1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2007, Intel Corporation. 4 * All Rights Reserved. 5 * 6 * Authors: Thomas Hellstrom <thomas-at-tungstengraphics.com> 7 * Alan Cox <alan@linux.intel.com> 8 */ 9 10 #include <linux/shmem_fs.h> 11 12 #include <asm/set_memory.h> 13 14 #include "psb_drv.h" 15 16 17 /* 18 * GTT resource allocator - manage page mappings in GTT space 19 */ 20 21 /** 22 * psb_gtt_mask_pte - generate GTT pte entry 23 * @pfn: page number to encode 24 * @type: type of memory in the GTT 25 * 26 * Set the GTT entry for the appropriate memory type. 27 */ 28 static inline uint32_t psb_gtt_mask_pte(uint32_t pfn, int type) 29 { 30 uint32_t mask = PSB_PTE_VALID; 31 32 /* Ensure we explode rather than put an invalid low mapping of 33 a high mapping page into the gtt */ 34 BUG_ON(pfn & ~(0xFFFFFFFF >> PAGE_SHIFT)); 35 36 if (type & PSB_MMU_CACHED_MEMORY) 37 mask |= PSB_PTE_CACHED; 38 if (type & PSB_MMU_RO_MEMORY) 39 mask |= PSB_PTE_RO; 40 if (type & PSB_MMU_WO_MEMORY) 41 mask |= PSB_PTE_WO; 42 43 return (pfn << PAGE_SHIFT) | mask; 44 } 45 46 /** 47 * psb_gtt_entry - find the GTT entries for a gtt_range 48 * @dev: our DRM device 49 * @r: our GTT range 50 * 51 * Given a gtt_range object return the GTT offset of the page table 52 * entries for this gtt_range 53 */ 54 static u32 __iomem *psb_gtt_entry(struct drm_device *dev, struct gtt_range *r) 55 { 56 struct drm_psb_private *dev_priv = dev->dev_private; 57 unsigned long offset; 58 59 offset = r->resource.start - dev_priv->gtt_mem->start; 60 61 return dev_priv->gtt_map + (offset >> PAGE_SHIFT); 62 } 63 64 /** 65 * psb_gtt_insert - put an object into the GTT 66 * @dev: our DRM device 67 * @r: our GTT range 68 * @resume: on resume 69 * 70 * Take our preallocated GTT range and insert the GEM object into 71 * the GTT. This is protected via the gtt mutex which the caller 72 * must hold. 73 */ 74 static int psb_gtt_insert(struct drm_device *dev, struct gtt_range *r, 75 int resume) 76 { 77 u32 __iomem *gtt_slot; 78 u32 pte; 79 struct page **pages; 80 int i; 81 82 if (r->pages == NULL) { 83 WARN_ON(1); 84 return -EINVAL; 85 } 86 87 WARN_ON(r->stolen); /* refcount these maybe ? */ 88 89 gtt_slot = psb_gtt_entry(dev, r); 90 pages = r->pages; 91 92 if (!resume) { 93 /* Make sure changes are visible to the GPU */ 94 set_pages_array_wc(pages, r->npage); 95 } 96 97 /* Write our page entries into the GTT itself */ 98 for (i = 0; i < r->npage; i++) { 99 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 100 PSB_MMU_CACHED_MEMORY); 101 iowrite32(pte, gtt_slot++); 102 } 103 104 /* Make sure all the entries are set before we return */ 105 ioread32(gtt_slot - 1); 106 107 return 0; 108 } 109 110 /** 111 * psb_gtt_remove - remove an object from the GTT 112 * @dev: our DRM device 113 * @r: our GTT range 114 * 115 * Remove a preallocated GTT range from the GTT. Overwrite all the 116 * page table entries with the dummy page. This is protected via the gtt 117 * mutex which the caller must hold. 118 */ 119 static void psb_gtt_remove(struct