xref: /linux/drivers/gpu/drm/gma500/cdv_intel_display.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright © 2006-2011 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Authors:
18  *	Eric Anholt <eric@anholt.net>
19  */
20 
21 #include <linux/i2c.h>
22 
23 #include <drm/drmP.h>
24 #include "framebuffer.h"
25 #include "psb_drv.h"
26 #include "psb_intel_drv.h"
27 #include "psb_intel_reg.h"
28 #include "gma_display.h"
29 #include "power.h"
30 #include "cdv_device.h"
31 
32 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
33 				  struct drm_crtc *crtc, int target,
34 				  int refclk, struct gma_clock_t *best_clock);
35 
36 
37 #define CDV_LIMIT_SINGLE_LVDS_96	0
38 #define CDV_LIMIT_SINGLE_LVDS_100	1
39 #define CDV_LIMIT_DAC_HDMI_27		2
40 #define CDV_LIMIT_DAC_HDMI_96		3
41 #define CDV_LIMIT_DP_27			4
42 #define CDV_LIMIT_DP_100		5
43 
44 static const struct gma_limit_t cdv_intel_limits[] = {
45 	{			/* CDV_SINGLE_LVDS_96MHz */
46 	 .dot = {.min = 20000, .max = 115500},
47 	 .vco = {.min = 1800000, .max = 3600000},
48 	 .n = {.min = 2, .max = 6},
49 	 .m = {.min = 60, .max = 160},
50 	 .m1 = {.min = 0, .max = 0},
51 	 .m2 = {.min = 58, .max = 158},
52 	 .p = {.min = 28, .max = 140},
53 	 .p1 = {.min = 2, .max = 10},
54 	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
55 	 .find_pll = gma_find_best_pll,
56 	 },
57 	{			/* CDV_SINGLE_LVDS_100MHz */
58 	 .dot = {.min = 20000, .max = 115500},
59 	 .vco = {.min = 1800000, .max = 3600000},
60 	 .n = {.min = 2, .max = 6},
61 	 .m = {.min = 60, .max = 160},
62 	 .m1 = {.min = 0, .max = 0},
63 	 .m2 = {.min = 58, .max = 158},
64 	 .p = {.min = 28, .max = 140},
65 	 .p1 = {.min = 2, .max = 10},
66 	 /* The single-channel range is 25-112Mhz, and dual-channel
67 	  * is 80-224Mhz.  Prefer single channel as much as possible.
68 	  */
69 	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
70 	 .find_pll = gma_find_best_pll,
71 	 },
72 	{			/* CDV_DAC_HDMI_27MHz */
73 	 .dot = {.min = 20000, .max = 400000},
74 	 .vco = {.min = 1809000, .max = 3564000},
75 	 .n = {.min = 1, .max = 1},
76 	 .m = {.min = 67, .max = 132},
77 	 .m1 = {.min = 0, .max = 0},
78 	 .m2 = {.min = 65, .max = 130},
79 	 .p = {.min = 5, .max = 90},
80 	 .p1 = {.min = 1, .max = 9},
81 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
82 	 .find_pll = gma_find_best_pll,
83 	 },
84 	{			/* CDV_DAC_HDMI_96MHz */
85 	 .dot = {.min = 20000, .max = 400000},
86 	 .vco = {.min = 1800000, .max = 3600000},
87 	 .n = {.min = 2, .max = 6},
88 	 .m = {.min = 60, .max = 160},
89 	 .m1 = {.min = 0, .max = 0},
90 	 .m2 = {.min = 58, .max = 158},
91 	 .p = {.min = 5, .max = 100},
92 	 .p1 = {.min = 1, .max = 10},
93 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
94 	 .find_pll = gma_find_best_pll,
95 	 },
96 	{			/* CDV_DP_27MHz */
97 	 .dot = {.min = 160000, .max = 272000},
98 	 .vco = {.min = 1809000, .max = 3564000},
99 	 .n = {.min = 1, .max = 1},
100 	 .m = {.min = 67, .max = 132},
101 	 .m1 = {.min = 0, .max = 0},
102 	 .m2 = {.min = 65, .max = 130},
103 	 .p = {.min = 5, .max = 90},
104 	 .p1 = {.min = 1, .max = 9},
105 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
106 	 .find_pll = cdv_intel_find_dp_pll,
107 	 },
108 	{			/* CDV_DP_100MHz */
