xref: /linux/drivers/gpu/drm/gma500/cdv_intel_dp.c (revision 2dcb8e8782d8e4c38903bf37b1a24d3ffd193da7)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/dp/drm_dp_helper.h>
35 #include <drm/drm_simple_kms_helper.h>
36 
37 #include "gma_display.h"
38 #include "psb_drv.h"
39 #include "psb_intel_drv.h"
40 #include "psb_intel_reg.h"
41 
42 /**
43  * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
44  * 				 aux algorithm
45  * @running: set by the algo indicating whether an i2c is ongoing or whether
46  * 	     the i2c bus is quiescent
47  * @address: i2c target address for the currently ongoing transfer
48  * @aux_ch: driver callback to transfer a single byte of the i2c payload
49  */
50 struct i2c_algo_dp_aux_data {
51 	bool running;
52 	u16 address;
53 	int (*aux_ch) (struct i2c_adapter *adapter,
54 		       int mode, uint8_t write_byte,
55 		       uint8_t *read_byte);
56 };
57 
58 /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
59 static int
60 i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
61 			    uint8_t write_byte, uint8_t *read_byte)
62 {
63 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
64 	int ret;
65 
66 	ret = (*algo_data->aux_ch)(adapter, mode,
67 				   write_byte, read_byte);
68 	return ret;
69 }
70 
71 /*
72  * I2C over AUX CH
73  */
74 
75 /*
76  * Send the address. If the I2C link is running, this 'restarts'
77  * the connection with the new address, this is used for doing
78  * a write followed by a read (as needed for DDC)
79  */
80 static int
81 i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
82 {
83 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
84 	int mode = MODE_I2C_START;
85 
86 	if (reading)
87 		mode |= MODE_I2C_READ;
88 	else
89 		mode |= MODE_I2C_WRITE;
90 	algo_data->address = address;
91 	algo_data->running = true;
92 	return i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
93 }
94 
95 /*
96  * Stop the I2C transaction. This closes out the link, sending
97  * a bare address packet with the MOT bit turned off
98  */
99 static void
100 i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
101 {
102 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
103 	int mode = MODE_I2C_STOP;
104 
105 	if (reading)
106 		mode |= MODE_I2C_READ;
107 	else
108 		mode |= MODE_I2C_WRITE;
109 	if (algo_data->running) {
110 		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
111 		algo_data->running = false;
112 	}
113 }
114 
115 /*
116  * Write a single byte to the current I2C address, the
117  * the I2C link must be running or this returns -EIO
118  */
119 static int
120 i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
121 {
122 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
123 
124 	if (!algo_data->running)
125 		return -EIO;
126 
127 	return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
128 }
129 
130 /*
131  * Read a single byte from the current I2C address, the
132  * I2C link must be running or this returns -EIO
133  */
134 static int
135 i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
136 {
137 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
138 
139 	if (!algo_data->running)
140 		return -EIO;
141 
142 	return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
143 }
144 
145 static int
146 i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
147 		     struct i2c_msg *msgs,
148 		     int num)
149 {
150 	int ret = 0;
151 	bool reading = false;
152 	int m;
153 	int b;
154 
155 	for (m = 0; m < num; m++) {
156 		u16 len = msgs[m].len;
157 		u8 *buf = msgs[m].buf;
158 		reading = (msgs[m].flags & I2C_M_RD) != 0;
159 		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
160 		if (ret < 0)
161 			break;
162 		if (reading) {
163 			for (b = 0; b < len; b++) {
164 				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
165 				if (ret < 0)
166 					break;
167 			}
168 		} else {
169 			for (b = 0; b < len; b++) {
170 				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
171 				if (ret < 0)
172 					break;
173 			}
174 		}
175 		if (ret < 0)
176 			break;
177 	}
178 	if (ret >= 0)
179 		ret = num;
180 	i2c_algo_dp_aux_stop(adapter, reading);
181 	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
182 	return ret;
183 }
184 
185 static u32
186 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
187 {
188 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
189 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
190 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
191 	       I2C_FUNC_10BIT_ADDR;
192 }
193 
194 static const struct i2c_algorithm i2c_dp_aux_algo = {
195 	.master_xfer	= i2c_algo_dp_aux_xfer,
196 	.functionality	= i2c_algo_dp_aux_functionality,
197 };
198 
199 static void
200 i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
201 {
202 	(void) i2c_algo_dp_aux_address(adapter, 0, false);
203 	(void) i2c_algo_dp_aux_stop(adapter, false);
204 }
205 
206 static int
207 i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
208 {
209 	adapter->algo = &i2c_dp_aux_algo;
210 	adapter->retries = 3;
211 	i2c_dp_aux_reset_bus(adapter);
212 	return 0;
213 }
214 
215 /*
216  * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
217  * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
218  */
219 static int
220 i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
221 {
222 	int error;
223 
224 	error = i2c_dp_aux_prepare_bus(adapter);
225 	if (error)
226 		return error;
227 	error = i2c_add_adapter(adapter);
228 	return error;
229 }
230 
231 #define _wait_for(COND, MS, W) ({ \
232         unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
233         int ret__ = 0;                                                  \
234         while (! (COND)) {                                              \
235                 if (time_after(jiffies, timeout__)) {                   \
236                         ret__ = -ETIMEDOUT;                             \
237                         break;                                          \
238                 }                                                       \
239                 if (W && !in_dbg_master()) msleep(W);                   \
240         }                                                               \
241         ret__;                                                          \
242 })
243 
244 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
245 
246 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
247 
248 #define DP_LINK_CONFIGURATION_SIZE	9
249 
250 #define CDV_FAST_LINK_TRAIN	1
251 
252 struct cdv_intel_dp {
253 	uint32_t output_reg;
254 	uint32_t DP;
255 	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
256 	bool has_audio;
257 	int force_audio;
258 	uint32_t color_range;
259 	uint8_t link_bw;
260 	uint8_t lane_count;
261 	uint8_t dpcd[4];
262 	struct gma_encoder *encoder;
263 	struct i2c_adapter adapter;
264 	struct i2c_algo_dp_aux_data algo;
265 	uint8_t	train_set[4];
266 	uint8_t link_status[DP_LINK_STATUS_SIZE];
267 	int panel_power_up_delay;
268 	int panel_power_down_delay;
269 	int panel_power_cycle_delay;
270 	int backlight_on_delay;
271 	int backlight_off_delay;
272 	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
273 	bool panel_on;
274 };
275 
276 struct ddi_regoff {
277 	uint32_t	PreEmph1;
278 	uint32_t	PreEmph2;
279 	uint32_t	VSwing1;
280 	uint32_t	VSwing2;
281 	uint32_t	VSwing3;
282 	uint32_t	VSwing4;
283 	uint32_t	VSwing5;
284 };
285 
286 static struct ddi_regoff ddi_DP_train_table[] = {
287 	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
288 	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
289 	.VSwing5 = 0x8158,},
290 	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
291 	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
292 	.VSwing5 = 0x8258,},
293 };
294 
295 static uint32_t dp_vswing_premph_table[] = {
296         0x55338954,	0x4000,
297         0x554d8954,	0x2000,
298         0x55668954,	0,
299         0x559ac0d4,	0x6000,
300 };
301 /**
302  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
303  * @encoder: GMA encoder struct
304  *
305  * If a CPU or PCH DP output is attached to an eDP panel, this function
306  * will return true, and false otherwise.