drm_device *dev, struct gtt_range *r) 120 { 121 struct drm_psb_private *dev_priv = dev->dev_private; 122 u32 __iomem *gtt_slot; 123 u32 pte; 124 int i; 125 126 WARN_ON(r->stolen); 127 128 gtt_slot = psb_gtt_entry(dev, r); 129 pte = psb_gtt_mask_pte(page_to_pfn(dev_priv->scratch_page), 130 PSB_MMU_CACHED_MEMORY); 131 132 for (i = 0; i < r->npage; i++) 133 iowrite32(pte, gtt_slot++); 134 ioread32(gtt_slot - 1); 135 set_pages_array_wb(r->pages, r->npage); 136 } 137 138 /** 139 * psb_gtt_attach_pages - attach and pin GEM pages 140 * @gt: the gtt range 141 * 142 * Pin and build an in kernel list of the pages that back our GEM object. 143 * While we hold this the pages cannot be swapped out. This is protected 144 * via the gtt mutex which the caller must hold. 145 */ 146 static int psb_gtt_attach_pages(struct gtt_range *gt) 147 { 148 struct page **pages; 149 150 WARN_ON(gt->pages); 151 152 pages = drm_gem_get_pages(>->gem); 153 if (IS_ERR(pages)) 154 return PTR_ERR(pages); 155 156 gt->npage = gt->gem.size / PAGE_SIZE; 157 gt->pages = pages; 158 159 return 0; 160 } 161 162 /** 163 * psb_gtt_detach_pages - attach and pin GEM pages 164 * @gt: the gtt range 165 * 166 * Undo the effect of psb_gtt_attach_pages. At this point the pages 167 * must have been removed from the GTT as they could now be paged out 168 * and move bus address. This is protected via the gtt mutex which the 169 * caller must hold. 170 */ 171 static void psb_gtt_detach_pages(struct gtt_range *gt) 172 { 173 drm_gem_put_pages(>->gem, gt->pages, true, false); 174 gt->pages = NULL; 175 } 176 177 /** 178 * psb_gtt_pin - pin pages into the GTT 179 * @gt: range to pin 180 * 181 * Pin a set of pages into the GTT. The pins are refcounted so that 182 * multiple pins need multiple unpins to undo. 183 * 184 * Non GEM backed objects treat this as a no-op as they are always GTT 185 * backed objects. 186 */ 187 int psb_gtt_pin(struct gtt_range *gt) 188 { 189 int ret = 0; 190 struct drm_device *dev = gt->gem.dev; 191 struct drm_psb_private *dev_priv = dev->dev_private; 192 u32 gpu_base = dev_priv->gtt.gatt_start; 193 194 mutex_lock(&dev_priv->gtt_mutex); 195 196 if (gt->in_gart == 0 && gt->stolen == 0) { 197 ret = psb_gtt_attach_pages(gt); 198 if (ret < 0) 199 goto out; 200 ret = psb_gtt_insert(dev, gt, 0); 201 if (ret < 0) { 202 psb_gtt_detach_pages(gt); 203 goto out; 204 } 205 psb_mmu_insert_pages(psb_mmu_get_default_pd(dev_priv->mmu), 206 gt->pages, (gpu_base + gt->offset), 207 gt->npage, 0, 0, PSB_MMU_CACHED_MEMORY); 208 } 209 gt->in_gart++; 210 out: 211 mutex_unlock(&dev_priv->gtt_mutex); 212 return ret; 213 } 214 215 /** 216 * psb_gtt_unpin - Drop a GTT pin requirement 217 * @gt: range to pin 218 * 219 * Undoes the effect of psb_gtt_pin. On the last drop the GEM object 220 * will be removed from the GTT which will also drop the page references 221 * and allow the VM to clean up or page stuff. 222 * 223 * Non GEM backed objects treat this as a no-op as they are always GTT 224 * backed objects. 