xref: /linux/drivers/gpu/drm/gma500/gtt.c (revision 93d90ad708b8da6efc0e487b66111aa9db7f70c7)
1 /*
2  * Copyright (c) 2007, Intel Corporation.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  *
18  * Authors: Thomas Hellstrom <thomas-at-tungstengraphics.com>
19  *	    Alan Cox <alan@linux.intel.com>
20  */
21 
22 #include <drm/drmP.h>
23 #include <linux/shmem_fs.h>
24 #include "psb_drv.h"
25 #include "blitter.h"
26 
27 
28 /*
29  *	GTT resource allocator - manage page mappings in GTT space
30  */
31 
32 /**
33  *	psb_gtt_mask_pte	-	generate GTT pte entry
34  *	@pfn: page number to encode
35  *	@type: type of memory in the GTT
36  *
37  *	Set the GTT entry for the appropriate memory type.
38  */
39 static inline uint32_t psb_gtt_mask_pte(uint32_t pfn, int type)
40 {
41 	uint32_t mask = PSB_PTE_VALID;
42 
43 	/* Ensure we explode rather than put an invalid low mapping of
44 	   a high mapping page into the gtt */
45 	BUG_ON(pfn & ~(0xFFFFFFFF >> PAGE_SHIFT));
46 
47 	if (type & PSB_MMU_CACHED_MEMORY)
48 		mask |= PSB_PTE_CACHED;
49 	if (type & PSB_MMU_RO_MEMORY)
50 		mask |= PSB_PTE_RO;
51 	if (type & PSB_MMU_WO_MEMORY)
52 		mask |= PSB_PTE_WO;
53 
54 	return (pfn << PAGE_SHIFT) | mask;
55 }
56 
57 /**
58  *	psb_gtt_entry		-	find the GTT entries for a gtt_range
59  *	@dev: our DRM device
60  *	@r: our GTT range
61  *
62  *	Given a gtt_range object return the GTT offset of the page table
63  *	entries for this gtt_range
64  */
65 static u32 __iomem *psb_gtt_entry(struct drm_device *dev, struct gtt_range *r)
66 {
67 	struct drm_psb_private *dev_priv = dev->dev_private;
68 	unsigned long offset;
69 
70 	offset = r->resource.start - dev_priv->gtt_mem->start;
71 
72 	return dev_priv->gtt_map + (offset >> PAGE_SHIFT);
73 }
74 
75 /**
76  *	psb_gtt_insert	-	put an object into the GTT
77  *	@dev: our DRM device
78  *	@r: our GTT range
79  *
80  *	Take our preallocated GTT range and insert the GEM object into
81  *	the GTT. This is protected via the gtt mutex which the caller
82  *	must hold.
83  */
84 static int psb_gtt_insert(struct drm_device *dev, struct gtt_range *r,
85 			  int resume)
86 {
87 	u32 __iomem *gtt_slot;
88 	u32 pte;
89 	struct page **pages;
90 	int i;
91 
92 	if (r->pages == NULL) {
93 		WARN_ON(1);
94 		return -EINVAL;
95 	}
96 
97 	WARN_ON(r->stolen);	/* refcount these maybe ? */
98 
99 	gtt_slot = psb_gtt_entry(dev, r);
100 	pages = r->pages;
101 
102 	if (!resume) {
103 		/* Make sure changes are visible to the GPU */
104 		set_pages_array_wc(pages, r->npage);
105 	}
106 
107 	/* Write our page entries into the GTT itself */
108 	for (i = r->roll; i < r->npage; i++) {
109 		pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]),
110 				       PSB_MMU_CACHED_MEMORY);
111 		iowrite32(pte, gtt_slot++);
112 	}
113 	for (i = 0; i < r->roll; i++) {
114 		pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]),
115 				       PSB_MMU_CACHED_MEMORY);
116 		iowrite32(pte, gtt_slot++);
117 	}
118 	/* Make sure all the entries are set before we return */
119 	ioread32(gtt_slot - 1);
120 
121 	return 0;
122 }
123 
124 /**
125  *	psb_gtt_remove	-	remove an object from the GTT
126  *	@dev: our DRM device
127  *	@r: our GTT range
128  *
129  *	Remove a preallocated GTT range from the GTT. Overwrite all the
130  *	page table entries with the dummy page. This is protected via the gtt
131  *	mutex which the caller must hold.
