1 /* 2 * Copyright (c) 2007, Intel Corporation. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 17 * 18 * Authors: Thomas Hellstrom <thomas-at-tungstengraphics.com> 19 * Alan Cox <alan@linux.intel.com> 20 */ 21 22 #include <drm/drmP.h> 23 #include <linux/shmem_fs.h> 24 #include "psb_drv.h" 25 #include "blitter.h" 26 27 28 /* 29 * GTT resource allocator - manage page mappings in GTT space 30 */ 31 32 /** 33 * psb_gtt_mask_pte - generate GTT pte entry 34 * @pfn: page number to encode 35 * @type: type of memory in the GTT 36 * 37 * Set the GTT entry for the appropriate memory type. 38 */ 39 static inline uint32_t psb_gtt_mask_pte(uint32_t pfn, int type) 40 { 41 uint32_t mask = PSB_PTE_VALID; 42 43 /* Ensure we explode rather than put an invalid low mapping of 44 a high mapping page into the gtt */ 45 BUG_ON(pfn & ~(0xFFFFFFFF >> PAGE_SHIFT)); 46 47 if (type & PSB_MMU_CACHED_MEMORY) 48 mask |= PSB_PTE_CACHED; 49 if (type & PSB_MMU_RO_MEMORY) 50 mask |= PSB_PTE_RO; 51 if (type & PSB_MMU_WO_MEMORY) 52 mask |= PSB_PTE_WO; 53 54 return (pfn << PAGE_SHIFT) | mask; 55 } 56 57 /** 58 * psb_gtt_entry - find the GTT entries for a gtt_range 59 * @dev: our DRM device 60 * @r: our GTT range 61 * 62 * Given a gtt_range object return the GTT offset of the page table 63 * entries for this gtt_range 64 */ 65 static u32 __iomem *psb_gtt_entry(struct drm_device *dev, struct gtt_range *r) 66 { 67 struct drm_psb_private *dev_priv = dev->dev_private; 68 unsigned long offset; 69 70 offset = r->resource.start - dev_priv->gtt_mem->start; 71 72 return dev_priv->gtt_map + (offset >> PAGE_SHIFT); 73 } 74 75 /** 76 * psb_gtt_insert - put an object into the GTT 77 * @dev: our DRM device 78 * @r: our GTT range 79 * @resume: on resume 80 * 81 * Take our preallocated GTT range and insert the GEM object into 82 * the GTT. This is protected via the gtt mutex which the caller 83 * must hold. 84 */ 85 static int psb_gtt_insert(struct drm_device *dev, struct gtt_range *r, 86 int resume) 87 { 88 u32 __iomem *gtt_slot; 89 u32 pte; 90 struct page **pages; 91 int i; 92 93 if (r->pages == NULL) { 94 WARN_ON(1); 95 return -EINVAL; 96 } 97 98 WARN_ON(r->stolen); /* refcount these maybe ? */ 99 100 gtt_slot = psb_gtt_entry(dev, r); 101 pages = r->pages; 102 103 if (!resume) { 104 /* Make sure changes are visible to the GPU */ 105 set_pages_array_wc(pages, r->npage); 106 } 107 108 /* Write our page entries into the GTT itself */ 109 for (i = r->roll; i < r->npage; i++) { 110 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 111 PSB_MMU_CACHED_MEMORY); 112 iowrite32(pte, gtt_slot++); 113 } 114 for (i = 0; i < r->roll; i++) { 115 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 116 PSB_MMU_CACHED_MEMORY); 117 iowrite32(pte, gtt_slot++); 118 } 119 /* Make sure all the entries are set before we return */ 120 ioread32(gtt_slot - 1); 121 122 return 0; 123 } 124 125 /** 126 * psb_gtt_remove - remove an object from the GTT 127 * @dev: our DRM device 128 * @r: our GTT range 129 * 130 * Remove a preallocated GTT range from the GTT. Overwrite all the 131 * page table entries with the dummy page. This is protected via the gtt 132 * mutex which the caller must hold. 133 */ 134 void psb_gtt_remove(struct drm_device *dev, struct gtt_range *r) 135 { 136 struct drm_psb_private *dev_priv = dev->dev_private; 137 u32 __iomem *gtt_slot; 