109 	 .dot = {.min = 160000, .max = 272000},
110 	 .vco = {.min = 1800000, .max = 3600000},
111 	 .n = {.min = 2, .max = 6},
112 	 .m = {.min = 60, .max = 164},
113 	 .m1 = {.min = 0, .max = 0},
114 	 .m2 = {.min = 58, .max = 162},
115 	 .p = {.min = 5, .max = 100},
116 	 .p1 = {.min = 1, .max = 10},
117 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
118 	 .find_pll = cdv_intel_find_dp_pll,
119 	}
120 };
121 
122 #define _wait_for(COND, MS, W) ({ \
123 	unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);	\
124 	int ret__ = 0;							\
125 	while (!(COND)) {						\
126 		if (time_after(jiffies, timeout__)) {			\
127 			ret__ = -ETIMEDOUT;				\
128 			break;						\
129 		}							\
130 		if (W && !in_dbg_master())				\
131 			msleep(W);					\
132 	}								\
133 	ret__;								\
134 })
135 
136 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
137 
138 
139 int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
140 {
141 	int ret;
142 
143 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
144 	if (ret) {
145 		DRM_ERROR("timeout waiting for SB to idle before read\n");
146 		return ret;
147 	}
148 
149 	REG_WRITE(SB_ADDR, reg);
150 	REG_WRITE(SB_PCKT,
151 		   SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
152 		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
153 		   SET_FIELD(0xf, SB_BYTE_ENABLE));
154 
155 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
156 	if (ret) {
157 		DRM_ERROR("timeout waiting for SB to idle after read\n");
158 		return ret;
159 	}
160 
161 	*val = REG_READ(SB_DATA);
162 
163 	return 0;
164 }
165 
166 int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
167 {
168 	int ret;
169 	static bool dpio_debug = true;
170 	u32 temp;
171 
172 	if (dpio_debug) {
173 		if (cdv_sb_read(dev, reg, &temp) == 0)
174 			DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
175 		DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
176 	}
177 
178 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
179 	if (ret) {
180 		DRM_ERROR("timeout waiting for SB to idle before write\n");
181 		return ret;
182 	}
183 
184 	REG_WRITE(SB_ADDR, reg);
185 	REG_WRITE(SB_DATA, val);
186 	REG_WRITE(SB_PCKT,
187 		   SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
188 		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
189 		   SET_FIELD(0xf, SB_BYTE_ENABLE));
190 
191 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
192 	if (ret) {
193 		DRM_ERROR("timeout waiting for SB to idle after write\n");
194 		return ret;
195 	}
196 
197 	if (dpio_debug) {
198 		if (cdv_sb_read(dev, reg, &temp) == 0)
199 			DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
200 	}
201 
202 	return 0;
203 }
204 
205 /* Reset the DPIO configuration register.  The BIOS does this at every
206  * mode set.
207  */
208 void cdv_sb_reset(struct drm_device *dev)
209 {
210 
211 	REG_WRITE(DPIO_CFG, 0);
212 	REG_READ(DPIO_CFG);
213 	REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
214 }
215 
216 /* Unlike most Intel display engines, on Cedarview the DPLL registers
217  * are behind this sideband bus.  They must be programmed while the
218  * DPLL reference clock is on in the DPLL control register, but before
219  * the DPLL is enabled in the DPLL control register.
