xref: /linux/drivers/gpu/drm/gma500/cdv_intel_dp.c (revision 6a35ddc5445a8291ced6247a67977e110275acde)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_dp_helper.h>
35 
36 #include "gma_display.h"
37 #include "psb_drv.h"
38 #include "psb_intel_drv.h"
39 #include "psb_intel_reg.h"
40 
41 /**
42  * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
43  * 				 aux algorithm
44  * @running: set by the algo indicating whether an i2c is ongoing or whether
45  * 	     the i2c bus is quiescent
46  * @address: i2c target address for the currently ongoing transfer
47  * @aux_ch: driver callback to transfer a single byte of the i2c payload
48  */
49 struct i2c_algo_dp_aux_data {
50 	bool running;
51 	u16 address;
52 	int (*aux_ch) (struct i2c_adapter *adapter,
53 		       int mode, uint8_t write_byte,
54 		       uint8_t *read_byte);
55 };
56 
57 /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
58 static int
59 i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
60 			    uint8_t write_byte, uint8_t *read_byte)
61 {
62 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
63 	int ret;
64 
65 	ret = (*algo_data->aux_ch)(adapter, mode,
66 				   write_byte, read_byte);
67 	return ret;
68 }
69 
70 /*
71  * I2C over AUX CH
72  */
73 
74 /*
75  * Send the address. If the I2C link is running, this 'restarts'
76  * the connection with the new address, this is used for doing
77  * a write followed by a read (as needed for DDC)
78  */
79 static int
80 i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
81 {
82 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
83 	int mode = MODE_I2C_START;
84 	int ret;
85 
86 	if (reading)
87 		mode |= MODE_I2C_READ;
88 	else
89 		mode |= MODE_I2C_WRITE;
90 	algo_data->address = address;
91 	algo_data->running = true;
92 	ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
93 	return ret;
94 }
95 
96 /*
97  * Stop the I2C transaction. This closes out the link, sending
98  * a bare address packet with the MOT bit turned off
99  */
100 static void
101 i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
102 {
103 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
104 	int mode = MODE_I2C_STOP;
105 
106 	if (reading)
107 		mode |= MODE_I2C_READ;
108 	else
109 		mode |= MODE_I2C_WRITE;
110 	if (algo_data->running) {
111 		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
112 		algo_data->running = false;
113 	}
114 }
115 
116 /*
117  * Write a single byte to the current I2C address, the
118  * the I2C link must be running or this returns -EIO
119  */
120 static int
121 i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
122 {
123 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
124 	int ret;
125 
126 	if (!algo_data->running)
127 		return -EIO;
128 
129 	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
130 	return ret;
131 }
132 
133 /*
134  * Read a single byte from the current I2C address, the
135  * I2C link must be running or this returns -EIO
136  */
137 static int
138 i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
139 {
140 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
141 	int ret;
142 
143 	if (!algo_data->running)
144 		return -EIO;
145 
146 	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
147 	return ret;
148 }
149 
150 static int
151 i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
152 		     struct i2c_msg *msgs,
153 		     int num)
154 {
155 	int ret = 0;
156 	bool reading = false;
157 	int m;
158 	int b;
159 
160 	for (m = 0; m < num; m++) {
161 		u16 len = msgs[m].len;
162 		u8 *buf = msgs[m].buf;
163 		reading = (msgs[m].flags & I2C_M_RD) != 0;
164 		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
165 		if (ret < 0)
166 			break;
167 		if (reading) {
168 			for (b = 0; b < len; b++) {
169 				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
170 				if (ret < 0)
171 					break;
172 			}
173 		} else {
174 			for (b = 0; b < len; b++) {
175 				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
176 				if (ret < 0)
177 					break;
178 			}
179 		}
180 		if (ret < 0)
181 			break;
182 	}
183 	if (ret >= 0)
184 		ret = num;
185 	i2c_algo_dp_aux_stop(adapter, reading);
186 	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
187 	return ret;
188 }
189 
190 static u32
191 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
192 {
193 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
194 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
195 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
196 	       I2C_FUNC_10BIT_ADDR;
197 }
198 
199 static const struct i2c_algorithm i2c_dp_aux_algo = {
200 	.master_xfer	= i2c_algo_dp_aux_xfer,
201 	.functionality	= i2c_algo_dp_aux_functionality,
202 };
203 
204 static void
205 i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
206 {
207 	(void) i2c_algo_dp_aux_address(adapter, 0, false);
208 	(void) i2c_algo_dp_aux_stop(adapter, false);
209 }
210 
211 static int
212 i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
213 {
214 	adapter->algo = &i2c_dp_aux_algo;
215 	adapter->retries = 3;
216 	i2c_dp_aux_reset_bus(adapter);
217 	return 0;
218 }
219 
220 /*
221  * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
222  * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
223  */
224 static int
225 i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
226 {
227 	int error;
228 
229 	error = i2c_dp_aux_prepare_bus(adapter);
230 	if (error)
231 		return error;
232 	error = i2c_add_adapter(adapter);
233 	return error;
234 }
235 
236 #define _wait_for(COND, MS, W) ({ \
237         unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
238         int ret__ = 0;                                                  \
239         while (! (COND)) {                                              \
240                 if (time_after(jiffies, timeout__)) {                   \
241                         ret__ = -ETIMEDOUT;                             \
242                         break;                                          \
243                 }                                                       \
244                 if (W && !in_dbg_master()) msleep(W);                   \
245         }                                                               \
246         ret__;                                                          \
247 })
248 
249 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
250 
251 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
252 
253 #define DP_LINK_CONFIGURATION_SIZE	9
254 
255 #define CDV_FAST_LINK_TRAIN	1
256 
257 struct cdv_intel_dp {
258 	uint32_t output_reg;
259 	uint32_t DP;
260 	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
261 	bool has_audio;
262 	int force_audio;
263 	uint32_t color_range;
264 	uint8_t link_bw;
265 	uint8_t lane_count;
266 	uint8_t dpcd[4];
267 	struct gma_encoder *encoder;
268 	struct i2c_adapter adapter;
269 	struct i2c_algo_dp_aux_data algo;
270 	uint8_t	train_set[4];
271 	uint8_t link_status[DP_LINK_STATUS_SIZE];
272 	int panel_power_up_delay;
273 	int panel_power_down_delay;
274 	int panel_power_cycle_delay;
275 	int backlight_on_delay;
276 	int backlight_off_delay;
277 	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
278 	bool panel_on;
279 };
280 
281 struct ddi_regoff {
282 	uint32_t	PreEmph1;
283 	uint32_t	PreEmph2;
284 	uint32_t	VSwing1;
285 	uint32_t	VSwing2;
286 	uint32_t	VSwing3;
287 	uint32_t	VSwing4;
288 	uint32_t	VSwing5;
289 };
290 
291 static struct ddi_regoff ddi_DP_train_table[] = {
292 	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
293 	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
294 	.VSwing5 = 0x8158,},
295 	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
296 	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
297 	.VSwing5 = 0x8258,},
298 };
299 
300 static uint32_t dp_vswing_premph_table[] = {
301         0x55338954,	0x4000,
302         0x554d8954,	0x2000,
303         0x55668954,	0,
304         0x559ac0d4,	0x6000,
305 };
306 /**
307  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
308  * @intel_dp: DP struct
309  *
310  * If a CPU or PCH DP output is attached to an eDP panel, this function
311  * will return true, and false otherwise.