132  */
133 void psb_gtt_remove(struct drm_device *dev, struct gtt_range *r)
134 {
135 	struct drm_psb_private *dev_priv = dev->dev_private;
136 	u32 __iomem *gtt_slot;
137 	u32 pte;
138 	int i;
139 
140 	WARN_ON(r->stolen);
141 
142 	gtt_slot = psb_gtt_entry(dev, r);
143 	pte = psb_gtt_mask_pte(page_to_pfn(dev_priv->scratch_page),
144 			       PSB_MMU_CACHED_MEMORY);
145 
146 	for (i = 0; i < r->npage; i++)
147 		iowrite32(pte, gtt_slot++);
148 	ioread32(gtt_slot - 1);
149 	set_pages_array_wb(r->pages, r->npage);
150 }
151 
152 /**
153  *	psb_gtt_roll	-	set scrolling position
154  *	@dev: our DRM device
155  *	@r: the gtt mapping we are using
156  *	@roll: roll offset
157  *
158  *	Roll an existing pinned mapping by moving the pages through the GTT.
159  *	This allows us to implement hardware scrolling on the consoles without
160  *	a 2D engine
161  */
162 void psb_gtt_roll(struct drm_device *dev, struct gtt_range *r, int roll)
163 {
164 	u32 __iomem *gtt_slot;
165 	u32 pte;
166 	int i;
167 
168 	if (roll >= r->npage) {
169 		WARN_ON(1);
170 		return;
171 	}
172 
173 	r->roll = roll;
174 
175 	/* Not currently in the GTT - no worry we will write the mapping at
176 	   the right position when it gets pinned */
177 	if (!r->stolen && !r->in_gart)
178 		return;
179 
180 	gtt_slot = psb_gtt_entry(dev, r);
181 
182 	for (i = r->roll; i < r->npage; i++) {
183 		pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]),
184 				       PSB_MMU_CACHED_MEMORY);
185 		iowrite32(pte, gtt_slot++);
186 	}
187 	for (i = 0; i < r->roll; i++) {
188 		pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]),
189 				       PSB_MMU_CACHED_MEMORY);
190 		iowrite32(pte, gtt_slot++);
191 	}
192 	ioread32(gtt_slot - 1);
193 }
194 
195 /**
196  *	psb_gtt_attach_pages	-	attach and pin GEM pages
197  *	@gt: the gtt range
198  *
199  *	Pin and build an in kernel list of the pages that back our GEM object.
200  *	While we hold this the pages cannot be swapped out. This is protected
201  *	via the gtt mutex which the caller must hold.
202  */
203 static int psb_gtt_attach_pages(struct gtt_range *gt)
204 {
205 	struct page **pages;
206 
207 	WARN_ON(gt->pages);
208 
209 	pages = drm_gem_get_pages(&gt->gem);
210 	if (IS_ERR(pages))
211 		return PTR_ERR(pages);
212 
213 	gt->npage = gt->gem.size / PAGE_SIZE;
214 	gt->pages = pages;
215 
216 	return 0;
217 }
218 
219 /**
220  *	psb_gtt_detach_pages	-	attach and pin GEM pages
221  *	@gt: the gtt range
222  *
223  *	Undo the effect of psb_gtt_attach_pages. At this point the pages
224  *	must have been removed from the GTT as they could now be paged out
225  *	and move bus address. This is protected via the gtt mutex which the
226  *	caller must hold.
227  */
228 static void psb_gtt_detach_pages(struct gtt_range *gt)
229 {
230 	drm_gem_put_pages(&gt->gem, gt->pages, true, false);
231 	gt->pages = NULL;
232 }
233 
234 /**
235  *	psb_gtt_pin		-	pin pages into the GTT
236  *	@gt: range to pin
237  *
238  *	Pin a set of pages into the GTT. The pins are refcounted so that
239  *	multiple pins need multiple unpins to undo.
240  *
241  *	Non GEM backed objects treat this as a no-op as they are always GTT
242  *	backed objects.
243  */
244 int psb_gtt_pin(struct gtt_range *gt)
245 {
246 	int ret = 0;
247 	struct drm_device *dev = gt->gem.dev;
248 	struct drm_psb_private *dev_priv = dev->dev_private;
249 	u32 gpu_base = dev_priv->gtt.gatt_start;
250 
251 	mutex_lock(&dev_priv->gtt_mutex);
252 
253 	if (gt->in_gart == 0 && gt->stolen == 0) {
254 		ret = psb_gtt_attach_pages(gt);
255 		if (ret < 0)
256 			goto out;
257 		ret = psb_gtt_insert(dev, gt, 0);
258 		if (ret < 0) {
259 			psb_gtt_detach_pages(gt);
260 			goto out;
261 		}
262 		psb_mmu_insert_pages(psb_mmu_get_default_pd(dev_priv->mmu),
263 				     gt->pages, (gpu_base + gt->offset),
264 				     gt->npage, 0, 0, PSB_MMU_CACHED_MEMORY);
265 	}
266 	gt->in_gart++;
267 out:
268 	mutex_unlock(&dev_priv->gtt_mutex);
269 	return ret;
270 }
271 
272 /**
273  *	psb_gtt_unpin		-	Drop a GTT pin requirement
274  *	@gt: range to pin
275  *
276  *	Undoes the effect of psb_gtt_pin. On the last drop the GEM object
277  *	will be removed from the GTT which will also drop the page references
278  *	and allow the VM to clean up or page stuff.