220  */
221 static int
222 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
223 		       struct gma_clock_t *clock, bool is_lvds, u32 ddi_select)
224 {
225 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
226 	int pipe = gma_crtc->pipe;
227 	u32 m, n_vco, p;
228 	int ret = 0;
229 	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
230 	int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
231 	u32 ref_value;
232 	u32 lane_reg, lane_value;
233 
234 	cdv_sb_reset(dev);
235 
236 	REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
237 
238 	udelay(100);
239 
240 	/* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
241 	ref_value = 0x68A701;
242 
243 	cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
244 
245 	/* We don't know what the other fields of these regs are, so
246 	 * leave them in place.
247 	 */
248 	/*
249 	 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
250 	 * for the pipe A/B. Display spec 1.06 has wrong definition.
251 	 * Correct definition is like below:
252 	 *
253 	 * refclka mean use clock from same PLL
254 	 *
255 	 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
256 	 *
257 	 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
258 	 *
259 	 */
260 	ret = cdv_sb_read(dev, ref_sfr, &ref_value);
261 	if (ret)
262 		return ret;
263 	ref_value &= ~(REF_CLK_MASK);
264 
265 	/* use DPLL_A for pipeB on CRT/HDMI */
266 	if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
267 		DRM_DEBUG_KMS("use DPLLA for pipe B\n");
268 		ref_value |= REF_CLK_DPLLA;
269 	} else {
270 		DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
271 		ref_value |= REF_CLK_DPLL;
272 	}
273 	ret = cdv_sb_write(dev, ref_sfr, ref_value);
274 	if (ret)
275 		return ret;
276 
277 	ret = cdv_sb_read(dev, SB_M(pipe), &m);
278 	if (ret)
279 		return ret;
280 	m &= ~SB_M_DIVIDER_MASK;
281 	m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
282 	ret = cdv_sb_write(dev, SB_M(pipe), m);
283 	if (ret)
284 		return ret;
285 
286 	ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
287 	if (ret)
288 		return ret;
289 
290 	/* Follow the BIOS to program the N_DIVIDER REG */
291 	n_vco &= 0xFFFF;
292 	n_vco |= 0x107;
293 	n_vco &= ~(SB_N_VCO_SEL_MASK |
294 		   SB_N_DIVIDER_MASK |
295 		   SB_N_CB_TUNE_MASK);
296 
297 	n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
298 
299 	if (clock->vco < 2250000) {
300 		n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
301 		n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
302 	} else if (clock->vco < 2750000) {
303 		n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
304 		n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
305 	} else if (clock->vco < 3300000) {
306 		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
307 		n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
308 	} else {
309 		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
310 		n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
311 	}
312 
313 	ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
314 	if (ret)
315 		return ret;
316 
317 	ret = cdv_sb_read(dev, SB_P(pipe), &p);
318 	if (ret)
319 		return ret;
320 	p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
321 	p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
322 	switch (clock->p2) {
323 	case 5:
324 		p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
325 		break;
326 	case 10:
327 		p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
328 		break;
329 	case 14:
330 		p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
331 		break;
332 	case 7:
333 		p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
334 		break;
335 	default:
336 		DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
337 		return -EINVAL;
338 	}
339 	ret = cdv_sb_write(dev, SB_P(pipe), p);
340 	if (ret)
341 		return ret;
342 
343 	if (ddi_select) {
344 		if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
345 			lane_reg = PSB_LANE0;
346 			cdv_sb_read(dev, lane_reg, &lane_value);
347 			lane_value &= ~(LANE_PLL_MASK);
348 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
349 			cdv_sb_write(dev, lane_reg, lane_value);
350 
351 			lane_reg = PSB_LANE1;
352 			cdv_sb_read(dev, lane_reg, &lane_value);
353 			lane_value &= ~(LANE_PLL_MASK);
354 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
355 			cdv_sb_write(dev, lane_reg, lane_value);
356 		} else {
357 			lane_reg = PSB_LANE2;
358 			cdv_sb_read(dev, lane_reg, &lane_value);
359 			lane_value &= ~(LANE_PLL_MASK);
360 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
361 			cdv_sb_write(dev, lane_reg, lane_value);
362 
363 			lane_reg = PSB_LANE3;
364 			cdv_sb_read(dev, lane_reg, &lane_value);
365 			lane_value &= ~(LANE_PLL_MASK);
366 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
367 			cdv_sb_write(dev, lane_reg, lane_value);
368 		}
369 	}
370 	return 0;
371 }
372 
373 static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
374 						 int refclk)
375 {
376 	const struct gma_limit_t *limit;
377 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
378 		/*
379 		 * Now only single-channel LVDS is supported on CDV. If it is
380 		 * incorrect, please add the dual-channel LVDS.