312  */
313 static bool is_edp(struct gma_encoder *encoder)
314 {
315 	return encoder->type == INTEL_OUTPUT_EDP;
316 }
317 
318 
319 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
320 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
321 static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
322 
323 static int
324 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
325 {
326 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
327 	int max_lane_count = 4;
328 
329 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
330 		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
331 		switch (max_lane_count) {
332 		case 1: case 2: case 4:
333 			break;
334 		default:
335 			max_lane_count = 4;
336 		}
337 	}
338 	return max_lane_count;
339 }
340 
341 static int
342 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
343 {
344 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
345 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
346 
347 	switch (max_link_bw) {
348 	case DP_LINK_BW_1_62:
349 	case DP_LINK_BW_2_7:
350 		break;
351 	default:
352 		max_link_bw = DP_LINK_BW_1_62;
353 		break;
354 	}
355 	return max_link_bw;
356 }
357 
358 static int
359 cdv_intel_dp_link_clock(uint8_t link_bw)
360 {
361 	if (link_bw == DP_LINK_BW_2_7)
362 		return 270000;
363 	else
364 		return 162000;
365 }
366 
367 static int
368 cdv_intel_dp_link_required(int pixel_clock, int bpp)
369 {
370 	return (pixel_clock * bpp + 7) / 8;
371 }
372 
373 static int
374 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
375 {
376 	return (max_link_clock * max_lanes * 19) / 20;
377 }
378 
379 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
380 {
381 	struct drm_device *dev = intel_encoder->base.dev;
382 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
383 	u32 pp;
384 
385 	if (intel_dp->panel_on) {
386 		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
387 		return;
388 	}
389 	DRM_DEBUG_KMS("\n");
390 
391 	pp = REG_READ(PP_CONTROL);
392 
393 	pp |= EDP_FORCE_VDD;
394 	REG_WRITE(PP_CONTROL, pp);
395 	REG_READ(PP_CONTROL);
396 	msleep(intel_dp->panel_power_up_delay);
397 }
398 
399 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
400 {
401 	struct drm_device *dev = intel_encoder->base.dev;
402 	u32 pp;
403 
404 	DRM_DEBUG_KMS("\n");
405 	pp = REG_READ(PP_CONTROL);
406 
407 	pp &= ~EDP_FORCE_VDD;
408 	REG_WRITE(PP_CONTROL, pp);
409 	REG_READ(PP_CONTROL);
410 
411 }
412 
413 /* Returns true if the panel was already on when called */
414 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
415 {
416 	struct drm_device *dev = intel_encoder->base.dev;
417 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
418 	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
419 
420 	if (intel_dp->panel_on)
421 		return true;
422 
423 	DRM_DEBUG_KMS("\n");
424 	pp = REG_READ(PP_CONTROL);
425 	pp &= ~PANEL_UNLOCK_MASK;
426 
427 	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
428 	REG_WRITE(PP_CONTROL, pp);
429 	REG_READ(PP_CONTROL);
430 
431 	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
432 		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
433 		intel_dp->panel_on = false;
434 	} else
435 		intel_dp->panel_on = true;
436 	msleep(intel_dp->panel_power_up_delay);
437 
438 	return false;
439 }
440 
441 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
442 {
443 	struct drm_device *dev = intel_encoder->base.dev;
444 	u32 pp, idle_off_mask = PP_ON ;
445 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
446 
447 	DRM_DEBUG_KMS("\n");
448 
449 	pp = REG_READ(PP_CONTROL);
450 
451 	if ((pp & POWER_TARGET_ON) == 0)
452 		return;
453 
454 	intel_dp->panel_on = false;
455 	pp &= ~PANEL_UNLOCK_MASK;
456 	/* ILK workaround: disable reset around power sequence */
457 
458 	pp &= ~POWER_TARGET_ON;
459 	pp &= ~EDP_FORCE_VDD;
460 	pp &= ~EDP_BLC_ENABLE;
461 	REG_WRITE(PP_CONTROL, pp);
462 	REG_READ(PP_CONTROL);
463 	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
464 
465 	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
466 		DRM_DEBUG_KMS("Error in turning off Panel\n");
467 	}
468 
469 	msleep(intel_dp->panel_power_cycle_delay);
470 	DRM_DEBUG_KMS("Over\n");
471 }
472 
473 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
474 {
475 	struct drm_device *dev = intel_encoder->base.dev;
476 	u32 pp;
477 
478 	DRM_DEBUG_KMS("\n");
479 	/*
480 	 * If we enable the backlight right away following a panel power
481 	 * on, we may see slight flicker as the panel syncs with the eDP
482 	 * link.  So delay a bit to make sure the image is solid before
483 	 * allowing it to appear.
484 	 */
485 	msleep(300);
486 	pp = REG_READ(PP_CONTROL);
487 
488 	pp |= EDP_BLC_ENABLE;
489 	REG_WRITE(PP_CONTROL, pp);
490 	gma_backlight_enable(dev);
491 }
492 
493 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
494 {
495 	struct drm_device *dev = intel_encoder->base.dev;
496 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
497 	u32 pp;
498 
499 	DRM_DEBUG_KMS("\n");
500 	gma_backlight_disable(dev);
501 	msleep(10);
502 	pp = REG_READ(PP_CONTROL);
503 
504 	pp &= ~EDP_BLC_ENABLE;
505 	REG_WRITE(PP_CONTROL, pp);
506 	msleep(intel_dp->backlight_off_delay);
507 }
508 
509 static enum drm_mode_status
510 cdv_intel_dp_mode_valid(struct drm_connector *connector,
511 		    struct drm_display_mode *mode)
512 {
513 	struct gma_encoder *encoder = gma_attached_encoder(connector);
514 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
515 	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
516 	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
517 	struct drm_psb_private *dev_priv = connector->dev->dev_private;
518 
519 	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
520 		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
521 			return MODE_PANEL;
522 		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
523 			return MODE_PANEL;
524 	}
525 
526 	/* only refuse the mode on non eDP since we have seen some weird eDP panels
527 	   which are outside spec tolerances but somehow work by magic */
528 	if (!is_edp(encoder) &&
529 	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
530 	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
531 		return MODE_CLOCK_HIGH;
532 
533 	if (is_edp(encoder)) {
534 	    if (cdv_intel_dp_link_required(mode->clock, 24)
535 	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
536 		return MODE_CLOCK_HIGH;
537 
538 	}
539 	if (mode->clock < 10000)
540 		return MODE_CLOCK_LOW;
541 
542 	return MODE_OK;
543 }
544 
545 static uint32_t
546 pack_aux(uint8_t *src, int src_bytes)
547 {
548 	int	i;
549 	uint32_t v = 0;
550 
551 	if (src_bytes > 4)
552 		src_bytes = 4;
553 	for (i = 0; i < src_bytes; i++)
554 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
555 	return v;
556 }
557 
558 static void
559 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
560 {
561 	int i;
562 	if (dst_bytes > 4)
563 		dst_bytes = 4;
564 	for (i = 0; i < dst_bytes; i++)
565 		dst[i] = src >> ((3-i) * 8);
566 }
567 
568 static int
569 cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
570 		uint8_t *send, int send_bytes,
571 		uint8_t *recv, int recv_size)
572 {
573 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
574 	uint32_t output_reg = intel_dp->output_reg;
575 	struct drm_device *dev = encoder->base.dev;
576 	uint32_t ch_ctl = output_reg + 0x10;
577 	uint32_t ch_data = ch_ctl + 4;
578 	int i;
579 	int recv_bytes;
580 	uint32_t status;
581 	uint32_t aux_clock_divider;
582 	int try, precharge;
583 
584 	/* The clock divider is based off the hrawclk,
585 	 * and would like to run at 2MHz. So, take the
586 	 * hrawclk value and divide by 2 and use that
587 	 * On CDV platform it uses 200MHz as hrawclk.
