode->crtc_hblank_end - 1) << 16)); 276 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) | 277 ((adjusted_mode->crtc_hsync_end - 1) << 16)); 278 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) | 279 ((adjusted_mode->crtc_vtotal - 1) << 16)); 280 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) | 281 ((adjusted_mode->crtc_vblank_end - 1) << 16)); 282 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) | 283 ((adjusted_mode->crtc_vsync_end - 1) << 16)); 284 /* pipesrc and dspsize control the size that is scaled from, 285 * which should always be the user's requested size. 286 */ 287 REG_WRITE(map->size, 288 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); 289 REG_WRITE(map->pos, 0); 290 REG_WRITE(map->src, 291 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); 292 REG_WRITE(map->conf, pipeconf); 293 REG_READ(map->conf); 294 295 gma_wait_for_vblank(dev); 296 297 REG_WRITE(map->cntr, dspcntr); 298 299 /* Flush the plane changes */ 300 crtc_funcs->mode_set_base(crtc, x, y, old_fb); 301 302 gma_wait_for_vblank(dev); 303 304 return 0; 305 } 306 307 /* Returns the clock of the currently programmed mode of the given pipe. */ 308 static int psb_intel_crtc_clock_get(struct drm_device *dev, 309 struct drm_crtc *crtc) 310 { 311 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 312 struct drm_psb_private *dev_priv = dev->dev_private; 313 int pipe = gma_crtc->pipe; 314 const struct psb_offset *map = &dev_priv->regmap[pipe]; 315 u32 dpll; 316 u32 fp; 317 struct gma_clock_t clock; 318 bool is_lvds; 319 struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; 320 321 if (gma_power_begin(dev, false)) { 322 dpll = REG_READ(map->dpll); 323 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 324 fp = REG_READ(map->fp0); 325 else 326 fp = REG_READ(map->fp1); 327 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN); 328 gma_power_end(dev); 329 } else { 330 dpll = p->dpll; 331 332 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 333 fp = p->fp0; 334 else 335 fp = p->fp1; 336 337 is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS & 338 LVDS_PORT_EN); 339 } 340 341 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 342 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 343 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 344 345 if (is_lvds) { 346 clock.p1 = 347 ffs((dpll & 348 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 349 DPLL_FPA01_P1_POST_DIV_SHIFT); 350 clock.p2 = 14; 351 352 if ((dpll & PLL_REF_INPUT_MASK) == 353 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 354 /* XXX: might not be 66MHz */ 355 psb_intel_clock(66000, &clock); 356 } else 357 psb_intel_clock(48000, &clock); 358 } else { 359 if (dpll & PLL_P1_DIVIDE_BY_TWO) 360 clock.p1 = 2; 361 else { 362 clock.p1 = 363 ((dpll & 364 DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 365 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 366 } 367 if (dpll & PLL_P2_DIVIDE_BY_4) 368 clock.p2 = 4; 369 else 370 clock.p2 = 2; 371 372 psb_intel_clock(48000, &clock); 373 } 374 375 /* XXX: It would be nice to validate the clocks, but we can't reuse 376 * i830PllIsValid() because it relies on the xf86_config connector 377 * configuration being accurate, which it isn't necessarily. 378 */ 379 380 return clock.dot; 381 } 382 383 /** Returns the currently programmed mode of the given pipe. */ 384 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev, 385 struct drm_crtc *crtc) 386 { 387 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 388 int pipe = gma_crtc->pipe; 389 struct drm_display_mode *mode; 390 int htot; 391 int hsync; 392 int vtot; 393 int vsync; 394 struct drm_psb_private *dev_priv = dev->dev_private; 395 struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; 396 const struct psb_offset *map = &dev_priv->regmap[pipe]; 397 398 if (gma_power_begin(dev, false)) { 399 htot = REG_READ(map->htotal); 400 hsync = REG_READ(map->hsync); 401 vtot = REG_READ(map->vtotal); 402 vsync = REG_READ(map->vsync); 403 gma_power_end(dev); 404 } else { 405 htot = p->htotal; 406 hsync = p->hsync; 407 vtot = p->vtotal; 408 vsync = p->vsync; 409 } 410 411 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 412 if (!mode) 413 return NULL; 414 415 mode->clock = psb_intel_crtc_clock_get(dev, crtc); 416 mode->hdisplay = (htot & 0xffff) + 1; 417 mode->htotal = ((htot & 0xffff0000) >> 16) + 1; 418 mode->hsync_start = (hsync & 0xffff) + 1; 419 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; 420 mode->vdisplay = (vtot & 0xffff) + 1; 421 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; 422 mode->vsync_start = (vsync & 0xffff) + 1; 423 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; 424 425 drm_mode_set_name(mode); 426 drm_mode_set_crtcinfo(mode, 0); 427 428 return mode; 429 } 