381 		 */
382 		if (refclk == 96000)
383 			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
384 		else
385 			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
386 	} else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
387 			gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
388 		if (refclk == 27000)
389 			limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
390 		else
391 			limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
392 	} else {
393 		if (refclk == 27000)
394 			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
395 		else
396 			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
397 	}
398 	return limit;
399 }
400 
401 /* m1 is reserved as 0 in CDV, n is a ring counter */
402 static void cdv_intel_clock(int refclk, struct gma_clock_t *clock)
403 {
404 	clock->m = clock->m2 + 2;
405 	clock->p = clock->p1 * clock->p2;
406 	clock->vco = (refclk * clock->m) / clock->n;
407 	clock->dot = clock->vco / clock->p;
408 }
409 
410 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
411 				  struct drm_crtc *crtc, int target,
412 				  int refclk,
413 				  struct gma_clock_t *best_clock)
414 {
415 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
416 	struct gma_clock_t clock;
417 
418 	switch (refclk) {
419 	case 27000:
420 		if (target < 200000) {
421 			clock.p1 = 2;
422 			clock.p2 = 10;
423 			clock.n = 1;
424 			clock.m1 = 0;
425 			clock.m2 = 118;
426 		} else {
427 			clock.p1 = 1;
428 			clock.p2 = 10;
429 			clock.n = 1;
430 			clock.m1 = 0;
431 			clock.m2 = 98;
432 		}
433 		break;
434 
435 	case 100000:
436 		if (target < 200000) {
437 			clock.p1 = 2;
438 			clock.p2 = 10;
439 			clock.n = 5;
440 			clock.m1 = 0;
441 			clock.m2 = 160;
442 		} else {
443 			clock.p1 = 1;
444 			clock.p2 = 10;
445 			clock.n = 5;
446 			clock.m1 = 0;
447 			clock.m2 = 133;
448 		}
449 		break;
450 
451 	default:
452 		return false;
453 	}
454 
455 	gma_crtc->clock_funcs->clock(refclk, &clock);
456 	memcpy(best_clock, &clock, sizeof(struct gma_clock_t));
457 	return true;
458 }
459 
460 #define		FIFO_PIPEA		(1 << 0)
461 #define		FIFO_PIPEB		(1 << 1)
462 
463 static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
464 {
465 	struct drm_crtc *crtc;
466 	struct drm_psb_private *dev_priv = dev->dev_private;
467 	struct gma_crtc *gma_crtc = NULL;
468 
469 	crtc = dev_priv->pipe_to_crtc_mapping[pipe];
470 	gma_crtc = to_gma_crtc(crtc);
471 
472 	if (crtc->primary->fb == NULL || !gma_crtc->active)
473 		return false;
474 	return true;
475 }
476 
477 void cdv_disable_sr(struct drm_device *dev)
478 {
479 	if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
480 
481 		/* Disable self-refresh before adjust WM */
482 		REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
483 		REG_READ(FW_BLC_SELF);
484 
485 		gma_wait_for_vblank(dev);
486 
487 		/* Cedarview workaround to write ovelay plane, which force to leave
488 		 * MAX_FIFO state.