279  *
280  *	Non GEM backed objects treat this as a no-op as they are always GTT
281  *	backed objects.
282  */
283 void psb_gtt_unpin(struct gtt_range *gt)
284 {
285 	struct drm_device *dev = gt->gem.dev;
286 	struct drm_psb_private *dev_priv = dev->dev_private;
287 	u32 gpu_base = dev_priv->gtt.gatt_start;
288 	int ret;
289 
290 	/* While holding the gtt_mutex no new blits can be initiated */
291 	mutex_lock(&dev_priv->gtt_mutex);
292 
293 	/* Wait for any possible usage of the memory to be finished */
294 	ret = gma_blt_wait_idle(dev_priv);
295 	if (ret) {
296 		DRM_ERROR("Failed to idle the blitter, unpin failed!");
297 		goto out;
298 	}
299 
300 	WARN_ON(!gt->in_gart);
301 
302 	gt->in_gart--;
303 	if (gt->in_gart == 0 && gt->stolen == 0) {
304 		psb_mmu_remove_pages(psb_mmu_get_default_pd(dev_priv->mmu),
305 				     (gpu_base + gt->offset), gt->npage, 0, 0);
306 		psb_gtt_remove(dev, gt);
307 		psb_gtt_detach_pages(gt);
308 	}
309 
310 out:
311 	mutex_unlock(&dev_priv->gtt_mutex);
312 }
313 
314 /*
315  *	GTT resource allocator - allocate and manage GTT address space
316  */
317 
318 /**
319  *	psb_gtt_alloc_range	-	allocate GTT address space
320  *	@dev: Our DRM device
321  *	@len: length (bytes) of address space required
322  *	@name: resource name
323  *	@backed: resource should be backed by stolen pages
324  *
325  *	Ask the kernel core to find us a suitable range of addresses
326  *	to use for a GTT mapping.
327  *
328  *	Returns a gtt_range structure describing the object, or NULL on
329  *	error. On successful return the resource is both allocated and marked
330  *	as in use.
331  */
332 struct gtt_range *psb_gtt_alloc_range(struct drm_device *dev, int len,
333 				      const char *name, int backed, u32 align)
334 {
335 	struct drm_psb_private *dev_priv = dev->dev_private;
336 	struct gtt_range *gt;
337 	struct resource *r = dev_priv->gtt_mem;
338 	int ret;
339 	unsigned long start, end;
340 
341 	if (backed) {
342 		/* The start of the GTT is the stolen pages */
343 		start = r->start;
344 		end = r->start + dev_priv->gtt.stolen_size - 1;
345 	} else {
346 		/* The rest we will use for GEM backed objects */
347 		start = r->start + dev_priv->gtt.stolen_size;
348 		end = r->end;
349 	}
350 
351 	gt = kzalloc(sizeof(struct gtt_range), GFP_KERNEL);
352 	if (gt == NULL)
353 		return NULL;
354 	gt->resource.name = name;
355 	gt->stolen = backed;
356 	gt->in_gart = backed;
357 	gt->roll = 0;
358 	/* Ensure this is set for non GEM objects */
359 	gt->gem.dev = dev;
360 	ret = allocate_resource(dev_priv->gtt_mem, &gt->resource,
361 				len, start, end, align, NULL, NULL);
362 	if (ret == 0) {
363 		gt->offset = gt->resource.start - r->start;
364 		return gt;
365 	}
366 	kfree(gt);
367 	return NULL;
368 }
369 
370 /**
371  *	psb_gtt_free_range	-	release GTT address space
372  *	@dev: our DRM device
373  *	@gt: a mapping created with psb_gtt_alloc_range
374  *
375  *	Release a resource that was allocated with psb_gtt_alloc_range. If the
376  *	object has been pinned by mmap users we clean this up here currently.