307  */
308 static bool is_edp(struct gma_encoder *encoder)
309 {
310 	return encoder->type == INTEL_OUTPUT_EDP;
311 }
312 
313 
314 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
315 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
316 static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
317 
318 static int
319 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
320 {
321 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
322 	int max_lane_count = 4;
323 
324 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
325 		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
326 		switch (max_lane_count) {
327 		case 1: case 2: case 4:
328 			break;
329 		default:
330 			max_lane_count = 4;
331 		}
332 	}
333 	return max_lane_count;
334 }
335 
336 static int
337 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
338 {
339 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
340 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
341 
342 	switch (max_link_bw) {
343 	case DP_LINK_BW_1_62:
344 	case DP_LINK_BW_2_7:
345 		break;
346 	default:
347 		max_link_bw = DP_LINK_BW_1_62;
348 		break;
349 	}
350 	return max_link_bw;
351 }
352 
353 static int
354 cdv_intel_dp_link_clock(uint8_t link_bw)
355 {
356 	if (link_bw == DP_LINK_BW_2_7)
357 		return 270000;
358 	else
359 		return 162000;
360 }
361 
362 static int
363 cdv_intel_dp_link_required(int pixel_clock, int bpp)
364 {
365 	return (pixel_clock * bpp + 7) / 8;
366 }
367 
368 static int
369 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
370 {
371 	return (max_link_clock * max_lanes * 19) / 20;
372 }
373 
374 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
375 {
376 	struct drm_device *dev = intel_encoder->base.dev;
377 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
378 	u32 pp;
379 
380 	if (intel_dp->panel_on) {
381 		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
382 		return;
383 	}
384 	DRM_DEBUG_KMS("\n");
385 
386 	pp = REG_READ(PP_CONTROL);
387 
388 	pp |= EDP_FORCE_VDD;
389 	REG_WRITE(PP_CONTROL, pp);
390 	REG_READ(PP_CONTROL);
391 	msleep(intel_dp->panel_power_up_delay);
392 }
393 
394 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
395 {
396 	struct drm_device *dev = intel_encoder->base.dev;
397 	u32 pp;
398 
399 	DRM_DEBUG_KMS("\n");
400 	pp = REG_READ(PP_CONTROL);
401 
402 	pp &= ~EDP_FORCE_VDD;
403 	REG_WRITE(PP_CONTROL, pp);
404 	REG_READ(PP_CONTROL);
405 
406 }
407 
408 /* Returns true if the panel was already on when called */
409 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
410 {
411 	struct drm_device *dev = intel_encoder->base.dev;
412 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
413 	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
414 
415 	if (intel_dp->panel_on)
416 		return true;
417 
418 	DRM_DEBUG_KMS("\n");
419 	pp = REG_READ(PP_CONTROL);
420 	pp &= ~PANEL_UNLOCK_MASK;
421 
422 	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
423 	REG_WRITE(PP_CONTROL, pp);
424 	REG_READ(PP_CONTROL);
425 
426 	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
427 		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
428 		intel_dp->panel_on = false;
429 	} else
430 		intel_dp->panel_on = true;
431 	msleep(intel_dp->panel_power_up_delay);
432 
433 	return false;
434 }
435 
436 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
437 {
438 	struct drm_device *dev = intel_encoder->base.dev;
439 	u32 pp, idle_off_mask = PP_ON ;
440 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
441 
442 	DRM_DEBUG_KMS("\n");
443 
444 	pp = REG_READ(PP_CONTROL);
445 
446 	if ((pp & POWER_TARGET_ON) == 0)
447 		return;
448 
449 	intel_dp->panel_on = false;
450 	pp &= ~PANEL_UNLOCK_MASK;
451 	/* ILK workaround: disable reset around power sequence */
452 
453 	pp &= ~POWER_TARGET_ON;
454 	pp &= ~EDP_FORCE_VDD;
455 	pp &= ~EDP_BLC_ENABLE;
456 	REG_WRITE(PP_CONTROL, pp);
457 	REG_READ(PP_CONTROL);
458 	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
459 
460 	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
461 		DRM_DEBUG_KMS("Error in turning off Panel\n");
462 	}
463 
464 	msleep(intel_dp->panel_power_cycle_delay);
465 	DRM_DEBUG_KMS("Over\n");
466 }
467 
468 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
469 {
470 	struct drm_device *dev = intel_encoder->base.dev;
471 	u32 pp;
472 
473 	DRM_DEBUG_KMS("\n");
474 	/*
475 	 * If we enable the backlight right away following a panel power
476 	 * on, we may see slight flicker as the panel syncs with the eDP
477 	 * link.  So delay a bit to make sure the image is solid before
478 	 * allowing it to appear.
479 	 */
480 	msleep(300);
481 	pp = REG_READ(PP_CONTROL);
482 
483 	pp |= EDP_BLC_ENABLE;
484 	REG_WRITE(PP_CONTROL, pp);
485 	gma_backlight_enable(dev);
486 }
487 
488 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
489 {
490 	struct drm_device *dev = intel_encoder->base.dev;
491 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
492 	u32 pp;
493 
494 	DRM_DEBUG_KMS("\n");
495 	gma_backlight_disable(dev);
496 	msleep(10);
497 	pp = REG_READ(PP_CONTROL);
498 
499 	pp &= ~EDP_BLC_ENABLE;
500 	REG_WRITE(PP_CONTROL, pp);
501 	msleep(intel_dp->backlight_off_delay);
502 }
503 
504 static enum drm_mode_status
505 cdv_intel_dp_mode_valid(struct drm_connector *connector,
506 		    struct drm_display_mode *mode)
507 {
508 	struct gma_encoder *encoder = gma_attached_encoder(connector);
509 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
510 	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
511 	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
512 	struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
513 
514 	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
515 		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
516 			return MODE_PANEL;
517 		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
518 			return MODE_PANEL;
519 	}
520 
521 	/* only refuse the mode on non eDP since we have seen some weird eDP panels
522 	   which are outside spec tolerances but somehow work by magic */
523 	if (!is_edp(encoder) &&
524 	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
525 	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
526 		return MODE_CLOCK_HIGH;
527 
528 	if (is_edp(encoder)) {
529 	    if (cdv_intel_dp_link_required(mode->clock, 24)
530 	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
531 		return MODE_CLOCK_HIGH;
532 
533 	}
534 	if (mode->clock < 10000)
535 		return MODE_CLOCK_LOW;
536 
537 	return MODE_OK;
538 }
539 
540 static uint32_t
541 pack_aux(uint8_t *src, int src_bytes)
542 {
543 	int	i;
544 	uint32_t v = 0;
545 
546 	if (src_bytes > 4)
547 		src_bytes = 4;
548 	for (i = 0; i < src_bytes; i++)
549 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
550 	return v;
551 }
552 
553 static void
554 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
555 {
556 	int i;
557 	if (dst_bytes > 4)
558 		dst_bytes = 4;
559 	for (i = 0; i < dst_bytes; i++)
560 		dst[i] = src >> ((3-i) * 8);
561 }
562 
563 static int
564 cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
565 		uint8_t *send, int send_bytes,
566 		uint8_t *recv, int recv_size)
567 {
568 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
569 	uint32_t output_reg = intel_dp->output_reg;
570 	struct drm_device *dev = encoder->base.dev;
571 	uint32_t ch_ctl = output_reg + 0x10;
572 	uint32_t ch_data = ch_ctl + 4;
573 	int i;
574 	int recv_bytes;
575 	uint32_t status;
576 	uint32_t aux_clock_divider;
577 	int try, precharge;
578 
579 	/* The clock divider is based off the hrawclk,
580 	 * and would like to run at 2MHz. So, take the
581 	 * hrawclk value and divide by 2 and use that
582 	 * On CDV platform it uses 200MHz as hrawclk.