489 		 */
490 		REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
491 		REG_READ(OV_OVADD);
492 
493 		gma_wait_for_vblank(dev);
494 	}
495 
496 }
497 
498 void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc)
499 {
500 	struct drm_psb_private *dev_priv = dev->dev_private;
501 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
502 
503 	/* Is only one pipe enabled? */
504 	if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) {
505 		u32 fw;
506 
507 		fw = REG_READ(DSPFW1);
508 		fw &= ~DSP_FIFO_SR_WM_MASK;
509 		fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
510 		fw &= ~CURSOR_B_FIFO_WM_MASK;
511 		fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
512 		REG_WRITE(DSPFW1, fw);
513 
514 		fw = REG_READ(DSPFW2);
515 		fw &= ~CURSOR_A_FIFO_WM_MASK;
516 		fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
517 		fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
518 		fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
519 		REG_WRITE(DSPFW2, fw);
520 
521 		REG_WRITE(DSPFW3, 0x36000000);
522 
523 		/* ignore FW4 */
524 
525 		/* Is pipe b lvds ? */
526 		if (gma_crtc->pipe == 1 &&
527 		    gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
528 			REG_WRITE(DSPFW5, 0x00040330);
529 		} else {
530 			fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
531 			     (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
532 			     (3 << CURSOR_B_FIFO_WM1_SHIFT) |
533 			     (4 << CURSOR_FIFO_SR_WM1_SHIFT);
534 			REG_WRITE(DSPFW5, fw);
535 		}
536 
537 		REG_WRITE(DSPFW6, 0x10);
538 
539 		gma_wait_for_vblank(dev);
540 
541 		/* enable self-refresh for single pipe active */
542 		REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
543 		REG_READ(FW_BLC_SELF);
544 		gma_wait_for_vblank(dev);
545 
546 	} else {
547 
548 		/* HW team suggested values... */
549 		REG_WRITE(DSPFW1, 0x3f880808);
550 		REG_WRITE(DSPFW2, 0x0b020202);
551 		REG_WRITE(DSPFW3, 0x24000000);
552 		REG_WRITE(DSPFW4, 0x08030202);
553 		REG_WRITE(DSPFW5, 0x01010101);
554 		REG_WRITE(DSPFW6, 0x1d0);
555 
556 		gma_wait_for_vblank(dev);
557 
558 		dev_priv->ops->disable_sr(dev);
559 	}
560 }
561 
562 /**
563  * Return the pipe currently connected to the panel fitter,
564  * or -1 if the panel fitter is not present or not in use
565  */
566 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
567 {
568 	u32 pfit_control;
569 
570 	pfit_control = REG_READ(PFIT_CONTROL);
571 
572 	/* See if the panel fitter is in use */
573 	if ((pfit_control & PFIT_ENABLE) == 0)
574 		return -1;
575 	return (pfit_control >> 29) & 0x3;
576 }
577 
578 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
579 			       struct drm_display_mode *mode,
580 			       struct drm_display_mode *adjusted_mode,
581 			       int x, int y,
582 			       struct drm_framebuffer *old_fb)
583 {
584 	struct drm_device *dev = crtc->dev;
585 	struct drm_psb_private *dev_priv = dev->dev_private;
586 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
587 	int pipe = gma_crtc->pipe;
588 	const struct psb_offset *map = &dev_priv->regmap[pipe];
589 	int refclk;
590 	struct gma_clock_t clock;
591 	u32 dpll = 0, dspcntr, pipeconf;
592 	bool ok;
593 	bool is_crt = false, is_lvds = false, is_tv = false;
594 	bool is_hdmi = false, is_dp = false;
595 	struct drm_mode_config *mode_config = &dev->mode_config;
596 	struct drm_connector *connector;
597 	const struct gma_limit_t *limit;
598 	u32 ddi_select = 0;
599 	bool is_edp = false;
600 
601 	list_for_each_entry(connector, &mode_config->connector_list, head) {
602 		struct gma_encoder *gma_encoder =
603 					gma_attached_encoder(connector);
604 
605 		if (!connector->encoder
606 		    || connector->encoder->crtc != crtc)
607 			continue;
608 
609 		ddi_select = gma_encoder->ddi_select;
610 		switch (gma_encoder->type) {
611 		case INTEL_OUTPUT_LVDS:
612 			is_lvds = true;
613 			break;
614 		case INTEL_OUTPUT_TVOUT:
615 			is_tv = true;
616 			break;
617 		case INTEL_OUTPUT_ANALOG:
618 			is_crt = true;
619 			break;
620 		case INTEL_OUTPUT_HDMI:
621 			is_hdmi = true;
622 			break;
623 		case INTEL_OUTPUT_DISPLAYPORT:
624 			is_dp = true;
625 			break;
626 		case INTEL_OUTPUT_EDP:
627 			is_edp = true;
628 			break;
629 		default:
630 			DRM_ERROR("invalid output type.\n");
631 			return 0;
632 		}
633 	}
634 
635 	if (dev_priv->dplla_96mhz)
636 		/* low-end sku, 96/100 mhz */
637 		refclk = 96000;
638 	else
639 		/* high-end sku, 27/100 mhz */
640 		refclk = 27000;
641 	if (is_dp || is_edp) {
642 		/*
643 		 * Based on the spec the low-end SKU has only CRT/LVDS. So it is
644 		 * unnecessary to consider it for DP/eDP.