588 	 *
589 	 */
590 	aux_clock_divider = 200 / 2;
591 
592 	precharge = 4;
593 	if (is_edp(encoder))
594 		precharge = 10;
595 
596 	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
597 		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
598 			  REG_READ(ch_ctl));
599 		return -EBUSY;
600 	}
601 
602 	/* Must try at least 3 times according to DP spec */
603 	for (try = 0; try < 5; try++) {
604 		/* Load the send data into the aux channel data registers */
605 		for (i = 0; i < send_bytes; i += 4)
606 			REG_WRITE(ch_data + i,
607 				   pack_aux(send + i, send_bytes - i));
608 
609 		/* Send the command and wait for it to complete */
610 		REG_WRITE(ch_ctl,
611 			   DP_AUX_CH_CTL_SEND_BUSY |
612 			   DP_AUX_CH_CTL_TIME_OUT_400us |
613 			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
614 			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
615 			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
616 			   DP_AUX_CH_CTL_DONE |
617 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
618 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
619 		for (;;) {
620 			status = REG_READ(ch_ctl);
621 			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
622 				break;
623 			udelay(100);
624 		}
625 
626 		/* Clear done status and any errors */
627 		REG_WRITE(ch_ctl,
628 			   status |
629 			   DP_AUX_CH_CTL_DONE |
630 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
631 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
632 		if (status & DP_AUX_CH_CTL_DONE)
633 			break;
634 	}
635 
636 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
637 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
638 		return -EBUSY;
639 	}
640 
641 	/* Check for timeout or receive error.
642 	 * Timeouts occur when the sink is not connected
643 	 */
644 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
645 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
646 		return -EIO;
647 	}
648 
649 	/* Timeouts occur when the device isn't connected, so they're
650 	 * "normal" -- don't fill the kernel log with these */
651 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
652 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
653 		return -ETIMEDOUT;
654 	}
655 
656 	/* Unload any bytes sent back from the other side */
657 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
658 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
659 	if (recv_bytes > recv_size)
660 		recv_bytes = recv_size;
661 
662 	for (i = 0; i < recv_bytes; i += 4)
663 		unpack_aux(REG_READ(ch_data + i),
664 			   recv + i, recv_bytes - i);
665 
666 	return recv_bytes;
667 }
668 
669 /* Write data to the aux channel in native mode */
670 static int
671 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
672 			  uint16_t address, uint8_t *send, int send_bytes)
673 {
674 	int ret;
675 	uint8_t	msg[20];
676 	int msg_bytes;
677 	uint8_t	ack;
678 
679 	if (send_bytes > 16)
680 		return -1;
681 	msg[0] = DP_AUX_NATIVE_WRITE << 4;
682 	msg[1] = address >> 8;
683 	msg[2] = address & 0xff;
684 	msg[3] = send_bytes - 1;
685 	memcpy(&msg[4], send, send_bytes);
686 	msg_bytes = send_bytes + 4;
687 	for (;;) {
688 		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
689 		if (ret < 0)
690 			return ret;
691 		ack >>= 4;
692 		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
693 			break;
694 		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
695 			udelay(100);
696 		else
697 			return -EIO;
698 	}
699 	return send_bytes;
700 }
701 
702 /* Write a single byte to the aux channel in native mode */
703 static int
704 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
705 			    uint16_t address, uint8_t byte)
706 {
707 	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
708 }
709 
710 /* read bytes from a native aux channel */
711 static int
712 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
713 			 uint16_t address, uint8_t *recv, int recv_bytes)
714 {
715 	uint8_t msg[4];
716 	int msg_bytes;
717 	uint8_t reply[20];
718 	int reply_bytes;
719 	uint8_t ack;
720 	int ret;
721 
722 	msg[0] = DP_AUX_NATIVE_READ << 4;
723 	msg[1] = address >> 8;
724 	msg[2] = address & 0xff;
725 	msg[3] = recv_bytes - 1;
726 
727 	msg_bytes = 4;
728 	reply_bytes = recv_bytes + 1;
729 
730 	for (;;) {
731 		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
732 				      reply, reply_bytes);
733 		if (ret == 0)
734 			return -EPROTO;
735 		if (ret < 0)
736 			return ret;
737 		ack = reply[0] >> 4;
738 		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
739 			memcpy(recv, reply + 1, ret - 1);
740 			return ret - 1;
741 		}
742 		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
743 			udelay(100);
744 		else
745 			return -EIO;
746 	}
747 }
748 
749 static int
750 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
751 		    uint8_t write_byte, uint8_t *read_byte)
752 {
753 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
754 	struct cdv_intel_dp *intel_dp = container_of(adapter,
755 						struct cdv_intel_dp,
756 						adapter);
757 	struct gma_encoder *encoder = intel_dp->encoder;
758 	uint16_t address = algo_data->address;
759 	uint8_t msg[5];
760 	uint8_t reply[2];
761 	unsigned retry;
762 	int msg_bytes;
763 	int reply_bytes;
764 	int ret;
765 
766 	/* Set up the command byte */
767 	if (mode & MODE_I2C_READ)
768 		msg[0] = DP_AUX_I2C_READ << 4;
769 	else
770 		msg[0] = DP_AUX_I2C_WRITE << 4;
771 
772 	if (!(mode & MODE_I2C_STOP))
773 		msg[0] |= DP_AUX_I2C_MOT << 4;
774 
775 	msg[1] = address >> 8;
776 	msg[2] = address;
777 
778 	switch (mode) {
779 	case MODE_I2C_WRITE:
780 		msg[3] = 0;
781 		msg[4] = write_byte;
782 		msg_bytes = 5;
783 		reply_bytes = 1;
784 		break;
785 	case MODE_I2C_READ:
786 		msg[3] = 0;
787 		msg_bytes = 4;
788 		reply_bytes = 2;
789 		break;
790 	default:
791 		msg_bytes = 3;
792 		reply_bytes = 1;
793 		break;
794 	}
795 
796 	for (retry = 0; retry < 5; retry++) {
797 		ret = cdv_intel_dp_aux_ch(encoder,
798 				      msg, msg_bytes,
799 				      reply, reply_bytes);
800 		if (ret < 0) {
801 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
802 			return ret;
803 		}
804 
805 		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
806 		case DP_AUX_NATIVE_REPLY_ACK:
807 			/* I2C-over-AUX Reply field is only valid
808 			 * when paired with AUX ACK.