583 	 *
584 	 */
585 	aux_clock_divider = 200 / 2;
586 
587 	precharge = 4;
588 	if (is_edp(encoder))
589 		precharge = 10;
590 
591 	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
592 		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
593 			  REG_READ(ch_ctl));
594 		return -EBUSY;
595 	}
596 
597 	/* Must try at least 3 times according to DP spec */
598 	for (try = 0; try < 5; try++) {
599 		/* Load the send data into the aux channel data registers */
600 		for (i = 0; i < send_bytes; i += 4)
601 			REG_WRITE(ch_data + i,
602 				   pack_aux(send + i, send_bytes - i));
603 
604 		/* Send the command and wait for it to complete */
605 		REG_WRITE(ch_ctl,
606 			   DP_AUX_CH_CTL_SEND_BUSY |
607 			   DP_AUX_CH_CTL_TIME_OUT_400us |
608 			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
609 			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
610 			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
611 			   DP_AUX_CH_CTL_DONE |
612 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
613 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
614 		for (;;) {
615 			status = REG_READ(ch_ctl);
616 			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
617 				break;
618 			udelay(100);
619 		}
620 
621 		/* Clear done status and any errors */
622 		REG_WRITE(ch_ctl,
623 			   status |
624 			   DP_AUX_CH_CTL_DONE |
625 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
626 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
627 		if (status & DP_AUX_CH_CTL_DONE)
628 			break;
629 	}
630 
631 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
632 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
633 		return -EBUSY;
634 	}
635 
636 	/* Check for timeout or receive error.
637 	 * Timeouts occur when the sink is not connected
638 	 */
639 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
640 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
641 		return -EIO;
642 	}
643 
644 	/* Timeouts occur when the device isn't connected, so they're
645 	 * "normal" -- don't fill the kernel log with these */
646 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
647 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
648 		return -ETIMEDOUT;
649 	}
650 
651 	/* Unload any bytes sent back from the other side */
652 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
653 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
654 	if (recv_bytes > recv_size)
655 		recv_bytes = recv_size;
656 
657 	for (i = 0; i < recv_bytes; i += 4)
658 		unpack_aux(REG_READ(ch_data + i),
659 			   recv + i, recv_bytes - i);
660 
661 	return recv_bytes;
662 }
663 
664 /* Write data to the aux channel in native mode */
665 static int
666 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
667 			  uint16_t address, uint8_t *send, int send_bytes)
668 {
669 	int ret;
670 	uint8_t	msg[20];
671 	int msg_bytes;
672 	uint8_t	ack;
673 
674 	if (send_bytes > 16)
675 		return -1;
676 	msg[0] = DP_AUX_NATIVE_WRITE << 4;
677 	msg[1] = address >> 8;
678 	msg[2] = address & 0xff;
679 	msg[3] = send_bytes - 1;
680 	memcpy(&msg[4], send, send_bytes);
681 	msg_bytes = send_bytes + 4;
682 	for (;;) {
683 		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
684 		if (ret < 0)
685 			return ret;
686 		ack >>= 4;
687 		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
688 			break;
689 		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
690 			udelay(100);
691 		else
692 			return -EIO;
693 	}
694 	return send_bytes;
695 }
696 
697 /* Write a single byte to the aux channel in native mode */
698 static int
699 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
700 			    uint16_t address, uint8_t byte)
701 {
702 	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
703 }
704 
705 /* read bytes from a native aux channel */
706 static int
707 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
708 			 uint16_t address, uint8_t *recv, int recv_bytes)
709 {
710 	uint8_t msg[4];
711 	int msg_bytes;
712 	uint8_t reply[20];
713 	int reply_bytes;
714 	uint8_t ack;
715 	int ret;
716 
717 	msg[0] = DP_AUX_NATIVE_READ << 4;
718 	msg[1] = address >> 8;
719 	msg[2] = address & 0xff;
720 	msg[3] = recv_bytes - 1;
721 
722 	msg_bytes = 4;
723 	reply_bytes = recv_bytes + 1;
724 
725 	for (;;) {
726 		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
727 				      reply, reply_bytes);
728 		if (ret == 0)
729 			return -EPROTO;
730 		if (ret < 0)
731 			return ret;
732 		ack = reply[0] >> 4;
733 		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
734 			memcpy(recv, reply + 1, ret - 1);
735 			return ret - 1;
736 		}
737 		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
738 			udelay(100);
739 		else
740 			return -EIO;
741 	}
742 }
743 
744 static int
745 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
746 		    uint8_t write_byte, uint8_t *read_byte)
747 {
748 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
749 	struct cdv_intel_dp *intel_dp = container_of(adapter,
750 						struct cdv_intel_dp,
751 						adapter);
752 	struct gma_encoder *encoder = intel_dp->encoder;
753 	uint16_t address = algo_data->address;
754 	uint8_t msg[5];
755 	uint8_t reply[2];
756 	unsigned retry;
757 	int msg_bytes;
758 	int reply_bytes;
759 	int ret;
760 
761 	/* Set up the command byte */
762 	if (mode & MODE_I2C_READ)
763 		msg[0] = DP_AUX_I2C_READ << 4;
764 	else
765 		msg[0] = DP_AUX_I2C_WRITE << 4;
766 
767 	if (!(mode & MODE_I2C_STOP))
768 		msg[0] |= DP_AUX_I2C_MOT << 4;
769 
770 	msg[1] = address >> 8;
771 	msg[2] = address;
772 
773 	switch (mode) {
774 	case MODE_I2C_WRITE:
775 		msg[3] = 0;
776 		msg[4] = write_byte;
777 		msg_bytes = 5;
778 		reply_bytes = 1;
779 		break;
780 	case MODE_I2C_READ:
781 		msg[3] = 0;
782 		msg_bytes = 4;
783 		reply_bytes = 2;
784 		break;
785 	default:
786 		msg_bytes = 3;
787 		reply_bytes = 1;
788 		break;
789 	}
790 
791 	for (retry = 0; retry < 5; retry++) {
792 		ret = cdv_intel_dp_aux_ch(encoder,
793 				      msg, msg_bytes,
794 				      reply, reply_bytes);
795 		if (ret < 0) {
796 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
797 			return ret;
798 		}
799 
800 		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
801 		case DP_AUX_NATIVE_REPLY_ACK:
802 			/* I2C-over-AUX Reply field is only valid
803 			 * when paired with AUX ACK.
