1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2011 Samsung Electronics Co.Ltd 4 * Authors: 5 * Seung-Woo Kim <sw0312.kim@samsung.com> 6 * Inki Dae <inki.dae@samsung.com> 7 * Joonyoung Shim <jy0922.shim@samsung.com> 8 * 9 * Based on drivers/media/video/s5p-tv/mixer_reg.c 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/component.h> 14 #include <linux/delay.h> 15 #include <linux/i2c.h> 16 #include <linux/interrupt.h> 17 #include <linux/irq.h> 18 #include <linux/kernel.h> 19 #include <linux/ktime.h> 20 #include <linux/of.h> 21 #include <linux/of_device.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/spinlock.h> 26 #include <linux/wait.h> 27 28 #include <drm/drm_blend.h> 29 #include <drm/drm_edid.h> 30 #include <drm/drm_fourcc.h> 31 #include <drm/drm_framebuffer.h> 32 #include <drm/drm_vblank.h> 33 #include <drm/exynos_drm.h> 34 35 #include "exynos_drm_crtc.h" 36 #include "exynos_drm_drv.h" 37 #include "exynos_drm_fb.h" 38 #include "exynos_drm_plane.h" 39 #include "regs-mixer.h" 40 #include "regs-vp.h" 41 42 #define MIXER_WIN_NR 3 43 #define VP_DEFAULT_WIN 2 44 45 /* 46 * Mixer color space conversion coefficient triplet. 47 * Used for CSC from RGB to YCbCr. 48 * Each coefficient is a 10-bit fixed point number with 49 * sign and no integer part, i.e. 50 * [0:8] = fractional part (representing a value y = x / 2^9) 51 * [9] = sign 52 * Negative values are encoded with two's complement. 53 */ 54 #define MXR_CSC_C(x) ((int)((x) * 512.0) & 0x3ff) 55 #define MXR_CSC_CT(a0, a1, a2) \ 56 ((MXR_CSC_C(a0) << 20) | (MXR_CSC_C(a1) << 10) | (MXR_CSC_C(a2) << 0)) 57 58 /* YCbCr value, used for mixer background color configuration. */ 59 #define MXR_YCBCR_VAL(y, cb, cr) (((y) << 16) | ((cb) << 8) | ((cr) << 0)) 60 61 /* The pixelformats that are natively supported by the mixer. */ 62 #define MXR_FORMAT_RGB565 4 63 #define MXR_FORMAT_ARGB1555 5 64 #define MXR_FORMAT_ARGB4444 6 65 #define MXR_FORMAT_ARGB8888 7 66 67 enum mixer_version_id { 68 MXR_VER_0_0_0_16, 69 MXR_VER_16_0_33_0, 70 MXR_VER_128_0_0_184, 71 }; 72 73 enum mixer_flag_bits { 74 MXR_BIT_POWERED, 75 MXR_BIT_VSYNC, 76 MXR_BIT_INTERLACE, 77 MXR_BIT_VP_ENABLED, 78 MXR_BIT_HAS_SCLK, 79 }; 80 81 static const uint32_t mixer_formats[] = { 82 DRM_FORMAT_XRGB4444, 83 DRM_FORMAT_ARGB4444, 84 DRM_FORMAT_XRGB1555, 85 DRM_FORMAT_ARGB1555, 86 DRM_FORMAT_RGB565, 87 DRM_FORMAT_XRGB8888, 88 DRM_FORMAT_ARGB8888, 89 }; 90 91 static const uint32_t vp_formats[] = { 92 DRM_FORMAT_NV12, 93 DRM_FORMAT_NV21, 94 }; 95 96 struct mixer_context { 97 struct platform_device *pdev; 98 struct device *dev; 99 struct drm_device *drm_dev; 100 void *dma_priv; 101 struct exynos_drm_crtc *crtc; 102 struct exynos_drm_plane planes[MIXER_WIN_NR]; 103 unsigned long flags; 104 105 int irq; 106 void __iomem *mixer_regs; 107 void __iomem *vp_regs; 108 spinlock_t reg_slock; 109 struct clk *mixer; 110 struct clk *vp; 111 struct clk *hdmi; 112 struct clk *sclk_mixer; 113 struct clk *sclk_hdmi; 114 struct clk *mout_mixer; 115 enum mixer_version_id mxr_ver; 116 int scan_value; 117 }; 118 119 struct mixer_drv_data { 120 enum mixer_version_id version; 121 bool is_vp_enabled; 122 bool has_sclk; 123 }; 124 125 static const struct exynos_drm_plane_config plane_configs[MIXER_WIN_NR] = { 126 { 127 .zpos = 0, 128 .type = DRM_PLANE_TYPE_PRIMARY, 129 .pixel_formats = mixer_formats, 130 .num_pixel_formats = ARRAY_SIZE(mixer_formats), 131 .capabilities = EXYNOS_DRM_PLANE_CAP_DOUBLE | 132 EXYNOS_DRM_PLANE_CAP_ZPOS | 133 EXYNOS_DRM_PLANE_CAP_PIX_BLEND | 134 EXYNOS_DRM_PLANE_CAP_WIN_BLEND, 135 }, { 136 .zpos = 1, 137 .type = DRM_PLANE_TYPE_CURSOR, 138 .pixel_formats = mixer_formats, 139 .num_pixel_formats = ARRAY_SIZE(mixer_formats), 140 .capabilities = EXYNOS_DRM_PLANE_CAP_DOUBLE | 141 EXYNOS_DRM_PLANE_CAP_ZPOS | 142 EXYNOS_DRM_PLANE_CAP_PIX_BLEND | 143 EXYNOS_DRM_PLANE_CAP_WIN_BLEND, 144 }, { 145 .zpos = 2, 146 .type = DRM_PLANE_TYPE_OVERLAY, 147 .pixel_formats = vp_formats, 148 .num_pixel_formats = ARRAY_SIZE(vp_formats), 149 .capabilities = EXYNOS_DRM_PLANE_CAP_SCALE | 150 EXYNOS_DRM_PLANE_CAP_ZPOS | 151 EXYNOS_DRM_PLANE_CAP_TILE | 152 EXYNOS_DRM_PLANE_CAP_WIN_BLEND, 153 }, 154 }; 155 156 static const u8 filter_y_horiz_tap8[] = { 157 0, -1, -1, -1, -1, -1, -1, -1, 158 -1, -1, -1, -1, -1, 0, 0, 0, 159 0, 2, 4, 5, 6, 6, 6, 6, 160 6, 5, 5, 4, 3, 2, 1, 1, 161 0, -6, -12, -16, -18, -20, -21, -20, 162 -20, -18, -16, -13, -10, -8, -5, -2, 163 127, 126, 125, 121, 114, 107, 99, 89, 164 79, 68, 57, 46, 35, 25, 16, 8, 165 }; 166 167 static const u8 filter_y_vert_tap4[] = { 168 0, -3, -6, -8, -8, -8, -8, -7, 169 -6, -5, -4, -3, -2, -1, -1, 0, 170 127, 126, 124, 118, 111, 102, 92, 81, 171 70, 59, 48, 37, 27, 19, 11, 5, 172 0, 5, 11, 19, 27, 37, 48, 59, 173 70, 81, 92, 102, 111, 118, 124, 126, 174 0, 0, -1, -1, -2, -3, -4, -5, 175 -6, -7, -8, -8, -8, -8, -6, -3, 176 }; 