225 */ 226 void psb_gtt_unpin(struct gtt_range *gt) 227 { 228 struct drm_device *dev = gt->gem.dev; 229 struct drm_psb_private *dev_priv = dev->dev_private; 230 u32 gpu_base = dev_priv->gtt.gatt_start; 231 232 mutex_lock(&dev_priv->gtt_mutex); 233 234 WARN_ON(!gt->in_gart); 235 236 gt->in_gart--; 237 if (gt->in_gart == 0 && gt->stolen == 0) { 238 psb_mmu_remove_pages(psb_mmu_get_default_pd(dev_priv->mmu), 239 (gpu_base + gt->offset), gt->npage, 0, 0); 240 psb_gtt_remove(dev, gt); 241 psb_gtt_detach_pages(gt); 242 } 243 244 mutex_unlock(&dev_priv->gtt_mutex); 245 } 246 247 /* 248 * GTT resource allocator - allocate and manage GTT address space 249 */ 250 251 /** 252 * psb_gtt_alloc_range - allocate GTT address space 253 * @dev: Our DRM device 254 * @len: length (bytes) of address space required 255 * @name: resource name 256 * @backed: resource should be backed by stolen pages 257 * @align: requested alignment 258 * 259 * Ask the kernel core to find us a suitable range of addresses 260 * to use for a GTT mapping. 261 * 262 * Returns a gtt_range structure describing the object, or NULL on 263 * error. On successful return the resource is both allocated and marked 264 * as in use. 265 */ 266 struct gtt_range *psb_gtt_alloc_range(struct drm_device *dev, int len, 267 const char *name, int backed, u32 align) 268 { 269 struct drm_psb_private *dev_priv = dev->dev_private; 270 struct gtt_range *gt; 271 struct resource *r = dev_priv->gtt_mem; 272 int ret; 273 unsigned long start, end; 274 275 if (backed) { 276 /* The start of the GTT is the stolen pages */ 277 start = r->start; 278 end = r->start + dev_priv->gtt.stolen_size - 1; 279 } else { 280 /* The rest we will use for GEM backed objects */ 281 start = r->start + dev_priv->gtt.stolen_size; 282 end = r->end; 283 } 284 285 gt = kzalloc(sizeof(struct gtt_range), GFP_KERNEL); 286 if (gt == NULL) 287 return NULL; 288 gt->resource.name = name; 289 gt->stolen = backed; 290 gt->in_gart = backed; 291 /* Ensure this is set for non GEM objects */ 292 gt->gem.dev = dev; 293 ret = allocate_resource(dev_priv->gtt_mem, >->resource, 294 len, start, end, align, NULL, NULL); 295 if (ret == 0) { 296 gt->offset = gt->resource.start - r->start; 297 return gt; 298 } 299 kfree(gt); 300 return NULL; 301 } 302 303 /** 304 * psb_gtt_free_range - release GTT address space 305 * @dev: our DRM device 306 * @gt: a mapping created with psb_gtt_alloc_range 307 * 308 * Release a resource that was allocated with psb_gtt_alloc_range. If the 309 * object has been pinned by mmap users we clean this up here currently. 310 */ 311 void psb_gtt_free_range(struct drm_device *dev, struct gtt_range *gt) 312 { 313 /* Undo the mmap pin if we are destroying the object */ 314 if (gt->mmapping) { 315 psb_gtt_unpin(gt); 316 gt->mmapping = 0; 317 } 318 WARN_ON(gt->in_gart && !gt->stolen); 319 release_resource(>->resource); 320 kfree(gt); 321 } 322 323 static void psb_gtt_alloc(struct drm_device *dev) 324 { 325 struct drm_psb_private *dev_priv = dev->dev_private; 326 init_rwsem(&dev_priv->gtt.sem); 327 } 