138 u32 pte; 139 int i; 140 141 WARN_ON(r->stolen); 142 143 gtt_slot = psb_gtt_entry(dev, r); 144 pte = psb_gtt_mask_pte(page_to_pfn(dev_priv->scratch_page), 145 PSB_MMU_CACHED_MEMORY); 146 147 for (i = 0; i < r->npage; i++) 148 iowrite32(pte, gtt_slot++); 149 ioread32(gtt_slot - 1); 150 set_pages_array_wb(r->pages, r->npage); 151 } 152 153 /** 154 * psb_gtt_roll - set scrolling position 155 * @dev: our DRM device 156 * @r: the gtt mapping we are using 157 * @roll: roll offset 158 * 159 * Roll an existing pinned mapping by moving the pages through the GTT. 160 * This allows us to implement hardware scrolling on the consoles without 161 * a 2D engine 162 */ 163 void psb_gtt_roll(struct drm_device *dev, struct gtt_range *r, int roll) 164 { 165 u32 __iomem *gtt_slot; 166 u32 pte; 167 int i; 168 169 if (roll >= r->npage) { 170 WARN_ON(1); 171 return; 172 } 173 174 r->roll = roll; 175 176 /* Not currently in the GTT - no worry we will write the mapping at 177 the right position when it gets pinned */ 178 if (!r->stolen && !r->in_gart) 179 return; 180 181 gtt_slot = psb_gtt_entry(dev, r); 182 183 for (i = r->roll; i < r->npage; i++) { 184 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 185 PSB_MMU_CACHED_MEMORY); 186 iowrite32(pte, gtt_slot++); 187 } 188 for (i = 0; i < r->roll; i++) { 189 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 190 PSB_MMU_CACHED_MEMORY); 191 iowrite32(pte, gtt_slot++); 192 } 193 ioread32(gtt_slot - 1); 194 } 195 196 /** 197 * psb_gtt_attach_pages - attach and pin GEM pages 198 * @gt: the gtt range 199 * 200 * Pin and build an in kernel list of the pages that back our GEM object. 201 * While we hold this the pages cannot be swapped out. This is protected 202 * via the gtt mutex which the caller must hold. 203 */ 204 static int psb_gtt_attach_pages(struct gtt_range *gt) 205 { 206 struct page **pages; 207 208 WARN_ON(gt->pages); 209 210 pages = drm_gem_get_pages(>->gem); 211 if (IS_ERR(pages)) 212 return PTR_ERR(pages); 213 214 gt->npage = gt->gem.size / PAGE_SIZE; 215 gt->pages = pages; 216 217 return 0; 218 } 219 220 /** 221 * psb_gtt_detach_pages - attach and pin GEM pages 222 * @gt: the gtt range 223 * 224 * Undo the effect of psb_gtt_attach_pages. At this point the pages 225 * must have been removed from the GTT as they could now be paged out 226 * and move bus address. This is protected via the gtt mutex which the 227 * caller must hold. 228 */ 229 static void psb_gtt_detach_pages(struct gtt_range *gt) 230 { 231 drm_gem_put_pages(>->gem, gt->pages, true, false); 232 gt->pages = NULL; 233 } 234 235 /** 236 * psb_gtt_pin - pin pages into the GTT 237 * @gt: range to pin 238 * 239 * Pin a set of pages into the GTT. The pins are refcounted so that 240 * multiple pins need multiple unpins to undo. 241 * 242 * Non GEM backed objects treat this as a no-op as they are always GTT 243 * backed objects. 