804 			 */
805 			break;
806 		case DP_AUX_NATIVE_REPLY_NACK:
807 			DRM_DEBUG_KMS("aux_ch native nack\n");
808 			return -EREMOTEIO;
809 		case DP_AUX_NATIVE_REPLY_DEFER:
810 			udelay(100);
811 			continue;
812 		default:
813 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
814 				  reply[0]);
815 			return -EREMOTEIO;
816 		}
817 
818 		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
819 		case DP_AUX_I2C_REPLY_ACK:
820 			if (mode == MODE_I2C_READ) {
821 				*read_byte = reply[1];
822 			}
823 			return reply_bytes - 1;
824 		case DP_AUX_I2C_REPLY_NACK:
825 			DRM_DEBUG_KMS("aux_i2c nack\n");
826 			return -EREMOTEIO;
827 		case DP_AUX_I2C_REPLY_DEFER:
828 			DRM_DEBUG_KMS("aux_i2c defer\n");
829 			udelay(100);
830 			break;
831 		default:
832 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
833 			return -EREMOTEIO;
834 		}
835 	}
836 
837 	DRM_ERROR("too many retries, giving up\n");
838 	return -EREMOTEIO;
839 }
840 
841 static int
842 cdv_intel_dp_i2c_init(struct gma_connector *connector,
843 		      struct gma_encoder *encoder, const char *name)
844 {
845 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
846 	int ret;
847 
848 	DRM_DEBUG_KMS("i2c_init %s\n", name);
849 
850 	intel_dp->algo.running = false;
851 	intel_dp->algo.address = 0;
852 	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
853 
854 	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
855 	intel_dp->adapter.owner = THIS_MODULE;
856 	intel_dp->adapter.class = I2C_CLASS_DDC;
857 	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
858 	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
859 	intel_dp->adapter.algo_data = &intel_dp->algo;
860 	intel_dp->adapter.dev.parent = connector->base.kdev;
861 
862 	if (is_edp(encoder))
863 		cdv_intel_edp_panel_vdd_on(encoder);
864 	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
865 	if (is_edp(encoder))
866 		cdv_intel_edp_panel_vdd_off(encoder);
867 
868 	return ret;
869 }
870 
871 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
872 	struct drm_display_mode *adjusted_mode)
873 {
874 	adjusted_mode->hdisplay = fixed_mode->hdisplay;
875 	adjusted_mode->hsync_start = fixed_mode->hsync_start;
876 	adjusted_mode->hsync_end = fixed_mode->hsync_end;
877 	adjusted_mode->htotal = fixed_mode->htotal;
878 
879 	adjusted_mode->vdisplay = fixed_mode->vdisplay;
880 	adjusted_mode->vsync_start = fixed_mode->vsync_start;
881 	adjusted_mode->vsync_end = fixed_mode->vsync_end;
882 	adjusted_mode->vtotal = fixed_mode->vtotal;
883 
884 	adjusted_mode->clock = fixed_mode->clock;
885 
886 	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
887 }
888 
889 static bool
890 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
891 		    struct drm_display_mode *adjusted_mode)
892 {
893 	struct drm_psb_private *dev_priv = to_drm_psb_private(encoder->dev);
894 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
895 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
896 	int lane_count, clock;
897 	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
898 	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
899 	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
900 	int refclock = mode->clock;
901 	int bpp = 24;
902 
903 	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
904 		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
905 		refclock = intel_dp->panel_fixed_mode->clock;
906 		bpp = dev_priv->edp.bpp;
907 	}
908 
909 	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
910 		for (clock = max_clock; clock >= 0; clock--) {
911 			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
912 
913 			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
914 				intel_dp->link_bw = bws[clock];
915 				intel_dp->lane_count = lane_count;
916 				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
917 				DRM_DEBUG_KMS("Display port link bw %02x lane "
918 						"count %d clock %d\n",
919 				       intel_dp->link_bw, intel_dp->lane_count,
920 				       adjusted_mode->clock);
921 				return true;
922 			}
923 		}
924 	}
925 	if (is_edp(intel_encoder)) {
926 		/* okay we failed just pick the highest */
927 		intel_dp->lane_count = max_lane_count;
928 		intel_dp->link_bw = bws[max_clock];
929 		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
930 		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
931 			      "count %d clock %d\n",
932 			      intel_dp->link_bw, intel_dp->lane_count,
933 			      adjusted_mode->clock);
934 
935 		return true;
936 	}
937 	return false;
938 }
939 
940 struct cdv_intel_dp_m_n {
941 	uint32_t	tu;
942 	uint32_t	gmch_m;
943 	uint32_t	gmch_n;
944 	uint32_t	link_m;
945 	uint32_t	link_n;
946 };
947 
948 static void
949 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
950 {
951 	/*
952 	while (*num > 0xffffff || *den > 0xffffff) {
953 		*num >>= 1;
954 		*den >>= 1;
955 	}*/
956 	uint64_t value, m;
957 	m = *num;
958 	value = m * (0x800000);
959 	m = do_div(value, *den);
960 	*num = value;
961 	*den = 0x800000;
962 }
963 
964 static void
965 cdv_intel_dp_compute_m_n(int bpp,
966 		     int nlanes,
967 		     int pixel_clock,
968 		     int link_clock,
969 		     struct cdv_intel_dp_m_n *m_n)
970 {
971 	m_n->tu = 64;
972 	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
973 	m_n->gmch_n = link_clock * nlanes;
974 	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
975 	m_n->link_m = pixel_clock;
976 	m_n->link_n = link_clock;
977 	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
978 }
979 
980 void
981 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
982 		 struct drm_display_mode *adjusted_mode)
983 {
984 	struct drm_device *dev = crtc->dev;
985 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
986 	struct drm_mode_config *mode_config = &dev->mode_config;
987 	struct drm_encoder *encoder;
988 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
989 	int lane_count = 4, bpp = 24;
990 	struct cdv_intel_dp_m_n m_n;
991 	int pipe = gma_crtc->pipe;
992 
993 	/*
994 	 * Find the lane count in the intel_encoder private
995 	 */
996 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
997 		struct gma_encoder *intel_encoder;
998 		struct cdv_intel_dp *intel_dp;
999 
1000 		if (encoder->crtc != crtc)
1001 			continue;
1002 
1003 		intel_encoder = to_gma_encoder(encoder);
1004 		intel_dp = intel_encoder->dev_priv;
1005 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1006 			lane_count = intel_dp->lane_count;
1007 			break;
1008 		} else if (is_edp(intel_encoder)) {
1009 			lane_count = intel_dp->lane_count;
1010 			bpp = dev_priv->edp.bpp;
1011 			break;
1012 		}
1013 	}
1014 
1015 	/*
1016 	 * Compute the GMCH and Link ratios. The '3' here is
1017 	 * the number of bytes_per_pixel post-LUT, which we always
1018 	 * set up for 8-bits of R/G/B, or 3 bytes total.
