xref: /linux/drivers/gpu/drm/gma500/cdv_intel_dp.c (revision b7df4cc3a088a8ce6973c96731bc792dbf54ce28)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 
32 #include <drm/display/drm_dp_helper.h>
33 #include <drm/drm_crtc.h>
34 #include <drm/drm_crtc_helper.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_modeset_helper_vtables.h>
37 #include <drm/drm_simple_kms_helper.h>
38 
39 #include "gma_display.h"
40 #include "psb_drv.h"
41 #include "psb_intel_drv.h"
42 #include "psb_intel_reg.h"
43 
44 /**
45  * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
46  * 				 aux algorithm
47  * @running: set by the algo indicating whether an i2c is ongoing or whether
48  * 	     the i2c bus is quiescent
49  * @address: i2c target address for the currently ongoing transfer
50  * @aux_ch: driver callback to transfer a single byte of the i2c payload
51  */
52 struct i2c_algo_dp_aux_data {
53 	bool running;
54 	u16 address;
55 	int (*aux_ch) (struct i2c_adapter *adapter,
56 		       int mode, uint8_t write_byte,
57 		       uint8_t *read_byte);
58 };
59 
60 /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
61 static int
62 i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
63 			    uint8_t write_byte, uint8_t *read_byte)
64 {
65 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
66 	int ret;
67 
68 	ret = (*algo_data->aux_ch)(adapter, mode,
69 				   write_byte, read_byte);
70 	return ret;
71 }
72 
73 /*
74  * I2C over AUX CH
75  */
76 
77 /*
78  * Send the address. If the I2C link is running, this 'restarts'
79  * the connection with the new address, this is used for doing
80  * a write followed by a read (as needed for DDC)
81  */
82 static int
83 i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
84 {
85 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
86 	int mode = MODE_I2C_START;
87 
88 	if (reading)
89 		mode |= MODE_I2C_READ;
90 	else
91 		mode |= MODE_I2C_WRITE;
92 	algo_data->address = address;
93 	algo_data->running = true;
94 	return i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
95 }
96 
97 /*
98  * Stop the I2C transaction. This closes out the link, sending
99  * a bare address packet with the MOT bit turned off
100  */
101 static void
102 i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
103 {
104 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
105 	int mode = MODE_I2C_STOP;
106 
107 	if (reading)
108 		mode |= MODE_I2C_READ;
109 	else
110 		mode |= MODE_I2C_WRITE;
111 	if (algo_data->running) {
112 		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
113 		algo_data->running = false;
114 	}
115 }
116 
117 /*
118  * Write a single byte to the current I2C address, the
119  * I2C link must be running or this returns -EIO
120  */
121 static int
122 i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
123 {
124 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
125 
126 	if (!algo_data->running)
127 		return -EIO;
128 
129 	return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
130 }
131 
132 /*
133  * Read a single byte from the current I2C address, the
134  * I2C link must be running or this returns -EIO
135  */
136 static int
137 i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
138 {
139 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
140 
141 	if (!algo_data->running)
142 		return -EIO;
143 
144 	return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
145 }
146 
147 static int
148 i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
149 		     struct i2c_msg *msgs,
150 		     int num)
151 {
152 	int ret = 0;
153 	bool reading = false;
154 	int m;
155 	int b;
156 
157 	for (m = 0; m < num; m++) {
158 		u16 len = msgs[m].len;
159 		u8 *buf = msgs[m].buf;
160 		reading = (msgs[m].flags & I2C_M_RD) != 0;
161 		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
162 		if (ret < 0)
163 			break;
164 		if (reading) {
165 			for (b = 0; b < len; b++) {
166 				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
167 				if (ret < 0)
168 					break;
169 			}
170 		} else {
171 			for (b = 0; b < len; b++) {
172 				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
173 				if (ret < 0)
174 					break;
175 			}
176 		}
177 		if (ret < 0)
178 			break;
179 	}
180 	if (ret >= 0)
181 		ret = num;
182 	i2c_algo_dp_aux_stop(adapter, reading);
183 	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
184 	return ret;
185 }
186 
187 static u32
188 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
189 {
190 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
191 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
192 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
193 	       I2C_FUNC_10BIT_ADDR;
194 }
195 
196 static const struct i2c_algorithm i2c_dp_aux_algo = {
197 	.master_xfer	= i2c_algo_dp_aux_xfer,
198 	.functionality	= i2c_algo_dp_aux_functionality,
199 };
200 
201 static void
202 i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
203 {
204 	(void) i2c_algo_dp_aux_address(adapter, 0, false);
205 	(void) i2c_algo_dp_aux_stop(adapter, false);
206 }
207 
208 static int
209 i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
210 {
211 	adapter->algo = &i2c_dp_aux_algo;
212 	adapter->retries = 3;
213 	i2c_dp_aux_reset_bus(adapter);
214 	return 0;
215 }
216 
217 /*
218  * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
219  * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
220  */
221 static int
222 i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
223 {
224 	int error;
225 
226 	error = i2c_dp_aux_prepare_bus(adapter);
227 	if (error)
228 		return error;
229 	error = i2c_add_adapter(adapter);
230 	return error;
231 }
232 
233 #define _wait_for(COND, MS, W) ({ \
234         unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
235         int ret__ = 0;                                                  \
236         while (! (COND)) {                                              \
237                 if (time_after(jiffies, timeout__)) {                   \
238                         ret__ = -ETIMEDOUT;                             \
239                         break;                                          \
240                 }                                                       \
241                 if (W && !in_dbg_master()) msleep(W);                   \
242         }                                                               \
243         ret__;                                                          \
244 })
245 
246 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
247 
248 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
249 
250 #define DP_LINK_CONFIGURATION_SIZE	9
251 
252 #define CDV_FAST_LINK_TRAIN	1
253 
254 struct cdv_intel_dp {
255 	uint32_t output_reg;
256 	uint32_t DP;
257 	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
258 	bool has_audio;
259 	int force_audio;
260 	uint32_t color_range;
261 	uint8_t link_bw;
262 	uint8_t lane_count;
263 	uint8_t dpcd[4];
264 	struct gma_encoder *encoder;
265 	struct i2c_adapter adapter;
266 	struct i2c_algo_dp_aux_data algo;
267 	uint8_t	train_set[4];
268 	uint8_t link_status[DP_LINK_STATUS_SIZE];
269 	int panel_power_up_delay;
270 	int panel_power_down_delay;
271 	int panel_power_cycle_delay;
272 	int backlight_on_delay;
273 	int backlight_off_delay;
274 	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
275 	bool panel_on;
276 };
277 
278 struct ddi_regoff {
279 	uint32_t	PreEmph1;
280 	uint32_t	PreEmph2;
281 	uint32_t	VSwing1;
282 	uint32_t	VSwing2;
283 	uint32_t	VSwing3;
284 	uint32_t	VSwing4;
285 	uint32_t	VSwing5;
286 };
287 
288 static struct ddi_regoff ddi_DP_train_table[] = {
289 	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
290 	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
291 	.VSwing5 = 0x8158,},
292 	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
293 	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
294 	.VSwing5 = 0x8258,},
295 };
296 
297 static uint32_t dp_vswing_premph_table[] = {
298         0x55338954,	0x4000,
299         0x554d8954,	0x2000,
300         0x55668954,	0,
301         0x559ac0d4,	0x6000,
302 };
303 /**
304  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
305  * @encoder: GMA encoder struct
306  *
307  * If a CPU or PCH DP output is attached to an eDP panel, this function
308  * will return true, and false otherwise.