244 */ 245 int psb_gtt_pin(struct gtt_range *gt) 246 { 247 int ret = 0; 248 struct drm_device *dev = gt->gem.dev; 249 struct drm_psb_private *dev_priv = dev->dev_private; 250 u32 gpu_base = dev_priv->gtt.gatt_start; 251 252 mutex_lock(&dev_priv->gtt_mutex); 253 254 if (gt->in_gart == 0 && gt->stolen == 0) { 255 ret = psb_gtt_attach_pages(gt); 256 if (ret < 0) 257 goto out; 258 ret = psb_gtt_insert(dev, gt, 0); 259 if (ret < 0) { 260 psb_gtt_detach_pages(gt); 261 goto out; 262 } 263 psb_mmu_insert_pages(psb_mmu_get_default_pd(dev_priv->mmu), 264 gt->pages, (gpu_base + gt->offset), 265 gt->npage, 0, 0, PSB_MMU_CACHED_MEMORY); 266 } 267 gt->in_gart++; 268 out: 269 mutex_unlock(&dev_priv->gtt_mutex); 270 return ret; 271 } 272 273 /** 274 * psb_gtt_unpin - Drop a GTT pin requirement 275 * @gt: range to pin 276 * 277 * Undoes the effect of psb_gtt_pin. On the last drop the GEM object 278 * will be removed from the GTT which will also drop the page references 279 * and allow the VM to clean up or page stuff. 280 * 281 * Non GEM backed objects treat this as a no-op as they are always GTT 282 * backed objects. 283 */ 284 void psb_gtt_unpin(struct gtt_range *gt) 285 { 286 struct drm_device *dev = gt->gem.dev; 287 struct drm_psb_private *dev_priv = dev->dev_private; 288 u32 gpu_base = dev_priv->gtt.gatt_start; 289 int ret; 290 291 /* While holding the gtt_mutex no new blits can be initiated */ 292 mutex_lock(&dev_priv->gtt_mutex); 293 294 /* Wait for any possible usage of the memory to be finished */ 295 ret = gma_blt_wait_idle(dev_priv); 296 if (ret) { 297 DRM_ERROR("Failed to idle the blitter, unpin failed!"); 298 goto out; 299 } 300 301 WARN_ON(!gt->in_gart); 302 303 gt->in_gart--; 304 if (gt->in_gart == 0 && gt->stolen == 0) { 305 psb_mmu_remove_pages(psb_mmu_get_default_pd(dev_priv->mmu), 306 (gpu_base + gt->offset), gt->npage, 0, 0); 307 psb_gtt_remove(dev, gt); 308 psb_gtt_detach_pages(gt); 309 } 310 311 out: 312 mutex_unlock(&dev_priv->gtt_mutex); 313 } 314 315 /* 316 * GTT resource allocator - allocate and manage GTT address space 317 */ 318 319 /** 320 * psb_gtt_alloc_range - allocate GTT address space 321 * @dev: Our DRM device 322 * @len: length (bytes) of address space required 323 * @name: resource name 324 * @backed: resource should be backed by stolen pages 325 * @align: requested alignment 326 * 327 * Ask the kernel core to find us a suitable range of addresses 328 * to use for a GTT mapping. 329 * 330 * Returns a gtt_range structure describing the object, or NULL on 331 * error. On successful return the resource is both allocated and marked 332 * as in use. 333 */ 334 struct gtt_range *psb_gtt_alloc_range(struct drm_device *dev, int len, 335 const char *name, int backed, u32 align) 336 { 337 struct drm_psb_private *dev_priv = dev->dev_private; 338 struct gtt_range *gt; 339 struct resource *r = dev_priv->gtt_mem; 340 int ret; 341 unsigned long start, end; 342 343 if (backed) { 344 /* The start of the GTT is the stolen pages */ 345 start = r->start; 346 end = r->start + dev_priv->gtt.stolen_size - 1; 347 } else { 348 /* The rest we will use for GEM backed objects */ 349 start = r->start + dev_priv->gtt.stolen_size; 350 end = r->end; 351 } 352 353 gt = kzalloc(sizeof(struct gtt_range), GFP_KERNEL); 354 if (gt == NULL) 355 return NULL; 356 gt->resource.name = name; 357 gt->stolen = backed; 358 gt->in_gart = backed; 359 gt->roll = 0; 360 /* Ensure this is set for non GEM objects */ 361 gt->gem.dev = dev; 362 ret = allocate_resource(dev_priv->gtt_mem, >->resource, 363 len, start, end, align, NULL, NULL); 364 if (ret == 0) { 365 gt->offset = gt->resource.start - r->start; 366 return gt; 367 } 368 kfree(gt); 369 return NULL; 370 } 371 372 /** 373 * psb_gtt_free_range - release GTT address space 374 * @dev: our DRM device 375 * @gt: a mapping created with psb_gtt_alloc_range 376 * 377 * Release a resource that was allocated with psb_gtt_alloc_range. If the 378 * object has been pinned by mmap users we clean this up here currently. 