1019 	 */
1020 	cdv_intel_dp_compute_m_n(bpp, lane_count,
1021 			     mode->clock, adjusted_mode->clock, &m_n);
1022 
1023 	{
1024 		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1025 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1026 			   m_n.gmch_m);
1027 		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1028 		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1029 		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1030 	}
1031 }
1032 
1033 static void
1034 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1035 		  struct drm_display_mode *adjusted_mode)
1036 {
1037 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1038 	struct drm_crtc *crtc = encoder->crtc;
1039 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1040 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1041 	struct drm_device *dev = encoder->dev;
1042 
1043 	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1044 	intel_dp->DP |= intel_dp->color_range;
1045 
1046 	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1047 		intel_dp->DP |= DP_SYNC_HS_HIGH;
1048 	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1049 		intel_dp->DP |= DP_SYNC_VS_HIGH;
1050 
1051 	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1052 
1053 	switch (intel_dp->lane_count) {
1054 	case 1:
1055 		intel_dp->DP |= DP_PORT_WIDTH_1;
1056 		break;
1057 	case 2:
1058 		intel_dp->DP |= DP_PORT_WIDTH_2;
1059 		break;
1060 	case 4:
1061 		intel_dp->DP |= DP_PORT_WIDTH_4;
1062 		break;
1063 	}
1064 	if (intel_dp->has_audio)
1065 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1066 
1067 	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1068 	intel_dp->link_configuration[0] = intel_dp->link_bw;
1069 	intel_dp->link_configuration[1] = intel_dp->lane_count;
1070 
1071 	/*
1072 	 * Check for DPCD version > 1.1 and enhanced framing support
1073 	 */
1074 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1075 	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1076 		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1077 		intel_dp->DP |= DP_ENHANCED_FRAMING;
1078 	}
1079 
1080 	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1081 	if (gma_crtc->pipe == 1)
1082 		intel_dp->DP |= DP_PIPEB_SELECT;
1083 
1084 	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1085 	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1086 	if (is_edp(intel_encoder)) {
1087 		uint32_t pfit_control;
1088 		cdv_intel_edp_panel_on(intel_encoder);
1089 
1090 		if (mode->hdisplay != adjusted_mode->hdisplay ||
1091 			    mode->vdisplay != adjusted_mode->vdisplay)
1092 			pfit_control = PFIT_ENABLE;
1093 		else
1094 			pfit_control = 0;
1095 
1096 		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1097 
1098 		REG_WRITE(PFIT_CONTROL, pfit_control);
1099 	}
1100 }
1101 
1102 
1103 /* If the sink supports it, try to set the power state appropriately */
1104 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1105 {
1106 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1107 	int ret, i;
1108 
1109 	/* Should have a valid DPCD by this point */
1110 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1111 		return;
1112 
1113 	if (mode != DRM_MODE_DPMS_ON) {
1114 		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1115 						  DP_SET_POWER_D3);
1116 		if (ret != 1)
1117 			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1118 	} else {
1119 		/*
1120 		 * When turning on, we need to retry for 1ms to give the sink
1121 		 * time to wake up.
1122 		 */
1123 		for (i = 0; i < 3; i++) {
1124 			ret = cdv_intel_dp_aux_native_write_1(encoder,
1125 							  DP_SET_POWER,
1126 							  DP_SET_POWER_D0);
1127 			if (ret == 1)
1128 				break;
1129 			udelay(1000);
1130 		}
1131 	}
1132 }
1133 
1134 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1135 {
1136 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1137 	int edp = is_edp(intel_encoder);
1138 
1139 	if (edp) {
1140 		cdv_intel_edp_backlight_off(intel_encoder);
1141 		cdv_intel_edp_panel_off(intel_encoder);
1142 		cdv_intel_edp_panel_vdd_on(intel_encoder);
1143         }
1144 	/* Wake up the sink first */
1145 	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1146 	cdv_intel_dp_link_down(intel_encoder);
1147 	if (edp)
1148 		cdv_intel_edp_panel_vdd_off(intel_encoder);
1149 }
1150 
1151 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1152 {
1153 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1154 	int edp = is_edp(intel_encoder);
1155 
1156 	if (edp)
1157 		cdv_intel_edp_panel_on(intel_encoder);
1158 	cdv_intel_dp_start_link_train(intel_encoder);
1159 	cdv_intel_dp_complete_link_train(intel_encoder);
1160 	if (edp)
1161 		cdv_intel_edp_backlight_on(intel_encoder);
1162 }
1163 
1164 static void
1165 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1166 {
1167 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1168 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1169 	struct drm_device *dev = encoder->dev;
1170 	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1171 	int edp = is_edp(intel_encoder);
1172 
1173 	if (mode != DRM_MODE_DPMS_ON) {
1174 		if (edp) {
1175 			cdv_intel_edp_backlight_off(intel_encoder);
1176 			cdv_intel_edp_panel_vdd_on(intel_encoder);
1177 		}
1178 		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1179 		cdv_intel_dp_link_down(intel_encoder);
1180 		if (edp) {
1181 			cdv_intel_edp_panel_vdd_off(intel_encoder);
1182 			cdv_intel_edp_panel_off(intel_encoder);
1183 		}
1184 	} else {
1185         	if (edp)
1186 			cdv_intel_edp_panel_on(intel_encoder);
1187 		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1188 		if (!(dp_reg & DP_PORT_EN)) {
1189 			cdv_intel_dp_start_link_train(intel_encoder);
1190 			cdv_intel_dp_complete_link_train(intel_encoder);
1191 		}
1192 		if (edp)
1193         		cdv_intel_edp_backlight_on(intel_encoder);
1194 	}
1195 }
1196 
1197 /*
1198  * Native read with retry for link status and receiver capability reads for
1199  * cases where the sink may still be asleep.
1200  */
1201 static bool
1202 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1203 			       uint8_t *recv, int recv_bytes)
1204 {
1205 	int ret, i;
1206 
1207 	/*
1208 	 * Sinks are *supposed* to come up within 1ms from an off state,
1209 	 * but we're also supposed to retry 3 times per the spec.
1210 	 */
1211 	for (i = 0; i < 3; i++) {
1212 		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1213 					       recv_bytes);
1214 		if (ret == recv_bytes)
1215 			return true;
1216 		udelay(1000);
1217 	}
1218 
1219 	return false;
1220 }
1221 
1222 /*
1223  * Fetch AUX CH registers 0x202 - 0x207 which contain
1224  * link status information
1225  */
1226 static bool
1227 cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1228 {
1229 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1230 	return cdv_intel_dp_aux_native_read_retry(encoder,
1231 					      DP_LANE0_1_STATUS,
1232 					      intel_dp->link_status,
1233 					      DP_LINK_STATUS_SIZE);
1234 }
1235 
1236 static uint8_t
1237 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1238 		     int r)
1239 {
1240 	return link_status[r - DP_LANE0_1_STATUS];
1241 }
1242 
1243 static uint8_t
1244 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1245 				 int lane)
1246 {
1247 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1248 	int	    s = ((lane & 1) ?
1249 			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1250 			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1251 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1252 
1253 	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1254 }
1255 
1256 static uint8_t
1257 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1258 				      int lane)
1259 {
1260 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1261 	int	    s = ((lane & 1) ?