177 178 static const u8 filter_cr_horiz_tap4[] = { 179 0, -3, -6, -8, -8, -8, -8, -7, 180 -6, -5, -4, -3, -2, -1, -1, 0, 181 127, 126, 124, 118, 111, 102, 92, 81, 182 70, 59, 48, 37, 27, 19, 11, 5, 183 }; 184 185 static inline u32 vp_reg_read(struct mixer_context *ctx, u32 reg_id) 186 { 187 return readl(ctx->vp_regs + reg_id); 188 } 189 190 static inline void vp_reg_write(struct mixer_context *ctx, u32 reg_id, 191 u32 val) 192 { 193 writel(val, ctx->vp_regs + reg_id); 194 } 195 196 static inline void vp_reg_writemask(struct mixer_context *ctx, u32 reg_id, 197 u32 val, u32 mask) 198 { 199 u32 old = vp_reg_read(ctx, reg_id); 200 201 val = (val & mask) | (old & ~mask); 202 writel(val, ctx->vp_regs + reg_id); 203 } 204 205 static inline u32 mixer_reg_read(struct mixer_context *ctx, u32 reg_id) 206 { 207 return readl(ctx->mixer_regs + reg_id); 208 } 209 210 static inline void mixer_reg_write(struct mixer_context *ctx, u32 reg_id, 211 u32 val) 212 { 213 writel(val, ctx->mixer_regs + reg_id); 214 } 215 216 static inline void mixer_reg_writemask(struct mixer_context *ctx, 217 u32 reg_id, u32 val, u32 mask) 218 { 219 u32 old = mixer_reg_read(ctx, reg_id); 220 221 val = (val & mask) | (old & ~mask); 222 writel(val, ctx->mixer_regs + reg_id); 223 } 224 225 static void mixer_regs_dump(struct mixer_context *ctx) 226 { 227 #define DUMPREG(reg_id) \ 228 do { \ 229 DRM_DEV_DEBUG_KMS(ctx->dev, #reg_id " = %08x\n", \ 230 (u32)readl(ctx->mixer_regs + reg_id)); \ 231 } while (0) 232 233 DUMPREG(MXR_STATUS); 234 DUMPREG(MXR_CFG); 235 DUMPREG(MXR_INT_EN); 236 DUMPREG(MXR_INT_STATUS); 237 238 DUMPREG(MXR_LAYER_CFG); 239 DUMPREG(MXR_VIDEO_CFG); 240 241 DUMPREG(MXR_GRAPHIC0_CFG); 242 DUMPREG(MXR_GRAPHIC0_BASE); 243 DUMPREG(MXR_GRAPHIC0_SPAN); 244 DUMPREG(MXR_GRAPHIC0_WH); 245 DUMPREG(MXR_GRAPHIC0_SXY); 246 DUMPREG(MXR_GRAPHIC0_DXY); 247 248 DUMPREG(MXR_GRAPHIC1_CFG); 249 DUMPREG(MXR_GRAPHIC1_BASE); 250 DUMPREG(MXR_GRAPHIC1_SPAN); 251 DUMPREG(MXR_GRAPHIC1_WH); 252 DUMPREG(MXR_GRAPHIC1_SXY); 253 DUMPREG(MXR_GRAPHIC1_DXY); 254 #undef DUMPREG 255 } 256 257 static void vp_regs_dump(struct mixer_context *ctx) 258 { 259 #define DUMPREG(reg_id) \ 260 do { \ 261 DRM_DEV_DEBUG_KMS(ctx->dev, #reg_id " = %08x\n", \ 262 (u32) readl(ctx->vp_regs + reg_id)); \ 263 } while (0) 264 265 DUMPREG(VP_ENABLE); 266 DUMPREG(VP_SRESET); 267 DUMPREG(VP_SHADOW_UPDATE); 268 DUMPREG(VP_FIELD_ID); 269 DUMPREG(VP_MODE); 270 DUMPREG(VP_IMG_SIZE_Y); 271 DUMPREG(VP_IMG_SIZE_C); 272 DUMPREG(VP_PER_RATE_CTRL); 273 DUMPREG(VP_TOP_Y_PTR); 274 DUMPREG(VP_BOT_Y_PTR); 275 DUMPREG(VP_TOP_C_PTR); 276 DUMPREG(VP_BOT_C_PTR); 277 DUMPREG(VP_ENDIAN_MODE); 278 DUMPREG(VP_SRC_H_POSITION); 279 DUMPREG(VP_SRC_V_POSITION); 280 DUMPREG(VP_SRC_WIDTH); 281 DUMPREG(VP_SRC_HEIGHT); 282 DUMPREG(VP_DST_H_POSITION); 283 DUMPREG(VP_DST_V_POSITION); 284 DUMPREG(VP_DST_WIDTH); 285 DUMPREG(VP_DST_HEIGHT); 286 DUMPREG(VP_H_RATIO); 287 DUMPREG(VP_V_RATIO); 288 289 #undef DUMPREG 290 } 291 292 static inline void vp_filter_set(struct mixer_context *ctx, 293 int reg_id, const u8 *data, unsigned int size) 294 { 295 /* assure 4-byte align */ 296 BUG_ON(size & 3); 297 for (; size; size -= 4, reg_id += 4, data += 4) { 298 u32 val = (data[0] << 24) | (data[1] << 16) | 299 (data[2] << 8) | data[3]; 300 vp_reg_write(ctx, reg_id, val); 301 } 302 } 303 304 static void vp_default_filter(struct mixer_context *ctx) 305 { 306 vp_filter_set(ctx, VP_POLY8_Y0_LL, 307 filter_y_horiz_tap8, sizeof(filter_y_horiz_tap8)); 308 vp_filter_set(ctx, VP_POLY4_Y0_LL, 309 filter_y_vert_tap4, sizeof(filter_y_vert_tap4)); 310 vp_filter_set(ctx, VP_POLY4_C0_LL, 311 filter_cr_horiz_tap4, sizeof(filter_cr_horiz_tap4)); 312 } 313 314 static void mixer_cfg_gfx_blend(struct mixer_context *ctx, unsigned int win, 315 unsigned int pixel_alpha, unsigned int alpha) 316 { 317 u32 win_alpha = alpha >> 8; 318 u32 val; 319 320 val = MXR_GRP_CFG_COLOR_KEY_DISABLE; /* no blank key */ 321 switch (pixel_alpha) { 322 case DRM_MODE_BLEND_PIXEL_NONE: 323 break; 324 case DRM_MODE_BLEND_COVERAGE: 325 val |= MXR_GRP_CFG_PIXEL_BLEND_EN; 326 break; 327 case DRM_MODE_BLEND_PREMULTI: 328 default: 329 val |= MXR_GRP_CFG_BLEND_PRE_MUL; 330 val |= MXR_GRP_CFG_PIXEL_BLEND_EN; 331 break; 332 } 333 334 if (alpha != DRM_BLEND_ALPHA_OPAQUE) { 335 val |= MXR_GRP_CFG_WIN_BLEND_EN; 336 val |= win_alpha; 337 } 338 mixer_reg_writemask(ctx, MXR_GRAPHIC_CFG(win), 339 val, MXR_GRP_CFG_MISC_MASK); 340 } 341 342 static void mixer_cfg_vp_blend(struct mixer_context *ctx, unsigned int alpha) 343 { 344 u32 win_alpha = alpha >> 8; 345 u32 val = 0; 346 347 if (alpha != DRM_BLEND_ALPHA_OPAQUE) { 348 val |= MXR_VID_CFG_BLEND_EN; 349 val |= win_alpha; 350 } 351 mixer_reg_write(ctx, MXR_VIDEO_CFG, val); 352 } 353 354 static bool mixer_is_synced(struct mixer_context *ctx) 355 { 356 u32 base, shadow; 357 358 if (ctx->mxr_ver == MXR_VER_16_0_33_0 || 359 ctx->mxr_ver == MXR_VER_128_0_0_184) 360 return !