809 			 */
810 			break;
811 		case DP_AUX_NATIVE_REPLY_NACK:
812 			DRM_DEBUG_KMS("aux_ch native nack\n");
813 			return -EREMOTEIO;
814 		case DP_AUX_NATIVE_REPLY_DEFER:
815 			udelay(100);
816 			continue;
817 		default:
818 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
819 				  reply[0]);
820 			return -EREMOTEIO;
821 		}
822 
823 		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
824 		case DP_AUX_I2C_REPLY_ACK:
825 			if (mode == MODE_I2C_READ) {
826 				*read_byte = reply[1];
827 			}
828 			return reply_bytes - 1;
829 		case DP_AUX_I2C_REPLY_NACK:
830 			DRM_DEBUG_KMS("aux_i2c nack\n");
831 			return -EREMOTEIO;
832 		case DP_AUX_I2C_REPLY_DEFER:
833 			DRM_DEBUG_KMS("aux_i2c defer\n");
834 			udelay(100);
835 			break;
836 		default:
837 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
838 			return -EREMOTEIO;
839 		}
840 	}
841 
842 	DRM_ERROR("too many retries, giving up\n");
843 	return -EREMOTEIO;
844 }
845 
846 static int
847 cdv_intel_dp_i2c_init(struct gma_connector *connector,
848 		      struct gma_encoder *encoder, const char *name)
849 {
850 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
851 	int ret;
852 
853 	DRM_DEBUG_KMS("i2c_init %s\n", name);
854 
855 	intel_dp->algo.running = false;
856 	intel_dp->algo.address = 0;
857 	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
858 
859 	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
860 	intel_dp->adapter.owner = THIS_MODULE;
861 	intel_dp->adapter.class = I2C_CLASS_DDC;
862 	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
863 	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
864 	intel_dp->adapter.algo_data = &intel_dp->algo;
865 	intel_dp->adapter.dev.parent = connector->base.kdev;
866 
867 	if (is_edp(encoder))
868 		cdv_intel_edp_panel_vdd_on(encoder);
869 	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
870 	if (is_edp(encoder))
871 		cdv_intel_edp_panel_vdd_off(encoder);
872 
873 	return ret;
874 }
875 
876 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
877 	struct drm_display_mode *adjusted_mode)
878 {
879 	adjusted_mode->hdisplay = fixed_mode->hdisplay;
880 	adjusted_mode->hsync_start = fixed_mode->hsync_start;
881 	adjusted_mode->hsync_end = fixed_mode->hsync_end;
882 	adjusted_mode->htotal = fixed_mode->htotal;
883 
884 	adjusted_mode->vdisplay = fixed_mode->vdisplay;
885 	adjusted_mode->vsync_start = fixed_mode->vsync_start;
886 	adjusted_mode->vsync_end = fixed_mode->vsync_end;
887 	adjusted_mode->vtotal = fixed_mode->vtotal;
888 
889 	adjusted_mode->clock = fixed_mode->clock;
890 
891 	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
892 }
893 
894 static bool
895 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
896 		    struct drm_display_mode *adjusted_mode)
897 {
898 	struct drm_psb_private *dev_priv = encoder->dev->dev_private;
899 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
900 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
901 	int lane_count, clock;
902 	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
903 	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
904 	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
905 	int refclock = mode->clock;
906 	int bpp = 24;
907 
908 	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
909 		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
910 		refclock = intel_dp->panel_fixed_mode->clock;
911 		bpp = dev_priv->edp.bpp;
912 	}
913 
914 	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
915 		for (clock = max_clock; clock >= 0; clock--) {
916 			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
917 
918 			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
919 				intel_dp->link_bw = bws[clock];
920 				intel_dp->lane_count = lane_count;
921 				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
922 				DRM_DEBUG_KMS("Display port link bw %02x lane "
923 						"count %d clock %d\n",
924 				       intel_dp->link_bw, intel_dp->lane_count,
925 				       adjusted_mode->clock);
926 				return true;
927 			}
928 		}
929 	}
930 	if (is_edp(intel_encoder)) {
931 		/* okay we failed just pick the highest */
932 		intel_dp->lane_count = max_lane_count;
933 		intel_dp->link_bw = bws[max_clock];
934 		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
935 		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
936 			      "count %d clock %d\n",
937 			      intel_dp->link_bw, intel_dp->lane_count,
938 			      adjusted_mode->clock);
939 
940 		return true;
941 	}
942 	return false;
943 }
944 
945 struct cdv_intel_dp_m_n {
946 	uint32_t	tu;
947 	uint32_t	gmch_m;
948 	uint32_t	gmch_n;
949 	uint32_t	link_m;
950 	uint32_t	link_n;
951 };
952 
953 static void
954 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
955 {
956 	/*
957 	while (*num > 0xffffff || *den > 0xffffff) {
958 		*num >>= 1;
959 		*den >>= 1;
960 	}*/
961 	uint64_t value, m;
962 	m = *num;
963 	value = m * (0x800000);
964 	m = do_div(value, *den);
965 	*num = value;
966 	*den = 0x800000;
967 }
968 
969 static void
970 cdv_intel_dp_compute_m_n(int bpp,
971 		     int nlanes,
972 		     int pixel_clock,
973 		     int link_clock,
974 		     struct cdv_intel_dp_m_n *m_n)
975 {
976 	m_n->tu = 64;
977 	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
978 	m_n->gmch_n = link_clock * nlanes;
979 	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
980 	m_n->link_m = pixel_clock;
981 	m_n->link_n = link_clock;
982 	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
983 }
984 
985 void
986 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
987 		 struct drm_display_mode *adjusted_mode)
988 {
989 	struct drm_device *dev = crtc->dev;
990 	struct drm_psb_private *dev_priv = dev->dev_private;
991 	struct drm_mode_config *mode_config = &dev->mode_config;
992 	struct drm_encoder *encoder;
993 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
994 	int lane_count = 4, bpp = 24;
995 	struct cdv_intel_dp_m_n m_n;
996 	int pipe = gma_crtc->pipe;
997 
998 	/*
999 	 * Find the lane count in the intel_encoder private
1000 	 */
1001 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1002 		struct gma_encoder *intel_encoder;
1003 		struct cdv_intel_dp *intel_dp;
1004 
1005 		if (encoder->crtc != crtc)
1006 			continue;
1007 
1008 		intel_encoder = to_gma_encoder(encoder);
1009 		intel_dp = intel_encoder->dev_priv;
1010 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1011 			lane_count = intel_dp->lane_count;
1012 			break;
1013 		} else if (is_edp(intel_encoder)) {
1014 			lane_count = intel_dp->lane_count;
1015 			bpp = dev_priv->edp.bpp;
1016 			break;
1017 		}
1018 	}
1019 
1020 	/*
1021 	 * Compute the GMCH and Link ratios. The '3' here is
1022 	 * the number of bytes_per_pixel post-LUT, which we always
1023 	 * set up for 8-bits of R/G/B, or 3 bytes total.
1024 	 */
1025 	cdv_intel_dp_compute_m_n(bpp, lane_count,
1026 			     mode->clock, adjusted_mode->clock, &m_n);
1027 
1028 	{
1029 		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1030 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1031 			   m_n.gmch_m);
1032 		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1033 		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1034 		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1035 	}
1036 }
1037 
1038 static void
1039 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1040 		  struct drm_display_mode *adjusted_mode)
1041 {
1042 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1043 	struct drm_crtc *crtc = encoder->crtc;
1044 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1045 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1046 	struct drm_device *dev = encoder->dev;
1047 
1048 	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1049 	intel_dp->DP |= intel_dp->color_range;
1050 
1051 	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1052 		intel_dp->DP |= DP_SYNC_HS_HIGH;
1053 	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1054 		intel_dp->DP |= DP_SYNC_VS_HIGH;
1055 
1056 	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1057 
1058 	switch (intel_dp->lane_count) {
1059 	case 1:
1060 		intel_dp->DP |= DP_PORT_WIDTH_1;
1061 		break;
1062 	case 2:
1063 		intel_dp->DP |= DP_PORT_WIDTH_2;
1064 		break;
1065 	case 4:
1066 		intel_dp->DP |= DP_PORT_WIDTH_4;
1067 		break;
1068 	}
1069 	if (intel_dp->has_audio)
1070 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1071 
1072 	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1073 	intel_dp->link_configuration[0] = intel_dp->link_bw;
1074 	intel_dp->link_configuration[1] = intel_dp->lane_count;
1075 
1076 	/*
1077 	 * Check for DPCD version > 1.1 and enhanced framing support
1078 	 */
1079 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1080 	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1081 		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1082 		intel_dp->DP |= DP_ENHANCED_FRAMING;
1083 	}
1084 
1085 	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1086 	if (gma_crtc->pipe == 1)
1087 		intel_dp->DP |= DP_PIPEB_SELECT;
1088 
1089 	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1090 	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1091 	if (is_edp(intel_encoder)) {
1092 		uint32_t pfit_control;
1093 		cdv_intel_edp_panel_on(intel_encoder);
1094 
1095 		if (mode->hdisplay != adjusted_mode->hdisplay ||
1096 			    mode->vdisplay != adjusted_mode->vdisplay)
1097 			pfit_control = PFIT_ENABLE;
1098 		else
1099 			pfit_control = 0;
1100 
1101 		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1102 
1103 		REG_WRITE(PFIT_CONTROL, pfit_control);
1104 	}
1105 }
1106 
1107 
1108 /* If the sink supports it, try to set the power state appropriately */
1109 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1110 {
1111 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1112 	int ret, i;
1113 
1114 	/* Should have a valid DPCD by this point */
1115 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1116 		return;
1117 
1118 	if (mode != DRM_MODE_DPMS_ON) {
1119 		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1120 						  DP_SET_POWER_D3);
1121 		if (ret != 1)
1122 			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1123 	} else {
1124 		/*
1125 		 * When turning on, we need to retry for 1ms to give the sink
1126 		 * time to wake up.