309  */
310 static bool is_edp(struct gma_encoder *encoder)
311 {
312 	return encoder->type == INTEL_OUTPUT_EDP;
313 }
314 
315 
316 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
317 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
318 static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
319 
320 static int
321 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
322 {
323 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
324 	int max_lane_count = 4;
325 
326 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
327 		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
328 		switch (max_lane_count) {
329 		case 1: case 2: case 4:
330 			break;
331 		default:
332 			max_lane_count = 4;
333 		}
334 	}
335 	return max_lane_count;
336 }
337 
338 static int
339 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
340 {
341 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
342 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
343 
344 	switch (max_link_bw) {
345 	case DP_LINK_BW_1_62:
346 	case DP_LINK_BW_2_7:
347 		break;
348 	default:
349 		max_link_bw = DP_LINK_BW_1_62;
350 		break;
351 	}
352 	return max_link_bw;
353 }
354 
355 static int
356 cdv_intel_dp_link_clock(uint8_t link_bw)
357 {
358 	if (link_bw == DP_LINK_BW_2_7)
359 		return 270000;
360 	else
361 		return 162000;
362 }
363 
364 static int
365 cdv_intel_dp_link_required(int pixel_clock, int bpp)
366 {
367 	return (pixel_clock * bpp + 7) / 8;
368 }
369 
370 static int
371 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
372 {
373 	return (max_link_clock * max_lanes * 19) / 20;
374 }
375 
376 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
377 {
378 	struct drm_device *dev = intel_encoder->base.dev;
379 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
380 	u32 pp;
381 
382 	if (intel_dp->panel_on) {
383 		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
384 		return;
385 	}
386 	DRM_DEBUG_KMS("\n");
387 
388 	pp = REG_READ(PP_CONTROL);
389 
390 	pp |= EDP_FORCE_VDD;
391 	REG_WRITE(PP_CONTROL, pp);
392 	REG_READ(PP_CONTROL);
393 	msleep(intel_dp->panel_power_up_delay);
394 }
395 
396 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
397 {
398 	struct drm_device *dev = intel_encoder->base.dev;
399 	u32 pp;
400 
401 	DRM_DEBUG_KMS("\n");
402 	pp = REG_READ(PP_CONTROL);
403 
404 	pp &= ~EDP_FORCE_VDD;
405 	REG_WRITE(PP_CONTROL, pp);
406 	REG_READ(PP_CONTROL);
407 
408 }
409 
410 /* Returns true if the panel was already on when called */
411 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
412 {
413 	struct drm_device *dev = intel_encoder->base.dev;
414 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
415 	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
416 
417 	if (intel_dp->panel_on)
418 		return true;
419 
420 	DRM_DEBUG_KMS("\n");
421 	pp = REG_READ(PP_CONTROL);
422 	pp &= ~PANEL_UNLOCK_MASK;
423 
424 	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
425 	REG_WRITE(PP_CONTROL, pp);
426 	REG_READ(PP_CONTROL);
427 
428 	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
429 		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
430 		intel_dp->panel_on = false;
431 	} else
432 		intel_dp->panel_on = true;
433 	msleep(intel_dp->panel_power_up_delay);
434 
435 	return false;
436 }
437 
438 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
439 {
440 	struct drm_device *dev = intel_encoder->base.dev;
441 	u32 pp, idle_off_mask = PP_ON ;
442 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
443 
444 	DRM_DEBUG_KMS("\n");
445 
446 	pp = REG_READ(PP_CONTROL);
447 
448 	if ((pp & POWER_TARGET_ON) == 0)
449 		return;
450 
451 	intel_dp->panel_on = false;
452 	pp &= ~PANEL_UNLOCK_MASK;
453 	/* ILK workaround: disable reset around power sequence */
454 
455 	pp &= ~POWER_TARGET_ON;
456 	pp &= ~EDP_FORCE_VDD;
457 	pp &= ~EDP_BLC_ENABLE;
458 	REG_WRITE(PP_CONTROL, pp);
459 	REG_READ(PP_CONTROL);
460 	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
461 
462 	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
463 		DRM_DEBUG_KMS("Error in turning off Panel\n");
464 	}
465 
466 	msleep(intel_dp->panel_power_cycle_delay);
467 	DRM_DEBUG_KMS("Over\n");
468 }
469 
470 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
471 {
472 	struct drm_device *dev = intel_encoder->base.dev;
473 	u32 pp;
474 
475 	DRM_DEBUG_KMS("\n");
476 	/*
477 	 * If we enable the backlight right away following a panel power
478 	 * on, we may see slight flicker as the panel syncs with the eDP
479 	 * link.  So delay a bit to make sure the image is solid before
480 	 * allowing it to appear.
481 	 */
482 	msleep(300);
483 	pp = REG_READ(PP_CONTROL);
484 
485 	pp |= EDP_BLC_ENABLE;
486 	REG_WRITE(PP_CONTROL, pp);
487 	gma_backlight_enable(dev);
488 }
489 
490 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
491 {
492 	struct drm_device *dev = intel_encoder->base.dev;
493 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
494 	u32 pp;
495 
496 	DRM_DEBUG_KMS("\n");
497 	gma_backlight_disable(dev);
498 	msleep(10);
499 	pp = REG_READ(PP_CONTROL);
500 
501 	pp &= ~EDP_BLC_ENABLE;
502 	REG_WRITE(PP_CONTROL, pp);
503 	msleep(intel_dp->backlight_off_delay);
504 }
505 
506 static enum drm_mode_status
507 cdv_intel_dp_mode_valid(struct drm_connector *connector,
508 		    struct drm_display_mode *mode)
509 {
510 	struct gma_encoder *encoder = gma_attached_encoder(connector);
511 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
512 	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
513 	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
514 	struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
515 
516 	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
517 		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
518 			return MODE_PANEL;
519 		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
520 			return MODE_PANEL;
521 	}
522 
523 	/* only refuse the mode on non eDP since we have seen some weird eDP panels
524 	   which are outside spec tolerances but somehow work by magic */
525 	if (!is_edp(encoder) &&
526 	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
527 	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
528 		return MODE_CLOCK_HIGH;
529 
530 	if (is_edp(encoder)) {
531 	    if (cdv_intel_dp_link_required(mode->clock, 24)
532 	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
533 		return MODE_CLOCK_HIGH;
534 
535 	}
536 	if (mode->clock < 10000)
537 		return MODE_CLOCK_LOW;
538 
539 	return MODE_OK;
540 }
541 
542 static uint32_t
543 pack_aux(uint8_t *src, int src_bytes)
544 {
545 	int	i;
546 	uint32_t v = 0;
547 
548 	if (src_bytes > 4)
549 		src_bytes = 4;
550 	for (i = 0; i < src_bytes; i++)
551 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
552 	return v;
553 }
554 
555 static void
556 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
557 {
558 	int i;
559 	if (dst_bytes > 4)
560 		dst_bytes = 4;
561 	for (i = 0; i < dst_bytes; i++)
562 		dst[i] = src >> ((3-i) * 8);
563 }
564 
565 static int
566 cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
567 		uint8_t *send, int send_bytes,
568 		uint8_t *recv, int recv_size)
569 {
570 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
571 	uint32_t output_reg = intel_dp->output_reg;
572 	struct drm_device *dev = encoder->base.dev;
573 	uint32_t ch_ctl = output_reg + 0x10;
574 	uint32_t ch_data = ch_ctl + 4;
575 	int i;
576 	int recv_bytes;
577 	uint32_t status;
578 	uint32_t aux_clock_divider;
579 	int try, precharge;
580 
581 	/* The clock divider is based off the hrawclk,
582 	 * and would like to run at 2MHz. So, take the
583 	 * hrawclk value and divide by 2 and use that
584 	 * On CDV platform it uses 200MHz as hrawclk.