1262 			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1263 			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1264 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1265 
1266 	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1267 }
1268 
1269 #define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1270 
1271 static void
1272 cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1273 {
1274 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1275 	uint8_t v = 0;
1276 	uint8_t p = 0;
1277 	int lane;
1278 
1279 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1280 		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1281 		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1282 
1283 		if (this_v > v)
1284 			v = this_v;
1285 		if (this_p > p)
1286 			p = this_p;
1287 	}
1288 
1289 	if (v >= CDV_DP_VOLTAGE_MAX)
1290 		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1291 
1292 	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1293 		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1294 
1295 	for (lane = 0; lane < 4; lane++)
1296 		intel_dp->train_set[lane] = v | p;
1297 }
1298 
1299 
1300 static uint8_t
1301 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1302 		      int lane)
1303 {
1304 	int i = DP_LANE0_1_STATUS + (lane >> 1);
1305 	int s = (lane & 1) * 4;
1306 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1307 
1308 	return (l >> s) & 0xf;
1309 }
1310 
1311 /* Check for clock recovery is done on all channels */
1312 static bool
1313 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1314 {
1315 	int lane;
1316 	uint8_t lane_status;
1317 
1318 	for (lane = 0; lane < lane_count; lane++) {
1319 		lane_status = cdv_intel_get_lane_status(link_status, lane);
1320 		if ((lane_status & DP_LANE_CR_DONE) == 0)
1321 			return false;
1322 	}
1323 	return true;
1324 }
1325 
1326 /* Check to see if channel eq is done on all channels */
1327 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1328 			 DP_LANE_CHANNEL_EQ_DONE|\
1329 			 DP_LANE_SYMBOL_LOCKED)
1330 static bool
1331 cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1332 {
1333 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1334 	uint8_t lane_align;
1335 	uint8_t lane_status;
1336 	int lane;
1337 
1338 	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1339 					  DP_LANE_ALIGN_STATUS_UPDATED);
1340 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1341 		return false;
1342 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1343 		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1344 		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1345 			return false;
1346 	}
1347 	return true;
1348 }
1349 
1350 static bool
1351 cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1352 			uint32_t dp_reg_value,
1353 			uint8_t dp_train_pat)
1354 {
1355 	struct drm_device *dev = encoder->base.dev;
1356 	int ret;
1357 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1358 
1359 	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1360 	REG_READ(intel_dp->output_reg);
1361 
1362 	ret = cdv_intel_dp_aux_native_write_1(encoder,
1363 				    DP_TRAINING_PATTERN_SET,
1364 				    dp_train_pat);
1365 
1366 	if (ret != 1) {
1367 		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1368 				dp_train_pat);
1369 		return false;
1370 	}
1371 
1372 	return true;
1373 }
1374 
1375 
1376 static bool
1377 cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1378 			uint8_t dp_train_pat)
1379 {
1380 	int ret;
1381 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1382 
1383 	ret = cdv_intel_dp_aux_native_write(encoder,
1384 					DP_TRAINING_LANE0_SET,
1385 					intel_dp->train_set,
1386 					intel_dp->lane_count);
1387 
1388 	if (ret != intel_dp->lane_count) {
1389 		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1390 				intel_dp->train_set[0], intel_dp->lane_count);
1391 		return false;
1392 	}
1393 	return true;
1394 }
1395 
1396 static void
1397 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1398 {
1399 	struct drm_device *dev = encoder->base.dev;
1400 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1401 	struct ddi_regoff *ddi_reg;
1402 	int vswing, premph, index;
1403 
1404 	if (intel_dp->output_reg == DP_B)
1405 		ddi_reg = &ddi_DP_train_table[0];
1406 	else
1407 		ddi_reg = &ddi_DP_train_table[1];
1408 
1409 	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1410 	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1411 				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1412 
1413 	if (vswing + premph > 3)
1414 		return;
1415 #ifdef CDV_FAST_LINK_TRAIN
1416 	return;
1417 #endif
1418 	DRM_DEBUG_KMS("Test2\n");
1419 	//return ;
1420 	cdv_sb_reset(dev);
1421 	/* ;Swing voltage programming
1422         ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1423 	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1424 
1425 	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1426 	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1427 
1428 	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1429 	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1430 	 */
1431 	index = (vswing + premph) * 2;
1432 	if (premph == 1 && vswing == 1) {
1433 		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1434 	} else
1435 		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1436 
1437 	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1438 	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1439 		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1440 	else
1441 		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1442 
1443 	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1444 	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1445 
1446 	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1447 	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1448 
1449 	/* ;Pre emphasis programming
1450 	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1451 	 */
1452 	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1453 
1454 	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1455 	index = 2 * premph + 1;
1456 	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1457 	return;
1458 }
1459 
1460 
1461 /* Enable corresponding port and start training pattern 1 */
1462 static void
1463 cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1464 {
1465 	struct drm_device *dev = encoder->base.dev;
1466 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1467 	int i;
1468 	uint8_t voltage;
1469 	bool clock_recovery = false;
1470 	int tries;
1471 	u32 reg;
1472 	uint32_t DP = intel_dp->DP;
1473 
1474 	DP |= DP_PORT_EN;
1475 	DP &= ~DP_LINK_TRAIN_MASK;
1476 
1477 	reg = DP;
1478 	reg |= DP_LINK_TRAIN_PAT_1;
1479 	/* Enable output, wait for it to become active */
1480 	REG_WRITE(intel_dp->output_reg, reg);
1481 	REG_READ(intel_dp->output_reg);
1482 	gma_wait_for_vblank(dev);
1483 
1484 	DRM_DEBUG_KMS("Link config\n");
1485 	/* Write the link configuration data */
1486 	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1487 				  intel_dp->link_configuration,
1488 				  2);
1489 
1490 	memset(intel_dp->train_set, 0, 4);
1491 	voltage = 0;
1492 	tries = 0;
1493 	clock_recovery = false;
1494 
1495 	DRM_DEBUG_KMS("Start train\n");
1496 	reg = DP | DP_LINK_TRAIN_PAT_1;
1497 
1498 	for (;;) {
1499 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1500 		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1501 				intel_dp->train_set[0],
1502 				intel_dp->link_configuration[0],
1503 				intel_dp->link_configuration[1]);
1504 
1505 		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1506 			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1507 		}
1508 		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1509 		/* Set training pattern 1 */
1510 
1511 		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1512 
1513 		udelay(200);
1514 		if (!cdv_intel_dp_get_link_status(encoder))
1515 			break;
1516 
1517 		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1518 				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1519 				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1520 
1521 		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1522 			DRM_DEBUG_KMS("PT1 train is done\n");
1523 			clock_recovery = true;
1524 			break;
1525 		}
1526 
1527 		/* Check to see if we've tried the max voltage */
1528 		for (i = 0; i < intel_dp->lane_count; i++)
1529 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1530 				break;
1531 		if (i == intel_dp->lane_count)
1532 			break;
1533 
1534 		/* Check to see if we've tried the same voltage 5 times */
1535 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1536 			++tries;
1537 			if (tries == 5)
1538 				break;
1539 		} else
1540 			tries = 0;
1541 		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1542 
1543 		/* Compute new intel_dp->train_set as requested by target */
1544 		cdv_intel_get_adjust_train(encoder);
1545 
1546 	}
1547 
1548 	if (!clock_recovery) {
1549 		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1550 	}
1551 
1552 	intel_dp->DP = DP;
1553 }
1554 
1555 static void
1556 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1557 {
1558 	struct drm_device *dev = encoder->base.dev;
1559 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1560 	int tries, cr_tries;
1561 	u32 reg;
1562 	uint32_t DP = intel_dp->DP;
1563 
1564 	/* channel equalization */
1565 	tries = 0;
1566 	cr_tries = 0;
1567 
1568 	DRM_DEBUG_KMS("\n");
1569 	reg = DP | DP_LINK_TRAIN_PAT_2;
1570 
1571 	for (;;) {
1572 
1573 		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1574 				intel_dp->train_set[0],
1575 				intel_dp->link_configuration[0],
1576 				intel_dp->link_configuration[1]);
1577         	/* channel eq pattern */
1578 
1579 		if (!cdv_intel_dp_set_link_train(encoder, reg,
1580 					     DP_TRAINING_PATTERN_2)) {
1581 			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1582 		}
1583 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1584 
1585 		if (cr_tries > 5) {
1586 			DRM_ERROR("failed to train DP, aborting\n");
1587 			cdv_intel_dp_link_down(encoder);
1588 			break;
1589 		}
1590 
1591 		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1592 
1593 		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1594 
1595 		udelay(1000);
1596 		if (!cdv_intel_dp_get_link_status(encoder))
1597 			break;
1598 
1599 		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1600 				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1601 				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1602 
1603 		/* Make sure clock is still ok */
1604 		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1605 			cdv_intel_dp_start_link_train(encoder);
1606 			cr_tries++;
1607 			continue;
1608 		}
1609 
1610 		if (cdv_intel_channel_eq_ok(encoder)) {
1611 			DRM_DEBUG_KMS("PT2 train is done\n");
1612 			break;
1613 		}
1614 
1615 		/* Try 5 times, then try clock recovery if that fails */
1616 		if (tries > 5) {
1617 			cdv_intel_dp_link_down(encoder);
1618 			cdv_intel_dp_start_link_train(encoder);
1619 			tries = 0;
1620 			cr_tries++;
1621 			continue;
1622 		}
1623 
1624 		/* Compute new intel_dp->train_set as requested by target */
1625 		cdv_intel_get_adjust_train(encoder);
1626 		++tries;
1627 
1628 	}
1629 
1630 	reg = DP | DP_LINK_TRAIN_OFF;
1631 
1632 	REG_WRITE(intel_dp->output_reg, reg);
1633 	REG_READ(intel_dp->output_reg);
1634 	cdv_intel_dp_aux_native_write_1(encoder,
1635 				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1636 }
1637 
1638 static void
1639 cdv_intel_dp_link_down(struct gma_encoder *encoder)
1640 {
1641 	struct drm_device *dev = encoder->base.dev;
1642 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1643 	uint32_t DP = intel_dp->DP;
1644 
1645 	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1646 		return;
1647 
1648 	DRM_DEBUG_KMS("\n");
1649 
1650 
1651 	{
1652 		DP &= ~DP_LINK_TRAIN_MASK;
1653 		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1654 	}
1655 	REG_READ(intel_dp->output_reg);
1656 
1657 	msleep(17);
1658 
1659 	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1660 	REG_READ(intel_dp->output_reg);
1661 }
1662 
1663 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1664 {
1665 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1666 	enum drm_connector_status status;
1667 
1668 	status = connector_status_disconnected;
1669 	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1670 				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1671 	{
1672 		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1673 			status = connector_status_connected;
1674 	}
1675 	if (status == connector_status_connected)
1676 		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1677 			intel_dp->dpcd[0], intel_dp->dpcd[1],
1678 			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1679 	return status;
1680 }
1681 
1682 /*
1683  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1684  *
1685  * \return true if DP port is connected.