(mixer_reg_read(ctx, MXR_CFG) & 361 MXR_CFG_LAYER_UPDATE_COUNT_MASK); 362 363 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags) && 364 vp_reg_read(ctx, VP_SHADOW_UPDATE)) 365 return false; 366 367 base = mixer_reg_read(ctx, MXR_CFG); 368 shadow = mixer_reg_read(ctx, MXR_CFG_S); 369 if (base != shadow) 370 return false; 371 372 base = mixer_reg_read(ctx, MXR_GRAPHIC_BASE(0)); 373 shadow = mixer_reg_read(ctx, MXR_GRAPHIC_BASE_S(0)); 374 if (base != shadow) 375 return false; 376 377 base = mixer_reg_read(ctx, MXR_GRAPHIC_BASE(1)); 378 shadow = mixer_reg_read(ctx, MXR_GRAPHIC_BASE_S(1)); 379 if (base != shadow) 380 return false; 381 382 return true; 383 } 384 385 static int mixer_wait_for_sync(struct mixer_context *ctx) 386 { 387 ktime_t timeout = ktime_add_us(ktime_get(), 100000); 388 389 while (!mixer_is_synced(ctx)) { 390 usleep_range(1000, 2000); 391 if (ktime_compare(ktime_get(), timeout) > 0) 392 return -ETIMEDOUT; 393 } 394 return 0; 395 } 396 397 static void mixer_disable_sync(struct mixer_context *ctx) 398 { 399 mixer_reg_writemask(ctx, MXR_STATUS, 0, MXR_STATUS_SYNC_ENABLE); 400 } 401 402 static void mixer_enable_sync(struct mixer_context *ctx) 403 { 404 if (ctx->mxr_ver == MXR_VER_16_0_33_0 || 405 ctx->mxr_ver == MXR_VER_128_0_0_184) 406 mixer_reg_writemask(ctx, MXR_CFG, ~0, MXR_CFG_LAYER_UPDATE); 407 mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_SYNC_ENABLE); 408 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) 409 vp_reg_write(ctx, VP_SHADOW_UPDATE, VP_SHADOW_UPDATE_ENABLE); 410 } 411 412 static void mixer_cfg_scan(struct mixer_context *ctx, int width, int height) 413 { 414 u32 val; 415 416 /* choosing between interlace and progressive mode */ 417 val = test_bit(MXR_BIT_INTERLACE, &ctx->flags) ? 418 MXR_CFG_SCAN_INTERLACE : MXR_CFG_SCAN_PROGRESSIVE; 419 420 if (ctx->mxr_ver == MXR_VER_128_0_0_184) 421 mixer_reg_write(ctx, MXR_RESOLUTION, 422 MXR_MXR_RES_HEIGHT(height) | MXR_MXR_RES_WIDTH(width)); 423 else 424 val |= ctx->scan_value; 425 426 mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_SCAN_MASK); 427 } 428 429 static void mixer_cfg_rgb_fmt(struct mixer_context *ctx, struct drm_display_mode *mode) 430 { 431 enum hdmi_quantization_range range = drm_default_rgb_quant_range(mode); 432 u32 val; 433 434 if (mode->vdisplay < 720) { 435 val = MXR_CFG_RGB601; 436 } else { 437 val = MXR_CFG_RGB709; 438 439 /* Configure the BT.709 CSC matrix for full range RGB. */ 440 mixer_reg_write(ctx, MXR_CM_COEFF_Y, 441 MXR_CSC_CT( 0.184, 0.614, 0.063) | 442 MXR_CM_COEFF_RGB_FULL); 443 mixer_reg_write(ctx, MXR_CM_COEFF_CB, 444 MXR_CSC_CT(-0.102, -0.338, 0.440)); 445 mixer_reg_write(ctx, MXR_CM_COEFF_CR, 446 MXR_CSC_CT( 0.440, -0.399, -0.040)); 447 } 448 449 if (range == HDMI_QUANTIZATION_RANGE_FULL) 450 val |= MXR_CFG_QUANT_RANGE_FULL; 451 else 452 val |= MXR_CFG_QUANT_RANGE_LIMITED; 453 454 mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_RGB_FMT_MASK); 455 } 456 457 static void mixer_cfg_layer(struct mixer_context *ctx, unsigned int win, 458 unsigned int priority, bool enable) 459 { 460 u32 val = enable ? ~0 : 0; 461 462 switch (win) { 463 case 0: 464 mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_GRP0_ENABLE); 465 mixer_reg_writemask(ctx, MXR_LAYER_CFG, 466 MXR_LAYER_CFG_GRP0_VAL(priority), 467 MXR_LAYER_CFG_GRP0_MASK); 468 break; 469 case 1: 470 mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_GRP1_ENABLE); 471 mixer_reg_writemask(ctx, MXR_LAYER_CFG, 472 MXR_LAYER_CFG_GRP1_VAL(priority), 473 MXR_LAYER_CFG_GRP1_MASK); 474 475 break; 476 case VP_DEFAULT_WIN: 477 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) { 478 vp_reg_writemask(ctx, VP_ENABLE, val, VP_ENABLE_ON); 479 mixer_reg_writemask(ctx, MXR_CFG, val, 480 MXR_CFG_VP_ENABLE); 481 mixer_reg_writemask(ctx, MXR_LAYER_CFG, 482 MXR_LAYER_CFG_VP_VAL(priority), 483 MXR_LAYER_CFG_VP_MASK); 484 } 485 break; 486 } 487 } 488 489 static void mixer_run(struct mixer_context *ctx) 490 { 491 mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_REG_RUN); 492 } 493 494 static void mixer_stop(struct mixer_context *ctx) 495 { 496 int timeout = 20; 497 498 mixer_reg_writemask(ctx, MXR_STATUS, 0, MXR_STATUS_REG_RUN); 499 500 while (!