585 	 *
586 	 */
587 	aux_clock_divider = 200 / 2;
588 
589 	precharge = 4;
590 	if (is_edp(encoder))
591 		precharge = 10;
592 
593 	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
594 		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
595 			  REG_READ(ch_ctl));
596 		return -EBUSY;
597 	}
598 
599 	/* Must try at least 3 times according to DP spec */
600 	for (try = 0; try < 5; try++) {
601 		/* Load the send data into the aux channel data registers */
602 		for (i = 0; i < send_bytes; i += 4)
603 			REG_WRITE(ch_data + i,
604 				   pack_aux(send + i, send_bytes - i));
605 
606 		/* Send the command and wait for it to complete */
607 		REG_WRITE(ch_ctl,
608 			   DP_AUX_CH_CTL_SEND_BUSY |
609 			   DP_AUX_CH_CTL_TIME_OUT_400us |
610 			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
611 			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
612 			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
613 			   DP_AUX_CH_CTL_DONE |
614 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
615 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
616 		for (;;) {
617 			status = REG_READ(ch_ctl);
618 			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
619 				break;
620 			udelay(100);
621 		}
622 
623 		/* Clear done status and any errors */
624 		REG_WRITE(ch_ctl,
625 			   status |
626 			   DP_AUX_CH_CTL_DONE |
627 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
628 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
629 		if (status & DP_AUX_CH_CTL_DONE)
630 			break;
631 	}
632 
633 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
634 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
635 		return -EBUSY;
636 	}
637 
638 	/* Check for timeout or receive error.
639 	 * Timeouts occur when the sink is not connected
640 	 */
641 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
642 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
643 		return -EIO;
644 	}
645 
646 	/* Timeouts occur when the device isn't connected, so they're
647 	 * "normal" -- don't fill the kernel log with these */
648 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
649 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
650 		return -ETIMEDOUT;
651 	}
652 
653 	/* Unload any bytes sent back from the other side */
654 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
655 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
656 	if (recv_bytes > recv_size)
657 		recv_bytes = recv_size;
658 
659 	for (i = 0; i < recv_bytes; i += 4)
660 		unpack_aux(REG_READ(ch_data + i),
661 			   recv + i, recv_bytes - i);
662 
663 	return recv_bytes;
664 }
665 
666 /* Write data to the aux channel in native mode */
667 static int
668 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
669 			  uint16_t address, uint8_t *send, int send_bytes)
670 {
671 	int ret;
672 	uint8_t	msg[20];
673 	int msg_bytes;
674 	uint8_t	ack;
675 
676 	if (send_bytes > 16)
677 		return -1;
678 	msg[0] = DP_AUX_NATIVE_WRITE << 4;
679 	msg[1] = address >> 8;
680 	msg[2] = address & 0xff;
681 	msg[3] = send_bytes - 1;
682 	memcpy(&msg[4], send, send_bytes);
683 	msg_bytes = send_bytes + 4;
684 	for (;;) {
685 		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
686 		if (ret < 0)
687 			return ret;
688 		ack >>= 4;
689 		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
690 			break;
691 		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
692 			udelay(100);
693 		else
694 			return -EIO;
695 	}
696 	return send_bytes;
697 }
698 
699 /* Write a single byte to the aux channel in native mode */
700 static int
701 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
702 			    uint16_t address, uint8_t byte)
703 {
704 	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
705 }
706 
707 /* read bytes from a native aux channel */
708 static int
709 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
710 			 uint16_t address, uint8_t *recv, int recv_bytes)
711 {
712 	uint8_t msg[4];
713 	int msg_bytes;
714 	uint8_t reply[20];
715 	int reply_bytes;
716 	uint8_t ack;
717 	int ret;
718 
719 	msg[0] = DP_AUX_NATIVE_READ << 4;
720 	msg[1] = address >> 8;
721 	msg[2] = address & 0xff;
722 	msg[3] = recv_bytes - 1;
723 
724 	msg_bytes = 4;
725 	reply_bytes = recv_bytes + 1;
726 
727 	for (;;) {
728 		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
729 				      reply, reply_bytes);
730 		if (ret == 0)
731 			return -EPROTO;
732 		if (ret < 0)
733 			return ret;
734 		ack = reply[0] >> 4;
735 		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
736 			memcpy(recv, reply + 1, ret - 1);
737 			return ret - 1;
738 		}
739 		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
740 			udelay(100);
741 		else
742 			return -EIO;
743 	}
744 }
745 
746 static int
747 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
748 		    uint8_t write_byte, uint8_t *read_byte)
749 {
750 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
751 	struct cdv_intel_dp *intel_dp = container_of(adapter,
752 						struct cdv_intel_dp,
753 						adapter);
754 	struct gma_encoder *encoder = intel_dp->encoder;
755 	uint16_t address = algo_data->address;
756 	uint8_t msg[5];
757 	uint8_t reply[2];
758 	unsigned retry;
759 	int msg_bytes;
760 	int reply_bytes;
761 	int ret;
762 
763 	/* Set up the command byte */
764 	if (mode & MODE_I2C_READ)
765 		msg[0] = DP_AUX_I2C_READ << 4;
766 	else
767 		msg[0] = DP_AUX_I2C_WRITE << 4;
768 
769 	if (!(mode & MODE_I2C_STOP))
770 		msg[0] |= DP_AUX_I2C_MOT << 4;
771 
772 	msg[1] = address >> 8;
773 	msg[2] = address;
774 
775 	switch (mode) {
776 	case MODE_I2C_WRITE:
777 		msg[3] = 0;
778 		msg[4] = write_byte;
779 		msg_bytes = 5;
780 		reply_bytes = 1;
781 		break;
782 	case MODE_I2C_READ:
783 		msg[3] = 0;
784 		msg_bytes = 4;
785 		reply_bytes = 2;
786 		break;
787 	default:
788 		msg_bytes = 3;
789 		reply_bytes = 1;
790 		break;
791 	}
792 
793 	for (retry = 0; retry < 5; retry++) {
794 		ret = cdv_intel_dp_aux_ch(encoder,
795 				      msg, msg_bytes,
796 				      reply, reply_bytes);
797 		if (ret < 0) {
798 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
799 			return ret;
800 		}
801 
802 		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
803 		case DP_AUX_NATIVE_REPLY_ACK:
804 			/* I2C-over-AUX Reply field is only valid
805 			 * when paired with AUX ACK.