645 		 * On the high-end SKU, it will use the 27/100M reference clk
646 		 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
647 		 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
648 		 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
649 		 */
650 		if (pipe == 0)
651 			refclk = 27000;
652 		else
653 			refclk = 100000;
654 	}
655 
656 	if (is_lvds && dev_priv->lvds_use_ssc) {
657 		refclk = dev_priv->lvds_ssc_freq * 1000;
658 		DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
659 	}
660 
661 	drm_mode_debug_printmodeline(adjusted_mode);
662 
663 	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
664 
665 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
666 				 &clock);
667 	if (!ok) {
668 		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
669 			  adjusted_mode->clock, clock.dot);
670 		return 0;
671 	}
672 
673 	dpll = DPLL_VGA_MODE_DIS;
674 	if (is_tv) {
675 		/* XXX: just matching BIOS for now */
676 /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
677 		dpll |= 3;
678 	}
679 /*		dpll |= PLL_REF_INPUT_DREFCLK; */
680 
681 	if (is_dp || is_edp) {
682 		cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
683 	} else {
684 		REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
685 		REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
686 		REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
687 		REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
688 	}
689 
690 	dpll |= DPLL_SYNCLOCK_ENABLE;
691 /*	if (is_lvds)
692 		dpll |= DPLLB_MODE_LVDS;
693 	else
694 		dpll |= DPLLB_MODE_DAC_SERIAL; */
695 	/* dpll |= (2 << 11); */
696 
697 	/* setup pipeconf */
698 	pipeconf = REG_READ(map->conf);
699 
700 	pipeconf &= ~(PIPE_BPC_MASK);
701 	if (is_edp) {
702 		switch (dev_priv->edp.bpp) {
703 		case 24:
704 			pipeconf |= PIPE_8BPC;
705 			break;
706 		case 18:
707 			pipeconf |= PIPE_6BPC;
708 			break;
709 		case 30:
710 			pipeconf |= PIPE_10BPC;
711 			break;
712 		default:
713 			pipeconf |= PIPE_8BPC;
714 			break;
715 		}
716 	} else if (is_lvds) {
717 		/* the BPC will be 6 if it is 18-bit LVDS panel */
718 		if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
719 			pipeconf |= PIPE_8BPC;
720 		else
721 			pipeconf |= PIPE_6BPC;
722 	} else
723 		pipeconf |= PIPE_8BPC;
724 
725 	/* Set up the display plane register */
726 	dspcntr = DISPPLANE_GAMMA_ENABLE;
727 
728 	if (pipe == 0)
729 		dspcntr |= DISPPLANE_SEL_PIPE_A;
730 	else
731 		dspcntr |= DISPPLANE_SEL_PIPE_B;
732 
733 	dspcntr |= DISPLAY_PLANE_ENABLE;
734 	pipeconf |= PIPEACONF_ENABLE;
735 
736 	REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
737 	REG_READ(map->dpll);
738 
739 	cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);
740 
741 	udelay(150);
742 
743 
744 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
745 	 * This is an exception to the general rule that mode_set doesn't turn
746 	 * things on.