(mixer_reg_read(ctx, MXR_STATUS) & MXR_STATUS_REG_IDLE) && 501 --timeout) 502 usleep_range(10000, 12000); 503 } 504 505 static void mixer_commit(struct mixer_context *ctx) 506 { 507 struct drm_display_mode *mode = &ctx->crtc->base.state->adjusted_mode; 508 509 mixer_cfg_scan(ctx, mode->hdisplay, mode->vdisplay); 510 mixer_cfg_rgb_fmt(ctx, mode); 511 mixer_run(ctx); 512 } 513 514 static void vp_video_buffer(struct mixer_context *ctx, 515 struct exynos_drm_plane *plane) 516 { 517 struct exynos_drm_plane_state *state = 518 to_exynos_plane_state(plane->base.state); 519 struct drm_framebuffer *fb = state->base.fb; 520 unsigned int priority = state->base.normalized_zpos + 1; 521 unsigned long flags; 522 dma_addr_t luma_addr[2], chroma_addr[2]; 523 bool is_tiled, is_nv21; 524 u32 val; 525 526 is_nv21 = (fb->format->format == DRM_FORMAT_NV21); 527 is_tiled = (fb->modifier == DRM_FORMAT_MOD_SAMSUNG_64_32_TILE); 528 529 luma_addr[0] = exynos_drm_fb_dma_addr(fb, 0); 530 chroma_addr[0] = exynos_drm_fb_dma_addr(fb, 1); 531 532 if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) { 533 if (is_tiled) { 534 luma_addr[1] = luma_addr[0] + 0x40; 535 chroma_addr[1] = chroma_addr[0] + 0x40; 536 } else { 537 luma_addr[1] = luma_addr[0] + fb->pitches[0]; 538 chroma_addr[1] = chroma_addr[0] + fb->pitches[1]; 539 } 540 } else { 541 luma_addr[1] = 0; 542 chroma_addr[1] = 0; 543 } 544 545 spin_lock_irqsave(&ctx->reg_slock, flags); 546 547 /* interlace or progressive scan mode */ 548 val = (test_bit(MXR_BIT_INTERLACE, &ctx->flags) ? ~0 : 0); 549 vp_reg_writemask(ctx, VP_MODE, val, VP_MODE_LINE_SKIP); 550 551 /* setup format */ 552 val = (is_nv21 ? VP_MODE_NV21 : VP_MODE_NV12); 553 val |= (is_tiled ? VP_MODE_MEM_TILED : VP_MODE_MEM_LINEAR); 554 vp_reg_writemask(ctx, VP_MODE, val, VP_MODE_FMT_MASK); 555 556 /* setting size of input image */ 557 vp_reg_write(ctx, VP_IMG_SIZE_Y, VP_IMG_HSIZE(fb->pitches[0]) | 558 VP_IMG_VSIZE(fb->height)); 559 /* chroma plane for NV12/NV21 is half the height of the luma plane */ 560 vp_reg_write(ctx, VP_IMG_SIZE_C, VP_IMG_HSIZE(fb->pitches[1]) | 561 VP_IMG_VSIZE(fb->height / 2)); 562 563 vp_reg_write(ctx, VP_SRC_WIDTH, state->src.w); 564 vp_reg_write(ctx, VP_SRC_H_POSITION, 565 VP_SRC_H_POSITION_VAL(state->src.x)); 566 vp_reg_write(ctx, VP_DST_WIDTH, state->crtc.w); 567 vp_reg_write(ctx, VP_DST_H_POSITION, state->crtc.x); 568 569 if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) { 570 vp_reg_write(ctx, VP_SRC_HEIGHT, state->src.h / 2); 571 vp_reg_write(ctx, VP_SRC_V_POSITION, state->src.y / 2); 572 vp_reg_write(ctx, VP_DST_HEIGHT, state->crtc.h / 2); 573 vp_reg_write(ctx, VP_DST_V_POSITION, state->crtc.y / 2); 574 } else { 575 vp_reg_write(ctx, VP_SRC_HEIGHT, state->src.h); 576 vp_reg_write(ctx, VP_SRC_V_POSITION, state->src.y); 577 vp_reg_write(ctx, VP_DST_HEIGHT, state->crtc.h); 578 vp_reg_write(ctx, VP_DST_V_POSITION, state->crtc.y); 579 } 580 581 vp_reg_write(ctx, VP_H_RATIO, state->h_ratio); 582 vp_reg_write(ctx, VP_V_RATIO, state->v_ratio); 583 584 vp_reg_write(ctx, VP_ENDIAN_MODE, VP_ENDIAN_MODE_LITTLE); 585 586 /* set buffer address to vp */ 587 vp_reg_write(ctx, VP_TOP_Y_PTR, luma_addr[0]); 588 vp_reg_write(ctx, VP_BOT_Y_PTR, luma_addr[1]); 589 vp_reg_write(ctx, VP_TOP_C_PTR, chroma_addr[0]); 590 vp_reg_write(ctx, VP_BOT_C_PTR, chroma_addr[1]); 591 592 mixer_cfg_layer(ctx, plane->index, priority, true); 593 mixer_cfg_vp_blend(ctx, state->base.alpha); 594 595 spin_unlock_irqrestore(&ctx->reg_slock, flags); 596 597 mixer_regs_dump(ctx); 598 vp_regs_dump(ctx); 599 } 600 601 static void mixer_graph_buffer(struct mixer_context *ctx, 602 struct exynos_drm_plane *plane) 603 { 604 struct exynos_drm_plane_state *state = 605 to_exynos_plane_state(plane->base.state); 606 struct drm_framebuffer *fb = state->base.fb; 607 unsigned int priority = state->base.normalized_zpos + 1; 608 unsigned long flags; 609 unsigned int win = plane->index; 610 unsigned int x_ratio = 0, y_ratio = 0; 611 unsigned int dst_x_offset, dst_y_offset; 612 unsigned int pixel_alpha; 613 dma_addr_t dma_addr; 614 unsigned int fmt; 615 u32 val; 616 617 if (fb->format->has_alpha) 618 pixel_alpha = state->base.pixel_blend_mode; 619 else 620 pixel_alpha = DRM_MODE_BLEND_PIXEL_NONE; 621 622 switch (fb->format->format) { 623 case DRM_FORMAT_XRGB4444: 624 case DRM_FORMAT_ARGB4444: 625 fmt = MXR_FORMAT_ARGB4444; 626 break; 627 628 case DRM_FORMAT_XRGB1555: 629 case DRM_FORMAT_ARGB1555: 630 fmt = MXR_FORMAT_ARGB1555; 631 break; 632 633 case DRM_FORMAT_RGB565: 634 fmt = MXR_FORMAT_RGB565; 635 break; 636 637 case DRM_FORMAT_XRGB8888: 638 case DRM_FORMAT_ARGB8888: 639 default: 640 fmt = MXR_FORMAT_ARGB8888; 641 break; 642 } 643 644 /* ratio is already checked by common plane code */ 645 x_ratio = state->h_ratio == (1 << 15); 646 y_ratio = state->v_ratio == (1 << 15); 647 648 dst_x_offset = state->crtc.x; 649 dst_y_offset = state->crtc.y; 650 651 /* translate dma address base s.t. the source image offset is zero */ 652 dma_addr = exynos_drm_fb_dma_addr(fb, 0) 653 + (state->src.x * fb->format->cpp[0]) 654 + (state->src.y * fb->pitches[0]); 655 656 spin_lock_irqsave(&ctx->reg_slock, flags); 657 658 /* setup format */ 659 mixer_reg_writemask(ctx, MXR_GRAPHIC_CFG(win), 660 MXR_GRP_CFG_FORMAT_VAL(fmt), MXR_GRP_CFG_FORMAT_MASK); 661 662 /* setup geometry */ 663 mixer_reg_write(ctx, MXR_GRAPHIC_SPAN(win), 664 fb->pitches[0] / fb->format->cpp[0]); 665 666 val = MXR_GRP_WH_WIDTH(state->src.w); 667 val |= MXR_GRP_WH_HEIGHT(state->src.h); 668 val |= MXR_GRP_WH_H_SCALE(x_ratio); 669 val |= MXR_GRP_WH_V_SCALE(y_ratio); 670 mixer_reg_write(ctx, MXR_GRAPHIC_WH(win), val); 671 672 /* setup offsets in display image */ 673 val = MXR_GRP_DXY_DX(dst_x_offset); 674 val |= MXR_GRP_DXY_DY(dst_y_offset); 675 mixer_reg_write(ctx, MXR_GRAPHIC_DXY(win), val); 676 677 /* set buffer address to mixer */ 678 mixer_reg_write(ctx, MXR_GRAPHIC_BASE(win), dma_addr); 679 680 mixer_cfg_layer(ctx, win, priority, true); 681 mixer_cfg_gfx_blend(ctx, win, pixel_alpha, state->base.alpha); 682 683 spin_unlock_irqrestore(&ctx->reg_slock, flags); 684 685 mixer_regs_dump(ctx); 686 } 687 688 static void vp_win_reset(struct mixer_context *ctx) 689 { 690 unsigned int tries = 100; 691 692 vp_reg_write(ctx, VP_SRESET, VP_SRESET_PROCESSING); 693 while (--tries) { 694 /* waiting until VP_SRESET_PROCESSING is 0 */ 695 if (~vp_reg_read(ctx, VP_SRESET) & VP_SRESET_PROCESSING) 696 break; 697 mdelay(10); 698 } 699 WARN(tries == 0, "failed to reset Video Processor\n"); 700 } 701 702 static void mixer_win_reset(struct mixer_context *ctx) 703 { 704 unsigned long flags; 705 706 spin_lock_irqsave(&ctx->reg_slock, flags); 707 708 mixer_reg_writemask(ctx, MXR_CFG, MXR_CFG_DST_HDMI, MXR_CFG_DST_MASK); 709 710 /* set output in RGB888 mode */ 711 mixer_reg_writemask(ctx, MXR_CFG, MXR_CFG_OUT_RGB888, MXR_CFG_OUT_MASK); 712 713 /* 16 beat burst in DMA */ 714 mixer_reg_writemask(ctx, MXR_STATUS, MXR_STATUS_16_BURST, 715 MXR_STATUS_BURST_MASK); 716 717 /* reset default layer priority */ 718 mixer_reg_write(ctx, MXR_LAYER_CFG, 0); 719 720 /* set all background colors to RGB (0,0,0) */ 721 mixer_reg_write(ctx, MXR_BG_COLOR0, MXR_YCBCR_VAL(0, 128, 128)); 722 mixer_reg_write(ctx, MXR_BG_COLOR1, MXR_YCBCR_VAL(0, 128, 128)); 723 mixer_reg_write(ctx, MXR_BG_COLOR2, MXR_YCBCR_VAL(0, 128, 128)); 724 725 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) { 726 /* configuration of Video Processor Registers */ 727 vp_win_reset(ctx); 728 vp_default_filter(ctx); 729 } 730 731 /* disable all layers */ 732 mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_GRP0_ENABLE); 733 mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_GRP1_ENABLE); 734 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) 735 mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_VP_ENABLE); 736 737 /* set all source image offsets to zero */ 738 mixer_reg_write(ctx, MXR_GRAPHIC_SXY(0), 0); 739 mixer_reg_write(ctx, MXR_GRAPHIC_SXY(1), 0); 740 741 spin_unlock_irqrestore(&ctx->reg_slock, flags); 742 } 743 744 static irqreturn_t mixer_irq_handler(int irq, void *arg) 745 { 746 struct mixer_context *ctx = arg; 747 u32 val; 748 749 spin_lock(&ctx->reg_slock); 750 751 /* read interrupt status for handling and clearing flags for VSYNC */ 752 val = mixer_reg_read(ctx, MXR_INT_STATUS); 753 754 /* handling VSYNC */ 755 if (val & MXR_INT_STATUS_VSYNC) { 756 /* vsync interrupt use different bit for read and clear */ 757 val |= MXR_INT_CLEAR_VSYNC; 758 val &= ~MXR_INT_STATUS_VSYNC; 759 760 /* interlace scan need to check shadow register */ 761 if (test_bit(MXR_BIT_INTERLACE, &ctx->flags) 762 && !mixer_is_synced(ctx)) 763 goto out; 764 765 drm_crtc_handle_vblank(&ctx->crtc->base); 766 } 767 768 out: 769 /* clear interrupts */ 770 mixer_reg_write(ctx, MXR_INT_STATUS, val); 771 772 spin_unlock(&ctx->reg_slock); 773 774 return IRQ_HANDLED; 775 } 776 777 static int mixer_resources_init(struct mixer_context *mixer_ctx) 778 { 779 struct device *dev = &mixer_ctx->pdev->dev; 780 struct resource *res; 781 int ret; 782 783 spin_lock_init(&mixer_ctx->reg_slock); 784 785 mixer_ctx->mixer = devm_clk_get(dev, "mixer"); 786 if (IS_ERR(mixer_ctx->mixer)) { 787 dev_err(dev, "failed to get clock 'mixer'\n"); 788 return -ENODEV; 789 } 790 791 mixer_ctx->hdmi = devm_clk_get(dev, "hdmi"); 792 if (IS_ERR(mixer_ctx->hdmi)) { 793 dev_err(dev, "failed to get clock 'hdmi'\n"); 794 return PTR_ERR(mixer_ctx->hdmi); 795 } 796 797 mixer_ctx->sclk_hdmi = devm_clk_get(dev, "sclk_hdmi"); 798 if (IS_ERR(mixer_ctx->sclk_hdmi)) { 799 dev_err(dev, "failed to get clock 'sclk_hdmi'\n"); 800 return -ENODEV; 801 } 802 res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_MEM, 0); 803 if (res == NULL) { 804 dev_err(dev, "get memory resource failed.\n"); 805 return -ENXIO; 806 } 807 808 mixer_ctx->mixer_regs = devm_ioremap(dev, res->start, 809 resource_size(res)); 810 if (mixer_ctx->mixer_regs == NULL) { 811 dev_err(dev, "register mapping failed.\n"); 812 return -ENXIO; 813 } 814 815 ret = platform_get_irq(mixer_ctx->pdev, 0); 816 if (ret < 0) 817 return ret; 818 mixer_ctx->irq = ret; 819 820 ret = devm_request_irq(dev, mixer_ctx->irq, mixer_irq_handler, 821 0, "drm_mixer", mixer_ctx); 822 if (ret) { 823 dev_err(dev, "request interrupt failed.