1686  * \return false if DP port is disconnected.
1687  */
1688 static enum drm_connector_status
1689 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1690 {
1691 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1692 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1693 	enum drm_connector_status status;
1694 	struct edid *edid = NULL;
1695 	int edp = is_edp(encoder);
1696 
1697 	intel_dp->has_audio = false;
1698 
1699 	if (edp)
1700 		cdv_intel_edp_panel_vdd_on(encoder);
1701 	status = cdv_dp_detect(encoder);
1702 	if (status != connector_status_connected) {
1703 		if (edp)
1704 			cdv_intel_edp_panel_vdd_off(encoder);
1705 		return status;
1706         }
1707 
1708 	if (intel_dp->force_audio) {
1709 		intel_dp->has_audio = intel_dp->force_audio > 0;
1710 	} else {
1711 		edid = drm_get_edid(connector, &intel_dp->adapter);
1712 		if (edid) {
1713 			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1714 			kfree(edid);
1715 		}
1716 	}
1717 	if (edp)
1718 		cdv_intel_edp_panel_vdd_off(encoder);
1719 
1720 	return connector_status_connected;
1721 }
1722 
1723 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1724 {
1725 	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1726 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1727 	struct edid *edid = NULL;
1728 	int ret = 0;
1729 	int edp = is_edp(intel_encoder);
1730 
1731 
1732 	edid = drm_get_edid(connector, &intel_dp->adapter);
1733 	if (edid) {
1734 		drm_connector_update_edid_property(connector, edid);
1735 		ret = drm_add_edid_modes(connector, edid);
1736 		kfree(edid);
1737 	}
1738 
1739 	if (is_edp(intel_encoder)) {
1740 		struct drm_device *dev = connector->dev;
1741 		struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1742 
1743 		cdv_intel_edp_panel_vdd_off(intel_encoder);
1744 		if (ret) {
1745 			if (edp && !intel_dp->panel_fixed_mode) {
1746 				struct drm_display_mode *newmode;
1747 				list_for_each_entry(newmode, &connector->probed_modes,
1748 					    head) {
1749 					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1750 						intel_dp->panel_fixed_mode =
1751 							drm_mode_duplicate(dev, newmode);
1752 						break;
1753 					}
1754 				}
1755 			}
1756 
1757 			return ret;
1758 		}
1759 		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1760 			intel_dp->panel_fixed_mode =
1761 				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1762 			if (intel_dp->panel_fixed_mode) {
1763 				intel_dp->panel_fixed_mode->type |=
1764 					DRM_MODE_TYPE_PREFERRED;
1765 			}
1766 		}
1767 		if (intel_dp->panel_fixed_mode != NULL) {
1768 			struct drm_display_mode *mode;
1769 			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1770 			drm_mode_probed_add(connector, mode);
1771 			return 1;
1772 		}
1773 	}
1774 
1775 	return ret;
1776 }
1777 
1778 static bool
1779 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1780 {
1781 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1782 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1783 	struct edid *edid;
1784 	bool has_audio = false;
1785 	int edp = is_edp(encoder);
1786 
1787 	if (edp)
1788 		cdv_intel_edp_panel_vdd_on(encoder);
1789 
1790 	edid = drm_get_edid(connector, &intel_dp->adapter);
1791 	if (edid) {
1792 		has_audio = drm_detect_monitor_audio(edid);
1793 		kfree(edid);
1794 	}
1795 	if (edp)
1796 		cdv_intel_edp_panel_vdd_off(encoder);
1797 
1798 	return has_audio;
1799 }
1800 
1801 static int
1802 cdv_intel_dp_set_property(struct drm_connector *connector,
1803 		      struct drm_property *property,
1804 		      uint64_t val)
1805 {
1806 	struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
1807 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1808 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1809 	int ret;
1810 
1811 	ret = drm_object_property_set_value(&connector->base, property, val);
1812 	if (ret)
1813 		return ret;
1814 
1815 	if (property == dev_priv->force_audio_property) {
1816 		int i = val;
1817 		bool has_audio;
1818 
1819 		if (i == intel_dp->force_audio)
1820 			return 0;
1821 
1822 		intel_dp->force_audio = i;
1823 
1824 		if (i == 0)
1825 			has_audio = cdv_intel_dp_detect_audio(connector);
1826 		else
1827 			has_audio = i > 0;
1828 
1829 		if (has_audio == intel_dp->has_audio)
1830 			return 0;
1831 
1832 		intel_dp->has_audio = has_audio;
1833 		goto done;
1834 	}
1835 
1836 	if (property == dev_priv->broadcast_rgb_property) {
1837 		if (val == !!intel_dp->color_range)
1838 			return 0;
1839 
1840 		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1841 		goto done;
1842 	}
1843 
1844 	return -EINVAL;
1845 
1846 done:
1847 	if (encoder->base.crtc) {
1848 		struct drm_crtc *crtc = encoder->base.crtc;
1849 		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1850 					 crtc->x, crtc->y,
1851 					 crtc->primary->fb);
1852 	}
1853 
1854 	return 0;
1855 }
1856 
1857 static void
1858 cdv_intel_dp_destroy(struct drm_connector *connector)
1859 {
1860 	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1861 	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1862 
1863 	if (is_edp(gma_encoder)) {
1864 	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1865 		kfree(intel_dp->panel_fixed_mode);
1866 		intel_dp->panel_fixed_mode = NULL;
1867 	}
1868 	i2c_del_adapter(&intel_dp->adapter);
1869 	drm_connector_unregister(connector);
1870 	drm_connector_cleanup(connector);
1871 	kfree(connector);
1872 }
1873 
1874 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1875 	.dpms = cdv_intel_dp_dpms,
1876 	.mode_fixup = cdv_intel_dp_mode_fixup,
1877 	.prepare = cdv_intel_dp_prepare,
1878 	.mode_set = cdv_intel_dp_mode_set,
1879 	.commit = cdv_intel_dp_commit,
1880 };
1881 
1882 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1883 	.dpms = drm_helper_connector_dpms,
1884 	.detect = cdv_intel_dp_detect,
1885 	.fill_modes = drm_helper_probe_single_connector_modes,
1886 	.set_property = cdv_intel_dp_set_property,
1887 	.destroy = cdv_intel_dp_destroy,
1888 };
1889 
1890 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1891 	.get_modes = cdv_intel_dp_get_modes,
1892 	.mode_valid = cdv_intel_dp_mode_valid,
1893 	.best_encoder = gma_best_encoder,
1894 };
1895 
1896 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1897 {
1898 	cdv_intel_attach_force_audio_property(connector);
1899 	cdv_intel_attach_broadcast_rgb_property(connector);
1900 }
1901 
1902 /* check the VBT to see whether the eDP is on DP-D port */
1903 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1904 {
1905 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1906 	struct child_device_config *p_child;
1907 	int i;
1908 