747 	 */
748 	if (is_lvds) {
749 		u32 lvds = REG_READ(LVDS);
750 
751 		lvds |=
752 		    LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
753 		    LVDS_PIPEB_SELECT;
754 		/* Set the B0-B3 data pairs corresponding to
755 		 * whether we're going to
756 		 * set the DPLLs for dual-channel mode or not.
757 		 */
758 		if (clock.p2 == 7)
759 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
760 		else
761 			lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
762 
763 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
764 		 * appropriately here, but we need to look more
765 		 * thoroughly into how panels behave in the two modes.
766 		 */
767 
768 		REG_WRITE(LVDS, lvds);
769 		REG_READ(LVDS);
770 	}
771 
772 	dpll |= DPLL_VCO_ENABLE;
773 
774 	/* Disable the panel fitter if it was on our pipe */
775 	if (cdv_intel_panel_fitter_pipe(dev) == pipe)
776 		REG_WRITE(PFIT_CONTROL, 0);
777 
778 	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
779 	drm_mode_debug_printmodeline(mode);
780 
781 	REG_WRITE(map->dpll,
782 		(REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
783 	REG_READ(map->dpll);
784 	/* Wait for the clocks to stabilize. */
785 	udelay(150); /* 42 usec w/o calibration, 110 with.  rounded up. */
786 
787 	if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
788 		dev_err(dev->dev, "Failed to get DPLL lock\n");
789 		return -EBUSY;
790 	}
791 
792 	{
793 		int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
794 		REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
795 	}
796 
797 	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
798 		  ((adjusted_mode->crtc_htotal - 1) << 16));
799 	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
800 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
801 	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
802 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
803 	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
804 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
805 	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
806 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
807 	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
808 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
809 	/* pipesrc and dspsize control the size that is scaled from,
810 	 * which should always be the user's requested size.
811 	 */
812 	REG_WRITE(map->size,
813 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
814 	REG_WRITE(map->pos, 0);
815 	REG_WRITE(map->src,
816 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
817 	REG_WRITE(map->conf, pipeconf);
818 	REG_READ(map->conf);
819 
820 	gma_wait_for_vblank(dev);
821 
822 	REG_WRITE(map->cntr, dspcntr);
823 
824 	/* Flush the plane changes */
825 	{
826 		const struct drm_crtc_helper_funcs *crtc_funcs =
827 		    crtc->helper_private;
828 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
829 	}
830 
831 	gma_wait_for_vblank(dev);
832 
833 	return 0;
834 }
835 
836 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
837 
838 /* FIXME: why are we using this, should it be cdv_ in this tree ? */
839 
840 static void i8xx_clock(int refclk, struct gma_clock_t *clock)
841 {
842 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
843 	clock->p = clock->p1 * clock->p2;
844 	clock->vco = refclk * clock->m / (clock->n + 2);
845 	clock->dot = clock->vco / clock->p;
846 }
847 
848 /* Returns the clock of the currently programmed mode of the given pipe. */
849 static int cdv_intel_crtc_clock_get(struct drm_device *dev,
850 				struct drm_crtc *crtc)
851 {
852 	struct drm_psb_private *dev_priv = dev->dev_private;
853 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
854 	int pipe = gma_crtc->pipe;
855 	const struct psb_offset *map = &dev_priv->regmap[pipe];
856 	u32 dpll;
857 	u32 fp;
858 	struct gma_clock_t clock;
859 	bool is_lvds;
860 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
861 
862 	if (gma_power_begin(dev, false)) {
863 		dpll = REG_READ(map->dpll);
864 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