\n"); 824 return ret; 825 } 826 827 return 0; 828 } 829 830 static int vp_resources_init(struct mixer_context *mixer_ctx) 831 { 832 struct device *dev = &mixer_ctx->pdev->dev; 833 struct resource *res; 834 835 mixer_ctx->vp = devm_clk_get(dev, "vp"); 836 if (IS_ERR(mixer_ctx->vp)) { 837 dev_err(dev, "failed to get clock 'vp'\n"); 838 return -ENODEV; 839 } 840 841 if (test_bit(MXR_BIT_HAS_SCLK, &mixer_ctx->flags)) { 842 mixer_ctx->sclk_mixer = devm_clk_get(dev, "sclk_mixer"); 843 if (IS_ERR(mixer_ctx->sclk_mixer)) { 844 dev_err(dev, "failed to get clock 'sclk_mixer'\n"); 845 return -ENODEV; 846 } 847 mixer_ctx->mout_mixer = devm_clk_get(dev, "mout_mixer"); 848 if (IS_ERR(mixer_ctx->mout_mixer)) { 849 dev_err(dev, "failed to get clock 'mout_mixer'\n"); 850 return -ENODEV; 851 } 852 853 if (mixer_ctx->sclk_hdmi && mixer_ctx->mout_mixer) 854 clk_set_parent(mixer_ctx->mout_mixer, 855 mixer_ctx->sclk_hdmi); 856 } 857 858 res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_MEM, 1); 859 if (res == NULL) { 860 dev_err(dev, "get memory resource failed.\n"); 861 return -ENXIO; 862 } 863 864 mixer_ctx->vp_regs = devm_ioremap(dev, res->start, 865 resource_size(res)); 866 if (mixer_ctx->vp_regs == NULL) { 867 dev_err(dev, "register mapping failed.\n"); 868 return -ENXIO; 869 } 870 871 return 0; 872 } 873 874 static int mixer_initialize(struct mixer_context *mixer_ctx, 875 struct drm_device *drm_dev) 876 { 877 int ret; 878 879 mixer_ctx->drm_dev = drm_dev; 880 881 /* acquire resources: regs, irqs, clocks */ 882 ret = mixer_resources_init(mixer_ctx); 883 if (ret) { 884 DRM_DEV_ERROR(mixer_ctx->dev, 885 "mixer_resources_init failed ret=%d\n", ret); 886 return ret; 887 } 888 889 if (test_bit(MXR_BIT_VP_ENABLED, &mixer_ctx->flags)) { 890 /* acquire vp resources: regs, irqs, clocks */ 891 ret = vp_resources_init(mixer_ctx); 892 if (ret) { 893 DRM_DEV_ERROR(mixer_ctx->dev, 894 "vp_resources_init failed ret=%d\n", ret); 895 return ret; 896 } 897 } 898 899 return exynos_drm_register_dma(drm_dev, mixer_ctx->dev, 900 &mixer_ctx->dma_priv); 901 } 902 903 static void mixer_ctx_remove(struct mixer_context *mixer_ctx) 904 { 905 exynos_drm_unregister_dma(mixer_ctx->drm_dev, mixer_ctx->dev, 906 &mixer_ctx->dma_priv); 907 } 908 909 static int mixer_enable_vblank(struct exynos_drm_crtc *crtc) 910 { 911 struct mixer_context *mixer_ctx = crtc->ctx; 912 913 __set_bit(MXR_BIT_VSYNC, &mixer_ctx->flags); 914 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) 915 return 0; 916 917 /* enable vsync interrupt */ 918 mixer_reg_writemask(mixer_ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC); 919 mixer_reg_writemask(mixer_ctx, MXR_INT_EN, ~0, MXR_INT_EN_VSYNC); 920 921 return 0; 922 } 923 924 static void mixer_disable_vblank(struct exynos_drm_crtc *crtc) 925 { 926 struct mixer_context *mixer_ctx = crtc->ctx; 927 928 __clear_bit(MXR_BIT_VSYNC, &mixer_ctx->flags); 929 930 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) 931 return; 932 933 /* disable vsync interrupt */ 934 mixer_reg_writemask(mixer_ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC); 935 mixer_reg_writemask(mixer_ctx, MXR_INT_EN, 0, MXR_INT_EN_VSYNC); 936 } 937 938 static void mixer_atomic_begin(struct exynos_drm_crtc *crtc) 939 { 940 struct mixer_context *ctx = crtc->ctx; 941 942 if (!test_bit(MXR_BIT_POWERED, &ctx->flags)) 943 return; 944 945 if (mixer_wait_for_sync(ctx)) 946 dev_err(ctx->dev, "timeout waiting for VSYNC\n"); 947 mixer_disable_sync(ctx); 948 } 949 950 static void mixer_update_plane(struct exynos_drm_crtc *crtc, 951 struct exynos_drm_plane *plane) 952 { 953 struct mixer_context *mixer_ctx = crtc->ctx; 954 955 DRM_DEV_DEBUG_KMS(mixer_ctx->dev, "win: %d\n", plane->index); 956 957 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) 958 return; 959 960 if (plane->index == VP_DEFAULT_WIN) 961 vp_video_buffer(mixer_ctx, plane); 962 else 963 mixer_graph_buffer(mixer_ctx, plane); 964 } 965 966 static void mixer_disable_plane(struct exynos_drm_crtc *crtc, 967 struct exynos_drm_plane *plane) 968 { 969 struct mixer_context *mixer_ctx = crtc->ctx; 970 unsigned long flags; 971 972 DRM_DEV_DEBUG_KMS(mixer_ctx->dev, "win: %d\n", plane->index); 973 974 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) 975 return; 976 977 spin_lock_irqsave(&mixer_ctx->reg_slock, flags); 978 mixer_cfg_layer(mixer_ctx, plane->index, 0, false); 979 spin_unlock_irqrestore(&mixer_ctx->reg_slock, flags); 980 } 981 982 static void mixer_atomic_flush(struct exynos_drm_crtc *crtc) 983 { 984 struct mixer_context *mixer_ctx = crtc->ctx; 985 986 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) 987 return; 988 989 mixer_enable_sync(mixer_ctx); 990 exynos_crtc_handle_event(crtc); 991 } 992 993 static void mixer_atomic_enable(struct exynos_drm_crtc *crtc) 994 { 995 struct mixer_context *ctx = crtc->ctx; 996 int ret; 997 998 if (test_bit(MXR_BIT_POWERED, &ctx->flags)) 999 return; 1000 1001 ret = pm_runtime_resume_and_get(ctx->dev); 1002 if (ret < 0) { 1003 dev_err(ctx->dev, "failed to enable MIXER device.