1127 		 */
1128 		for (i = 0; i < 3; i++) {
1129 			ret = cdv_intel_dp_aux_native_write_1(encoder,
1130 							  DP_SET_POWER,
1131 							  DP_SET_POWER_D0);
1132 			if (ret == 1)
1133 				break;
1134 			udelay(1000);
1135 		}
1136 	}
1137 }
1138 
1139 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1140 {
1141 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1142 	int edp = is_edp(intel_encoder);
1143 
1144 	if (edp) {
1145 		cdv_intel_edp_backlight_off(intel_encoder);
1146 		cdv_intel_edp_panel_off(intel_encoder);
1147 		cdv_intel_edp_panel_vdd_on(intel_encoder);
1148         }
1149 	/* Wake up the sink first */
1150 	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1151 	cdv_intel_dp_link_down(intel_encoder);
1152 	if (edp)
1153 		cdv_intel_edp_panel_vdd_off(intel_encoder);
1154 }
1155 
1156 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1157 {
1158 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1159 	int edp = is_edp(intel_encoder);
1160 
1161 	if (edp)
1162 		cdv_intel_edp_panel_on(intel_encoder);
1163 	cdv_intel_dp_start_link_train(intel_encoder);
1164 	cdv_intel_dp_complete_link_train(intel_encoder);
1165 	if (edp)
1166 		cdv_intel_edp_backlight_on(intel_encoder);
1167 }
1168 
1169 static void
1170 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1171 {
1172 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1173 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1174 	struct drm_device *dev = encoder->dev;
1175 	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1176 	int edp = is_edp(intel_encoder);
1177 
1178 	if (mode != DRM_MODE_DPMS_ON) {
1179 		if (edp) {
1180 			cdv_intel_edp_backlight_off(intel_encoder);
1181 			cdv_intel_edp_panel_vdd_on(intel_encoder);
1182 		}
1183 		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1184 		cdv_intel_dp_link_down(intel_encoder);
1185 		if (edp) {
1186 			cdv_intel_edp_panel_vdd_off(intel_encoder);
1187 			cdv_intel_edp_panel_off(intel_encoder);
1188 		}
1189 	} else {
1190         	if (edp)
1191 			cdv_intel_edp_panel_on(intel_encoder);
1192 		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1193 		if (!(dp_reg & DP_PORT_EN)) {
1194 			cdv_intel_dp_start_link_train(intel_encoder);
1195 			cdv_intel_dp_complete_link_train(intel_encoder);
1196 		}
1197 		if (edp)
1198         		cdv_intel_edp_backlight_on(intel_encoder);
1199 	}
1200 }
1201 
1202 /*
1203  * Native read with retry for link status and receiver capability reads for
1204  * cases where the sink may still be asleep.
1205  */
1206 static bool
1207 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1208 			       uint8_t *recv, int recv_bytes)
1209 {
1210 	int ret, i;
1211 
1212 	/*
1213 	 * Sinks are *supposed* to come up within 1ms from an off state,
1214 	 * but we're also supposed to retry 3 times per the spec.
1215 	 */
1216 	for (i = 0; i < 3; i++) {
1217 		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1218 					       recv_bytes);
1219 		if (ret == recv_bytes)
1220 			return true;
1221 		udelay(1000);
1222 	}
1223 
1224 	return false;
1225 }
1226 
1227 /*
1228  * Fetch AUX CH registers 0x202 - 0x207 which contain
1229  * link status information
1230  */
1231 static bool
1232 cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1233 {
1234 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1235 	return cdv_intel_dp_aux_native_read_retry(encoder,
1236 					      DP_LANE0_1_STATUS,
1237 					      intel_dp->link_status,
1238 					      DP_LINK_STATUS_SIZE);
1239 }
1240 
1241 static uint8_t
1242 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1243 		     int r)
1244 {
1245 	return link_status[r - DP_LANE0_1_STATUS];
1246 }
1247 
1248 static uint8_t
1249 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1250 				 int lane)
1251 {
1252 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1253 	int	    s = ((lane & 1) ?
1254 			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1255 			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1256 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1257 
1258 	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1259 }
1260 
1261 static uint8_t
1262 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1263 				      int lane)
1264 {
1265 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1266 	int	    s = ((lane & 1) ?
1267 			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1268 			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1269 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1270 
1271 	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1272 }
1273 
1274 
1275 #if 0
1276 static char	*voltage_names[] = {
1277 	"0.4V", "0.6V", "0.8V", "1.2V"
1278 };
1279 static char	*pre_emph_names[] = {
1280 	"0dB", "3.5dB", "6dB", "9.5dB"
1281 };
1282 static char	*link_train_names[] = {
1283 	"pattern 1", "pattern 2", "idle", "off"
1284 };
1285 #endif
1286 
1287 #define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1288 /*
1289 static uint8_t
1290 cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1291 {
1292 	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1293 	case DP_TRAIN_VOLTAGE_SWING_400:
1294 		return DP_TRAIN_PRE_EMPHASIS_6;
1295 	case DP_TRAIN_VOLTAGE_SWING_600:
1296 		return DP_TRAIN_PRE_EMPHASIS_6;
1297 	case DP_TRAIN_VOLTAGE_SWING_800:
1298 		return DP_TRAIN_PRE_EMPHASIS_3_5;
1299 	case DP_TRAIN_VOLTAGE_SWING_1200:
1300 	default:
1301 		return DP_TRAIN_PRE_EMPHASIS_0;
1302 	}
1303 }
1304 */
1305 static void
1306 cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1307 {
1308 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1309 	uint8_t v = 0;
1310 	uint8_t p = 0;
1311 	int lane;
1312 
1313 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1314 		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1315 		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1316 
1317 		if (this_v > v)
1318 			v = this_v;
1319 		if (this_p > p)
1320 			p = this_p;
1321 	}
1322 
1323 	if (v >= CDV_DP_VOLTAGE_MAX)
1324 		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1325 
1326 	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1327 		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1328 
1329 	for (lane = 0; lane < 4; lane++)
1330 		intel_dp->train_set[lane] = v | p;
1331 }
1332 
1333 
1334 static uint8_t
1335 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1336 		      int lane)
1337 {
1338 	int i = DP_LANE0_1_STATUS + (lane >> 1);
1339 	int s = (lane & 1) * 4;
1340 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1341 
1342 	return (l >> s) & 0xf;
1343 }
1344 
1345 /* Check for clock recovery is done on all channels */
1346 static bool
1347 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1348 {
1349 	int lane;
1350 	uint8_t lane_status;
1351 
1352 	for (lane = 0; lane < lane_count; lane++) {
1353 		lane_status = cdv_intel_get_lane_status(link_status, lane);
1354 		if ((lane_status & DP_LANE_CR_DONE) == 0)
1355 			return false;
1356 	}
1357 	return true;
1358 }
1359 
1360 /* Check to see if channel eq is done on all channels */
1361 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1362 			 DP_LANE_CHANNEL_EQ_DONE|\
1363 			 DP_LANE_SYMBOL_LOCKED)
1364 static bool
1365 cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1366 {
1367 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1368 	uint8_t lane_align;
1369 	uint8_t lane_status;
1370 	int lane;
1371 
1372 	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1373 					  DP_LANE_ALIGN_STATUS_UPDATED);
1374 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1375 		return false;
1376 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1377 		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1378 		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1379 			return false;
1380 	}
1381 	return true;
1382 }
1383 
1384 static bool
1385 cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1386 			uint32_t dp_reg_value,
1387 			uint8_t dp_train_pat)
1388 {
1389 
1390 	struct drm_device *dev = encoder->base.dev;
1391 	int ret;
1392 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1393 
1394 	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1395 	REG_READ(intel_dp->output_reg);
1396 
1397 	ret = cdv_intel_dp_aux_native_write_1(encoder,
1398 				    DP_TRAINING_PATTERN_SET,
1399 				    dp_train_pat);
1400 
1401 	if (ret != 1) {
1402 		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1403 				dp_train_pat);
1404 		return false;
1405 	}
1406 
1407 	return true;
1408 }
1409 
1410 
1411 static bool
1412 cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1413 			uint8_t dp_train_pat)
1414 {
1415 
1416 	int ret;
1417 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1418 
1419 	ret = cdv_intel_dp_aux_native_write(encoder,
1420 					DP_TRAINING_LANE0_SET,
1421 					intel_dp->train_set,
1422 					intel_dp->lane_count);
1423 
1424 	if (ret != intel_dp->lane_count) {
1425 		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1426 				intel_dp->train_set[0], intel_dp->lane_count);
1427 		return false;
1428 	}
1429 	return true;
1430 }
1431 
1432 static void