865 			fp = REG_READ(map->fp0);
866 		else
867 			fp = REG_READ(map->fp1);
868 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
869 		gma_power_end(dev);
870 	} else {
871 		dpll = p->dpll;
872 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
873 			fp = p->fp0;
874 		else
875 			fp = p->fp1;
876 
877 		is_lvds = (pipe == 1) &&
878 				(dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
879 	}
880 
881 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
882 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
883 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
884 
885 	if (is_lvds) {
886 		clock.p1 =
887 		    ffs((dpll &
888 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
889 			DPLL_FPA01_P1_POST_DIV_SHIFT);
890 		if (clock.p1 == 0) {
891 			clock.p1 = 4;
892 			dev_err(dev->dev, "PLL %d\n", dpll);
893 		}
894 		clock.p2 = 14;
895 
896 		if ((dpll & PLL_REF_INPUT_MASK) ==
897 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
898 			/* XXX: might not be 66MHz */
899 			i8xx_clock(66000, &clock);
900 		} else
901 			i8xx_clock(48000, &clock);
902 	} else {
903 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
904 			clock.p1 = 2;
905 		else {
906 			clock.p1 =
907 			    ((dpll &
908 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
909 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
910 		}
911 		if (dpll & PLL_P2_DIVIDE_BY_4)
912 			clock.p2 = 4;
913 		else
914 			clock.p2 = 2;
915 
916 		i8xx_clock(48000, &clock);
917 	}
918 
919 	/* XXX: It would be nice to validate the clocks, but we can't reuse
920 	 * i830PllIsValid() because it relies on the xf86_config connector
921 	 * configuration being accurate, which it isn't necessarily.
922 	 */
923 
924 	return clock.dot;
925 }
926 
927 /** Returns the currently programmed mode of the given pipe. */
928 struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
929 					     struct drm_crtc *crtc)
930 {
931 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
932 	int pipe = gma_crtc->pipe;
933 	struct drm_psb_private *dev_priv = dev->dev_private;
934 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
935 	const struct psb_offset *map = &dev_priv->regmap[pipe];
936 	struct drm_display_mode *mode;
937 	int htot;
938 	int hsync;
939 	int vtot;
940 	int vsync;
941 
942 	if (gma_power_begin(dev, false)) {
943 		htot = REG_READ(map->htotal);
944 		hsync = REG_READ(map->hsync);
945 		vtot = REG_READ(map->vtotal);
946 		vsync = REG_READ(map->vsync);
947 		gma_power_end(dev);
948 	} else {
949 		htot = p->htotal;
950 		hsync = p->hsync;
951 		vtot = p->vtotal;
952 		vsync = p->vsync;
953 	}
954 
955 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
956 	if (!mode)
957 		return NULL;
958 
959 	mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
960 	mode->hdisplay = (htot & 0xffff) + 1;
961 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
962 	mode->hsync_start = (hsync & 0xffff) + 1;
963 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
964 	mode->vdisplay = (vtot & 0xffff) + 1;
965 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
966 	mode->vsync_start = (vsync & 0xffff) + 1;
967 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
968 
969 	drm_mode_set_name(mode);
970 	drm_mode_set_crtcinfo(mode, 0);
971 
972 	return mode;
973 }
974 
975 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
976 	.dpms = gma_crtc_dpms,
977 	.mode_set = cdv_intel_crtc_mode_set,
978 	.mode_set_base = gma_pipe_set_base,
979 	.prepare = gma_crtc_prepare,
980 	.commit = gma_crtc_commit,
981 	.disable = gma_crtc_disable,
982 };
983 
984 const struct drm_crtc_funcs cdv_intel_crtc_funcs = {
985 	.cursor_set = gma_crtc_cursor_set,
986 	.cursor_move = gma_crtc_cursor_move,
987 	.gamma_set = gma_crtc_gamma_set,
988 	.set_config = gma_crtc_set_config,
989 	.destroy = gma_crtc_destroy,
990 };
991 
992 const struct gma_clock_funcs cdv_clock_funcs = {
993 	.clock = cdv_intel_clock,
994 	.limit = cdv_intel_limit,
995 	.pll_is_valid = gma_pll_is_valid,
996 };
997