806 			 */
807 			break;
808 		case DP_AUX_NATIVE_REPLY_NACK:
809 			DRM_DEBUG_KMS("aux_ch native nack\n");
810 			return -EREMOTEIO;
811 		case DP_AUX_NATIVE_REPLY_DEFER:
812 			udelay(100);
813 			continue;
814 		default:
815 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
816 				  reply[0]);
817 			return -EREMOTEIO;
818 		}
819 
820 		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
821 		case DP_AUX_I2C_REPLY_ACK:
822 			if (mode == MODE_I2C_READ) {
823 				*read_byte = reply[1];
824 			}
825 			return reply_bytes - 1;
826 		case DP_AUX_I2C_REPLY_NACK:
827 			DRM_DEBUG_KMS("aux_i2c nack\n");
828 			return -EREMOTEIO;
829 		case DP_AUX_I2C_REPLY_DEFER:
830 			DRM_DEBUG_KMS("aux_i2c defer\n");
831 			udelay(100);
832 			break;
833 		default:
834 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
835 			return -EREMOTEIO;
836 		}
837 	}
838 
839 	DRM_ERROR("too many retries, giving up\n");
840 	return -EREMOTEIO;
841 }
842 
843 static int
844 cdv_intel_dp_i2c_init(struct gma_connector *connector,
845 		      struct gma_encoder *encoder, const char *name)
846 {
847 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
848 	int ret;
849 
850 	DRM_DEBUG_KMS("i2c_init %s\n", name);
851 
852 	intel_dp->algo.running = false;
853 	intel_dp->algo.address = 0;
854 	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
855 
856 	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
857 	intel_dp->adapter.owner = THIS_MODULE;
858 	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
859 	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
860 	intel_dp->adapter.algo_data = &intel_dp->algo;
861 	intel_dp->adapter.dev.parent = connector->base.kdev;
862 
863 	if (is_edp(encoder))
864 		cdv_intel_edp_panel_vdd_on(encoder);
865 	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
866 	if (is_edp(encoder))
867 		cdv_intel_edp_panel_vdd_off(encoder);
868 
869 	return ret;
870 }
871 
872 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
873 	struct drm_display_mode *adjusted_mode)
874 {
875 	adjusted_mode->hdisplay = fixed_mode->hdisplay;
876 	adjusted_mode->hsync_start = fixed_mode->hsync_start;
877 	adjusted_mode->hsync_end = fixed_mode->hsync_end;
878 	adjusted_mode->htotal = fixed_mode->htotal;
879 
880 	adjusted_mode->vdisplay = fixed_mode->vdisplay;
881 	adjusted_mode->vsync_start = fixed_mode->vsync_start;
882 	adjusted_mode->vsync_end = fixed_mode->vsync_end;
883 	adjusted_mode->vtotal = fixed_mode->vtotal;
884 
885 	adjusted_mode->clock = fixed_mode->clock;
886 
887 	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
888 }
889 
890 static bool
891 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
892 		    struct drm_display_mode *adjusted_mode)
893 {
894 	struct drm_psb_private *dev_priv = to_drm_psb_private(encoder->dev);
895 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
896 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
897 	int lane_count, clock;
898 	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
899 	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
900 	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
901 	int refclock = mode->clock;
902 	int bpp = 24;
903 
904 	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
905 		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
906 		refclock = intel_dp->panel_fixed_mode->clock;
907 		bpp = dev_priv->edp.bpp;
908 	}
909 
910 	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
911 		for (clock = max_clock; clock >= 0; clock--) {
912 			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
913 
914 			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
915 				intel_dp->link_bw = bws[clock];
916 				intel_dp->lane_count = lane_count;
917 				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
918 				DRM_DEBUG_KMS("Display port link bw %02x lane "
919 						"count %d clock %d\n",
920 				       intel_dp->link_bw, intel_dp->lane_count,
921 				       adjusted_mode->clock);
922 				return true;
923 			}
924 		}
925 	}
926 	if (is_edp(intel_encoder)) {
927 		/* okay we failed just pick the highest */
928 		intel_dp->lane_count = max_lane_count;
929 		intel_dp->link_bw = bws[max_clock];
930 		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
931 		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
932 			      "count %d clock %d\n",
933 			      intel_dp->link_bw, intel_dp->lane_count,
934 			      adjusted_mode->clock);
935 
936 		return true;
937 	}
938 	return false;
939 }
940 
941 struct cdv_intel_dp_m_n {
942 	uint32_t	tu;
943 	uint32_t	gmch_m;
944 	uint32_t	gmch_n;
945 	uint32_t	link_m;
946 	uint32_t	link_n;
947 };
948 
949 static void
950 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
951 {
952 	/*
953 	while (*num > 0xffffff || *den > 0xffffff) {
954 		*num >>= 1;
955 		*den >>= 1;
956 	}*/
957 	uint64_t value, m;
958 	m = *num;
959 	value = m * (0x800000);
960 	m = do_div(value, *den);
961 	*num = value;
962 	*den = 0x800000;
963 }
964 
965 static void
966 cdv_intel_dp_compute_m_n(int bpp,
967 		     int nlanes,
968 		     int pixel_clock,
969 		     int link_clock,
970 		     struct cdv_intel_dp_m_n *m_n)
971 {
972 	m_n->tu = 64;
973 	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
974 	m_n->gmch_n = link_clock * nlanes;
975 	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
976 	m_n->link_m = pixel_clock;
977 	m_n->link_n = link_clock;
978 	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
979 }
980 
981 void
982 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
983 		 struct drm_display_mode *adjusted_mode)
984 {
985 	struct drm_device *dev = crtc->dev;
986 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
987 	struct drm_mode_config *mode_config = &dev->mode_config;
988 	struct drm_encoder *encoder;
989 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
990 	int lane_count = 4, bpp = 24;
991 	struct cdv_intel_dp_m_n m_n;
992 	int pipe = gma_crtc->pipe;
993 
994 	/*
995 	 * Find the lane count in the intel_encoder private
996 	 */
997 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
998 		struct gma_encoder *intel_encoder;
999 		struct cdv_intel_dp *intel_dp;
1000 
1001 		if (encoder->crtc != crtc)
1002 			continue;
1003 
1004 		intel_encoder = to_gma_encoder(encoder);
1005 		intel_dp = intel_encoder->dev_priv;
1006 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1007 			lane_count = intel_dp->lane_count;
1008 			break;
1009 		} else if (is_edp(intel_encoder)) {
1010 			lane_count = intel_dp->lane_count;
1011 			bpp = dev_priv->edp.bpp;
1012 			break;
1013 		}
1014 	}
1015 
1016 	/*
1017 	 * Compute the GMCH and Link ratios. The '3' here is
1018 	 * the number of bytes_per_pixel post-LUT, which we always
1019 	 * set up for 8-bits of R/G/B, or 3 bytes total.