1433 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1434 {
1435 	struct drm_device *dev = encoder->base.dev;
1436 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1437 	struct ddi_regoff *ddi_reg;
1438 	int vswing, premph, index;
1439 
1440 	if (intel_dp->output_reg == DP_B)
1441 		ddi_reg = &ddi_DP_train_table[0];
1442 	else
1443 		ddi_reg = &ddi_DP_train_table[1];
1444 
1445 	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1446 	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1447 				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1448 
1449 	if (vswing + premph > 3)
1450 		return;
1451 #ifdef CDV_FAST_LINK_TRAIN
1452 	return;
1453 #endif
1454 	DRM_DEBUG_KMS("Test2\n");
1455 	//return ;
1456 	cdv_sb_reset(dev);
1457 	/* ;Swing voltage programming
1458         ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1459 	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1460 
1461 	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1462 	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1463 
1464 	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1465 	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1466 	 */
1467 	index = (vswing + premph) * 2;
1468 	if (premph == 1 && vswing == 1) {
1469 		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1470 	} else
1471 		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1472 
1473 	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1474 	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1475 		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1476 	else
1477 		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1478 
1479 	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1480 	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1481 
1482 	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1483 	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1484 
1485 	/* ;Pre emphasis programming
1486 	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1487 	 */
1488 	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1489 
1490 	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1491 	index = 2 * premph + 1;
1492 	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1493 	return;
1494 }
1495 
1496 
1497 /* Enable corresponding port and start training pattern 1 */
1498 static void
1499 cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1500 {
1501 	struct drm_device *dev = encoder->base.dev;
1502 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1503 	int i;
1504 	uint8_t voltage;
1505 	bool clock_recovery = false;
1506 	int tries;
1507 	u32 reg;
1508 	uint32_t DP = intel_dp->DP;
1509 
1510 	DP |= DP_PORT_EN;
1511 	DP &= ~DP_LINK_TRAIN_MASK;
1512 
1513 	reg = DP;
1514 	reg |= DP_LINK_TRAIN_PAT_1;
1515 	/* Enable output, wait for it to become active */
1516 	REG_WRITE(intel_dp->output_reg, reg);
1517 	REG_READ(intel_dp->output_reg);
1518 	gma_wait_for_vblank(dev);
1519 
1520 	DRM_DEBUG_KMS("Link config\n");
1521 	/* Write the link configuration data */
1522 	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1523 				  intel_dp->link_configuration,
1524 				  2);
1525 
1526 	memset(intel_dp->train_set, 0, 4);
1527 	voltage = 0;
1528 	tries = 0;
1529 	clock_recovery = false;
1530 
1531 	DRM_DEBUG_KMS("Start train\n");
1532 		reg = DP | DP_LINK_TRAIN_PAT_1;
1533 
1534 
1535 	for (;;) {
1536 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1537 		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1538 				intel_dp->train_set[0],
1539 				intel_dp->link_configuration[0],
1540 				intel_dp->link_configuration[1]);
1541 
1542 		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1543 			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1544 		}
1545 		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1546 		/* Set training pattern 1 */
1547 
1548 		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1549 
1550 		udelay(200);
1551 		if (!cdv_intel_dp_get_link_status(encoder))
1552 			break;
1553 
1554 		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1555 				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1556 				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1557 
1558 		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1559 			DRM_DEBUG_KMS("PT1 train is done\n");
1560 			clock_recovery = true;
1561 			break;
1562 		}
1563 
1564 		/* Check to see if we've tried the max voltage */
1565 		for (i = 0; i < intel_dp->lane_count; i++)
1566 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1567 				break;
1568 		if (i == intel_dp->lane_count)
1569 			break;
1570 
1571 		/* Check to see if we've tried the same voltage 5 times */
1572 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1573 			++tries;
1574 			if (tries == 5)
1575 				break;
1576 		} else
1577 			tries = 0;
1578 		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1579 
1580 		/* Compute new intel_dp->train_set as requested by target */
1581 		cdv_intel_get_adjust_train(encoder);
1582 
1583 	}
1584 
1585 	if (!clock_recovery) {
1586 		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1587 	}
1588 
1589 	intel_dp->DP = DP;
1590 }
1591 
1592 static void
1593 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1594 {
1595 	struct drm_device *dev = encoder->base.dev;
1596 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1597 	bool channel_eq = false;
1598 	int tries, cr_tries;
1599 	u32 reg;
1600 	uint32_t DP = intel_dp->DP;
1601 
1602 	/* channel equalization */
1603 	tries = 0;
1604 	cr_tries = 0;
1605 	channel_eq = false;
1606 
1607 	DRM_DEBUG_KMS("\n");
1608 		reg = DP | DP_LINK_TRAIN_PAT_2;
1609 
1610 	for (;;) {
1611 
1612 		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1613 				intel_dp->train_set[0],
1614 				intel_dp->link_configuration[0],
1615 				intel_dp->link_configuration[1]);
1616         	/* channel eq pattern */
1617 
1618 		if (!cdv_intel_dp_set_link_train(encoder, reg,
1619 					     DP_TRAINING_PATTERN_2)) {
1620 			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1621 		}
1622 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1623 
1624 		if (cr_tries > 5) {
1625 			DRM_ERROR("failed to train DP, aborting\n");
1626 			cdv_intel_dp_link_down(encoder);
1627 			break;
1628 		}
1629 
1630 		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1631 
1632 		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1633 
1634 		udelay(1000);
1635 		if (!cdv_intel_dp_get_link_status(encoder))
1636 			break;
1637 
1638 		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1639 				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1640 				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1641 
1642 		/* Make sure clock is still ok */
1643 		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1644 			cdv_intel_dp_start_link_train(encoder);
1645 			cr_tries++;
1646 			continue;
1647 		}
1648 
1649 		if (cdv_intel_channel_eq_ok(encoder)) {
1650 			DRM_DEBUG_KMS("PT2 train is done\n");
1651 			channel_eq = true;
1652 			break;
1653 		}
1654 
1655 		/* Try 5 times, then try clock recovery if that fails */
1656 		if (tries > 5) {
1657 			cdv_intel_dp_link_down(encoder);
1658 			cdv_intel_dp_start_link_train(encoder);
1659 			tries = 0;
1660 			cr_tries++;
1661 			continue;
1662 		}
1663 
1664 		/* Compute new intel_dp->train_set as requested by target */
1665 		cdv_intel_get_adjust_train(encoder);
1666 		++tries;
1667 
1668 	}
1669 
1670 	reg = DP | DP_LINK_TRAIN_OFF;
1671 
1672 	REG_WRITE(intel_dp->output_reg, reg);
1673 	REG_READ(intel_dp->output_reg);
1674 	cdv_intel_dp_aux_native_write_1(encoder,
1675 				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1676 }
1677 
1678 static void
1679 cdv_intel_dp_link_down(struct gma_encoder *encoder)
1680 {
1681 	struct drm_device *dev = encoder->base.dev;
1682 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1683 	uint32_t DP = intel_dp->DP;
1684 
1685 	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1686 		return;
1687 
1688 	DRM_DEBUG_KMS("\n");
1689 
1690 
1691 	{
1692 		DP &= ~DP_LINK_TRAIN_MASK;
1693 		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1694 	}
1695 	REG_READ(intel_dp->output_reg);
1696 
1697 	msleep(17);
1698 
1699 	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1700 	REG_READ(intel_dp->output_reg);
1701 }
1702 
1703 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1704 {
1705 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1706 	enum drm_connector_status status;
1707 
1708 	status = connector_status_disconnected;
1709 	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1710 				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1711 	{
1712 		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1713 			status = connector_status_connected;
1714 	}
1715 	if (status == connector_status_connected)
1716 		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1717 			intel_dp->dpcd[0], intel_dp->dpcd[1],
1718 			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1719 	return status;
1720 }
1721 
1722 /**
1723  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1724  *
1725  * \return true if DP port is connected.