\n"); 1004 return; 1005 } 1006 1007 exynos_drm_pipe_clk_enable(crtc, true); 1008 1009 mixer_disable_sync(ctx); 1010 1011 mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_SOFT_RESET); 1012 1013 if (test_bit(MXR_BIT_VSYNC, &ctx->flags)) { 1014 mixer_reg_writemask(ctx, MXR_INT_STATUS, ~0, 1015 MXR_INT_CLEAR_VSYNC); 1016 mixer_reg_writemask(ctx, MXR_INT_EN, ~0, MXR_INT_EN_VSYNC); 1017 } 1018 mixer_win_reset(ctx); 1019 1020 mixer_commit(ctx); 1021 1022 mixer_enable_sync(ctx); 1023 1024 set_bit(MXR_BIT_POWERED, &ctx->flags); 1025 } 1026 1027 static void mixer_atomic_disable(struct exynos_drm_crtc *crtc) 1028 { 1029 struct mixer_context *ctx = crtc->ctx; 1030 int i; 1031 1032 if (!test_bit(MXR_BIT_POWERED, &ctx->flags)) 1033 return; 1034 1035 mixer_stop(ctx); 1036 mixer_regs_dump(ctx); 1037 1038 for (i = 0; i < MIXER_WIN_NR; i++) 1039 mixer_disable_plane(crtc, &ctx->planes[i]); 1040 1041 exynos_drm_pipe_clk_enable(crtc, false); 1042 1043 pm_runtime_put(ctx->dev); 1044 1045 clear_bit(MXR_BIT_POWERED, &ctx->flags); 1046 } 1047 1048 static enum drm_mode_status mixer_mode_valid(struct exynos_drm_crtc *crtc, 1049 const struct drm_display_mode *mode) 1050 { 1051 struct mixer_context *ctx = crtc->ctx; 1052 u32 w = mode->hdisplay, h = mode->vdisplay; 1053 1054 DRM_DEV_DEBUG_KMS(ctx->dev, "xres=%d, yres=%d, refresh=%d, intl=%d\n", 1055 w, h, drm_mode_vrefresh(mode), 1056 !!(mode->flags & DRM_MODE_FLAG_INTERLACE)); 1057 1058 if (ctx->mxr_ver == MXR_VER_128_0_0_184) 1059 return MODE_OK; 1060 1061 if ((w >= 464 && w <= 720 && h >= 261 && h <= 576) || 1062 (w >= 1024 && w <= 1280 && h >= 576 && h <= 720) || 1063 (w >= 1664 && w <= 1920 && h >= 936 && h <= 1080)) 1064 return MODE_OK; 1065 1066 if ((w == 1024 && h == 768) || 1067 (w == 1366 && h == 768) || 1068 (w == 1280 && h == 1024)) 1069 return MODE_OK; 1070 1071 return MODE_BAD; 1072 } 1073 1074 static bool mixer_mode_fixup(struct exynos_drm_crtc *crtc, 1075 const struct drm_display_mode *mode, 1076 struct drm_display_mode *adjusted_mode) 1077 { 1078 struct mixer_context *ctx = crtc->ctx; 1079 int width = mode->hdisplay, height = mode->vdisplay, i; 1080 1081 static const struct { 1082 int hdisplay, vdisplay, htotal, vtotal, scan_val; 1083 } modes[] = { 1084 { 720, 480, 858, 525, MXR_CFG_SCAN_NTSC | MXR_CFG_SCAN_SD }, 1085 { 720, 576, 864, 625, MXR_CFG_SCAN_PAL | MXR_CFG_SCAN_SD }, 1086 { 1280, 720, 1650, 750, MXR_CFG_SCAN_HD_720 | MXR_CFG_SCAN_HD }, 1087 { 1920, 1080, 2200, 1125, MXR_CFG_SCAN_HD_1080 | 1088 MXR_CFG_SCAN_HD } 1089 }; 1090 1091 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 1092 __set_bit(MXR_BIT_INTERLACE, &ctx->flags); 1093 else 1094 __clear_bit(MXR_BIT_INTERLACE, &ctx->flags); 1095 1096 if (ctx->mxr_ver == MXR_VER_128_0_0_184) 1097 return true; 1098 1099 for (i = 0; i < ARRAY_SIZE(modes); ++i) 1100 if (width <= modes[i].hdisplay && height <= modes[i].vdisplay) { 1101 ctx->scan_value = modes[i].scan_val; 1102 if (width < modes[i].hdisplay || 1103 height < modes[i].vdisplay) { 1104 adjusted_mode->hdisplay = modes[i].hdisplay; 1105 adjusted_mode->hsync_start = modes[i].hdisplay; 1106 adjusted_mode->hsync_end = modes[i].htotal; 1107 adjusted_mode->htotal = modes[i].htotal; 1108 adjusted_mode->vdisplay = modes[i].vdisplay; 1109 adjusted_mode->vsync_start = modes[i].vdisplay; 1110 adjusted_mode->vsync_end = modes[i].vtotal; 1111 adjusted_mode->vtotal = modes[i].vtotal; 1112 } 1113 1114 return true; 1115 } 1116 1117 return false; 1118 } 1119 1120 static const struct exynos_drm_crtc_ops mixer_crtc_ops = { 1121 .atomic_enable = mixer_atomic_enable, 1122 .atomic_disable = mixer_atomic_disable, 1123 .enable_vblank = mixer_enable_vblank, 1124 .disable_vblank = mixer_disable_vblank, 1125 .atomic_begin = mixer_atomic_begin, 1126 .update_plane = mixer_update_plane, 1127 .disable_plane = mixer_disable_plane, 1128 .atomic_flush = mixer_atomic_flush, 1129 .mode_valid = mixer_mode_valid, 1130 .mode_fixup = mixer_mode_fixup, 1131 }; 1132 1133 static const struct mixer_drv_data exynos5420_mxr_drv_data = { 1134 .version = MXR_VER_128_0_0_184, 1135 .is_vp_enabled = 0, 1136 }; 1137 1138 static const struct mixer_drv_data exynos5250_mxr_drv_data = { 1139 .version = MXR_VER_16_0_33_0, 1140 .is_vp_enabled = 0, 1141 }; 1142 1143 static const struct mixer_drv_data exynos4212_mxr_drv_data = { 1144 .version = MXR_VER_0_0_0_16, 1145 .is_vp_enabled = 1, 1146 }; 1147 1148 static const struct mixer_drv_data exynos4210_mxr_drv_data = { 1149 .version = MXR_VER_0_0_0_16, 1150 .is_vp_enabled = 1, 1151 .has_sclk = 1, 1152 }; 1153 1154 static const struct of_device_id mixer_match_types[] = { 1155 { 1156 .compatible = "samsung,exynos4210-mixer", 1157 .data = &exynos4210_mxr_drv_data, 