1020 	 */
1021 	cdv_intel_dp_compute_m_n(bpp, lane_count,
1022 			     mode->clock, adjusted_mode->clock, &m_n);
1023 
1024 	{
1025 		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1026 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1027 			   m_n.gmch_m);
1028 		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1029 		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1030 		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1031 	}
1032 }
1033 
1034 static void
1035 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1036 		  struct drm_display_mode *adjusted_mode)
1037 {
1038 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1039 	struct drm_crtc *crtc = encoder->crtc;
1040 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1041 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1042 	struct drm_device *dev = encoder->dev;
1043 
1044 	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1045 	intel_dp->DP |= intel_dp->color_range;
1046 
1047 	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1048 		intel_dp->DP |= DP_SYNC_HS_HIGH;
1049 	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1050 		intel_dp->DP |= DP_SYNC_VS_HIGH;
1051 
1052 	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1053 
1054 	switch (intel_dp->lane_count) {
1055 	case 1:
1056 		intel_dp->DP |= DP_PORT_WIDTH_1;
1057 		break;
1058 	case 2:
1059 		intel_dp->DP |= DP_PORT_WIDTH_2;
1060 		break;
1061 	case 4:
1062 		intel_dp->DP |= DP_PORT_WIDTH_4;
1063 		break;
1064 	}
1065 	if (intel_dp->has_audio)
1066 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1067 
1068 	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1069 	intel_dp->link_configuration[0] = intel_dp->link_bw;
1070 	intel_dp->link_configuration[1] = intel_dp->lane_count;
1071 
1072 	/*
1073 	 * Check for DPCD version > 1.1 and enhanced framing support
1074 	 */
1075 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1076 	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1077 		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1078 		intel_dp->DP |= DP_ENHANCED_FRAMING;
1079 	}
1080 
1081 	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1082 	if (gma_crtc->pipe == 1)
1083 		intel_dp->DP |= DP_PIPEB_SELECT;
1084 
1085 	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1086 	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1087 	if (is_edp(intel_encoder)) {
1088 		uint32_t pfit_control;
1089 		cdv_intel_edp_panel_on(intel_encoder);
1090 
1091 		if (mode->hdisplay != adjusted_mode->hdisplay ||
1092 			    mode->vdisplay != adjusted_mode->vdisplay)
1093 			pfit_control = PFIT_ENABLE;
1094 		else
1095 			pfit_control = 0;
1096 
1097 		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1098 
1099 		REG_WRITE(PFIT_CONTROL, pfit_control);
1100 	}
1101 }
1102 
1103 
1104 /* If the sink supports it, try to set the power state appropriately */
1105 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1106 {
1107 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1108 	int ret, i;
1109 
1110 	/* Should have a valid DPCD by this point */
1111 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1112 		return;
1113 
1114 	if (mode != DRM_MODE_DPMS_ON) {
1115 		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1116 						  DP_SET_POWER_D3);
1117 		if (ret != 1)
1118 			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1119 	} else {
1120 		/*
1121 		 * When turning on, we need to retry for 1ms to give the sink
1122 		 * time to wake up.
1123 		 */
1124 		for (i = 0; i < 3; i++) {
1125 			ret = cdv_intel_dp_aux_native_write_1(encoder,
1126 							  DP_SET_POWER,
1127 							  DP_SET_POWER_D0);
1128 			if (ret == 1)
1129 				break;
1130 			udelay(1000);
1131 		}
1132 	}
1133 }
1134 
1135 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1136 {
1137 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1138 	int edp = is_edp(intel_encoder);
1139 
1140 	if (edp) {
1141 		cdv_intel_edp_backlight_off(intel_encoder);
1142 		cdv_intel_edp_panel_off(intel_encoder);
1143 		cdv_intel_edp_panel_vdd_on(intel_encoder);
1144         }
1145 	/* Wake up the sink first */
1146 	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1147 	cdv_intel_dp_link_down(intel_encoder);
1148 	if (edp)
1149 		cdv_intel_edp_panel_vdd_off(intel_encoder);
1150 }
1151 
1152 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1153 {
1154 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1155 	int edp = is_edp(intel_encoder);
1156 
1157 	if (edp)
1158 		cdv_intel_edp_panel_on(intel_encoder);
1159 	cdv_intel_dp_start_link_train(intel_encoder);
1160 	cdv_intel_dp_complete_link_train(intel_encoder);
1161 	if (edp)
1162 		cdv_intel_edp_backlight_on(intel_encoder);
1163 }
1164 
1165 static void
1166 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1167 {
1168 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1169 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1170 	struct drm_device *dev = encoder->dev;
1171 	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1172 	int edp = is_edp(intel_encoder);
1173 
1174 	if (mode != DRM_MODE_DPMS_ON) {
1175 		if (edp) {
1176 			cdv_intel_edp_backlight_off(intel_encoder);
1177 			cdv_intel_edp_panel_vdd_on(intel_encoder);
1178 		}
1179 		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1180 		cdv_intel_dp_link_down(intel_encoder);
1181 		if (edp) {
1182 			cdv_intel_edp_panel_vdd_off(intel_encoder);
1183 			cdv_intel_edp_panel_off(intel_encoder);
1184 		}
1185 	} else {
1186         	if (edp)
1187 			cdv_intel_edp_panel_on(intel_encoder);
1188 		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1189 		if (!(dp_reg & DP_PORT_EN)) {
1190 			cdv_intel_dp_start_link_train(intel_encoder);
1191 			cdv_intel_dp_complete_link_train(intel_encoder);
1192 		}
1193 		if (edp)
1194         		cdv_intel_edp_backlight_on(intel_encoder);
1195 	}
1196 }
1197 
1198 /*
1199  * Native read with retry for link status and receiver capability reads for
1200  * cases where the sink may still be asleep.
1201  */
1202 static bool
1203 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1204 			       uint8_t *recv, int recv_bytes)
1205 {
1206 	int ret, i;
1207 
1208 	/*
1209 	 * Sinks are *supposed* to come up within 1ms from an off state,
1210 	 * but we're also supposed to retry 3 times per the spec.
1211 	 */
1212 	for (i = 0; i < 3; i++) {
1213 		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1214 					       recv_bytes);
1215 		if (ret == recv_bytes)
1216 			return true;
1217 		udelay(1000);
1218 	}
1219 
1220 	return false;
1221 }
1222 
1223 /*
1224  * Fetch AUX CH registers 0x202 - 0x207 which contain
1225  * link status information
1226  */
1227 static bool
1228 cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1229 {
1230 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1231 	return cdv_intel_dp_aux_native_read_retry(encoder,
1232 					      DP_LANE0_1_STATUS,
1233 					      intel_dp->link_status,
1234 					      DP_LINK_STATUS_SIZE);
1235 }
1236 
1237 static uint8_t
1238 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1239 		     int r)
1240 {
1241 	return link_status[r - DP_LANE0_1_STATUS];
1242 }
1243 
1244 static uint8_t
1245 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1246 				 int lane)
1247 {
1248 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1249 	int	    s = ((lane & 1) ?
1250 			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1251 			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1252 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1253 
1254 	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1255 }
1256 
1257 static uint8_t
1258 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1259 				      int lane)
1260 {
1261 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1262 	int	    s = ((lane & 1) ?