328 329 void psb_gtt_takedown(struct drm_device *dev) 330 { 331 struct drm_psb_private *dev_priv = dev->dev_private; 332 struct pci_dev *pdev = to_pci_dev(dev->dev); 333 334 if (dev_priv->gtt_map) { 335 iounmap(dev_priv->gtt_map); 336 dev_priv->gtt_map = NULL; 337 } 338 if (dev_priv->gtt_initialized) { 339 pci_write_config_word(pdev, PSB_GMCH_CTRL, 340 dev_priv->gmch_ctrl); 341 PSB_WVDC32(dev_priv->pge_ctl, PSB_PGETBL_CTL); 342 (void) PSB_RVDC32(PSB_PGETBL_CTL); 343 } 344 if (dev_priv->vram_addr) 345 iounmap(dev_priv->gtt_map); 346 } 347 348 int psb_gtt_init(struct drm_device *dev, int resume) 349 { 350 struct drm_psb_private *dev_priv = dev->dev_private; 351 struct pci_dev *pdev = to_pci_dev(dev->dev); 352 unsigned gtt_pages; 353 unsigned long stolen_size, vram_stolen_size; 354 unsigned i, num_pages; 355 unsigned pfn_base; 356 struct psb_gtt *pg; 357 358 int ret = 0; 359 uint32_t pte; 360 361 if (!resume) { 362 mutex_init(&dev_priv->gtt_mutex); 363 mutex_init(&dev_priv->mmap_mutex); 364 psb_gtt_alloc(dev); 365 } 366 367 pg = &dev_priv->gtt; 368 369 /* Enable the GTT */ 370 pci_read_config_word(pdev, PSB_GMCH_CTRL, &dev_priv->gmch_ctrl); 371 pci_write_config_word(pdev, PSB_GMCH_CTRL, 372 dev_priv->gmch_ctrl | _PSB_GMCH_ENABLED); 373 374 dev_priv->pge_ctl = PSB_RVDC32(PSB_PGETBL_CTL); 375 PSB_WVDC32(dev_priv->pge_ctl | _PSB_PGETBL_ENABLED, PSB_PGETBL_CTL); 376 (void) PSB_RVDC32(PSB_PGETBL_CTL); 377 378 /* The root resource we allocate address space from */ 379 dev_priv->gtt_initialized = 1; 380 381 pg->gtt_phys_start = dev_priv->pge_ctl & PAGE_MASK; 382 383 /* 384 * The video mmu has a hw bug when accessing 0x0D0000000. 385 * Make gatt start at 0x0e000,0000. This doesn't actually 386 * matter for us but may do if the video acceleration ever 387 * gets opened up. 388 */ 389 pg->mmu_gatt_start = 0xE0000000; 390 391 pg->gtt_start = pci_resource_start(pdev, PSB_GTT_RESOURCE); 392 gtt_pages = pci_resource_len(pdev, PSB_GTT_RESOURCE) 393 >> PAGE_SHIFT; 394 /* CDV doesn't report this. In which case the system has 64 gtt pages */ 395 if (pg->gtt_start == 0 || gtt_pages == 0) { 396 dev_dbg(dev->dev, "GTT PCI BAR not initialized.\n"); 397 gtt_pages = 64; 398 pg->gtt_start = dev_priv->pge_ctl; 399 } 400 401 pg->gatt_start = pci_resource_start(pdev, PSB_GATT_RESOURCE); 402 pg->gatt_pages = pci_resource_len(pdev, PSB_GATT_RESOURCE) 403 >> PAGE_SHIFT; 404 dev_priv->gtt_mem = &pdev->resource[PSB_GATT_RESOURCE]; 405 406 if (pg->gatt_pages == 0 || pg->gatt_start == 0) { 407 static struct resource fudge; /* Preferably peppermint */ 408 /* This can occur on CDV systems. Fudge it in this case. 409 We really don't care what imaginary space is being allocated 410 at this point */ 411 dev_dbg(dev->dev, "GATT PCI BAR not initialized.