1726  * \return false if DP port is disconnected.
1727  */
1728 static enum drm_connector_status
1729 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1730 {
1731 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1732 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1733 	enum drm_connector_status status;
1734 	struct edid *edid = NULL;
1735 	int edp = is_edp(encoder);
1736 
1737 	intel_dp->has_audio = false;
1738 
1739 	if (edp)
1740 		cdv_intel_edp_panel_vdd_on(encoder);
1741 	status = cdv_dp_detect(encoder);
1742 	if (status != connector_status_connected) {
1743 		if (edp)
1744 			cdv_intel_edp_panel_vdd_off(encoder);
1745 		return status;
1746         }
1747 
1748 	if (intel_dp->force_audio) {
1749 		intel_dp->has_audio = intel_dp->force_audio > 0;
1750 	} else {
1751 		edid = drm_get_edid(connector, &intel_dp->adapter);
1752 		if (edid) {
1753 			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1754 			kfree(edid);
1755 		}
1756 	}
1757 	if (edp)
1758 		cdv_intel_edp_panel_vdd_off(encoder);
1759 
1760 	return connector_status_connected;
1761 }
1762 
1763 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1764 {
1765 	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1766 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1767 	struct edid *edid = NULL;
1768 	int ret = 0;
1769 	int edp = is_edp(intel_encoder);
1770 
1771 
1772 	edid = drm_get_edid(connector, &intel_dp->adapter);
1773 	if (edid) {
1774 		drm_connector_update_edid_property(connector, edid);
1775 		ret = drm_add_edid_modes(connector, edid);
1776 		kfree(edid);
1777 	}
1778 
1779 	if (is_edp(intel_encoder)) {
1780 		struct drm_device *dev = connector->dev;
1781 		struct drm_psb_private *dev_priv = dev->dev_private;
1782 
1783 		cdv_intel_edp_panel_vdd_off(intel_encoder);
1784 		if (ret) {
1785 			if (edp && !intel_dp->panel_fixed_mode) {
1786 				struct drm_display_mode *newmode;
1787 				list_for_each_entry(newmode, &connector->probed_modes,
1788 					    head) {
1789 					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1790 						intel_dp->panel_fixed_mode =
1791 							drm_mode_duplicate(dev, newmode);
1792 						break;
1793 					}
1794 				}
1795 			}
1796 
1797 			return ret;
1798 		}
1799 		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1800 			intel_dp->panel_fixed_mode =
1801 				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1802 			if (intel_dp->panel_fixed_mode) {
1803 				intel_dp->panel_fixed_mode->type |=
1804 					DRM_MODE_TYPE_PREFERRED;
1805 			}
1806 		}
1807 		if (intel_dp->panel_fixed_mode != NULL) {
1808 			struct drm_display_mode *mode;
1809 			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1810 			drm_mode_probed_add(connector, mode);
1811 			return 1;
1812 		}
1813 	}
1814 
1815 	return ret;
1816 }
1817 
1818 static bool
1819 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1820 {
1821 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1822 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1823 	struct edid *edid;
1824 	bool has_audio = false;
1825 	int edp = is_edp(encoder);
1826 
1827 	if (edp)
1828 		cdv_intel_edp_panel_vdd_on(encoder);
1829 
1830 	edid = drm_get_edid(connector, &intel_dp->adapter);
1831 	if (edid) {
1832 		has_audio = drm_detect_monitor_audio(edid);
1833 		kfree(edid);
1834 	}
1835 	if (edp)
1836 		cdv_intel_edp_panel_vdd_off(encoder);
1837 
1838 	return has_audio;
1839 }
1840 
1841 static int
1842 cdv_intel_dp_set_property(struct drm_connector *connector,
1843 		      struct drm_property *property,
1844 		      uint64_t val)
1845 {
1846 	struct drm_psb_private *dev_priv = connector->dev->dev_private;
1847 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1848 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1849 	int ret;
1850 
1851 	ret = drm_object_property_set_value(&connector->base, property, val);
1852 	if (ret)
1853 		return ret;
1854 
1855 	if (property == dev_priv->force_audio_property) {
1856 		int i = val;
1857 		bool has_audio;
1858 
1859 		if (i == intel_dp->force_audio)
1860 			return 0;
1861 
1862 		intel_dp->force_audio = i;
1863 
1864 		if (i == 0)
1865 			has_audio = cdv_intel_dp_detect_audio(connector);
1866 		else
1867 			has_audio = i > 0;
1868 
1869 		if (has_audio == intel_dp->has_audio)
1870 			return 0;
1871 
1872 		intel_dp->has_audio = has_audio;
1873 		goto done;
1874 	}
1875 
1876 	if (property == dev_priv->broadcast_rgb_property) {
1877 		if (val == !!intel_dp->color_range)
1878 			return 0;
1879 
1880 		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1881 		goto done;
1882 	}
1883 
1884 	return -EINVAL;
1885 
1886 done:
1887 	if (encoder->base.crtc) {
1888 		struct drm_crtc *crtc = encoder->base.crtc;
1889 		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1890 					 crtc->x, crtc->y,
1891 					 crtc->primary->fb);
1892 	}
1893 
1894 	return 0;
1895 }
1896 
1897 static void
1898 cdv_intel_dp_destroy(struct drm_connector *connector)
1899 {
1900 	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1901 	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1902 
1903 	if (is_edp(gma_encoder)) {
1904 	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1905 		kfree(intel_dp->panel_fixed_mode);
1906 		intel_dp->panel_fixed_mode = NULL;
1907 	}
1908 	i2c_del_adapter(&intel_dp->adapter);
1909 	drm_connector_unregister(connector);
1910 	drm_connector_cleanup(connector);
1911 	kfree(connector);
1912 }
1913 
1914 static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
1915 {
1916 	drm_encoder_cleanup(encoder);
1917 }
1918 
1919 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1920 	.dpms = cdv_intel_dp_dpms,
1921 	.mode_fixup = cdv_intel_dp_mode_fixup,
1922 	.prepare = cdv_intel_dp_prepare,
1923 	.mode_set = cdv_intel_dp_mode_set,
1924 	.commit = cdv_intel_dp_commit,
1925 };
1926 
1927 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1928 	.dpms = drm_helper_connector_dpms,
1929 	.detect = cdv_intel_dp_detect,
1930 	.fill_modes = drm_helper_probe_single_connector_modes,
1931 	.set_property = cdv_intel_dp_set_property,
1932 	.destroy = cdv_intel_dp_destroy,
1933 };
1934 
1935 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1936 	.get_modes = cdv_intel_dp_get_modes,
1937 	.mode_valid = cdv_intel_dp_mode_valid,
1938 	.best_encoder = gma_best_encoder,
1939 };
1940 
1941 static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
1942 	.destroy = cdv_intel_dp_encoder_destroy,
1943 };
1944 
1945 
1946 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1947 {
1948 	cdv_intel_attach_force_audio_property(connector);
1949 	cdv_intel_attach_broadcast_rgb_property(connector);
1950 }
1951 
1952 /* check the VBT to see whether the eDP is on DP-D port */
1953 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1954 {
1955 	struct drm_psb_private *dev_priv = dev->dev_private;