379 */ 380 void psb_gtt_free_range(struct drm_device *dev, struct gtt_range *gt) 381 { 382 /* Undo the mmap pin if we are destroying the object */ 383 if (gt->mmapping) { 384 psb_gtt_unpin(gt); 385 gt->mmapping = 0; 386 } 387 WARN_ON(gt->in_gart && !gt->stolen); 388 release_resource(>->resource); 389 kfree(gt); 390 } 391 392 static void psb_gtt_alloc(struct drm_device *dev) 393 { 394 struct drm_psb_private *dev_priv = dev->dev_private; 395 init_rwsem(&dev_priv->gtt.sem); 396 } 397 398 void psb_gtt_takedown(struct drm_device *dev) 399 { 400 struct drm_psb_private *dev_priv = dev->dev_private; 401 402 if (dev_priv->gtt_map) { 403 iounmap(dev_priv->gtt_map); 404 dev_priv->gtt_map = NULL; 405 } 406 if (dev_priv->gtt_initialized) { 407 pci_write_config_word(dev->pdev, PSB_GMCH_CTRL, 408 dev_priv->gmch_ctrl); 409 PSB_WVDC32(dev_priv->pge_ctl, PSB_PGETBL_CTL); 410 (void) PSB_RVDC32(PSB_PGETBL_CTL); 411 } 412 if (dev_priv->vram_addr) 413 iounmap(dev_priv->gtt_map); 414 } 415 416 int psb_gtt_init(struct drm_device *dev, int resume) 417 { 418 struct drm_psb_private *dev_priv = dev->dev_private; 419 unsigned gtt_pages; 420 unsigned long stolen_size, vram_stolen_size; 421 unsigned i, num_pages; 422 unsigned pfn_base; 423 struct psb_gtt *pg; 424 425 int ret = 0; 426 uint32_t pte; 427 428 if (!resume) { 429 mutex_init(&dev_priv->gtt_mutex); 430 mutex_init(&dev_priv->mmap_mutex); 431 psb_gtt_alloc(dev); 432 } 433 434 pg = &dev_priv->gtt; 435 436 /* Enable the GTT */ 437 pci_read_config_word(dev->pdev, PSB_GMCH_CTRL, &dev_priv->gmch_ctrl); 438 pci_write_config_word(dev->pdev, PSB_GMCH_CTRL, 439 dev_priv->gmch_ctrl | _PSB_GMCH_ENABLED); 440 441 dev_priv->pge_ctl = PSB_RVDC32(PSB_PGETBL_CTL); 442 PSB_WVDC32(dev_priv->pge_ctl | _PSB_PGETBL_ENABLED, PSB_PGETBL_CTL); 443 (void) PSB_RVDC32(PSB_PGETBL_CTL); 444 445 /* The root resource we allocate address space from */ 446 dev_priv->gtt_initialized = 1; 447 448 pg->gtt_phys_start = dev_priv->pge_ctl & PAGE_MASK; 449 450 /* 451 * The video mmu has a hw bug when accessing 0x0D0000000. 452 * Make gatt start at 0x0e000,0000. This doesn't actually 453 * matter for us but may do if the video acceleration ever 454 * gets opened up. 455 */ 456 pg->mmu_gatt_start = 0xE0000000; 457 458 pg->gtt_start = pci_resource_start(dev->pdev, PSB_GTT_RESOURCE); 459 gtt_pages = pci_resource_len(dev->pdev, PSB_GTT_RESOURCE) 460 >> PAGE_SHIFT; 461 /* CDV doesn't report this. In which case the system has 64 gtt pages */ 462 if (pg->gtt_start == 0 || gtt_pages == 0) { 463 dev_dbg(dev->dev, "GTT PCI BAR not initialized.\n"); 464 gtt_pages = 64; 465 pg->gtt_start = dev_priv->pge_ctl; 466 } 467 468 pg->gatt_start = pci_resource_start(dev->pdev, PSB_GATT_RESOURCE); 469 pg->gatt_pages = pci_resource_len(dev->pdev, PSB_GATT_RESOURCE) 470 >> PAGE_SHIFT; 471 dev_priv->gtt_mem = &dev->pdev->resource[PSB_GATT_RESOURCE]; 472 473 if (pg->gatt_pages == 0 || pg->gatt_start == 0) { 474 static struct resource fudge; /* Preferably peppermint */ 475 /* This can occur on CDV systems. Fudge it in this case. 476 We really don't care what imaginary space is being allocated 477 at this point */ 478 dev_dbg(dev->dev, "GATT PCI BAR not initialized.