377  */
378 void psb_gtt_free_range(struct drm_device *dev, struct gtt_range *gt)
379 {
380 	/* Undo the mmap pin if we are destroying the object */
381 	if (gt->mmapping) {
382 		psb_gtt_unpin(gt);
383 		gt->mmapping = 0;
384 	}
385 	WARN_ON(gt->in_gart && !gt->stolen);
386 	release_resource(&gt->resource);
387 	kfree(gt);
388 }
389 
390 static void psb_gtt_alloc(struct drm_device *dev)
391 {
392 	struct drm_psb_private *dev_priv = dev->dev_private;
393 	init_rwsem(&dev_priv->gtt.sem);
394 }
395 
396 void psb_gtt_takedown(struct drm_device *dev)
397 {
398 	struct drm_psb_private *dev_priv = dev->dev_private;
399 
400 	if (dev_priv->gtt_map) {
401 		iounmap(dev_priv->gtt_map);
402 		dev_priv->gtt_map = NULL;
403 	}
404 	if (dev_priv->gtt_initialized) {
405 		pci_write_config_word(dev->pdev, PSB_GMCH_CTRL,
406 				      dev_priv->gmch_ctrl);
407 		PSB_WVDC32(dev_priv->pge_ctl, PSB_PGETBL_CTL);
408 		(void) PSB_RVDC32(PSB_PGETBL_CTL);
409 	}
410 	if (dev_priv->vram_addr)
411 		iounmap(dev_priv->gtt_map);
412 }
413 
414 int psb_gtt_init(struct drm_device *dev, int resume)
415 {
416 	struct drm_psb_private *dev_priv = dev->dev_private;
417 	unsigned gtt_pages;
418 	unsigned long stolen_size, vram_stolen_size;
419 	unsigned i, num_pages;
420 	unsigned pfn_base;
421 	struct psb_gtt *pg;
422 
423 	int ret = 0;
424 	uint32_t pte;
425 
426 	if (!resume) {
427 		mutex_init(&dev_priv->gtt_mutex);
428 		psb_gtt_alloc(dev);
429 	}
430 
431 	pg = &dev_priv->gtt;
432 
433 	/* Enable the GTT */
434 	pci_read_config_word(dev->pdev, PSB_GMCH_CTRL, &dev_priv->gmch_ctrl);
435 	pci_write_config_word(dev->pdev, PSB_GMCH_CTRL,
436 			      dev_priv->gmch_ctrl | _PSB_GMCH_ENABLED);
437 
438 	dev_priv->pge_ctl = PSB_RVDC32(PSB_PGETBL_CTL);
439 	PSB_WVDC32(dev_priv->pge_ctl | _PSB_PGETBL_ENABLED, PSB_PGETBL_CTL);
440 	(void) PSB_RVDC32(PSB_PGETBL_CTL);
441 
442 	/* The root resource we allocate address space from */
443 	dev_priv->gtt_initialized = 1;
444 
445 	pg->gtt_phys_start = dev_priv->pge_ctl & PAGE_MASK;
446 
447 	/*
448 	 *	The video mmu has a hw bug when accessing 0x0D0000000.
449 	 *	Make gatt start at 0x0e000,0000. This doesn't actually
450 	 *	matter for us but may do if the video acceleration ever
451 	 *	gets opened up.
452 	 */
453 	pg->mmu_gatt_start = 0xE0000000;
454 
455 	pg->gtt_start = pci_resource_start(dev->pdev, PSB_GTT_RESOURCE);
456 	gtt_pages = pci_resource_len(dev->pdev, PSB_GTT_RESOURCE)
457 								>> PAGE_SHIFT;
458 	/* CDV doesn't report this. In which case the system has 64 gtt pages */
459 	if (pg->gtt_start == 0 || gtt_pages == 0) {
460 		dev_dbg(dev->dev, "GTT PCI BAR not initialized.\n");
461 		gtt_pages = 64;
462 		pg->gtt_start = dev_priv->pge_ctl;
463 	}
464 
465 	pg->gatt_start = pci_resource_start(dev->pdev, PSB_GATT_RESOURCE);
466 	pg->gatt_pages = pci_resource_len(dev->pdev, PSB_GATT_RESOURCE)
467 								>> PAGE_SHIFT;
468 	dev_priv->gtt_mem = &dev->pdev->resource[PSB_GATT_RESOURCE];
469 
470 	if (pg->gatt_pages == 0 || pg->gatt_start == 0) {
471 		static struct resource fudge;	/* Preferably peppermint */
472 		/* This can occur on CDV systems. Fudge it in this case.