1263 			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1264 			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1265 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1266 
1267 	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1268 }
1269 
1270 #define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1271 
1272 static void
1273 cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1274 {
1275 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1276 	uint8_t v = 0;
1277 	uint8_t p = 0;
1278 	int lane;
1279 
1280 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1281 		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1282 		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1283 
1284 		if (this_v > v)
1285 			v = this_v;
1286 		if (this_p > p)
1287 			p = this_p;
1288 	}
1289 
1290 	if (v >= CDV_DP_VOLTAGE_MAX)
1291 		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1292 
1293 	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1294 		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1295 
1296 	for (lane = 0; lane < 4; lane++)
1297 		intel_dp->train_set[lane] = v | p;
1298 }
1299 
1300 
1301 static uint8_t
1302 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1303 		      int lane)
1304 {
1305 	int i = DP_LANE0_1_STATUS + (lane >> 1);
1306 	int s = (lane & 1) * 4;
1307 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1308 
1309 	return (l >> s) & 0xf;
1310 }
1311 
1312 /* Check for clock recovery is done on all channels */
1313 static bool
1314 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1315 {
1316 	int lane;
1317 	uint8_t lane_status;
1318 
1319 	for (lane = 0; lane < lane_count; lane++) {
1320 		lane_status = cdv_intel_get_lane_status(link_status, lane);
1321 		if ((lane_status & DP_LANE_CR_DONE) == 0)
1322 			return false;
1323 	}
1324 	return true;
1325 }
1326 
1327 /* Check to see if channel eq is done on all channels */
1328 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1329 			 DP_LANE_CHANNEL_EQ_DONE|\
1330 			 DP_LANE_SYMBOL_LOCKED)
1331 static bool
1332 cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1333 {
1334 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1335 	uint8_t lane_align;
1336 	uint8_t lane_status;
1337 	int lane;
1338 
1339 	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1340 					  DP_LANE_ALIGN_STATUS_UPDATED);
1341 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1342 		return false;
1343 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1344 		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1345 		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1346 			return false;
1347 	}
1348 	return true;
1349 }
1350 
1351 static bool
1352 cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1353 			uint32_t dp_reg_value,
1354 			uint8_t dp_train_pat)
1355 {
1356 	struct drm_device *dev = encoder->base.dev;
1357 	int ret;
1358 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1359 
1360 	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1361 	REG_READ(intel_dp->output_reg);
1362 
1363 	ret = cdv_intel_dp_aux_native_write_1(encoder,
1364 				    DP_TRAINING_PATTERN_SET,
1365 				    dp_train_pat);
1366 
1367 	if (ret != 1) {
1368 		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1369 				dp_train_pat);
1370 		return false;
1371 	}
1372 
1373 	return true;
1374 }
1375 
1376 
1377 static bool
1378 cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1379 			uint8_t dp_train_pat)
1380 {
1381 	int ret;
1382 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1383 
1384 	ret = cdv_intel_dp_aux_native_write(encoder,
1385 					DP_TRAINING_LANE0_SET,
1386 					intel_dp->train_set,
1387 					intel_dp->lane_count);
1388 
1389 	if (ret != intel_dp->lane_count) {
1390 		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1391 				intel_dp->train_set[0], intel_dp->lane_count);
1392 		return false;
1393 	}
1394 	return true;
1395 }
1396 
1397 static void
1398 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1399 {
1400 	struct drm_device *dev = encoder->base.dev;
1401 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1402 	struct ddi_regoff *ddi_reg;
1403 	int vswing, premph, index;
1404 
1405 	if (intel_dp->output_reg == DP_B)
1406 		ddi_reg = &ddi_DP_train_table[0];
1407 	else
1408 		ddi_reg = &ddi_DP_train_table[1];
1409 
1410 	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1411 	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1412 				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1413 
1414 	if (vswing + premph > 3)
1415 		return;
1416 #ifdef CDV_FAST_LINK_TRAIN
1417 	return;
1418 #endif
1419 	DRM_DEBUG_KMS("Test2\n");
1420 	//return ;
1421 	cdv_sb_reset(dev);
1422 	/* ;Swing voltage programming
1423         ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1424 	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1425 
1426 	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1427 	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1428 
1429 	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1430 	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1431 	 */
1432 	index = (vswing + premph) * 2;
1433 	if (premph == 1 && vswing == 1) {
1434 		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1435 	} else
1436 		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1437 
1438 	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1439 	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1440 		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1441 	else
1442 		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1443 
1444 	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1445 	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1446 
1447 	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1448 	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1449 
1450 	/* ;Pre emphasis programming
1451 	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1452 	 */
1453 	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1454 
1455 	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1456 	index = 2 * premph + 1;
1457 	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1458 	return;
1459 }
1460 
1461 
1462 /* Enable corresponding port and start training pattern 1 */
1463 static void
1464 cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1465 {
1466 	struct drm_device *dev = encoder->base.dev;
1467 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1468 	int i;
1469 	uint8_t voltage;
1470 	bool clock_recovery = false;
1471 	int tries;
1472 	u32 reg;
1473 	uint32_t DP = intel_dp->DP;
1474 
1475 	DP |= DP_PORT_EN;
1476 	DP &= ~DP_LINK_TRAIN_MASK;
1477 
1478 	reg = DP;
1479 	reg |= DP_LINK_TRAIN_PAT_1;
1480 	/* Enable output, wait for it to become active */
1481 	REG_WRITE(intel_dp->output_reg, reg);
1482 	REG_READ(intel_dp->output_reg);
1483 	gma_wait_for_vblank(dev);
1484 
1485 	DRM_DEBUG_KMS("Link config\n");
1486 	/* Write the link configuration data */
1487 	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1488 				  intel_dp->link_configuration,
1489 				  2);
1490 
1491 	memset(intel_dp->train_set, 0, 4);
1492 	voltage = 0;
1493 	tries = 0;
1494 	clock_recovery = false;
1495 
1496 	DRM_DEBUG_KMS("Start train\n");
1497 	reg = DP | DP_LINK_TRAIN_PAT_1;
1498 
1499 	for (;;) {
1500 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1501 		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1502 				intel_dp->train_set[0],
1503 				intel_dp->link_configuration[0],
1504 				intel_dp->link_configuration[1]);
1505 
1506 		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1507 			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1508 		}
1509 		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1510 		/* Set training pattern 1 */
1511 
1512 		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1513 
1514 		udelay(200);
1515 		if (!cdv_intel_dp_get_link_status(encoder))
1516 			break;
1517 
1518 		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1519 				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1520 				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1521 
1522 		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1523 			DRM_DEBUG_KMS("PT1 train is done\n");
1524 			clock_recovery = true;
1525 			break;
1526 		}
1527 
1528 		/* Check to see if we've tried the max voltage */
1529 		for (i = 0; i < intel_dp->lane_count; i++)
1530 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1531 				break;
1532 		if (i == intel_dp->lane_count)
1533 			break;
1534 
1535 		/* Check to see if we've tried the same voltage 5 times */
1536 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1537 			++tries;
1538 			if (tries == 5)
1539 				break;
1540 		} else
1541 			tries = 0;
1542 		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1543 
1544 		/* Compute new intel_dp->train_set as requested by target */
1545 		cdv_intel_get_adjust_train(encoder);
1546 
1547 	}
1548 
1549 	if (!clock_recovery) {
1550 		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1551 	}
1552 
1553 	intel_dp->DP = DP;
1554 }
1555 
1556 static void
1557 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1558 {
1559 	struct drm_device *dev = encoder->base.dev;
1560 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1561 	int tries, cr_tries;
1562 	u32 reg;
1563 	uint32_t DP = intel_dp->DP;
1564 
1565 	/* channel equalization */
1566 	tries = 0;
1567 	cr_tries = 0;
1568 
1569 	DRM_DEBUG_KMS("\n");
1570 	reg = DP | DP_LINK_TRAIN_PAT_2;
1571 
1572 	for (;;) {
1573 
1574 		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1575 				intel_dp->train_set[0],
1576 				intel_dp->link_configuration[0],
1577 				intel_dp->link_configuration[1]);
1578         	/* channel eq pattern */
1579 
1580 		if (!cdv_intel_dp_set_link_train(encoder, reg,
1581 					     DP_TRAINING_PATTERN_2)) {
1582 			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1583 		}
1584 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1585 
1586 		if (cr_tries > 5) {
1587 			DRM_ERROR("failed to train DP, aborting\n");
1588 			cdv_intel_dp_link_down(encoder);
1589 			break;
1590 		}
1591 
1592 		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1593 
1594 		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1595 
1596 		udelay(1000);
1597 		if (!cdv_intel_dp_get_link_status(encoder))
1598 			break;
1599 
1600 		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1601 				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1602 				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1603 
1604 		/* Make sure clock is still ok */
1605 		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1606 			cdv_intel_dp_start_link_train(encoder);
1607 			cr_tries++;
1608 			continue;
1609 		}
1610 
1611 		if (cdv_intel_channel_eq_ok(encoder)) {
1612 			DRM_DEBUG_KMS("PT2 train is done\n");
1613 			break;
1614 		}
1615 
1616 		/* Try 5 times, then try clock recovery if that fails */
1617 		if (tries > 5) {
1618 			cdv_intel_dp_link_down(encoder);
1619 			cdv_intel_dp_start_link_train(encoder);
1620 			tries = 0;
1621 			cr_tries++;
1622 			continue;
1623 		}
1624 
1625 		/* Compute new intel_dp->train_set as requested by target */
1626 		cdv_intel_get_adjust_train(encoder);
1627 		++tries;
1628 
1629 	}
1630 
1631 	reg = DP | DP_LINK_TRAIN_OFF;
1632 
1633 	REG_WRITE(intel_dp->output_reg, reg);
1634 	REG_READ(intel_dp->output_reg);
1635 	cdv_intel_dp_aux_native_write_1(encoder,
1636 				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1637 }
1638 
1639 static void
1640 cdv_intel_dp_link_down(struct gma_encoder *encoder)
1641 {
1642 	struct drm_device *dev = encoder->base.dev;
1643 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1644 	uint32_t DP = intel_dp->DP;
1645 
1646 	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1647 		return;
1648 
1649 	DRM_DEBUG_KMS("\n");
1650 
1651 
1652 	{
1653 		DP &= ~DP_LINK_TRAIN_MASK;
1654 		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1655 	}
1656 	REG_READ(intel_dp->output_reg);
1657 
1658 	msleep(17);
1659 
1660 	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1661 	REG_READ(intel_dp->output_reg);
1662 }
1663 
1664 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1665 {
1666 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1667 	enum drm_connector_status status;
1668 
1669 	status = connector_status_disconnected;
1670 	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1671 				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1672 	{
1673 		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1674 			status = connector_status_connected;
1675 	}
1676 	if (status == connector_status_connected)
1677 		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1678 			intel_dp->dpcd[0], intel_dp->dpcd[1],
1679 			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1680 	return status;
1681 }
1682 
1683 /*
1684  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1685  *
1686  * \return true if DP port is connected.