1956 	struct child_device_config *p_child;
1957 	int i;
1958 
1959 	if (!dev_priv->child_dev_num)
1960 		return false;
1961 
1962 	for (i = 0; i < dev_priv->child_dev_num; i++) {
1963 		p_child = dev_priv->child_dev + i;
1964 
1965 		if (p_child->dvo_port == PORT_IDPC &&
1966 		    p_child->device_type == DEVICE_TYPE_eDP)
1967 			return true;
1968 	}
1969 	return false;
1970 }
1971 
1972 /* Cedarview display clock gating
1973 
1974    We need this disable dot get correct behaviour while enabling
1975    DP/eDP. TODO - investigate if we can turn it back to normality
1976    after enabling */
1977 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1978 {
1979 	u32 reg_value;
1980 	reg_value = REG_READ(DSPCLK_GATE_D);
1981 
1982 	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1983 			DPUNIT_PIPEA_GATE_DISABLE |
1984 			DPCUNIT_CLOCK_GATE_DISABLE |
1985 			DPLSUNIT_CLOCK_GATE_DISABLE |
1986 			DPOUNIT_CLOCK_GATE_DISABLE |
1987 		 	DPIOUNIT_CLOCK_GATE_DISABLE);
1988 
1989 	REG_WRITE(DSPCLK_GATE_D, reg_value);
1990 
1991 	udelay(500);
1992 }
1993 
1994 void
1995 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1996 {
1997 	struct gma_encoder *gma_encoder;
1998 	struct gma_connector *gma_connector;
1999 	struct drm_connector *connector;
2000 	struct drm_encoder *encoder;
2001 	struct cdv_intel_dp *intel_dp;
2002 	const char *name = NULL;
2003 	int type = DRM_MODE_CONNECTOR_DisplayPort;
2004 
2005 	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
2006 	if (!gma_encoder)
2007 		return;
2008         gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
2009         if (!gma_connector)
2010                 goto err_connector;
2011 	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
2012 	if (!intel_dp)
2013 	        goto err_priv;
2014 
2015 	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
2016 		type = DRM_MODE_CONNECTOR_eDP;
2017 
2018 	connector = &gma_connector->base;
2019 	encoder = &gma_encoder->base;
2020 
2021 	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
2022 	drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs,
2023 			 DRM_MODE_ENCODER_TMDS, NULL);
2024 
2025 	gma_connector_attach_encoder(gma_connector, gma_encoder);
2026 
2027 	if (type == DRM_MODE_CONNECTOR_DisplayPort)
2028 		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2029         else
2030 		gma_encoder->type = INTEL_OUTPUT_EDP;
2031 
2032 
2033 	gma_encoder->dev_priv=intel_dp;
2034 	intel_dp->encoder = gma_encoder;
2035 	intel_dp->output_reg = output_reg;
2036 
2037 	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
2038 	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
2039 
2040 	connector->polled = DRM_CONNECTOR_POLL_HPD;
2041 	connector->interlace_allowed = false;
2042 	connector->doublescan_allowed = false;
2043 
2044 	drm_connector_register(connector);
2045 
2046 	/* Set up the DDC bus. */
2047 	switch (output_reg) {
2048 		case DP_B:
2049 			name = "DPDDC-B";
2050 			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2051 			break;
2052 		case DP_C:
2053 			name = "DPDDC-C";
2054 			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2055 			break;
2056 	}
2057 
2058 	cdv_disable_intel_clock_gating(dev);
2059 
2060 	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2061         /* FIXME:fail check */
2062 	cdv_intel_dp_add_properties(connector);
2063 
2064 	if (is_edp(gma_encoder)) {
2065 		int ret;
2066 		struct edp_power_seq cur;
2067                 u32 pp_on, pp_off, pp_div;
2068 		u32 pwm_ctrl;
2069 
2070 		pp_on = REG_READ(PP_CONTROL);
2071 		pp_on &= ~PANEL_UNLOCK_MASK;
2072 	        pp_on |= PANEL_UNLOCK_REGS;
2073 
2074 		REG_WRITE(PP_CONTROL, pp_on);
2075 
2076 		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2077 		pwm_ctrl |= PWM_PIPE_B;
2078 		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2079 
2080                 pp_on = REG_READ(PP_ON_DELAYS);
2081                 pp_off = REG_READ(PP_OFF_DELAYS);
2082                 pp_div = REG_READ(PP_DIVISOR);
2083 
2084 		/* Pull timing values out of registers */
2085                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2086                         PANEL_POWER_UP_DELAY_SHIFT;
2087 
2088                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2089                         PANEL_LIGHT_ON_DELAY_SHIFT;
2090 
2091                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2092                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2093 
2094                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2095                         PANEL_POWER_DOWN_DELAY_SHIFT;
2096 
2097                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2098                                PANEL_POWER_CYCLE_DELAY_SHIFT);
2099 
2100                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2101                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2102 
2103 
2104 		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2105                 intel_dp->backlight_on_delay = cur.t8 / 10;
2106                 intel_dp->backlight_off_delay = cur.t9 / 10;
2107                 intel_dp->panel_power_down_delay = cur.t10 / 10;
2108                 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2109 
2110                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2111                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2112                               intel_dp->panel_power_cycle_delay);
2113 
2114                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2115                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2116 
2117 
2118 		cdv_intel_edp_panel_vdd_on(gma_encoder);
2119 		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2120 					       intel_dp->dpcd,
2121 					       sizeof(intel_dp->dpcd));
2122 		cdv_intel_edp_panel_vdd_off(gma_encoder);
2123 		if (ret == 0) {
2124 			/* if this fails, presume the device is a ghost */
2125 			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2126 			cdv_intel_dp_encoder_destroy(encoder);
2127 			cdv_intel_dp_destroy(connector);
2128 			goto err_priv;
2129 		} else {
2130         		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2131 				intel_dp->dpcd[0], intel_dp->dpcd[1],
2132 				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2133 
2134 		}
2135 		/* The CDV reference driver moves pnale backlight setup into the displays that
2136 		   have a backlight: this is a good idea and one we should probably adopt, however
2137 		   we need to migrate all the drivers before we can do that */
2138                 /*cdv_intel_panel_setup_backlight(dev); */
2139 	}
2140 	return;
2141 
2142 err_priv:
2143 	kfree(gma_connector);
2144 err_connector:
2145 	kfree(gma_encoder);
2146 }
2147