\n"); 479 pg->gatt_start = 0x40000000; 480 pg->gatt_pages = (128 * 1024 * 1024) >> PAGE_SHIFT; 481 /* This is a little confusing but in fact the GTT is providing 482 a view from the GPU into memory and not vice versa. As such 483 this is really allocating space that is not the same as the 484 CPU address space on CDV */ 485 fudge.start = 0x40000000; 486 fudge.end = 0x40000000 + 128 * 1024 * 1024 - 1; 487 fudge.name = "fudge"; 488 fudge.flags = IORESOURCE_MEM; 489 dev_priv->gtt_mem = &fudge; 490 } 491 492 pci_read_config_dword(dev->pdev, PSB_BSM, &dev_priv->stolen_base); 493 vram_stolen_size = pg->gtt_phys_start - dev_priv->stolen_base 494 - PAGE_SIZE; 495 496 stolen_size = vram_stolen_size; 497 498 dev_dbg(dev->dev, "Stolen memory base 0x%x, size %luK\n", 499 dev_priv->stolen_base, vram_stolen_size / 1024); 500 501 if (resume && (gtt_pages != pg->gtt_pages) && 502 (stolen_size != pg->stolen_size)) { 503 dev_err(dev->dev, "GTT resume error.\n"); 504 ret = -EINVAL; 505 goto out_err; 506 } 507 508 pg->gtt_pages = gtt_pages; 509 pg->stolen_size = stolen_size; 510 dev_priv->vram_stolen_size = vram_stolen_size; 511 512 /* 513 * Map the GTT and the stolen memory area 514 */ 515 if (!resume) 516 dev_priv->gtt_map = ioremap_nocache(pg->gtt_phys_start, 517 gtt_pages << PAGE_SHIFT); 518 if (!dev_priv->gtt_map) { 519 dev_err(dev->dev, "Failure to map gtt.\n"); 520 ret = -ENOMEM; 521 goto out_err; 522 } 523 524 if (!resume) 525 dev_priv->vram_addr = ioremap_wc(dev_priv->stolen_base, 526 stolen_size); 527 528 if (!dev_priv->vram_addr) { 529 dev_err(dev->dev, "Failure to map stolen base.\n"); 530 ret = -ENOMEM; 531 goto out_err; 532 } 533 534 /* 535 * Insert vram stolen pages into the GTT 536 */ 537 538 pfn_base = dev_priv->stolen_base >> PAGE_SHIFT; 539 num_pages = vram_stolen_size >> PAGE_SHIFT; 540 dev_dbg(dev->dev, "Set up %d stolen pages starting at 0x%08x, GTT offset %dK\n", 541 num_pages, pfn_base << PAGE_SHIFT, 0); 542 for (i = 0; i < num_pages; ++i) { 543 pte = psb_gtt_mask_pte(pfn_base + i, PSB_MMU_CACHED_MEMORY); 544 iowrite32(pte, dev_priv->gtt_map + i); 545 } 546 547 /* 548 * Init rest of GTT to the scratch page to avoid accidents or scribbles 549 */ 550 551 pfn_base = page_to_pfn(dev_priv->scratch_page); 552 pte = psb_gtt_mask_pte(pfn_base, PSB_MMU_CACHED_MEMORY); 553 for (; i < gtt_pages; ++i) 554 iowrite32(pte, dev_priv->gtt_map + i); 555 556 (void) ioread32(dev_priv->gtt_map + i - 1); 557 return 0; 558 559 out_err: 560 psb_gtt_takedown(dev); 561 return ret; 562 } 563 564 int psb_gtt_restore(struct drm_device *dev) 565 { 566 struct drm_psb_private *dev_priv = dev->dev_private; 567 struct resource *r = dev_priv->gtt_mem->child; 568 struct gtt_range *range; 569 unsigned int restored = 0, total = 0, size = 0; 570 571 /* On resume, the gtt_mutex is already initialized */ 572 mutex_lock(&dev_priv->gtt_mutex); 573 psb_gtt_init(dev, 1); 574 575 while (r != NULL) { 576 range = container_of(r, struct gtt_range, resource); 577 if (range->pages) { 578 psb_gtt_insert(dev, range, 1); 579 size += range->resource.end - range->resource.start; 580 restored++; 581 } 582 r = r->sibling; 583 total++; 584 } 585 mutex_unlock(&dev_priv->gtt_mutex); 586 DRM_DEBUG_DRIVER("Restored %u of %u gtt ranges (%u KB)", restored, 587 total, (size / 1024)); 588 589 return 0; 590 } 591