1687  * \return false if DP port is disconnected.
1688  */
1689 static enum drm_connector_status
1690 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1691 {
1692 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1693 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1694 	enum drm_connector_status status;
1695 	struct edid *edid = NULL;
1696 	int edp = is_edp(encoder);
1697 
1698 	intel_dp->has_audio = false;
1699 
1700 	if (edp)
1701 		cdv_intel_edp_panel_vdd_on(encoder);
1702 	status = cdv_dp_detect(encoder);
1703 	if (status != connector_status_connected) {
1704 		if (edp)
1705 			cdv_intel_edp_panel_vdd_off(encoder);
1706 		return status;
1707         }
1708 
1709 	if (intel_dp->force_audio) {
1710 		intel_dp->has_audio = intel_dp->force_audio > 0;
1711 	} else {
1712 		edid = drm_get_edid(connector, &intel_dp->adapter);
1713 		if (edid) {
1714 			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1715 			kfree(edid);
1716 		}
1717 	}
1718 	if (edp)
1719 		cdv_intel_edp_panel_vdd_off(encoder);
1720 
1721 	return connector_status_connected;
1722 }
1723 
1724 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1725 {
1726 	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1727 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1728 	struct edid *edid = NULL;
1729 	int ret = 0;
1730 	int edp = is_edp(intel_encoder);
1731 
1732 
1733 	edid = drm_get_edid(connector, &intel_dp->adapter);
1734 	if (edid) {
1735 		drm_connector_update_edid_property(connector, edid);
1736 		ret = drm_add_edid_modes(connector, edid);
1737 		kfree(edid);
1738 	}
1739 
1740 	if (is_edp(intel_encoder)) {
1741 		struct drm_device *dev = connector->dev;
1742 		struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1743 
1744 		cdv_intel_edp_panel_vdd_off(intel_encoder);
1745 		if (ret) {
1746 			if (edp && !intel_dp->panel_fixed_mode) {
1747 				struct drm_display_mode *newmode;
1748 				list_for_each_entry(newmode, &connector->probed_modes,
1749 					    head) {
1750 					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1751 						intel_dp->panel_fixed_mode =
1752 							drm_mode_duplicate(dev, newmode);
1753 						break;
1754 					}
1755 				}
1756 			}
1757 
1758 			return ret;
1759 		}
1760 		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1761 			intel_dp->panel_fixed_mode =
1762 				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1763 			if (intel_dp->panel_fixed_mode) {
1764 				intel_dp->panel_fixed_mode->type |=
1765 					DRM_MODE_TYPE_PREFERRED;
1766 			}
1767 		}
1768 		if (intel_dp->panel_fixed_mode != NULL) {
1769 			struct drm_display_mode *mode;
1770 			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1771 			drm_mode_probed_add(connector, mode);
1772 			return 1;
1773 		}
1774 	}
1775 
1776 	return ret;
1777 }
1778 
1779 static bool
1780 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1781 {
1782 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1783 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1784 	struct edid *edid;
1785 	bool has_audio = false;
1786 	int edp = is_edp(encoder);
1787 
1788 	if (edp)
1789 		cdv_intel_edp_panel_vdd_on(encoder);
1790 
1791 	edid = drm_get_edid(connector, &intel_dp->adapter);
1792 	if (edid) {
1793 		has_audio = drm_detect_monitor_audio(edid);
1794 		kfree(edid);
1795 	}
1796 	if (edp)
1797 		cdv_intel_edp_panel_vdd_off(encoder);
1798 
1799 	return has_audio;
1800 }
1801 
1802 static int
1803 cdv_intel_dp_set_property(struct drm_connector *connector,
1804 		      struct drm_property *property,
1805 		      uint64_t val)
1806 {
1807 	struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
1808 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1809 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1810 	int ret;
1811 
1812 	ret = drm_object_property_set_value(&connector->base, property, val);
1813 	if (ret)
1814 		return ret;
1815 
1816 	if (property == dev_priv->force_audio_property) {
1817 		int i = val;
1818 		bool has_audio;
1819 
1820 		if (i == intel_dp->force_audio)
1821 			return 0;
1822 
1823 		intel_dp->force_audio = i;
1824 
1825 		if (i == 0)
1826 			has_audio = cdv_intel_dp_detect_audio(connector);
1827 		else
1828 			has_audio = i > 0;
1829 
1830 		if (has_audio == intel_dp->has_audio)
1831 			return 0;
1832 
1833 		intel_dp->has_audio = has_audio;
1834 		goto done;
1835 	}
1836 
1837 	if (property == dev_priv->broadcast_rgb_property) {
1838 		if (val == !!intel_dp->color_range)
1839 			return 0;
1840 
1841 		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1842 		goto done;
1843 	}
1844 
1845 	return -EINVAL;
1846 
1847 done:
1848 	if (encoder->base.crtc) {
1849 		struct drm_crtc *crtc = encoder->base.crtc;
1850 		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1851 					 crtc->x, crtc->y,
1852 					 crtc->primary->fb);
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 static void
1859 cdv_intel_dp_destroy(struct drm_connector *connector)
1860 {
1861 	struct gma_connector *gma_connector = to_gma_connector(connector);
1862 	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1863 	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1864 
1865 	if (is_edp(gma_encoder)) {
1866 	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1867 		kfree(intel_dp->panel_fixed_mode);
1868 		intel_dp->panel_fixed_mode = NULL;
1869 	}
1870 	i2c_del_adapter(&intel_dp->adapter);
1871 	drm_connector_cleanup(connector);
1872 	kfree(gma_connector);
1873 }
1874 
1875 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1876 	.dpms = cdv_intel_dp_dpms,
1877 	.mode_fixup = cdv_intel_dp_mode_fixup,
1878 	.prepare = cdv_intel_dp_prepare,
1879 	.mode_set = cdv_intel_dp_mode_set,
1880 	.commit = cdv_intel_dp_commit,
1881 };
1882 
1883 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1884 	.dpms = drm_helper_connector_dpms,
1885 	.detect = cdv_intel_dp_detect,
1886 	.fill_modes = drm_helper_probe_single_connector_modes,
1887 	.set_property = cdv_intel_dp_set_property,
1888 	.destroy = cdv_intel_dp_destroy,
1889 };
1890 
1891 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1892 	.get_modes = cdv_intel_dp_get_modes,
1893 	.mode_valid = cdv_intel_dp_mode_valid,
1894 	.best_encoder = gma_best_encoder,
1895 };
1896 
1897 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1898 {
1899 	cdv_intel_attach_force_audio_property(connector);
1900 	cdv_intel_attach_broadcast_rgb_property(connector);
1901 }
1902 
1903 /* check the VBT to see whether the eDP is on DP-D port */
1904 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1905 {
1906 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1907 	struct child_device_config *p_child;