1158 }, { 1159 .compatible = "samsung,exynos4212-mixer", 1160 .data = &exynos4212_mxr_drv_data, 1161 }, { 1162 .compatible = "samsung,exynos5-mixer", 1163 .data = &exynos5250_mxr_drv_data, 1164 }, { 1165 .compatible = "samsung,exynos5250-mixer", 1166 .data = &exynos5250_mxr_drv_data, 1167 }, { 1168 .compatible = "samsung,exynos5420-mixer", 1169 .data = &exynos5420_mxr_drv_data, 1170 }, { 1171 /* end node */ 1172 } 1173 }; 1174 MODULE_DEVICE_TABLE(of, mixer_match_types); 1175 1176 static int mixer_bind(struct device *dev, struct device *manager, void *data) 1177 { 1178 struct mixer_context *ctx = dev_get_drvdata(dev); 1179 struct drm_device *drm_dev = data; 1180 struct exynos_drm_plane *exynos_plane; 1181 unsigned int i; 1182 int ret; 1183 1184 ret = mixer_initialize(ctx, drm_dev); 1185 if (ret) 1186 return ret; 1187 1188 for (i = 0; i < MIXER_WIN_NR; i++) { 1189 if (i == VP_DEFAULT_WIN && !test_bit(MXR_BIT_VP_ENABLED, 1190 &ctx->flags)) 1191 continue; 1192 1193 ret = exynos_plane_init(drm_dev, &ctx->planes[i], i, 1194 &plane_configs[i]); 1195 if (ret) 1196 return ret; 1197 } 1198 1199 exynos_plane = &ctx->planes[DEFAULT_WIN]; 1200 ctx->crtc = exynos_drm_crtc_create(drm_dev, &exynos_plane->base, 1201 EXYNOS_DISPLAY_TYPE_HDMI, &mixer_crtc_ops, ctx); 1202 if (IS_ERR(ctx->crtc)) { 1203 mixer_ctx_remove(ctx); 1204 ret = PTR_ERR(ctx->crtc); 1205 goto free_ctx; 1206 } 1207 1208 return 0; 1209 1210 free_ctx: 1211 devm_kfree(dev, ctx); 1212 return ret; 1213 } 1214 1215 static void mixer_unbind(struct device *dev, struct device *master, void *data) 1216 { 1217 struct mixer_context *ctx = dev_get_drvdata(dev); 1218 1219 mixer_ctx_remove(ctx); 1220 } 1221 1222 static const struct component_ops mixer_component_ops = { 1223 .bind = mixer_bind, 1224 .unbind = mixer_unbind, 1225 }; 1226 1227 static int mixer_probe(struct platform_device *pdev) 1228 { 1229 struct device *dev = &pdev->dev; 1230 const struct mixer_drv_data *drv; 1231 struct mixer_context *ctx; 1232 int ret; 1233 1234 ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); 1235 if (!ctx) { 1236 DRM_DEV_ERROR(dev, "failed to alloc mixer context.\n"); 1237 return -ENOMEM; 1238 } 1239 1240 drv = of_device_get_match_data(dev); 1241 1242 ctx->pdev = pdev; 1243 ctx->dev = dev; 1244 ctx->mxr_ver = drv->version; 1245 1246 if (drv->is_vp_enabled) 1247 __set_bit(MXR_BIT_VP_ENABLED, &ctx->flags); 1248 if (drv->has_sclk) 1249 __set_bit(MXR_BIT_HAS_SCLK, &ctx->flags); 1250 1251 platform_set_drvdata(pdev, ctx); 1252 1253 pm_runtime_enable(dev); 1254 1255 ret = component_add(&pdev->dev, &mixer_component_ops); 1256 if (ret) 1257 pm_runtime_disable(dev); 1258 1259 return ret; 1260 } 1261 1262 static int mixer_remove(struct platform_device *pdev) 1263 { 1264 pm_runtime_disable(&pdev->dev); 1265 1266 component_del(&pdev->dev, &mixer_component_ops); 1267 1268 return 0; 1269 } 1270 1271 static int __maybe_unused exynos_mixer_suspend(struct device *dev) 1272 { 1273 struct mixer_context *ctx = dev_get_drvdata(dev); 1274 1275 clk_disable_unprepare(ctx->hdmi); 1276 clk_disable_unprepare(ctx->mixer); 1277 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) { 1278 clk_disable_unprepare(ctx->vp); 1279 if (test_bit(MXR_BIT_HAS_SCLK, &ctx->flags)) 1280 clk_disable_unprepare(ctx->sclk_mixer); 1281 } 1282 1283 return 0; 1284 } 1285 1286 static int __maybe_unused exynos_mixer_resume(struct device *dev) 1287 { 1288 struct mixer_context *ctx = dev_get_drvdata(dev); 1289 int ret; 1290 1291 ret = clk_prepare_enable(ctx->mixer); 1292 if (ret < 0) { 1293 DRM_DEV_ERROR(ctx->dev, 1294 "Failed to prepare_enable the mixer clk [%d]\n", 1295 ret); 1296 return ret; 1297 } 1298 ret = clk_prepare_enable(ctx->hdmi); 1299 if (ret < 0) { 1300 DRM_DEV_ERROR(dev, 1301 "Failed to prepare_enable the hdmi clk [%d]\n", 1302 ret); 1303 return ret; 1304 } 1305 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) { 1306 ret = clk_prepare_enable(ctx->vp); 1307 if (ret < 0) { 1308 DRM_DEV_ERROR(dev, 1309 "Failed to prepare_enable the vp clk [%d]\n", 1310 ret); 1311 return ret; 1312 } 1313 if (test_bit(MXR_BIT_HAS_SCLK, &ctx->flags)) { 1314 ret = clk_prepare_enable(ctx->sclk_mixer); 1315 if (ret < 0) { 1316 DRM_DEV_ERROR(dev, 1317 "Failed to prepare_enable the " \ 1318 "sclk_mixer clk [%d]\n", 1319 ret); 1320 return ret; 1321 } 1322 } 1323 } 1324 1325 return 0; 1326 } 1327 1328 static const struct dev_pm_ops exynos_mixer_pm_ops = { 1329 SET_RUNTIME_PM_OPS(exynos_mixer_suspend, exynos_mixer_resume, NULL) 1330 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1331 pm_runtime_force_resume) 1332 }; 1333 1334 struct platform_driver mixer_driver = { 1335 .driver = { 1336 .name = "exynos-mixer", 1337 .owner = THIS_MODULE, 1338 .pm = &exynos_mixer_pm_ops, 1339 .of_match_table = mixer_match_types, 1340 }, 1341 .probe = mixer_probe, 1342 .remove = mixer_remove, 1343 }; 1344