1909 	if (!dev_priv->child_dev_num)
1910 		return false;
1911 
1912 	for (i = 0; i < dev_priv->child_dev_num; i++) {
1913 		p_child = dev_priv->child_dev + i;
1914 
1915 		if (p_child->dvo_port == PORT_IDPC &&
1916 		    p_child->device_type == DEVICE_TYPE_eDP)
1917 			return true;
1918 	}
1919 	return false;
1920 }
1921 
1922 /* Cedarview display clock gating
1923 
1924    We need this disable dot get correct behaviour while enabling
1925    DP/eDP. TODO - investigate if we can turn it back to normality
1926    after enabling */
1927 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1928 {
1929 	u32 reg_value;
1930 	reg_value = REG_READ(DSPCLK_GATE_D);
1931 
1932 	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1933 			DPUNIT_PIPEA_GATE_DISABLE |
1934 			DPCUNIT_CLOCK_GATE_DISABLE |
1935 			DPLSUNIT_CLOCK_GATE_DISABLE |
1936 			DPOUNIT_CLOCK_GATE_DISABLE |
1937 			DPIOUNIT_CLOCK_GATE_DISABLE);
1938 
1939 	REG_WRITE(DSPCLK_GATE_D, reg_value);
1940 
1941 	udelay(500);
1942 }
1943 
1944 void
1945 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1946 {
1947 	struct gma_encoder *gma_encoder;
1948 	struct gma_connector *gma_connector;
1949 	struct drm_connector *connector;
1950 	struct drm_encoder *encoder;
1951 	struct cdv_intel_dp *intel_dp;
1952 	const char *name = NULL;
1953 	int type = DRM_MODE_CONNECTOR_DisplayPort;
1954 
1955 	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1956 	if (!gma_encoder)
1957 		return;
1958         gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1959         if (!gma_connector)
1960                 goto err_connector;
1961 	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1962 	if (!intel_dp)
1963 	        goto err_priv;
1964 
1965 	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1966 		type = DRM_MODE_CONNECTOR_eDP;
1967 
1968 	connector = &gma_connector->base;
1969 	encoder = &gma_encoder->base;
1970 
1971 	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1972 	drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS);
1973 
1974 	gma_connector_attach_encoder(gma_connector, gma_encoder);
1975 
1976 	if (type == DRM_MODE_CONNECTOR_DisplayPort)
1977 		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1978         else
1979 		gma_encoder->type = INTEL_OUTPUT_EDP;
1980 
1981 
1982 	gma_encoder->dev_priv=intel_dp;
1983 	intel_dp->encoder = gma_encoder;
1984 	intel_dp->output_reg = output_reg;
1985 
1986 	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1987 	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1988 
1989 	connector->polled = DRM_CONNECTOR_POLL_HPD;
1990 	connector->interlace_allowed = false;
1991 	connector->doublescan_allowed = false;
1992 
1993 	drm_connector_register(connector);
1994 
1995 	/* Set up the DDC bus. */
1996 	switch (output_reg) {
1997 		case DP_B:
1998 			name = "DPDDC-B";
1999 			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2000 			break;
2001 		case DP_C:
2002 			name = "DPDDC-C";
2003 			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2004 			break;
2005 	}
2006 
2007 	cdv_disable_intel_clock_gating(dev);
2008 
2009 	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2010         /* FIXME:fail check */
2011 	cdv_intel_dp_add_properties(connector);
2012 
2013 	if (is_edp(gma_encoder)) {
2014 		int ret;
2015 		struct edp_power_seq cur;
2016                 u32 pp_on, pp_off, pp_div;
2017 		u32 pwm_ctrl;
2018 
2019 		pp_on = REG_READ(PP_CONTROL);
2020 		pp_on &= ~PANEL_UNLOCK_MASK;
2021 	        pp_on |= PANEL_UNLOCK_REGS;
2022 
2023 		REG_WRITE(PP_CONTROL, pp_on);
2024 
2025 		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2026 		pwm_ctrl |= PWM_PIPE_B;
2027 		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2028 
2029                 pp_on = REG_READ(PP_ON_DELAYS);
2030                 pp_off = REG_READ(PP_OFF_DELAYS);
2031                 pp_div = REG_READ(PP_DIVISOR);
2032 
2033 		/* Pull timing values out of registers */
2034                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2035                         PANEL_POWER_UP_DELAY_SHIFT;
2036 
2037                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2038                         PANEL_LIGHT_ON_DELAY_SHIFT;
2039 
2040                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2041                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2042 
2043                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2044                         PANEL_POWER_DOWN_DELAY_SHIFT;
2045 
2046                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2047                                PANEL_POWER_CYCLE_DELAY_SHIFT);
2048 
2049                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2050                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2051 
2052 
2053 		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2054                 intel_dp->backlight_on_delay = cur.t8 / 10;
2055                 intel_dp->backlight_off_delay = cur.t9 / 10;
2056                 intel_dp->panel_power_down_delay = cur.t10 / 10;
2057                 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2058 
2059                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2060                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2061                               intel_dp->panel_power_cycle_delay);
2062 
2063                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2064                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2065 
2066 
2067 		cdv_intel_edp_panel_vdd_on(gma_encoder);
2068 		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2069 					       intel_dp->dpcd,
2070 					       sizeof(intel_dp->dpcd));
2071 		cdv_intel_edp_panel_vdd_off(gma_encoder);
2072 		if (ret <= 0) {
2073 			/* if this fails, presume the device is a ghost */
2074 			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2075 			drm_encoder_cleanup(encoder);
2076 			cdv_intel_dp_destroy(connector);
2077 			goto err_connector;
2078 		} else {
2079         		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2080 				intel_dp->dpcd[0], intel_dp->dpcd[1],
2081 				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2082 
2083 		}
2084 		/* The CDV reference driver moves pnale backlight setup into the displays that
2085 		   have a backlight: this is a good idea and one we should probably adopt, however
2086 		   we need to migrate all the drivers before we can do that */
2087                 /*cdv_intel_panel_setup_backlight(dev); */
2088 	}
2089 	return;
2090 
2091 err_priv:
2092 	kfree(gma_connector);
2093 err_connector:
2094 	kfree(gma_encoder);
2095 }
2096