1908 	int i;
1909 
1910 	if (!dev_priv->child_dev_num)
1911 		return false;
1912 
1913 	for (i = 0; i < dev_priv->child_dev_num; i++) {
1914 		p_child = dev_priv->child_dev + i;
1915 
1916 		if (p_child->dvo_port == PORT_IDPC &&
1917 		    p_child->device_type == DEVICE_TYPE_eDP)
1918 			return true;
1919 	}
1920 	return false;
1921 }
1922 
1923 /* Cedarview display clock gating
1924 
1925    We need this disable dot get correct behaviour while enabling
1926    DP/eDP. TODO - investigate if we can turn it back to normality
1927    after enabling */
1928 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1929 {
1930 	u32 reg_value;
1931 	reg_value = REG_READ(DSPCLK_GATE_D);
1932 
1933 	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1934 			DPUNIT_PIPEA_GATE_DISABLE |
1935 			DPCUNIT_CLOCK_GATE_DISABLE |
1936 			DPLSUNIT_CLOCK_GATE_DISABLE |
1937 			DPOUNIT_CLOCK_GATE_DISABLE |
1938 			DPIOUNIT_CLOCK_GATE_DISABLE);
1939 
1940 	REG_WRITE(DSPCLK_GATE_D, reg_value);
1941 
1942 	udelay(500);
1943 }
1944 
1945 void
1946 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1947 {
1948 	struct gma_encoder *gma_encoder;
1949 	struct gma_connector *gma_connector;
1950 	struct drm_connector *connector;
1951 	struct drm_encoder *encoder;
1952 	struct cdv_intel_dp *intel_dp;
1953 	const char *name = NULL;
1954 	int type = DRM_MODE_CONNECTOR_DisplayPort;
1955 
1956 	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1957 	if (!gma_encoder)
1958 		return;
1959         gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1960         if (!gma_connector)
1961                 goto err_connector;
1962 	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1963 	if (!intel_dp)
1964 	        goto err_priv;
1965 
1966 	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1967 		type = DRM_MODE_CONNECTOR_eDP;
1968 
1969 	connector = &gma_connector->base;
1970 	encoder = &gma_encoder->base;
1971 
1972 	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1973 	drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS);
1974 
1975 	gma_connector_attach_encoder(gma_connector, gma_encoder);
1976 
1977 	if (type == DRM_MODE_CONNECTOR_DisplayPort)
1978 		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1979         else
1980 		gma_encoder->type = INTEL_OUTPUT_EDP;
1981 
1982 
1983 	gma_encoder->dev_priv=intel_dp;
1984 	intel_dp->encoder = gma_encoder;
1985 	intel_dp->output_reg = output_reg;
1986 
1987 	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1988 	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1989 
1990 	connector->polled = DRM_CONNECTOR_POLL_HPD;
1991 	connector->interlace_allowed = false;
1992 	connector->doublescan_allowed = false;
1993 
1994 	/* Set up the DDC bus. */
1995 	switch (output_reg) {
1996 		case DP_B:
1997 			name = "DPDDC-B";
1998 			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
1999 			break;
2000 		case DP_C:
2001 			name = "DPDDC-C";
2002 			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2003 			break;
2004 	}
2005 
2006 	cdv_disable_intel_clock_gating(dev);
2007 
2008 	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2009         /* FIXME:fail check */
2010 	cdv_intel_dp_add_properties(connector);
2011 
2012 	if (is_edp(gma_encoder)) {
2013 		int ret;
2014 		struct edp_power_seq cur;
2015                 u32 pp_on, pp_off, pp_div;
2016 		u32 pwm_ctrl;
2017 
2018 		pp_on = REG_READ(PP_CONTROL);
2019 		pp_on &= ~PANEL_UNLOCK_MASK;
2020 	        pp_on |= PANEL_UNLOCK_REGS;
2021 
2022 		REG_WRITE(PP_CONTROL, pp_on);
2023 
2024 		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2025 		pwm_ctrl |= PWM_PIPE_B;
2026 		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2027 
2028                 pp_on = REG_READ(PP_ON_DELAYS);
2029                 pp_off = REG_READ(PP_OFF_DELAYS);
2030                 pp_div = REG_READ(PP_DIVISOR);
2031 
2032 		/* Pull timing values out of registers */
2033                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2034                         PANEL_POWER_UP_DELAY_SHIFT;
2035 
2036                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2037                         PANEL_LIGHT_ON_DELAY_SHIFT;
2038 
2039                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2040                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2041 
2042                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2043                         PANEL_POWER_DOWN_DELAY_SHIFT;
2044 
2045                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2046                                PANEL_POWER_CYCLE_DELAY_SHIFT);
2047 
2048                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2049                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2050 
2051 
2052 		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2053                 intel_dp->backlight_on_delay = cur.t8 / 10;
2054                 intel_dp->backlight_off_delay = cur.t9 / 10;
2055                 intel_dp->panel_power_down_delay = cur.t10 / 10;
2056                 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2057 
2058                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2059                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2060                               intel_dp->panel_power_cycle_delay);
2061 
2062                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2063                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2064 
2065 
2066 		cdv_intel_edp_panel_vdd_on(gma_encoder);
2067 		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2068 					       intel_dp->dpcd,
2069 					       sizeof(intel_dp->dpcd));
2070 		cdv_intel_edp_panel_vdd_off(gma_encoder);
2071 		if (ret <= 0) {
2072 			/* if this fails, presume the device is a ghost */
2073 			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2074 			drm_encoder_cleanup(encoder);
2075 			cdv_intel_dp_destroy(connector);
2076 			goto err_connector;
2077 		} else {
2078         		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2079 				intel_dp->dpcd[0], intel_dp->dpcd[1],
2080 				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2081 
2082 		}
2083 		/* The CDV reference driver moves pnale backlight setup into the displays that
2084 		   have a backlight: this is a good idea and one we should probably adopt, however
2085 		   we need to migrate all the drivers before we can do that */
2086                 /*cdv_intel_panel_setup_backlight(dev); */
2087 	}
2088 	return;
2089 
2090 err_priv:
2091 	kfree(gma_connector);
2092 err_connector:
2093 	kfree(gma_encoder);
2094 }
2095