473 		   We really don't care what imaginary space is being allocated
474 		   at this point */
475 		dev_dbg(dev->dev, "GATT PCI BAR not initialized.\n");
476 		pg->gatt_start = 0x40000000;
477 		pg->gatt_pages = (128 * 1024 * 1024) >> PAGE_SHIFT;
478 		/* This is a little confusing but in fact the GTT is providing
479 		   a view from the GPU into memory and not vice versa. As such
480 		   this is really allocating space that is not the same as the
481 		   CPU address space on CDV */
482 		fudge.start = 0x40000000;
483 		fudge.end = 0x40000000 + 128 * 1024 * 1024 - 1;
484 		fudge.name = "fudge";
485 		fudge.flags = IORESOURCE_MEM;
486 		dev_priv->gtt_mem = &fudge;
487 	}
488 
489 	pci_read_config_dword(dev->pdev, PSB_BSM, &dev_priv->stolen_base);
490 	vram_stolen_size = pg->gtt_phys_start - dev_priv->stolen_base
491 								- PAGE_SIZE;
492 
493 	stolen_size = vram_stolen_size;
494 
495 	dev_dbg(dev->dev, "Stolen memory base 0x%x, size %luK\n",
496 			dev_priv->stolen_base, vram_stolen_size / 1024);
497 
498 	if (resume && (gtt_pages != pg->gtt_pages) &&
499 	    (stolen_size != pg->stolen_size)) {
500 		dev_err(dev->dev, "GTT resume error.\n");
501 		ret = -EINVAL;
502 		goto out_err;
503 	}
504 
505 	pg->gtt_pages = gtt_pages;
506 	pg->stolen_size = stolen_size;
507 	dev_priv->vram_stolen_size = vram_stolen_size;
508 
509 	/*
510 	 *	Map the GTT and the stolen memory area
511 	 */
512 	if (!resume)
513 		dev_priv->gtt_map = ioremap_nocache(pg->gtt_phys_start,
514 						gtt_pages << PAGE_SHIFT);
515 	if (!dev_priv->gtt_map) {
516 		dev_err(dev->dev, "Failure to map gtt.\n");
517 		ret = -ENOMEM;
518 		goto out_err;
519 	}
520 
521 	if (!resume)
522 		dev_priv->vram_addr = ioremap_wc(dev_priv->stolen_base,
523 						 stolen_size);
524 
525 	if (!dev_priv->vram_addr) {
526 		dev_err(dev->dev, "Failure to map stolen base.\n");
527 		ret = -ENOMEM;
528 		goto out_err;
529 	}
530 
531 	/*
532 	 * Insert vram stolen pages into the GTT
533 	 */
534 
535 	pfn_base = dev_priv->stolen_base >> PAGE_SHIFT;
536 	num_pages = vram_stolen_size >> PAGE_SHIFT;
537 	dev_dbg(dev->dev, "Set up %d stolen pages starting at 0x%08x, GTT offset %dK\n",
538 		num_pages, pfn_base << PAGE_SHIFT, 0);
539 	for (i = 0; i < num_pages; ++i) {
540 		pte = psb_gtt_mask_pte(pfn_base + i, PSB_MMU_CACHED_MEMORY);
541 		iowrite32(pte, dev_priv->gtt_map + i);
542 	}
543 
544 	/*
545 	 * Init rest of GTT to the scratch page to avoid accidents or scribbles
546 	 */
547 
548 	pfn_base = page_to_pfn(dev_priv->scratch_page);
549 	pte = psb_gtt_mask_pte(pfn_base, PSB_MMU_CACHED_MEMORY);
550 	for (; i < gtt_pages; ++i)
551 		iowrite32(pte, dev_priv->gtt_map + i);
552 
553 	(void) ioread32(dev_priv->gtt_map + i - 1);
554 	return 0;
555 
556 out_err:
557 	psb_gtt_takedown(dev);
558 	return ret;
559 }
560 
561 int psb_gtt_restore(struct drm_device *dev)
562 {
563 	struct drm_psb_private *dev_priv = dev->dev_private;
564 	struct resource *r = dev_priv->gtt_mem->child;
565 	struct gtt_range *range;
566 	unsigned int restored = 0, total = 0, size = 0;
567 
568 	/* On resume, the gtt_mutex is already initialized */
569 	mutex_lock(&dev_priv->gtt_mutex);
570 	psb_gtt_init(dev, 1);
571 
572 	while (r != NULL) {
573 		range = container_of(r, struct gtt_range, resource);
574 		if (range->pages) {
575 			psb_gtt_insert(dev, range, 1);
576 			size += range->resource.end - range->resource.start;
577 			restored++;
578 		}
579 		r = r->sibling;
580 		total++;
581 	}
582 	mutex_unlock(&dev_priv->gtt_mutex);
583 	DRM_DEBUG_DRIVER("Restored %u of %u gtt ranges (%u KB)", restored,
584 			 total, (size / 1024));
585 
586 	return 0;
587 }
588