430 431 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = { 432 .dpms = gma_crtc_dpms, 433 .mode_fixup = gma_crtc_mode_fixup, 434 .mode_set = psb_intel_crtc_mode_set, 435 .mode_set_base = gma_pipe_set_base, 436 .prepare = gma_crtc_prepare, 437 .commit = gma_crtc_commit, 438 .disable = gma_crtc_disable, 439 }; 440 441 const struct drm_crtc_funcs psb_intel_crtc_funcs = { 442 .save = gma_crtc_save, 443 .restore = gma_crtc_restore, 444 .cursor_set = gma_crtc_cursor_set, 445 .cursor_move = gma_crtc_cursor_move, 446 .gamma_set = gma_crtc_gamma_set, 447 .set_config = gma_crtc_set_config, 448 .destroy = gma_crtc_destroy, 449 }; 450 451 const struct gma_clock_funcs psb_clock_funcs = { 452 .clock = psb_intel_clock, 453 .limit = psb_intel_limit, 454 .pll_is_valid = gma_pll_is_valid, 455 }; 456 457 /* 458 * Set the default value of cursor control and base register 459 * to zero. This is a workaround for h/w defect on Oaktrail 460 */ 461 static void psb_intel_cursor_init(struct drm_device *dev, 462 struct gma_crtc *gma_crtc) 463 { 464 struct drm_psb_private *dev_priv = dev->dev_private; 465 u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR }; 466 u32 base[3] = { CURABASE, CURBBASE, CURCBASE }; 467 struct gtt_range *cursor_gt; 468 469 if (dev_priv->ops->cursor_needs_phys) { 470 /* Allocate 4 pages of stolen mem for a hardware cursor. That 471 * is enough for the 64 x 64 ARGB cursors we support. 472 */ 473 cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1, 474 PAGE_SIZE); 475 if (!cursor_gt) { 476 gma_crtc->cursor_gt = NULL; 477 goto out; 478 } 479 gma_crtc->cursor_gt = cursor_gt; 480 gma_crtc->cursor_addr = dev_priv->stolen_base + 481 cursor_gt->offset; 482 } else { 483 gma_crtc->cursor_gt = NULL; 484 } 485 486 out: 487 REG_WRITE(control[gma_crtc->pipe], 0); 488 REG_WRITE(base[gma_crtc->pipe], 0); 489 } 490 491 void psb_intel_crtc_init(struct drm_device *dev, int pipe, 492 struct psb_intel_mode_device *mode_dev) 493 { 494 struct drm_psb_private *dev_priv = dev->dev_private; 495 struct gma_crtc *gma_crtc; 496 int i; 497 uint16_t *r_base, *g_base, *b_base; 498 499 /* We allocate a extra array of drm_connector pointers 500 * for fbdev after the crtc */ 501 gma_crtc = kzalloc(sizeof(struct gma_crtc) + 502 (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), 503 GFP_KERNEL); 504 if (gma_crtc == NULL) 505 return; 506 507 gma_crtc->crtc_state = 508 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL); 509 if (!gma_crtc->crtc_state) { 510 dev_err(dev->dev, "Crtc state error: No memory\n"); 511 kfree(gma_crtc); 512 return; 513 } 514 515 /* Set the CRTC operations from the chip specific data */ 516 drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs); 517 518 /* Set the CRTC clock functions from chip specific data */ 519 gma_crtc->clock_funcs = dev_priv->ops->clock_funcs; 520 521 drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256); 522 gma_crtc->pipe = pipe; 523 gma_crtc->plane = pipe; 524 525 r_base = gma_crtc->base.gamma_store; 526 g_base = r_base + 256; 527 b_base = g_base + 256; 528 for (i = 0; i < 256; i++) { 529 gma_crtc->lut_r[i] = i; 530 gma_crtc->lut_g[i] = i; 531 gma_crtc->lut_b[i] = i; 532 r_base[i] = i << 8; 533 g_base[i] = i << 8; 534 b_base[i] = i << 8; 535 536 gma_crtc->lut_adj[i] = 0; 537 } 538 539 gma_crtc->mode_dev = mode_dev; 540 gma_crtc->cursor_addr = 0; 541 542 drm_crtc_helper_add(&gma_crtc->base, 543 dev_priv->ops->crtc_helper); 544 545 /* Setup the array of drm_connector pointer array */ 546 gma_crtc->mode_set.crtc = &gma_crtc->base; 547 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 548 dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL); 549 dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base; 550 dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base; 551 gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1); 552 gma_crtc->mode_set.num_connectors = 0; 553 psb_intel_cursor_init(dev, gma_crtc); 554 555 /* Set to true so that the pipe is forced off on initial config. */ 556 gma_crtc->active = true; 557 } 558 559 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe) 560 { 561 struct drm_crtc *crtc = NULL; 562 563 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 564 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 565 if (gma_crtc->pipe == pipe) 566 break; 567 } 568 return crtc; 569 } 570 571 int gma_connector_clones(struct drm_device *dev, int type_mask) 572 { 573 int index_mask = 0; 574 struct drm_connector *connector; 575 int entry = 0; 576 577 list_for_each_entry(connector, &dev->mode_config.connector_list, 578 head) { 579 struct gma_encoder *gma_encoder = gma_attached_encoder(connector); 580 if (type_mask & (1 << gma_encoder->type)) 581 index_mask |= (1 << entry); 582 entry++; 583 } 584 return index_mask; 585 } 586