\n"); 412 pg->gatt_start = 0x40000000; 413 pg->gatt_pages = (128 * 1024 * 1024) >> PAGE_SHIFT; 414 /* This is a little confusing but in fact the GTT is providing 415 a view from the GPU into memory and not vice versa. As such 416 this is really allocating space that is not the same as the 417 CPU address space on CDV */ 418 fudge.start = 0x40000000; 419 fudge.end = 0x40000000 + 128 * 1024 * 1024 - 1; 420 fudge.name = "fudge"; 421 fudge.flags = IORESOURCE_MEM; 422 dev_priv->gtt_mem = &fudge; 423 } 424 425 pci_read_config_dword(pdev, PSB_BSM, &dev_priv->stolen_base); 426 vram_stolen_size = pg->gtt_phys_start - dev_priv->stolen_base 427 - PAGE_SIZE; 428 429 stolen_size = vram_stolen_size; 430 431 dev_dbg(dev->dev, "Stolen memory base 0x%x, size %luK\n", 432 dev_priv->stolen_base, vram_stolen_size / 1024); 433 434 if (resume && (gtt_pages != pg->gtt_pages) && 435 (stolen_size != pg->stolen_size)) { 436 dev_err(dev->dev, "GTT resume error.\n"); 437 ret = -EINVAL; 438 goto out_err; 439 } 440 441 pg->gtt_pages = gtt_pages; 442 pg->stolen_size = stolen_size; 443 dev_priv->vram_stolen_size = vram_stolen_size; 444 445 /* 446 * Map the GTT and the stolen memory area 447 */ 448 if (!resume) 449 dev_priv->gtt_map = ioremap(pg->gtt_phys_start, 450 gtt_pages << PAGE_SHIFT); 451 if (!dev_priv->gtt_map) { 452 dev_err(dev->dev, "Failure to map gtt.\n"); 453 ret = -ENOMEM; 454 goto out_err; 455 } 456 457 if (!resume) 458 dev_priv->vram_addr = ioremap_wc(dev_priv->stolen_base, 459 stolen_size); 460 461 if (!dev_priv->vram_addr) { 462 dev_err(dev->dev, "Failure to map stolen base.\n"); 463 ret = -ENOMEM; 464 goto out_err; 465 } 466 467 /* 468 * Insert vram stolen pages into the GTT 469 */ 470 471 pfn_base = dev_priv->stolen_base >> PAGE_SHIFT; 472 num_pages = vram_stolen_size >> PAGE_SHIFT; 473 dev_dbg(dev->dev, "Set up %d stolen pages starting at 0x%08x, GTT offset %dK\n", 474 num_pages, pfn_base << PAGE_SHIFT, 0); 475 for (i = 0; i < num_pages; ++i) { 476 pte = psb_gtt_mask_pte(pfn_base + i, PSB_MMU_CACHED_MEMORY); 477 iowrite32(pte, dev_priv->gtt_map + i); 478 } 479 480 /* 481 * Init rest of GTT to the scratch page to avoid accidents or scribbles 482 */ 483 484 pfn_base = page_to_pfn(dev_priv->scratch_page); 485 pte = psb_gtt_mask_pte(pfn_base, PSB_MMU_CACHED_MEMORY); 486 for (; i < gtt_pages; ++i) 487 iowrite32(pte, dev_priv->gtt_map + i); 488 489 (void) ioread32(dev_priv->gtt_map + i - 1); 490 return 0; 491 492 out_err: 493 psb_gtt_takedown(dev); 494 return ret; 495 } 496 497 int psb_gtt_restore(struct drm_device *dev) 498 { 499 struct drm_psb_private *dev_priv = dev->dev_private; 500 struct resource *r = dev_priv->gtt_mem->child; 501 struct gtt_range *range; 502 unsigned int restored = 0, total = 0, size = 0; 503 504 /* On resume, the gtt_mutex is already initialized */ 505 mutex_lock(&dev_priv->gtt_mutex); 506 psb_gtt_init(dev, 1); 507 508 while (r != NULL) { 509 range = container_of(r, struct gtt_range, resource); 510 if (range->pages) { 511 psb_gtt_insert(dev, range, 1); 512 size += range->resource.end - range->resource.start; 513 restored++; 514 } 515 r = r->sibling; 516 total++; 517 } 518 mutex_unlock(&dev_priv->gtt_mutex); 519 DRM_DEBUG_DRIVER("Restored %u of %u gtt ranges (%u KB)", restored, 520 total, (size / 1024)); 521 522 return 0; 523 } 524